My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 109KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V81"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #include "endstops.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "temperature.h"
  48. #if ENABLED(DWIN_CREALITY_LCD)
  49. #include "../lcd/dwin/dwin.h"
  50. #endif
  51. #include "../lcd/ultralcd.h"
  52. #include "../libs/vector_3.h" // for matrix_3x3
  53. #include "../gcode/gcode.h"
  54. #include "../MarlinCore.h"
  55. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  56. #include "../HAL/shared/eeprom_api.h"
  57. #endif
  58. #include "probe.h"
  59. #if HAS_LEVELING
  60. #include "../feature/bedlevel/bedlevel.h"
  61. #endif
  62. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  63. #include "../feature/z_stepper_align.h"
  64. #endif
  65. #if ENABLED(EXTENSIBLE_UI)
  66. #include "../lcd/extui/ui_api.h"
  67. #endif
  68. #if HAS_SERVOS
  69. #include "servo.h"
  70. #endif
  71. #if HAS_SERVOS && HAS_SERVO_ANGLES
  72. #define EEPROM_NUM_SERVOS NUM_SERVOS
  73. #else
  74. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  75. #endif
  76. #include "../feature/fwretract.h"
  77. #if ENABLED(POWER_LOSS_RECOVERY)
  78. #include "../feature/powerloss.h"
  79. #endif
  80. #if HAS_POWER_MONITOR
  81. #include "../feature/power_monitor.h"
  82. #endif
  83. #include "../feature/pause.h"
  84. #if ENABLED(BACKLASH_COMPENSATION)
  85. #include "../feature/backlash.h"
  86. #endif
  87. #if HAS_FILAMENT_SENSOR
  88. #include "../feature/runout.h"
  89. #endif
  90. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  91. extern float other_extruder_advance_K[EXTRUDERS];
  92. #endif
  93. #if EXTRUDERS > 1
  94. #include "tool_change.h"
  95. void M217_report(const bool eeprom);
  96. #endif
  97. #if ENABLED(BLTOUCH)
  98. #include "../feature/bltouch.h"
  99. #endif
  100. #if HAS_TRINAMIC_CONFIG
  101. #include "stepper/indirection.h"
  102. #include "../feature/tmc_util.h"
  103. #endif
  104. #if ENABLED(PROBE_TEMP_COMPENSATION)
  105. #include "../feature/probe_temp_comp.h"
  106. #endif
  107. #include "../feature/controllerfan.h"
  108. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  109. void M710_report(const bool forReplay);
  110. #endif
  111. #if ENABLED(CASE_LIGHT_MENU) && DISABLED(CASE_LIGHT_NO_BRIGHTNESS)
  112. #include "../feature/caselight.h"
  113. #define HAS_CASE_LIGHT_BRIGHTNESS 1
  114. #endif
  115. #pragma pack(push, 1) // No padding between variables
  116. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t;
  117. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t;
  118. typedef struct { int16_t X, Y, Z, X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
  119. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t;
  120. // Limit an index to an array size
  121. #define ALIM(I,ARR) _MIN(I, COUNT(ARR) - 1)
  122. // Defaults for reset / fill in on load
  123. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  124. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  125. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  126. extern const char SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[];
  127. /**
  128. * Current EEPROM Layout
  129. *
  130. * Keep this data structure up to date so
  131. * EEPROM size is known at compile time!
  132. */
  133. typedef struct SettingsDataStruct {
  134. char version[4]; // Vnn\0
  135. uint16_t crc; // Data Checksum
  136. //
  137. // DISTINCT_E_FACTORS
  138. //
  139. uint8_t esteppers; // XYZE_N - XYZ
  140. planner_settings_t planner_settings;
  141. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  142. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  143. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  144. #if HAS_HOTEND_OFFSET
  145. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  146. #endif
  147. //
  148. // FILAMENT_RUNOUT_SENSOR
  149. //
  150. bool runout_sensor_enabled; // M412 S
  151. float runout_distance_mm; // M412 D
  152. //
  153. // ENABLE_LEVELING_FADE_HEIGHT
  154. //
  155. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  156. //
  157. // MESH_BED_LEVELING
  158. //
  159. float mbl_z_offset; // mbl.z_offset
  160. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  161. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
  162. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  163. //
  164. // HAS_BED_PROBE
  165. //
  166. xyz_pos_t probe_offset;
  167. //
  168. // ABL_PLANAR
  169. //
  170. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  171. //
  172. // AUTO_BED_LEVELING_BILINEAR
  173. //
  174. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  175. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  176. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  177. bed_mesh_t z_values; // G29
  178. #else
  179. float z_values[3][3];
  180. #endif
  181. //
  182. // AUTO_BED_LEVELING_UBL
  183. //
  184. bool planner_leveling_active; // M420 S planner.leveling_active
  185. int8_t ubl_storage_slot; // ubl.storage_slot
  186. //
  187. // SERVO_ANGLES
  188. //
  189. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  190. //
  191. // Temperature first layer compensation values
  192. //
  193. #if ENABLED(PROBE_TEMP_COMPENSATION)
  194. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  195. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  196. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  197. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  198. #endif
  199. ;
  200. #endif
  201. //
  202. // BLTOUCH
  203. //
  204. bool bltouch_last_written_mode;
  205. //
  206. // DELTA / [XYZ]_DUAL_ENDSTOPS
  207. //
  208. #if ENABLED(DELTA)
  209. float delta_height; // M666 H
  210. abc_float_t delta_endstop_adj; // M666 X Y Z
  211. float delta_radius, // M665 R
  212. delta_diagonal_rod, // M665 L
  213. delta_segments_per_second; // M665 S
  214. abc_float_t delta_tower_angle_trim, // M665 X Y Z
  215. delta_diagonal_rod_trim; // M665 A B C
  216. #elif HAS_EXTRA_ENDSTOPS
  217. float x2_endstop_adj, // M666 X
  218. y2_endstop_adj, // M666 Y
  219. z2_endstop_adj, // M666 (S2) Z
  220. z3_endstop_adj, // M666 (S3) Z
  221. z4_endstop_adj; // M666 (S4) Z
  222. #endif
  223. //
  224. // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
  225. //
  226. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  227. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
  228. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  229. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
  230. #endif
  231. #endif
  232. //
  233. // Material Presets
  234. //
  235. #if PREHEAT_COUNT
  236. preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
  237. #endif
  238. //
  239. // PIDTEMP
  240. //
  241. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  242. int16_t lpq_len; // M301 L
  243. //
  244. // PIDTEMPBED
  245. //
  246. PID_t bedPID; // M304 PID / M303 E-1 U
  247. //
  248. // User-defined Thermistors
  249. //
  250. #if HAS_USER_THERMISTORS
  251. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  252. #endif
  253. //
  254. // Power monitor
  255. //
  256. uint8_t power_monitor_flags; // M430 I V W
  257. //
  258. // HAS_LCD_CONTRAST
  259. //
  260. int16_t lcd_contrast; // M250 C
  261. //
  262. // Controller fan settings
  263. //
  264. controllerFan_settings_t controllerFan_settings; // M710
  265. //
  266. // POWER_LOSS_RECOVERY
  267. //
  268. bool recovery_enabled; // M413 S
  269. //
  270. // FWRETRACT
  271. //
  272. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  273. bool autoretract_enabled; // M209 S
  274. //
  275. // !NO_VOLUMETRIC
  276. //
  277. bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
  278. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  279. float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
  280. //
  281. // HAS_TRINAMIC_CONFIG
  282. //
  283. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  284. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  285. tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
  286. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  287. //
  288. // LIN_ADVANCE
  289. //
  290. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  291. //
  292. // HAS_MOTOR_CURRENT_PWM
  293. //
  294. uint32_t motor_current_setting[3]; // M907 X Z E
  295. //
  296. // CNC_COORDINATE_SYSTEMS
  297. //
  298. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  299. //
  300. // SKEW_CORRECTION
  301. //
  302. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  303. //
  304. // ADVANCED_PAUSE_FEATURE
  305. //
  306. #if EXTRUDERS
  307. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  308. #endif
  309. //
  310. // Tool-change settings
  311. //
  312. #if EXTRUDERS > 1
  313. toolchange_settings_t toolchange_settings; // M217 S P R
  314. #endif
  315. //
  316. // BACKLASH_COMPENSATION
  317. //
  318. xyz_float_t backlash_distance_mm; // M425 X Y Z
  319. uint8_t backlash_correction; // M425 F
  320. float backlash_smoothing_mm; // M425 S
  321. //
  322. // EXTENSIBLE_UI
  323. //
  324. #if ENABLED(EXTENSIBLE_UI)
  325. // This is a significant hardware change; don't reserve space when not present
  326. uint8_t extui_data[ExtUI::eeprom_data_size];
  327. #endif
  328. //
  329. // HAS_CASE_LIGHT_BRIGHTNESS
  330. //
  331. #if HAS_CASE_LIGHT_BRIGHTNESS
  332. uint8_t case_light_brightness;
  333. #endif
  334. } SettingsData;
  335. //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
  336. MarlinSettings settings;
  337. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  338. /**
  339. * Post-process after Retrieve or Reset
  340. */
  341. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  342. float new_z_fade_height;
  343. #endif
  344. void MarlinSettings::postprocess() {
  345. xyze_pos_t oldpos = current_position;
  346. // steps per s2 needs to be updated to agree with units per s2
  347. planner.reset_acceleration_rates();
  348. // Make sure delta kinematics are updated before refreshing the
  349. // planner position so the stepper counts will be set correctly.
  350. TERN_(DELTA, recalc_delta_settings());
  351. TERN_(PIDTEMP, thermalManager.updatePID());
  352. #if DISABLED(NO_VOLUMETRICS)
  353. planner.calculate_volumetric_multipliers();
  354. #elif EXTRUDERS
  355. for (uint8_t i = COUNT(planner.e_factor); i--;)
  356. planner.refresh_e_factor(i);
  357. #endif
  358. // Software endstops depend on home_offset
  359. LOOP_XYZ(i) {
  360. update_workspace_offset((AxisEnum)i);
  361. update_software_endstops((AxisEnum)i);
  362. }
  363. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  364. TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
  365. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  366. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  367. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  368. TERN_(HAS_CASE_LIGHT_BRIGHTNESS, update_case_light());
  369. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  370. // and init stepper.count[], planner.position[] with current_position
  371. planner.refresh_positioning();
  372. // Various factors can change the current position
  373. if (oldpos != current_position)
  374. report_current_position();
  375. }
  376. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  377. #include "printcounter.h"
  378. static_assert(
  379. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  380. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  381. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  382. );
  383. #endif
  384. #if ENABLED(SD_FIRMWARE_UPDATE)
  385. #if ENABLED(EEPROM_SETTINGS)
  386. static_assert(
  387. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  388. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  389. );
  390. #endif
  391. bool MarlinSettings::sd_update_status() {
  392. uint8_t val;
  393. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  394. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  395. }
  396. bool MarlinSettings::set_sd_update_status(const bool enable) {
  397. if (enable != sd_update_status())
  398. persistentStore.write_data(
  399. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  400. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  401. );
  402. return true;
  403. }
  404. #endif // SD_FIRMWARE_UPDATE
  405. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  406. static_assert(
  407. EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  408. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data."
  409. );
  410. #endif
  411. #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
  412. #include "../core/debug_out.h"
  413. #if ENABLED(EEPROM_SETTINGS)
  414. #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \
  415. int eeprom_index = EEPROM_OFFSET
  416. #define EEPROM_FINISH() persistentStore.access_finish()
  417. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  418. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  419. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0)
  420. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  421. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  422. #if ENABLED(DEBUG_EEPROM_READWRITE)
  423. #define _FIELD_TEST(FIELD) \
  424. EEPROM_ASSERT( \
  425. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  426. "Field " STRINGIFY(FIELD) " mismatch." \
  427. )
  428. #else
  429. #define _FIELD_TEST(FIELD) NOOP
  430. #endif
  431. const char version[4] = EEPROM_VERSION;
  432. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  433. bool MarlinSettings::size_error(const uint16_t size) {
  434. if (size != datasize()) {
  435. DEBUG_ERROR_MSG("EEPROM datasize error.");
  436. return true;
  437. }
  438. return false;
  439. }
  440. /**
  441. * M500 - Store Configuration
  442. */
  443. bool MarlinSettings::save() {
  444. float dummyf = 0;
  445. char ver[4] = "ERR";
  446. uint16_t working_crc = 0;
  447. EEPROM_START();
  448. eeprom_error = false;
  449. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  450. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  451. EEPROM_SKIP(working_crc); // Skip the checksum slot
  452. working_crc = 0; // clear before first "real data"
  453. _FIELD_TEST(esteppers);
  454. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  455. EEPROM_WRITE(esteppers);
  456. //
  457. // Planner Motion
  458. //
  459. {
  460. EEPROM_WRITE(planner.settings);
  461. #if HAS_CLASSIC_JERK
  462. EEPROM_WRITE(planner.max_jerk);
  463. #if HAS_LINEAR_E_JERK
  464. dummyf = float(DEFAULT_EJERK);
  465. EEPROM_WRITE(dummyf);
  466. #endif
  467. #else
  468. const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
  469. EEPROM_WRITE(planner_max_jerk);
  470. #endif
  471. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  472. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  473. }
  474. //
  475. // Home Offset
  476. //
  477. {
  478. _FIELD_TEST(home_offset);
  479. #if HAS_SCARA_OFFSET
  480. EEPROM_WRITE(scara_home_offset);
  481. #else
  482. #if !HAS_HOME_OFFSET
  483. const xyz_pos_t home_offset{0};
  484. #endif
  485. EEPROM_WRITE(home_offset);
  486. #endif
  487. #if HAS_HOTEND_OFFSET
  488. // Skip hotend 0 which must be 0
  489. LOOP_S_L_N(e, 1, HOTENDS)
  490. EEPROM_WRITE(hotend_offset[e]);
  491. #endif
  492. }
  493. //
  494. // Filament Runout Sensor
  495. //
  496. {
  497. #if HAS_FILAMENT_SENSOR
  498. const bool &runout_sensor_enabled = runout.enabled;
  499. #else
  500. constexpr bool runout_sensor_enabled = true;
  501. #endif
  502. #if HAS_FILAMENT_RUNOUT_DISTANCE
  503. const float &runout_distance_mm = runout.runout_distance();
  504. #else
  505. constexpr float runout_distance_mm = 0;
  506. #endif
  507. _FIELD_TEST(runout_sensor_enabled);
  508. EEPROM_WRITE(runout_sensor_enabled);
  509. EEPROM_WRITE(runout_distance_mm);
  510. }
  511. //
  512. // Global Leveling
  513. //
  514. {
  515. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, 10.0f);
  516. EEPROM_WRITE(zfh);
  517. }
  518. //
  519. // Mesh Bed Leveling
  520. //
  521. {
  522. #if ENABLED(MESH_BED_LEVELING)
  523. static_assert(
  524. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  525. "MBL Z array is the wrong size."
  526. );
  527. #else
  528. dummyf = 0;
  529. #endif
  530. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  531. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  532. EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
  533. EEPROM_WRITE(mesh_num_x);
  534. EEPROM_WRITE(mesh_num_y);
  535. #if ENABLED(MESH_BED_LEVELING)
  536. EEPROM_WRITE(mbl.z_values);
  537. #else
  538. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  539. #endif
  540. }
  541. //
  542. // Probe XYZ Offsets
  543. //
  544. {
  545. _FIELD_TEST(probe_offset);
  546. #if HAS_BED_PROBE
  547. const xyz_pos_t &zpo = probe.offset;
  548. #else
  549. constexpr xyz_pos_t zpo{0};
  550. #endif
  551. EEPROM_WRITE(zpo);
  552. }
  553. //
  554. // Planar Bed Leveling matrix
  555. //
  556. {
  557. #if ABL_PLANAR
  558. EEPROM_WRITE(planner.bed_level_matrix);
  559. #else
  560. dummyf = 0;
  561. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  562. #endif
  563. }
  564. //
  565. // Bilinear Auto Bed Leveling
  566. //
  567. {
  568. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  569. static_assert(
  570. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  571. "Bilinear Z array is the wrong size."
  572. );
  573. #else
  574. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  575. #endif
  576. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  577. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  578. EEPROM_WRITE(grid_max_x);
  579. EEPROM_WRITE(grid_max_y);
  580. EEPROM_WRITE(bilinear_grid_spacing);
  581. EEPROM_WRITE(bilinear_start);
  582. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  583. EEPROM_WRITE(z_values); // 9-256 floats
  584. #else
  585. dummyf = 0;
  586. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  587. #endif
  588. }
  589. //
  590. // Unified Bed Leveling
  591. //
  592. {
  593. _FIELD_TEST(planner_leveling_active);
  594. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  595. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
  596. EEPROM_WRITE(ubl_active);
  597. EEPROM_WRITE(storage_slot);
  598. }
  599. //
  600. // Servo Angles
  601. //
  602. {
  603. _FIELD_TEST(servo_angles);
  604. #if !HAS_SERVO_ANGLES
  605. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  606. #endif
  607. EEPROM_WRITE(servo_angles);
  608. }
  609. //
  610. // Thermal first layer compensation values
  611. //
  612. #if ENABLED(PROBE_TEMP_COMPENSATION)
  613. EEPROM_WRITE(temp_comp.z_offsets_probe);
  614. EEPROM_WRITE(temp_comp.z_offsets_bed);
  615. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  616. EEPROM_WRITE(temp_comp.z_offsets_ext);
  617. #endif
  618. #else
  619. // No placeholder data for this feature
  620. #endif
  621. //
  622. // BLTOUCH
  623. //
  624. {
  625. _FIELD_TEST(bltouch_last_written_mode);
  626. const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
  627. EEPROM_WRITE(bltouch_last_written_mode);
  628. }
  629. //
  630. // DELTA Geometry or Dual Endstops offsets
  631. //
  632. {
  633. #if ENABLED(DELTA)
  634. _FIELD_TEST(delta_height);
  635. EEPROM_WRITE(delta_height); // 1 float
  636. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  637. EEPROM_WRITE(delta_radius); // 1 float
  638. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  639. EEPROM_WRITE(delta_segments_per_second); // 1 float
  640. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  641. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  642. #elif HAS_EXTRA_ENDSTOPS
  643. _FIELD_TEST(x2_endstop_adj);
  644. // Write dual endstops in X, Y, Z order. Unused = 0.0
  645. dummyf = 0;
  646. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  647. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  648. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  649. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  650. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  651. #else
  652. EEPROM_WRITE(dummyf);
  653. #endif
  654. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  655. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  656. #else
  657. EEPROM_WRITE(dummyf);
  658. #endif
  659. #endif
  660. }
  661. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  662. EEPROM_WRITE(z_stepper_align.xy);
  663. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  664. EEPROM_WRITE(z_stepper_align.stepper_xy);
  665. #endif
  666. #endif
  667. //
  668. // LCD Preheat settings
  669. //
  670. #if PREHEAT_COUNT
  671. _FIELD_TEST(ui_material_preset);
  672. EEPROM_WRITE(ui.material_preset);
  673. #endif
  674. //
  675. // PIDTEMP
  676. //
  677. {
  678. _FIELD_TEST(hotendPID);
  679. HOTEND_LOOP() {
  680. PIDCF_t pidcf = {
  681. #if DISABLED(PIDTEMP)
  682. NAN, NAN, NAN,
  683. NAN, NAN
  684. #else
  685. PID_PARAM(Kp, e),
  686. unscalePID_i(PID_PARAM(Ki, e)),
  687. unscalePID_d(PID_PARAM(Kd, e)),
  688. PID_PARAM(Kc, e),
  689. PID_PARAM(Kf, e)
  690. #endif
  691. };
  692. EEPROM_WRITE(pidcf);
  693. }
  694. _FIELD_TEST(lpq_len);
  695. #if DISABLED(PID_EXTRUSION_SCALING)
  696. const int16_t lpq_len = 20;
  697. #endif
  698. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  699. }
  700. //
  701. // PIDTEMPBED
  702. //
  703. {
  704. _FIELD_TEST(bedPID);
  705. const PID_t bed_pid = {
  706. #if DISABLED(PIDTEMPBED)
  707. NAN, NAN, NAN
  708. #else
  709. // Store the unscaled PID values
  710. thermalManager.temp_bed.pid.Kp,
  711. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  712. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  713. #endif
  714. };
  715. EEPROM_WRITE(bed_pid);
  716. }
  717. //
  718. // User-defined Thermistors
  719. //
  720. #if HAS_USER_THERMISTORS
  721. {
  722. _FIELD_TEST(user_thermistor);
  723. EEPROM_WRITE(thermalManager.user_thermistor);
  724. }
  725. #endif
  726. //
  727. // Power monitor
  728. //
  729. {
  730. #if HAS_POWER_MONITOR
  731. const uint8_t &power_monitor_flags = power_monitor.flags;
  732. #else
  733. constexpr uint8_t power_monitor_flags = 0x00;
  734. #endif
  735. _FIELD_TEST(power_monitor_flags);
  736. EEPROM_WRITE(power_monitor_flags);
  737. }
  738. //
  739. // LCD Contrast
  740. //
  741. {
  742. _FIELD_TEST(lcd_contrast);
  743. const int16_t lcd_contrast =
  744. #if HAS_LCD_CONTRAST
  745. ui.contrast
  746. #else
  747. 127
  748. #endif
  749. ;
  750. EEPROM_WRITE(lcd_contrast);
  751. }
  752. //
  753. // Controller Fan
  754. //
  755. {
  756. _FIELD_TEST(controllerFan_settings);
  757. #if ENABLED(USE_CONTROLLER_FAN)
  758. const controllerFan_settings_t &cfs = controllerFan.settings;
  759. #else
  760. controllerFan_settings_t cfs = controllerFan_defaults;
  761. #endif
  762. EEPROM_WRITE(cfs);
  763. }
  764. //
  765. // Power-Loss Recovery
  766. //
  767. {
  768. _FIELD_TEST(recovery_enabled);
  769. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  770. EEPROM_WRITE(recovery_enabled);
  771. }
  772. //
  773. // Firmware Retraction
  774. //
  775. {
  776. _FIELD_TEST(fwretract_settings);
  777. #if DISABLED(FWRETRACT)
  778. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  779. #endif
  780. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  781. #if DISABLED(FWRETRACT_AUTORETRACT)
  782. const bool autoretract_enabled = false;
  783. #endif
  784. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  785. }
  786. //
  787. // Volumetric & Filament Size
  788. //
  789. {
  790. _FIELD_TEST(parser_volumetric_enabled);
  791. #if DISABLED(NO_VOLUMETRICS)
  792. EEPROM_WRITE(parser.volumetric_enabled);
  793. EEPROM_WRITE(planner.filament_size);
  794. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  795. EEPROM_WRITE(planner.volumetric_extruder_limit);
  796. #else
  797. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  798. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  799. #endif
  800. #else
  801. const bool volumetric_enabled = false;
  802. EEPROM_WRITE(volumetric_enabled);
  803. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  804. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  805. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  806. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  807. #endif
  808. }
  809. //
  810. // TMC Configuration
  811. //
  812. {
  813. _FIELD_TEST(tmc_stepper_current);
  814. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  815. #if HAS_TRINAMIC_CONFIG
  816. #if AXIS_IS_TMC(X)
  817. tmc_stepper_current.X = stepperX.getMilliamps();
  818. #endif
  819. #if AXIS_IS_TMC(Y)
  820. tmc_stepper_current.Y = stepperY.getMilliamps();
  821. #endif
  822. #if AXIS_IS_TMC(Z)
  823. tmc_stepper_current.Z = stepperZ.getMilliamps();
  824. #endif
  825. #if AXIS_IS_TMC(X2)
  826. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  827. #endif
  828. #if AXIS_IS_TMC(Y2)
  829. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  830. #endif
  831. #if AXIS_IS_TMC(Z2)
  832. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  833. #endif
  834. #if AXIS_IS_TMC(Z3)
  835. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  836. #endif
  837. #if AXIS_IS_TMC(Z4)
  838. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  839. #endif
  840. #if MAX_EXTRUDERS
  841. #if AXIS_IS_TMC(E0)
  842. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  843. #endif
  844. #if MAX_EXTRUDERS > 1
  845. #if AXIS_IS_TMC(E1)
  846. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  847. #endif
  848. #if MAX_EXTRUDERS > 2
  849. #if AXIS_IS_TMC(E2)
  850. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  851. #endif
  852. #if MAX_EXTRUDERS > 3
  853. #if AXIS_IS_TMC(E3)
  854. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  855. #endif
  856. #if MAX_EXTRUDERS > 4
  857. #if AXIS_IS_TMC(E4)
  858. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  859. #endif
  860. #if MAX_EXTRUDERS > 5
  861. #if AXIS_IS_TMC(E5)
  862. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  863. #endif
  864. #if MAX_EXTRUDERS > 6
  865. #if AXIS_IS_TMC(E6)
  866. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  867. #endif
  868. #if MAX_EXTRUDERS > 7
  869. #if AXIS_IS_TMC(E7)
  870. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  871. #endif
  872. #endif // MAX_EXTRUDERS > 7
  873. #endif // MAX_EXTRUDERS > 6
  874. #endif // MAX_EXTRUDERS > 5
  875. #endif // MAX_EXTRUDERS > 4
  876. #endif // MAX_EXTRUDERS > 3
  877. #endif // MAX_EXTRUDERS > 2
  878. #endif // MAX_EXTRUDERS > 1
  879. #endif // MAX_EXTRUDERS
  880. #endif
  881. EEPROM_WRITE(tmc_stepper_current);
  882. }
  883. //
  884. // TMC Hybrid Threshold, and placeholder values
  885. //
  886. {
  887. _FIELD_TEST(tmc_hybrid_threshold);
  888. #if ENABLED(HYBRID_THRESHOLD)
  889. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  890. #if AXIS_HAS_STEALTHCHOP(X)
  891. tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
  892. #endif
  893. #if AXIS_HAS_STEALTHCHOP(Y)
  894. tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
  895. #endif
  896. #if AXIS_HAS_STEALTHCHOP(Z)
  897. tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
  898. #endif
  899. #if AXIS_HAS_STEALTHCHOP(X2)
  900. tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
  901. #endif
  902. #if AXIS_HAS_STEALTHCHOP(Y2)
  903. tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
  904. #endif
  905. #if AXIS_HAS_STEALTHCHOP(Z2)
  906. tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
  907. #endif
  908. #if AXIS_HAS_STEALTHCHOP(Z3)
  909. tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
  910. #endif
  911. #if AXIS_HAS_STEALTHCHOP(Z4)
  912. tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
  913. #endif
  914. #if MAX_EXTRUDERS
  915. #if AXIS_HAS_STEALTHCHOP(E0)
  916. tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
  917. #endif
  918. #if MAX_EXTRUDERS > 1
  919. #if AXIS_HAS_STEALTHCHOP(E1)
  920. tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
  921. #endif
  922. #if MAX_EXTRUDERS > 2
  923. #if AXIS_HAS_STEALTHCHOP(E2)
  924. tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
  925. #endif
  926. #if MAX_EXTRUDERS > 3
  927. #if AXIS_HAS_STEALTHCHOP(E3)
  928. tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
  929. #endif
  930. #if MAX_EXTRUDERS > 4
  931. #if AXIS_HAS_STEALTHCHOP(E4)
  932. tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
  933. #endif
  934. #if MAX_EXTRUDERS > 5
  935. #if AXIS_HAS_STEALTHCHOP(E5)
  936. tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
  937. #endif
  938. #if MAX_EXTRUDERS > 6
  939. #if AXIS_HAS_STEALTHCHOP(E6)
  940. tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs();
  941. #endif
  942. #if MAX_EXTRUDERS > 7
  943. #if AXIS_HAS_STEALTHCHOP(E7)
  944. tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs();
  945. #endif
  946. #endif // MAX_EXTRUDERS > 7
  947. #endif // MAX_EXTRUDERS > 6
  948. #endif // MAX_EXTRUDERS > 5
  949. #endif // MAX_EXTRUDERS > 4
  950. #endif // MAX_EXTRUDERS > 3
  951. #endif // MAX_EXTRUDERS > 2
  952. #endif // MAX_EXTRUDERS > 1
  953. #endif // MAX_EXTRUDERS
  954. #else
  955. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  956. .X = 100, .Y = 100, .Z = 3,
  957. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
  958. .E0 = 30, .E1 = 30, .E2 = 30,
  959. .E3 = 30, .E4 = 30, .E5 = 30
  960. };
  961. #endif
  962. EEPROM_WRITE(tmc_hybrid_threshold);
  963. }
  964. //
  965. // TMC StallGuard threshold
  966. //
  967. {
  968. tmc_sgt_t tmc_sgt{0};
  969. #if USE_SENSORLESS
  970. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold());
  971. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  972. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold());
  973. TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
  974. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold());
  975. TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
  976. TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
  977. TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
  978. #endif
  979. EEPROM_WRITE(tmc_sgt);
  980. }
  981. //
  982. // TMC stepping mode
  983. //
  984. {
  985. _FIELD_TEST(tmc_stealth_enabled);
  986. tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
  987. #if HAS_STEALTHCHOP
  988. #if AXIS_HAS_STEALTHCHOP(X)
  989. tmc_stealth_enabled.X = stepperX.get_stealthChop_status();
  990. #endif
  991. #if AXIS_HAS_STEALTHCHOP(Y)
  992. tmc_stealth_enabled.Y = stepperY.get_stealthChop_status();
  993. #endif
  994. #if AXIS_HAS_STEALTHCHOP(Z)
  995. tmc_stealth_enabled.Z = stepperZ.get_stealthChop_status();
  996. #endif
  997. #if AXIS_HAS_STEALTHCHOP(X2)
  998. tmc_stealth_enabled.X2 = stepperX2.get_stealthChop_status();
  999. #endif
  1000. #if AXIS_HAS_STEALTHCHOP(Y2)
  1001. tmc_stealth_enabled.Y2 = stepperY2.get_stealthChop_status();
  1002. #endif
  1003. #if AXIS_HAS_STEALTHCHOP(Z2)
  1004. tmc_stealth_enabled.Z2 = stepperZ2.get_stealthChop_status();
  1005. #endif
  1006. #if AXIS_HAS_STEALTHCHOP(Z3)
  1007. tmc_stealth_enabled.Z3 = stepperZ3.get_stealthChop_status();
  1008. #endif
  1009. #if AXIS_HAS_STEALTHCHOP(Z4)
  1010. tmc_stealth_enabled.Z4 = stepperZ4.get_stealthChop_status();
  1011. #endif
  1012. #if MAX_EXTRUDERS
  1013. #if AXIS_HAS_STEALTHCHOP(E0)
  1014. tmc_stealth_enabled.E0 = stepperE0.get_stealthChop_status();
  1015. #endif
  1016. #if MAX_EXTRUDERS > 1
  1017. #if AXIS_HAS_STEALTHCHOP(E1)
  1018. tmc_stealth_enabled.E1 = stepperE1.get_stealthChop_status();
  1019. #endif
  1020. #if MAX_EXTRUDERS > 2
  1021. #if AXIS_HAS_STEALTHCHOP(E2)
  1022. tmc_stealth_enabled.E2 = stepperE2.get_stealthChop_status();
  1023. #endif
  1024. #if MAX_EXTRUDERS > 3
  1025. #if AXIS_HAS_STEALTHCHOP(E3)
  1026. tmc_stealth_enabled.E3 = stepperE3.get_stealthChop_status();
  1027. #endif
  1028. #if MAX_EXTRUDERS > 4
  1029. #if AXIS_HAS_STEALTHCHOP(E4)
  1030. tmc_stealth_enabled.E4 = stepperE4.get_stealthChop_status();
  1031. #endif
  1032. #if MAX_EXTRUDERS > 5
  1033. #if AXIS_HAS_STEALTHCHOP(E5)
  1034. tmc_stealth_enabled.E5 = stepperE5.get_stealthChop_status();
  1035. #endif
  1036. #if MAX_EXTRUDERS > 6
  1037. #if AXIS_HAS_STEALTHCHOP(E6)
  1038. tmc_stealth_enabled.E6 = stepperE6.get_stealthChop_status();
  1039. #endif
  1040. #if MAX_EXTRUDERS > 7
  1041. #if AXIS_HAS_STEALTHCHOP(E7)
  1042. tmc_stealth_enabled.E7 = stepperE7.get_stealthChop_status();
  1043. #endif
  1044. #endif // MAX_EXTRUDERS > 7
  1045. #endif // MAX_EXTRUDERS > 6
  1046. #endif // MAX_EXTRUDERS > 5
  1047. #endif // MAX_EXTRUDERS > 4
  1048. #endif // MAX_EXTRUDERS > 3
  1049. #endif // MAX_EXTRUDERS > 2
  1050. #endif // MAX_EXTRUDERS > 1
  1051. #endif // MAX_EXTRUDERS
  1052. #endif
  1053. EEPROM_WRITE(tmc_stealth_enabled);
  1054. }
  1055. //
  1056. // Linear Advance
  1057. //
  1058. {
  1059. _FIELD_TEST(planner_extruder_advance_K);
  1060. #if ENABLED(LIN_ADVANCE)
  1061. EEPROM_WRITE(planner.extruder_advance_K);
  1062. #else
  1063. dummyf = 0;
  1064. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1065. #endif
  1066. }
  1067. //
  1068. // Motor Current PWM
  1069. //
  1070. {
  1071. _FIELD_TEST(motor_current_setting);
  1072. #if HAS_MOTOR_CURRENT_PWM
  1073. EEPROM_WRITE(stepper.motor_current_setting);
  1074. #else
  1075. const uint32_t no_current[3] = { 0 };
  1076. EEPROM_WRITE(no_current);
  1077. #endif
  1078. }
  1079. //
  1080. // CNC Coordinate Systems
  1081. //
  1082. _FIELD_TEST(coordinate_system);
  1083. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1084. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1085. #endif
  1086. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1087. //
  1088. // Skew correction factors
  1089. //
  1090. _FIELD_TEST(planner_skew_factor);
  1091. EEPROM_WRITE(planner.skew_factor);
  1092. //
  1093. // Advanced Pause filament load & unload lengths
  1094. //
  1095. #if EXTRUDERS
  1096. {
  1097. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1098. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1099. #endif
  1100. _FIELD_TEST(fc_settings);
  1101. EEPROM_WRITE(fc_settings);
  1102. }
  1103. #endif
  1104. //
  1105. // Multiple Extruders
  1106. //
  1107. #if EXTRUDERS > 1
  1108. _FIELD_TEST(toolchange_settings);
  1109. EEPROM_WRITE(toolchange_settings);
  1110. #endif
  1111. //
  1112. // Backlash Compensation
  1113. //
  1114. {
  1115. #if ENABLED(BACKLASH_GCODE)
  1116. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1117. const uint8_t &backlash_correction = backlash.correction;
  1118. #else
  1119. const xyz_float_t backlash_distance_mm{0};
  1120. const uint8_t backlash_correction = 0;
  1121. #endif
  1122. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1123. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1124. #else
  1125. const float backlash_smoothing_mm = 3;
  1126. #endif
  1127. _FIELD_TEST(backlash_distance_mm);
  1128. EEPROM_WRITE(backlash_distance_mm);
  1129. EEPROM_WRITE(backlash_correction);
  1130. EEPROM_WRITE(backlash_smoothing_mm);
  1131. }
  1132. //
  1133. // Extensible UI User Data
  1134. //
  1135. #if ENABLED(EXTENSIBLE_UI)
  1136. {
  1137. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1138. ExtUI::onStoreSettings(extui_data);
  1139. _FIELD_TEST(extui_data);
  1140. EEPROM_WRITE(extui_data);
  1141. }
  1142. #endif
  1143. //
  1144. // Case Light Brightness
  1145. //
  1146. #if HAS_CASE_LIGHT_BRIGHTNESS
  1147. EEPROM_WRITE(case_light_brightness);
  1148. #endif
  1149. //
  1150. // Validate CRC and Data Size
  1151. //
  1152. if (!eeprom_error) {
  1153. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1154. final_crc = working_crc;
  1155. // Write the EEPROM header
  1156. eeprom_index = EEPROM_OFFSET;
  1157. EEPROM_WRITE(version);
  1158. EEPROM_WRITE(final_crc);
  1159. // Report storage size
  1160. DEBUG_ECHO_START();
  1161. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1162. eeprom_error |= size_error(eeprom_size);
  1163. }
  1164. EEPROM_FINISH();
  1165. //
  1166. // UBL Mesh
  1167. //
  1168. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1169. if (ubl.storage_slot >= 0)
  1170. store_mesh(ubl.storage_slot);
  1171. #endif
  1172. if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
  1173. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
  1174. return !eeprom_error;
  1175. }
  1176. /**
  1177. * M501 - Retrieve Configuration
  1178. */
  1179. bool MarlinSettings::_load() {
  1180. uint16_t working_crc = 0;
  1181. EEPROM_START();
  1182. char stored_ver[4];
  1183. EEPROM_READ_ALWAYS(stored_ver);
  1184. uint16_t stored_crc;
  1185. EEPROM_READ_ALWAYS(stored_crc);
  1186. // Version has to match or defaults are used
  1187. if (strncmp(version, stored_ver, 3) != 0) {
  1188. if (stored_ver[3] != '\0') {
  1189. stored_ver[0] = '?';
  1190. stored_ver[1] = '\0';
  1191. }
  1192. DEBUG_ECHO_START();
  1193. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1194. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_version());
  1195. eeprom_error = true;
  1196. }
  1197. else {
  1198. float dummyf = 0;
  1199. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1200. _FIELD_TEST(esteppers);
  1201. // Number of esteppers may change
  1202. uint8_t esteppers;
  1203. EEPROM_READ_ALWAYS(esteppers);
  1204. //
  1205. // Planner Motion
  1206. //
  1207. {
  1208. // Get only the number of E stepper parameters previously stored
  1209. // Any steppers added later are set to their defaults
  1210. uint32_t tmp1[XYZ + esteppers];
  1211. float tmp2[XYZ + esteppers];
  1212. feedRate_t tmp3[XYZ + esteppers];
  1213. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1214. EEPROM_READ(planner.settings.min_segment_time_us);
  1215. EEPROM_READ(tmp2); // axis_steps_per_mm
  1216. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1217. if (!validating) LOOP_XYZE_N(i) {
  1218. const bool in = (i < esteppers + XYZ);
  1219. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1220. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1221. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1222. }
  1223. EEPROM_READ(planner.settings.acceleration);
  1224. EEPROM_READ(planner.settings.retract_acceleration);
  1225. EEPROM_READ(planner.settings.travel_acceleration);
  1226. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1227. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1228. #if HAS_CLASSIC_JERK
  1229. EEPROM_READ(planner.max_jerk);
  1230. #if HAS_LINEAR_E_JERK
  1231. EEPROM_READ(dummyf);
  1232. #endif
  1233. #else
  1234. for (uint8_t q = 4; q--;) EEPROM_READ(dummyf);
  1235. #endif
  1236. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1237. }
  1238. //
  1239. // Home Offset (M206 / M665)
  1240. //
  1241. {
  1242. _FIELD_TEST(home_offset);
  1243. #if HAS_SCARA_OFFSET
  1244. EEPROM_READ(scara_home_offset);
  1245. #else
  1246. #if !HAS_HOME_OFFSET
  1247. xyz_pos_t home_offset;
  1248. #endif
  1249. EEPROM_READ(home_offset);
  1250. #endif
  1251. }
  1252. //
  1253. // Hotend Offsets, if any
  1254. //
  1255. {
  1256. #if HAS_HOTEND_OFFSET
  1257. // Skip hotend 0 which must be 0
  1258. LOOP_S_L_N(e, 1, HOTENDS)
  1259. EEPROM_READ(hotend_offset[e]);
  1260. #endif
  1261. }
  1262. //
  1263. // Filament Runout Sensor
  1264. //
  1265. {
  1266. #if HAS_FILAMENT_SENSOR
  1267. const bool &runout_sensor_enabled = runout.enabled;
  1268. #else
  1269. bool runout_sensor_enabled;
  1270. #endif
  1271. _FIELD_TEST(runout_sensor_enabled);
  1272. EEPROM_READ(runout_sensor_enabled);
  1273. float runout_distance_mm;
  1274. EEPROM_READ(runout_distance_mm);
  1275. #if HAS_FILAMENT_RUNOUT_DISTANCE
  1276. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1277. #endif
  1278. }
  1279. //
  1280. // Global Leveling
  1281. //
  1282. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1283. //
  1284. // Mesh (Manual) Bed Leveling
  1285. //
  1286. {
  1287. uint8_t mesh_num_x, mesh_num_y;
  1288. EEPROM_READ(dummyf);
  1289. EEPROM_READ_ALWAYS(mesh_num_x);
  1290. EEPROM_READ_ALWAYS(mesh_num_y);
  1291. #if ENABLED(MESH_BED_LEVELING)
  1292. if (!validating) mbl.z_offset = dummyf;
  1293. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1294. // EEPROM data fits the current mesh
  1295. EEPROM_READ(mbl.z_values);
  1296. }
  1297. else {
  1298. // EEPROM data is stale
  1299. if (!validating) mbl.reset();
  1300. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1301. }
  1302. #else
  1303. // MBL is disabled - skip the stored data
  1304. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1305. #endif // MESH_BED_LEVELING
  1306. }
  1307. //
  1308. // Probe Z Offset
  1309. //
  1310. {
  1311. _FIELD_TEST(probe_offset);
  1312. #if HAS_BED_PROBE
  1313. const xyz_pos_t &zpo = probe.offset;
  1314. #else
  1315. xyz_pos_t zpo;
  1316. #endif
  1317. EEPROM_READ(zpo);
  1318. }
  1319. //
  1320. // Planar Bed Leveling matrix
  1321. //
  1322. {
  1323. #if ABL_PLANAR
  1324. EEPROM_READ(planner.bed_level_matrix);
  1325. #else
  1326. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1327. #endif
  1328. }
  1329. //
  1330. // Bilinear Auto Bed Leveling
  1331. //
  1332. {
  1333. uint8_t grid_max_x, grid_max_y;
  1334. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1335. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1336. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1337. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1338. if (!validating) set_bed_leveling_enabled(false);
  1339. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1340. EEPROM_READ(bilinear_start); // 2 ints
  1341. EEPROM_READ(z_values); // 9 to 256 floats
  1342. }
  1343. else // EEPROM data is stale
  1344. #endif // AUTO_BED_LEVELING_BILINEAR
  1345. {
  1346. // Skip past disabled (or stale) Bilinear Grid data
  1347. xy_pos_t bgs, bs;
  1348. EEPROM_READ(bgs);
  1349. EEPROM_READ(bs);
  1350. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1351. }
  1352. }
  1353. //
  1354. // Unified Bed Leveling active state
  1355. //
  1356. {
  1357. _FIELD_TEST(planner_leveling_active);
  1358. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1359. const bool &planner_leveling_active = planner.leveling_active;
  1360. const int8_t &ubl_storage_slot = ubl.storage_slot;
  1361. #else
  1362. bool planner_leveling_active;
  1363. int8_t ubl_storage_slot;
  1364. #endif
  1365. EEPROM_READ(planner_leveling_active);
  1366. EEPROM_READ(ubl_storage_slot);
  1367. }
  1368. //
  1369. // SERVO_ANGLES
  1370. //
  1371. {
  1372. _FIELD_TEST(servo_angles);
  1373. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1374. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1375. #else
  1376. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1377. #endif
  1378. EEPROM_READ(servo_angles_arr);
  1379. }
  1380. //
  1381. // Thermal first layer compensation values
  1382. //
  1383. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1384. EEPROM_READ(temp_comp.z_offsets_probe);
  1385. EEPROM_READ(temp_comp.z_offsets_bed);
  1386. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1387. EEPROM_READ(temp_comp.z_offsets_ext);
  1388. #endif
  1389. temp_comp.reset_index();
  1390. #else
  1391. // No placeholder data for this feature
  1392. #endif
  1393. //
  1394. // BLTOUCH
  1395. //
  1396. {
  1397. _FIELD_TEST(bltouch_last_written_mode);
  1398. #if ENABLED(BLTOUCH)
  1399. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1400. #else
  1401. bool bltouch_last_written_mode;
  1402. #endif
  1403. EEPROM_READ(bltouch_last_written_mode);
  1404. }
  1405. //
  1406. // DELTA Geometry or Dual Endstops offsets
  1407. //
  1408. {
  1409. #if ENABLED(DELTA)
  1410. _FIELD_TEST(delta_height);
  1411. EEPROM_READ(delta_height); // 1 float
  1412. EEPROM_READ(delta_endstop_adj); // 3 floats
  1413. EEPROM_READ(delta_radius); // 1 float
  1414. EEPROM_READ(delta_diagonal_rod); // 1 float
  1415. EEPROM_READ(delta_segments_per_second); // 1 float
  1416. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1417. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  1418. #elif HAS_EXTRA_ENDSTOPS
  1419. _FIELD_TEST(x2_endstop_adj);
  1420. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1421. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1422. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1423. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1424. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1425. #else
  1426. EEPROM_READ(dummyf);
  1427. #endif
  1428. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1429. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1430. #else
  1431. EEPROM_READ(dummyf);
  1432. #endif
  1433. #endif
  1434. }
  1435. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1436. EEPROM_READ(z_stepper_align.xy);
  1437. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  1438. EEPROM_READ(z_stepper_align.stepper_xy);
  1439. #endif
  1440. #endif
  1441. //
  1442. // LCD Preheat settings
  1443. //
  1444. #if PREHEAT_COUNT
  1445. _FIELD_TEST(ui_material_preset);
  1446. EEPROM_READ(ui.material_preset);
  1447. #endif
  1448. //
  1449. // Hotend PID
  1450. //
  1451. {
  1452. HOTEND_LOOP() {
  1453. PIDCF_t pidcf;
  1454. EEPROM_READ(pidcf);
  1455. #if ENABLED(PIDTEMP)
  1456. if (!validating && !isnan(pidcf.Kp)) {
  1457. // Scale PID values since EEPROM values are unscaled
  1458. PID_PARAM(Kp, e) = pidcf.Kp;
  1459. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1460. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1461. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1462. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1463. }
  1464. #endif
  1465. }
  1466. }
  1467. //
  1468. // PID Extrusion Scaling
  1469. //
  1470. {
  1471. _FIELD_TEST(lpq_len);
  1472. #if ENABLED(PID_EXTRUSION_SCALING)
  1473. const int16_t &lpq_len = thermalManager.lpq_len;
  1474. #else
  1475. int16_t lpq_len;
  1476. #endif
  1477. EEPROM_READ(lpq_len);
  1478. }
  1479. //
  1480. // Heated Bed PID
  1481. //
  1482. {
  1483. PID_t pid;
  1484. EEPROM_READ(pid);
  1485. #if ENABLED(PIDTEMPBED)
  1486. if (!validating && !isnan(pid.Kp)) {
  1487. // Scale PID values since EEPROM values are unscaled
  1488. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1489. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1490. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1491. }
  1492. #endif
  1493. }
  1494. //
  1495. // User-defined Thermistors
  1496. //
  1497. #if HAS_USER_THERMISTORS
  1498. {
  1499. _FIELD_TEST(user_thermistor);
  1500. EEPROM_READ(thermalManager.user_thermistor);
  1501. }
  1502. #endif
  1503. //
  1504. // Power monitor
  1505. //
  1506. {
  1507. #if HAS_POWER_MONITOR
  1508. uint8_t &power_monitor_flags = power_monitor.flags;
  1509. #else
  1510. uint8_t power_monitor_flags;
  1511. #endif
  1512. _FIELD_TEST(power_monitor_flags);
  1513. EEPROM_READ(power_monitor_flags);
  1514. }
  1515. //
  1516. // LCD Contrast
  1517. //
  1518. {
  1519. _FIELD_TEST(lcd_contrast);
  1520. int16_t lcd_contrast;
  1521. EEPROM_READ(lcd_contrast);
  1522. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
  1523. }
  1524. //
  1525. // Controller Fan
  1526. //
  1527. {
  1528. _FIELD_TEST(controllerFan_settings);
  1529. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  1530. const controllerFan_settings_t &cfs = controllerFan.settings;
  1531. #else
  1532. controllerFan_settings_t cfs = { 0 };
  1533. #endif
  1534. EEPROM_READ(cfs);
  1535. }
  1536. //
  1537. // Power-Loss Recovery
  1538. //
  1539. {
  1540. _FIELD_TEST(recovery_enabled);
  1541. #if ENABLED(POWER_LOSS_RECOVERY)
  1542. const bool &recovery_enabled = recovery.enabled;
  1543. #else
  1544. bool recovery_enabled;
  1545. #endif
  1546. EEPROM_READ(recovery_enabled);
  1547. }
  1548. //
  1549. // Firmware Retraction
  1550. //
  1551. {
  1552. _FIELD_TEST(fwretract_settings);
  1553. #if ENABLED(FWRETRACT)
  1554. EEPROM_READ(fwretract.settings);
  1555. #else
  1556. fwretract_settings_t fwretract_settings;
  1557. EEPROM_READ(fwretract_settings);
  1558. #endif
  1559. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1560. EEPROM_READ(fwretract.autoretract_enabled);
  1561. #else
  1562. bool autoretract_enabled;
  1563. EEPROM_READ(autoretract_enabled);
  1564. #endif
  1565. }
  1566. //
  1567. // Volumetric & Filament Size
  1568. //
  1569. {
  1570. struct {
  1571. bool volumetric_enabled;
  1572. float filament_size[EXTRUDERS];
  1573. float volumetric_extruder_limit[EXTRUDERS];
  1574. } storage;
  1575. _FIELD_TEST(parser_volumetric_enabled);
  1576. EEPROM_READ(storage);
  1577. #if DISABLED(NO_VOLUMETRICS)
  1578. if (!validating) {
  1579. parser.volumetric_enabled = storage.volumetric_enabled;
  1580. COPY(planner.filament_size, storage.filament_size);
  1581. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1582. COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
  1583. #endif
  1584. }
  1585. #endif
  1586. }
  1587. //
  1588. // TMC Stepper Settings
  1589. //
  1590. if (!validating) reset_stepper_drivers();
  1591. // TMC Stepper Current
  1592. {
  1593. _FIELD_TEST(tmc_stepper_current);
  1594. tmc_stepper_current_t currents;
  1595. EEPROM_READ(currents);
  1596. #if HAS_TRINAMIC_CONFIG
  1597. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1598. if (!validating) {
  1599. #if AXIS_IS_TMC(X)
  1600. SET_CURR(X);
  1601. #endif
  1602. #if AXIS_IS_TMC(Y)
  1603. SET_CURR(Y);
  1604. #endif
  1605. #if AXIS_IS_TMC(Z)
  1606. SET_CURR(Z);
  1607. #endif
  1608. #if AXIS_IS_TMC(X2)
  1609. SET_CURR(X2);
  1610. #endif
  1611. #if AXIS_IS_TMC(Y2)
  1612. SET_CURR(Y2);
  1613. #endif
  1614. #if AXIS_IS_TMC(Z2)
  1615. SET_CURR(Z2);
  1616. #endif
  1617. #if AXIS_IS_TMC(Z3)
  1618. SET_CURR(Z3);
  1619. #endif
  1620. #if AXIS_IS_TMC(Z4)
  1621. SET_CURR(Z4);
  1622. #endif
  1623. #if AXIS_IS_TMC(E0)
  1624. SET_CURR(E0);
  1625. #endif
  1626. #if AXIS_IS_TMC(E1)
  1627. SET_CURR(E1);
  1628. #endif
  1629. #if AXIS_IS_TMC(E2)
  1630. SET_CURR(E2);
  1631. #endif
  1632. #if AXIS_IS_TMC(E3)
  1633. SET_CURR(E3);
  1634. #endif
  1635. #if AXIS_IS_TMC(E4)
  1636. SET_CURR(E4);
  1637. #endif
  1638. #if AXIS_IS_TMC(E5)
  1639. SET_CURR(E5);
  1640. #endif
  1641. #if AXIS_IS_TMC(E6)
  1642. SET_CURR(E6);
  1643. #endif
  1644. #if AXIS_IS_TMC(E7)
  1645. SET_CURR(E7);
  1646. #endif
  1647. }
  1648. #endif
  1649. }
  1650. // TMC Hybrid Threshold
  1651. {
  1652. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1653. _FIELD_TEST(tmc_hybrid_threshold);
  1654. EEPROM_READ(tmc_hybrid_threshold);
  1655. #if ENABLED(HYBRID_THRESHOLD)
  1656. if (!validating) {
  1657. #if AXIS_HAS_STEALTHCHOP(X)
  1658. stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
  1659. #endif
  1660. #if AXIS_HAS_STEALTHCHOP(Y)
  1661. stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
  1662. #endif
  1663. #if AXIS_HAS_STEALTHCHOP(Z)
  1664. stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
  1665. #endif
  1666. #if AXIS_HAS_STEALTHCHOP(X2)
  1667. stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
  1668. #endif
  1669. #if AXIS_HAS_STEALTHCHOP(Y2)
  1670. stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
  1671. #endif
  1672. #if AXIS_HAS_STEALTHCHOP(Z2)
  1673. stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
  1674. #endif
  1675. #if AXIS_HAS_STEALTHCHOP(Z3)
  1676. stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
  1677. #endif
  1678. #if AXIS_HAS_STEALTHCHOP(Z4)
  1679. stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
  1680. #endif
  1681. #if AXIS_HAS_STEALTHCHOP(E0)
  1682. stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
  1683. #endif
  1684. #if AXIS_HAS_STEALTHCHOP(E1)
  1685. stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
  1686. #endif
  1687. #if AXIS_HAS_STEALTHCHOP(E2)
  1688. stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
  1689. #endif
  1690. #if AXIS_HAS_STEALTHCHOP(E3)
  1691. stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
  1692. #endif
  1693. #if AXIS_HAS_STEALTHCHOP(E4)
  1694. stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
  1695. #endif
  1696. #if AXIS_HAS_STEALTHCHOP(E5)
  1697. stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
  1698. #endif
  1699. #if AXIS_HAS_STEALTHCHOP(E6)
  1700. stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6);
  1701. #endif
  1702. #if AXIS_HAS_STEALTHCHOP(E7)
  1703. stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7);
  1704. #endif
  1705. }
  1706. #endif
  1707. }
  1708. //
  1709. // TMC StallGuard threshold.
  1710. //
  1711. {
  1712. tmc_sgt_t tmc_sgt;
  1713. _FIELD_TEST(tmc_sgt);
  1714. EEPROM_READ(tmc_sgt);
  1715. #if USE_SENSORLESS
  1716. if (!validating) {
  1717. TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X));
  1718. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  1719. TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y));
  1720. TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
  1721. TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z));
  1722. TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
  1723. TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
  1724. TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
  1725. }
  1726. #endif
  1727. }
  1728. // TMC stepping mode
  1729. {
  1730. _FIELD_TEST(tmc_stealth_enabled);
  1731. tmc_stealth_enabled_t tmc_stealth_enabled;
  1732. EEPROM_READ(tmc_stealth_enabled);
  1733. #if HAS_TRINAMIC_CONFIG
  1734. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1735. if (!validating) {
  1736. #if AXIS_HAS_STEALTHCHOP(X)
  1737. SET_STEPPING_MODE(X);
  1738. #endif
  1739. #if AXIS_HAS_STEALTHCHOP(Y)
  1740. SET_STEPPING_MODE(Y);
  1741. #endif
  1742. #if AXIS_HAS_STEALTHCHOP(Z)
  1743. SET_STEPPING_MODE(Z);
  1744. #endif
  1745. #if AXIS_HAS_STEALTHCHOP(X2)
  1746. SET_STEPPING_MODE(X2);
  1747. #endif
  1748. #if AXIS_HAS_STEALTHCHOP(Y2)
  1749. SET_STEPPING_MODE(Y2);
  1750. #endif
  1751. #if AXIS_HAS_STEALTHCHOP(Z2)
  1752. SET_STEPPING_MODE(Z2);
  1753. #endif
  1754. #if AXIS_HAS_STEALTHCHOP(Z3)
  1755. SET_STEPPING_MODE(Z3);
  1756. #endif
  1757. #if AXIS_HAS_STEALTHCHOP(Z4)
  1758. SET_STEPPING_MODE(Z4);
  1759. #endif
  1760. #if AXIS_HAS_STEALTHCHOP(E0)
  1761. SET_STEPPING_MODE(E0);
  1762. #endif
  1763. #if AXIS_HAS_STEALTHCHOP(E1)
  1764. SET_STEPPING_MODE(E1);
  1765. #endif
  1766. #if AXIS_HAS_STEALTHCHOP(E2)
  1767. SET_STEPPING_MODE(E2);
  1768. #endif
  1769. #if AXIS_HAS_STEALTHCHOP(E3)
  1770. SET_STEPPING_MODE(E3);
  1771. #endif
  1772. #if AXIS_HAS_STEALTHCHOP(E4)
  1773. SET_STEPPING_MODE(E4);
  1774. #endif
  1775. #if AXIS_HAS_STEALTHCHOP(E5)
  1776. SET_STEPPING_MODE(E5);
  1777. #endif
  1778. #if AXIS_HAS_STEALTHCHOP(E6)
  1779. SET_STEPPING_MODE(E6);
  1780. #endif
  1781. #if AXIS_HAS_STEALTHCHOP(E7)
  1782. SET_STEPPING_MODE(E7);
  1783. #endif
  1784. }
  1785. #endif
  1786. }
  1787. //
  1788. // Linear Advance
  1789. //
  1790. {
  1791. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1792. _FIELD_TEST(planner_extruder_advance_K);
  1793. EEPROM_READ(extruder_advance_K);
  1794. #if ENABLED(LIN_ADVANCE)
  1795. if (!validating)
  1796. COPY(planner.extruder_advance_K, extruder_advance_K);
  1797. #endif
  1798. }
  1799. //
  1800. // Motor Current PWM
  1801. //
  1802. {
  1803. uint32_t motor_current_setting[3];
  1804. _FIELD_TEST(motor_current_setting);
  1805. EEPROM_READ(motor_current_setting);
  1806. #if HAS_MOTOR_CURRENT_PWM
  1807. if (!validating)
  1808. COPY(stepper.motor_current_setting, motor_current_setting);
  1809. #endif
  1810. }
  1811. //
  1812. // CNC Coordinate System
  1813. //
  1814. {
  1815. _FIELD_TEST(coordinate_system);
  1816. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1817. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1818. EEPROM_READ(gcode.coordinate_system);
  1819. #else
  1820. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1821. EEPROM_READ(coordinate_system);
  1822. #endif
  1823. }
  1824. //
  1825. // Skew correction factors
  1826. //
  1827. {
  1828. skew_factor_t skew_factor;
  1829. _FIELD_TEST(planner_skew_factor);
  1830. EEPROM_READ(skew_factor);
  1831. #if ENABLED(SKEW_CORRECTION_GCODE)
  1832. if (!validating) {
  1833. planner.skew_factor.xy = skew_factor.xy;
  1834. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1835. planner.skew_factor.xz = skew_factor.xz;
  1836. planner.skew_factor.yz = skew_factor.yz;
  1837. #endif
  1838. }
  1839. #endif
  1840. }
  1841. //
  1842. // Advanced Pause filament load & unload lengths
  1843. //
  1844. #if EXTRUDERS
  1845. {
  1846. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1847. fil_change_settings_t fc_settings[EXTRUDERS];
  1848. #endif
  1849. _FIELD_TEST(fc_settings);
  1850. EEPROM_READ(fc_settings);
  1851. }
  1852. #endif
  1853. //
  1854. // Tool-change settings
  1855. //
  1856. #if EXTRUDERS > 1
  1857. _FIELD_TEST(toolchange_settings);
  1858. EEPROM_READ(toolchange_settings);
  1859. #endif
  1860. //
  1861. // Backlash Compensation
  1862. //
  1863. {
  1864. #if ENABLED(BACKLASH_GCODE)
  1865. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1866. const uint8_t &backlash_correction = backlash.correction;
  1867. #else
  1868. float backlash_distance_mm[XYZ];
  1869. uint8_t backlash_correction;
  1870. #endif
  1871. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1872. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1873. #else
  1874. float backlash_smoothing_mm;
  1875. #endif
  1876. _FIELD_TEST(backlash_distance_mm);
  1877. EEPROM_READ(backlash_distance_mm);
  1878. EEPROM_READ(backlash_correction);
  1879. EEPROM_READ(backlash_smoothing_mm);
  1880. }
  1881. //
  1882. // Extensible UI User Data
  1883. //
  1884. #if ENABLED(EXTENSIBLE_UI)
  1885. // This is a significant hardware change; don't reserve EEPROM space when not present
  1886. {
  1887. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1888. _FIELD_TEST(extui_data);
  1889. EEPROM_READ(extui_data);
  1890. if (!validating) ExtUI::onLoadSettings(extui_data);
  1891. }
  1892. #endif
  1893. //
  1894. // Case Light Brightness
  1895. //
  1896. #if HAS_CASE_LIGHT_BRIGHTNESS
  1897. _FIELD_TEST(case_light_brightness);
  1898. EEPROM_READ(case_light_brightness);
  1899. #endif
  1900. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1901. if (eeprom_error) {
  1902. DEBUG_ECHO_START();
  1903. DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
  1904. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_index());
  1905. }
  1906. else if (working_crc != stored_crc) {
  1907. eeprom_error = true;
  1908. DEBUG_ERROR_START();
  1909. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  1910. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_crc());
  1911. }
  1912. else if (!validating) {
  1913. DEBUG_ECHO_START();
  1914. DEBUG_ECHO(version);
  1915. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  1916. }
  1917. if (!validating && !eeprom_error) postprocess();
  1918. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1919. if (!validating) {
  1920. ubl.report_state();
  1921. if (!ubl.sanity_check()) {
  1922. SERIAL_EOL();
  1923. #if ENABLED(EEPROM_CHITCHAT)
  1924. ubl.echo_name();
  1925. DEBUG_ECHOLNPGM(" initialized.\n");
  1926. #endif
  1927. }
  1928. else {
  1929. eeprom_error = true;
  1930. #if ENABLED(EEPROM_CHITCHAT)
  1931. DEBUG_ECHOPGM("?Can't enable ");
  1932. ubl.echo_name();
  1933. DEBUG_ECHOLNPGM(".");
  1934. #endif
  1935. ubl.reset();
  1936. }
  1937. if (ubl.storage_slot >= 0) {
  1938. load_mesh(ubl.storage_slot);
  1939. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  1940. }
  1941. else {
  1942. ubl.reset();
  1943. DEBUG_ECHOLNPGM("UBL reset");
  1944. }
  1945. }
  1946. #endif
  1947. }
  1948. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1949. // Report the EEPROM settings
  1950. if (!validating && (DISABLED(EEPROM_BOOT_SILENT) || IsRunning())) report();
  1951. #endif
  1952. EEPROM_FINISH();
  1953. return !eeprom_error;
  1954. }
  1955. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  1956. extern bool restoreEEPROM();
  1957. #endif
  1958. bool MarlinSettings::validate() {
  1959. validating = true;
  1960. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  1961. bool success = _load();
  1962. if (!success && restoreEEPROM()) {
  1963. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  1964. success = _load();
  1965. }
  1966. #else
  1967. const bool success = _load();
  1968. #endif
  1969. validating = false;
  1970. return success;
  1971. }
  1972. bool MarlinSettings::load() {
  1973. if (validate()) {
  1974. const bool success = _load();
  1975. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
  1976. return success;
  1977. }
  1978. reset();
  1979. #if ENABLED(EEPROM_AUTO_INIT)
  1980. (void)save();
  1981. SERIAL_ECHO_MSG("EEPROM Initialized");
  1982. #endif
  1983. return false;
  1984. }
  1985. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1986. inline void ubl_invalid_slot(const int s) {
  1987. #if ENABLED(EEPROM_CHITCHAT)
  1988. DEBUG_ECHOLNPGM("?Invalid slot.");
  1989. DEBUG_ECHO(s);
  1990. DEBUG_ECHOLNPGM(" mesh slots available.");
  1991. #else
  1992. UNUSED(s);
  1993. #endif
  1994. }
  1995. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1996. // is a placeholder for the size of the MAT; the MAT will always
  1997. // live at the very end of the eeprom
  1998. uint16_t MarlinSettings::meshes_start_index() {
  1999. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  2000. // or down a little bit without disrupting the mesh data
  2001. }
  2002. uint16_t MarlinSettings::calc_num_meshes() {
  2003. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  2004. }
  2005. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  2006. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  2007. }
  2008. void MarlinSettings::store_mesh(const int8_t slot) {
  2009. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2010. const int16_t a = calc_num_meshes();
  2011. if (!WITHIN(slot, 0, a - 1)) {
  2012. ubl_invalid_slot(a);
  2013. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  2014. DEBUG_EOL();
  2015. return;
  2016. }
  2017. int pos = mesh_slot_offset(slot);
  2018. uint16_t crc = 0;
  2019. // Write crc to MAT along with other data, or just tack on to the beginning or end
  2020. persistentStore.access_start();
  2021. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  2022. persistentStore.access_finish();
  2023. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  2024. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  2025. #else
  2026. // Other mesh types
  2027. #endif
  2028. }
  2029. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2030. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2031. const int16_t a = settings.calc_num_meshes();
  2032. if (!WITHIN(slot, 0, a - 1)) {
  2033. ubl_invalid_slot(a);
  2034. return;
  2035. }
  2036. int pos = mesh_slot_offset(slot);
  2037. uint16_t crc = 0;
  2038. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2039. persistentStore.access_start();
  2040. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  2041. persistentStore.access_finish();
  2042. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2043. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2044. EEPROM_FINISH();
  2045. #else
  2046. // Other mesh types
  2047. #endif
  2048. }
  2049. //void MarlinSettings::delete_mesh() { return; }
  2050. //void MarlinSettings::defrag_meshes() { return; }
  2051. #endif // AUTO_BED_LEVELING_UBL
  2052. #else // !EEPROM_SETTINGS
  2053. bool MarlinSettings::save() {
  2054. DEBUG_ERROR_MSG("EEPROM disabled");
  2055. return false;
  2056. }
  2057. #endif // !EEPROM_SETTINGS
  2058. /**
  2059. * M502 - Reset Configuration
  2060. */
  2061. void MarlinSettings::reset() {
  2062. LOOP_XYZE_N(i) {
  2063. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2064. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2065. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2066. }
  2067. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2068. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2069. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2070. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2071. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2072. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2073. #if HAS_CLASSIC_JERK
  2074. #ifndef DEFAULT_XJERK
  2075. #define DEFAULT_XJERK 0
  2076. #endif
  2077. #ifndef DEFAULT_YJERK
  2078. #define DEFAULT_YJERK 0
  2079. #endif
  2080. #ifndef DEFAULT_ZJERK
  2081. #define DEFAULT_ZJERK 0
  2082. #endif
  2083. planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
  2084. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;);
  2085. #endif
  2086. #if HAS_JUNCTION_DEVIATION
  2087. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2088. #endif
  2089. #if HAS_SCARA_OFFSET
  2090. scara_home_offset.reset();
  2091. #elif HAS_HOME_OFFSET
  2092. home_offset.reset();
  2093. #endif
  2094. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2095. //
  2096. // Filament Runout Sensor
  2097. //
  2098. #if HAS_FILAMENT_SENSOR
  2099. runout.enabled = true;
  2100. runout.reset();
  2101. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
  2102. #endif
  2103. //
  2104. // Tool-change Settings
  2105. //
  2106. #if EXTRUDERS > 1
  2107. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2108. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2109. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2110. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2111. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2112. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2113. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2114. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2115. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2116. #endif
  2117. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2118. enable_first_prime = false;
  2119. #endif
  2120. #if ENABLED(TOOLCHANGE_PARK)
  2121. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2122. toolchange_settings.enable_park = true;
  2123. toolchange_settings.change_point = tpxy;
  2124. #endif
  2125. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2126. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2127. migration = migration_defaults;
  2128. #endif
  2129. #endif
  2130. #if ENABLED(BACKLASH_GCODE)
  2131. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2132. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2133. backlash.distance_mm = tmp;
  2134. #ifdef BACKLASH_SMOOTHING_MM
  2135. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2136. #endif
  2137. #endif
  2138. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2139. //
  2140. // Case Light Brightness
  2141. //
  2142. TERN_(HAS_CASE_LIGHT_BRIGHTNESS, case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2143. //
  2144. // Magnetic Parking Extruder
  2145. //
  2146. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2147. //
  2148. // Global Leveling
  2149. //
  2150. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = 0.0);
  2151. TERN_(HAS_LEVELING, reset_bed_level());
  2152. #if HAS_BED_PROBE
  2153. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2154. static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
  2155. #if HAS_PROBE_XY_OFFSET
  2156. LOOP_XYZ(a) probe.offset[a] = dpo[a];
  2157. #else
  2158. probe.offset.x = probe.offset.y = 0;
  2159. probe.offset.z = dpo[Z_AXIS];
  2160. #endif
  2161. #endif
  2162. //
  2163. // Z Stepper Auto-alignment points
  2164. //
  2165. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2166. //
  2167. // Servo Angles
  2168. //
  2169. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2170. //
  2171. // BLTOUCH
  2172. //
  2173. //#if ENABLED(BLTOUCH)
  2174. // bltouch.last_written_mode;
  2175. //#endif
  2176. //
  2177. // Endstop Adjustments
  2178. //
  2179. #if ENABLED(DELTA)
  2180. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  2181. delta_height = DELTA_HEIGHT;
  2182. delta_endstop_adj = adj;
  2183. delta_radius = DELTA_RADIUS;
  2184. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2185. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2186. delta_tower_angle_trim = dta;
  2187. delta_diagonal_rod_trim = ddr;
  2188. #endif
  2189. #if ENABLED(X_DUAL_ENDSTOPS)
  2190. #ifndef X2_ENDSTOP_ADJUSTMENT
  2191. #define X2_ENDSTOP_ADJUSTMENT 0
  2192. #endif
  2193. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2194. #endif
  2195. #if ENABLED(Y_DUAL_ENDSTOPS)
  2196. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2197. #define Y2_ENDSTOP_ADJUSTMENT 0
  2198. #endif
  2199. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2200. #endif
  2201. #if ENABLED(Z_MULTI_ENDSTOPS)
  2202. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2203. #define Z2_ENDSTOP_ADJUSTMENT 0
  2204. #endif
  2205. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2206. #if NUM_Z_STEPPER_DRIVERS >= 3
  2207. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2208. #define Z3_ENDSTOP_ADJUSTMENT 0
  2209. #endif
  2210. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2211. #endif
  2212. #if NUM_Z_STEPPER_DRIVERS >= 4
  2213. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2214. #define Z4_ENDSTOP_ADJUSTMENT 0
  2215. #endif
  2216. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2217. #endif
  2218. #endif
  2219. //
  2220. // Preheat parameters
  2221. //
  2222. #if PREHEAT_COUNT
  2223. #if HAS_HOTEND
  2224. constexpr uint16_t hpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND, PREHEAT_3_TEMP_HOTEND, PREHEAT_4_TEMP_HOTEND, PREHEAT_5_TEMP_HOTEND);
  2225. #endif
  2226. #if HAS_HEATED_BED
  2227. constexpr uint16_t bpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED, PREHEAT_3_TEMP_BED, PREHEAT_4_TEMP_BED, PREHEAT_5_TEMP_BED);
  2228. #endif
  2229. #if HAS_FAN
  2230. constexpr uint8_t fpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED, PREHEAT_3_FAN_SPEED, PREHEAT_4_FAN_SPEED, PREHEAT_5_FAN_SPEED);
  2231. #endif
  2232. LOOP_L_N(i, PREHEAT_COUNT) {
  2233. #if HAS_HOTEND
  2234. ui.material_preset[i].hotend_temp = hpre[i];
  2235. #endif
  2236. #if HAS_HEATED_BED
  2237. ui.material_preset[i].bed_temp = bpre[i];
  2238. #endif
  2239. #if HAS_FAN
  2240. ui.material_preset[i].fan_speed = fpre[i];
  2241. #endif
  2242. }
  2243. #endif
  2244. //
  2245. // Hotend PID
  2246. //
  2247. #if ENABLED(PIDTEMP)
  2248. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2249. constexpr float defKp[] =
  2250. #ifdef DEFAULT_Kp_LIST
  2251. DEFAULT_Kp_LIST
  2252. #else
  2253. ARRAY_BY_HOTENDS1(DEFAULT_Kp)
  2254. #endif
  2255. , defKi[] =
  2256. #ifdef DEFAULT_Ki_LIST
  2257. DEFAULT_Ki_LIST
  2258. #else
  2259. ARRAY_BY_HOTENDS1(DEFAULT_Ki)
  2260. #endif
  2261. , defKd[] =
  2262. #ifdef DEFAULT_Kd_LIST
  2263. DEFAULT_Kd_LIST
  2264. #else
  2265. ARRAY_BY_HOTENDS1(DEFAULT_Kd)
  2266. #endif
  2267. ;
  2268. static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
  2269. static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
  2270. static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
  2271. #if ENABLED(PID_EXTRUSION_SCALING)
  2272. constexpr float defKc[] =
  2273. #ifdef DEFAULT_Kc_LIST
  2274. DEFAULT_Kc_LIST
  2275. #else
  2276. ARRAY_BY_HOTENDS1(DEFAULT_Kc)
  2277. #endif
  2278. ;
  2279. static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
  2280. #endif
  2281. #if ENABLED(PID_FAN_SCALING)
  2282. constexpr float defKf[] =
  2283. #ifdef DEFAULT_Kf_LIST
  2284. DEFAULT_Kf_LIST
  2285. #else
  2286. ARRAY_BY_HOTENDS1(DEFAULT_Kf)
  2287. #endif
  2288. ;
  2289. static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
  2290. #endif
  2291. #define PID_DEFAULT(N,E) def##N[E]
  2292. #else
  2293. #define PID_DEFAULT(N,E) DEFAULT_##N
  2294. #endif
  2295. HOTEND_LOOP() {
  2296. PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
  2297. PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
  2298. PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
  2299. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
  2300. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
  2301. }
  2302. #endif
  2303. //
  2304. // PID Extrusion Scaling
  2305. //
  2306. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2307. //
  2308. // Heated Bed PID
  2309. //
  2310. #if ENABLED(PIDTEMPBED)
  2311. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2312. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2313. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2314. #endif
  2315. //
  2316. // User-Defined Thermistors
  2317. //
  2318. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2319. //
  2320. // Power Monitor
  2321. //
  2322. TERN_(POWER_MONITOR, power_monitor.reset());
  2323. //
  2324. // LCD Contrast
  2325. //
  2326. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
  2327. //
  2328. // Controller Fan
  2329. //
  2330. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2331. //
  2332. // Power-Loss Recovery
  2333. //
  2334. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2335. //
  2336. // Firmware Retraction
  2337. //
  2338. TERN_(FWRETRACT, fwretract.reset());
  2339. //
  2340. // Volumetric & Filament Size
  2341. //
  2342. #if DISABLED(NO_VOLUMETRICS)
  2343. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2344. LOOP_L_N(q, COUNT(planner.filament_size))
  2345. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2346. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2347. LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
  2348. planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  2349. #endif
  2350. #endif
  2351. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2352. reset_stepper_drivers();
  2353. //
  2354. // Linear Advance
  2355. //
  2356. #if ENABLED(LIN_ADVANCE)
  2357. LOOP_L_N(i, EXTRUDERS) {
  2358. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2359. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
  2360. }
  2361. #endif
  2362. //
  2363. // Motor Current PWM
  2364. //
  2365. #if HAS_MOTOR_CURRENT_PWM
  2366. constexpr uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  2367. LOOP_L_N(q, 3)
  2368. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2369. #endif
  2370. //
  2371. // CNC Coordinate System
  2372. //
  2373. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2374. //
  2375. // Skew Correction
  2376. //
  2377. #if ENABLED(SKEW_CORRECTION_GCODE)
  2378. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2379. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2380. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2381. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2382. #endif
  2383. #endif
  2384. //
  2385. // Advanced Pause filament load & unload lengths
  2386. //
  2387. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2388. LOOP_L_N(e, EXTRUDERS) {
  2389. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2390. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2391. }
  2392. #endif
  2393. postprocess();
  2394. DEBUG_ECHO_START();
  2395. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2396. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2397. }
  2398. #if DISABLED(DISABLE_M503)
  2399. static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
  2400. if (!repl) {
  2401. SERIAL_ECHO_START();
  2402. SERIAL_ECHOPGM("; ");
  2403. serialprintPGM(pstr);
  2404. if (eol) SERIAL_EOL();
  2405. }
  2406. }
  2407. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2408. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  2409. #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
  2410. #if HAS_TRINAMIC_CONFIG
  2411. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2412. #if HAS_STEALTHCHOP
  2413. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2414. CONFIG_ECHO_START();
  2415. SERIAL_ECHOPGM(" M569 S1");
  2416. if (etc) {
  2417. SERIAL_CHAR(' ');
  2418. serialprintPGM(etc);
  2419. }
  2420. if (newLine) SERIAL_EOL();
  2421. }
  2422. #endif
  2423. #if ENABLED(HYBRID_THRESHOLD)
  2424. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2425. #endif
  2426. #if USE_SENSORLESS
  2427. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2428. #endif
  2429. #endif
  2430. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2431. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2432. #endif
  2433. inline void say_units(const bool colon) {
  2434. serialprintPGM(
  2435. #if ENABLED(INCH_MODE_SUPPORT)
  2436. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2437. #endif
  2438. PSTR(" (mm)")
  2439. );
  2440. if (colon) SERIAL_ECHOLNPGM(":");
  2441. }
  2442. void report_M92(const bool echo=true, const int8_t e=-1);
  2443. /**
  2444. * M503 - Report current settings in RAM
  2445. *
  2446. * Unless specifically disabled, M503 is available even without EEPROM
  2447. */
  2448. void MarlinSettings::report(const bool forReplay) {
  2449. /**
  2450. * Announce current units, in case inches are being displayed
  2451. */
  2452. CONFIG_ECHO_START();
  2453. #if ENABLED(INCH_MODE_SUPPORT)
  2454. SERIAL_ECHOPGM(" G2");
  2455. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2456. SERIAL_ECHOPGM(" ;");
  2457. say_units(false);
  2458. #else
  2459. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2460. say_units(false);
  2461. #endif
  2462. SERIAL_EOL();
  2463. #if HAS_LCD_MENU
  2464. // Temperature units - for Ultipanel temperature options
  2465. CONFIG_ECHO_START();
  2466. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2467. SERIAL_ECHOPGM(" M149 ");
  2468. SERIAL_CHAR(parser.temp_units_code());
  2469. SERIAL_ECHOPGM(" ; Units in ");
  2470. serialprintPGM(parser.temp_units_name());
  2471. #else
  2472. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2473. #endif
  2474. #endif
  2475. SERIAL_EOL();
  2476. #if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
  2477. /**
  2478. * Volumetric extrusion M200
  2479. */
  2480. if (!forReplay) {
  2481. config_heading(forReplay, PSTR("Filament settings:"), false);
  2482. if (parser.volumetric_enabled)
  2483. SERIAL_EOL();
  2484. else
  2485. SERIAL_ECHOLNPGM(" Disabled");
  2486. }
  2487. #if EXTRUDERS == 1
  2488. CONFIG_ECHO_START();
  2489. SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled)
  2490. , " D", LINEAR_UNIT(planner.filament_size[0])
  2491. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2492. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
  2493. #endif
  2494. );
  2495. #else
  2496. LOOP_L_N(i, EXTRUDERS) {
  2497. CONFIG_ECHO_START();
  2498. SERIAL_ECHOLNPAIR(" M200 T", int(i)
  2499. , " D", LINEAR_UNIT(planner.filament_size[i])
  2500. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2501. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
  2502. #endif
  2503. );
  2504. }
  2505. CONFIG_ECHO_START();
  2506. SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled));
  2507. #endif
  2508. #endif // EXTRUDERS && !NO_VOLUMETRICS
  2509. CONFIG_ECHO_HEADING("Steps per unit:");
  2510. report_M92(!forReplay);
  2511. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2512. CONFIG_ECHO_START();
  2513. SERIAL_ECHOLNPAIR_P(
  2514. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2515. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2516. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2517. #if DISABLED(DISTINCT_E_FACTORS)
  2518. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2519. #endif
  2520. );
  2521. #if ENABLED(DISTINCT_E_FACTORS)
  2522. LOOP_L_N(i, E_STEPPERS) {
  2523. CONFIG_ECHO_START();
  2524. SERIAL_ECHOLNPAIR_P(
  2525. PSTR(" M203 T"), (int)i
  2526. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2527. );
  2528. }
  2529. #endif
  2530. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2531. CONFIG_ECHO_START();
  2532. SERIAL_ECHOLNPAIR_P(
  2533. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2534. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2535. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2536. #if DISABLED(DISTINCT_E_FACTORS)
  2537. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2538. #endif
  2539. );
  2540. #if ENABLED(DISTINCT_E_FACTORS)
  2541. LOOP_L_N(i, E_STEPPERS) {
  2542. CONFIG_ECHO_START();
  2543. SERIAL_ECHOLNPAIR_P(
  2544. PSTR(" M201 T"), (int)i
  2545. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2546. );
  2547. }
  2548. #endif
  2549. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2550. CONFIG_ECHO_START();
  2551. SERIAL_ECHOLNPAIR_P(
  2552. PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
  2553. , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
  2554. , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
  2555. );
  2556. CONFIG_ECHO_HEADING(
  2557. "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
  2558. #if HAS_JUNCTION_DEVIATION
  2559. " J<junc_dev>"
  2560. #endif
  2561. #if HAS_CLASSIC_JERK
  2562. " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
  2563. TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
  2564. #endif
  2565. );
  2566. CONFIG_ECHO_START();
  2567. SERIAL_ECHOLNPAIR_P(
  2568. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2569. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2570. , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2571. #if HAS_JUNCTION_DEVIATION
  2572. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2573. #endif
  2574. #if HAS_CLASSIC_JERK
  2575. , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
  2576. , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
  2577. , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
  2578. #if HAS_CLASSIC_E_JERK
  2579. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2580. #endif
  2581. #endif
  2582. );
  2583. #if HAS_M206_COMMAND
  2584. CONFIG_ECHO_HEADING("Home offset:");
  2585. CONFIG_ECHO_START();
  2586. SERIAL_ECHOLNPAIR_P(
  2587. #if IS_CARTESIAN
  2588. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
  2589. , SP_Y_STR, LINEAR_UNIT(home_offset.y)
  2590. , SP_Z_STR
  2591. #else
  2592. PSTR(" M206 Z")
  2593. #endif
  2594. , LINEAR_UNIT(home_offset.z)
  2595. );
  2596. #endif
  2597. #if HAS_HOTEND_OFFSET
  2598. CONFIG_ECHO_HEADING("Hotend offsets:");
  2599. CONFIG_ECHO_START();
  2600. LOOP_S_L_N(e, 1, HOTENDS) {
  2601. SERIAL_ECHOPAIR_P(
  2602. PSTR(" M218 T"), (int)e,
  2603. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2604. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2605. );
  2606. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2607. }
  2608. #endif
  2609. /**
  2610. * Bed Leveling
  2611. */
  2612. #if HAS_LEVELING
  2613. #if ENABLED(MESH_BED_LEVELING)
  2614. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2615. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2616. config_heading(forReplay, PSTR(""), false);
  2617. if (!forReplay) {
  2618. ubl.echo_name();
  2619. SERIAL_CHAR(':');
  2620. SERIAL_EOL();
  2621. }
  2622. #elif HAS_ABL_OR_UBL
  2623. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2624. #endif
  2625. CONFIG_ECHO_START();
  2626. SERIAL_ECHOLNPAIR_P(
  2627. PSTR(" M420 S"), planner.leveling_active ? 1 : 0
  2628. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2629. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2630. #endif
  2631. );
  2632. #if ENABLED(MESH_BED_LEVELING)
  2633. if (leveling_is_valid()) {
  2634. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2635. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2636. CONFIG_ECHO_START();
  2637. SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), (int)px, PSTR(" J"), (int)py);
  2638. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2639. }
  2640. }
  2641. CONFIG_ECHO_START();
  2642. SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5);
  2643. }
  2644. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2645. if (!forReplay) {
  2646. SERIAL_EOL();
  2647. ubl.report_state();
  2648. SERIAL_EOL();
  2649. config_heading(false, PSTR("Active Mesh Slot: "), false);
  2650. SERIAL_ECHOLN(ubl.storage_slot);
  2651. config_heading(false, PSTR("EEPROM can hold "), false);
  2652. SERIAL_ECHO(calc_num_meshes());
  2653. SERIAL_ECHOLNPGM(" meshes.\n");
  2654. }
  2655. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2656. // solution needs to be found.
  2657. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2658. if (leveling_is_valid()) {
  2659. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2660. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2661. CONFIG_ECHO_START();
  2662. SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
  2663. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2664. }
  2665. }
  2666. }
  2667. #endif
  2668. #endif // HAS_LEVELING
  2669. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2670. CONFIG_ECHO_HEADING("Servo Angles:");
  2671. LOOP_L_N(i, NUM_SERVOS) {
  2672. switch (i) {
  2673. #if ENABLED(SWITCHING_EXTRUDER)
  2674. case SWITCHING_EXTRUDER_SERVO_NR:
  2675. #if EXTRUDERS > 3
  2676. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2677. #endif
  2678. #elif ENABLED(SWITCHING_NOZZLE)
  2679. case SWITCHING_NOZZLE_SERVO_NR:
  2680. #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
  2681. case Z_PROBE_SERVO_NR:
  2682. #endif
  2683. CONFIG_ECHO_START();
  2684. SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2685. default: break;
  2686. }
  2687. }
  2688. #endif // EDITABLE_SERVO_ANGLES
  2689. #if HAS_SCARA_OFFSET
  2690. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2691. CONFIG_ECHO_START();
  2692. SERIAL_ECHOLNPAIR_P(
  2693. PSTR(" M665 S"), delta_segments_per_second
  2694. , SP_P_STR, scara_home_offset.a
  2695. , SP_T_STR, scara_home_offset.b
  2696. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2697. );
  2698. #elif ENABLED(DELTA)
  2699. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2700. CONFIG_ECHO_START();
  2701. SERIAL_ECHOLNPAIR_P(
  2702. PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
  2703. , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
  2704. , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
  2705. );
  2706. CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>");
  2707. CONFIG_ECHO_START();
  2708. SERIAL_ECHOLNPAIR_P(
  2709. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2710. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2711. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2712. , PSTR(" S"), delta_segments_per_second
  2713. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2714. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2715. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2716. , PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a)
  2717. , PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b)
  2718. , PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c)
  2719. );
  2720. #elif HAS_EXTRA_ENDSTOPS
  2721. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2722. CONFIG_ECHO_START();
  2723. SERIAL_ECHOPGM(" M666");
  2724. #if ENABLED(X_DUAL_ENDSTOPS)
  2725. SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
  2726. #endif
  2727. #if ENABLED(Y_DUAL_ENDSTOPS)
  2728. SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
  2729. #endif
  2730. #if ENABLED(Z_MULTI_ENDSTOPS)
  2731. #if NUM_Z_STEPPER_DRIVERS >= 3
  2732. SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2733. CONFIG_ECHO_START();
  2734. SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2735. #if NUM_Z_STEPPER_DRIVERS >= 4
  2736. CONFIG_ECHO_START();
  2737. SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
  2738. #endif
  2739. #else
  2740. SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
  2741. #endif
  2742. #endif
  2743. #endif // [XYZ]_DUAL_ENDSTOPS
  2744. #if PREHEAT_COUNT
  2745. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2746. LOOP_L_N(i, PREHEAT_COUNT) {
  2747. CONFIG_ECHO_START();
  2748. SERIAL_ECHOLNPAIR_P(
  2749. PSTR(" M145 S"), (int)i
  2750. #if HAS_HOTEND
  2751. , PSTR(" H"), TEMP_UNIT(ui.material_preset[i].hotend_temp)
  2752. #endif
  2753. #if HAS_HEATED_BED
  2754. , SP_B_STR, TEMP_UNIT(ui.material_preset[i].bed_temp)
  2755. #endif
  2756. #if HAS_FAN
  2757. , PSTR(" F"), ui.material_preset[i].fan_speed
  2758. #endif
  2759. );
  2760. }
  2761. #endif
  2762. #if HAS_PID_HEATING
  2763. CONFIG_ECHO_HEADING("PID settings:");
  2764. #if ENABLED(PIDTEMP)
  2765. HOTEND_LOOP() {
  2766. CONFIG_ECHO_START();
  2767. SERIAL_ECHOPAIR_P(
  2768. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2769. PSTR(" M301 E"), e,
  2770. SP_P_STR
  2771. #else
  2772. PSTR(" M301 P")
  2773. #endif
  2774. , PID_PARAM(Kp, e)
  2775. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2776. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2777. );
  2778. #if ENABLED(PID_EXTRUSION_SCALING)
  2779. SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e));
  2780. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2781. #endif
  2782. #if ENABLED(PID_FAN_SCALING)
  2783. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2784. #endif
  2785. SERIAL_EOL();
  2786. }
  2787. #endif // PIDTEMP
  2788. #if ENABLED(PIDTEMPBED)
  2789. CONFIG_ECHO_START();
  2790. SERIAL_ECHOLNPAIR(
  2791. " M304 P", thermalManager.temp_bed.pid.Kp
  2792. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2793. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2794. );
  2795. #endif
  2796. #endif // PIDTEMP || PIDTEMPBED
  2797. #if HAS_USER_THERMISTORS
  2798. CONFIG_ECHO_HEADING("User thermistors:");
  2799. LOOP_L_N(i, USER_THERMISTORS)
  2800. thermalManager.log_user_thermistor(i, true);
  2801. #endif
  2802. #if HAS_LCD_CONTRAST
  2803. CONFIG_ECHO_HEADING("LCD Contrast:");
  2804. CONFIG_ECHO_START();
  2805. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2806. #endif
  2807. TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
  2808. #if ENABLED(POWER_LOSS_RECOVERY)
  2809. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2810. CONFIG_ECHO_START();
  2811. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2812. #endif
  2813. #if ENABLED(FWRETRACT)
  2814. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2815. CONFIG_ECHO_START();
  2816. SERIAL_ECHOLNPAIR_P(
  2817. PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length)
  2818. , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2819. , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s))
  2820. , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise)
  2821. );
  2822. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2823. CONFIG_ECHO_START();
  2824. SERIAL_ECHOLNPAIR(
  2825. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2826. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2827. , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s))
  2828. );
  2829. #if ENABLED(FWRETRACT_AUTORETRACT)
  2830. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2831. CONFIG_ECHO_START();
  2832. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2833. #endif // FWRETRACT_AUTORETRACT
  2834. #endif // FWRETRACT
  2835. /**
  2836. * Probe Offset
  2837. */
  2838. #if HAS_BED_PROBE
  2839. config_heading(forReplay, PSTR("Z-Probe Offset"), false);
  2840. if (!forReplay) say_units(true);
  2841. CONFIG_ECHO_START();
  2842. SERIAL_ECHOLNPAIR_P(
  2843. #if HAS_PROBE_XY_OFFSET
  2844. PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
  2845. SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
  2846. SP_Z_STR
  2847. #else
  2848. PSTR(" M851 X0 Y0 Z")
  2849. #endif
  2850. , LINEAR_UNIT(probe.offset.z)
  2851. );
  2852. #endif
  2853. /**
  2854. * Bed Skew Correction
  2855. */
  2856. #if ENABLED(SKEW_CORRECTION_GCODE)
  2857. CONFIG_ECHO_HEADING("Skew Factor: ");
  2858. CONFIG_ECHO_START();
  2859. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2860. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2861. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2862. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2863. #else
  2864. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2865. #endif
  2866. #endif
  2867. #if HAS_TRINAMIC_CONFIG
  2868. /**
  2869. * TMC stepper driver current
  2870. */
  2871. CONFIG_ECHO_HEADING("Stepper driver current:");
  2872. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2873. say_M906(forReplay);
  2874. #if AXIS_IS_TMC(X)
  2875. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  2876. #endif
  2877. #if AXIS_IS_TMC(Y)
  2878. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  2879. #endif
  2880. #if AXIS_IS_TMC(Z)
  2881. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  2882. #endif
  2883. SERIAL_EOL();
  2884. #endif
  2885. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2886. say_M906(forReplay);
  2887. SERIAL_ECHOPGM(" I1");
  2888. #if AXIS_IS_TMC(X2)
  2889. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  2890. #endif
  2891. #if AXIS_IS_TMC(Y2)
  2892. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  2893. #endif
  2894. #if AXIS_IS_TMC(Z2)
  2895. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  2896. #endif
  2897. SERIAL_EOL();
  2898. #endif
  2899. #if AXIS_IS_TMC(Z3)
  2900. say_M906(forReplay);
  2901. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  2902. #endif
  2903. #if AXIS_IS_TMC(Z4)
  2904. say_M906(forReplay);
  2905. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  2906. #endif
  2907. #if AXIS_IS_TMC(E0)
  2908. say_M906(forReplay);
  2909. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  2910. #endif
  2911. #if AXIS_IS_TMC(E1)
  2912. say_M906(forReplay);
  2913. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  2914. #endif
  2915. #if AXIS_IS_TMC(E2)
  2916. say_M906(forReplay);
  2917. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  2918. #endif
  2919. #if AXIS_IS_TMC(E3)
  2920. say_M906(forReplay);
  2921. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  2922. #endif
  2923. #if AXIS_IS_TMC(E4)
  2924. say_M906(forReplay);
  2925. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  2926. #endif
  2927. #if AXIS_IS_TMC(E5)
  2928. say_M906(forReplay);
  2929. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  2930. #endif
  2931. #if AXIS_IS_TMC(E6)
  2932. say_M906(forReplay);
  2933. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
  2934. #endif
  2935. #if AXIS_IS_TMC(E7)
  2936. say_M906(forReplay);
  2937. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
  2938. #endif
  2939. SERIAL_EOL();
  2940. /**
  2941. * TMC Hybrid Threshold
  2942. */
  2943. #if ENABLED(HYBRID_THRESHOLD)
  2944. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  2945. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2946. say_M913(forReplay);
  2947. #if AXIS_HAS_STEALTHCHOP(X)
  2948. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  2949. #endif
  2950. #if AXIS_HAS_STEALTHCHOP(Y)
  2951. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  2952. #endif
  2953. #if AXIS_HAS_STEALTHCHOP(Z)
  2954. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  2955. #endif
  2956. SERIAL_EOL();
  2957. #endif
  2958. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2959. say_M913(forReplay);
  2960. SERIAL_ECHOPGM(" I1");
  2961. #if AXIS_HAS_STEALTHCHOP(X2)
  2962. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  2963. #endif
  2964. #if AXIS_HAS_STEALTHCHOP(Y2)
  2965. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  2966. #endif
  2967. #if AXIS_HAS_STEALTHCHOP(Z2)
  2968. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  2969. #endif
  2970. SERIAL_EOL();
  2971. #endif
  2972. #if AXIS_HAS_STEALTHCHOP(Z3)
  2973. say_M913(forReplay);
  2974. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  2975. #endif
  2976. #if AXIS_HAS_STEALTHCHOP(Z4)
  2977. say_M913(forReplay);
  2978. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  2979. #endif
  2980. #if AXIS_HAS_STEALTHCHOP(E0)
  2981. say_M913(forReplay);
  2982. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  2983. #endif
  2984. #if AXIS_HAS_STEALTHCHOP(E1)
  2985. say_M913(forReplay);
  2986. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  2987. #endif
  2988. #if AXIS_HAS_STEALTHCHOP(E2)
  2989. say_M913(forReplay);
  2990. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  2991. #endif
  2992. #if AXIS_HAS_STEALTHCHOP(E3)
  2993. say_M913(forReplay);
  2994. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  2995. #endif
  2996. #if AXIS_HAS_STEALTHCHOP(E4)
  2997. say_M913(forReplay);
  2998. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  2999. #endif
  3000. #if AXIS_HAS_STEALTHCHOP(E5)
  3001. say_M913(forReplay);
  3002. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  3003. #endif
  3004. #if AXIS_HAS_STEALTHCHOP(E6)
  3005. say_M913(forReplay);
  3006. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
  3007. #endif
  3008. #if AXIS_HAS_STEALTHCHOP(E7)
  3009. say_M913(forReplay);
  3010. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
  3011. #endif
  3012. SERIAL_EOL();
  3013. #endif // HYBRID_THRESHOLD
  3014. /**
  3015. * TMC Sensorless homing thresholds
  3016. */
  3017. #if USE_SENSORLESS
  3018. CONFIG_ECHO_HEADING("StallGuard threshold:");
  3019. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  3020. CONFIG_ECHO_START();
  3021. say_M914();
  3022. #if X_SENSORLESS
  3023. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  3024. #endif
  3025. #if Y_SENSORLESS
  3026. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  3027. #endif
  3028. #if Z_SENSORLESS
  3029. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  3030. #endif
  3031. SERIAL_EOL();
  3032. #endif
  3033. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  3034. CONFIG_ECHO_START();
  3035. say_M914();
  3036. SERIAL_ECHOPGM(" I1");
  3037. #if X2_SENSORLESS
  3038. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  3039. #endif
  3040. #if Y2_SENSORLESS
  3041. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  3042. #endif
  3043. #if Z2_SENSORLESS
  3044. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  3045. #endif
  3046. SERIAL_EOL();
  3047. #endif
  3048. #if Z3_SENSORLESS
  3049. CONFIG_ECHO_START();
  3050. say_M914();
  3051. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  3052. #endif
  3053. #if Z4_SENSORLESS
  3054. CONFIG_ECHO_START();
  3055. say_M914();
  3056. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  3057. #endif
  3058. #endif // USE_SENSORLESS
  3059. /**
  3060. * TMC stepping mode
  3061. */
  3062. #if HAS_STEALTHCHOP
  3063. CONFIG_ECHO_HEADING("Driver stepping mode:");
  3064. #if AXIS_HAS_STEALTHCHOP(X)
  3065. const bool chop_x = stepperX.get_stealthChop_status();
  3066. #else
  3067. constexpr bool chop_x = false;
  3068. #endif
  3069. #if AXIS_HAS_STEALTHCHOP(Y)
  3070. const bool chop_y = stepperY.get_stealthChop_status();
  3071. #else
  3072. constexpr bool chop_y = false;
  3073. #endif
  3074. #if AXIS_HAS_STEALTHCHOP(Z)
  3075. const bool chop_z = stepperZ.get_stealthChop_status();
  3076. #else
  3077. constexpr bool chop_z = false;
  3078. #endif
  3079. if (chop_x || chop_y || chop_z) {
  3080. say_M569(forReplay);
  3081. if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR);
  3082. if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR);
  3083. if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR);
  3084. SERIAL_EOL();
  3085. }
  3086. #if AXIS_HAS_STEALTHCHOP(X2)
  3087. const bool chop_x2 = stepperX2.get_stealthChop_status();
  3088. #else
  3089. constexpr bool chop_x2 = false;
  3090. #endif
  3091. #if AXIS_HAS_STEALTHCHOP(Y2)
  3092. const bool chop_y2 = stepperY2.get_stealthChop_status();
  3093. #else
  3094. constexpr bool chop_y2 = false;
  3095. #endif
  3096. #if AXIS_HAS_STEALTHCHOP(Z2)
  3097. const bool chop_z2 = stepperZ2.get_stealthChop_status();
  3098. #else
  3099. constexpr bool chop_z2 = false;
  3100. #endif
  3101. if (chop_x2 || chop_y2 || chop_z2) {
  3102. say_M569(forReplay, PSTR("I1"));
  3103. if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
  3104. if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
  3105. if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
  3106. SERIAL_EOL();
  3107. }
  3108. #if AXIS_HAS_STEALTHCHOP(Z3)
  3109. if (stepperZ3.get_stealthChop_status()) { say_M569(forReplay, PSTR("I2 Z"), true); }
  3110. #endif
  3111. #if AXIS_HAS_STEALTHCHOP(Z4)
  3112. if (stepperZ4.get_stealthChop_status()) { say_M569(forReplay, PSTR("I3 Z"), true); }
  3113. #endif
  3114. #if AXIS_HAS_STEALTHCHOP(E0)
  3115. if (stepperE0.get_stealthChop_status()) { say_M569(forReplay, PSTR("T0 E"), true); }
  3116. #endif
  3117. #if AXIS_HAS_STEALTHCHOP(E1)
  3118. if (stepperE1.get_stealthChop_status()) { say_M569(forReplay, PSTR("T1 E"), true); }
  3119. #endif
  3120. #if AXIS_HAS_STEALTHCHOP(E2)
  3121. if (stepperE2.get_stealthChop_status()) { say_M569(forReplay, PSTR("T2 E"), true); }
  3122. #endif
  3123. #if AXIS_HAS_STEALTHCHOP(E3)
  3124. if (stepperE3.get_stealthChop_status()) { say_M569(forReplay, PSTR("T3 E"), true); }
  3125. #endif
  3126. #if AXIS_HAS_STEALTHCHOP(E4)
  3127. if (stepperE4.get_stealthChop_status()) { say_M569(forReplay, PSTR("T4 E"), true); }
  3128. #endif
  3129. #if AXIS_HAS_STEALTHCHOP(E5)
  3130. if (stepperE5.get_stealthChop_status()) { say_M569(forReplay, PSTR("T5 E"), true); }
  3131. #endif
  3132. #if AXIS_HAS_STEALTHCHOP(E6)
  3133. if (stepperE6.get_stealthChop_status()) { say_M569(forReplay, PSTR("T6 E"), true); }
  3134. #endif
  3135. #if AXIS_HAS_STEALTHCHOP(E7)
  3136. if (stepperE7.get_stealthChop_status()) { say_M569(forReplay, PSTR("T7 E"), true); }
  3137. #endif
  3138. #endif // HAS_STEALTHCHOP
  3139. #endif // HAS_TRINAMIC_CONFIG
  3140. /**
  3141. * Linear Advance
  3142. */
  3143. #if ENABLED(LIN_ADVANCE)
  3144. CONFIG_ECHO_HEADING("Linear Advance:");
  3145. #if EXTRUDERS < 2
  3146. CONFIG_ECHO_START();
  3147. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  3148. #else
  3149. LOOP_L_N(i, EXTRUDERS) {
  3150. CONFIG_ECHO_START();
  3151. SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
  3152. }
  3153. #endif
  3154. #endif
  3155. #if HAS_MOTOR_CURRENT_PWM
  3156. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3157. CONFIG_ECHO_START();
  3158. SERIAL_ECHOLNPAIR_P(
  3159. PSTR(" M907 X"), stepper.motor_current_setting[0]
  3160. , SP_Z_STR, stepper.motor_current_setting[1]
  3161. , SP_E_STR, stepper.motor_current_setting[2]
  3162. );
  3163. #endif
  3164. /**
  3165. * Advanced Pause filament load & unload lengths
  3166. */
  3167. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3168. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3169. #if EXTRUDERS == 1
  3170. say_M603(forReplay);
  3171. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3172. #else
  3173. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0);
  3174. REPEAT(EXTRUDERS, _ECHO_603)
  3175. #endif
  3176. #endif
  3177. #if EXTRUDERS > 1
  3178. CONFIG_ECHO_HEADING("Tool-changing:");
  3179. CONFIG_ECHO_START();
  3180. M217_report(true);
  3181. #endif
  3182. #if ENABLED(BACKLASH_GCODE)
  3183. CONFIG_ECHO_HEADING("Backlash compensation:");
  3184. CONFIG_ECHO_START();
  3185. SERIAL_ECHOLNPAIR_P(
  3186. PSTR(" M425 F"), backlash.get_correction()
  3187. , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
  3188. , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
  3189. , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
  3190. #ifdef BACKLASH_SMOOTHING_MM
  3191. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3192. #endif
  3193. );
  3194. #endif
  3195. #if HAS_FILAMENT_SENSOR
  3196. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3197. CONFIG_ECHO_START();
  3198. SERIAL_ECHOLNPAIR(
  3199. " M412 S", int(runout.enabled)
  3200. #if HAS_FILAMENT_RUNOUT_DISTANCE
  3201. , " D", LINEAR_UNIT(runout.runout_distance())
  3202. #endif
  3203. );
  3204. #endif
  3205. }
  3206. #endif // !DISABLE_M503
  3207. #pragma pack(pop)