My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 452KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
  53. * G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
  54. * G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
  55. * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
  56. * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
  57. * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
  58. * G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
  59. * G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
  60. * G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION)
  61. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  62. * G28 - Home one or more axes
  63. * G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
  64. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  65. * G31 - Dock sled (Z_PROBE_SLED only)
  66. * G32 - Undock sled (Z_PROBE_SLED only)
  67. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  68. * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
  69. * G42 - Coordinated move to a mesh point (Requires AUTO_BED_LEVELING_UBL)
  70. * G90 - Use Absolute Coordinates
  71. * G91 - Use Relative Coordinates
  72. * G92 - Set current position to coordinates given
  73. *
  74. * "M" Codes
  75. *
  76. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  77. * M1 -> M0
  78. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  79. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  80. * M5 - Turn laser/spindle off
  81. * M17 - Enable/Power all stepper motors
  82. * M18 - Disable all stepper motors; same as M84
  83. * M20 - List SD card. (Requires SDSUPPORT)
  84. * M21 - Init SD card. (Requires SDSUPPORT)
  85. * M22 - Release SD card. (Requires SDSUPPORT)
  86. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  87. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  88. * M25 - Pause SD print. (Requires SDSUPPORT)
  89. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  90. * M27 - Report SD print status. (Requires SDSUPPORT)
  91. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  92. * M29 - Stop SD write. (Requires SDSUPPORT)
  93. * M30 - Delete file from SD: "M30 /path/file.gco"
  94. * M31 - Report time since last M109 or SD card start to serial.
  95. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  96. * Use P to run other files as sub-programs: "M32 P !filename#"
  97. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  99. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  100. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  101. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  102. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  103. * M75 - Start the print job timer.
  104. * M76 - Pause the print job timer.
  105. * M77 - Stop the print job timer.
  106. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  107. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  108. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  109. * M82 - Set E codes absolute (default).
  110. * M83 - Set E codes relative while in Absolute (G90) mode.
  111. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  112. * duration after which steppers should turn off. S0 disables the timeout.
  113. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  114. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  115. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  116. * M104 - Set extruder target temp.
  117. * M105 - Report current temperatures.
  118. * M106 - Set print fan speed.
  119. * M107 - Print fan off.
  120. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  121. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  122. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  123. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  124. * M110 - Set the current line number. (Used by host printing)
  125. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  126. * M112 - Emergency stop.
  127. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  128. * M114 - Report current position.
  129. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  130. * M117 - Display a message on the controller screen. (Requires an LCD)
  131. * M118 - Display a message in the host console.
  132. * M119 - Report endstops status.
  133. * M120 - Enable endstops detection.
  134. * M121 - Disable endstops detection.
  135. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  136. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  137. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  138. * M128 - EtoP Open. (Requires BARICUDA)
  139. * M129 - EtoP Closed. (Requires BARICUDA)
  140. * M140 - Set bed target temp. S<temp>
  141. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  142. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  143. * M150 - Set Status LED Color as R<red> U<green> B<blue> P<bright>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, NEOPIXEL_LED, or PCA9632).
  144. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  145. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  146. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  147. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  148. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  149. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  150. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  151. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  152. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  153. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  154. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  155. * M205 - Set advanced settings. Current units apply:
  156. S<print> T<travel> minimum speeds
  157. B<minimum segment time>
  158. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  159. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  160. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  161. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  162. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  163. Every normal extrude-only move will be classified as retract depending on the direction.
  164. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  165. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  166. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  167. * M221 - Set Flow Percentage: "M221 S<percent>"
  168. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  169. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  170. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  171. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  172. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  173. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  174. * M290 - Babystepping (Requires BABYSTEPPING)
  175. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  176. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  177. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  178. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  179. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  180. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  181. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  182. * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
  183. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  184. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  185. * M400 - Finish all moves.
  186. * M401 - Lower Z probe. (Requires a probe)
  187. * M402 - Raise Z probe. (Requires a probe)
  188. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  189. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  190. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  191. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  192. * M410 - Quickstop. Abort all planned moves.
  193. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  194. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  195. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  196. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  197. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  198. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  199. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  200. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  201. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
  202. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  203. * M666 - Set delta endstop adjustment. (Requires DELTA)
  204. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  205. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  206. * M860 - Report the position of position encoder modules.
  207. * M861 - Report the status of position encoder modules.
  208. * M862 - Perform an axis continuity test for position encoder modules.
  209. * M863 - Perform steps-per-mm calibration for position encoder modules.
  210. * M864 - Change position encoder module I2C address.
  211. * M865 - Check position encoder module firmware version.
  212. * M866 - Report or reset position encoder module error count.
  213. * M867 - Enable/disable or toggle error correction for position encoder modules.
  214. * M868 - Report or set position encoder module error correction threshold.
  215. * M869 - Report position encoder module error.
  216. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  217. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  218. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  219. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  220. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  221. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  222. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  223. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  224. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  225. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  226. *
  227. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  228. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  229. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  230. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  231. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  232. *
  233. * ************ Custom codes - This can change to suit future G-code regulations
  234. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  235. * M999 - Restart after being stopped by error
  236. *
  237. * "T" Codes
  238. *
  239. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  240. *
  241. */
  242. #include "Marlin.h"
  243. #include "ultralcd.h"
  244. #include "planner.h"
  245. #include "stepper.h"
  246. #include "endstops.h"
  247. #include "temperature.h"
  248. #include "cardreader.h"
  249. #include "configuration_store.h"
  250. #include "language.h"
  251. #include "pins_arduino.h"
  252. #include "math.h"
  253. #include "nozzle.h"
  254. #include "duration_t.h"
  255. #include "types.h"
  256. #include "gcode.h"
  257. #if HAS_ABL
  258. #include "vector_3.h"
  259. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  260. #include "least_squares_fit.h"
  261. #endif
  262. #elif ENABLED(MESH_BED_LEVELING)
  263. #include "mesh_bed_leveling.h"
  264. #endif
  265. #if ENABLED(BEZIER_CURVE_SUPPORT)
  266. #include "planner_bezier.h"
  267. #endif
  268. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  269. #include "buzzer.h"
  270. #endif
  271. #if ENABLED(USE_WATCHDOG)
  272. #include "watchdog.h"
  273. #endif
  274. #if ENABLED(MAX7219_DEBUG)
  275. #include "Max7219_Debug_LEDs.h"
  276. #endif
  277. #if ENABLED(NEOPIXEL_LED)
  278. #include <Adafruit_NeoPixel.h>
  279. #endif
  280. #if ENABLED(BLINKM)
  281. #include "blinkm.h"
  282. #include "Wire.h"
  283. #endif
  284. #if ENABLED(PCA9632)
  285. #include "pca9632.h"
  286. #endif
  287. #if HAS_SERVOS
  288. #include "servo.h"
  289. #endif
  290. #if HAS_DIGIPOTSS
  291. #include <SPI.h>
  292. #endif
  293. #if ENABLED(DAC_STEPPER_CURRENT)
  294. #include "stepper_dac.h"
  295. #endif
  296. #if ENABLED(EXPERIMENTAL_I2CBUS)
  297. #include "twibus.h"
  298. #endif
  299. #if ENABLED(I2C_POSITION_ENCODERS)
  300. #include "I2CPositionEncoder.h"
  301. #endif
  302. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  303. #include "endstop_interrupts.h"
  304. #endif
  305. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  306. void gcode_M100();
  307. void M100_dump_routine(const char * const title, const char *start, const char *end);
  308. #endif
  309. #if ENABLED(SDSUPPORT)
  310. CardReader card;
  311. #endif
  312. #if ENABLED(EXPERIMENTAL_I2CBUS)
  313. TWIBus i2c;
  314. #endif
  315. #if ENABLED(G38_PROBE_TARGET)
  316. bool G38_move = false,
  317. G38_endstop_hit = false;
  318. #endif
  319. #if ENABLED(AUTO_BED_LEVELING_UBL)
  320. #include "ubl.h"
  321. extern bool defer_return_to_status;
  322. unified_bed_leveling ubl;
  323. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  324. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  325. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  326. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  327. || isnan(ubl.z_values[0][0]))
  328. #endif
  329. #if ENABLED(NEOPIXEL_LED)
  330. #if NEOPIXEL_TYPE == NEO_RGB || NEOPIXEL_TYPE == NEO_RBG || NEOPIXEL_TYPE == NEO_GRB || NEOPIXEL_TYPE == NEO_GBR || NEOPIXEL_TYPE == NEO_BRG || NEOPIXEL_TYPE == NEO_BGR
  331. #define NEO_WHITE 255, 255, 255
  332. #else
  333. #define NEO_WHITE 0, 0, 0, 255
  334. #endif
  335. #endif
  336. #if ENABLED(RGB_LED) || ENABLED(BLINKM) || ENABLED(PCA9632)
  337. #define LED_WHITE 255, 255, 255
  338. #elif ENABLED(RGBW_LED)
  339. #define LED_WHITE 0, 0, 0, 255
  340. #endif
  341. bool Running = true;
  342. uint8_t marlin_debug_flags = DEBUG_NONE;
  343. /**
  344. * Cartesian Current Position
  345. * Used to track the logical position as moves are queued.
  346. * Used by 'line_to_current_position' to do a move after changing it.
  347. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  348. */
  349. float current_position[XYZE] = { 0.0 };
  350. /**
  351. * Cartesian Destination
  352. * A temporary position, usually applied to 'current_position'.
  353. * Set with 'gcode_get_destination' or 'set_destination_from_current'.
  354. * 'line_to_destination' sets 'current_position' to 'destination'.
  355. */
  356. float destination[XYZE] = { 0.0 };
  357. /**
  358. * axis_homed
  359. * Flags that each linear axis was homed.
  360. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  361. *
  362. * axis_known_position
  363. * Flags that the position is known in each linear axis. Set when homed.
  364. * Cleared whenever a stepper powers off, potentially losing its position.
  365. */
  366. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  367. /**
  368. * GCode line number handling. Hosts may opt to include line numbers when
  369. * sending commands to Marlin, and lines will be checked for sequentiality.
  370. * M110 N<int> sets the current line number.
  371. */
  372. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  373. /**
  374. * GCode Command Queue
  375. * A simple ring buffer of BUFSIZE command strings.
  376. *
  377. * Commands are copied into this buffer by the command injectors
  378. * (immediate, serial, sd card) and they are processed sequentially by
  379. * the main loop. The process_next_command function parses the next
  380. * command and hands off execution to individual handler functions.
  381. */
  382. uint8_t commands_in_queue = 0; // Count of commands in the queue
  383. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  384. cmd_queue_index_w = 0; // Ring buffer write position
  385. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  386. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  387. #else // This can be collapsed back to the way it was soon.
  388. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  389. #endif
  390. /**
  391. * Next Injected Command pointer. NULL if no commands are being injected.
  392. * Used by Marlin internally to ensure that commands initiated from within
  393. * are enqueued ahead of any pending serial or sd card commands.
  394. */
  395. static const char *injected_commands_P = NULL;
  396. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  397. TempUnit input_temp_units = TEMPUNIT_C;
  398. #endif
  399. /**
  400. * Feed rates are often configured with mm/m
  401. * but the planner and stepper like mm/s units.
  402. */
  403. static const float homing_feedrate_mm_s[] PROGMEM = {
  404. #if ENABLED(DELTA)
  405. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  406. #else
  407. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  408. #endif
  409. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  410. };
  411. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  412. float feedrate_mm_s = MMM_TO_MMS(1500.0);
  413. static float saved_feedrate_mm_s;
  414. int16_t feedrate_percentage = 100, saved_feedrate_percentage,
  415. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  416. // Initialized by settings.load()
  417. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  418. volumetric_enabled;
  419. float filament_size[EXTRUDERS], volumetric_multiplier[EXTRUDERS];
  420. #if HAS_WORKSPACE_OFFSET
  421. #if HAS_POSITION_SHIFT
  422. // The distance that XYZ has been offset by G92. Reset by G28.
  423. float position_shift[XYZ] = { 0 };
  424. #endif
  425. #if HAS_HOME_OFFSET
  426. // This offset is added to the configured home position.
  427. // Set by M206, M428, or menu item. Saved to EEPROM.
  428. float home_offset[XYZ] = { 0 };
  429. #endif
  430. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  431. // The above two are combined to save on computes
  432. float workspace_offset[XYZ] = { 0 };
  433. #endif
  434. #endif
  435. // Software Endstops are based on the configured limits.
  436. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
  437. soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
  438. #if HAS_SOFTWARE_ENDSTOPS
  439. bool soft_endstops_enabled = true;
  440. #if IS_KINEMATIC
  441. float soft_endstop_radius, soft_endstop_radius_2;
  442. #endif
  443. #endif
  444. #if FAN_COUNT > 0
  445. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  446. #if ENABLED(EXTRA_FAN_SPEED)
  447. int16_t old_fanSpeeds[FAN_COUNT],
  448. new_fanSpeeds[FAN_COUNT];
  449. #endif
  450. #if ENABLED(PROBING_FANS_OFF)
  451. bool fans_paused = false;
  452. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  453. #endif
  454. #endif
  455. // The active extruder (tool). Set with T<extruder> command.
  456. uint8_t active_extruder = 0;
  457. // Relative Mode. Enable with G91, disable with G90.
  458. static bool relative_mode = false;
  459. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  460. volatile bool wait_for_heatup = true;
  461. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  462. #if HAS_RESUME_CONTINUE
  463. volatile bool wait_for_user = false;
  464. #endif
  465. const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
  466. // Number of characters read in the current line of serial input
  467. static int serial_count = 0;
  468. // Inactivity shutdown
  469. millis_t previous_cmd_ms = 0;
  470. static millis_t max_inactive_time = 0;
  471. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  472. // Print Job Timer
  473. #if ENABLED(PRINTCOUNTER)
  474. PrintCounter print_job_timer = PrintCounter();
  475. #else
  476. Stopwatch print_job_timer = Stopwatch();
  477. #endif
  478. // Buzzer - I2C on the LCD or a BEEPER_PIN
  479. #if ENABLED(LCD_USE_I2C_BUZZER)
  480. #define BUZZ(d,f) lcd_buzz(d, f)
  481. #elif PIN_EXISTS(BEEPER)
  482. Buzzer buzzer;
  483. #define BUZZ(d,f) buzzer.tone(d, f)
  484. #else
  485. #define BUZZ(d,f) NOOP
  486. #endif
  487. static uint8_t target_extruder;
  488. #if HAS_BED_PROBE
  489. float zprobe_zoffset; // Initialized by settings.load()
  490. #endif
  491. #if HAS_ABL
  492. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  493. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  494. #elif defined(XY_PROBE_SPEED)
  495. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  496. #else
  497. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  498. #endif
  499. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  500. #if ENABLED(DELTA)
  501. #define ADJUST_DELTA(V) \
  502. if (planner.leveling_active) { \
  503. const float zadj = bilinear_z_offset(V); \
  504. delta[A_AXIS] += zadj; \
  505. delta[B_AXIS] += zadj; \
  506. delta[C_AXIS] += zadj; \
  507. }
  508. #else
  509. #define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
  510. #endif
  511. #elif IS_KINEMATIC
  512. #define ADJUST_DELTA(V) NOOP
  513. #endif
  514. #if ENABLED(X_DUAL_ENDSTOPS)
  515. float x_endstop_adj; // Initialized by settings.load()
  516. #endif
  517. #if ENABLED(Y_DUAL_ENDSTOPS)
  518. float y_endstop_adj; // Initialized by settings.load()
  519. #endif
  520. #if ENABLED(Z_DUAL_ENDSTOPS)
  521. float z_endstop_adj; // Initialized by settings.load()
  522. #endif
  523. // Extruder offsets
  524. #if HOTENDS > 1
  525. float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
  526. #endif
  527. #if HAS_Z_SERVO_ENDSTOP
  528. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  529. #endif
  530. #if ENABLED(BARICUDA)
  531. uint8_t baricuda_valve_pressure = 0,
  532. baricuda_e_to_p_pressure = 0;
  533. #endif
  534. #if ENABLED(FWRETRACT) // Initialized by settings.load()...
  535. bool autoretract_enabled, // M209 S - Autoretract switch
  536. retracted[EXTRUDERS] = { false }; // Which extruders are currently retracted
  537. float retract_length, // M207 S - G10 Retract length
  538. retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
  539. retract_zlift, // M207 Z - G10 Retract hop size
  540. retract_recover_length, // M208 S - G11 Recover length
  541. retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
  542. swap_retract_length, // M207 W - G10 Swap Retract length
  543. swap_retract_recover_length, // M208 W - G11 Swap Recover length
  544. swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
  545. #if EXTRUDERS > 1
  546. bool retracted_swap[EXTRUDERS] = { false }; // Which extruders are swap-retracted
  547. #else
  548. constexpr bool retracted_swap[1] = { false };
  549. #endif
  550. #endif // FWRETRACT
  551. #if HAS_POWER_SWITCH
  552. bool powersupply_on =
  553. #if ENABLED(PS_DEFAULT_OFF)
  554. false
  555. #else
  556. true
  557. #endif
  558. ;
  559. #endif
  560. #if ENABLED(DELTA)
  561. float delta[ABC];
  562. // Initialized by settings.load()
  563. float delta_endstop_adj[ABC] = { 0 },
  564. delta_radius,
  565. delta_tower_angle_trim[ABC],
  566. delta_tower[ABC][2],
  567. delta_diagonal_rod,
  568. delta_calibration_radius,
  569. delta_diagonal_rod_2_tower[ABC],
  570. delta_segments_per_second,
  571. delta_clip_start_height = Z_MAX_POS;
  572. float delta_safe_distance_from_top();
  573. #endif
  574. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  575. int bilinear_grid_spacing[2], bilinear_start[2];
  576. float bilinear_grid_factor[2],
  577. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  578. #endif
  579. #if IS_SCARA
  580. // Float constants for SCARA calculations
  581. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  582. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  583. L2_2 = sq(float(L2));
  584. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  585. delta[ABC];
  586. #endif
  587. float cartes[XYZ] = { 0 };
  588. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  589. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  590. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  591. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  592. uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
  593. measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  594. int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  595. #endif
  596. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  597. static bool filament_ran_out = false;
  598. #endif
  599. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  600. AdvancedPauseMenuResponse advanced_pause_menu_response;
  601. #endif
  602. #if ENABLED(MIXING_EXTRUDER)
  603. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  604. #if MIXING_VIRTUAL_TOOLS > 1
  605. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  606. #endif
  607. #endif
  608. static bool send_ok[BUFSIZE];
  609. #if HAS_SERVOS
  610. Servo servo[NUM_SERVOS];
  611. #define MOVE_SERVO(I, P) servo[I].move(P)
  612. #if HAS_Z_SERVO_ENDSTOP
  613. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  614. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  615. #endif
  616. #endif
  617. #ifdef CHDK
  618. millis_t chdkHigh = 0;
  619. bool chdkActive = false;
  620. #endif
  621. #ifdef AUTOMATIC_CURRENT_CONTROL
  622. bool auto_current_control = 0;
  623. #endif
  624. #if ENABLED(PID_EXTRUSION_SCALING)
  625. int lpq_len = 20;
  626. #endif
  627. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  628. MarlinBusyState busy_state = NOT_BUSY;
  629. static millis_t next_busy_signal_ms = 0;
  630. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  631. #else
  632. #define host_keepalive() NOOP
  633. #endif
  634. #if ENABLED(I2C_POSITION_ENCODERS)
  635. I2CPositionEncodersMgr I2CPEM;
  636. uint8_t blockBufferIndexRef = 0;
  637. millis_t lastUpdateMillis;
  638. #endif
  639. #if ENABLED(CNC_WORKSPACE_PLANES)
  640. static WorkspacePlane workspace_plane = PLANE_XY;
  641. #endif
  642. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  643. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  644. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  645. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  646. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  647. typedef void __void_##CONFIG##__
  648. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  649. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  650. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  651. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  652. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  653. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  654. /**
  655. * ***************************************************************************
  656. * ******************************** FUNCTIONS ********************************
  657. * ***************************************************************************
  658. */
  659. void stop();
  660. void get_available_commands();
  661. void process_next_command();
  662. void prepare_move_to_destination();
  663. void get_cartesian_from_steppers();
  664. void set_current_from_steppers_for_axis(const AxisEnum axis);
  665. #if ENABLED(ARC_SUPPORT)
  666. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  667. #endif
  668. #if ENABLED(BEZIER_CURVE_SUPPORT)
  669. void plan_cubic_move(const float offset[4]);
  670. #endif
  671. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  672. void report_current_position();
  673. void report_current_position_detail();
  674. #if ENABLED(DEBUG_LEVELING_FEATURE)
  675. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  676. serialprintPGM(prefix);
  677. SERIAL_CHAR('(');
  678. SERIAL_ECHO(x);
  679. SERIAL_ECHOPAIR(", ", y);
  680. SERIAL_ECHOPAIR(", ", z);
  681. SERIAL_CHAR(')');
  682. if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
  683. }
  684. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  685. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  686. }
  687. #if HAS_ABL
  688. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  689. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  690. }
  691. #endif
  692. #define DEBUG_POS(SUFFIX,VAR) do { \
  693. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  694. #endif
  695. /**
  696. * sync_plan_position
  697. *
  698. * Set the planner/stepper positions directly from current_position with
  699. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  700. */
  701. void sync_plan_position() {
  702. #if ENABLED(DEBUG_LEVELING_FEATURE)
  703. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  704. #endif
  705. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  706. }
  707. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  708. #if IS_KINEMATIC
  709. inline void sync_plan_position_kinematic() {
  710. #if ENABLED(DEBUG_LEVELING_FEATURE)
  711. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  712. #endif
  713. planner.set_position_mm_kinematic(current_position);
  714. }
  715. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  716. #else
  717. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  718. #endif
  719. #if ENABLED(SDSUPPORT)
  720. #include "SdFatUtil.h"
  721. int freeMemory() { return SdFatUtil::FreeRam(); }
  722. #else
  723. extern "C" {
  724. extern char __bss_end;
  725. extern char __heap_start;
  726. extern void* __brkval;
  727. int freeMemory() {
  728. int free_memory;
  729. if ((int)__brkval == 0)
  730. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  731. else
  732. free_memory = ((int)&free_memory) - ((int)__brkval);
  733. return free_memory;
  734. }
  735. }
  736. #endif // !SDSUPPORT
  737. #if ENABLED(DIGIPOT_I2C)
  738. extern void digipot_i2c_set_current(uint8_t channel, float current);
  739. extern void digipot_i2c_init();
  740. #endif
  741. /**
  742. * Inject the next "immediate" command, when possible, onto the front of the queue.
  743. * Return true if any immediate commands remain to inject.
  744. */
  745. static bool drain_injected_commands_P() {
  746. if (injected_commands_P != NULL) {
  747. size_t i = 0;
  748. char c, cmd[30];
  749. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  750. cmd[sizeof(cmd) - 1] = '\0';
  751. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  752. cmd[i] = '\0';
  753. if (enqueue_and_echo_command(cmd)) // success?
  754. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  755. }
  756. return (injected_commands_P != NULL); // return whether any more remain
  757. }
  758. /**
  759. * Record one or many commands to run from program memory.
  760. * Aborts the current queue, if any.
  761. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  762. */
  763. void enqueue_and_echo_commands_P(const char * const pgcode) {
  764. injected_commands_P = pgcode;
  765. drain_injected_commands_P(); // first command executed asap (when possible)
  766. }
  767. /**
  768. * Clear the Marlin command queue
  769. */
  770. void clear_command_queue() {
  771. cmd_queue_index_r = cmd_queue_index_w;
  772. commands_in_queue = 0;
  773. }
  774. /**
  775. * Once a new command is in the ring buffer, call this to commit it
  776. */
  777. inline void _commit_command(bool say_ok) {
  778. send_ok[cmd_queue_index_w] = say_ok;
  779. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  780. commands_in_queue++;
  781. }
  782. /**
  783. * Copy a command from RAM into the main command buffer.
  784. * Return true if the command was successfully added.
  785. * Return false for a full buffer, or if the 'command' is a comment.
  786. */
  787. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  788. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  789. strcpy(command_queue[cmd_queue_index_w], cmd);
  790. _commit_command(say_ok);
  791. return true;
  792. }
  793. /**
  794. * Enqueue with Serial Echo
  795. */
  796. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  797. if (_enqueuecommand(cmd, say_ok)) {
  798. SERIAL_ECHO_START();
  799. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  800. SERIAL_CHAR('"');
  801. SERIAL_EOL();
  802. return true;
  803. }
  804. return false;
  805. }
  806. void setup_killpin() {
  807. #if HAS_KILL
  808. SET_INPUT_PULLUP(KILL_PIN);
  809. #endif
  810. }
  811. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  812. void setup_filrunoutpin() {
  813. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  814. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  815. #else
  816. SET_INPUT(FIL_RUNOUT_PIN);
  817. #endif
  818. }
  819. #endif
  820. void setup_powerhold() {
  821. #if HAS_SUICIDE
  822. OUT_WRITE(SUICIDE_PIN, HIGH);
  823. #endif
  824. #if HAS_POWER_SWITCH
  825. #if ENABLED(PS_DEFAULT_OFF)
  826. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  827. #else
  828. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  829. #endif
  830. #endif
  831. }
  832. void suicide() {
  833. #if HAS_SUICIDE
  834. OUT_WRITE(SUICIDE_PIN, LOW);
  835. #endif
  836. }
  837. void servo_init() {
  838. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  839. servo[0].attach(SERVO0_PIN);
  840. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  841. #endif
  842. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  843. servo[1].attach(SERVO1_PIN);
  844. servo[1].detach();
  845. #endif
  846. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  847. servo[2].attach(SERVO2_PIN);
  848. servo[2].detach();
  849. #endif
  850. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  851. servo[3].attach(SERVO3_PIN);
  852. servo[3].detach();
  853. #endif
  854. #if HAS_Z_SERVO_ENDSTOP
  855. /**
  856. * Set position of Z Servo Endstop
  857. *
  858. * The servo might be deployed and positioned too low to stow
  859. * when starting up the machine or rebooting the board.
  860. * There's no way to know where the nozzle is positioned until
  861. * homing has been done - no homing with z-probe without init!
  862. *
  863. */
  864. STOW_Z_SERVO();
  865. #endif
  866. }
  867. /**
  868. * Stepper Reset (RigidBoard, et.al.)
  869. */
  870. #if HAS_STEPPER_RESET
  871. void disableStepperDrivers() {
  872. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  873. }
  874. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  875. #endif
  876. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  877. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  878. i2c.receive(bytes);
  879. }
  880. void i2c_on_request() { // just send dummy data for now
  881. i2c.reply("Hello World!\n");
  882. }
  883. #endif
  884. #if HAS_COLOR_LEDS
  885. #if ENABLED(NEOPIXEL_LED)
  886. Adafruit_NeoPixel pixels(NEOPIXEL_PIXELS, NEOPIXEL_PIN, NEOPIXEL_TYPE + NEO_KHZ800);
  887. void set_neopixel_color(const uint32_t color) {
  888. for (uint16_t i = 0; i < pixels.numPixels(); ++i)
  889. pixels.setPixelColor(i, color);
  890. pixels.show();
  891. }
  892. void setup_neopixel() {
  893. pixels.setBrightness(NEOPIXEL_BRIGHTNESS); // 0 - 255 range
  894. pixels.begin();
  895. pixels.show(); // initialize to all off
  896. #if ENABLED(NEOPIXEL_STARTUP_TEST)
  897. safe_delay(1000);
  898. set_neopixel_color(pixels.Color(255, 0, 0, 0)); // red
  899. safe_delay(1000);
  900. set_neopixel_color(pixels.Color(0, 255, 0, 0)); // green
  901. safe_delay(1000);
  902. set_neopixel_color(pixels.Color(0, 0, 255, 0)); // blue
  903. safe_delay(1000);
  904. #endif
  905. set_neopixel_color(pixels.Color(NEO_WHITE)); // white
  906. }
  907. #endif // NEOPIXEL_LED
  908. void set_led_color(
  909. const uint8_t r, const uint8_t g, const uint8_t b
  910. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_LED)
  911. , const uint8_t w = 0
  912. #if ENABLED(NEOPIXEL_LED)
  913. , const uint8_t p = NEOPIXEL_BRIGHTNESS
  914. , bool isSequence = false
  915. #endif
  916. #endif
  917. ) {
  918. #if ENABLED(NEOPIXEL_LED)
  919. const uint32_t color = pixels.Color(r, g, b, w);
  920. static uint16_t nextLed = 0;
  921. pixels.setBrightness(p);
  922. if (!isSequence)
  923. set_neopixel_color(color);
  924. else {
  925. pixels.setPixelColor(nextLed, color);
  926. pixels.show();
  927. if (++nextLed >= pixels.numPixels()) nextLed = 0;
  928. return;
  929. }
  930. #endif
  931. #if ENABLED(BLINKM)
  932. // This variant uses i2c to send the RGB components to the device.
  933. SendColors(r, g, b);
  934. #endif
  935. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  936. // This variant uses 3 separate pins for the RGB components.
  937. // If the pins can do PWM then their intensity will be set.
  938. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  939. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  940. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  941. analogWrite(RGB_LED_R_PIN, r);
  942. analogWrite(RGB_LED_G_PIN, g);
  943. analogWrite(RGB_LED_B_PIN, b);
  944. #if ENABLED(RGBW_LED)
  945. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  946. analogWrite(RGB_LED_W_PIN, w);
  947. #endif
  948. #endif
  949. #if ENABLED(PCA9632)
  950. // Update I2C LED driver
  951. PCA9632_SetColor(r, g, b);
  952. #endif
  953. }
  954. #endif // HAS_COLOR_LEDS
  955. void gcode_line_error(const char* err, bool doFlush = true) {
  956. SERIAL_ERROR_START();
  957. serialprintPGM(err);
  958. SERIAL_ERRORLN(gcode_LastN);
  959. //Serial.println(gcode_N);
  960. if (doFlush) FlushSerialRequestResend();
  961. serial_count = 0;
  962. }
  963. /**
  964. * Get all commands waiting on the serial port and queue them.
  965. * Exit when the buffer is full or when no more characters are
  966. * left on the serial port.
  967. */
  968. inline void get_serial_commands() {
  969. static char serial_line_buffer[MAX_CMD_SIZE];
  970. static bool serial_comment_mode = false;
  971. // If the command buffer is empty for too long,
  972. // send "wait" to indicate Marlin is still waiting.
  973. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  974. static millis_t last_command_time = 0;
  975. const millis_t ms = millis();
  976. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  977. SERIAL_ECHOLNPGM(MSG_WAIT);
  978. last_command_time = ms;
  979. }
  980. #endif
  981. /**
  982. * Loop while serial characters are incoming and the queue is not full
  983. */
  984. int c;
  985. while (commands_in_queue < BUFSIZE && (c = MYSERIAL.read()) >= 0) {
  986. char serial_char = c;
  987. /**
  988. * If the character ends the line
  989. */
  990. if (serial_char == '\n' || serial_char == '\r') {
  991. serial_comment_mode = false; // end of line == end of comment
  992. if (!serial_count) continue; // Skip empty lines
  993. serial_line_buffer[serial_count] = 0; // Terminate string
  994. serial_count = 0; // Reset buffer
  995. char* command = serial_line_buffer;
  996. while (*command == ' ') command++; // Skip leading spaces
  997. char *npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  998. if (npos) {
  999. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  1000. if (M110) {
  1001. char* n2pos = strchr(command + 4, 'N');
  1002. if (n2pos) npos = n2pos;
  1003. }
  1004. gcode_N = strtol(npos + 1, NULL, 10);
  1005. if (gcode_N != gcode_LastN + 1 && !M110) {
  1006. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  1007. return;
  1008. }
  1009. char *apos = strrchr(command, '*');
  1010. if (apos) {
  1011. uint8_t checksum = 0, count = uint8_t(apos - command);
  1012. while (count) checksum ^= command[--count];
  1013. if (strtol(apos + 1, NULL, 10) != checksum) {
  1014. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  1015. return;
  1016. }
  1017. }
  1018. else {
  1019. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  1020. return;
  1021. }
  1022. gcode_LastN = gcode_N;
  1023. }
  1024. // Movement commands alert when stopped
  1025. if (IsStopped()) {
  1026. char* gpos = strchr(command, 'G');
  1027. if (gpos) {
  1028. const int codenum = strtol(gpos + 1, NULL, 10);
  1029. switch (codenum) {
  1030. case 0:
  1031. case 1:
  1032. case 2:
  1033. case 3:
  1034. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1035. LCD_MESSAGEPGM(MSG_STOPPED);
  1036. break;
  1037. }
  1038. }
  1039. }
  1040. #if DISABLED(EMERGENCY_PARSER)
  1041. // If command was e-stop process now
  1042. if (strcmp(command, "M108") == 0) {
  1043. wait_for_heatup = false;
  1044. #if ENABLED(ULTIPANEL)
  1045. wait_for_user = false;
  1046. #endif
  1047. }
  1048. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  1049. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  1050. #endif
  1051. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  1052. last_command_time = ms;
  1053. #endif
  1054. // Add the command to the queue
  1055. _enqueuecommand(serial_line_buffer, true);
  1056. }
  1057. else if (serial_count >= MAX_CMD_SIZE - 1) {
  1058. // Keep fetching, but ignore normal characters beyond the max length
  1059. // The command will be injected when EOL is reached
  1060. }
  1061. else if (serial_char == '\\') { // Handle escapes
  1062. if ((c = MYSERIAL.read()) >= 0) {
  1063. // if we have one more character, copy it over
  1064. serial_char = c;
  1065. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1066. }
  1067. // otherwise do nothing
  1068. }
  1069. else { // it's not a newline, carriage return or escape char
  1070. if (serial_char == ';') serial_comment_mode = true;
  1071. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1072. }
  1073. } // queue has space, serial has data
  1074. }
  1075. #if ENABLED(SDSUPPORT)
  1076. /**
  1077. * Get commands from the SD Card until the command buffer is full
  1078. * or until the end of the file is reached. The special character '#'
  1079. * can also interrupt buffering.
  1080. */
  1081. inline void get_sdcard_commands() {
  1082. static bool stop_buffering = false,
  1083. sd_comment_mode = false;
  1084. if (!card.sdprinting) return;
  1085. /**
  1086. * '#' stops reading from SD to the buffer prematurely, so procedural
  1087. * macro calls are possible. If it occurs, stop_buffering is triggered
  1088. * and the buffer is run dry; this character _can_ occur in serial com
  1089. * due to checksums, however, no checksums are used in SD printing.
  1090. */
  1091. if (commands_in_queue == 0) stop_buffering = false;
  1092. uint16_t sd_count = 0;
  1093. bool card_eof = card.eof();
  1094. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1095. const int16_t n = card.get();
  1096. char sd_char = (char)n;
  1097. card_eof = card.eof();
  1098. if (card_eof || n == -1
  1099. || sd_char == '\n' || sd_char == '\r'
  1100. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1101. ) {
  1102. if (card_eof) {
  1103. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1104. card.printingHasFinished();
  1105. #if ENABLED(PRINTER_EVENT_LEDS)
  1106. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1107. set_led_color(0, 255, 0); // Green
  1108. #if HAS_RESUME_CONTINUE
  1109. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1110. #else
  1111. safe_delay(1000);
  1112. #endif
  1113. set_led_color(0, 0, 0); // OFF
  1114. #endif
  1115. card.checkautostart(true);
  1116. }
  1117. else if (n == -1) {
  1118. SERIAL_ERROR_START();
  1119. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1120. }
  1121. if (sd_char == '#') stop_buffering = true;
  1122. sd_comment_mode = false; // for new command
  1123. if (!sd_count) continue; // skip empty lines (and comment lines)
  1124. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1125. sd_count = 0; // clear sd line buffer
  1126. _commit_command(false);
  1127. }
  1128. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1129. /**
  1130. * Keep fetching, but ignore normal characters beyond the max length
  1131. * The command will be injected when EOL is reached
  1132. */
  1133. }
  1134. else {
  1135. if (sd_char == ';') sd_comment_mode = true;
  1136. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1137. }
  1138. }
  1139. }
  1140. #endif // SDSUPPORT
  1141. /**
  1142. * Add to the circular command queue the next command from:
  1143. * - The command-injection queue (injected_commands_P)
  1144. * - The active serial input (usually USB)
  1145. * - The SD card file being actively printed
  1146. */
  1147. void get_available_commands() {
  1148. // if any immediate commands remain, don't get other commands yet
  1149. if (drain_injected_commands_P()) return;
  1150. get_serial_commands();
  1151. #if ENABLED(SDSUPPORT)
  1152. get_sdcard_commands();
  1153. #endif
  1154. }
  1155. /**
  1156. * Set target_extruder from the T parameter or the active_extruder
  1157. *
  1158. * Returns TRUE if the target is invalid
  1159. */
  1160. bool get_target_extruder_from_command(const uint16_t code) {
  1161. if (parser.seenval('T')) {
  1162. const int8_t e = parser.value_byte();
  1163. if (e >= EXTRUDERS) {
  1164. SERIAL_ECHO_START();
  1165. SERIAL_CHAR('M');
  1166. SERIAL_ECHO(code);
  1167. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
  1168. return true;
  1169. }
  1170. target_extruder = e;
  1171. }
  1172. else
  1173. target_extruder = active_extruder;
  1174. return false;
  1175. }
  1176. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1177. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1178. #endif
  1179. #if ENABLED(DUAL_X_CARRIAGE)
  1180. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1181. static float x_home_pos(const int extruder) {
  1182. if (extruder == 0)
  1183. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1184. else
  1185. /**
  1186. * In dual carriage mode the extruder offset provides an override of the
  1187. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1188. * This allows soft recalibration of the second extruder home position
  1189. * without firmware reflash (through the M218 command).
  1190. */
  1191. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1192. }
  1193. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1194. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1195. static bool active_extruder_parked = false; // used in mode 1 & 2
  1196. static float raised_parked_position[XYZE]; // used in mode 1
  1197. static millis_t delayed_move_time = 0; // used in mode 1
  1198. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1199. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1200. #endif // DUAL_X_CARRIAGE
  1201. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1202. /**
  1203. * Software endstops can be used to monitor the open end of
  1204. * an axis that has a hardware endstop on the other end. Or
  1205. * they can prevent axes from moving past endstops and grinding.
  1206. *
  1207. * To keep doing their job as the coordinate system changes,
  1208. * the software endstop positions must be refreshed to remain
  1209. * at the same positions relative to the machine.
  1210. */
  1211. void update_software_endstops(const AxisEnum axis) {
  1212. const float offs = 0.0
  1213. #if HAS_HOME_OFFSET
  1214. + home_offset[axis]
  1215. #endif
  1216. #if HAS_POSITION_SHIFT
  1217. + position_shift[axis]
  1218. #endif
  1219. ;
  1220. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1221. workspace_offset[axis] = offs;
  1222. #endif
  1223. #if ENABLED(DUAL_X_CARRIAGE)
  1224. if (axis == X_AXIS) {
  1225. // In Dual X mode hotend_offset[X] is T1's home position
  1226. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1227. if (active_extruder != 0) {
  1228. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1229. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1230. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1231. }
  1232. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1233. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1234. // but not so far to the right that T1 would move past the end
  1235. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1236. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1237. }
  1238. else {
  1239. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1240. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1241. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1242. }
  1243. }
  1244. #elif ENABLED(DELTA)
  1245. soft_endstop_min[axis] = base_min_pos(axis) + (axis == Z_AXIS ? 0 : offs);
  1246. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1247. #else
  1248. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1249. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1250. #endif
  1251. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1252. if (DEBUGGING(LEVELING)) {
  1253. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1254. #if HAS_HOME_OFFSET
  1255. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1256. #endif
  1257. #if HAS_POSITION_SHIFT
  1258. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1259. #endif
  1260. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1261. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1262. }
  1263. #endif
  1264. #if ENABLED(DELTA)
  1265. switch(axis) {
  1266. case X_AXIS:
  1267. case Y_AXIS:
  1268. // Get a minimum radius for clamping
  1269. soft_endstop_radius = MIN3(FABS(max(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]);
  1270. soft_endstop_radius_2 = sq(soft_endstop_radius);
  1271. break;
  1272. case Z_AXIS:
  1273. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1274. default: break;
  1275. }
  1276. #endif
  1277. }
  1278. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1279. #if HAS_M206_COMMAND
  1280. /**
  1281. * Change the home offset for an axis, update the current
  1282. * position and the software endstops to retain the same
  1283. * relative distance to the new home.
  1284. *
  1285. * Since this changes the current_position, code should
  1286. * call sync_plan_position soon after this.
  1287. */
  1288. static void set_home_offset(const AxisEnum axis, const float v) {
  1289. current_position[axis] += v - home_offset[axis];
  1290. home_offset[axis] = v;
  1291. update_software_endstops(axis);
  1292. }
  1293. #endif // HAS_M206_COMMAND
  1294. /**
  1295. * Set an axis' current position to its home position (after homing).
  1296. *
  1297. * For Core and Cartesian robots this applies one-to-one when an
  1298. * individual axis has been homed.
  1299. *
  1300. * DELTA should wait until all homing is done before setting the XYZ
  1301. * current_position to home, because homing is a single operation.
  1302. * In the case where the axis positions are already known and previously
  1303. * homed, DELTA could home to X or Y individually by moving either one
  1304. * to the center. However, homing Z always homes XY and Z.
  1305. *
  1306. * SCARA should wait until all XY homing is done before setting the XY
  1307. * current_position to home, because neither X nor Y is at home until
  1308. * both are at home. Z can however be homed individually.
  1309. *
  1310. * Callers must sync the planner position after calling this!
  1311. */
  1312. static void set_axis_is_at_home(const AxisEnum axis) {
  1313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1314. if (DEBUGGING(LEVELING)) {
  1315. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1316. SERIAL_CHAR(')');
  1317. SERIAL_EOL();
  1318. }
  1319. #endif
  1320. axis_known_position[axis] = axis_homed[axis] = true;
  1321. #if HAS_POSITION_SHIFT
  1322. position_shift[axis] = 0;
  1323. update_software_endstops(axis);
  1324. #endif
  1325. #if ENABLED(DUAL_X_CARRIAGE)
  1326. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1327. current_position[X_AXIS] = x_home_pos(active_extruder);
  1328. return;
  1329. }
  1330. #endif
  1331. #if ENABLED(MORGAN_SCARA)
  1332. /**
  1333. * Morgan SCARA homes XY at the same time
  1334. */
  1335. if (axis == X_AXIS || axis == Y_AXIS) {
  1336. float homeposition[XYZ];
  1337. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1338. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1339. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1340. /**
  1341. * Get Home position SCARA arm angles using inverse kinematics,
  1342. * and calculate homing offset using forward kinematics
  1343. */
  1344. inverse_kinematics(homeposition);
  1345. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1346. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1347. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1348. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1349. /**
  1350. * SCARA home positions are based on configuration since the actual
  1351. * limits are determined by the inverse kinematic transform.
  1352. */
  1353. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1354. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1355. }
  1356. else
  1357. #endif
  1358. {
  1359. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1360. }
  1361. /**
  1362. * Z Probe Z Homing? Account for the probe's Z offset.
  1363. */
  1364. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1365. if (axis == Z_AXIS) {
  1366. #if HOMING_Z_WITH_PROBE
  1367. current_position[Z_AXIS] -= zprobe_zoffset;
  1368. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1369. if (DEBUGGING(LEVELING)) {
  1370. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1371. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1372. }
  1373. #endif
  1374. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1375. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1376. #endif
  1377. }
  1378. #endif
  1379. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1380. if (DEBUGGING(LEVELING)) {
  1381. #if HAS_HOME_OFFSET
  1382. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1383. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1384. #endif
  1385. DEBUG_POS("", current_position);
  1386. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1387. SERIAL_CHAR(')');
  1388. SERIAL_EOL();
  1389. }
  1390. #endif
  1391. #if ENABLED(I2C_POSITION_ENCODERS)
  1392. I2CPEM.homed(axis);
  1393. #endif
  1394. }
  1395. /**
  1396. * Some planner shorthand inline functions
  1397. */
  1398. inline float get_homing_bump_feedrate(const AxisEnum axis) {
  1399. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  1400. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  1401. if (hbd < 1) {
  1402. hbd = 10;
  1403. SERIAL_ECHO_START();
  1404. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1405. }
  1406. return homing_feedrate(axis) / hbd;
  1407. }
  1408. /**
  1409. * Move the planner to the current position from wherever it last moved
  1410. * (or from wherever it has been told it is located).
  1411. */
  1412. inline void line_to_current_position() {
  1413. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1414. }
  1415. /**
  1416. * Move the planner to the position stored in the destination array, which is
  1417. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  1418. */
  1419. inline void line_to_destination(const float fr_mm_s) {
  1420. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1421. }
  1422. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1423. inline void set_current_from_destination() { COPY(current_position, destination); }
  1424. inline void set_destination_from_current() { COPY(destination, current_position); }
  1425. #if IS_KINEMATIC
  1426. /**
  1427. * Calculate delta, start a line, and set current_position to destination
  1428. */
  1429. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1430. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1431. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1432. #endif
  1433. refresh_cmd_timeout();
  1434. #if UBL_DELTA
  1435. // ubl segmented line will do z-only moves in single segment
  1436. ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
  1437. #else
  1438. if ( current_position[X_AXIS] == destination[X_AXIS]
  1439. && current_position[Y_AXIS] == destination[Y_AXIS]
  1440. && current_position[Z_AXIS] == destination[Z_AXIS]
  1441. && current_position[E_AXIS] == destination[E_AXIS]
  1442. ) return;
  1443. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1444. #endif
  1445. set_current_from_destination();
  1446. }
  1447. #endif // IS_KINEMATIC
  1448. /**
  1449. * Plan a move to (X, Y, Z) and set the current_position
  1450. * The final current_position may not be the one that was requested
  1451. */
  1452. void do_blocking_move_to(const float &lx, const float &ly, const float &lz, const float &fr_mm_s/*=0.0*/) {
  1453. const float old_feedrate_mm_s = feedrate_mm_s;
  1454. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1455. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, lx, ly, lz);
  1456. #endif
  1457. #if ENABLED(DELTA)
  1458. if (!position_is_reachable_xy(lx, ly)) return;
  1459. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1460. set_destination_from_current(); // sync destination at the start
  1461. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1462. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination);
  1463. #endif
  1464. // when in the danger zone
  1465. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1466. if (lz > delta_clip_start_height) { // staying in the danger zone
  1467. destination[X_AXIS] = lx; // move directly (uninterpolated)
  1468. destination[Y_AXIS] = ly;
  1469. destination[Z_AXIS] = lz;
  1470. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1471. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1472. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1473. #endif
  1474. return;
  1475. }
  1476. else {
  1477. destination[Z_AXIS] = delta_clip_start_height;
  1478. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1479. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1480. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1481. #endif
  1482. }
  1483. }
  1484. if (lz > current_position[Z_AXIS]) { // raising?
  1485. destination[Z_AXIS] = lz;
  1486. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1488. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1489. #endif
  1490. }
  1491. destination[X_AXIS] = lx;
  1492. destination[Y_AXIS] = ly;
  1493. prepare_move_to_destination(); // set_current_from_destination
  1494. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1495. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1496. #endif
  1497. if (lz < current_position[Z_AXIS]) { // lowering?
  1498. destination[Z_AXIS] = lz;
  1499. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1500. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1501. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1502. #endif
  1503. }
  1504. #elif IS_SCARA
  1505. if (!position_is_reachable_xy(lx, ly)) return;
  1506. set_destination_from_current();
  1507. // If Z needs to raise, do it before moving XY
  1508. if (destination[Z_AXIS] < lz) {
  1509. destination[Z_AXIS] = lz;
  1510. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1511. }
  1512. destination[X_AXIS] = lx;
  1513. destination[Y_AXIS] = ly;
  1514. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1515. // If Z needs to lower, do it after moving XY
  1516. if (destination[Z_AXIS] > lz) {
  1517. destination[Z_AXIS] = lz;
  1518. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1519. }
  1520. #else
  1521. // If Z needs to raise, do it before moving XY
  1522. if (current_position[Z_AXIS] < lz) {
  1523. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1524. current_position[Z_AXIS] = lz;
  1525. line_to_current_position();
  1526. }
  1527. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1528. current_position[X_AXIS] = lx;
  1529. current_position[Y_AXIS] = ly;
  1530. line_to_current_position();
  1531. // If Z needs to lower, do it after moving XY
  1532. if (current_position[Z_AXIS] > lz) {
  1533. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1534. current_position[Z_AXIS] = lz;
  1535. line_to_current_position();
  1536. }
  1537. #endif
  1538. stepper.synchronize();
  1539. feedrate_mm_s = old_feedrate_mm_s;
  1540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1541. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1542. #endif
  1543. }
  1544. void do_blocking_move_to_x(const float &lx, const float &fr_mm_s/*=0.0*/) {
  1545. do_blocking_move_to(lx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1546. }
  1547. void do_blocking_move_to_z(const float &lz, const float &fr_mm_s/*=0.0*/) {
  1548. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], lz, fr_mm_s);
  1549. }
  1550. void do_blocking_move_to_xy(const float &lx, const float &ly, const float &fr_mm_s/*=0.0*/) {
  1551. do_blocking_move_to(lx, ly, current_position[Z_AXIS], fr_mm_s);
  1552. }
  1553. //
  1554. // Prepare to do endstop or probe moves
  1555. // with custom feedrates.
  1556. //
  1557. // - Save current feedrates
  1558. // - Reset the rate multiplier
  1559. // - Reset the command timeout
  1560. // - Enable the endstops (for endstop moves)
  1561. //
  1562. static void setup_for_endstop_or_probe_move() {
  1563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1564. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1565. #endif
  1566. saved_feedrate_mm_s = feedrate_mm_s;
  1567. saved_feedrate_percentage = feedrate_percentage;
  1568. feedrate_percentage = 100;
  1569. refresh_cmd_timeout();
  1570. }
  1571. static void clean_up_after_endstop_or_probe_move() {
  1572. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1573. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1574. #endif
  1575. feedrate_mm_s = saved_feedrate_mm_s;
  1576. feedrate_percentage = saved_feedrate_percentage;
  1577. refresh_cmd_timeout();
  1578. }
  1579. #if HAS_BED_PROBE
  1580. /**
  1581. * Raise Z to a minimum height to make room for a probe to move
  1582. */
  1583. inline void do_probe_raise(const float z_raise) {
  1584. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1585. if (DEBUGGING(LEVELING)) {
  1586. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1587. SERIAL_CHAR(')');
  1588. SERIAL_EOL();
  1589. }
  1590. #endif
  1591. float z_dest = z_raise;
  1592. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1593. if (z_dest > current_position[Z_AXIS])
  1594. do_blocking_move_to_z(z_dest);
  1595. }
  1596. #endif // HAS_BED_PROBE
  1597. #if HAS_AXIS_UNHOMED_ERR
  1598. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1599. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1600. const bool xx = x && !axis_known_position[X_AXIS],
  1601. yy = y && !axis_known_position[Y_AXIS],
  1602. zz = z && !axis_known_position[Z_AXIS];
  1603. #else
  1604. const bool xx = x && !axis_homed[X_AXIS],
  1605. yy = y && !axis_homed[Y_AXIS],
  1606. zz = z && !axis_homed[Z_AXIS];
  1607. #endif
  1608. if (xx || yy || zz) {
  1609. SERIAL_ECHO_START();
  1610. SERIAL_ECHOPGM(MSG_HOME " ");
  1611. if (xx) SERIAL_ECHOPGM(MSG_X);
  1612. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1613. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1614. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1615. #if ENABLED(ULTRA_LCD)
  1616. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1617. #endif
  1618. return true;
  1619. }
  1620. return false;
  1621. }
  1622. #endif // HAS_AXIS_UNHOMED_ERR
  1623. #if ENABLED(Z_PROBE_SLED)
  1624. #ifndef SLED_DOCKING_OFFSET
  1625. #define SLED_DOCKING_OFFSET 0
  1626. #endif
  1627. /**
  1628. * Method to dock/undock a sled designed by Charles Bell.
  1629. *
  1630. * stow[in] If false, move to MAX_X and engage the solenoid
  1631. * If true, move to MAX_X and release the solenoid
  1632. */
  1633. static void dock_sled(bool stow) {
  1634. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1635. if (DEBUGGING(LEVELING)) {
  1636. SERIAL_ECHOPAIR("dock_sled(", stow);
  1637. SERIAL_CHAR(')');
  1638. SERIAL_EOL();
  1639. }
  1640. #endif
  1641. // Dock sled a bit closer to ensure proper capturing
  1642. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1643. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1644. WRITE(SOL1_PIN, !stow); // switch solenoid
  1645. #endif
  1646. }
  1647. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1648. FORCE_INLINE void do_blocking_move_to(const float logical[XYZ], const float &fr_mm_s) {
  1649. do_blocking_move_to(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], fr_mm_s);
  1650. }
  1651. void run_deploy_moves_script() {
  1652. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1653. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1654. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1655. #endif
  1656. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1657. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1658. #endif
  1659. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1660. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1663. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1664. #endif
  1665. const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
  1666. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1667. #endif
  1668. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1669. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1670. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1671. #endif
  1672. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1673. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1674. #endif
  1675. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1676. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1677. #endif
  1678. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1679. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1680. #endif
  1681. const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
  1682. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1683. #endif
  1684. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1685. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1686. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1687. #endif
  1688. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1689. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1690. #endif
  1691. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1692. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1693. #endif
  1694. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1695. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1696. #endif
  1697. const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
  1698. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1699. #endif
  1700. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1701. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1702. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1703. #endif
  1704. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1705. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1706. #endif
  1707. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1708. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1709. #endif
  1710. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1711. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1712. #endif
  1713. const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
  1714. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1715. #endif
  1716. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1717. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1718. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1719. #endif
  1720. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1721. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1722. #endif
  1723. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1724. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1725. #endif
  1726. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1727. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1728. #endif
  1729. const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
  1730. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1731. #endif
  1732. }
  1733. void run_stow_moves_script() {
  1734. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1735. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1736. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1737. #endif
  1738. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1739. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1740. #endif
  1741. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1742. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1743. #endif
  1744. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1745. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1746. #endif
  1747. const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
  1748. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1749. #endif
  1750. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1751. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1752. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1753. #endif
  1754. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1755. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1756. #endif
  1757. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1758. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1759. #endif
  1760. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1761. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1762. #endif
  1763. const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
  1764. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1765. #endif
  1766. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1767. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1768. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1769. #endif
  1770. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1771. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1772. #endif
  1773. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1774. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1775. #endif
  1776. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1777. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1778. #endif
  1779. const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
  1780. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1781. #endif
  1782. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1783. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1784. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1785. #endif
  1786. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1787. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1788. #endif
  1789. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1790. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1791. #endif
  1792. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1793. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1794. #endif
  1795. const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
  1796. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1797. #endif
  1798. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1799. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1800. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1801. #endif
  1802. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1803. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1804. #endif
  1805. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1806. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1807. #endif
  1808. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1809. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1810. #endif
  1811. const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
  1812. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1813. #endif
  1814. }
  1815. #endif // Z_PROBE_ALLEN_KEY
  1816. #if ENABLED(PROBING_FANS_OFF)
  1817. void fans_pause(const bool p) {
  1818. if (p != fans_paused) {
  1819. fans_paused = p;
  1820. if (p)
  1821. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1822. paused_fanSpeeds[x] = fanSpeeds[x];
  1823. fanSpeeds[x] = 0;
  1824. }
  1825. else
  1826. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1827. fanSpeeds[x] = paused_fanSpeeds[x];
  1828. }
  1829. }
  1830. #endif // PROBING_FANS_OFF
  1831. #if HAS_BED_PROBE
  1832. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1833. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1834. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1835. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1836. #else
  1837. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1838. #endif
  1839. #endif
  1840. #if QUIET_PROBING
  1841. void probing_pause(const bool p) {
  1842. #if ENABLED(PROBING_HEATERS_OFF)
  1843. thermalManager.pause(p);
  1844. #endif
  1845. #if ENABLED(PROBING_FANS_OFF)
  1846. fans_pause(p);
  1847. #endif
  1848. if (p) safe_delay(
  1849. #if DELAY_BEFORE_PROBING > 25
  1850. DELAY_BEFORE_PROBING
  1851. #else
  1852. 25
  1853. #endif
  1854. );
  1855. }
  1856. #endif // QUIET_PROBING
  1857. #if ENABLED(BLTOUCH)
  1858. void bltouch_command(int angle) {
  1859. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait
  1860. safe_delay(BLTOUCH_DELAY);
  1861. }
  1862. bool set_bltouch_deployed(const bool deploy) {
  1863. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1864. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1865. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1866. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1867. safe_delay(1500); // Wait for internal self-test to complete.
  1868. // (Measured completion time was 0.65 seconds
  1869. // after reset, deploy, and stow sequence)
  1870. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1871. SERIAL_ERROR_START();
  1872. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1873. stop(); // punt!
  1874. return true;
  1875. }
  1876. }
  1877. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1878. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1879. if (DEBUGGING(LEVELING)) {
  1880. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1881. SERIAL_CHAR(')');
  1882. SERIAL_EOL();
  1883. }
  1884. #endif
  1885. return false;
  1886. }
  1887. #endif // BLTOUCH
  1888. // returns false for ok and true for failure
  1889. bool set_probe_deployed(bool deploy) {
  1890. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1891. if (DEBUGGING(LEVELING)) {
  1892. DEBUG_POS("set_probe_deployed", current_position);
  1893. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1894. }
  1895. #endif
  1896. if (endstops.z_probe_enabled == deploy) return false;
  1897. // Make room for probe
  1898. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1899. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1900. #if ENABLED(Z_PROBE_SLED)
  1901. #define _AUE_ARGS true, false, false
  1902. #else
  1903. #define _AUE_ARGS
  1904. #endif
  1905. if (axis_unhomed_error(_AUE_ARGS)) {
  1906. SERIAL_ERROR_START();
  1907. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1908. stop();
  1909. return true;
  1910. }
  1911. #endif
  1912. const float oldXpos = current_position[X_AXIS],
  1913. oldYpos = current_position[Y_AXIS];
  1914. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1915. // If endstop is already false, the Z probe is deployed
  1916. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1917. // Would a goto be less ugly?
  1918. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1919. // for a triggered when stowed manual probe.
  1920. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1921. // otherwise an Allen-Key probe can't be stowed.
  1922. #endif
  1923. #if ENABLED(SOLENOID_PROBE)
  1924. #if HAS_SOLENOID_1
  1925. WRITE(SOL1_PIN, deploy);
  1926. #endif
  1927. #elif ENABLED(Z_PROBE_SLED)
  1928. dock_sled(!deploy);
  1929. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1930. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
  1931. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1932. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1933. #endif
  1934. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1935. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1936. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1937. if (IsRunning()) {
  1938. SERIAL_ERROR_START();
  1939. SERIAL_ERRORLNPGM("Z-Probe failed");
  1940. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1941. }
  1942. stop();
  1943. return true;
  1944. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1945. #endif
  1946. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1947. endstops.enable_z_probe(deploy);
  1948. return false;
  1949. }
  1950. /**
  1951. * @brief Used by run_z_probe to do a single Z probe move.
  1952. *
  1953. * @param z Z destination
  1954. * @param fr_mm_s Feedrate in mm/s
  1955. * @return true to indicate an error
  1956. */
  1957. static bool do_probe_move(const float z, const float fr_mm_m) {
  1958. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1959. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1960. #endif
  1961. // Deploy BLTouch at the start of any probe
  1962. #if ENABLED(BLTOUCH)
  1963. if (set_bltouch_deployed(true)) return true;
  1964. #endif
  1965. #if QUIET_PROBING
  1966. probing_pause(true);
  1967. #endif
  1968. // Move down until probe triggered
  1969. do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m));
  1970. // Check to see if the probe was triggered
  1971. const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
  1972. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  1973. Z_MIN
  1974. #else
  1975. Z_MIN_PROBE
  1976. #endif
  1977. );
  1978. #if QUIET_PROBING
  1979. probing_pause(false);
  1980. #endif
  1981. // Retract BLTouch immediately after a probe if it was triggered
  1982. #if ENABLED(BLTOUCH)
  1983. if (probe_triggered && set_bltouch_deployed(false)) return true;
  1984. #endif
  1985. // Clear endstop flags
  1986. endstops.hit_on_purpose();
  1987. // Get Z where the steppers were interrupted
  1988. set_current_from_steppers_for_axis(Z_AXIS);
  1989. // Tell the planner where we actually are
  1990. SYNC_PLAN_POSITION_KINEMATIC();
  1991. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1992. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1993. #endif
  1994. return !probe_triggered;
  1995. }
  1996. /**
  1997. * @details Used by probe_pt to do a single Z probe.
  1998. * Leaves current_position[Z_AXIS] at the height where the probe triggered.
  1999. *
  2000. * @param short_move Flag for a shorter probe move towards the bed
  2001. * @return The raw Z position where the probe was triggered
  2002. */
  2003. static float run_z_probe(const bool short_move=true) {
  2004. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2005. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  2006. #endif
  2007. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  2008. refresh_cmd_timeout();
  2009. #if ENABLED(PROBE_DOUBLE_TOUCH)
  2010. // Do a first probe at the fast speed
  2011. if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN;
  2012. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2013. float first_probe_z = current_position[Z_AXIS];
  2014. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  2015. #endif
  2016. // move up to make clearance for the probe
  2017. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2018. #else
  2019. // If the nozzle is above the travel height then
  2020. // move down quickly before doing the slow probe
  2021. float z = Z_CLEARANCE_DEPLOY_PROBE;
  2022. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  2023. if (z < current_position[Z_AXIS]) {
  2024. // If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
  2025. if (!do_probe_move(z, Z_PROBE_SPEED_FAST))
  2026. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2027. }
  2028. #endif
  2029. // move down slowly to find bed
  2030. if (do_probe_move(-10 + (short_move ? 0 : -(Z_MAX_LENGTH)), Z_PROBE_SPEED_SLOW)) return NAN;
  2031. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2032. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  2033. #endif
  2034. // Debug: compare probe heights
  2035. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  2036. if (DEBUGGING(LEVELING)) {
  2037. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  2038. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  2039. }
  2040. #endif
  2041. return RAW_CURRENT_POSITION(Z) + zprobe_zoffset
  2042. #if ENABLED(DELTA)
  2043. + home_offset[Z_AXIS] // Account for delta height adjustment
  2044. #endif
  2045. ;
  2046. }
  2047. /**
  2048. * - Move to the given XY
  2049. * - Deploy the probe, if not already deployed
  2050. * - Probe the bed, get the Z position
  2051. * - Depending on the 'stow' flag
  2052. * - Stow the probe, or
  2053. * - Raise to the BETWEEN height
  2054. * - Return the probed Z position
  2055. */
  2056. float probe_pt(const float &lx, const float &ly, const bool stow, const uint8_t verbose_level, const bool printable=true) {
  2057. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2058. if (DEBUGGING(LEVELING)) {
  2059. SERIAL_ECHOPAIR(">>> probe_pt(", lx);
  2060. SERIAL_ECHOPAIR(", ", ly);
  2061. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2062. SERIAL_ECHOLNPGM("stow)");
  2063. DEBUG_POS("", current_position);
  2064. }
  2065. #endif
  2066. const float nx = lx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ly - (Y_PROBE_OFFSET_FROM_EXTRUDER);
  2067. if (printable
  2068. ? !position_is_reachable_xy(nx, ny)
  2069. : !position_is_reachable_by_probe_xy(lx, ly)
  2070. ) return NAN;
  2071. const float old_feedrate_mm_s = feedrate_mm_s;
  2072. #if ENABLED(DELTA)
  2073. if (current_position[Z_AXIS] > delta_clip_start_height)
  2074. do_blocking_move_to_z(delta_clip_start_height);
  2075. #endif
  2076. #if HAS_SOFTWARE_ENDSTOPS
  2077. // Store the status of the soft endstops and disable if we're probing a non-printable location
  2078. static bool enable_soft_endstops = soft_endstops_enabled;
  2079. if (!printable) soft_endstops_enabled = false;
  2080. #endif
  2081. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2082. // Move the probe to the given XY
  2083. do_blocking_move_to_xy(nx, ny);
  2084. float measured_z = NAN;
  2085. if (!DEPLOY_PROBE()) {
  2086. measured_z = run_z_probe(printable);
  2087. if (!stow)
  2088. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2089. else
  2090. if (STOW_PROBE()) measured_z = NAN;
  2091. }
  2092. #if HAS_SOFTWARE_ENDSTOPS
  2093. // Restore the soft endstop status
  2094. soft_endstops_enabled = enable_soft_endstops;
  2095. #endif
  2096. if (verbose_level > 2) {
  2097. SERIAL_PROTOCOLPGM("Bed X: ");
  2098. SERIAL_PROTOCOL_F(lx, 3);
  2099. SERIAL_PROTOCOLPGM(" Y: ");
  2100. SERIAL_PROTOCOL_F(ly, 3);
  2101. SERIAL_PROTOCOLPGM(" Z: ");
  2102. SERIAL_PROTOCOL_F(measured_z, 3);
  2103. SERIAL_EOL();
  2104. }
  2105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2106. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2107. #endif
  2108. feedrate_mm_s = old_feedrate_mm_s;
  2109. if (isnan(measured_z)) {
  2110. LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
  2111. SERIAL_ERROR_START();
  2112. SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
  2113. }
  2114. return measured_z;
  2115. }
  2116. #endif // HAS_BED_PROBE
  2117. #if HAS_LEVELING
  2118. bool leveling_is_valid() {
  2119. return
  2120. #if ENABLED(MESH_BED_LEVELING)
  2121. mbl.has_mesh
  2122. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2123. !!bilinear_grid_spacing[X_AXIS]
  2124. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2125. true
  2126. #else // 3POINT, LINEAR
  2127. true
  2128. #endif
  2129. ;
  2130. }
  2131. /**
  2132. * Turn bed leveling on or off, fixing the current
  2133. * position as-needed.
  2134. *
  2135. * Disable: Current position = physical position
  2136. * Enable: Current position = "unleveled" physical position
  2137. */
  2138. void set_bed_leveling_enabled(const bool enable/*=true*/) {
  2139. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2140. const bool can_change = (!enable || leveling_is_valid());
  2141. #else
  2142. constexpr bool can_change = true;
  2143. #endif
  2144. if (can_change && enable != planner.leveling_active) {
  2145. #if ENABLED(MESH_BED_LEVELING)
  2146. if (!enable)
  2147. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2148. const bool enabling = enable && leveling_is_valid();
  2149. planner.leveling_active = enabling;
  2150. if (enabling) planner.unapply_leveling(current_position);
  2151. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2152. #if PLANNER_LEVELING
  2153. if (planner.leveling_active) { // leveling from on to off
  2154. // change unleveled current_position to physical current_position without moving steppers.
  2155. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2156. planner.leveling_active = false; // disable only AFTER calling apply_leveling
  2157. }
  2158. else { // leveling from off to on
  2159. planner.leveling_active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
  2160. // change physical current_position to unleveled current_position without moving steppers.
  2161. planner.unapply_leveling(current_position);
  2162. }
  2163. #else
  2164. planner.leveling_active = enable; // just flip the bit, current_position will be wrong until next move.
  2165. #endif
  2166. #else // ABL
  2167. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2168. // Force bilinear_z_offset to re-calculate next time
  2169. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2170. (void)bilinear_z_offset(reset);
  2171. #endif
  2172. // Enable or disable leveling compensation in the planner
  2173. planner.leveling_active = enable;
  2174. if (!enable)
  2175. // When disabling just get the current position from the steppers.
  2176. // This will yield the smallest error when first converted back to steps.
  2177. set_current_from_steppers_for_axis(
  2178. #if ABL_PLANAR
  2179. ALL_AXES
  2180. #else
  2181. Z_AXIS
  2182. #endif
  2183. );
  2184. else
  2185. // When enabling, remove compensation from the current position,
  2186. // so compensation will give the right stepper counts.
  2187. planner.unapply_leveling(current_position);
  2188. #endif // ABL
  2189. }
  2190. }
  2191. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2192. void set_z_fade_height(const float zfh) {
  2193. const bool level_active = planner.leveling_active;
  2194. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2195. if (level_active) set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
  2196. #endif
  2197. planner.set_z_fade_height(zfh);
  2198. if (level_active) {
  2199. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2200. set_bed_leveling_enabled(true); // turn back on after changing fade height
  2201. #else
  2202. set_current_from_steppers_for_axis(
  2203. #if ABL_PLANAR
  2204. ALL_AXES
  2205. #else
  2206. Z_AXIS
  2207. #endif
  2208. );
  2209. #endif
  2210. }
  2211. }
  2212. #endif // LEVELING_FADE_HEIGHT
  2213. /**
  2214. * Reset calibration results to zero.
  2215. */
  2216. void reset_bed_level() {
  2217. set_bed_leveling_enabled(false);
  2218. #if ENABLED(MESH_BED_LEVELING)
  2219. if (leveling_is_valid()) {
  2220. mbl.reset();
  2221. mbl.has_mesh = false;
  2222. }
  2223. #else
  2224. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2225. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2226. #endif
  2227. #if ABL_PLANAR
  2228. planner.bed_level_matrix.set_to_identity();
  2229. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2230. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2231. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2232. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2233. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2234. z_values[x][y] = NAN;
  2235. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2236. ubl.reset();
  2237. #endif
  2238. #endif
  2239. }
  2240. #endif // HAS_LEVELING
  2241. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2242. /**
  2243. * Enable to produce output in JSON format suitable
  2244. * for SCAD or JavaScript mesh visualizers.
  2245. *
  2246. * Visualize meshes in OpenSCAD using the included script.
  2247. *
  2248. * buildroot/shared/scripts/MarlinMesh.scad
  2249. */
  2250. //#define SCAD_MESH_OUTPUT
  2251. /**
  2252. * Print calibration results for plotting or manual frame adjustment.
  2253. */
  2254. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2255. #ifndef SCAD_MESH_OUTPUT
  2256. for (uint8_t x = 0; x < sx; x++) {
  2257. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2258. SERIAL_PROTOCOLCHAR(' ');
  2259. SERIAL_PROTOCOL((int)x);
  2260. }
  2261. SERIAL_EOL();
  2262. #endif
  2263. #ifdef SCAD_MESH_OUTPUT
  2264. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2265. #endif
  2266. for (uint8_t y = 0; y < sy; y++) {
  2267. #ifdef SCAD_MESH_OUTPUT
  2268. SERIAL_PROTOCOLPGM(" ["); // open sub-array
  2269. #else
  2270. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2271. SERIAL_PROTOCOL((int)y);
  2272. #endif
  2273. for (uint8_t x = 0; x < sx; x++) {
  2274. SERIAL_PROTOCOLCHAR(' ');
  2275. const float offset = fn(x, y);
  2276. if (!isnan(offset)) {
  2277. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2278. SERIAL_PROTOCOL_F(offset, precision);
  2279. }
  2280. else {
  2281. #ifdef SCAD_MESH_OUTPUT
  2282. for (uint8_t i = 3; i < precision + 3; i++)
  2283. SERIAL_PROTOCOLCHAR(' ');
  2284. SERIAL_PROTOCOLPGM("NAN");
  2285. #else
  2286. for (uint8_t i = 0; i < precision + 3; i++)
  2287. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2288. #endif
  2289. }
  2290. #ifdef SCAD_MESH_OUTPUT
  2291. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2292. #endif
  2293. }
  2294. #ifdef SCAD_MESH_OUTPUT
  2295. SERIAL_PROTOCOLCHAR(' ');
  2296. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2297. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2298. #endif
  2299. SERIAL_EOL();
  2300. }
  2301. #ifdef SCAD_MESH_OUTPUT
  2302. SERIAL_PROTOCOLPGM("];"); // close 2D array
  2303. #endif
  2304. SERIAL_EOL();
  2305. }
  2306. #endif
  2307. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2308. /**
  2309. * Extrapolate a single point from its neighbors
  2310. */
  2311. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2312. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2313. if (DEBUGGING(LEVELING)) {
  2314. SERIAL_ECHOPGM("Extrapolate [");
  2315. if (x < 10) SERIAL_CHAR(' ');
  2316. SERIAL_ECHO((int)x);
  2317. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2318. SERIAL_CHAR(' ');
  2319. if (y < 10) SERIAL_CHAR(' ');
  2320. SERIAL_ECHO((int)y);
  2321. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2322. SERIAL_CHAR(']');
  2323. }
  2324. #endif
  2325. if (!isnan(z_values[x][y])) {
  2326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2327. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2328. #endif
  2329. return; // Don't overwrite good values.
  2330. }
  2331. SERIAL_EOL();
  2332. // Get X neighbors, Y neighbors, and XY neighbors
  2333. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2334. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2335. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2336. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2337. // Treat far unprobed points as zero, near as equal to far
  2338. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2339. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2340. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2341. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2342. // Take the average instead of the median
  2343. z_values[x][y] = (a + b + c) / 3.0;
  2344. // Median is robust (ignores outliers).
  2345. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2346. // : ((c < b) ? b : (a < c) ? a : c);
  2347. }
  2348. //Enable this if your SCARA uses 180° of total area
  2349. //#define EXTRAPOLATE_FROM_EDGE
  2350. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2351. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2352. #define HALF_IN_X
  2353. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2354. #define HALF_IN_Y
  2355. #endif
  2356. #endif
  2357. /**
  2358. * Fill in the unprobed points (corners of circular print surface)
  2359. * using linear extrapolation, away from the center.
  2360. */
  2361. static void extrapolate_unprobed_bed_level() {
  2362. #ifdef HALF_IN_X
  2363. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2364. #else
  2365. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2366. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2367. xlen = ctrx1;
  2368. #endif
  2369. #ifdef HALF_IN_Y
  2370. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2371. #else
  2372. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2373. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2374. ylen = ctry1;
  2375. #endif
  2376. for (uint8_t xo = 0; xo <= xlen; xo++)
  2377. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2378. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2379. #ifndef HALF_IN_X
  2380. const uint8_t x1 = ctrx1 - xo;
  2381. #endif
  2382. #ifndef HALF_IN_Y
  2383. const uint8_t y1 = ctry1 - yo;
  2384. #ifndef HALF_IN_X
  2385. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2386. #endif
  2387. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2388. #endif
  2389. #ifndef HALF_IN_X
  2390. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2391. #endif
  2392. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2393. }
  2394. }
  2395. static void print_bilinear_leveling_grid() {
  2396. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2397. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2398. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2399. );
  2400. }
  2401. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2402. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2403. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2404. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2405. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2406. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2407. int bilinear_grid_spacing_virt[2] = { 0 };
  2408. float bilinear_grid_factor_virt[2] = { 0 };
  2409. static void print_bilinear_leveling_grid_virt() {
  2410. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2411. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2412. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2413. );
  2414. }
  2415. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2416. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2417. uint8_t ep = 0, ip = 1;
  2418. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2419. if (x) {
  2420. ep = GRID_MAX_POINTS_X - 1;
  2421. ip = GRID_MAX_POINTS_X - 2;
  2422. }
  2423. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2424. return LINEAR_EXTRAPOLATION(
  2425. z_values[ep][y - 1],
  2426. z_values[ip][y - 1]
  2427. );
  2428. else
  2429. return LINEAR_EXTRAPOLATION(
  2430. bed_level_virt_coord(ep + 1, y),
  2431. bed_level_virt_coord(ip + 1, y)
  2432. );
  2433. }
  2434. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2435. if (y) {
  2436. ep = GRID_MAX_POINTS_Y - 1;
  2437. ip = GRID_MAX_POINTS_Y - 2;
  2438. }
  2439. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2440. return LINEAR_EXTRAPOLATION(
  2441. z_values[x - 1][ep],
  2442. z_values[x - 1][ip]
  2443. );
  2444. else
  2445. return LINEAR_EXTRAPOLATION(
  2446. bed_level_virt_coord(x, ep + 1),
  2447. bed_level_virt_coord(x, ip + 1)
  2448. );
  2449. }
  2450. return z_values[x - 1][y - 1];
  2451. }
  2452. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2453. return (
  2454. p[i-1] * -t * sq(1 - t)
  2455. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2456. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2457. - p[i+2] * sq(t) * (1 - t)
  2458. ) * 0.5;
  2459. }
  2460. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2461. float row[4], column[4];
  2462. for (uint8_t i = 0; i < 4; i++) {
  2463. for (uint8_t j = 0; j < 4; j++) {
  2464. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2465. }
  2466. row[i] = bed_level_virt_cmr(column, 1, ty);
  2467. }
  2468. return bed_level_virt_cmr(row, 1, tx);
  2469. }
  2470. void bed_level_virt_interpolate() {
  2471. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2472. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2473. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2474. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2475. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2476. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2477. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2478. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2479. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2480. continue;
  2481. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2482. bed_level_virt_2cmr(
  2483. x + 1,
  2484. y + 1,
  2485. (float)tx / (BILINEAR_SUBDIVISIONS),
  2486. (float)ty / (BILINEAR_SUBDIVISIONS)
  2487. );
  2488. }
  2489. }
  2490. #endif // ABL_BILINEAR_SUBDIVISION
  2491. // Refresh after other values have been updated
  2492. void refresh_bed_level() {
  2493. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2494. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2495. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2496. bed_level_virt_interpolate();
  2497. #endif
  2498. }
  2499. #endif // AUTO_BED_LEVELING_BILINEAR
  2500. /**
  2501. * Home an individual linear axis
  2502. */
  2503. static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
  2504. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2505. if (DEBUGGING(LEVELING)) {
  2506. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2507. SERIAL_ECHOPAIR(", ", distance);
  2508. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2509. SERIAL_CHAR(')');
  2510. SERIAL_EOL();
  2511. }
  2512. #endif
  2513. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2514. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2515. if (deploy_bltouch) set_bltouch_deployed(true);
  2516. #endif
  2517. #if QUIET_PROBING
  2518. if (axis == Z_AXIS) probing_pause(true);
  2519. #endif
  2520. // Tell the planner we're at Z=0
  2521. current_position[axis] = 0;
  2522. #if IS_SCARA
  2523. SYNC_PLAN_POSITION_KINEMATIC();
  2524. current_position[axis] = distance;
  2525. inverse_kinematics(current_position);
  2526. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2527. #else
  2528. sync_plan_position();
  2529. current_position[axis] = distance;
  2530. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2531. #endif
  2532. stepper.synchronize();
  2533. #if QUIET_PROBING
  2534. if (axis == Z_AXIS) probing_pause(false);
  2535. #endif
  2536. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2537. if (deploy_bltouch) set_bltouch_deployed(false);
  2538. #endif
  2539. endstops.hit_on_purpose();
  2540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2541. if (DEBUGGING(LEVELING)) {
  2542. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2543. SERIAL_CHAR(')');
  2544. SERIAL_EOL();
  2545. }
  2546. #endif
  2547. }
  2548. /**
  2549. * TMC2130 specific sensorless homing using stallGuard2.
  2550. * stallGuard2 only works when in spreadCycle mode.
  2551. * spreadCycle and stealthChop are mutually exclusive.
  2552. */
  2553. #if ENABLED(SENSORLESS_HOMING)
  2554. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2555. #if ENABLED(STEALTHCHOP)
  2556. if (enable) {
  2557. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2558. st.stealthChop(0);
  2559. }
  2560. else {
  2561. st.coolstep_min_speed(0);
  2562. st.stealthChop(1);
  2563. }
  2564. #endif
  2565. st.diag1_stall(enable ? 1 : 0);
  2566. }
  2567. #endif
  2568. /**
  2569. * Home an individual "raw axis" to its endstop.
  2570. * This applies to XYZ on Cartesian and Core robots, and
  2571. * to the individual ABC steppers on DELTA and SCARA.
  2572. *
  2573. * At the end of the procedure the axis is marked as
  2574. * homed and the current position of that axis is updated.
  2575. * Kinematic robots should wait till all axes are homed
  2576. * before updating the current position.
  2577. */
  2578. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2579. static void homeaxis(const AxisEnum axis) {
  2580. #if IS_SCARA
  2581. // Only Z homing (with probe) is permitted
  2582. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2583. #else
  2584. #define CAN_HOME(A) \
  2585. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2586. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2587. #endif
  2588. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2589. if (DEBUGGING(LEVELING)) {
  2590. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2591. SERIAL_CHAR(')');
  2592. SERIAL_EOL();
  2593. }
  2594. #endif
  2595. const int axis_home_dir =
  2596. #if ENABLED(DUAL_X_CARRIAGE)
  2597. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2598. #endif
  2599. home_dir(axis);
  2600. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2601. #if HOMING_Z_WITH_PROBE
  2602. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2603. #endif
  2604. // Set flags for X, Y, Z motor locking
  2605. #if ENABLED(X_DUAL_ENDSTOPS)
  2606. if (axis == X_AXIS) stepper.set_homing_flag_x(true);
  2607. #endif
  2608. #if ENABLED(Y_DUAL_ENDSTOPS)
  2609. if (axis == Y_AXIS) stepper.set_homing_flag_y(true);
  2610. #endif
  2611. #if ENABLED(Z_DUAL_ENDSTOPS)
  2612. if (axis == Z_AXIS) stepper.set_homing_flag_z(true);
  2613. #endif
  2614. // Disable stealthChop if used. Enable diag1 pin on driver.
  2615. #if ENABLED(SENSORLESS_HOMING)
  2616. #if ENABLED(X_IS_TMC2130)
  2617. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2618. #endif
  2619. #if ENABLED(Y_IS_TMC2130)
  2620. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2621. #endif
  2622. #endif
  2623. // Fast move towards endstop until triggered
  2624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2625. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2626. #endif
  2627. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2628. // When homing Z with probe respect probe clearance
  2629. const float bump = axis_home_dir * (
  2630. #if HOMING_Z_WITH_PROBE
  2631. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2632. #endif
  2633. home_bump_mm(axis)
  2634. );
  2635. // If a second homing move is configured...
  2636. if (bump) {
  2637. // Move away from the endstop by the axis HOME_BUMP_MM
  2638. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2639. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2640. #endif
  2641. do_homing_move(axis, -bump);
  2642. // Slow move towards endstop until triggered
  2643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2644. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2645. #endif
  2646. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2647. }
  2648. /**
  2649. * Home axes that have dual endstops... differently
  2650. */
  2651. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  2652. const bool pos_dir = axis_home_dir > 0;
  2653. #if ENABLED(X_DUAL_ENDSTOPS)
  2654. if (axis == X_AXIS) {
  2655. const bool lock_x1 = pos_dir ? (x_endstop_adj > 0) : (x_endstop_adj < 0);
  2656. const float adj = FABS(x_endstop_adj);
  2657. if (lock_x1) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
  2658. do_homing_move(axis, pos_dir ? -adj : adj);
  2659. if (lock_x1) stepper.set_x_lock(false); else stepper.set_x2_lock(false);
  2660. stepper.set_homing_flag_x(false);
  2661. }
  2662. #endif
  2663. #if ENABLED(Y_DUAL_ENDSTOPS)
  2664. if (axis == Y_AXIS) {
  2665. const bool lock_y1 = pos_dir ? (y_endstop_adj > 0) : (y_endstop_adj < 0);
  2666. const float adj = FABS(y_endstop_adj);
  2667. if (lock_y1) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
  2668. do_homing_move(axis, pos_dir ? -adj : adj);
  2669. if (lock_y1) stepper.set_y_lock(false); else stepper.set_y2_lock(false);
  2670. stepper.set_homing_flag_y(false);
  2671. }
  2672. #endif
  2673. #if ENABLED(Z_DUAL_ENDSTOPS)
  2674. if (axis == Z_AXIS) {
  2675. const bool lock_z1 = pos_dir ? (z_endstop_adj > 0) : (z_endstop_adj < 0);
  2676. const float adj = FABS(z_endstop_adj);
  2677. if (lock_z1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2678. do_homing_move(axis, pos_dir ? -adj : adj);
  2679. if (lock_z1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2680. stepper.set_homing_flag_z(false);
  2681. }
  2682. #endif
  2683. #endif
  2684. #if IS_SCARA
  2685. set_axis_is_at_home(axis);
  2686. SYNC_PLAN_POSITION_KINEMATIC();
  2687. #elif ENABLED(DELTA)
  2688. // Delta has already moved all three towers up in G28
  2689. // so here it re-homes each tower in turn.
  2690. // Delta homing treats the axes as normal linear axes.
  2691. // retrace by the amount specified in delta_endstop_adj + additional 0.1mm in order to have minimum steps
  2692. if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2693. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2694. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:");
  2695. #endif
  2696. do_homing_move(axis, delta_endstop_adj[axis] - 0.1 * Z_HOME_DIR);
  2697. }
  2698. #else
  2699. // For cartesian/core machines,
  2700. // set the axis to its home position
  2701. set_axis_is_at_home(axis);
  2702. sync_plan_position();
  2703. destination[axis] = current_position[axis];
  2704. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2705. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2706. #endif
  2707. #endif
  2708. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2709. #if ENABLED(SENSORLESS_HOMING)
  2710. #if ENABLED(X_IS_TMC2130)
  2711. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2712. #endif
  2713. #if ENABLED(Y_IS_TMC2130)
  2714. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2715. #endif
  2716. #endif
  2717. // Put away the Z probe
  2718. #if HOMING_Z_WITH_PROBE
  2719. if (axis == Z_AXIS && STOW_PROBE()) return;
  2720. #endif
  2721. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2722. if (DEBUGGING(LEVELING)) {
  2723. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2724. SERIAL_CHAR(')');
  2725. SERIAL_EOL();
  2726. }
  2727. #endif
  2728. } // homeaxis()
  2729. #if ENABLED(FWRETRACT)
  2730. /**
  2731. * Retract or recover according to firmware settings
  2732. *
  2733. * This function handles retract/recover moves for G10 and G11,
  2734. * plus auto-retract moves sent from G0/G1 when E-only moves are done.
  2735. *
  2736. * To simplify the logic, doubled retract/recover moves are ignored.
  2737. *
  2738. * Note: Z lift is done transparently to the planner. Aborting
  2739. * a print between G10 and G11 may corrupt the Z position.
  2740. *
  2741. * Note: Auto-retract will apply the set Z hop in addition to any Z hop
  2742. * included in the G-code. Use M207 Z0 to to prevent double hop.
  2743. */
  2744. void retract(const bool retracting
  2745. #if EXTRUDERS > 1
  2746. , bool swapping = false
  2747. #endif
  2748. ) {
  2749. static float hop_amount = 0.0; // Total amount lifted, for use in recover
  2750. // Prevent two retracts or recovers in a row
  2751. if (retracted[active_extruder] == retracting) return;
  2752. // Prevent two swap-retract or recovers in a row
  2753. #if EXTRUDERS > 1
  2754. // Allow G10 S1 only after G10
  2755. if (swapping && retracted_swap[active_extruder] == retracting) return;
  2756. // G11 priority to recover the long retract if activated
  2757. if (!retracting) swapping = retracted_swap[active_extruder];
  2758. #else
  2759. const bool swapping = false;
  2760. #endif
  2761. /* // debugging
  2762. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2763. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2764. SERIAL_ECHOLNPAIR("active extruder ", active_extruder);
  2765. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2766. SERIAL_ECHOPAIR("retracted[", i);
  2767. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2768. SERIAL_ECHOPAIR("retracted_swap[", i);
  2769. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2770. }
  2771. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2772. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2773. //*/
  2774. const bool has_zhop = retract_zlift > 0.01; // Is there a hop set?
  2775. const float old_feedrate_mm_s = feedrate_mm_s;
  2776. // The current position will be the destination for E and Z moves
  2777. set_destination_from_current();
  2778. stepper.synchronize(); // Wait for buffered moves to complete
  2779. const float renormalize = 100.0 / flow_percentage[active_extruder] / volumetric_multiplier[active_extruder];
  2780. if (retracting) {
  2781. // Retract by moving from a faux E position back to the current E position
  2782. feedrate_mm_s = retract_feedrate_mm_s;
  2783. current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) * renormalize;
  2784. sync_plan_position_e();
  2785. prepare_move_to_destination();
  2786. // Is a Z hop set, and has the hop not yet been done?
  2787. if (has_zhop && !hop_amount) {
  2788. hop_amount += retract_zlift; // Carriage is raised for retraction hop
  2789. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
  2790. current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2791. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2792. prepare_move_to_destination(); // Raise up to the old current pos
  2793. feedrate_mm_s = retract_feedrate_mm_s; // Restore feedrate
  2794. }
  2795. }
  2796. else {
  2797. // If a hop was done and Z hasn't changed, undo the Z hop
  2798. if (hop_amount) {
  2799. current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2800. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2801. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
  2802. prepare_move_to_destination(); // Raise up to the old current pos
  2803. hop_amount = 0.0; // Clear hop
  2804. }
  2805. // A retract multiplier has been added here to get faster swap recovery
  2806. feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
  2807. const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length;
  2808. current_position[E_AXIS] -= move_e * renormalize;
  2809. sync_plan_position_e();
  2810. prepare_move_to_destination(); // Recover E
  2811. }
  2812. feedrate_mm_s = old_feedrate_mm_s; // Restore original feedrate
  2813. retracted[active_extruder] = retracting; // Active extruder now retracted / recovered
  2814. // If swap retract/recover update the retracted_swap flag too
  2815. #if EXTRUDERS > 1
  2816. if (swapping) retracted_swap[active_extruder] = retracting;
  2817. #endif
  2818. /* // debugging
  2819. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2820. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2821. SERIAL_ECHOLNPAIR("active_extruder ", active_extruder);
  2822. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2823. SERIAL_ECHOPAIR("retracted[", i);
  2824. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2825. SERIAL_ECHOPAIR("retracted_swap[", i);
  2826. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2827. }
  2828. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2829. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2830. //*/
  2831. }
  2832. #endif // FWRETRACT
  2833. #if ENABLED(MIXING_EXTRUDER)
  2834. void normalize_mix() {
  2835. float mix_total = 0.0;
  2836. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2837. // Scale all values if they don't add up to ~1.0
  2838. if (!NEAR(mix_total, 1.0)) {
  2839. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2840. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2841. }
  2842. }
  2843. #if ENABLED(DIRECT_MIXING_IN_G1)
  2844. // Get mixing parameters from the GCode
  2845. // The total "must" be 1.0 (but it will be normalized)
  2846. // If no mix factors are given, the old mix is preserved
  2847. void gcode_get_mix() {
  2848. const char* mixing_codes = "ABCDHI";
  2849. byte mix_bits = 0;
  2850. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2851. if (parser.seenval(mixing_codes[i])) {
  2852. SBI(mix_bits, i);
  2853. float v = parser.value_float();
  2854. NOLESS(v, 0.0);
  2855. mixing_factor[i] = RECIPROCAL(v);
  2856. }
  2857. }
  2858. // If any mixing factors were included, clear the rest
  2859. // If none were included, preserve the last mix
  2860. if (mix_bits) {
  2861. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2862. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2863. normalize_mix();
  2864. }
  2865. }
  2866. #endif
  2867. #endif
  2868. /**
  2869. * ***************************************************************************
  2870. * ***************************** G-CODE HANDLING *****************************
  2871. * ***************************************************************************
  2872. */
  2873. /**
  2874. * Set XYZE destination and feedrate from the current GCode command
  2875. *
  2876. * - Set destination from included axis codes
  2877. * - Set to current for missing axis codes
  2878. * - Set the feedrate, if included
  2879. */
  2880. void gcode_get_destination() {
  2881. LOOP_XYZE(i) {
  2882. if (parser.seen(axis_codes[i]))
  2883. destination[i] = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2884. else
  2885. destination[i] = current_position[i];
  2886. }
  2887. if (parser.linearval('F') > 0.0)
  2888. feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
  2889. #if ENABLED(PRINTCOUNTER)
  2890. if (!DEBUGGING(DRYRUN))
  2891. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2892. #endif
  2893. // Get ABCDHI mixing factors
  2894. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2895. gcode_get_mix();
  2896. #endif
  2897. }
  2898. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2899. /**
  2900. * Output a "busy" message at regular intervals
  2901. * while the machine is not accepting commands.
  2902. */
  2903. void host_keepalive() {
  2904. const millis_t ms = millis();
  2905. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2906. if (PENDING(ms, next_busy_signal_ms)) return;
  2907. switch (busy_state) {
  2908. case IN_HANDLER:
  2909. case IN_PROCESS:
  2910. SERIAL_ECHO_START();
  2911. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2912. break;
  2913. case PAUSED_FOR_USER:
  2914. SERIAL_ECHO_START();
  2915. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2916. break;
  2917. case PAUSED_FOR_INPUT:
  2918. SERIAL_ECHO_START();
  2919. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2920. break;
  2921. default:
  2922. break;
  2923. }
  2924. }
  2925. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2926. }
  2927. #endif // HOST_KEEPALIVE_FEATURE
  2928. /**************************************************
  2929. ***************** GCode Handlers *****************
  2930. **************************************************/
  2931. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2932. #define G0_G1_CONDITION !axis_unhomed_error(parser.seen('X'), parser.seen('Y'), parser.seen('Z'))
  2933. #else
  2934. #define G0_G1_CONDITION true
  2935. #endif
  2936. /**
  2937. * G0, G1: Coordinated movement of X Y Z E axes
  2938. */
  2939. inline void gcode_G0_G1(
  2940. #if IS_SCARA
  2941. bool fast_move=false
  2942. #endif
  2943. ) {
  2944. if (IsRunning() && G0_G1_CONDITION) {
  2945. gcode_get_destination(); // For X Y Z E F
  2946. #if ENABLED(FWRETRACT)
  2947. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  2948. // When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
  2949. if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
  2950. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2951. // Is this a retract or recover move?
  2952. if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) {
  2953. current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations
  2954. sync_plan_position_e(); // AND from the planner
  2955. return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored)
  2956. }
  2957. }
  2958. }
  2959. #endif // FWRETRACT
  2960. #if IS_SCARA
  2961. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2962. #else
  2963. prepare_move_to_destination();
  2964. #endif
  2965. }
  2966. }
  2967. /**
  2968. * G2: Clockwise Arc
  2969. * G3: Counterclockwise Arc
  2970. *
  2971. * This command has two forms: IJ-form and R-form.
  2972. *
  2973. * - I specifies an X offset. J specifies a Y offset.
  2974. * At least one of the IJ parameters is required.
  2975. * X and Y can be omitted to do a complete circle.
  2976. * The given XY is not error-checked. The arc ends
  2977. * based on the angle of the destination.
  2978. * Mixing I or J with R will throw an error.
  2979. *
  2980. * - R specifies the radius. X or Y is required.
  2981. * Omitting both X and Y will throw an error.
  2982. * X or Y must differ from the current XY.
  2983. * Mixing R with I or J will throw an error.
  2984. *
  2985. * - P specifies the number of full circles to do
  2986. * before the specified arc move.
  2987. *
  2988. * Examples:
  2989. *
  2990. * G2 I10 ; CW circle centered at X+10
  2991. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2992. */
  2993. #if ENABLED(ARC_SUPPORT)
  2994. inline void gcode_G2_G3(bool clockwise) {
  2995. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2996. if (axis_unhomed_error()) return;
  2997. #endif
  2998. if (IsRunning()) {
  2999. #if ENABLED(SF_ARC_FIX)
  3000. const bool relative_mode_backup = relative_mode;
  3001. relative_mode = true;
  3002. #endif
  3003. gcode_get_destination();
  3004. #if ENABLED(SF_ARC_FIX)
  3005. relative_mode = relative_mode_backup;
  3006. #endif
  3007. float arc_offset[2] = { 0.0, 0.0 };
  3008. if (parser.seenval('R')) {
  3009. const float r = parser.value_linear_units(),
  3010. p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
  3011. p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
  3012. if (r && (p2 != p1 || q2 != q1)) {
  3013. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  3014. dx = p2 - p1, dy = q2 - q1, // X and Y differences
  3015. d = HYPOT(dx, dy), // Linear distance between the points
  3016. h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  3017. mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
  3018. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  3019. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  3020. arc_offset[0] = cx - p1;
  3021. arc_offset[1] = cy - q1;
  3022. }
  3023. }
  3024. else {
  3025. if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
  3026. if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
  3027. }
  3028. if (arc_offset[0] || arc_offset[1]) {
  3029. #if ENABLED(ARC_P_CIRCLES)
  3030. // P indicates number of circles to do
  3031. int8_t circles_to_do = parser.byteval('P');
  3032. if (!WITHIN(circles_to_do, 0, 100)) {
  3033. SERIAL_ERROR_START();
  3034. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  3035. }
  3036. while (circles_to_do--)
  3037. plan_arc(current_position, arc_offset, clockwise);
  3038. #endif
  3039. // Send the arc to the planner
  3040. plan_arc(destination, arc_offset, clockwise);
  3041. refresh_cmd_timeout();
  3042. }
  3043. else {
  3044. // Bad arguments
  3045. SERIAL_ERROR_START();
  3046. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  3047. }
  3048. }
  3049. }
  3050. #endif // ARC_SUPPORT
  3051. void dwell(millis_t time) {
  3052. refresh_cmd_timeout();
  3053. time += previous_cmd_ms;
  3054. while (PENDING(millis(), time)) idle();
  3055. }
  3056. /**
  3057. * G4: Dwell S<seconds> or P<milliseconds>
  3058. */
  3059. inline void gcode_G4() {
  3060. millis_t dwell_ms = 0;
  3061. if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
  3062. if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
  3063. stepper.synchronize();
  3064. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  3065. dwell(dwell_ms);
  3066. }
  3067. #if ENABLED(BEZIER_CURVE_SUPPORT)
  3068. /**
  3069. * Parameters interpreted according to:
  3070. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  3071. * However I, J omission is not supported at this point; all
  3072. * parameters can be omitted and default to zero.
  3073. */
  3074. /**
  3075. * G5: Cubic B-spline
  3076. */
  3077. inline void gcode_G5() {
  3078. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  3079. if (axis_unhomed_error()) return;
  3080. #endif
  3081. if (IsRunning()) {
  3082. #if ENABLED(CNC_WORKSPACE_PLANES)
  3083. if (workspace_plane != PLANE_XY) {
  3084. SERIAL_ERROR_START();
  3085. SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
  3086. return;
  3087. }
  3088. #endif
  3089. gcode_get_destination();
  3090. const float offset[] = {
  3091. parser.linearval('I'),
  3092. parser.linearval('J'),
  3093. parser.linearval('P'),
  3094. parser.linearval('Q')
  3095. };
  3096. plan_cubic_move(offset);
  3097. }
  3098. }
  3099. #endif // BEZIER_CURVE_SUPPORT
  3100. #if ENABLED(FWRETRACT)
  3101. /**
  3102. * G10 - Retract filament according to settings of M207
  3103. */
  3104. inline void gcode_G10() {
  3105. #if EXTRUDERS > 1
  3106. const bool rs = parser.boolval('S');
  3107. retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
  3108. #endif
  3109. retract(true
  3110. #if EXTRUDERS > 1
  3111. , rs
  3112. #endif
  3113. );
  3114. }
  3115. /**
  3116. * G11 - Recover filament according to settings of M208
  3117. */
  3118. inline void gcode_G11() { retract(false); }
  3119. #endif // FWRETRACT
  3120. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  3121. /**
  3122. * G12: Clean the nozzle
  3123. */
  3124. inline void gcode_G12() {
  3125. // Don't allow nozzle cleaning without homing first
  3126. if (axis_unhomed_error()) return;
  3127. const uint8_t pattern = parser.ushortval('P', 0),
  3128. strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
  3129. objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
  3130. const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
  3131. Nozzle::clean(pattern, strokes, radius, objects);
  3132. }
  3133. #endif
  3134. #if ENABLED(CNC_WORKSPACE_PLANES)
  3135. void report_workspace_plane() {
  3136. SERIAL_ECHO_START();
  3137. SERIAL_ECHOPGM("Workspace Plane ");
  3138. serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") : workspace_plane == PLANE_ZX ? PSTR("ZX\n") : PSTR("XY\n"));
  3139. }
  3140. /**
  3141. * G17: Select Plane XY
  3142. * G18: Select Plane ZX
  3143. * G19: Select Plane YZ
  3144. */
  3145. inline void gcode_G17() { workspace_plane = PLANE_XY; }
  3146. inline void gcode_G18() { workspace_plane = PLANE_ZX; }
  3147. inline void gcode_G19() { workspace_plane = PLANE_YZ; }
  3148. #endif // CNC_WORKSPACE_PLANES
  3149. #if ENABLED(INCH_MODE_SUPPORT)
  3150. /**
  3151. * G20: Set input mode to inches
  3152. */
  3153. inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
  3154. /**
  3155. * G21: Set input mode to millimeters
  3156. */
  3157. inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
  3158. #endif
  3159. #if ENABLED(NOZZLE_PARK_FEATURE)
  3160. /**
  3161. * G27: Park the nozzle
  3162. */
  3163. inline void gcode_G27() {
  3164. // Don't allow nozzle parking without homing first
  3165. if (axis_unhomed_error()) return;
  3166. Nozzle::park(parser.ushortval('P'));
  3167. }
  3168. #endif // NOZZLE_PARK_FEATURE
  3169. #if ENABLED(QUICK_HOME)
  3170. static void quick_home_xy() {
  3171. // Pretend the current position is 0,0
  3172. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3173. sync_plan_position();
  3174. const int x_axis_home_dir =
  3175. #if ENABLED(DUAL_X_CARRIAGE)
  3176. x_home_dir(active_extruder)
  3177. #else
  3178. home_dir(X_AXIS)
  3179. #endif
  3180. ;
  3181. const float mlx = max_length(X_AXIS),
  3182. mly = max_length(Y_AXIS),
  3183. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  3184. fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
  3185. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  3186. endstops.hit_on_purpose(); // clear endstop hit flags
  3187. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3188. }
  3189. #endif // QUICK_HOME
  3190. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3191. void log_machine_info() {
  3192. SERIAL_ECHOPGM("Machine Type: ");
  3193. #if ENABLED(DELTA)
  3194. SERIAL_ECHOLNPGM("Delta");
  3195. #elif IS_SCARA
  3196. SERIAL_ECHOLNPGM("SCARA");
  3197. #elif IS_CORE
  3198. SERIAL_ECHOLNPGM("Core");
  3199. #else
  3200. SERIAL_ECHOLNPGM("Cartesian");
  3201. #endif
  3202. SERIAL_ECHOPGM("Probe: ");
  3203. #if ENABLED(PROBE_MANUALLY)
  3204. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3205. #elif ENABLED(FIX_MOUNTED_PROBE)
  3206. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3207. #elif ENABLED(BLTOUCH)
  3208. SERIAL_ECHOLNPGM("BLTOUCH");
  3209. #elif HAS_Z_SERVO_ENDSTOP
  3210. SERIAL_ECHOLNPGM("SERVO PROBE");
  3211. #elif ENABLED(Z_PROBE_SLED)
  3212. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3213. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3214. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3215. #else
  3216. SERIAL_ECHOLNPGM("NONE");
  3217. #endif
  3218. #if HAS_BED_PROBE
  3219. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3220. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3221. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3222. #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
  3223. SERIAL_ECHOPGM(" (Right");
  3224. #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
  3225. SERIAL_ECHOPGM(" (Left");
  3226. #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
  3227. SERIAL_ECHOPGM(" (Middle");
  3228. #else
  3229. SERIAL_ECHOPGM(" (Aligned With");
  3230. #endif
  3231. #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
  3232. SERIAL_ECHOPGM("-Back");
  3233. #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
  3234. SERIAL_ECHOPGM("-Front");
  3235. #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
  3236. SERIAL_ECHOPGM("-Center");
  3237. #endif
  3238. if (zprobe_zoffset < 0)
  3239. SERIAL_ECHOPGM(" & Below");
  3240. else if (zprobe_zoffset > 0)
  3241. SERIAL_ECHOPGM(" & Above");
  3242. else
  3243. SERIAL_ECHOPGM(" & Same Z as");
  3244. SERIAL_ECHOLNPGM(" Nozzle)");
  3245. #endif
  3246. #if HAS_ABL
  3247. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3248. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3249. SERIAL_ECHOPGM("LINEAR");
  3250. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3251. SERIAL_ECHOPGM("BILINEAR");
  3252. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3253. SERIAL_ECHOPGM("3POINT");
  3254. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3255. SERIAL_ECHOPGM("UBL");
  3256. #endif
  3257. if (planner.leveling_active) {
  3258. SERIAL_ECHOLNPGM(" (enabled)");
  3259. #if ABL_PLANAR
  3260. const float diff[XYZ] = {
  3261. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3262. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3263. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3264. };
  3265. SERIAL_ECHOPGM("ABL Adjustment X");
  3266. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3267. SERIAL_ECHO(diff[X_AXIS]);
  3268. SERIAL_ECHOPGM(" Y");
  3269. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3270. SERIAL_ECHO(diff[Y_AXIS]);
  3271. SERIAL_ECHOPGM(" Z");
  3272. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3273. SERIAL_ECHO(diff[Z_AXIS]);
  3274. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3275. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3276. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3277. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3278. #endif
  3279. }
  3280. else
  3281. SERIAL_ECHOLNPGM(" (disabled)");
  3282. SERIAL_EOL();
  3283. #elif ENABLED(MESH_BED_LEVELING)
  3284. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3285. if (planner.leveling_active) {
  3286. float lz = current_position[Z_AXIS];
  3287. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3288. SERIAL_ECHOLNPGM(" (enabled)");
  3289. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3290. }
  3291. else
  3292. SERIAL_ECHOPGM(" (disabled)");
  3293. SERIAL_EOL();
  3294. #endif // MESH_BED_LEVELING
  3295. }
  3296. #endif // DEBUG_LEVELING_FEATURE
  3297. #if ENABLED(DELTA)
  3298. /**
  3299. * A delta can only safely home all axes at the same time
  3300. * This is like quick_home_xy() but for 3 towers.
  3301. */
  3302. inline bool home_delta() {
  3303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3304. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3305. #endif
  3306. // Init the current position of all carriages to 0,0,0
  3307. ZERO(current_position);
  3308. sync_plan_position();
  3309. // Move all carriages together linearly until an endstop is hit.
  3310. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (DELTA_HEIGHT + home_offset[Z_AXIS] + 10);
  3311. feedrate_mm_s = homing_feedrate(X_AXIS);
  3312. line_to_current_position();
  3313. stepper.synchronize();
  3314. // If an endstop was not hit, then damage can occur if homing is continued.
  3315. // This can occur if the delta height (DELTA_HEIGHT + home_offset[Z_AXIS]) is
  3316. // not set correctly.
  3317. if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
  3318. LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
  3319. SERIAL_ERROR_START();
  3320. SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
  3321. return false;
  3322. }
  3323. endstops.hit_on_purpose(); // clear endstop hit flags
  3324. // At least one carriage has reached the top.
  3325. // Now re-home each carriage separately.
  3326. HOMEAXIS(A);
  3327. HOMEAXIS(B);
  3328. HOMEAXIS(C);
  3329. // Set all carriages to their home positions
  3330. // Do this here all at once for Delta, because
  3331. // XYZ isn't ABC. Applying this per-tower would
  3332. // give the impression that they are the same.
  3333. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3334. SYNC_PLAN_POSITION_KINEMATIC();
  3335. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3336. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3337. #endif
  3338. return true;
  3339. }
  3340. #endif // DELTA
  3341. #if ENABLED(Z_SAFE_HOMING)
  3342. inline void home_z_safely() {
  3343. // Disallow Z homing if X or Y are unknown
  3344. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3345. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3346. SERIAL_ECHO_START();
  3347. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3348. return;
  3349. }
  3350. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3351. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3352. #endif
  3353. SYNC_PLAN_POSITION_KINEMATIC();
  3354. /**
  3355. * Move the Z probe (or just the nozzle) to the safe homing point
  3356. */
  3357. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3358. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3359. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3360. #if HOMING_Z_WITH_PROBE
  3361. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3362. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3363. #endif
  3364. if (position_is_reachable_xy(destination[X_AXIS], destination[Y_AXIS])) {
  3365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3366. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3367. #endif
  3368. // This causes the carriage on Dual X to unpark
  3369. #if ENABLED(DUAL_X_CARRIAGE)
  3370. active_extruder_parked = false;
  3371. #endif
  3372. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3373. HOMEAXIS(Z);
  3374. }
  3375. else {
  3376. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3377. SERIAL_ECHO_START();
  3378. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3379. }
  3380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3381. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3382. #endif
  3383. }
  3384. #endif // Z_SAFE_HOMING
  3385. #if ENABLED(PROBE_MANUALLY)
  3386. bool g29_in_progress = false;
  3387. #else
  3388. constexpr bool g29_in_progress = false;
  3389. #endif
  3390. /**
  3391. * G28: Home all axes according to settings
  3392. *
  3393. * Parameters
  3394. *
  3395. * None Home to all axes with no parameters.
  3396. * With QUICK_HOME enabled XY will home together, then Z.
  3397. *
  3398. * Cartesian parameters
  3399. *
  3400. * X Home to the X endstop
  3401. * Y Home to the Y endstop
  3402. * Z Home to the Z endstop
  3403. *
  3404. */
  3405. inline void gcode_G28(const bool always_home_all) {
  3406. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3407. if (DEBUGGING(LEVELING)) {
  3408. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3409. log_machine_info();
  3410. }
  3411. #endif
  3412. // Wait for planner moves to finish!
  3413. stepper.synchronize();
  3414. // Cancel the active G29 session
  3415. #if ENABLED(PROBE_MANUALLY)
  3416. g29_in_progress = false;
  3417. #endif
  3418. // Disable the leveling matrix before homing
  3419. #if HAS_LEVELING
  3420. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3421. const bool ubl_state_at_entry = planner.leveling_active;
  3422. #endif
  3423. set_bed_leveling_enabled(false);
  3424. #endif
  3425. #if ENABLED(CNC_WORKSPACE_PLANES)
  3426. workspace_plane = PLANE_XY;
  3427. #endif
  3428. // Always home with tool 0 active
  3429. #if HOTENDS > 1
  3430. const uint8_t old_tool_index = active_extruder;
  3431. tool_change(0, 0, true);
  3432. #endif
  3433. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3434. extruder_duplication_enabled = false;
  3435. #endif
  3436. setup_for_endstop_or_probe_move();
  3437. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3438. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3439. #endif
  3440. endstops.enable(true); // Enable endstops for next homing move
  3441. #if ENABLED(DELTA)
  3442. home_delta();
  3443. UNUSED(always_home_all);
  3444. #else // NOT DELTA
  3445. const bool homeX = always_home_all || parser.seen('X'),
  3446. homeY = always_home_all || parser.seen('Y'),
  3447. homeZ = always_home_all || parser.seen('Z'),
  3448. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3449. set_destination_from_current();
  3450. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3451. if (home_all || homeZ) {
  3452. HOMEAXIS(Z);
  3453. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3454. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3455. #endif
  3456. }
  3457. #else
  3458. if (home_all || homeX || homeY) {
  3459. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3460. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3461. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3462. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3463. if (DEBUGGING(LEVELING))
  3464. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3465. #endif
  3466. do_blocking_move_to_z(destination[Z_AXIS]);
  3467. }
  3468. }
  3469. #endif
  3470. #if ENABLED(QUICK_HOME)
  3471. if (home_all || (homeX && homeY)) quick_home_xy();
  3472. #endif
  3473. #if ENABLED(HOME_Y_BEFORE_X)
  3474. // Home Y
  3475. if (home_all || homeY) {
  3476. HOMEAXIS(Y);
  3477. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3478. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3479. #endif
  3480. }
  3481. #endif
  3482. // Home X
  3483. if (home_all || homeX) {
  3484. #if ENABLED(DUAL_X_CARRIAGE)
  3485. // Always home the 2nd (right) extruder first
  3486. active_extruder = 1;
  3487. HOMEAXIS(X);
  3488. // Remember this extruder's position for later tool change
  3489. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3490. // Home the 1st (left) extruder
  3491. active_extruder = 0;
  3492. HOMEAXIS(X);
  3493. // Consider the active extruder to be parked
  3494. COPY(raised_parked_position, current_position);
  3495. delayed_move_time = 0;
  3496. active_extruder_parked = true;
  3497. #else
  3498. HOMEAXIS(X);
  3499. #endif
  3500. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3501. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3502. #endif
  3503. }
  3504. #if DISABLED(HOME_Y_BEFORE_X)
  3505. // Home Y
  3506. if (home_all || homeY) {
  3507. HOMEAXIS(Y);
  3508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3509. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3510. #endif
  3511. }
  3512. #endif
  3513. // Home Z last if homing towards the bed
  3514. #if Z_HOME_DIR < 0
  3515. if (home_all || homeZ) {
  3516. #if ENABLED(Z_SAFE_HOMING)
  3517. home_z_safely();
  3518. #else
  3519. HOMEAXIS(Z);
  3520. #endif
  3521. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3522. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3523. #endif
  3524. } // home_all || homeZ
  3525. #endif // Z_HOME_DIR < 0
  3526. SYNC_PLAN_POSITION_KINEMATIC();
  3527. #endif // !DELTA (gcode_G28)
  3528. endstops.not_homing();
  3529. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3530. // move to a height where we can use the full xy-area
  3531. do_blocking_move_to_z(delta_clip_start_height);
  3532. #endif
  3533. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3534. set_bed_leveling_enabled(ubl_state_at_entry);
  3535. #endif
  3536. clean_up_after_endstop_or_probe_move();
  3537. // Restore the active tool after homing
  3538. #if HOTENDS > 1
  3539. tool_change(old_tool_index, 0,
  3540. #if ENABLED(PARKING_EXTRUDER)
  3541. false // fetch the previous toolhead
  3542. #else
  3543. true
  3544. #endif
  3545. );
  3546. #endif
  3547. lcd_refresh();
  3548. report_current_position();
  3549. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3550. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3551. #endif
  3552. } // G28
  3553. void home_all_axes() { gcode_G28(true); }
  3554. #if HAS_PROBING_PROCEDURE
  3555. void out_of_range_error(const char* p_edge) {
  3556. SERIAL_PROTOCOLPGM("?Probe ");
  3557. serialprintPGM(p_edge);
  3558. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3559. }
  3560. #endif
  3561. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3562. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3563. extern bool lcd_wait_for_move;
  3564. #endif
  3565. inline void _manual_goto_xy(const float &x, const float &y) {
  3566. const float old_feedrate_mm_s = feedrate_mm_s;
  3567. #if MANUAL_PROBE_HEIGHT > 0
  3568. const float prev_z = current_position[Z_AXIS];
  3569. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3570. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MANUAL_PROBE_HEIGHT);
  3571. line_to_current_position();
  3572. #endif
  3573. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3574. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3575. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3576. line_to_current_position();
  3577. #if MANUAL_PROBE_HEIGHT > 0
  3578. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3579. current_position[Z_AXIS] = prev_z; // move back to the previous Z.
  3580. line_to_current_position();
  3581. #endif
  3582. feedrate_mm_s = old_feedrate_mm_s;
  3583. stepper.synchronize();
  3584. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3585. lcd_wait_for_move = false;
  3586. #endif
  3587. }
  3588. #endif
  3589. #if ENABLED(MESH_BED_LEVELING)
  3590. // Save 130 bytes with non-duplication of PSTR
  3591. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3592. void mbl_mesh_report() {
  3593. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3594. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3595. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3596. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3597. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3598. );
  3599. }
  3600. void mesh_probing_done() {
  3601. mbl.has_mesh = true;
  3602. home_all_axes();
  3603. set_bed_leveling_enabled(true);
  3604. #if ENABLED(MESH_G28_REST_ORIGIN)
  3605. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3606. set_destination_from_current();
  3607. line_to_destination(homing_feedrate(Z_AXIS));
  3608. stepper.synchronize();
  3609. #endif
  3610. }
  3611. /**
  3612. * G29: Mesh-based Z probe, probes a grid and produces a
  3613. * mesh to compensate for variable bed height
  3614. *
  3615. * Parameters With MESH_BED_LEVELING:
  3616. *
  3617. * S0 Produce a mesh report
  3618. * S1 Start probing mesh points
  3619. * S2 Probe the next mesh point
  3620. * S3 Xn Yn Zn.nn Manually modify a single point
  3621. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3622. * S5 Reset and disable mesh
  3623. *
  3624. * The S0 report the points as below
  3625. *
  3626. * +----> X-axis 1-n
  3627. * |
  3628. * |
  3629. * v Y-axis 1-n
  3630. *
  3631. */
  3632. inline void gcode_G29() {
  3633. static int mbl_probe_index = -1;
  3634. #if HAS_SOFTWARE_ENDSTOPS
  3635. static bool enable_soft_endstops;
  3636. #endif
  3637. const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
  3638. if (!WITHIN(state, 0, 5)) {
  3639. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3640. return;
  3641. }
  3642. int8_t px, py;
  3643. switch (state) {
  3644. case MeshReport:
  3645. if (leveling_is_valid()) {
  3646. SERIAL_PROTOCOLLNPAIR("State: ", planner.leveling_active ? MSG_ON : MSG_OFF);
  3647. mbl_mesh_report();
  3648. }
  3649. else
  3650. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3651. break;
  3652. case MeshStart:
  3653. mbl.reset();
  3654. mbl_probe_index = 0;
  3655. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3656. break;
  3657. case MeshNext:
  3658. if (mbl_probe_index < 0) {
  3659. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3660. return;
  3661. }
  3662. // For each G29 S2...
  3663. if (mbl_probe_index == 0) {
  3664. #if HAS_SOFTWARE_ENDSTOPS
  3665. // For the initial G29 S2 save software endstop state
  3666. enable_soft_endstops = soft_endstops_enabled;
  3667. #endif
  3668. }
  3669. else {
  3670. // For G29 S2 after adjusting Z.
  3671. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3672. #if HAS_SOFTWARE_ENDSTOPS
  3673. soft_endstops_enabled = enable_soft_endstops;
  3674. #endif
  3675. }
  3676. // If there's another point to sample, move there with optional lift.
  3677. if (mbl_probe_index < GRID_MAX_POINTS) {
  3678. mbl.zigzag(mbl_probe_index, px, py);
  3679. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3680. #if HAS_SOFTWARE_ENDSTOPS
  3681. // Disable software endstops to allow manual adjustment
  3682. // If G29 is not completed, they will not be re-enabled
  3683. soft_endstops_enabled = false;
  3684. #endif
  3685. mbl_probe_index++;
  3686. }
  3687. else {
  3688. // One last "return to the bed" (as originally coded) at completion
  3689. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3690. line_to_current_position();
  3691. stepper.synchronize();
  3692. // After recording the last point, activate home and activate
  3693. mbl_probe_index = -1;
  3694. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3695. BUZZ(100, 659);
  3696. BUZZ(100, 698);
  3697. mesh_probing_done();
  3698. }
  3699. break;
  3700. case MeshSet:
  3701. if (parser.seenval('X')) {
  3702. px = parser.value_int() - 1;
  3703. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3704. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3705. return;
  3706. }
  3707. }
  3708. else {
  3709. SERIAL_CHAR('X'); echo_not_entered();
  3710. return;
  3711. }
  3712. if (parser.seenval('Y')) {
  3713. py = parser.value_int() - 1;
  3714. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3715. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3716. return;
  3717. }
  3718. }
  3719. else {
  3720. SERIAL_CHAR('Y'); echo_not_entered();
  3721. return;
  3722. }
  3723. if (parser.seenval('Z')) {
  3724. mbl.z_values[px][py] = parser.value_linear_units();
  3725. }
  3726. else {
  3727. SERIAL_CHAR('Z'); echo_not_entered();
  3728. return;
  3729. }
  3730. break;
  3731. case MeshSetZOffset:
  3732. if (parser.seenval('Z')) {
  3733. mbl.z_offset = parser.value_linear_units();
  3734. }
  3735. else {
  3736. SERIAL_CHAR('Z'); echo_not_entered();
  3737. return;
  3738. }
  3739. break;
  3740. case MeshReset:
  3741. reset_bed_level();
  3742. break;
  3743. } // switch(state)
  3744. report_current_position();
  3745. }
  3746. #elif OLDSCHOOL_ABL
  3747. #if ABL_GRID
  3748. #if ENABLED(PROBE_Y_FIRST)
  3749. #define PR_OUTER_VAR xCount
  3750. #define PR_OUTER_END abl_grid_points_x
  3751. #define PR_INNER_VAR yCount
  3752. #define PR_INNER_END abl_grid_points_y
  3753. #else
  3754. #define PR_OUTER_VAR yCount
  3755. #define PR_OUTER_END abl_grid_points_y
  3756. #define PR_INNER_VAR xCount
  3757. #define PR_INNER_END abl_grid_points_x
  3758. #endif
  3759. #endif
  3760. /**
  3761. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3762. * Will fail if the printer has not been homed with G28.
  3763. *
  3764. * Enhanced G29 Auto Bed Leveling Probe Routine
  3765. *
  3766. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3767. * or alter the bed level data. Useful to check the topology
  3768. * after a first run of G29.
  3769. *
  3770. * J Jettison current bed leveling data
  3771. *
  3772. * V Set the verbose level (0-4). Example: "G29 V3"
  3773. *
  3774. * Parameters With LINEAR leveling only:
  3775. *
  3776. * P Set the size of the grid that will be probed (P x P points).
  3777. * Example: "G29 P4"
  3778. *
  3779. * X Set the X size of the grid that will be probed (X x Y points).
  3780. * Example: "G29 X7 Y5"
  3781. *
  3782. * Y Set the Y size of the grid that will be probed (X x Y points).
  3783. *
  3784. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3785. * This is useful for manual bed leveling and finding flaws in the bed (to
  3786. * assist with part placement).
  3787. * Not supported by non-linear delta printer bed leveling.
  3788. *
  3789. * Parameters With LINEAR and BILINEAR leveling only:
  3790. *
  3791. * S Set the XY travel speed between probe points (in units/min)
  3792. *
  3793. * F Set the Front limit of the probing grid
  3794. * B Set the Back limit of the probing grid
  3795. * L Set the Left limit of the probing grid
  3796. * R Set the Right limit of the probing grid
  3797. *
  3798. * Parameters with DEBUG_LEVELING_FEATURE only:
  3799. *
  3800. * C Make a totally fake grid with no actual probing.
  3801. * For use in testing when no probing is possible.
  3802. *
  3803. * Parameters with BILINEAR leveling only:
  3804. *
  3805. * Z Supply an additional Z probe offset
  3806. *
  3807. * Extra parameters with PROBE_MANUALLY:
  3808. *
  3809. * To do manual probing simply repeat G29 until the procedure is complete.
  3810. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3811. *
  3812. * Q Query leveling and G29 state
  3813. *
  3814. * A Abort current leveling procedure
  3815. *
  3816. * Extra parameters with BILINEAR only:
  3817. *
  3818. * W Write a mesh point. (If G29 is idle.)
  3819. * I X index for mesh point
  3820. * J Y index for mesh point
  3821. * X X for mesh point, overrides I
  3822. * Y Y for mesh point, overrides J
  3823. * Z Z for mesh point. Otherwise, raw current Z.
  3824. *
  3825. * Without PROBE_MANUALLY:
  3826. *
  3827. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3828. * Include "E" to engage/disengage the Z probe for each sample.
  3829. * There's no extra effect if you have a fixed Z probe.
  3830. *
  3831. */
  3832. inline void gcode_G29() {
  3833. // G29 Q is also available if debugging
  3834. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3835. const bool query = parser.seen('Q');
  3836. const uint8_t old_debug_flags = marlin_debug_flags;
  3837. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3838. if (DEBUGGING(LEVELING)) {
  3839. DEBUG_POS(">>> gcode_G29", current_position);
  3840. log_machine_info();
  3841. }
  3842. marlin_debug_flags = old_debug_flags;
  3843. #if DISABLED(PROBE_MANUALLY)
  3844. if (query) return;
  3845. #endif
  3846. #endif
  3847. #if ENABLED(PROBE_MANUALLY)
  3848. const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
  3849. #endif
  3850. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3851. const bool faux = parser.boolval('C');
  3852. #elif ENABLED(PROBE_MANUALLY)
  3853. const bool faux = no_action;
  3854. #else
  3855. bool constexpr faux = false;
  3856. #endif
  3857. // Don't allow auto-leveling without homing first
  3858. if (axis_unhomed_error()) return;
  3859. // Define local vars 'static' for manual probing, 'auto' otherwise
  3860. #if ENABLED(PROBE_MANUALLY)
  3861. #define ABL_VAR static
  3862. #else
  3863. #define ABL_VAR
  3864. #endif
  3865. ABL_VAR int verbose_level;
  3866. ABL_VAR float xProbe, yProbe, measured_z;
  3867. ABL_VAR bool dryrun, abl_should_enable;
  3868. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3869. ABL_VAR int abl_probe_index;
  3870. #endif
  3871. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3872. ABL_VAR bool enable_soft_endstops = true;
  3873. #endif
  3874. #if ABL_GRID
  3875. #if ENABLED(PROBE_MANUALLY)
  3876. ABL_VAR uint8_t PR_OUTER_VAR;
  3877. ABL_VAR int8_t PR_INNER_VAR;
  3878. #endif
  3879. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3880. ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
  3881. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3882. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3883. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3884. ABL_VAR bool do_topography_map;
  3885. #else // Bilinear
  3886. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3887. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3888. #endif
  3889. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3890. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3891. ABL_VAR int abl2;
  3892. #else // Bilinear
  3893. int constexpr abl2 = GRID_MAX_POINTS;
  3894. #endif
  3895. #endif
  3896. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3897. ABL_VAR float zoffset;
  3898. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3899. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3900. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3901. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3902. mean;
  3903. #endif
  3904. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3905. int constexpr abl2 = 3;
  3906. // Probe at 3 arbitrary points
  3907. ABL_VAR vector_3 points[3] = {
  3908. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3909. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3910. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3911. };
  3912. #endif // AUTO_BED_LEVELING_3POINT
  3913. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3914. struct linear_fit_data lsf_results;
  3915. incremental_LSF_reset(&lsf_results);
  3916. #endif
  3917. /**
  3918. * On the initial G29 fetch command parameters.
  3919. */
  3920. if (!g29_in_progress) {
  3921. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3922. abl_probe_index = -1;
  3923. #endif
  3924. abl_should_enable = planner.leveling_active;
  3925. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3926. if (parser.seen('W')) {
  3927. if (!leveling_is_valid()) {
  3928. SERIAL_ERROR_START();
  3929. SERIAL_ERRORLNPGM("No bilinear grid");
  3930. return;
  3931. }
  3932. const float z = parser.floatval('Z', RAW_CURRENT_POSITION(Z));
  3933. if (!WITHIN(z, -10, 10)) {
  3934. SERIAL_ERROR_START();
  3935. SERIAL_ERRORLNPGM("Bad Z value");
  3936. return;
  3937. }
  3938. const float x = parser.floatval('X', NAN),
  3939. y = parser.floatval('Y', NAN);
  3940. int8_t i = parser.byteval('I', -1),
  3941. j = parser.byteval('J', -1);
  3942. if (!isnan(x) && !isnan(y)) {
  3943. // Get nearest i / j from x / y
  3944. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3945. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3946. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3947. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3948. }
  3949. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3950. set_bed_leveling_enabled(false);
  3951. z_values[i][j] = z;
  3952. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3953. bed_level_virt_interpolate();
  3954. #endif
  3955. set_bed_leveling_enabled(abl_should_enable);
  3956. }
  3957. return;
  3958. } // parser.seen('W')
  3959. #endif
  3960. #if HAS_LEVELING
  3961. // Jettison bed leveling data
  3962. if (parser.seen('J')) {
  3963. reset_bed_level();
  3964. return;
  3965. }
  3966. #endif
  3967. verbose_level = parser.intval('V');
  3968. if (!WITHIN(verbose_level, 0, 4)) {
  3969. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  3970. return;
  3971. }
  3972. dryrun = parser.boolval('D')
  3973. #if ENABLED(PROBE_MANUALLY)
  3974. || no_action
  3975. #endif
  3976. ;
  3977. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3978. do_topography_map = verbose_level > 2 || parser.boolval('T');
  3979. // X and Y specify points in each direction, overriding the default
  3980. // These values may be saved with the completed mesh
  3981. abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
  3982. abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
  3983. if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
  3984. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3985. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3986. return;
  3987. }
  3988. abl2 = abl_grid_points_x * abl_grid_points_y;
  3989. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3990. zoffset = parser.linearval('Z');
  3991. #endif
  3992. #if ABL_GRID
  3993. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  3994. left_probe_bed_position = (int)parser.linearval('L', LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION));
  3995. right_probe_bed_position = (int)parser.linearval('R', LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION));
  3996. front_probe_bed_position = (int)parser.linearval('F', LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION));
  3997. back_probe_bed_position = (int)parser.linearval('B', LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION));
  3998. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3999. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  4000. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  4001. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  4002. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  4003. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  4004. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  4005. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  4006. if (left_out || right_out || front_out || back_out) {
  4007. if (left_out) {
  4008. out_of_range_error(PSTR("(L)eft"));
  4009. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  4010. }
  4011. if (right_out) {
  4012. out_of_range_error(PSTR("(R)ight"));
  4013. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  4014. }
  4015. if (front_out) {
  4016. out_of_range_error(PSTR("(F)ront"));
  4017. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  4018. }
  4019. if (back_out) {
  4020. out_of_range_error(PSTR("(B)ack"));
  4021. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  4022. }
  4023. return;
  4024. }
  4025. // probe at the points of a lattice grid
  4026. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  4027. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  4028. #endif // ABL_GRID
  4029. if (verbose_level > 0) {
  4030. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  4031. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  4032. }
  4033. stepper.synchronize();
  4034. // Disable auto bed leveling during G29
  4035. planner.leveling_active = false;
  4036. if (!dryrun) {
  4037. // Re-orient the current position without leveling
  4038. // based on where the steppers are positioned.
  4039. set_current_from_steppers_for_axis(ALL_AXES);
  4040. // Sync the planner to where the steppers stopped
  4041. SYNC_PLAN_POSITION_KINEMATIC();
  4042. }
  4043. #if HAS_BED_PROBE
  4044. // Deploy the probe. Probe will raise if needed.
  4045. if (DEPLOY_PROBE()) {
  4046. planner.leveling_active = abl_should_enable;
  4047. return;
  4048. }
  4049. #endif
  4050. if (!faux) setup_for_endstop_or_probe_move();
  4051. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4052. #if ENABLED(PROBE_MANUALLY)
  4053. if (!no_action)
  4054. #endif
  4055. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  4056. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  4057. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  4058. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  4059. ) {
  4060. if (dryrun) {
  4061. // Before reset bed level, re-enable to correct the position
  4062. planner.leveling_active = abl_should_enable;
  4063. }
  4064. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  4065. reset_bed_level();
  4066. // Initialize a grid with the given dimensions
  4067. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  4068. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  4069. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  4070. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  4071. // Can't re-enable (on error) until the new grid is written
  4072. abl_should_enable = false;
  4073. }
  4074. #endif // AUTO_BED_LEVELING_BILINEAR
  4075. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  4076. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4077. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  4078. #endif
  4079. // Probe at 3 arbitrary points
  4080. points[0].z = points[1].z = points[2].z = 0;
  4081. #endif // AUTO_BED_LEVELING_3POINT
  4082. } // !g29_in_progress
  4083. #if ENABLED(PROBE_MANUALLY)
  4084. // For manual probing, get the next index to probe now.
  4085. // On the first probe this will be incremented to 0.
  4086. if (!no_action) {
  4087. ++abl_probe_index;
  4088. g29_in_progress = true;
  4089. }
  4090. // Abort current G29 procedure, go back to idle state
  4091. if (seenA && g29_in_progress) {
  4092. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  4093. #if HAS_SOFTWARE_ENDSTOPS
  4094. soft_endstops_enabled = enable_soft_endstops;
  4095. #endif
  4096. planner.leveling_active = abl_should_enable;
  4097. g29_in_progress = false;
  4098. #if ENABLED(LCD_BED_LEVELING)
  4099. lcd_wait_for_move = false;
  4100. #endif
  4101. }
  4102. // Query G29 status
  4103. if (verbose_level || seenQ) {
  4104. SERIAL_PROTOCOLPGM("Manual G29 ");
  4105. if (g29_in_progress) {
  4106. SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
  4107. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  4108. }
  4109. else
  4110. SERIAL_PROTOCOLLNPGM("idle");
  4111. }
  4112. if (no_action) return;
  4113. if (abl_probe_index == 0) {
  4114. // For the initial G29 save software endstop state
  4115. #if HAS_SOFTWARE_ENDSTOPS
  4116. enable_soft_endstops = soft_endstops_enabled;
  4117. #endif
  4118. }
  4119. else {
  4120. // For G29 after adjusting Z.
  4121. // Save the previous Z before going to the next point
  4122. measured_z = current_position[Z_AXIS];
  4123. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4124. mean += measured_z;
  4125. eqnBVector[abl_probe_index] = measured_z;
  4126. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4127. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4128. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4129. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4130. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4131. z_values[xCount][yCount] = measured_z + zoffset;
  4132. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4133. if (DEBUGGING(LEVELING)) {
  4134. SERIAL_PROTOCOLPAIR("Save X", xCount);
  4135. SERIAL_PROTOCOLPAIR(" Y", yCount);
  4136. SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
  4137. }
  4138. #endif
  4139. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4140. points[abl_probe_index].z = measured_z;
  4141. #endif
  4142. }
  4143. //
  4144. // If there's another point to sample, move there with optional lift.
  4145. //
  4146. #if ABL_GRID
  4147. // Skip any unreachable points
  4148. while (abl_probe_index < abl2) {
  4149. // Set xCount, yCount based on abl_probe_index, with zig-zag
  4150. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  4151. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  4152. // Probe in reverse order for every other row/column
  4153. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  4154. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  4155. const float xBase = xCount * xGridSpacing + left_probe_bed_position,
  4156. yBase = yCount * yGridSpacing + front_probe_bed_position;
  4157. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4158. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4159. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4160. indexIntoAB[xCount][yCount] = abl_probe_index;
  4161. #endif
  4162. // Keep looping till a reachable point is found
  4163. if (position_is_reachable_xy(xProbe, yProbe)) break;
  4164. ++abl_probe_index;
  4165. }
  4166. // Is there a next point to move to?
  4167. if (abl_probe_index < abl2) {
  4168. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  4169. #if HAS_SOFTWARE_ENDSTOPS
  4170. // Disable software endstops to allow manual adjustment
  4171. // If G29 is not completed, they will not be re-enabled
  4172. soft_endstops_enabled = false;
  4173. #endif
  4174. return;
  4175. }
  4176. else {
  4177. // Leveling done! Fall through to G29 finishing code below
  4178. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  4179. // Re-enable software endstops, if needed
  4180. #if HAS_SOFTWARE_ENDSTOPS
  4181. soft_endstops_enabled = enable_soft_endstops;
  4182. #endif
  4183. }
  4184. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4185. // Probe at 3 arbitrary points
  4186. if (abl_probe_index < 3) {
  4187. xProbe = LOGICAL_X_POSITION(points[abl_probe_index].x);
  4188. yProbe = LOGICAL_Y_POSITION(points[abl_probe_index].y);
  4189. #if HAS_SOFTWARE_ENDSTOPS
  4190. // Disable software endstops to allow manual adjustment
  4191. // If G29 is not completed, they will not be re-enabled
  4192. soft_endstops_enabled = false;
  4193. #endif
  4194. return;
  4195. }
  4196. else {
  4197. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  4198. // Re-enable software endstops, if needed
  4199. #if HAS_SOFTWARE_ENDSTOPS
  4200. soft_endstops_enabled = enable_soft_endstops;
  4201. #endif
  4202. if (!dryrun) {
  4203. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4204. if (planeNormal.z < 0) {
  4205. planeNormal.x *= -1;
  4206. planeNormal.y *= -1;
  4207. planeNormal.z *= -1;
  4208. }
  4209. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4210. // Can't re-enable (on error) until the new grid is written
  4211. abl_should_enable = false;
  4212. }
  4213. }
  4214. #endif // AUTO_BED_LEVELING_3POINT
  4215. #else // !PROBE_MANUALLY
  4216. {
  4217. const bool stow_probe_after_each = parser.boolval('E');
  4218. #if ABL_GRID
  4219. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  4220. // Outer loop is Y with PROBE_Y_FIRST disabled
  4221. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  4222. int8_t inStart, inStop, inInc;
  4223. if (zig) { // away from origin
  4224. inStart = 0;
  4225. inStop = PR_INNER_END;
  4226. inInc = 1;
  4227. }
  4228. else { // towards origin
  4229. inStart = PR_INNER_END - 1;
  4230. inStop = -1;
  4231. inInc = -1;
  4232. }
  4233. zig ^= true; // zag
  4234. // Inner loop is Y with PROBE_Y_FIRST enabled
  4235. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4236. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4237. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4238. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4239. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4240. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4241. indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
  4242. #endif
  4243. #if IS_KINEMATIC
  4244. // Avoid probing outside the round or hexagonal area
  4245. if (!position_is_reachable_by_probe_xy(xProbe, yProbe)) continue;
  4246. #endif
  4247. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4248. if (isnan(measured_z)) {
  4249. planner.leveling_active = abl_should_enable;
  4250. break;
  4251. }
  4252. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4253. mean += measured_z;
  4254. eqnBVector[abl_probe_index] = measured_z;
  4255. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4256. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4257. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4258. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4259. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4260. z_values[xCount][yCount] = measured_z + zoffset;
  4261. #endif
  4262. abl_should_enable = false;
  4263. idle();
  4264. } // inner
  4265. } // outer
  4266. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4267. // Probe at 3 arbitrary points
  4268. for (uint8_t i = 0; i < 3; ++i) {
  4269. // Retain the last probe position
  4270. xProbe = LOGICAL_X_POSITION(points[i].x);
  4271. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4272. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4273. if (isnan(measured_z)) {
  4274. planner.leveling_active = abl_should_enable;
  4275. break;
  4276. }
  4277. points[i].z = measured_z;
  4278. }
  4279. if (!dryrun && !isnan(measured_z)) {
  4280. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4281. if (planeNormal.z < 0) {
  4282. planeNormal.x *= -1;
  4283. planeNormal.y *= -1;
  4284. planeNormal.z *= -1;
  4285. }
  4286. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4287. // Can't re-enable (on error) until the new grid is written
  4288. abl_should_enable = false;
  4289. }
  4290. #endif // AUTO_BED_LEVELING_3POINT
  4291. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4292. if (STOW_PROBE()) {
  4293. planner.leveling_active = abl_should_enable;
  4294. measured_z = NAN;
  4295. }
  4296. }
  4297. #endif // !PROBE_MANUALLY
  4298. //
  4299. // G29 Finishing Code
  4300. //
  4301. // Unless this is a dry run, auto bed leveling will
  4302. // definitely be enabled after this point.
  4303. //
  4304. // If code above wants to continue leveling, it should
  4305. // return or loop before this point.
  4306. //
  4307. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4308. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4309. #endif
  4310. #if ENABLED(PROBE_MANUALLY)
  4311. g29_in_progress = false;
  4312. #if ENABLED(LCD_BED_LEVELING)
  4313. lcd_wait_for_move = false;
  4314. #endif
  4315. #endif
  4316. // Calculate leveling, print reports, correct the position
  4317. if (!isnan(measured_z)) {
  4318. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4319. if (!dryrun) extrapolate_unprobed_bed_level();
  4320. print_bilinear_leveling_grid();
  4321. refresh_bed_level();
  4322. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4323. print_bilinear_leveling_grid_virt();
  4324. #endif
  4325. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4326. // For LINEAR leveling calculate matrix, print reports, correct the position
  4327. /**
  4328. * solve the plane equation ax + by + d = z
  4329. * A is the matrix with rows [x y 1] for all the probed points
  4330. * B is the vector of the Z positions
  4331. * the normal vector to the plane is formed by the coefficients of the
  4332. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4333. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4334. */
  4335. float plane_equation_coefficients[3];
  4336. finish_incremental_LSF(&lsf_results);
  4337. plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  4338. plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
  4339. plane_equation_coefficients[2] = -lsf_results.D;
  4340. mean /= abl2;
  4341. if (verbose_level) {
  4342. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4343. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4344. SERIAL_PROTOCOLPGM(" b: ");
  4345. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4346. SERIAL_PROTOCOLPGM(" d: ");
  4347. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4348. SERIAL_EOL();
  4349. if (verbose_level > 2) {
  4350. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4351. SERIAL_PROTOCOL_F(mean, 8);
  4352. SERIAL_EOL();
  4353. }
  4354. }
  4355. // Create the matrix but don't correct the position yet
  4356. if (!dryrun)
  4357. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4358. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
  4359. );
  4360. // Show the Topography map if enabled
  4361. if (do_topography_map) {
  4362. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4363. " +--- BACK --+\n"
  4364. " | |\n"
  4365. " L | (+) | R\n"
  4366. " E | | I\n"
  4367. " F | (-) N (+) | G\n"
  4368. " T | | H\n"
  4369. " | (-) | T\n"
  4370. " | |\n"
  4371. " O-- FRONT --+\n"
  4372. " (0,0)");
  4373. float min_diff = 999;
  4374. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4375. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4376. int ind = indexIntoAB[xx][yy];
  4377. float diff = eqnBVector[ind] - mean,
  4378. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4379. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4380. z_tmp = 0;
  4381. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4382. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4383. if (diff >= 0.0)
  4384. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4385. else
  4386. SERIAL_PROTOCOLCHAR(' ');
  4387. SERIAL_PROTOCOL_F(diff, 5);
  4388. } // xx
  4389. SERIAL_EOL();
  4390. } // yy
  4391. SERIAL_EOL();
  4392. if (verbose_level > 3) {
  4393. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4394. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4395. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4396. int ind = indexIntoAB[xx][yy];
  4397. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4398. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4399. z_tmp = 0;
  4400. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4401. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4402. if (diff >= 0.0)
  4403. SERIAL_PROTOCOLPGM(" +");
  4404. // Include + for column alignment
  4405. else
  4406. SERIAL_PROTOCOLCHAR(' ');
  4407. SERIAL_PROTOCOL_F(diff, 5);
  4408. } // xx
  4409. SERIAL_EOL();
  4410. } // yy
  4411. SERIAL_EOL();
  4412. }
  4413. } //do_topography_map
  4414. #endif // AUTO_BED_LEVELING_LINEAR
  4415. #if ABL_PLANAR
  4416. // For LINEAR and 3POINT leveling correct the current position
  4417. if (verbose_level > 0)
  4418. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4419. if (!dryrun) {
  4420. //
  4421. // Correct the current XYZ position based on the tilted plane.
  4422. //
  4423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4424. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4425. #endif
  4426. float converted[XYZ];
  4427. COPY(converted, current_position);
  4428. planner.leveling_active = true;
  4429. planner.unapply_leveling(converted); // use conversion machinery
  4430. planner.leveling_active = false;
  4431. // Use the last measured distance to the bed, if possible
  4432. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4433. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4434. ) {
  4435. const float simple_z = current_position[Z_AXIS] - measured_z;
  4436. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4437. if (DEBUGGING(LEVELING)) {
  4438. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4439. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4440. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4441. }
  4442. #endif
  4443. converted[Z_AXIS] = simple_z;
  4444. }
  4445. // The rotated XY and corrected Z are now current_position
  4446. COPY(current_position, converted);
  4447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4448. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4449. #endif
  4450. }
  4451. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4452. if (!dryrun) {
  4453. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4454. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4455. #endif
  4456. // Unapply the offset because it is going to be immediately applied
  4457. // and cause compensation movement in Z
  4458. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4460. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4461. #endif
  4462. }
  4463. #endif // ABL_PLANAR
  4464. #ifdef Z_PROBE_END_SCRIPT
  4465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4466. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4467. #endif
  4468. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4469. stepper.synchronize();
  4470. #endif
  4471. // Auto Bed Leveling is complete! Enable if possible.
  4472. planner.leveling_active = dryrun ? abl_should_enable : true;
  4473. } // !isnan(measured_z)
  4474. // Restore state after probing
  4475. if (!faux) clean_up_after_endstop_or_probe_move();
  4476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4477. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4478. #endif
  4479. report_current_position();
  4480. KEEPALIVE_STATE(IN_HANDLER);
  4481. if (planner.leveling_active)
  4482. SYNC_PLAN_POSITION_KINEMATIC();
  4483. }
  4484. #endif // OLDSCHOOL_ABL
  4485. #if HAS_BED_PROBE
  4486. /**
  4487. * G30: Do a single Z probe at the current XY
  4488. *
  4489. * Parameters:
  4490. *
  4491. * X Probe X position (default current X)
  4492. * Y Probe Y position (default current Y)
  4493. * E Engage the probe for each probe
  4494. */
  4495. inline void gcode_G30() {
  4496. const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
  4497. ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
  4498. if (!position_is_reachable_by_probe_xy(xpos, ypos)) return;
  4499. // Disable leveling so the planner won't mess with us
  4500. #if HAS_LEVELING
  4501. set_bed_leveling_enabled(false);
  4502. #endif
  4503. setup_for_endstop_or_probe_move();
  4504. const float measured_z = probe_pt(xpos, ypos, parser.boolval('E'), 1);
  4505. if (!isnan(measured_z)) {
  4506. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4507. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4508. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4509. }
  4510. clean_up_after_endstop_or_probe_move();
  4511. report_current_position();
  4512. }
  4513. #if ENABLED(Z_PROBE_SLED)
  4514. /**
  4515. * G31: Deploy the Z probe
  4516. */
  4517. inline void gcode_G31() { DEPLOY_PROBE(); }
  4518. /**
  4519. * G32: Stow the Z probe
  4520. */
  4521. inline void gcode_G32() { STOW_PROBE(); }
  4522. #endif // Z_PROBE_SLED
  4523. #endif // HAS_BED_PROBE
  4524. #if PROBE_SELECTED
  4525. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4526. constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
  4527. _4P_STEP = _7P_STEP * 2, // 4-point step
  4528. NPP = _7P_STEP * 6; // number of calibration points on the radius
  4529. enum CalEnum { // the 7 main calibration points - add definitions if needed
  4530. CEN = 0,
  4531. __A = 1,
  4532. _AB = __A + _7P_STEP,
  4533. __B = _AB + _7P_STEP,
  4534. _BC = __B + _7P_STEP,
  4535. __C = _BC + _7P_STEP,
  4536. _CA = __C + _7P_STEP,
  4537. };
  4538. #define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
  4539. #define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
  4540. #define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
  4541. #define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
  4542. #define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
  4543. #define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
  4544. static void print_signed_float(const char * const prefix, const float &f) {
  4545. SERIAL_PROTOCOLPGM(" ");
  4546. serialprintPGM(prefix);
  4547. SERIAL_PROTOCOLCHAR(':');
  4548. if (f >= 0) SERIAL_CHAR('+');
  4549. SERIAL_PROTOCOL_F(f, 2);
  4550. }
  4551. static void print_G33_settings(const bool end_stops, const bool tower_angles) {
  4552. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4553. if (end_stops) {
  4554. print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
  4555. print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
  4556. print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
  4557. }
  4558. if (end_stops && tower_angles) {
  4559. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4560. SERIAL_EOL();
  4561. SERIAL_CHAR('.');
  4562. SERIAL_PROTOCOL_SP(13);
  4563. }
  4564. if (tower_angles) {
  4565. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4566. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4567. print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
  4568. }
  4569. if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
  4570. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4571. }
  4572. SERIAL_EOL();
  4573. }
  4574. static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
  4575. SERIAL_PROTOCOLPGM(". ");
  4576. print_signed_float(PSTR("c"), z_at_pt[CEN]);
  4577. if (tower_points) {
  4578. print_signed_float(PSTR(" x"), z_at_pt[__A]);
  4579. print_signed_float(PSTR(" y"), z_at_pt[__B]);
  4580. print_signed_float(PSTR(" z"), z_at_pt[__C]);
  4581. }
  4582. if (tower_points && opposite_points) {
  4583. SERIAL_EOL();
  4584. SERIAL_CHAR('.');
  4585. SERIAL_PROTOCOL_SP(13);
  4586. }
  4587. if (opposite_points) {
  4588. print_signed_float(PSTR("yz"), z_at_pt[_BC]);
  4589. print_signed_float(PSTR("zx"), z_at_pt[_CA]);
  4590. print_signed_float(PSTR("xy"), z_at_pt[_AB]);
  4591. }
  4592. SERIAL_EOL();
  4593. }
  4594. /**
  4595. * After G33:
  4596. * - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only)
  4597. * - Stow the probe
  4598. * - Restore endstops state
  4599. * - Select the old tool, if needed
  4600. */
  4601. static void G33_cleanup(
  4602. #if HOTENDS > 1
  4603. const uint8_t old_tool_index
  4604. #endif
  4605. ) {
  4606. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4607. do_blocking_move_to_z(delta_clip_start_height);
  4608. #endif
  4609. STOW_PROBE();
  4610. clean_up_after_endstop_or_probe_move();
  4611. #if HOTENDS > 1
  4612. tool_change(old_tool_index, 0, true);
  4613. #endif
  4614. }
  4615. static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
  4616. const bool _0p_calibration = probe_points == 0,
  4617. _1p_calibration = probe_points == 1,
  4618. _4p_calibration = probe_points == 2,
  4619. _4p_opposite_points = _4p_calibration && !towers_set,
  4620. _7p_calibration = probe_points >= 3 || probe_points == 0,
  4621. _7p_no_intermediates = probe_points == 3,
  4622. _7p_1_intermediates = probe_points == 4,
  4623. _7p_2_intermediates = probe_points == 5,
  4624. _7p_4_intermediates = probe_points == 6,
  4625. _7p_6_intermediates = probe_points == 7,
  4626. _7p_8_intermediates = probe_points == 8,
  4627. _7p_11_intermediates = probe_points == 9,
  4628. _7p_14_intermediates = probe_points == 10,
  4629. _7p_intermed_points = probe_points >= 4,
  4630. _7p_6_centre = probe_points >= 5 && probe_points <= 7,
  4631. _7p_9_centre = probe_points >= 8;
  4632. #if DISABLED(PROBE_MANUALLY)
  4633. const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
  4634. dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
  4635. #endif
  4636. LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
  4637. if (!_0p_calibration) {
  4638. if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
  4639. #if ENABLED(PROBE_MANUALLY)
  4640. z_at_pt[CEN] += lcd_probe_pt(0, 0);
  4641. #else
  4642. z_at_pt[CEN] += probe_pt(dx, dy, stow_after_each, 1, false);
  4643. #endif
  4644. }
  4645. if (_7p_calibration) { // probe extra center points
  4646. const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
  4647. steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP;
  4648. I_LOOP_CAL_PT(axis, start, steps) {
  4649. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4650. r = delta_calibration_radius * 0.1;
  4651. #if ENABLED(PROBE_MANUALLY)
  4652. z_at_pt[CEN] += lcd_probe_pt(cos(a) * r, sin(a) * r);
  4653. #else
  4654. z_at_pt[CEN] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
  4655. #endif
  4656. }
  4657. z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
  4658. }
  4659. if (!_1p_calibration) { // probe the radius
  4660. const CalEnum start = _4p_opposite_points ? _AB : __A;
  4661. const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
  4662. _7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
  4663. _7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
  4664. _7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
  4665. _7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
  4666. _7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
  4667. _7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
  4668. _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
  4669. _4P_STEP; // .5r * 6 + 1c = 4
  4670. bool zig_zag = true;
  4671. F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
  4672. const int8_t offset = _7p_9_centre ? 1 : 0;
  4673. for (int8_t circle = -offset; circle <= offset; circle++) {
  4674. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4675. r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
  4676. interpol = fmod(axis, 1);
  4677. #if ENABLED(PROBE_MANUALLY)
  4678. float z_temp = lcd_probe_pt(cos(a) * r, sin(a) * r);
  4679. #else
  4680. float z_temp = probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
  4681. #endif
  4682. // split probe point to neighbouring calibration points
  4683. z_at_pt[round(axis - interpol + NPP - 1) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
  4684. z_at_pt[round(axis - interpol) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
  4685. }
  4686. zig_zag = !zig_zag;
  4687. }
  4688. if (_7p_intermed_points)
  4689. LOOP_CAL_RAD(axis) {
  4690. /*
  4691. // average intermediate points to towers and opposites - only required with _7P_STEP >= 2
  4692. for (int8_t i = 1; i < _7P_STEP; i++) {
  4693. const float interpol = i * (1.0 / _7P_STEP);
  4694. z_at_pt[axis] += (z_at_pt[(axis + NPP - i - 1) % NPP + 1]
  4695. + z_at_pt[axis + i]) * sq(cos(RADIANS(interpol * 90)));
  4696. }
  4697. */
  4698. z_at_pt[axis] /= _7P_STEP / steps;
  4699. }
  4700. }
  4701. float S1 = z_at_pt[CEN],
  4702. S2 = sq(z_at_pt[CEN]);
  4703. int16_t N = 1;
  4704. if (!_1p_calibration) { // std dev from zero plane
  4705. LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) {
  4706. S1 += z_at_pt[axis];
  4707. S2 += sq(z_at_pt[axis]);
  4708. N++;
  4709. }
  4710. return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4711. }
  4712. }
  4713. return 0.00001;
  4714. }
  4715. #if DISABLED(PROBE_MANUALLY)
  4716. static void G33_auto_tune() {
  4717. float z_at_pt[NPP + 1] = { 0.0 },
  4718. z_at_pt_base[NPP + 1] = { 0.0 },
  4719. z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
  4720. #define ZP(N,I) ((N) * z_at_pt[I])
  4721. #define Z06(I) ZP(6, I)
  4722. #define Z03(I) ZP(3, I)
  4723. #define Z02(I) ZP(2, I)
  4724. #define Z01(I) ZP(1, I)
  4725. #define Z32(I) ZP(3/2, I)
  4726. SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
  4727. SERIAL_EOL();
  4728. probe_G33_points(z_at_pt_base, 3, true, false);
  4729. print_G33_results(z_at_pt_base, true, true);
  4730. LOOP_XYZ(axis) {
  4731. delta_endstop_adj[axis] -= 1.0;
  4732. endstops.enable(true);
  4733. if (!home_delta()) return;
  4734. endstops.not_homing();
  4735. SERIAL_PROTOCOLPGM("Tuning E");
  4736. SERIAL_CHAR(tolower(axis_codes[axis]));
  4737. SERIAL_EOL();
  4738. probe_G33_points(z_at_pt, 3, true, false);
  4739. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4740. print_G33_results(z_at_pt, true, true);
  4741. delta_endstop_adj[axis] += 1.0;
  4742. switch (axis) {
  4743. case A_AXIS :
  4744. h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
  4745. break;
  4746. case B_AXIS :
  4747. h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop
  4748. break;
  4749. case C_AXIS :
  4750. h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop
  4751. break;
  4752. }
  4753. }
  4754. h_fac /= 3.0;
  4755. h_fac *= norm; // Normalize to 1.02 for Kossel mini
  4756. for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
  4757. delta_radius += 1.0 * zig_zag;
  4758. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  4759. endstops.enable(true);
  4760. if (!home_delta()) return;
  4761. endstops.not_homing();
  4762. SERIAL_PROTOCOLPGM("Tuning R");
  4763. SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
  4764. SERIAL_EOL();
  4765. probe_G33_points(z_at_pt, 3, true, false);
  4766. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4767. print_G33_results(z_at_pt, true, true);
  4768. delta_radius -= 1.0 * zig_zag;
  4769. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  4770. r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
  4771. }
  4772. r_fac /= 2.0;
  4773. r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
  4774. LOOP_XYZ(axis) {
  4775. delta_tower_angle_trim[axis] += 1.0;
  4776. delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5;
  4777. delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5;
  4778. z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  4779. home_offset[Z_AXIS] -= z_temp;
  4780. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  4781. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  4782. endstops.enable(true);
  4783. if (!home_delta()) return;
  4784. endstops.not_homing();
  4785. SERIAL_PROTOCOLPGM("Tuning T");
  4786. SERIAL_CHAR(tolower(axis_codes[axis]));
  4787. SERIAL_EOL();
  4788. probe_G33_points(z_at_pt, 3, true, false);
  4789. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4790. print_G33_results(z_at_pt, true, true);
  4791. delta_tower_angle_trim[axis] -= 1.0;
  4792. delta_endstop_adj[(axis+1) % 3] += 1.0/4.5;
  4793. delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5;
  4794. z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  4795. home_offset[Z_AXIS] -= z_temp;
  4796. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  4797. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  4798. switch (axis) {
  4799. case A_AXIS :
  4800. a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
  4801. break;
  4802. case B_AXIS :
  4803. a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle
  4804. break;
  4805. case C_AXIS :
  4806. a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle
  4807. break;
  4808. }
  4809. }
  4810. a_fac /= 3.0;
  4811. a_fac *= norm; // Normalize to 0.83 for Kossel mini
  4812. endstops.enable(true);
  4813. if (!home_delta()) return;
  4814. endstops.not_homing();
  4815. print_signed_float(PSTR( "H_FACTOR: "), h_fac);
  4816. print_signed_float(PSTR(" R_FACTOR: "), r_fac);
  4817. print_signed_float(PSTR(" A_FACTOR: "), a_fac);
  4818. SERIAL_EOL();
  4819. SERIAL_PROTOCOLPGM("Copy these values to Configuration.h");
  4820. SERIAL_EOL();
  4821. }
  4822. #endif // !PROBE_MANUALLY
  4823. /**
  4824. * G33 - Delta '1-4-7-point' Auto-Calibration
  4825. * Calibrate height, endstops, delta radius, and tower angles.
  4826. *
  4827. * Parameters:
  4828. *
  4829. * Pn Number of probe points:
  4830. * P0 No probe. Normalize only.
  4831. * P1 Probe center and set height only.
  4832. * P2 Probe center and towers. Set height, endstops and delta radius.
  4833. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4834. * P4-P10 Probe all positions + at different itermediate locations and average them.
  4835. *
  4836. * T Don't calibrate tower angle corrections
  4837. *
  4838. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4839. *
  4840. * Fn Force to run at least n iterations and takes the best result
  4841. *
  4842. * A Auto tune calibartion factors (set in Configuration.h)
  4843. *
  4844. * Vn Verbose level:
  4845. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4846. * V1 Report settings
  4847. * V2 Report settings and probe results
  4848. *
  4849. * E Engage the probe for each point
  4850. */
  4851. inline void gcode_G33() {
  4852. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  4853. if (!WITHIN(probe_points, 0, 10)) {
  4854. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
  4855. return;
  4856. }
  4857. const int8_t verbose_level = parser.byteval('V', 1);
  4858. if (!WITHIN(verbose_level, 0, 2)) {
  4859. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
  4860. return;
  4861. }
  4862. const float calibration_precision = parser.floatval('C');
  4863. if (calibration_precision < 0) {
  4864. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
  4865. return;
  4866. }
  4867. const int8_t force_iterations = parser.intval('F', 0);
  4868. if (!WITHIN(force_iterations, 0, 30)) {
  4869. SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
  4870. return;
  4871. }
  4872. const bool towers_set = !parser.boolval('T'),
  4873. auto_tune = parser.boolval('A'),
  4874. stow_after_each = parser.boolval('E'),
  4875. _0p_calibration = probe_points == 0,
  4876. _1p_calibration = probe_points == 1,
  4877. _4p_calibration = probe_points == 2,
  4878. _7p_9_centre = probe_points >= 8,
  4879. _tower_results = (_4p_calibration && towers_set)
  4880. || probe_points >= 3 || probe_points == 0,
  4881. _opposite_results = (_4p_calibration && !towers_set)
  4882. || probe_points >= 3 || probe_points == 0,
  4883. _endstop_results = probe_points != 1,
  4884. _angle_results = (probe_points >= 3 || probe_points == 0) && towers_set;
  4885. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4886. int8_t iterations = 0;
  4887. float test_precision,
  4888. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4889. zero_std_dev_min = zero_std_dev,
  4890. e_old[ABC] = {
  4891. delta_endstop_adj[A_AXIS],
  4892. delta_endstop_adj[B_AXIS],
  4893. delta_endstop_adj[C_AXIS]
  4894. },
  4895. dr_old = delta_radius,
  4896. zh_old = home_offset[Z_AXIS],
  4897. ta_old[ABC] = {
  4898. delta_tower_angle_trim[A_AXIS],
  4899. delta_tower_angle_trim[B_AXIS],
  4900. delta_tower_angle_trim[C_AXIS]
  4901. };
  4902. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4903. if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
  4904. LOOP_CAL_RAD(axis) {
  4905. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4906. r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0));
  4907. if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
  4908. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4909. return;
  4910. }
  4911. }
  4912. }
  4913. stepper.synchronize();
  4914. #if HAS_LEVELING
  4915. reset_bed_level(); // After calibration bed-level data is no longer valid
  4916. #endif
  4917. #if HOTENDS > 1
  4918. const uint8_t old_tool_index = active_extruder;
  4919. tool_change(0, 0, true);
  4920. #define G33_CLEANUP() G33_cleanup(old_tool_index)
  4921. #else
  4922. #define G33_CLEANUP() G33_cleanup()
  4923. #endif
  4924. setup_for_endstop_or_probe_move();
  4925. endstops.enable(true);
  4926. if (!_0p_calibration) {
  4927. if (!home_delta())
  4928. return;
  4929. endstops.not_homing();
  4930. }
  4931. if (auto_tune) {
  4932. #if ENABLED(PROBE_MANUALLY)
  4933. SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune");
  4934. #else
  4935. G33_auto_tune();
  4936. #endif
  4937. G33_CLEANUP();
  4938. return;
  4939. }
  4940. // Report settings
  4941. const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
  4942. serialprintPGM(checkingac);
  4943. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4944. SERIAL_EOL();
  4945. lcd_setstatusPGM(checkingac);
  4946. print_G33_settings(_endstop_results, _angle_results);
  4947. do {
  4948. float z_at_pt[NPP + 1] = { 0.0 };
  4949. test_precision = zero_std_dev;
  4950. iterations++;
  4951. // Probe the points
  4952. zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each);
  4953. // Solve matrices
  4954. if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
  4955. if (zero_std_dev < zero_std_dev_min) {
  4956. COPY(e_old, delta_endstop_adj);
  4957. dr_old = delta_radius;
  4958. zh_old = home_offset[Z_AXIS];
  4959. COPY(ta_old, delta_tower_angle_trim);
  4960. }
  4961. float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
  4962. const float r_diff = delta_radius - delta_calibration_radius,
  4963. h_factor = 1 / 6.0 *
  4964. #ifdef H_FACTOR
  4965. (H_FACTOR), // Set in Configuration.h
  4966. #else
  4967. (1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm
  4968. #endif
  4969. r_factor = 1 / 6.0 *
  4970. #ifdef R_FACTOR
  4971. -(R_FACTOR), // Set in Configuration.h
  4972. #else
  4973. -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm
  4974. #endif
  4975. a_factor = 1 / 6.0 *
  4976. #ifdef A_FACTOR
  4977. (A_FACTOR); // Set in Configuration.h
  4978. #else
  4979. (66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm
  4980. #endif
  4981. #define ZP(N,I) ((N) * z_at_pt[I])
  4982. #define Z6(I) ZP(6, I)
  4983. #define Z4(I) ZP(4, I)
  4984. #define Z2(I) ZP(2, I)
  4985. #define Z1(I) ZP(1, I)
  4986. #if ENABLED(PROBE_MANUALLY)
  4987. test_precision = 0.00; // forced end
  4988. #endif
  4989. switch (probe_points) {
  4990. case 0:
  4991. test_precision = 0.00; // forced end
  4992. break;
  4993. case 1:
  4994. test_precision = 0.00; // forced end
  4995. LOOP_XYZ(axis) e_delta[axis] = Z1(CEN);
  4996. break;
  4997. case 2:
  4998. if (towers_set) {
  4999. e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor;
  5000. e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor;
  5001. e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
  5002. r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
  5003. }
  5004. else {
  5005. e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
  5006. e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
  5007. e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
  5008. r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
  5009. }
  5010. break;
  5011. default:
  5012. e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor;
  5013. e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor;
  5014. e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor;
  5015. r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor;
  5016. if (towers_set) {
  5017. t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor;
  5018. t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor;
  5019. t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor;
  5020. e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
  5021. e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
  5022. e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
  5023. }
  5024. break;
  5025. }
  5026. LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
  5027. delta_radius += r_delta;
  5028. LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
  5029. }
  5030. else if (zero_std_dev >= test_precision) { // step one back
  5031. COPY(delta_endstop_adj, e_old);
  5032. delta_radius = dr_old;
  5033. home_offset[Z_AXIS] = zh_old;
  5034. COPY(delta_tower_angle_trim, ta_old);
  5035. }
  5036. if (verbose_level != 0) { // !dry run
  5037. // normalise angles to least squares
  5038. if (_angle_results) {
  5039. float a_sum = 0.0;
  5040. LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
  5041. LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
  5042. }
  5043. // adjust delta_height and endstops by the max amount
  5044. const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  5045. home_offset[Z_AXIS] -= z_temp;
  5046. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  5047. }
  5048. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  5049. NOMORE(zero_std_dev_min, zero_std_dev);
  5050. // print report
  5051. if (verbose_level != 1)
  5052. print_G33_results(z_at_pt, _tower_results, _opposite_results);
  5053. if (verbose_level != 0) { // !dry run
  5054. if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
  5055. SERIAL_PROTOCOLPGM("Calibration OK");
  5056. SERIAL_PROTOCOL_SP(32);
  5057. #if DISABLED(PROBE_MANUALLY)
  5058. if (zero_std_dev >= test_precision && !_1p_calibration)
  5059. SERIAL_PROTOCOLPGM("rolling back.");
  5060. else
  5061. #endif
  5062. {
  5063. SERIAL_PROTOCOLPGM("std dev:");
  5064. SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
  5065. }
  5066. SERIAL_EOL();
  5067. char mess[21];
  5068. sprintf_P(mess, PSTR("Calibration sd:"));
  5069. if (zero_std_dev_min < 1)
  5070. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
  5071. else
  5072. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
  5073. lcd_setstatus(mess);
  5074. print_G33_settings(_endstop_results, _angle_results);
  5075. serialprintPGM(save_message);
  5076. SERIAL_EOL();
  5077. }
  5078. else { // !end iterations
  5079. char mess[15];
  5080. if (iterations < 31)
  5081. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  5082. else
  5083. sprintf_P(mess, PSTR("No convergence"));
  5084. SERIAL_PROTOCOL(mess);
  5085. SERIAL_PROTOCOL_SP(32);
  5086. SERIAL_PROTOCOLPGM("std dev:");
  5087. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  5088. SERIAL_EOL();
  5089. lcd_setstatus(mess);
  5090. print_G33_settings(_endstop_results, _angle_results);
  5091. }
  5092. }
  5093. else { // dry run
  5094. const char *enddryrun = PSTR("End DRY-RUN");
  5095. serialprintPGM(enddryrun);
  5096. SERIAL_PROTOCOL_SP(35);
  5097. SERIAL_PROTOCOLPGM("std dev:");
  5098. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  5099. SERIAL_EOL();
  5100. char mess[21];
  5101. sprintf_P(mess, enddryrun);
  5102. sprintf_P(&mess[11], PSTR(" sd:"));
  5103. if (zero_std_dev < 1)
  5104. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
  5105. else
  5106. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
  5107. lcd_setstatus(mess);
  5108. }
  5109. endstops.enable(true);
  5110. if (!home_delta())
  5111. return;
  5112. endstops.not_homing();
  5113. }
  5114. while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
  5115. G33_CLEANUP();
  5116. }
  5117. #endif // DELTA_AUTO_CALIBRATION
  5118. #endif // PROBE_SELECTED
  5119. #if ENABLED(G38_PROBE_TARGET)
  5120. static bool G38_run_probe() {
  5121. bool G38_pass_fail = false;
  5122. #if ENABLED(PROBE_DOUBLE_TOUCH)
  5123. // Get direction of move and retract
  5124. float retract_mm[XYZ];
  5125. LOOP_XYZ(i) {
  5126. float dist = destination[i] - current_position[i];
  5127. retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  5128. }
  5129. #endif
  5130. stepper.synchronize(); // wait until the machine is idle
  5131. // Move until destination reached or target hit
  5132. endstops.enable(true);
  5133. G38_move = true;
  5134. G38_endstop_hit = false;
  5135. prepare_move_to_destination();
  5136. stepper.synchronize();
  5137. G38_move = false;
  5138. endstops.hit_on_purpose();
  5139. set_current_from_steppers_for_axis(ALL_AXES);
  5140. SYNC_PLAN_POSITION_KINEMATIC();
  5141. if (G38_endstop_hit) {
  5142. G38_pass_fail = true;
  5143. #if ENABLED(PROBE_DOUBLE_TOUCH)
  5144. // Move away by the retract distance
  5145. set_destination_from_current();
  5146. LOOP_XYZ(i) destination[i] += retract_mm[i];
  5147. endstops.enable(false);
  5148. prepare_move_to_destination();
  5149. stepper.synchronize();
  5150. feedrate_mm_s /= 4;
  5151. // Bump the target more slowly
  5152. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  5153. endstops.enable(true);
  5154. G38_move = true;
  5155. prepare_move_to_destination();
  5156. stepper.synchronize();
  5157. G38_move = false;
  5158. set_current_from_steppers_for_axis(ALL_AXES);
  5159. SYNC_PLAN_POSITION_KINEMATIC();
  5160. #endif
  5161. }
  5162. endstops.hit_on_purpose();
  5163. endstops.not_homing();
  5164. return G38_pass_fail;
  5165. }
  5166. /**
  5167. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  5168. * G38.3 - probe toward workpiece, stop on contact
  5169. *
  5170. * Like G28 except uses Z min probe for all axes
  5171. */
  5172. inline void gcode_G38(bool is_38_2) {
  5173. // Get X Y Z E F
  5174. gcode_get_destination();
  5175. setup_for_endstop_or_probe_move();
  5176. // If any axis has enough movement, do the move
  5177. LOOP_XYZ(i)
  5178. if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  5179. if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
  5180. // If G38.2 fails throw an error
  5181. if (!G38_run_probe() && is_38_2) {
  5182. SERIAL_ERROR_START();
  5183. SERIAL_ERRORLNPGM("Failed to reach target");
  5184. }
  5185. break;
  5186. }
  5187. clean_up_after_endstop_or_probe_move();
  5188. }
  5189. #endif // G38_PROBE_TARGET
  5190. #if HAS_MESH
  5191. /**
  5192. * G42: Move X & Y axes to mesh coordinates (I & J)
  5193. */
  5194. inline void gcode_G42() {
  5195. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  5196. if (axis_unhomed_error()) return;
  5197. #endif
  5198. if (IsRunning()) {
  5199. const bool hasI = parser.seenval('I');
  5200. const int8_t ix = hasI ? parser.value_int() : 0;
  5201. const bool hasJ = parser.seenval('J');
  5202. const int8_t iy = hasJ ? parser.value_int() : 0;
  5203. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  5204. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  5205. return;
  5206. }
  5207. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  5208. #define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
  5209. #define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
  5210. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  5211. #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
  5212. #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
  5213. #elif ENABLED(MESH_BED_LEVELING)
  5214. #define _GET_MESH_X(I) mbl.index_to_xpos[I]
  5215. #define _GET_MESH_Y(J) mbl.index_to_ypos[J]
  5216. #endif
  5217. set_destination_from_current();
  5218. if (hasI) destination[X_AXIS] = LOGICAL_X_POSITION(_GET_MESH_X(ix));
  5219. if (hasJ) destination[Y_AXIS] = LOGICAL_Y_POSITION(_GET_MESH_Y(iy));
  5220. if (parser.boolval('P')) {
  5221. if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  5222. if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  5223. }
  5224. const float fval = parser.linearval('F');
  5225. if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
  5226. // SCARA kinematic has "safe" XY raw moves
  5227. #if IS_SCARA
  5228. prepare_uninterpolated_move_to_destination();
  5229. #else
  5230. prepare_move_to_destination();
  5231. #endif
  5232. }
  5233. }
  5234. #endif // HAS_MESH
  5235. /**
  5236. * G92: Set current position to given X Y Z E
  5237. */
  5238. inline void gcode_G92() {
  5239. bool didXYZ = false,
  5240. didE = parser.seenval('E');
  5241. if (!didE) stepper.synchronize();
  5242. LOOP_XYZE(i) {
  5243. if (parser.seenval(axis_codes[i])) {
  5244. #if IS_SCARA
  5245. current_position[i] = parser.value_axis_units((AxisEnum)i);
  5246. if (i != E_AXIS) didXYZ = true;
  5247. #else
  5248. #if HAS_POSITION_SHIFT
  5249. const float p = current_position[i];
  5250. #endif
  5251. const float v = parser.value_axis_units((AxisEnum)i);
  5252. current_position[i] = v;
  5253. if (i != E_AXIS) {
  5254. didXYZ = true;
  5255. #if HAS_POSITION_SHIFT
  5256. position_shift[i] += v - p; // Offset the coordinate space
  5257. update_software_endstops((AxisEnum)i);
  5258. #if ENABLED(I2C_POSITION_ENCODERS)
  5259. I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum)i)].set_axis_offset(position_shift[i]);
  5260. #endif
  5261. #endif
  5262. }
  5263. #endif
  5264. }
  5265. }
  5266. if (didXYZ)
  5267. SYNC_PLAN_POSITION_KINEMATIC();
  5268. else if (didE)
  5269. sync_plan_position_e();
  5270. report_current_position();
  5271. }
  5272. #if HAS_RESUME_CONTINUE
  5273. /**
  5274. * M0: Unconditional stop - Wait for user button press on LCD
  5275. * M1: Conditional stop - Wait for user button press on LCD
  5276. */
  5277. inline void gcode_M0_M1() {
  5278. const char * const args = parser.string_arg;
  5279. millis_t ms = 0;
  5280. bool hasP = false, hasS = false;
  5281. if (parser.seenval('P')) {
  5282. ms = parser.value_millis(); // milliseconds to wait
  5283. hasP = ms > 0;
  5284. }
  5285. if (parser.seenval('S')) {
  5286. ms = parser.value_millis_from_seconds(); // seconds to wait
  5287. hasS = ms > 0;
  5288. }
  5289. #if ENABLED(ULTIPANEL)
  5290. if (!hasP && !hasS && args && *args)
  5291. lcd_setstatus(args, true);
  5292. else {
  5293. LCD_MESSAGEPGM(MSG_USERWAIT);
  5294. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  5295. dontExpireStatus();
  5296. #endif
  5297. }
  5298. #else
  5299. if (!hasP && !hasS && args && *args) {
  5300. SERIAL_ECHO_START();
  5301. SERIAL_ECHOLN(args);
  5302. }
  5303. #endif
  5304. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5305. wait_for_user = true;
  5306. stepper.synchronize();
  5307. refresh_cmd_timeout();
  5308. if (ms > 0) {
  5309. ms += previous_cmd_ms; // wait until this time for a click
  5310. while (PENDING(millis(), ms) && wait_for_user) idle();
  5311. }
  5312. else {
  5313. #if ENABLED(ULTIPANEL)
  5314. if (lcd_detected()) {
  5315. while (wait_for_user) idle();
  5316. print_job_timer.isPaused() ? LCD_MESSAGEPGM(WELCOME_MSG) : LCD_MESSAGEPGM(MSG_RESUMING);
  5317. }
  5318. #else
  5319. while (wait_for_user) idle();
  5320. #endif
  5321. }
  5322. wait_for_user = false;
  5323. KEEPALIVE_STATE(IN_HANDLER);
  5324. }
  5325. #endif // HAS_RESUME_CONTINUE
  5326. #if ENABLED(SPINDLE_LASER_ENABLE)
  5327. /**
  5328. * M3: Spindle Clockwise
  5329. * M4: Spindle Counter-clockwise
  5330. *
  5331. * S0 turns off spindle.
  5332. *
  5333. * If no speed PWM output is defined then M3/M4 just turns it on.
  5334. *
  5335. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  5336. * Hardware PWM is required. ISRs are too slow.
  5337. *
  5338. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  5339. * No other settings give a PWM signal that goes from 0 to 5 volts.
  5340. *
  5341. * The system automatically sets WGM to Mode 1, so no special
  5342. * initialization is needed.
  5343. *
  5344. * WGM bits for timer 2 are automatically set by the system to
  5345. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  5346. * No special initialization is needed.
  5347. *
  5348. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  5349. * factors for timers 2, 3, 4, and 5 are acceptable.
  5350. *
  5351. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  5352. * the spindle/laser during power-up or when connecting to the host
  5353. * (usually goes through a reset which sets all I/O pins to tri-state)
  5354. *
  5355. * PWM duty cycle goes from 0 (off) to 255 (always on).
  5356. */
  5357. // Wait for spindle to come up to speed
  5358. inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
  5359. // Wait for spindle to stop turning
  5360. inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
  5361. /**
  5362. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  5363. *
  5364. * it accepts inputs of 0-255
  5365. */
  5366. inline void ocr_val_mode() {
  5367. uint8_t spindle_laser_power = parser.value_byte();
  5368. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5369. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  5370. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  5371. }
  5372. inline void gcode_M3_M4(bool is_M3) {
  5373. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  5374. #if SPINDLE_DIR_CHANGE
  5375. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  5376. if (SPINDLE_STOP_ON_DIR_CHANGE \
  5377. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  5378. && READ(SPINDLE_DIR_PIN) != rotation_dir
  5379. ) {
  5380. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  5381. delay_for_power_down();
  5382. }
  5383. WRITE(SPINDLE_DIR_PIN, rotation_dir);
  5384. #endif
  5385. /**
  5386. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  5387. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  5388. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  5389. */
  5390. #if ENABLED(SPINDLE_LASER_PWM)
  5391. if (parser.seen('O')) ocr_val_mode();
  5392. else {
  5393. const float spindle_laser_power = parser.floatval('S');
  5394. if (spindle_laser_power == 0) {
  5395. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  5396. delay_for_power_down();
  5397. }
  5398. else {
  5399. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  5400. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  5401. if (spindle_laser_power <= SPEED_POWER_MIN)
  5402. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  5403. if (spindle_laser_power >= SPEED_POWER_MAX)
  5404. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  5405. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  5406. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5407. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  5408. delay_for_power_up();
  5409. }
  5410. }
  5411. #else
  5412. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  5413. delay_for_power_up();
  5414. #endif
  5415. }
  5416. /**
  5417. * M5 turn off spindle
  5418. */
  5419. inline void gcode_M5() {
  5420. stepper.synchronize();
  5421. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  5422. delay_for_power_down();
  5423. }
  5424. #endif // SPINDLE_LASER_ENABLE
  5425. /**
  5426. * M17: Enable power on all stepper motors
  5427. */
  5428. inline void gcode_M17() {
  5429. LCD_MESSAGEPGM(MSG_NO_MOVE);
  5430. enable_all_steppers();
  5431. }
  5432. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  5433. static float resume_position[XYZE];
  5434. static bool move_away_flag = false;
  5435. #if ENABLED(SDSUPPORT)
  5436. static bool sd_print_paused = false;
  5437. #endif
  5438. static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
  5439. static millis_t next_buzz = 0;
  5440. static int8_t runout_beep = 0;
  5441. if (init) next_buzz = runout_beep = 0;
  5442. const millis_t ms = millis();
  5443. if (ELAPSED(ms, next_buzz)) {
  5444. if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
  5445. next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
  5446. BUZZ(300, 2000);
  5447. runout_beep++;
  5448. }
  5449. }
  5450. }
  5451. static void ensure_safe_temperature() {
  5452. bool heaters_heating = true;
  5453. wait_for_heatup = true; // M108 will clear this
  5454. while (wait_for_heatup && heaters_heating) {
  5455. idle();
  5456. heaters_heating = false;
  5457. HOTEND_LOOP() {
  5458. if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
  5459. heaters_heating = true;
  5460. #if ENABLED(ULTIPANEL)
  5461. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  5462. #endif
  5463. break;
  5464. }
  5465. }
  5466. }
  5467. }
  5468. #if IS_KINEMATIC
  5469. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  5470. #else
  5471. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  5472. #endif
  5473. void do_pause_e_move(const float &length, const float fr) {
  5474. current_position[E_AXIS] += length;
  5475. set_destination_from_current();
  5476. #if IS_KINEMATIC
  5477. planner.buffer_line_kinematic(destination, fr, active_extruder);
  5478. #else
  5479. line_to_destination(fr);
  5480. #endif
  5481. stepper.synchronize();
  5482. }
  5483. static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
  5484. const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
  5485. ) {
  5486. if (move_away_flag) return false; // already paused
  5487. if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
  5488. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5489. if (!thermalManager.allow_cold_extrude &&
  5490. thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
  5491. SERIAL_ERROR_START();
  5492. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5493. return false;
  5494. }
  5495. #endif
  5496. ensure_safe_temperature(); // wait for extruder to heat up before unloading
  5497. }
  5498. // Indicate that the printer is paused
  5499. move_away_flag = true;
  5500. // Pause the print job and timer
  5501. #if ENABLED(SDSUPPORT)
  5502. if (card.sdprinting) {
  5503. card.pauseSDPrint();
  5504. sd_print_paused = true;
  5505. }
  5506. #endif
  5507. print_job_timer.pause();
  5508. // Show initial message and wait for synchronize steppers
  5509. if (show_lcd) {
  5510. #if ENABLED(ULTIPANEL)
  5511. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
  5512. #endif
  5513. }
  5514. // Save current position
  5515. stepper.synchronize();
  5516. COPY(resume_position, current_position);
  5517. // Initial retract before move to filament change position
  5518. if (retract) do_pause_e_move(retract, PAUSE_PARK_RETRACT_FEEDRATE);
  5519. // Lift Z axis
  5520. if (z_lift > 0)
  5521. do_blocking_move_to_z(current_position[Z_AXIS] + z_lift, PAUSE_PARK_Z_FEEDRATE);
  5522. // Move XY axes to filament exchange position
  5523. do_blocking_move_to_xy(x_pos, y_pos, PAUSE_PARK_XY_FEEDRATE);
  5524. if (unload_length != 0) {
  5525. if (show_lcd) {
  5526. #if ENABLED(ULTIPANEL)
  5527. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
  5528. idle();
  5529. #endif
  5530. }
  5531. // Unload filament
  5532. do_pause_e_move(unload_length, FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5533. }
  5534. if (show_lcd) {
  5535. #if ENABLED(ULTIPANEL)
  5536. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5537. #endif
  5538. }
  5539. #if HAS_BUZZER
  5540. filament_change_beep(max_beep_count, true);
  5541. #endif
  5542. idle();
  5543. // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
  5544. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
  5545. disable_e_steppers();
  5546. safe_delay(100);
  5547. #endif
  5548. // Start the heater idle timers
  5549. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5550. HOTEND_LOOP()
  5551. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5552. return true;
  5553. }
  5554. static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
  5555. bool nozzle_timed_out = false;
  5556. // Wait for filament insert by user and press button
  5557. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5558. wait_for_user = true; // LCD click or M108 will clear this
  5559. while (wait_for_user) {
  5560. #if HAS_BUZZER
  5561. filament_change_beep(max_beep_count);
  5562. #endif
  5563. // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
  5564. // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
  5565. if (!nozzle_timed_out)
  5566. HOTEND_LOOP()
  5567. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5568. if (nozzle_timed_out) {
  5569. #if ENABLED(ULTIPANEL)
  5570. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  5571. #endif
  5572. // Wait for LCD click or M108
  5573. while (wait_for_user) idle(true);
  5574. // Re-enable the heaters if they timed out
  5575. HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
  5576. // Wait for the heaters to reach the target temperatures
  5577. ensure_safe_temperature();
  5578. #if ENABLED(ULTIPANEL)
  5579. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5580. #endif
  5581. // Start the heater idle timers
  5582. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5583. HOTEND_LOOP()
  5584. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5585. wait_for_user = true; /* Wait for user to load filament */
  5586. nozzle_timed_out = false;
  5587. #if HAS_BUZZER
  5588. filament_change_beep(max_beep_count, true);
  5589. #endif
  5590. }
  5591. idle(true);
  5592. }
  5593. KEEPALIVE_STATE(IN_HANDLER);
  5594. }
  5595. static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
  5596. bool nozzle_timed_out = false;
  5597. if (!move_away_flag) return;
  5598. // Re-enable the heaters if they timed out
  5599. HOTEND_LOOP() {
  5600. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5601. thermalManager.reset_heater_idle_timer(e);
  5602. }
  5603. if (nozzle_timed_out) ensure_safe_temperature();
  5604. #if HAS_BUZZER
  5605. filament_change_beep(max_beep_count, true);
  5606. #endif
  5607. set_destination_from_current();
  5608. if (load_length != 0) {
  5609. #if ENABLED(ULTIPANEL)
  5610. // Show "insert filament"
  5611. if (nozzle_timed_out)
  5612. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5613. #endif
  5614. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5615. wait_for_user = true; // LCD click or M108 will clear this
  5616. while (wait_for_user && nozzle_timed_out) {
  5617. #if HAS_BUZZER
  5618. filament_change_beep(max_beep_count);
  5619. #endif
  5620. idle(true);
  5621. }
  5622. KEEPALIVE_STATE(IN_HANDLER);
  5623. #if ENABLED(ULTIPANEL)
  5624. // Show "load" message
  5625. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
  5626. #endif
  5627. // Load filament
  5628. do_pause_e_move(load_length, FILAMENT_CHANGE_LOAD_FEEDRATE);
  5629. }
  5630. #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
  5631. float extrude_length = initial_extrude_length;
  5632. do {
  5633. if (extrude_length > 0) {
  5634. // "Wait for filament extrude"
  5635. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
  5636. // Extrude filament to get into hotend
  5637. do_pause_e_move(extrude_length, ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
  5638. }
  5639. // Show "Extrude More" / "Resume" menu and wait for reply
  5640. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5641. wait_for_user = false;
  5642. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
  5643. while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
  5644. KEEPALIVE_STATE(IN_HANDLER);
  5645. extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
  5646. // Keep looping if "Extrude More" was selected
  5647. } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
  5648. #endif
  5649. #if ENABLED(ULTIPANEL)
  5650. // "Wait for print to resume"
  5651. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
  5652. #endif
  5653. // Set extruder to saved position
  5654. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  5655. planner.set_e_position_mm(current_position[E_AXIS]);
  5656. // Move XY to starting position, then Z
  5657. do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], PAUSE_PARK_XY_FEEDRATE);
  5658. do_blocking_move_to_z(resume_position[Z_AXIS], PAUSE_PARK_Z_FEEDRATE);
  5659. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5660. filament_ran_out = false;
  5661. #endif
  5662. #if ENABLED(ULTIPANEL)
  5663. // Show status screen
  5664. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
  5665. #endif
  5666. #if ENABLED(SDSUPPORT)
  5667. if (sd_print_paused) {
  5668. card.startFileprint();
  5669. sd_print_paused = false;
  5670. }
  5671. #endif
  5672. move_away_flag = false;
  5673. }
  5674. #endif // ADVANCED_PAUSE_FEATURE
  5675. #if ENABLED(SDSUPPORT)
  5676. /**
  5677. * M20: List SD card to serial output
  5678. */
  5679. inline void gcode_M20() {
  5680. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  5681. card.ls();
  5682. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  5683. }
  5684. /**
  5685. * M21: Init SD Card
  5686. */
  5687. inline void gcode_M21() { card.initsd(); }
  5688. /**
  5689. * M22: Release SD Card
  5690. */
  5691. inline void gcode_M22() { card.release(); }
  5692. /**
  5693. * M23: Open a file
  5694. */
  5695. inline void gcode_M23() {
  5696. // Simplify3D includes the size, so zero out all spaces (#7227)
  5697. for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
  5698. card.openFile(parser.string_arg, true);
  5699. }
  5700. /**
  5701. * M24: Start or Resume SD Print
  5702. */
  5703. inline void gcode_M24() {
  5704. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5705. resume_print();
  5706. #endif
  5707. card.startFileprint();
  5708. print_job_timer.start();
  5709. }
  5710. /**
  5711. * M25: Pause SD Print
  5712. */
  5713. inline void gcode_M25() {
  5714. card.pauseSDPrint();
  5715. print_job_timer.pause();
  5716. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5717. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  5718. #endif
  5719. }
  5720. /**
  5721. * M26: Set SD Card file index
  5722. */
  5723. inline void gcode_M26() {
  5724. if (card.cardOK && parser.seenval('S'))
  5725. card.setIndex(parser.value_long());
  5726. }
  5727. /**
  5728. * M27: Get SD Card status
  5729. */
  5730. inline void gcode_M27() { card.getStatus(); }
  5731. /**
  5732. * M28: Start SD Write
  5733. */
  5734. inline void gcode_M28() { card.openFile(parser.string_arg, false); }
  5735. /**
  5736. * M29: Stop SD Write
  5737. * Processed in write to file routine above
  5738. */
  5739. inline void gcode_M29() {
  5740. // card.saving = false;
  5741. }
  5742. /**
  5743. * M30 <filename>: Delete SD Card file
  5744. */
  5745. inline void gcode_M30() {
  5746. if (card.cardOK) {
  5747. card.closefile();
  5748. card.removeFile(parser.string_arg);
  5749. }
  5750. }
  5751. #endif // SDSUPPORT
  5752. /**
  5753. * M31: Get the time since the start of SD Print (or last M109)
  5754. */
  5755. inline void gcode_M31() {
  5756. char buffer[21];
  5757. duration_t elapsed = print_job_timer.duration();
  5758. elapsed.toString(buffer);
  5759. lcd_setstatus(buffer);
  5760. SERIAL_ECHO_START();
  5761. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5762. }
  5763. #if ENABLED(SDSUPPORT)
  5764. /**
  5765. * M32: Select file and start SD Print
  5766. */
  5767. inline void gcode_M32() {
  5768. if (card.sdprinting)
  5769. stepper.synchronize();
  5770. char* namestartpos = parser.string_arg;
  5771. const bool call_procedure = parser.boolval('P');
  5772. if (card.cardOK) {
  5773. card.openFile(namestartpos, true, call_procedure);
  5774. if (parser.seenval('S'))
  5775. card.setIndex(parser.value_long());
  5776. card.startFileprint();
  5777. // Procedure calls count as normal print time.
  5778. if (!call_procedure) print_job_timer.start();
  5779. }
  5780. }
  5781. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5782. /**
  5783. * M33: Get the long full path of a file or folder
  5784. *
  5785. * Parameters:
  5786. * <dospath> Case-insensitive DOS-style path to a file or folder
  5787. *
  5788. * Example:
  5789. * M33 miscel~1/armchair/armcha~1.gco
  5790. *
  5791. * Output:
  5792. * /Miscellaneous/Armchair/Armchair.gcode
  5793. */
  5794. inline void gcode_M33() {
  5795. card.printLongPath(parser.string_arg);
  5796. }
  5797. #endif
  5798. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5799. /**
  5800. * M34: Set SD Card Sorting Options
  5801. */
  5802. inline void gcode_M34() {
  5803. if (parser.seen('S')) card.setSortOn(parser.value_bool());
  5804. if (parser.seenval('F')) {
  5805. const int v = parser.value_long();
  5806. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5807. }
  5808. //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
  5809. }
  5810. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5811. /**
  5812. * M928: Start SD Write
  5813. */
  5814. inline void gcode_M928() {
  5815. card.openLogFile(parser.string_arg);
  5816. }
  5817. #endif // SDSUPPORT
  5818. /**
  5819. * Sensitive pin test for M42, M226
  5820. */
  5821. static bool pin_is_protected(const int8_t pin) {
  5822. static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
  5823. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5824. if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
  5825. return false;
  5826. }
  5827. /**
  5828. * M42: Change pin status via GCode
  5829. *
  5830. * P<pin> Pin number (LED if omitted)
  5831. * S<byte> Pin status from 0 - 255
  5832. */
  5833. inline void gcode_M42() {
  5834. if (!parser.seenval('S')) return;
  5835. const byte pin_status = parser.value_byte();
  5836. const int pin_number = parser.intval('P', LED_PIN);
  5837. if (pin_number < 0) return;
  5838. if (pin_is_protected(pin_number)) {
  5839. SERIAL_ERROR_START();
  5840. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5841. return;
  5842. }
  5843. pinMode(pin_number, OUTPUT);
  5844. digitalWrite(pin_number, pin_status);
  5845. analogWrite(pin_number, pin_status);
  5846. #if FAN_COUNT > 0
  5847. switch (pin_number) {
  5848. #if HAS_FAN0
  5849. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5850. #endif
  5851. #if HAS_FAN1
  5852. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5853. #endif
  5854. #if HAS_FAN2
  5855. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5856. #endif
  5857. }
  5858. #endif
  5859. }
  5860. #if ENABLED(PINS_DEBUGGING)
  5861. #include "pinsDebug.h"
  5862. inline void toggle_pins() {
  5863. const bool I_flag = parser.boolval('I');
  5864. const int repeat = parser.intval('R', 1),
  5865. start = parser.intval('S'),
  5866. end = parser.intval('E', NUM_DIGITAL_PINS - 1),
  5867. wait = parser.intval('W', 500);
  5868. for (uint8_t pin = start; pin <= end; pin++) {
  5869. //report_pin_state_extended(pin, I_flag, false);
  5870. if (!I_flag && pin_is_protected(pin)) {
  5871. report_pin_state_extended(pin, I_flag, true, "Untouched ");
  5872. SERIAL_EOL();
  5873. }
  5874. else {
  5875. report_pin_state_extended(pin, I_flag, true, "Pulsing ");
  5876. #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
  5877. if (pin == TEENSY_E2) {
  5878. SET_OUTPUT(TEENSY_E2);
  5879. for (int16_t j = 0; j < repeat; j++) {
  5880. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5881. WRITE(TEENSY_E2, HIGH); safe_delay(wait);
  5882. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5883. }
  5884. }
  5885. else if (pin == TEENSY_E3) {
  5886. SET_OUTPUT(TEENSY_E3);
  5887. for (int16_t j = 0; j < repeat; j++) {
  5888. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5889. WRITE(TEENSY_E3, HIGH); safe_delay(wait);
  5890. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5891. }
  5892. }
  5893. else
  5894. #endif
  5895. {
  5896. pinMode(pin, OUTPUT);
  5897. for (int16_t j = 0; j < repeat; j++) {
  5898. digitalWrite(pin, 0); safe_delay(wait);
  5899. digitalWrite(pin, 1); safe_delay(wait);
  5900. digitalWrite(pin, 0); safe_delay(wait);
  5901. }
  5902. }
  5903. }
  5904. SERIAL_EOL();
  5905. }
  5906. SERIAL_ECHOLNPGM("Done.");
  5907. } // toggle_pins
  5908. inline void servo_probe_test() {
  5909. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5910. SERIAL_ERROR_START();
  5911. SERIAL_ERRORLNPGM("SERVO not setup");
  5912. #elif !HAS_Z_SERVO_ENDSTOP
  5913. SERIAL_ERROR_START();
  5914. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5915. #else // HAS_Z_SERVO_ENDSTOP
  5916. const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
  5917. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5918. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5919. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5920. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5921. bool probe_inverting;
  5922. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5923. #define PROBE_TEST_PIN Z_MIN_PIN
  5924. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5925. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5926. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5927. #if Z_MIN_ENDSTOP_INVERTING
  5928. SERIAL_PROTOCOLLNPGM("true");
  5929. #else
  5930. SERIAL_PROTOCOLLNPGM("false");
  5931. #endif
  5932. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5933. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5934. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5935. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5936. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5937. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5938. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5939. SERIAL_PROTOCOLLNPGM("true");
  5940. #else
  5941. SERIAL_PROTOCOLLNPGM("false");
  5942. #endif
  5943. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5944. #endif
  5945. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5946. SET_INPUT_PULLUP(PROBE_TEST_PIN);
  5947. bool deploy_state, stow_state;
  5948. for (uint8_t i = 0; i < 4; i++) {
  5949. MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
  5950. safe_delay(500);
  5951. deploy_state = READ(PROBE_TEST_PIN);
  5952. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  5953. safe_delay(500);
  5954. stow_state = READ(PROBE_TEST_PIN);
  5955. }
  5956. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5957. refresh_cmd_timeout();
  5958. if (deploy_state != stow_state) {
  5959. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5960. if (deploy_state) {
  5961. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5962. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5963. }
  5964. else {
  5965. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5966. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5967. }
  5968. #if ENABLED(BLTOUCH)
  5969. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5970. #endif
  5971. }
  5972. else { // measure active signal length
  5973. MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
  5974. safe_delay(500);
  5975. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5976. uint16_t probe_counter = 0;
  5977. // Allow 30 seconds max for operator to trigger probe
  5978. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5979. safe_delay(2);
  5980. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5981. refresh_cmd_timeout();
  5982. if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
  5983. for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
  5984. safe_delay(2);
  5985. if (probe_counter == 50)
  5986. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5987. else if (probe_counter >= 2)
  5988. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5989. else
  5990. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5991. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  5992. } // pulse detected
  5993. } // for loop waiting for trigger
  5994. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5995. } // measure active signal length
  5996. #endif
  5997. } // servo_probe_test
  5998. /**
  5999. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  6000. *
  6001. * M43 - report name and state of pin(s)
  6002. * P<pin> Pin to read or watch. If omitted, reads all pins.
  6003. * I Flag to ignore Marlin's pin protection.
  6004. *
  6005. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  6006. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  6007. * I Flag to ignore Marlin's pin protection.
  6008. *
  6009. * M43 E<bool> - Enable / disable background endstop monitoring
  6010. * - Machine continues to operate
  6011. * - Reports changes to endstops
  6012. * - Toggles LED_PIN when an endstop changes
  6013. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  6014. *
  6015. * M43 T - Toggle pin(s) and report which pin is being toggled
  6016. * S<pin> - Start Pin number. If not given, will default to 0
  6017. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  6018. * I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
  6019. * R - Repeat pulses on each pin this number of times before continueing to next pin
  6020. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  6021. *
  6022. * M43 S - Servo probe test
  6023. * P<index> - Probe index (optional - defaults to 0
  6024. */
  6025. inline void gcode_M43() {
  6026. if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
  6027. toggle_pins();
  6028. return;
  6029. }
  6030. // Enable or disable endstop monitoring
  6031. if (parser.seen('E')) {
  6032. endstop_monitor_flag = parser.value_bool();
  6033. SERIAL_PROTOCOLPGM("endstop monitor ");
  6034. serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
  6035. SERIAL_PROTOCOLLNPGM("abled");
  6036. return;
  6037. }
  6038. if (parser.seen('S')) {
  6039. servo_probe_test();
  6040. return;
  6041. }
  6042. // Get the range of pins to test or watch
  6043. const uint8_t first_pin = parser.byteval('P'),
  6044. last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  6045. if (first_pin > last_pin) return;
  6046. const bool ignore_protection = parser.boolval('I');
  6047. // Watch until click, M108, or reset
  6048. if (parser.boolval('W')) {
  6049. SERIAL_PROTOCOLLNPGM("Watching pins");
  6050. byte pin_state[last_pin - first_pin + 1];
  6051. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  6052. if (pin_is_protected(pin) && !ignore_protection) continue;
  6053. pinMode(pin, INPUT_PULLUP);
  6054. delay(1);
  6055. /*
  6056. if (IS_ANALOG(pin))
  6057. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  6058. else
  6059. //*/
  6060. pin_state[pin - first_pin] = digitalRead(pin);
  6061. }
  6062. #if HAS_RESUME_CONTINUE
  6063. wait_for_user = true;
  6064. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6065. #endif
  6066. for (;;) {
  6067. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  6068. if (pin_is_protected(pin) && !ignore_protection) continue;
  6069. const byte val =
  6070. /*
  6071. IS_ANALOG(pin)
  6072. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  6073. :
  6074. //*/
  6075. digitalRead(pin);
  6076. if (val != pin_state[pin - first_pin]) {
  6077. report_pin_state_extended(pin, ignore_protection, false);
  6078. pin_state[pin - first_pin] = val;
  6079. }
  6080. }
  6081. #if HAS_RESUME_CONTINUE
  6082. if (!wait_for_user) {
  6083. KEEPALIVE_STATE(IN_HANDLER);
  6084. break;
  6085. }
  6086. #endif
  6087. safe_delay(200);
  6088. }
  6089. return;
  6090. }
  6091. // Report current state of selected pin(s)
  6092. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  6093. report_pin_state_extended(pin, ignore_protection, true);
  6094. }
  6095. #endif // PINS_DEBUGGING
  6096. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6097. /**
  6098. * M48: Z probe repeatability measurement function.
  6099. *
  6100. * Usage:
  6101. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  6102. * P = Number of sampled points (4-50, default 10)
  6103. * X = Sample X position
  6104. * Y = Sample Y position
  6105. * V = Verbose level (0-4, default=1)
  6106. * E = Engage Z probe for each reading
  6107. * L = Number of legs of movement before probe
  6108. * S = Schizoid (Or Star if you prefer)
  6109. *
  6110. * This function assumes the bed has been homed. Specifically, that a G28 command
  6111. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  6112. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  6113. * regenerated.
  6114. */
  6115. inline void gcode_M48() {
  6116. if (axis_unhomed_error()) return;
  6117. const int8_t verbose_level = parser.byteval('V', 1);
  6118. if (!WITHIN(verbose_level, 0, 4)) {
  6119. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  6120. return;
  6121. }
  6122. if (verbose_level > 0)
  6123. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  6124. const int8_t n_samples = parser.byteval('P', 10);
  6125. if (!WITHIN(n_samples, 4, 50)) {
  6126. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  6127. return;
  6128. }
  6129. const bool stow_probe_after_each = parser.boolval('E');
  6130. float X_current = current_position[X_AXIS],
  6131. Y_current = current_position[Y_AXIS];
  6132. const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
  6133. Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6134. #if DISABLED(DELTA)
  6135. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  6136. out_of_range_error(PSTR("X"));
  6137. return;
  6138. }
  6139. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  6140. out_of_range_error(PSTR("Y"));
  6141. return;
  6142. }
  6143. #else
  6144. if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) {
  6145. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  6146. return;
  6147. }
  6148. #endif
  6149. bool seen_L = parser.seen('L');
  6150. uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  6151. if (n_legs > 15) {
  6152. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  6153. return;
  6154. }
  6155. if (n_legs == 1) n_legs = 2;
  6156. const bool schizoid_flag = parser.boolval('S');
  6157. if (schizoid_flag && !seen_L) n_legs = 7;
  6158. /**
  6159. * Now get everything to the specified probe point So we can safely do a
  6160. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  6161. * we don't want to use that as a starting point for each probe.
  6162. */
  6163. if (verbose_level > 2)
  6164. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  6165. // Disable bed level correction in M48 because we want the raw data when we probe
  6166. #if HAS_LEVELING
  6167. const bool was_enabled = planner.leveling_active;
  6168. set_bed_leveling_enabled(false);
  6169. #endif
  6170. setup_for_endstop_or_probe_move();
  6171. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  6172. // Move to the first point, deploy, and probe
  6173. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  6174. bool probing_good = !isnan(t);
  6175. if (probing_good) {
  6176. randomSeed(millis());
  6177. for (uint8_t n = 0; n < n_samples; n++) {
  6178. if (n_legs) {
  6179. const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  6180. float angle = random(0.0, 360.0);
  6181. const float radius = random(
  6182. #if ENABLED(DELTA)
  6183. 0.1250000000 * (DELTA_PROBEABLE_RADIUS),
  6184. 0.3333333333 * (DELTA_PROBEABLE_RADIUS)
  6185. #else
  6186. 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
  6187. #endif
  6188. );
  6189. if (verbose_level > 3) {
  6190. SERIAL_ECHOPAIR("Starting radius: ", radius);
  6191. SERIAL_ECHOPAIR(" angle: ", angle);
  6192. SERIAL_ECHOPGM(" Direction: ");
  6193. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  6194. SERIAL_ECHOLNPGM("Clockwise");
  6195. }
  6196. for (uint8_t l = 0; l < n_legs - 1; l++) {
  6197. double delta_angle;
  6198. if (schizoid_flag)
  6199. // The points of a 5 point star are 72 degrees apart. We need to
  6200. // skip a point and go to the next one on the star.
  6201. delta_angle = dir * 2.0 * 72.0;
  6202. else
  6203. // If we do this line, we are just trying to move further
  6204. // around the circle.
  6205. delta_angle = dir * (float) random(25, 45);
  6206. angle += delta_angle;
  6207. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  6208. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  6209. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  6210. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  6211. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  6212. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  6213. #if DISABLED(DELTA)
  6214. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  6215. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  6216. #else
  6217. // If we have gone out too far, we can do a simple fix and scale the numbers
  6218. // back in closer to the origin.
  6219. while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
  6220. X_current *= 0.8;
  6221. Y_current *= 0.8;
  6222. if (verbose_level > 3) {
  6223. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  6224. SERIAL_ECHOLNPAIR(", ", Y_current);
  6225. }
  6226. }
  6227. #endif
  6228. if (verbose_level > 3) {
  6229. SERIAL_PROTOCOLPGM("Going to:");
  6230. SERIAL_ECHOPAIR(" X", X_current);
  6231. SERIAL_ECHOPAIR(" Y", Y_current);
  6232. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  6233. }
  6234. do_blocking_move_to_xy(X_current, Y_current);
  6235. } // n_legs loop
  6236. } // n_legs
  6237. // Probe a single point
  6238. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  6239. // Break the loop if the probe fails
  6240. probing_good = !isnan(sample_set[n]);
  6241. if (!probing_good) break;
  6242. /**
  6243. * Get the current mean for the data points we have so far
  6244. */
  6245. double sum = 0.0;
  6246. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  6247. mean = sum / (n + 1);
  6248. NOMORE(min, sample_set[n]);
  6249. NOLESS(max, sample_set[n]);
  6250. /**
  6251. * Now, use that mean to calculate the standard deviation for the
  6252. * data points we have so far
  6253. */
  6254. sum = 0.0;
  6255. for (uint8_t j = 0; j <= n; j++)
  6256. sum += sq(sample_set[j] - mean);
  6257. sigma = SQRT(sum / (n + 1));
  6258. if (verbose_level > 0) {
  6259. if (verbose_level > 1) {
  6260. SERIAL_PROTOCOL(n + 1);
  6261. SERIAL_PROTOCOLPGM(" of ");
  6262. SERIAL_PROTOCOL((int)n_samples);
  6263. SERIAL_PROTOCOLPGM(": z: ");
  6264. SERIAL_PROTOCOL_F(sample_set[n], 3);
  6265. if (verbose_level > 2) {
  6266. SERIAL_PROTOCOLPGM(" mean: ");
  6267. SERIAL_PROTOCOL_F(mean, 4);
  6268. SERIAL_PROTOCOLPGM(" sigma: ");
  6269. SERIAL_PROTOCOL_F(sigma, 6);
  6270. SERIAL_PROTOCOLPGM(" min: ");
  6271. SERIAL_PROTOCOL_F(min, 3);
  6272. SERIAL_PROTOCOLPGM(" max: ");
  6273. SERIAL_PROTOCOL_F(max, 3);
  6274. SERIAL_PROTOCOLPGM(" range: ");
  6275. SERIAL_PROTOCOL_F(max-min, 3);
  6276. }
  6277. SERIAL_EOL();
  6278. }
  6279. }
  6280. } // n_samples loop
  6281. }
  6282. STOW_PROBE();
  6283. if (probing_good) {
  6284. SERIAL_PROTOCOLLNPGM("Finished!");
  6285. if (verbose_level > 0) {
  6286. SERIAL_PROTOCOLPGM("Mean: ");
  6287. SERIAL_PROTOCOL_F(mean, 6);
  6288. SERIAL_PROTOCOLPGM(" Min: ");
  6289. SERIAL_PROTOCOL_F(min, 3);
  6290. SERIAL_PROTOCOLPGM(" Max: ");
  6291. SERIAL_PROTOCOL_F(max, 3);
  6292. SERIAL_PROTOCOLPGM(" Range: ");
  6293. SERIAL_PROTOCOL_F(max-min, 3);
  6294. SERIAL_EOL();
  6295. }
  6296. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  6297. SERIAL_PROTOCOL_F(sigma, 6);
  6298. SERIAL_EOL();
  6299. SERIAL_EOL();
  6300. }
  6301. clean_up_after_endstop_or_probe_move();
  6302. // Re-enable bed level correction if it had been on
  6303. #if HAS_LEVELING
  6304. set_bed_leveling_enabled(was_enabled);
  6305. #endif
  6306. report_current_position();
  6307. }
  6308. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6309. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  6310. inline void gcode_M49() {
  6311. ubl.g26_debug_flag ^= true;
  6312. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  6313. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  6314. }
  6315. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  6316. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  6317. /**
  6318. * M73: Set percentage complete (for display on LCD)
  6319. *
  6320. * Example:
  6321. * M73 P25 ; Set progress to 25%
  6322. *
  6323. * Notes:
  6324. * This has no effect during an SD print job
  6325. */
  6326. inline void gcode_M73() {
  6327. if (!IS_SD_PRINTING && parser.seen('P')) {
  6328. progress_bar_percent = parser.value_byte();
  6329. NOMORE(progress_bar_percent, 100);
  6330. }
  6331. }
  6332. #endif // ULTRA_LCD && LCD_SET_PROGRESS_MANUALLY
  6333. /**
  6334. * M75: Start print timer
  6335. */
  6336. inline void gcode_M75() { print_job_timer.start(); }
  6337. /**
  6338. * M76: Pause print timer
  6339. */
  6340. inline void gcode_M76() { print_job_timer.pause(); }
  6341. /**
  6342. * M77: Stop print timer
  6343. */
  6344. inline void gcode_M77() { print_job_timer.stop(); }
  6345. #if ENABLED(PRINTCOUNTER)
  6346. /**
  6347. * M78: Show print statistics
  6348. */
  6349. inline void gcode_M78() {
  6350. // "M78 S78" will reset the statistics
  6351. if (parser.intval('S') == 78)
  6352. print_job_timer.initStats();
  6353. else
  6354. print_job_timer.showStats();
  6355. }
  6356. #endif
  6357. /**
  6358. * M104: Set hot end temperature
  6359. */
  6360. inline void gcode_M104() {
  6361. if (get_target_extruder_from_command(104)) return;
  6362. if (DEBUGGING(DRYRUN)) return;
  6363. #if ENABLED(SINGLENOZZLE)
  6364. if (target_extruder != active_extruder) return;
  6365. #endif
  6366. if (parser.seenval('S')) {
  6367. const int16_t temp = parser.value_celsius();
  6368. thermalManager.setTargetHotend(temp, target_extruder);
  6369. #if ENABLED(DUAL_X_CARRIAGE)
  6370. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6371. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6372. #endif
  6373. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6374. /**
  6375. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  6376. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  6377. * standby mode, for instance in a dual extruder setup, without affecting
  6378. * the running print timer.
  6379. */
  6380. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6381. print_job_timer.stop();
  6382. LCD_MESSAGEPGM(WELCOME_MSG);
  6383. }
  6384. #endif
  6385. if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
  6386. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6387. }
  6388. #if ENABLED(AUTOTEMP)
  6389. planner.autotemp_M104_M109();
  6390. #endif
  6391. }
  6392. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6393. void print_heater_state(const float &c, const float &t,
  6394. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6395. const float r,
  6396. #endif
  6397. const int8_t e=-2
  6398. ) {
  6399. #if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1
  6400. UNUSED(e);
  6401. #endif
  6402. SERIAL_PROTOCOLCHAR(' ');
  6403. SERIAL_PROTOCOLCHAR(
  6404. #if HAS_TEMP_BED && HAS_TEMP_HOTEND
  6405. e == -1 ? 'B' : 'T'
  6406. #elif HAS_TEMP_HOTEND
  6407. 'T'
  6408. #else
  6409. 'B'
  6410. #endif
  6411. );
  6412. #if HOTENDS > 1
  6413. if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
  6414. #endif
  6415. SERIAL_PROTOCOLCHAR(':');
  6416. SERIAL_PROTOCOL(c);
  6417. SERIAL_PROTOCOLPAIR(" /" , t);
  6418. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6419. SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
  6420. SERIAL_PROTOCOLCHAR(')');
  6421. #endif
  6422. }
  6423. void print_heaterstates() {
  6424. #if HAS_TEMP_HOTEND
  6425. print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
  6426. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6427. , thermalManager.rawHotendTemp(target_extruder)
  6428. #endif
  6429. );
  6430. #endif
  6431. #if HAS_TEMP_BED
  6432. print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
  6433. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6434. thermalManager.rawBedTemp(),
  6435. #endif
  6436. -1 // BED
  6437. );
  6438. #endif
  6439. #if HOTENDS > 1
  6440. HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
  6441. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6442. thermalManager.rawHotendTemp(e),
  6443. #endif
  6444. e
  6445. );
  6446. #endif
  6447. SERIAL_PROTOCOLPGM(" @:");
  6448. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  6449. #if HAS_TEMP_BED
  6450. SERIAL_PROTOCOLPGM(" B@:");
  6451. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  6452. #endif
  6453. #if HOTENDS > 1
  6454. HOTEND_LOOP() {
  6455. SERIAL_PROTOCOLPAIR(" @", e);
  6456. SERIAL_PROTOCOLCHAR(':');
  6457. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  6458. }
  6459. #endif
  6460. }
  6461. #endif
  6462. /**
  6463. * M105: Read hot end and bed temperature
  6464. */
  6465. inline void gcode_M105() {
  6466. if (get_target_extruder_from_command(105)) return;
  6467. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6468. SERIAL_PROTOCOLPGM(MSG_OK);
  6469. print_heaterstates();
  6470. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  6471. SERIAL_ERROR_START();
  6472. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  6473. #endif
  6474. SERIAL_EOL();
  6475. }
  6476. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6477. static uint8_t auto_report_temp_interval;
  6478. static millis_t next_temp_report_ms;
  6479. /**
  6480. * M155: Set temperature auto-report interval. M155 S<seconds>
  6481. */
  6482. inline void gcode_M155() {
  6483. if (parser.seenval('S')) {
  6484. auto_report_temp_interval = parser.value_byte();
  6485. NOMORE(auto_report_temp_interval, 60);
  6486. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6487. }
  6488. }
  6489. inline void auto_report_temperatures() {
  6490. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  6491. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6492. print_heaterstates();
  6493. SERIAL_EOL();
  6494. }
  6495. }
  6496. #endif // AUTO_REPORT_TEMPERATURES
  6497. #if FAN_COUNT > 0
  6498. /**
  6499. * M106: Set Fan Speed
  6500. *
  6501. * S<int> Speed between 0-255
  6502. * P<index> Fan index, if more than one fan
  6503. *
  6504. * With EXTRA_FAN_SPEED enabled:
  6505. *
  6506. * T<int> Restore/Use/Set Temporary Speed:
  6507. * 1 = Restore previous speed after T2
  6508. * 2 = Use temporary speed set with T3-255
  6509. * 3-255 = Set the speed for use with T2
  6510. */
  6511. inline void gcode_M106() {
  6512. const uint8_t p = parser.byteval('P');
  6513. if (p < FAN_COUNT) {
  6514. #if ENABLED(EXTRA_FAN_SPEED)
  6515. const int16_t t = parser.intval('T');
  6516. NOMORE(t, 255);
  6517. if (t > 0) {
  6518. switch (t) {
  6519. case 1:
  6520. fanSpeeds[p] = old_fanSpeeds[p];
  6521. break;
  6522. case 2:
  6523. old_fanSpeeds[p] = fanSpeeds[p];
  6524. fanSpeeds[p] = new_fanSpeeds[p];
  6525. break;
  6526. default:
  6527. new_fanSpeeds[p] = t;
  6528. break;
  6529. }
  6530. return;
  6531. }
  6532. #endif // EXTRA_FAN_SPEED
  6533. const uint16_t s = parser.ushortval('S', 255);
  6534. fanSpeeds[p] = min(s, 255);
  6535. }
  6536. }
  6537. /**
  6538. * M107: Fan Off
  6539. */
  6540. inline void gcode_M107() {
  6541. const uint16_t p = parser.ushortval('P');
  6542. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  6543. }
  6544. #endif // FAN_COUNT > 0
  6545. #if DISABLED(EMERGENCY_PARSER)
  6546. /**
  6547. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  6548. */
  6549. inline void gcode_M108() { wait_for_heatup = false; }
  6550. /**
  6551. * M112: Emergency Stop
  6552. */
  6553. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  6554. /**
  6555. * M410: Quickstop - Abort all planned moves
  6556. *
  6557. * This will stop the carriages mid-move, so most likely they
  6558. * will be out of sync with the stepper position after this.
  6559. */
  6560. inline void gcode_M410() { quickstop_stepper(); }
  6561. #endif
  6562. /**
  6563. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  6564. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  6565. */
  6566. #ifndef MIN_COOLING_SLOPE_DEG
  6567. #define MIN_COOLING_SLOPE_DEG 1.50
  6568. #endif
  6569. #ifndef MIN_COOLING_SLOPE_TIME
  6570. #define MIN_COOLING_SLOPE_TIME 60
  6571. #endif
  6572. inline void gcode_M109() {
  6573. if (get_target_extruder_from_command(109)) return;
  6574. if (DEBUGGING(DRYRUN)) return;
  6575. #if ENABLED(SINGLENOZZLE)
  6576. if (target_extruder != active_extruder) return;
  6577. #endif
  6578. const bool no_wait_for_cooling = parser.seenval('S');
  6579. if (no_wait_for_cooling || parser.seenval('R')) {
  6580. const int16_t temp = parser.value_celsius();
  6581. thermalManager.setTargetHotend(temp, target_extruder);
  6582. #if ENABLED(DUAL_X_CARRIAGE)
  6583. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6584. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6585. #endif
  6586. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6587. /**
  6588. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  6589. * standby mode, (e.g., in a dual extruder setup) without affecting
  6590. * the running print timer.
  6591. */
  6592. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6593. print_job_timer.stop();
  6594. LCD_MESSAGEPGM(WELCOME_MSG);
  6595. }
  6596. else
  6597. print_job_timer.start();
  6598. #endif
  6599. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6600. }
  6601. else return;
  6602. #if ENABLED(AUTOTEMP)
  6603. planner.autotemp_M104_M109();
  6604. #endif
  6605. #if TEMP_RESIDENCY_TIME > 0
  6606. millis_t residency_start_ms = 0;
  6607. // Loop until the temperature has stabilized
  6608. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  6609. #else
  6610. // Loop until the temperature is very close target
  6611. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  6612. #endif
  6613. float target_temp = -1.0, old_temp = 9999.0;
  6614. bool wants_to_cool = false;
  6615. wait_for_heatup = true;
  6616. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6617. #if DISABLED(BUSY_WHILE_HEATING)
  6618. KEEPALIVE_STATE(NOT_BUSY);
  6619. #endif
  6620. #if ENABLED(PRINTER_EVENT_LEDS)
  6621. const float start_temp = thermalManager.degHotend(target_extruder);
  6622. uint8_t old_blue = 0;
  6623. #endif
  6624. do {
  6625. // Target temperature might be changed during the loop
  6626. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  6627. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  6628. target_temp = thermalManager.degTargetHotend(target_extruder);
  6629. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6630. if (no_wait_for_cooling && wants_to_cool) break;
  6631. }
  6632. now = millis();
  6633. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  6634. next_temp_ms = now + 1000UL;
  6635. print_heaterstates();
  6636. #if TEMP_RESIDENCY_TIME > 0
  6637. SERIAL_PROTOCOLPGM(" W:");
  6638. if (residency_start_ms)
  6639. SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6640. else
  6641. SERIAL_PROTOCOLCHAR('?');
  6642. #endif
  6643. SERIAL_EOL();
  6644. }
  6645. idle();
  6646. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6647. const float temp = thermalManager.degHotend(target_extruder);
  6648. #if ENABLED(PRINTER_EVENT_LEDS)
  6649. // Gradually change LED strip from violet to red as nozzle heats up
  6650. if (!wants_to_cool) {
  6651. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  6652. if (blue != old_blue) {
  6653. old_blue = blue;
  6654. set_led_color(255, 0, blue
  6655. #if ENABLED(NEOPIXEL_LED)
  6656. , 0
  6657. , pixels.getBrightness()
  6658. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6659. , true
  6660. #endif
  6661. #endif
  6662. );
  6663. }
  6664. }
  6665. #endif
  6666. #if TEMP_RESIDENCY_TIME > 0
  6667. const float temp_diff = FABS(target_temp - temp);
  6668. if (!residency_start_ms) {
  6669. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  6670. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  6671. }
  6672. else if (temp_diff > TEMP_HYSTERESIS) {
  6673. // Restart the timer whenever the temperature falls outside the hysteresis.
  6674. residency_start_ms = now;
  6675. }
  6676. #endif
  6677. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  6678. if (wants_to_cool) {
  6679. // break after MIN_COOLING_SLOPE_TIME seconds
  6680. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  6681. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6682. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  6683. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  6684. old_temp = temp;
  6685. }
  6686. }
  6687. } while (wait_for_heatup && TEMP_CONDITIONS);
  6688. if (wait_for_heatup) {
  6689. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  6690. #if ENABLED(PRINTER_EVENT_LEDS)
  6691. #if ENABLED(RGB_LED) || ENABLED(BLINKM) || ENABLED(PCA9632) || ENABLED(RGBW_LED)
  6692. set_led_color(LED_WHITE);
  6693. #endif
  6694. #if ENABLED(NEOPIXEL_LED)
  6695. set_neopixel_color(pixels.Color(NEO_WHITE));
  6696. #endif
  6697. #endif
  6698. }
  6699. #if DISABLED(BUSY_WHILE_HEATING)
  6700. KEEPALIVE_STATE(IN_HANDLER);
  6701. #endif
  6702. }
  6703. #if HAS_TEMP_BED
  6704. #ifndef MIN_COOLING_SLOPE_DEG_BED
  6705. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  6706. #endif
  6707. #ifndef MIN_COOLING_SLOPE_TIME_BED
  6708. #define MIN_COOLING_SLOPE_TIME_BED 60
  6709. #endif
  6710. /**
  6711. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  6712. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  6713. */
  6714. inline void gcode_M190() {
  6715. if (DEBUGGING(DRYRUN)) return;
  6716. LCD_MESSAGEPGM(MSG_BED_HEATING);
  6717. const bool no_wait_for_cooling = parser.seenval('S');
  6718. if (no_wait_for_cooling || parser.seenval('R')) {
  6719. thermalManager.setTargetBed(parser.value_celsius());
  6720. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6721. if (parser.value_celsius() > BED_MINTEMP)
  6722. print_job_timer.start();
  6723. #endif
  6724. }
  6725. else return;
  6726. #if TEMP_BED_RESIDENCY_TIME > 0
  6727. millis_t residency_start_ms = 0;
  6728. // Loop until the temperature has stabilized
  6729. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  6730. #else
  6731. // Loop until the temperature is very close target
  6732. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  6733. #endif
  6734. float target_temp = -1.0, old_temp = 9999.0;
  6735. bool wants_to_cool = false;
  6736. wait_for_heatup = true;
  6737. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6738. #if DISABLED(BUSY_WHILE_HEATING)
  6739. KEEPALIVE_STATE(NOT_BUSY);
  6740. #endif
  6741. target_extruder = active_extruder; // for print_heaterstates
  6742. #if ENABLED(PRINTER_EVENT_LEDS)
  6743. const float start_temp = thermalManager.degBed();
  6744. uint8_t old_red = 255;
  6745. #endif
  6746. do {
  6747. // Target temperature might be changed during the loop
  6748. if (target_temp != thermalManager.degTargetBed()) {
  6749. wants_to_cool = thermalManager.isCoolingBed();
  6750. target_temp = thermalManager.degTargetBed();
  6751. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6752. if (no_wait_for_cooling && wants_to_cool) break;
  6753. }
  6754. now = millis();
  6755. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  6756. next_temp_ms = now + 1000UL;
  6757. print_heaterstates();
  6758. #if TEMP_BED_RESIDENCY_TIME > 0
  6759. SERIAL_PROTOCOLPGM(" W:");
  6760. if (residency_start_ms)
  6761. SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6762. else
  6763. SERIAL_PROTOCOLCHAR('?');
  6764. #endif
  6765. SERIAL_EOL();
  6766. }
  6767. idle();
  6768. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6769. const float temp = thermalManager.degBed();
  6770. #if ENABLED(PRINTER_EVENT_LEDS)
  6771. // Gradually change LED strip from blue to violet as bed heats up
  6772. if (!wants_to_cool) {
  6773. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  6774. if (red != old_red) {
  6775. old_red = red;
  6776. set_led_color(red, 0, 255
  6777. #if ENABLED(NEOPIXEL_LED)
  6778. , 0, pixels.getBrightness()
  6779. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6780. , true
  6781. #endif
  6782. #endif
  6783. );
  6784. }
  6785. }
  6786. #endif
  6787. #if TEMP_BED_RESIDENCY_TIME > 0
  6788. const float temp_diff = FABS(target_temp - temp);
  6789. if (!residency_start_ms) {
  6790. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  6791. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  6792. }
  6793. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  6794. // Restart the timer whenever the temperature falls outside the hysteresis.
  6795. residency_start_ms = now;
  6796. }
  6797. #endif // TEMP_BED_RESIDENCY_TIME > 0
  6798. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  6799. if (wants_to_cool) {
  6800. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  6801. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  6802. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6803. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  6804. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  6805. old_temp = temp;
  6806. }
  6807. }
  6808. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  6809. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  6810. #if DISABLED(BUSY_WHILE_HEATING)
  6811. KEEPALIVE_STATE(IN_HANDLER);
  6812. #endif
  6813. }
  6814. #endif // HAS_TEMP_BED
  6815. /**
  6816. * M110: Set Current Line Number
  6817. */
  6818. inline void gcode_M110() {
  6819. if (parser.seenval('N')) gcode_LastN = parser.value_long();
  6820. }
  6821. /**
  6822. * M111: Set the debug level
  6823. */
  6824. inline void gcode_M111() {
  6825. if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
  6826. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
  6827. str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
  6828. str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
  6829. str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
  6830. str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
  6831. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6832. , str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
  6833. #endif
  6834. ;
  6835. const static char* const debug_strings[] PROGMEM = {
  6836. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
  6837. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6838. , str_debug_32
  6839. #endif
  6840. };
  6841. SERIAL_ECHO_START();
  6842. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6843. if (marlin_debug_flags) {
  6844. uint8_t comma = 0;
  6845. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6846. if (TEST(marlin_debug_flags, i)) {
  6847. if (comma++) SERIAL_CHAR(',');
  6848. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6849. }
  6850. }
  6851. }
  6852. else {
  6853. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6854. }
  6855. SERIAL_EOL();
  6856. }
  6857. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6858. /**
  6859. * M113: Get or set Host Keepalive interval (0 to disable)
  6860. *
  6861. * S<seconds> Optional. Set the keepalive interval.
  6862. */
  6863. inline void gcode_M113() {
  6864. if (parser.seenval('S')) {
  6865. host_keepalive_interval = parser.value_byte();
  6866. NOMORE(host_keepalive_interval, 60);
  6867. }
  6868. else {
  6869. SERIAL_ECHO_START();
  6870. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6871. }
  6872. }
  6873. #endif
  6874. #if ENABLED(BARICUDA)
  6875. #if HAS_HEATER_1
  6876. /**
  6877. * M126: Heater 1 valve open
  6878. */
  6879. inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
  6880. /**
  6881. * M127: Heater 1 valve close
  6882. */
  6883. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6884. #endif
  6885. #if HAS_HEATER_2
  6886. /**
  6887. * M128: Heater 2 valve open
  6888. */
  6889. inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
  6890. /**
  6891. * M129: Heater 2 valve close
  6892. */
  6893. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6894. #endif
  6895. #endif // BARICUDA
  6896. /**
  6897. * M140: Set bed temperature
  6898. */
  6899. inline void gcode_M140() {
  6900. if (DEBUGGING(DRYRUN)) return;
  6901. if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
  6902. }
  6903. #if ENABLED(ULTIPANEL)
  6904. /**
  6905. * M145: Set the heatup state for a material in the LCD menu
  6906. *
  6907. * S<material> (0=PLA, 1=ABS)
  6908. * H<hotend temp>
  6909. * B<bed temp>
  6910. * F<fan speed>
  6911. */
  6912. inline void gcode_M145() {
  6913. const uint8_t material = (uint8_t)parser.intval('S');
  6914. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6915. SERIAL_ERROR_START();
  6916. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6917. }
  6918. else {
  6919. int v;
  6920. if (parser.seenval('H')) {
  6921. v = parser.value_int();
  6922. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  6923. }
  6924. if (parser.seenval('F')) {
  6925. v = parser.value_int();
  6926. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  6927. }
  6928. #if TEMP_SENSOR_BED != 0
  6929. if (parser.seenval('B')) {
  6930. v = parser.value_int();
  6931. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  6932. }
  6933. #endif
  6934. }
  6935. }
  6936. #endif // ULTIPANEL
  6937. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6938. /**
  6939. * M149: Set temperature units
  6940. */
  6941. inline void gcode_M149() {
  6942. if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
  6943. else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
  6944. else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
  6945. }
  6946. #endif
  6947. #if HAS_POWER_SWITCH
  6948. /**
  6949. * M80 : Turn on the Power Supply
  6950. * M80 S : Report the current state and exit
  6951. */
  6952. inline void gcode_M80() {
  6953. // S: Report the current power supply state and exit
  6954. if (parser.seen('S')) {
  6955. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  6956. return;
  6957. }
  6958. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  6959. /**
  6960. * If you have a switch on suicide pin, this is useful
  6961. * if you want to start another print with suicide feature after
  6962. * a print without suicide...
  6963. */
  6964. #if HAS_SUICIDE
  6965. OUT_WRITE(SUICIDE_PIN, HIGH);
  6966. #endif
  6967. #if ENABLED(HAVE_TMC2130)
  6968. delay(100);
  6969. tmc2130_init(); // Settings only stick when the driver has power
  6970. #endif
  6971. powersupply_on = true;
  6972. #if ENABLED(ULTIPANEL)
  6973. LCD_MESSAGEPGM(WELCOME_MSG);
  6974. #endif
  6975. }
  6976. #endif // HAS_POWER_SWITCH
  6977. /**
  6978. * M81: Turn off Power, including Power Supply, if there is one.
  6979. *
  6980. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  6981. */
  6982. inline void gcode_M81() {
  6983. thermalManager.disable_all_heaters();
  6984. stepper.finish_and_disable();
  6985. #if FAN_COUNT > 0
  6986. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  6987. #if ENABLED(PROBING_FANS_OFF)
  6988. fans_paused = false;
  6989. ZERO(paused_fanSpeeds);
  6990. #endif
  6991. #endif
  6992. safe_delay(1000); // Wait 1 second before switching off
  6993. #if HAS_SUICIDE
  6994. stepper.synchronize();
  6995. suicide();
  6996. #elif HAS_POWER_SWITCH
  6997. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  6998. powersupply_on = false;
  6999. #endif
  7000. #if ENABLED(ULTIPANEL)
  7001. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  7002. #endif
  7003. }
  7004. /**
  7005. * M82: Set E codes absolute (default)
  7006. */
  7007. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  7008. /**
  7009. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  7010. */
  7011. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  7012. /**
  7013. * M18, M84: Disable stepper motors
  7014. */
  7015. inline void gcode_M18_M84() {
  7016. if (parser.seenval('S')) {
  7017. stepper_inactive_time = parser.value_millis_from_seconds();
  7018. }
  7019. else {
  7020. bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
  7021. if (all_axis) {
  7022. stepper.finish_and_disable();
  7023. }
  7024. else {
  7025. stepper.synchronize();
  7026. if (parser.seen('X')) disable_X();
  7027. if (parser.seen('Y')) disable_Y();
  7028. if (parser.seen('Z')) disable_Z();
  7029. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
  7030. if (parser.seen('E')) disable_e_steppers();
  7031. #endif
  7032. }
  7033. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  7034. ubl_lcd_map_control = defer_return_to_status = false;
  7035. #endif
  7036. }
  7037. }
  7038. /**
  7039. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  7040. */
  7041. inline void gcode_M85() {
  7042. if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
  7043. }
  7044. /**
  7045. * Multi-stepper support for M92, M201, M203
  7046. */
  7047. #if ENABLED(DISTINCT_E_FACTORS)
  7048. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  7049. #define TARGET_EXTRUDER target_extruder
  7050. #else
  7051. #define GET_TARGET_EXTRUDER(CMD) NOOP
  7052. #define TARGET_EXTRUDER 0
  7053. #endif
  7054. /**
  7055. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  7056. * (Follows the same syntax as G92)
  7057. *
  7058. * With multiple extruders use T to specify which one.
  7059. */
  7060. inline void gcode_M92() {
  7061. GET_TARGET_EXTRUDER(92);
  7062. LOOP_XYZE(i) {
  7063. if (parser.seen(axis_codes[i])) {
  7064. if (i == E_AXIS) {
  7065. const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  7066. if (value < 20.0) {
  7067. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  7068. planner.max_jerk[E_AXIS] *= factor;
  7069. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  7070. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  7071. }
  7072. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  7073. }
  7074. else {
  7075. planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
  7076. }
  7077. }
  7078. }
  7079. planner.refresh_positioning();
  7080. }
  7081. /**
  7082. * Output the current position to serial
  7083. */
  7084. void report_current_position() {
  7085. SERIAL_PROTOCOLPGM("X:");
  7086. SERIAL_PROTOCOL(current_position[X_AXIS]);
  7087. SERIAL_PROTOCOLPGM(" Y:");
  7088. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  7089. SERIAL_PROTOCOLPGM(" Z:");
  7090. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  7091. SERIAL_PROTOCOLPGM(" E:");
  7092. SERIAL_PROTOCOL(current_position[E_AXIS]);
  7093. stepper.report_positions();
  7094. #if IS_SCARA
  7095. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  7096. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  7097. SERIAL_EOL();
  7098. #endif
  7099. }
  7100. #ifdef M114_DETAIL
  7101. void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
  7102. char str[12];
  7103. for (uint8_t i = 0; i < n; i++) {
  7104. SERIAL_CHAR(' ');
  7105. SERIAL_CHAR(axis_codes[i]);
  7106. SERIAL_CHAR(':');
  7107. SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
  7108. }
  7109. SERIAL_EOL();
  7110. }
  7111. inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
  7112. void report_current_position_detail() {
  7113. stepper.synchronize();
  7114. SERIAL_PROTOCOLPGM("\nLogical:");
  7115. report_xyze(current_position);
  7116. SERIAL_PROTOCOLPGM("Raw: ");
  7117. const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) };
  7118. report_xyz(raw);
  7119. SERIAL_PROTOCOLPGM("Leveled:");
  7120. float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  7121. planner.apply_leveling(leveled);
  7122. report_xyz(leveled);
  7123. SERIAL_PROTOCOLPGM("UnLevel:");
  7124. float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
  7125. planner.unapply_leveling(unleveled);
  7126. report_xyz(unleveled);
  7127. #if IS_KINEMATIC
  7128. #if IS_SCARA
  7129. SERIAL_PROTOCOLPGM("ScaraK: ");
  7130. #else
  7131. SERIAL_PROTOCOLPGM("DeltaK: ");
  7132. #endif
  7133. inverse_kinematics(leveled); // writes delta[]
  7134. report_xyz(delta);
  7135. #endif
  7136. SERIAL_PROTOCOLPGM("Stepper:");
  7137. const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
  7138. report_xyze(step_count, 4, 0);
  7139. #if IS_SCARA
  7140. const float deg[XYZ] = {
  7141. stepper.get_axis_position_degrees(A_AXIS),
  7142. stepper.get_axis_position_degrees(B_AXIS)
  7143. };
  7144. SERIAL_PROTOCOLPGM("Degrees:");
  7145. report_xyze(deg, 2);
  7146. #endif
  7147. SERIAL_PROTOCOLPGM("FromStp:");
  7148. get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
  7149. const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
  7150. report_xyze(from_steppers);
  7151. const float diff[XYZE] = {
  7152. from_steppers[X_AXIS] - leveled[X_AXIS],
  7153. from_steppers[Y_AXIS] - leveled[Y_AXIS],
  7154. from_steppers[Z_AXIS] - leveled[Z_AXIS],
  7155. from_steppers[E_AXIS] - current_position[E_AXIS]
  7156. };
  7157. SERIAL_PROTOCOLPGM("Differ: ");
  7158. report_xyze(diff);
  7159. }
  7160. #endif // M114_DETAIL
  7161. /**
  7162. * M114: Report current position to host
  7163. */
  7164. inline void gcode_M114() {
  7165. #ifdef M114_DETAIL
  7166. if (parser.seen('D')) {
  7167. report_current_position_detail();
  7168. return;
  7169. }
  7170. #endif
  7171. stepper.synchronize();
  7172. report_current_position();
  7173. }
  7174. /**
  7175. * M115: Capabilities string
  7176. */
  7177. inline void gcode_M115() {
  7178. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  7179. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  7180. // EEPROM (M500, M501)
  7181. #if ENABLED(EEPROM_SETTINGS)
  7182. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  7183. #else
  7184. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  7185. #endif
  7186. // AUTOREPORT_TEMP (M155)
  7187. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  7188. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  7189. #else
  7190. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  7191. #endif
  7192. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  7193. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  7194. // Print Job timer M75, M76, M77
  7195. SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
  7196. // AUTOLEVEL (G29)
  7197. #if HAS_ABL
  7198. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  7199. #else
  7200. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  7201. #endif
  7202. // Z_PROBE (G30)
  7203. #if HAS_BED_PROBE
  7204. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  7205. #else
  7206. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  7207. #endif
  7208. // MESH_REPORT (M420 V)
  7209. #if HAS_LEVELING
  7210. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  7211. #else
  7212. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  7213. #endif
  7214. // BUILD_PERCENT (M73)
  7215. #if ENABLED(LCD_SET_PROGRESS_MANUALLY)
  7216. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:1");
  7217. #else
  7218. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:0");
  7219. #endif
  7220. // SOFTWARE_POWER (M80, M81)
  7221. #if HAS_POWER_SWITCH
  7222. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  7223. #else
  7224. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  7225. #endif
  7226. // CASE LIGHTS (M355)
  7227. #if HAS_CASE_LIGHT
  7228. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  7229. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  7230. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
  7231. }
  7232. else
  7233. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7234. #else
  7235. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  7236. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7237. #endif
  7238. // EMERGENCY_PARSER (M108, M112, M410)
  7239. #if ENABLED(EMERGENCY_PARSER)
  7240. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  7241. #else
  7242. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  7243. #endif
  7244. #endif // EXTENDED_CAPABILITIES_REPORT
  7245. }
  7246. /**
  7247. * M117: Set LCD Status Message
  7248. */
  7249. inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
  7250. /**
  7251. * M118: Display a message in the host console.
  7252. *
  7253. * A Append '// ' for an action command, as in OctoPrint
  7254. * E Have the host 'echo:' the text
  7255. */
  7256. inline void gcode_M118() {
  7257. if (parser.boolval('E')) SERIAL_ECHO_START();
  7258. if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
  7259. SERIAL_ECHOLN(parser.string_arg);
  7260. }
  7261. /**
  7262. * M119: Output endstop states to serial output
  7263. */
  7264. inline void gcode_M119() { endstops.M119(); }
  7265. /**
  7266. * M120: Enable endstops and set non-homing endstop state to "enabled"
  7267. */
  7268. inline void gcode_M120() { endstops.enable_globally(true); }
  7269. /**
  7270. * M121: Disable endstops and set non-homing endstop state to "disabled"
  7271. */
  7272. inline void gcode_M121() { endstops.enable_globally(false); }
  7273. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7274. /**
  7275. * M125: Store current position and move to filament change position.
  7276. * Called on pause (by M25) to prevent material leaking onto the
  7277. * object. On resume (M24) the head will be moved back and the
  7278. * print will resume.
  7279. *
  7280. * If Marlin is compiled without SD Card support, M125 can be
  7281. * used directly to pause the print and move to park position,
  7282. * resuming with a button click or M108.
  7283. *
  7284. * L = override retract length
  7285. * X = override X
  7286. * Y = override Y
  7287. * Z = override Z raise
  7288. */
  7289. inline void gcode_M125() {
  7290. // Initial retract before move to filament change position
  7291. const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  7292. #ifdef PAUSE_PARK_RETRACT_LENGTH
  7293. - (PAUSE_PARK_RETRACT_LENGTH)
  7294. #endif
  7295. ;
  7296. // Lift Z axis
  7297. const float z_lift = parser.linearval('Z')
  7298. #ifdef PAUSE_PARK_Z_ADD
  7299. + PAUSE_PARK_Z_ADD
  7300. #endif
  7301. ;
  7302. // Move XY axes to filament change position or given position
  7303. const float x_pos = parser.linearval('X')
  7304. #ifdef PAUSE_PARK_X_POS
  7305. + PAUSE_PARK_X_POS
  7306. #endif
  7307. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7308. + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
  7309. #endif
  7310. ;
  7311. const float y_pos = parser.linearval('Y')
  7312. #ifdef PAUSE_PARK_Y_POS
  7313. + PAUSE_PARK_Y_POS
  7314. #endif
  7315. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7316. + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
  7317. #endif
  7318. ;
  7319. #if DISABLED(SDSUPPORT)
  7320. const bool job_running = print_job_timer.isRunning();
  7321. #endif
  7322. if (pause_print(retract, z_lift, x_pos, y_pos)) {
  7323. #if DISABLED(SDSUPPORT)
  7324. // Wait for lcd click or M108
  7325. wait_for_filament_reload();
  7326. // Return to print position and continue
  7327. resume_print();
  7328. if (job_running) print_job_timer.start();
  7329. #endif
  7330. }
  7331. }
  7332. #endif // PARK_HEAD_ON_PAUSE
  7333. #if HAS_COLOR_LEDS
  7334. /**
  7335. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  7336. * and Brightness - Use P (for NEOPIXEL only)
  7337. *
  7338. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  7339. * If brightness is left out, no value changed
  7340. *
  7341. * Examples:
  7342. *
  7343. * M150 R255 ; Turn LED red
  7344. * M150 R255 U127 ; Turn LED orange (PWM only)
  7345. * M150 ; Turn LED off
  7346. * M150 R U B ; Turn LED white
  7347. * M150 W ; Turn LED white using a white LED
  7348. * M150 P127 ; Set LED 50% brightness
  7349. * M150 P ; Set LED full brightness
  7350. */
  7351. inline void gcode_M150() {
  7352. set_led_color(
  7353. parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7354. parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7355. parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7356. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_LED)
  7357. , parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7358. #if ENABLED(NEOPIXEL_LED)
  7359. , parser.seen('P') ? (parser.has_value() ? parser.value_byte() : 255) : pixels.getBrightness()
  7360. #endif
  7361. #endif
  7362. );
  7363. }
  7364. #endif // HAS_COLOR_LEDS
  7365. /**
  7366. * M200: Set filament diameter and set E axis units to cubic units
  7367. *
  7368. * T<extruder> - Optional extruder number. Current extruder if omitted.
  7369. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  7370. */
  7371. inline void gcode_M200() {
  7372. if (get_target_extruder_from_command(200)) return;
  7373. if (parser.seen('D')) {
  7374. // setting any extruder filament size disables volumetric on the assumption that
  7375. // slicers either generate in extruder values as cubic mm or as as filament feeds
  7376. // for all extruders
  7377. volumetric_enabled = (parser.value_linear_units() != 0.0);
  7378. if (volumetric_enabled) {
  7379. filament_size[target_extruder] = parser.value_linear_units();
  7380. // make sure all extruders have some sane value for the filament size
  7381. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7382. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  7383. }
  7384. }
  7385. calculate_volumetric_multipliers();
  7386. }
  7387. /**
  7388. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  7389. *
  7390. * With multiple extruders use T to specify which one.
  7391. */
  7392. inline void gcode_M201() {
  7393. GET_TARGET_EXTRUDER(201);
  7394. LOOP_XYZE(i) {
  7395. if (parser.seen(axis_codes[i])) {
  7396. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7397. planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
  7398. }
  7399. }
  7400. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  7401. planner.reset_acceleration_rates();
  7402. }
  7403. #if 0 // Not used for Sprinter/grbl gen6
  7404. inline void gcode_M202() {
  7405. LOOP_XYZE(i) {
  7406. if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  7407. }
  7408. }
  7409. #endif
  7410. /**
  7411. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  7412. *
  7413. * With multiple extruders use T to specify which one.
  7414. */
  7415. inline void gcode_M203() {
  7416. GET_TARGET_EXTRUDER(203);
  7417. LOOP_XYZE(i)
  7418. if (parser.seen(axis_codes[i])) {
  7419. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7420. planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
  7421. }
  7422. }
  7423. /**
  7424. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  7425. *
  7426. * P = Printing moves
  7427. * R = Retract only (no X, Y, Z) moves
  7428. * T = Travel (non printing) moves
  7429. *
  7430. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  7431. */
  7432. inline void gcode_M204() {
  7433. if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  7434. planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
  7435. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  7436. }
  7437. if (parser.seen('P')) {
  7438. planner.acceleration = parser.value_linear_units();
  7439. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  7440. }
  7441. if (parser.seen('R')) {
  7442. planner.retract_acceleration = parser.value_linear_units();
  7443. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  7444. }
  7445. if (parser.seen('T')) {
  7446. planner.travel_acceleration = parser.value_linear_units();
  7447. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  7448. }
  7449. }
  7450. /**
  7451. * M205: Set Advanced Settings
  7452. *
  7453. * S = Min Feed Rate (units/s)
  7454. * T = Min Travel Feed Rate (units/s)
  7455. * B = Min Segment Time (µs)
  7456. * X = Max X Jerk (units/sec^2)
  7457. * Y = Max Y Jerk (units/sec^2)
  7458. * Z = Max Z Jerk (units/sec^2)
  7459. * E = Max E Jerk (units/sec^2)
  7460. */
  7461. inline void gcode_M205() {
  7462. if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  7463. if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  7464. if (parser.seen('B')) planner.min_segment_time_us = parser.value_ulong();
  7465. if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  7466. if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  7467. if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  7468. if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
  7469. }
  7470. #if HAS_M206_COMMAND
  7471. /**
  7472. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  7473. *
  7474. * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
  7475. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
  7476. * *** In the next 1.2 release, it will simply be disabled by default.
  7477. */
  7478. inline void gcode_M206() {
  7479. LOOP_XYZ(i)
  7480. if (parser.seen(axis_codes[i]))
  7481. set_home_offset((AxisEnum)i, parser.value_linear_units());
  7482. #if ENABLED(MORGAN_SCARA)
  7483. if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta
  7484. if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi
  7485. #endif
  7486. SYNC_PLAN_POSITION_KINEMATIC();
  7487. report_current_position();
  7488. }
  7489. #endif // HAS_M206_COMMAND
  7490. #if ENABLED(DELTA)
  7491. /**
  7492. * M665: Set delta configurations
  7493. *
  7494. * H = delta height
  7495. * L = diagonal rod
  7496. * R = delta radius
  7497. * S = segments per second
  7498. * B = delta calibration radius
  7499. * X = Alpha (Tower 1) angle trim
  7500. * Y = Beta (Tower 2) angle trim
  7501. * Z = Rotate A and B by this angle
  7502. */
  7503. inline void gcode_M665() {
  7504. if (parser.seen('H')) {
  7505. home_offset[Z_AXIS] = parser.value_linear_units() - DELTA_HEIGHT;
  7506. update_software_endstops(Z_AXIS);
  7507. }
  7508. if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
  7509. if (parser.seen('R')) delta_radius = parser.value_linear_units();
  7510. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7511. if (parser.seen('B')) delta_calibration_radius = parser.value_float();
  7512. if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
  7513. if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
  7514. if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
  7515. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  7516. }
  7517. /**
  7518. * M666: Set delta endstop adjustment
  7519. */
  7520. inline void gcode_M666() {
  7521. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7522. if (DEBUGGING(LEVELING)) {
  7523. SERIAL_ECHOLNPGM(">>> gcode_M666");
  7524. }
  7525. #endif
  7526. LOOP_XYZ(i) {
  7527. if (parser.seen(axis_codes[i])) {
  7528. if (parser.value_linear_units() * Z_HOME_DIR <= 0)
  7529. delta_endstop_adj[i] = parser.value_linear_units();
  7530. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7531. if (DEBUGGING(LEVELING)) {
  7532. SERIAL_ECHOPAIR("delta_endstop_adj[", axis_codes[i]);
  7533. SERIAL_ECHOLNPAIR("] = ", delta_endstop_adj[i]);
  7534. }
  7535. #endif
  7536. }
  7537. }
  7538. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7539. if (DEBUGGING(LEVELING)) {
  7540. SERIAL_ECHOLNPGM("<<< gcode_M666");
  7541. }
  7542. #endif
  7543. }
  7544. #elif IS_SCARA
  7545. /**
  7546. * M665: Set SCARA settings
  7547. *
  7548. * Parameters:
  7549. *
  7550. * S[segments-per-second] - Segments-per-second
  7551. * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
  7552. * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
  7553. *
  7554. * A, P, and X are all aliases for the shoulder angle
  7555. * B, T, and Y are all aliases for the elbow angle
  7556. */
  7557. inline void gcode_M665() {
  7558. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7559. const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
  7560. const uint8_t sumAPX = hasA + hasP + hasX;
  7561. if (sumAPX == 1)
  7562. home_offset[A_AXIS] = parser.value_float();
  7563. else if (sumAPX > 1) {
  7564. SERIAL_ERROR_START();
  7565. SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
  7566. return;
  7567. }
  7568. const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
  7569. const uint8_t sumBTY = hasB + hasT + hasY;
  7570. if (sumBTY == 1)
  7571. home_offset[B_AXIS] = parser.value_float();
  7572. else if (sumBTY > 1) {
  7573. SERIAL_ERROR_START();
  7574. SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
  7575. return;
  7576. }
  7577. }
  7578. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  7579. /**
  7580. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  7581. */
  7582. inline void gcode_M666() {
  7583. SERIAL_ECHOPGM("Dual Endstop Adjustment (mm): ");
  7584. #if ENABLED(X_DUAL_ENDSTOPS)
  7585. if (parser.seen('X')) x_endstop_adj = parser.value_linear_units();
  7586. SERIAL_ECHOPAIR(" X", x_endstop_adj);
  7587. #endif
  7588. #if ENABLED(Y_DUAL_ENDSTOPS)
  7589. if (parser.seen('Y')) y_endstop_adj = parser.value_linear_units();
  7590. SERIAL_ECHOPAIR(" Y", y_endstop_adj);
  7591. #endif
  7592. #if ENABLED(Z_DUAL_ENDSTOPS)
  7593. if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
  7594. SERIAL_ECHOPAIR(" Z", z_endstop_adj);
  7595. #endif
  7596. SERIAL_EOL();
  7597. }
  7598. #endif // !DELTA && Z_DUAL_ENDSTOPS
  7599. #if ENABLED(FWRETRACT)
  7600. /**
  7601. * M207: Set firmware retraction values
  7602. *
  7603. * S[+units] retract_length
  7604. * W[+units] swap_retract_length (multi-extruder)
  7605. * F[units/min] retract_feedrate_mm_s
  7606. * Z[units] retract_zlift
  7607. */
  7608. inline void gcode_M207() {
  7609. if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
  7610. if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7611. if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
  7612. if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS);
  7613. }
  7614. /**
  7615. * M208: Set firmware un-retraction values
  7616. *
  7617. * S[+units] retract_recover_length (in addition to M207 S*)
  7618. * W[+units] swap_retract_recover_length (multi-extruder)
  7619. * F[units/min] retract_recover_feedrate_mm_s
  7620. * R[units/min] swap_retract_recover_feedrate_mm_s
  7621. */
  7622. inline void gcode_M208() {
  7623. if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
  7624. if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7625. if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7626. if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS);
  7627. }
  7628. /**
  7629. * M209: Enable automatic retract (M209 S1)
  7630. * For slicers that don't support G10/11, reversed extrude-only
  7631. * moves will be classified as retraction.
  7632. */
  7633. inline void gcode_M209() {
  7634. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  7635. if (parser.seen('S')) {
  7636. autoretract_enabled = parser.value_bool();
  7637. for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  7638. }
  7639. }
  7640. }
  7641. #endif // FWRETRACT
  7642. /**
  7643. * M211: Enable, Disable, and/or Report software endstops
  7644. *
  7645. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  7646. */
  7647. inline void gcode_M211() {
  7648. SERIAL_ECHO_START();
  7649. #if HAS_SOFTWARE_ENDSTOPS
  7650. if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
  7651. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7652. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  7653. #else
  7654. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7655. SERIAL_ECHOPGM(MSG_OFF);
  7656. #endif
  7657. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  7658. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  7659. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  7660. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  7661. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  7662. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  7663. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  7664. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  7665. }
  7666. #if HOTENDS > 1
  7667. /**
  7668. * M218 - set hotend offset (in linear units)
  7669. *
  7670. * T<tool>
  7671. * X<xoffset>
  7672. * Y<yoffset>
  7673. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  7674. */
  7675. inline void gcode_M218() {
  7676. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  7677. if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
  7678. if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
  7679. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7680. if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
  7681. #endif
  7682. SERIAL_ECHO_START();
  7683. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7684. HOTEND_LOOP() {
  7685. SERIAL_CHAR(' ');
  7686. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  7687. SERIAL_CHAR(',');
  7688. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  7689. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7690. SERIAL_CHAR(',');
  7691. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  7692. #endif
  7693. }
  7694. SERIAL_EOL();
  7695. }
  7696. #endif // HOTENDS > 1
  7697. /**
  7698. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  7699. */
  7700. inline void gcode_M220() {
  7701. if (parser.seenval('S')) feedrate_percentage = parser.value_int();
  7702. }
  7703. /**
  7704. * M221: Set extrusion percentage (M221 T0 S95)
  7705. */
  7706. inline void gcode_M221() {
  7707. if (get_target_extruder_from_command(221)) return;
  7708. if (parser.seenval('S'))
  7709. flow_percentage[target_extruder] = parser.value_int();
  7710. }
  7711. /**
  7712. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  7713. */
  7714. inline void gcode_M226() {
  7715. if (parser.seen('P')) {
  7716. const int pin_number = parser.value_int(),
  7717. pin_state = parser.intval('S', -1); // required pin state - default is inverted
  7718. if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
  7719. int target = LOW;
  7720. stepper.synchronize();
  7721. pinMode(pin_number, INPUT);
  7722. switch (pin_state) {
  7723. case 1:
  7724. target = HIGH;
  7725. break;
  7726. case 0:
  7727. target = LOW;
  7728. break;
  7729. case -1:
  7730. target = !digitalRead(pin_number);
  7731. break;
  7732. }
  7733. while (digitalRead(pin_number) != target) idle();
  7734. } // pin_state -1 0 1 && pin_number > -1
  7735. } // parser.seen('P')
  7736. }
  7737. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7738. /**
  7739. * M260: Send data to a I2C slave device
  7740. *
  7741. * This is a PoC, the formating and arguments for the GCODE will
  7742. * change to be more compatible, the current proposal is:
  7743. *
  7744. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  7745. *
  7746. * M260 B<byte-1 value in base 10>
  7747. * M260 B<byte-2 value in base 10>
  7748. * M260 B<byte-3 value in base 10>
  7749. *
  7750. * M260 S1 ; Send the buffered data and reset the buffer
  7751. * M260 R1 ; Reset the buffer without sending data
  7752. *
  7753. */
  7754. inline void gcode_M260() {
  7755. // Set the target address
  7756. if (parser.seen('A')) i2c.address(parser.value_byte());
  7757. // Add a new byte to the buffer
  7758. if (parser.seen('B')) i2c.addbyte(parser.value_byte());
  7759. // Flush the buffer to the bus
  7760. if (parser.seen('S')) i2c.send();
  7761. // Reset and rewind the buffer
  7762. else if (parser.seen('R')) i2c.reset();
  7763. }
  7764. /**
  7765. * M261: Request X bytes from I2C slave device
  7766. *
  7767. * Usage: M261 A<slave device address base 10> B<number of bytes>
  7768. */
  7769. inline void gcode_M261() {
  7770. if (parser.seen('A')) i2c.address(parser.value_byte());
  7771. uint8_t bytes = parser.byteval('B', 1);
  7772. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  7773. i2c.relay(bytes);
  7774. }
  7775. else {
  7776. SERIAL_ERROR_START();
  7777. SERIAL_ERRORLN("Bad i2c request");
  7778. }
  7779. }
  7780. #endif // EXPERIMENTAL_I2CBUS
  7781. #if HAS_SERVOS
  7782. /**
  7783. * M280: Get or set servo position. P<index> [S<angle>]
  7784. */
  7785. inline void gcode_M280() {
  7786. if (!parser.seen('P')) return;
  7787. const int servo_index = parser.value_int();
  7788. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  7789. if (parser.seen('S'))
  7790. MOVE_SERVO(servo_index, parser.value_int());
  7791. else {
  7792. SERIAL_ECHO_START();
  7793. SERIAL_ECHOPAIR(" Servo ", servo_index);
  7794. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  7795. }
  7796. }
  7797. else {
  7798. SERIAL_ERROR_START();
  7799. SERIAL_ECHOPAIR("Servo ", servo_index);
  7800. SERIAL_ECHOLNPGM(" out of range");
  7801. }
  7802. }
  7803. #endif // HAS_SERVOS
  7804. #if ENABLED(BABYSTEPPING)
  7805. /**
  7806. * M290: Babystepping
  7807. */
  7808. inline void gcode_M290() {
  7809. #if ENABLED(BABYSTEP_XY)
  7810. for (uint8_t a = X_AXIS; a <= Z_AXIS; a++)
  7811. if (parser.seenval(axis_codes[a]) || (a == Z_AXIS && parser.seenval('S'))) {
  7812. float offs = parser.value_axis_units(a);
  7813. constrain(offs, -2, 2);
  7814. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7815. if (a == Z_AXIS) {
  7816. zprobe_zoffset += offs;
  7817. refresh_zprobe_zoffset(true); // 'true' to not babystep
  7818. }
  7819. #endif
  7820. thermalManager.babystep_axis(a, offs * planner.axis_steps_per_mm[a]);
  7821. }
  7822. #else
  7823. if (parser.seenval('Z') || parser.seenval('S')) {
  7824. float offs = parser.value_axis_units(Z_AXIS);
  7825. constrain(offs, -2, 2);
  7826. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7827. zprobe_zoffset += offs;
  7828. refresh_zprobe_zoffset(); // This will babystep the axis
  7829. #else
  7830. thermalManager.babystep_axis(Z_AXIS, parser.value_axis_units(Z_AXIS) * planner.axis_steps_per_mm[Z_AXIS]);
  7831. #endif
  7832. }
  7833. #endif
  7834. }
  7835. #endif // BABYSTEPPING
  7836. #if HAS_BUZZER
  7837. /**
  7838. * M300: Play beep sound S<frequency Hz> P<duration ms>
  7839. */
  7840. inline void gcode_M300() {
  7841. uint16_t const frequency = parser.ushortval('S', 260);
  7842. uint16_t duration = parser.ushortval('P', 1000);
  7843. // Limits the tone duration to 0-5 seconds.
  7844. NOMORE(duration, 5000);
  7845. BUZZ(duration, frequency);
  7846. }
  7847. #endif // HAS_BUZZER
  7848. #if ENABLED(PIDTEMP)
  7849. /**
  7850. * M301: Set PID parameters P I D (and optionally C, L)
  7851. *
  7852. * P[float] Kp term
  7853. * I[float] Ki term (unscaled)
  7854. * D[float] Kd term (unscaled)
  7855. *
  7856. * With PID_EXTRUSION_SCALING:
  7857. *
  7858. * C[float] Kc term
  7859. * L[float] LPQ length
  7860. */
  7861. inline void gcode_M301() {
  7862. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  7863. // default behaviour (omitting E parameter) is to update for extruder 0 only
  7864. const uint8_t e = parser.byteval('E'); // extruder being updated
  7865. if (e < HOTENDS) { // catch bad input value
  7866. if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
  7867. if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
  7868. if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
  7869. #if ENABLED(PID_EXTRUSION_SCALING)
  7870. if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
  7871. if (parser.seen('L')) lpq_len = parser.value_float();
  7872. NOMORE(lpq_len, LPQ_MAX_LEN);
  7873. #endif
  7874. thermalManager.updatePID();
  7875. SERIAL_ECHO_START();
  7876. #if ENABLED(PID_PARAMS_PER_HOTEND)
  7877. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  7878. #endif // PID_PARAMS_PER_HOTEND
  7879. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  7880. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  7881. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  7882. #if ENABLED(PID_EXTRUSION_SCALING)
  7883. //Kc does not have scaling applied above, or in resetting defaults
  7884. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  7885. #endif
  7886. SERIAL_EOL();
  7887. }
  7888. else {
  7889. SERIAL_ERROR_START();
  7890. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  7891. }
  7892. }
  7893. #endif // PIDTEMP
  7894. #if ENABLED(PIDTEMPBED)
  7895. inline void gcode_M304() {
  7896. if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
  7897. if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
  7898. if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
  7899. thermalManager.updatePID();
  7900. SERIAL_ECHO_START();
  7901. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  7902. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  7903. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  7904. }
  7905. #endif // PIDTEMPBED
  7906. #if defined(CHDK) || HAS_PHOTOGRAPH
  7907. /**
  7908. * M240: Trigger a camera by emulating a Canon RC-1
  7909. * See http://www.doc-diy.net/photo/rc-1_hacked/
  7910. */
  7911. inline void gcode_M240() {
  7912. #ifdef CHDK
  7913. OUT_WRITE(CHDK, HIGH);
  7914. chdkHigh = millis();
  7915. chdkActive = true;
  7916. #elif HAS_PHOTOGRAPH
  7917. const uint8_t NUM_PULSES = 16;
  7918. const float PULSE_LENGTH = 0.01524;
  7919. for (int i = 0; i < NUM_PULSES; i++) {
  7920. WRITE(PHOTOGRAPH_PIN, HIGH);
  7921. _delay_ms(PULSE_LENGTH);
  7922. WRITE(PHOTOGRAPH_PIN, LOW);
  7923. _delay_ms(PULSE_LENGTH);
  7924. }
  7925. delay(7.33);
  7926. for (int i = 0; i < NUM_PULSES; i++) {
  7927. WRITE(PHOTOGRAPH_PIN, HIGH);
  7928. _delay_ms(PULSE_LENGTH);
  7929. WRITE(PHOTOGRAPH_PIN, LOW);
  7930. _delay_ms(PULSE_LENGTH);
  7931. }
  7932. #endif // !CHDK && HAS_PHOTOGRAPH
  7933. }
  7934. #endif // CHDK || PHOTOGRAPH_PIN
  7935. #if HAS_LCD_CONTRAST
  7936. /**
  7937. * M250: Read and optionally set the LCD contrast
  7938. */
  7939. inline void gcode_M250() {
  7940. if (parser.seen('C')) set_lcd_contrast(parser.value_int());
  7941. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  7942. SERIAL_PROTOCOL(lcd_contrast);
  7943. SERIAL_EOL();
  7944. }
  7945. #endif // HAS_LCD_CONTRAST
  7946. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7947. /**
  7948. * M302: Allow cold extrudes, or set the minimum extrude temperature
  7949. *
  7950. * S<temperature> sets the minimum extrude temperature
  7951. * P<bool> enables (1) or disables (0) cold extrusion
  7952. *
  7953. * Examples:
  7954. *
  7955. * M302 ; report current cold extrusion state
  7956. * M302 P0 ; enable cold extrusion checking
  7957. * M302 P1 ; disables cold extrusion checking
  7958. * M302 S0 ; always allow extrusion (disables checking)
  7959. * M302 S170 ; only allow extrusion above 170
  7960. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  7961. */
  7962. inline void gcode_M302() {
  7963. const bool seen_S = parser.seen('S');
  7964. if (seen_S) {
  7965. thermalManager.extrude_min_temp = parser.value_celsius();
  7966. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  7967. }
  7968. if (parser.seen('P'))
  7969. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
  7970. else if (!seen_S) {
  7971. // Report current state
  7972. SERIAL_ECHO_START();
  7973. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  7974. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  7975. SERIAL_ECHOLNPGM("C)");
  7976. }
  7977. }
  7978. #endif // PREVENT_COLD_EXTRUSION
  7979. /**
  7980. * M303: PID relay autotune
  7981. *
  7982. * S<temperature> sets the target temperature. (default 150C)
  7983. * E<extruder> (-1 for the bed) (default 0)
  7984. * C<cycles>
  7985. * U<bool> with a non-zero value will apply the result to current settings
  7986. */
  7987. inline void gcode_M303() {
  7988. #if HAS_PID_HEATING
  7989. const int e = parser.intval('E'), c = parser.intval('C', 5);
  7990. const bool u = parser.boolval('U');
  7991. int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
  7992. if (WITHIN(e, 0, HOTENDS - 1))
  7993. target_extruder = e;
  7994. #if DISABLED(BUSY_WHILE_HEATING)
  7995. KEEPALIVE_STATE(NOT_BUSY);
  7996. #endif
  7997. thermalManager.PID_autotune(temp, e, c, u);
  7998. #if DISABLED(BUSY_WHILE_HEATING)
  7999. KEEPALIVE_STATE(IN_HANDLER);
  8000. #endif
  8001. #else
  8002. SERIAL_ERROR_START();
  8003. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  8004. #endif
  8005. }
  8006. #if ENABLED(MORGAN_SCARA)
  8007. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  8008. if (IsRunning()) {
  8009. forward_kinematics_SCARA(delta_a, delta_b);
  8010. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  8011. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  8012. destination[Z_AXIS] = current_position[Z_AXIS];
  8013. prepare_move_to_destination();
  8014. return true;
  8015. }
  8016. return false;
  8017. }
  8018. /**
  8019. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  8020. */
  8021. inline bool gcode_M360() {
  8022. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  8023. return SCARA_move_to_cal(0, 120);
  8024. }
  8025. /**
  8026. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  8027. */
  8028. inline bool gcode_M361() {
  8029. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  8030. return SCARA_move_to_cal(90, 130);
  8031. }
  8032. /**
  8033. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  8034. */
  8035. inline bool gcode_M362() {
  8036. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  8037. return SCARA_move_to_cal(60, 180);
  8038. }
  8039. /**
  8040. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  8041. */
  8042. inline bool gcode_M363() {
  8043. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  8044. return SCARA_move_to_cal(50, 90);
  8045. }
  8046. /**
  8047. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  8048. */
  8049. inline bool gcode_M364() {
  8050. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  8051. return SCARA_move_to_cal(45, 135);
  8052. }
  8053. #endif // SCARA
  8054. #if ENABLED(EXT_SOLENOID)
  8055. void enable_solenoid(const uint8_t num) {
  8056. switch (num) {
  8057. case 0:
  8058. OUT_WRITE(SOL0_PIN, HIGH);
  8059. break;
  8060. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  8061. case 1:
  8062. OUT_WRITE(SOL1_PIN, HIGH);
  8063. break;
  8064. #endif
  8065. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  8066. case 2:
  8067. OUT_WRITE(SOL2_PIN, HIGH);
  8068. break;
  8069. #endif
  8070. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  8071. case 3:
  8072. OUT_WRITE(SOL3_PIN, HIGH);
  8073. break;
  8074. #endif
  8075. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  8076. case 4:
  8077. OUT_WRITE(SOL4_PIN, HIGH);
  8078. break;
  8079. #endif
  8080. default:
  8081. SERIAL_ECHO_START();
  8082. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  8083. break;
  8084. }
  8085. }
  8086. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  8087. void disable_all_solenoids() {
  8088. OUT_WRITE(SOL0_PIN, LOW);
  8089. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  8090. OUT_WRITE(SOL1_PIN, LOW);
  8091. #endif
  8092. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  8093. OUT_WRITE(SOL2_PIN, LOW);
  8094. #endif
  8095. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  8096. OUT_WRITE(SOL3_PIN, LOW);
  8097. #endif
  8098. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  8099. OUT_WRITE(SOL4_PIN, LOW);
  8100. #endif
  8101. }
  8102. /**
  8103. * M380: Enable solenoid on the active extruder
  8104. */
  8105. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  8106. /**
  8107. * M381: Disable all solenoids
  8108. */
  8109. inline void gcode_M381() { disable_all_solenoids(); }
  8110. #endif // EXT_SOLENOID
  8111. /**
  8112. * M400: Finish all moves
  8113. */
  8114. inline void gcode_M400() { stepper.synchronize(); }
  8115. #if HAS_BED_PROBE
  8116. /**
  8117. * M401: Engage Z Servo endstop if available
  8118. */
  8119. inline void gcode_M401() { DEPLOY_PROBE(); }
  8120. /**
  8121. * M402: Retract Z Servo endstop if enabled
  8122. */
  8123. inline void gcode_M402() { STOW_PROBE(); }
  8124. #endif // HAS_BED_PROBE
  8125. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8126. /**
  8127. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  8128. */
  8129. inline void gcode_M404() {
  8130. if (parser.seen('W')) {
  8131. filament_width_nominal = parser.value_linear_units();
  8132. }
  8133. else {
  8134. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  8135. SERIAL_PROTOCOLLN(filament_width_nominal);
  8136. }
  8137. }
  8138. /**
  8139. * M405: Turn on filament sensor for control
  8140. */
  8141. inline void gcode_M405() {
  8142. // This is technically a linear measurement, but since it's quantized to centimeters and is a different
  8143. // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
  8144. if (parser.seen('D')) {
  8145. meas_delay_cm = parser.value_byte();
  8146. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  8147. }
  8148. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  8149. const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  8150. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  8151. measurement_delay[i] = temp_ratio;
  8152. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  8153. }
  8154. filament_sensor = true;
  8155. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  8156. //SERIAL_PROTOCOL(filament_width_meas);
  8157. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  8158. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  8159. }
  8160. /**
  8161. * M406: Turn off filament sensor for control
  8162. */
  8163. inline void gcode_M406() {
  8164. filament_sensor = false;
  8165. calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
  8166. }
  8167. /**
  8168. * M407: Get measured filament diameter on serial output
  8169. */
  8170. inline void gcode_M407() {
  8171. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  8172. SERIAL_PROTOCOLLN(filament_width_meas);
  8173. }
  8174. #endif // FILAMENT_WIDTH_SENSOR
  8175. void quickstop_stepper() {
  8176. stepper.quick_stop();
  8177. stepper.synchronize();
  8178. set_current_from_steppers_for_axis(ALL_AXES);
  8179. SYNC_PLAN_POSITION_KINEMATIC();
  8180. }
  8181. #if HAS_LEVELING
  8182. /**
  8183. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  8184. *
  8185. * S[bool] Turns leveling on or off
  8186. * Z[height] Sets the Z fade height (0 or none to disable)
  8187. * V[bool] Verbose - Print the leveling grid
  8188. *
  8189. * With AUTO_BED_LEVELING_UBL only:
  8190. *
  8191. * L[index] Load UBL mesh from index (0 is default)
  8192. */
  8193. inline void gcode_M420() {
  8194. #if ENABLED(AUTO_BED_LEVELING_UBL)
  8195. // L to load a mesh from the EEPROM
  8196. if (parser.seen('L')) {
  8197. #if ENABLED(EEPROM_SETTINGS)
  8198. const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot;
  8199. const int16_t a = settings.calc_num_meshes();
  8200. if (!a) {
  8201. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  8202. return;
  8203. }
  8204. if (!WITHIN(storage_slot, 0, a - 1)) {
  8205. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  8206. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  8207. return;
  8208. }
  8209. settings.load_mesh(storage_slot);
  8210. ubl.storage_slot = storage_slot;
  8211. #else
  8212. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  8213. return;
  8214. #endif
  8215. }
  8216. // L to load a mesh from the EEPROM
  8217. if (parser.seen('L') || parser.seen('V')) {
  8218. ubl.display_map(0); // Currently only supports one map type
  8219. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  8220. SERIAL_ECHOLNPAIR("ubl.storage_slot = ", ubl.storage_slot);
  8221. }
  8222. #endif // AUTO_BED_LEVELING_UBL
  8223. // V to print the matrix or mesh
  8224. if (parser.seen('V')) {
  8225. #if ABL_PLANAR
  8226. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  8227. #else
  8228. if (leveling_is_valid()) {
  8229. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8230. print_bilinear_leveling_grid();
  8231. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8232. print_bilinear_leveling_grid_virt();
  8233. #endif
  8234. #elif ENABLED(MESH_BED_LEVELING)
  8235. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  8236. mbl_mesh_report();
  8237. #endif
  8238. }
  8239. #endif
  8240. }
  8241. const bool to_enable = parser.boolval('S');
  8242. if (parser.seen('S'))
  8243. set_bed_leveling_enabled(to_enable);
  8244. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  8245. if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
  8246. #endif
  8247. const bool new_status = planner.leveling_active;
  8248. if (to_enable && !new_status) {
  8249. SERIAL_ERROR_START();
  8250. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  8251. }
  8252. SERIAL_ECHO_START();
  8253. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  8254. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  8255. SERIAL_ECHO_START();
  8256. SERIAL_ECHOPGM("Fade Height ");
  8257. if (planner.z_fade_height > 0.0)
  8258. SERIAL_ECHOLN(planner.z_fade_height);
  8259. else
  8260. SERIAL_ECHOLNPGM(MSG_OFF);
  8261. #endif
  8262. }
  8263. #endif
  8264. #if ENABLED(MESH_BED_LEVELING)
  8265. /**
  8266. * M421: Set a single Mesh Bed Leveling Z coordinate
  8267. *
  8268. * Usage:
  8269. * M421 X<linear> Y<linear> Z<linear>
  8270. * M421 X<linear> Y<linear> Q<offset>
  8271. * M421 I<xindex> J<yindex> Z<linear>
  8272. * M421 I<xindex> J<yindex> Q<offset>
  8273. */
  8274. inline void gcode_M421() {
  8275. const bool hasX = parser.seen('X'), hasI = parser.seen('I');
  8276. const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
  8277. const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
  8278. const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1;
  8279. const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
  8280. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  8281. SERIAL_ERROR_START();
  8282. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8283. }
  8284. else if (ix < 0 || iy < 0) {
  8285. SERIAL_ERROR_START();
  8286. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8287. }
  8288. else
  8289. mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  8290. }
  8291. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8292. /**
  8293. * M421: Set a single Mesh Bed Leveling Z coordinate
  8294. *
  8295. * Usage:
  8296. * M421 I<xindex> J<yindex> Z<linear>
  8297. * M421 I<xindex> J<yindex> Q<offset>
  8298. */
  8299. inline void gcode_M421() {
  8300. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8301. const bool hasI = ix >= 0,
  8302. hasJ = iy >= 0,
  8303. hasZ = parser.seen('Z'),
  8304. hasQ = !hasZ && parser.seen('Q');
  8305. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  8306. SERIAL_ERROR_START();
  8307. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8308. }
  8309. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8310. SERIAL_ERROR_START();
  8311. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8312. }
  8313. else {
  8314. z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  8315. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8316. bed_level_virt_interpolate();
  8317. #endif
  8318. }
  8319. }
  8320. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8321. /**
  8322. * M421: Set a single Mesh Bed Leveling Z coordinate
  8323. *
  8324. * Usage:
  8325. * M421 I<xindex> J<yindex> Z<linear>
  8326. * M421 I<xindex> J<yindex> Q<offset>
  8327. * M421 C Z<linear>
  8328. * M421 C Q<offset>
  8329. */
  8330. inline void gcode_M421() {
  8331. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8332. const bool hasI = ix >= 0,
  8333. hasJ = iy >= 0,
  8334. hasC = parser.seen('C'),
  8335. hasZ = parser.seen('Z'),
  8336. hasQ = !hasZ && parser.seen('Q');
  8337. if (hasC) {
  8338. const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
  8339. ix = location.x_index;
  8340. iy = location.y_index;
  8341. }
  8342. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  8343. SERIAL_ERROR_START();
  8344. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8345. }
  8346. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8347. SERIAL_ERROR_START();
  8348. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8349. }
  8350. else
  8351. ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  8352. }
  8353. #endif // AUTO_BED_LEVELING_UBL
  8354. #if HAS_M206_COMMAND
  8355. /**
  8356. * M428: Set home_offset based on the distance between the
  8357. * current_position and the nearest "reference point."
  8358. * If an axis is past center its endstop position
  8359. * is the reference-point. Otherwise it uses 0. This allows
  8360. * the Z offset to be set near the bed when using a max endstop.
  8361. *
  8362. * M428 can't be used more than 2cm away from 0 or an endstop.
  8363. *
  8364. * Use M206 to set these values directly.
  8365. */
  8366. inline void gcode_M428() {
  8367. bool err = false;
  8368. LOOP_XYZ(i) {
  8369. if (axis_homed[i]) {
  8370. const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  8371. diff = base - RAW_POSITION(current_position[i], i);
  8372. if (WITHIN(diff, -20, 20)) {
  8373. set_home_offset((AxisEnum)i, diff);
  8374. }
  8375. else {
  8376. SERIAL_ERROR_START();
  8377. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  8378. LCD_ALERTMESSAGEPGM("Err: Too far!");
  8379. BUZZ(200, 40);
  8380. err = true;
  8381. break;
  8382. }
  8383. }
  8384. }
  8385. if (!err) {
  8386. SYNC_PLAN_POSITION_KINEMATIC();
  8387. report_current_position();
  8388. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  8389. BUZZ(100, 659);
  8390. BUZZ(100, 698);
  8391. }
  8392. }
  8393. #endif // HAS_M206_COMMAND
  8394. /**
  8395. * M500: Store settings in EEPROM
  8396. */
  8397. inline void gcode_M500() {
  8398. (void)settings.save();
  8399. }
  8400. /**
  8401. * M501: Read settings from EEPROM
  8402. */
  8403. inline void gcode_M501() {
  8404. (void)settings.load();
  8405. }
  8406. /**
  8407. * M502: Revert to default settings
  8408. */
  8409. inline void gcode_M502() {
  8410. (void)settings.reset();
  8411. }
  8412. #if DISABLED(DISABLE_M503)
  8413. /**
  8414. * M503: print settings currently in memory
  8415. */
  8416. inline void gcode_M503() {
  8417. (void)settings.report(parser.boolval('S'));
  8418. }
  8419. #endif
  8420. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8421. /**
  8422. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  8423. */
  8424. inline void gcode_M540() {
  8425. if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  8426. }
  8427. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  8428. #if HAS_BED_PROBE
  8429. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  8430. static float last_zoffset = NAN;
  8431. if (!isnan(last_zoffset)) {
  8432. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  8433. const float diff = zprobe_zoffset - last_zoffset;
  8434. #endif
  8435. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8436. // Correct bilinear grid for new probe offset
  8437. if (diff) {
  8438. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  8439. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  8440. z_values[x][y] -= diff;
  8441. }
  8442. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8443. bed_level_virt_interpolate();
  8444. #endif
  8445. #endif
  8446. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  8447. if (!no_babystep && planner.leveling_active)
  8448. thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
  8449. #else
  8450. UNUSED(no_babystep);
  8451. #endif
  8452. #if ENABLED(DELTA) // correct the delta_height
  8453. home_offset[Z_AXIS] -= diff;
  8454. #endif
  8455. }
  8456. last_zoffset = zprobe_zoffset;
  8457. }
  8458. inline void gcode_M851() {
  8459. SERIAL_ECHO_START();
  8460. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  8461. if (parser.seen('Z')) {
  8462. const float value = parser.value_linear_units();
  8463. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  8464. zprobe_zoffset = value;
  8465. refresh_zprobe_zoffset();
  8466. SERIAL_ECHO(zprobe_zoffset);
  8467. }
  8468. else
  8469. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  8470. }
  8471. else
  8472. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  8473. SERIAL_EOL();
  8474. }
  8475. #endif // HAS_BED_PROBE
  8476. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  8477. /**
  8478. * M600: Pause for filament change
  8479. *
  8480. * E[distance] - Retract the filament this far (negative value)
  8481. * Z[distance] - Move the Z axis by this distance
  8482. * X[position] - Move to this X position, with Y
  8483. * Y[position] - Move to this Y position, with X
  8484. * U[distance] - Retract distance for removal (negative value) (manual reload)
  8485. * L[distance] - Extrude distance for insertion (positive value) (manual reload)
  8486. * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
  8487. *
  8488. * Default values are used for omitted arguments.
  8489. *
  8490. */
  8491. inline void gcode_M600() {
  8492. #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
  8493. // Don't allow filament change without homing first
  8494. if (axis_unhomed_error()) home_all_axes();
  8495. #endif
  8496. // Initial retract before move to filament change position
  8497. const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
  8498. #ifdef PAUSE_PARK_RETRACT_LENGTH
  8499. - (PAUSE_PARK_RETRACT_LENGTH)
  8500. #endif
  8501. ;
  8502. // Lift Z axis
  8503. const float z_lift = parser.linearval('Z', 0
  8504. #ifdef PAUSE_PARK_Z_ADD
  8505. + PAUSE_PARK_Z_ADD
  8506. #endif
  8507. );
  8508. // Move XY axes to filament exchange position
  8509. const float x_pos = parser.linearval('X', 0
  8510. #ifdef PAUSE_PARK_X_POS
  8511. + PAUSE_PARK_X_POS
  8512. #endif
  8513. );
  8514. const float y_pos = parser.linearval('Y', 0
  8515. #ifdef PAUSE_PARK_Y_POS
  8516. + PAUSE_PARK_Y_POS
  8517. #endif
  8518. );
  8519. // Unload filament
  8520. const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
  8521. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  8522. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  8523. #endif
  8524. ;
  8525. // Load filament
  8526. const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  8527. #ifdef FILAMENT_CHANGE_LOAD_LENGTH
  8528. + FILAMENT_CHANGE_LOAD_LENGTH
  8529. #endif
  8530. ;
  8531. const int beep_count = parser.intval('B',
  8532. #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8533. FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8534. #else
  8535. -1
  8536. #endif
  8537. );
  8538. const bool job_running = print_job_timer.isRunning();
  8539. if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
  8540. wait_for_filament_reload(beep_count);
  8541. resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
  8542. }
  8543. // Resume the print job timer if it was running
  8544. if (job_running) print_job_timer.start();
  8545. }
  8546. #endif // ADVANCED_PAUSE_FEATURE
  8547. #if ENABLED(MK2_MULTIPLEXER)
  8548. inline void select_multiplexed_stepper(const uint8_t e) {
  8549. stepper.synchronize();
  8550. disable_e_steppers();
  8551. WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8552. WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8553. WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
  8554. safe_delay(100);
  8555. }
  8556. /**
  8557. * M702: Unload all extruders
  8558. */
  8559. inline void gcode_M702() {
  8560. for (uint8_t s = 0; s < E_STEPPERS; s++) {
  8561. select_multiplexed_stepper(e);
  8562. // TODO: standard unload filament function
  8563. // MK2 firmware behavior:
  8564. // - Make sure temperature is high enough
  8565. // - Raise Z to at least 15 to make room
  8566. // - Extrude 1cm of filament in 1 second
  8567. // - Under 230C quickly purge ~12mm, over 230C purge ~10mm
  8568. // - Change E max feedrate to 80, eject the filament from the tube. Sync.
  8569. // - Restore E max feedrate to 50
  8570. }
  8571. // Go back to the last active extruder
  8572. select_multiplexed_stepper(active_extruder);
  8573. disable_e_steppers();
  8574. }
  8575. #endif // MK2_MULTIPLEXER
  8576. #if ENABLED(DUAL_X_CARRIAGE)
  8577. /**
  8578. * M605: Set dual x-carriage movement mode
  8579. *
  8580. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  8581. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  8582. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  8583. * units x-offset and an optional differential hotend temperature of
  8584. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  8585. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  8586. *
  8587. * Note: the X axis should be homed after changing dual x-carriage mode.
  8588. */
  8589. inline void gcode_M605() {
  8590. stepper.synchronize();
  8591. if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
  8592. switch (dual_x_carriage_mode) {
  8593. case DXC_FULL_CONTROL_MODE:
  8594. case DXC_AUTO_PARK_MODE:
  8595. break;
  8596. case DXC_DUPLICATION_MODE:
  8597. if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
  8598. if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
  8599. SERIAL_ECHO_START();
  8600. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  8601. SERIAL_CHAR(' ');
  8602. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  8603. SERIAL_CHAR(',');
  8604. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  8605. SERIAL_CHAR(' ');
  8606. SERIAL_ECHO(duplicate_extruder_x_offset);
  8607. SERIAL_CHAR(',');
  8608. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  8609. break;
  8610. default:
  8611. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  8612. break;
  8613. }
  8614. active_extruder_parked = false;
  8615. extruder_duplication_enabled = false;
  8616. delayed_move_time = 0;
  8617. }
  8618. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  8619. inline void gcode_M605() {
  8620. stepper.synchronize();
  8621. extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
  8622. SERIAL_ECHO_START();
  8623. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  8624. }
  8625. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  8626. #if ENABLED(LIN_ADVANCE)
  8627. /**
  8628. * M900: Set and/or Get advance K factor and WH/D ratio
  8629. *
  8630. * K<factor> Set advance K factor
  8631. * R<ratio> Set ratio directly (overrides WH/D)
  8632. * W<width> H<height> D<diam> Set ratio from WH/D
  8633. */
  8634. inline void gcode_M900() {
  8635. stepper.synchronize();
  8636. const float newK = parser.floatval('K', -1);
  8637. if (newK >= 0) planner.extruder_advance_k = newK;
  8638. float newR = parser.floatval('R', -1);
  8639. if (newR < 0) {
  8640. const float newD = parser.floatval('D', -1),
  8641. newW = parser.floatval('W', -1),
  8642. newH = parser.floatval('H', -1);
  8643. if (newD >= 0 && newW >= 0 && newH >= 0)
  8644. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  8645. }
  8646. if (newR >= 0) planner.advance_ed_ratio = newR;
  8647. SERIAL_ECHO_START();
  8648. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  8649. SERIAL_ECHOPGM(" E/D=");
  8650. const float ratio = planner.advance_ed_ratio;
  8651. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  8652. SERIAL_EOL();
  8653. }
  8654. #endif // LIN_ADVANCE
  8655. #if ENABLED(HAVE_TMC2130)
  8656. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  8657. SERIAL_CHAR(name);
  8658. SERIAL_ECHOPGM(" axis driver current: ");
  8659. SERIAL_ECHOLN(st.getCurrent());
  8660. }
  8661. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  8662. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  8663. tmc2130_get_current(st, name);
  8664. }
  8665. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  8666. SERIAL_CHAR(name);
  8667. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  8668. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  8669. SERIAL_EOL();
  8670. }
  8671. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  8672. st.clear_otpw();
  8673. SERIAL_CHAR(name);
  8674. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  8675. }
  8676. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  8677. SERIAL_CHAR(name);
  8678. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  8679. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  8680. }
  8681. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  8682. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  8683. tmc2130_get_pwmthrs(st, name, spmm);
  8684. }
  8685. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  8686. SERIAL_CHAR(name);
  8687. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  8688. SERIAL_ECHOLN(st.sgt());
  8689. }
  8690. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  8691. st.sgt(sgt_val);
  8692. tmc2130_get_sgt(st, name);
  8693. }
  8694. /**
  8695. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8696. * Report driver currents when no axis specified
  8697. *
  8698. * S1: Enable automatic current control
  8699. * S0: Disable
  8700. */
  8701. inline void gcode_M906() {
  8702. uint16_t values[XYZE];
  8703. LOOP_XYZE(i)
  8704. values[i] = parser.intval(axis_codes[i]);
  8705. #if ENABLED(X_IS_TMC2130)
  8706. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  8707. else tmc2130_get_current(stepperX, 'X');
  8708. #endif
  8709. #if ENABLED(Y_IS_TMC2130)
  8710. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  8711. else tmc2130_get_current(stepperY, 'Y');
  8712. #endif
  8713. #if ENABLED(Z_IS_TMC2130)
  8714. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  8715. else tmc2130_get_current(stepperZ, 'Z');
  8716. #endif
  8717. #if ENABLED(E0_IS_TMC2130)
  8718. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  8719. else tmc2130_get_current(stepperE0, 'E');
  8720. #endif
  8721. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8722. if (parser.seen('S')) auto_current_control = parser.value_bool();
  8723. #endif
  8724. }
  8725. /**
  8726. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  8727. * The flag is held by the library and persist until manually cleared by M912
  8728. */
  8729. inline void gcode_M911() {
  8730. const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
  8731. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  8732. #if ENABLED(X_IS_TMC2130)
  8733. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  8734. #endif
  8735. #if ENABLED(Y_IS_TMC2130)
  8736. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  8737. #endif
  8738. #if ENABLED(Z_IS_TMC2130)
  8739. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  8740. #endif
  8741. #if ENABLED(E0_IS_TMC2130)
  8742. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  8743. #endif
  8744. }
  8745. /**
  8746. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  8747. */
  8748. inline void gcode_M912() {
  8749. const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
  8750. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  8751. #if ENABLED(X_IS_TMC2130)
  8752. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  8753. #endif
  8754. #if ENABLED(Y_IS_TMC2130)
  8755. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  8756. #endif
  8757. #if ENABLED(Z_IS_TMC2130)
  8758. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  8759. #endif
  8760. #if ENABLED(E0_IS_TMC2130)
  8761. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  8762. #endif
  8763. }
  8764. /**
  8765. * M913: Set HYBRID_THRESHOLD speed.
  8766. */
  8767. #if ENABLED(HYBRID_THRESHOLD)
  8768. inline void gcode_M913() {
  8769. uint16_t values[XYZE];
  8770. LOOP_XYZE(i)
  8771. values[i] = parser.intval(axis_codes[i]);
  8772. #if ENABLED(X_IS_TMC2130)
  8773. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  8774. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  8775. #endif
  8776. #if ENABLED(Y_IS_TMC2130)
  8777. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  8778. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  8779. #endif
  8780. #if ENABLED(Z_IS_TMC2130)
  8781. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  8782. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  8783. #endif
  8784. #if ENABLED(E0_IS_TMC2130)
  8785. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  8786. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  8787. #endif
  8788. }
  8789. #endif // HYBRID_THRESHOLD
  8790. /**
  8791. * M914: Set SENSORLESS_HOMING sensitivity.
  8792. */
  8793. #if ENABLED(SENSORLESS_HOMING)
  8794. inline void gcode_M914() {
  8795. #if ENABLED(X_IS_TMC2130)
  8796. if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
  8797. else tmc2130_get_sgt(stepperX, 'X');
  8798. #endif
  8799. #if ENABLED(Y_IS_TMC2130)
  8800. if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
  8801. else tmc2130_get_sgt(stepperY, 'Y');
  8802. #endif
  8803. }
  8804. #endif // SENSORLESS_HOMING
  8805. #endif // HAVE_TMC2130
  8806. /**
  8807. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  8808. */
  8809. inline void gcode_M907() {
  8810. #if HAS_DIGIPOTSS
  8811. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
  8812. if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
  8813. if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  8814. #elif HAS_MOTOR_CURRENT_PWM
  8815. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  8816. if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
  8817. #endif
  8818. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  8819. if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
  8820. #endif
  8821. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  8822. if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
  8823. #endif
  8824. #endif
  8825. #if ENABLED(DIGIPOT_I2C)
  8826. // this one uses actual amps in floating point
  8827. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
  8828. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  8829. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  8830. #endif
  8831. #if ENABLED(DAC_STEPPER_CURRENT)
  8832. if (parser.seen('S')) {
  8833. const float dac_percent = parser.value_float();
  8834. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  8835. }
  8836. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  8837. #endif
  8838. }
  8839. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8840. /**
  8841. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  8842. */
  8843. inline void gcode_M908() {
  8844. #if HAS_DIGIPOTSS
  8845. stepper.digitalPotWrite(
  8846. parser.intval('P'),
  8847. parser.intval('S')
  8848. );
  8849. #endif
  8850. #ifdef DAC_STEPPER_CURRENT
  8851. dac_current_raw(
  8852. parser.byteval('P', -1),
  8853. parser.ushortval('S', 0)
  8854. );
  8855. #endif
  8856. }
  8857. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8858. inline void gcode_M909() { dac_print_values(); }
  8859. inline void gcode_M910() { dac_commit_eeprom(); }
  8860. #endif
  8861. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8862. #if HAS_MICROSTEPS
  8863. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8864. inline void gcode_M350() {
  8865. if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
  8866. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
  8867. if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
  8868. stepper.microstep_readings();
  8869. }
  8870. /**
  8871. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  8872. * S# determines MS1 or MS2, X# sets the pin high/low.
  8873. */
  8874. inline void gcode_M351() {
  8875. if (parser.seenval('S')) switch (parser.value_byte()) {
  8876. case 1:
  8877. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
  8878. if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
  8879. break;
  8880. case 2:
  8881. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
  8882. if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
  8883. break;
  8884. }
  8885. stepper.microstep_readings();
  8886. }
  8887. #endif // HAS_MICROSTEPS
  8888. #if HAS_CASE_LIGHT
  8889. #ifndef INVERT_CASE_LIGHT
  8890. #define INVERT_CASE_LIGHT false
  8891. #endif
  8892. uint8_t case_light_brightness; // LCD routine wants INT
  8893. bool case_light_on;
  8894. void update_case_light() {
  8895. pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
  8896. if (case_light_on) {
  8897. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
  8898. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness);
  8899. else
  8900. WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
  8901. }
  8902. else {
  8903. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
  8904. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 : 0);
  8905. else
  8906. WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  8907. }
  8908. }
  8909. #endif // HAS_CASE_LIGHT
  8910. /**
  8911. * M355: Turn case light on/off and set brightness
  8912. *
  8913. * P<byte> Set case light brightness (PWM pin required - ignored otherwise)
  8914. *
  8915. * S<bool> Set case light on/off
  8916. *
  8917. * When S turns on the light on a PWM pin then the current brightness level is used/restored
  8918. *
  8919. * M355 P200 S0 turns off the light & sets the brightness level
  8920. * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
  8921. */
  8922. inline void gcode_M355() {
  8923. #if HAS_CASE_LIGHT
  8924. uint8_t args = 0;
  8925. if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
  8926. if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
  8927. if (args) update_case_light();
  8928. // always report case light status
  8929. SERIAL_ECHO_START();
  8930. if (!case_light_on) {
  8931. SERIAL_ECHOLN("Case light: off");
  8932. }
  8933. else {
  8934. if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
  8935. else SERIAL_ECHOLNPAIR("Case light: ", (int)case_light_brightness);
  8936. }
  8937. #else
  8938. SERIAL_ERROR_START();
  8939. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  8940. #endif // HAS_CASE_LIGHT
  8941. }
  8942. #if ENABLED(MIXING_EXTRUDER)
  8943. /**
  8944. * M163: Set a single mix factor for a mixing extruder
  8945. * This is called "weight" by some systems.
  8946. *
  8947. * S[index] The channel index to set
  8948. * P[float] The mix value
  8949. *
  8950. */
  8951. inline void gcode_M163() {
  8952. const int mix_index = parser.intval('S');
  8953. if (mix_index < MIXING_STEPPERS) {
  8954. float mix_value = parser.floatval('P');
  8955. NOLESS(mix_value, 0.0);
  8956. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  8957. }
  8958. }
  8959. #if MIXING_VIRTUAL_TOOLS > 1
  8960. /**
  8961. * M164: Store the current mix factors as a virtual tool.
  8962. *
  8963. * S[index] The virtual tool to store
  8964. *
  8965. */
  8966. inline void gcode_M164() {
  8967. const int tool_index = parser.intval('S');
  8968. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  8969. normalize_mix();
  8970. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8971. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  8972. }
  8973. }
  8974. #endif
  8975. #if ENABLED(DIRECT_MIXING_IN_G1)
  8976. /**
  8977. * M165: Set multiple mix factors for a mixing extruder.
  8978. * Factors that are left out will be set to 0.
  8979. * All factors together must add up to 1.0.
  8980. *
  8981. * A[factor] Mix factor for extruder stepper 1
  8982. * B[factor] Mix factor for extruder stepper 2
  8983. * C[factor] Mix factor for extruder stepper 3
  8984. * D[factor] Mix factor for extruder stepper 4
  8985. * H[factor] Mix factor for extruder stepper 5
  8986. * I[factor] Mix factor for extruder stepper 6
  8987. *
  8988. */
  8989. inline void gcode_M165() { gcode_get_mix(); }
  8990. #endif
  8991. #endif // MIXING_EXTRUDER
  8992. /**
  8993. * M999: Restart after being stopped
  8994. *
  8995. * Default behaviour is to flush the serial buffer and request
  8996. * a resend to the host starting on the last N line received.
  8997. *
  8998. * Sending "M999 S1" will resume printing without flushing the
  8999. * existing command buffer.
  9000. *
  9001. */
  9002. inline void gcode_M999() {
  9003. Running = true;
  9004. lcd_reset_alert_level();
  9005. if (parser.boolval('S')) return;
  9006. // gcode_LastN = Stopped_gcode_LastN;
  9007. FlushSerialRequestResend();
  9008. }
  9009. #if ENABLED(SWITCHING_EXTRUDER)
  9010. #if EXTRUDERS > 3
  9011. #define REQ_ANGLES 4
  9012. #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
  9013. #else
  9014. #define REQ_ANGLES 2
  9015. #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
  9016. #endif
  9017. inline void move_extruder_servo(const uint8_t e) {
  9018. constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  9019. static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  9020. stepper.synchronize();
  9021. #if EXTRUDERS & 1
  9022. if (e < EXTRUDERS - 1)
  9023. #endif
  9024. {
  9025. MOVE_SERVO(_SERVO_NR, angles[e]);
  9026. safe_delay(500);
  9027. }
  9028. }
  9029. #endif // SWITCHING_EXTRUDER
  9030. #if ENABLED(SWITCHING_NOZZLE)
  9031. inline void move_nozzle_servo(const uint8_t e) {
  9032. const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  9033. stepper.synchronize();
  9034. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  9035. safe_delay(500);
  9036. }
  9037. #endif
  9038. inline void invalid_extruder_error(const uint8_t e) {
  9039. SERIAL_ECHO_START();
  9040. SERIAL_CHAR('T');
  9041. SERIAL_ECHO_F(e, DEC);
  9042. SERIAL_CHAR(' ');
  9043. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  9044. }
  9045. #if ENABLED(PARKING_EXTRUDER)
  9046. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9047. #define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  9048. #else
  9049. #define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  9050. #endif
  9051. void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
  9052. switch (extruder_num) {
  9053. case 1: OUT_WRITE(SOL1_PIN, state); break;
  9054. default: OUT_WRITE(SOL0_PIN, state); break;
  9055. }
  9056. #if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
  9057. dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
  9058. #endif
  9059. }
  9060. inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
  9061. inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
  9062. #endif // PARKING_EXTRUDER
  9063. #if HAS_FANMUX
  9064. void fanmux_switch(const uint8_t e) {
  9065. WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  9066. #if PIN_EXISTS(FANMUX1)
  9067. WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  9068. #if PIN_EXISTS(FANMUX2)
  9069. WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
  9070. #endif
  9071. #endif
  9072. }
  9073. FORCE_INLINE void fanmux_init(void){
  9074. SET_OUTPUT(FANMUX0_PIN);
  9075. #if PIN_EXISTS(FANMUX1)
  9076. SET_OUTPUT(FANMUX1_PIN);
  9077. #if PIN_EXISTS(FANMUX2)
  9078. SET_OUTPUT(FANMUX2_PIN);
  9079. #endif
  9080. #endif
  9081. fanmux_switch(0);
  9082. }
  9083. #endif // HAS_FANMUX
  9084. /**
  9085. * Perform a tool-change, which may result in moving the
  9086. * previous tool out of the way and the new tool into place.
  9087. */
  9088. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  9089. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9090. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  9091. return invalid_extruder_error(tmp_extruder);
  9092. // T0-Tnnn: Switch virtual tool by changing the mix
  9093. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  9094. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  9095. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9096. if (tmp_extruder >= EXTRUDERS)
  9097. return invalid_extruder_error(tmp_extruder);
  9098. #if HOTENDS > 1
  9099. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  9100. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  9101. if (tmp_extruder != active_extruder) {
  9102. if (!no_move && axis_unhomed_error()) {
  9103. no_move = true;
  9104. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9105. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
  9106. #endif
  9107. }
  9108. // Save current position to destination, for use later
  9109. set_destination_from_current();
  9110. #if ENABLED(DUAL_X_CARRIAGE)
  9111. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9112. if (DEBUGGING(LEVELING)) {
  9113. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  9114. switch (dual_x_carriage_mode) {
  9115. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  9116. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  9117. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  9118. }
  9119. }
  9120. #endif
  9121. const float xhome = x_home_pos(active_extruder);
  9122. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  9123. && IsRunning()
  9124. && (delayed_move_time || current_position[X_AXIS] != xhome)
  9125. ) {
  9126. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  9127. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9128. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  9129. #endif
  9130. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9131. if (DEBUGGING(LEVELING)) {
  9132. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  9133. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  9134. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  9135. }
  9136. #endif
  9137. // Park old head: 1) raise 2) move to park position 3) lower
  9138. for (uint8_t i = 0; i < 3; i++)
  9139. planner.buffer_line(
  9140. i == 0 ? current_position[X_AXIS] : xhome,
  9141. current_position[Y_AXIS],
  9142. i == 2 ? current_position[Z_AXIS] : raised_z,
  9143. current_position[E_AXIS],
  9144. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  9145. active_extruder
  9146. );
  9147. stepper.synchronize();
  9148. }
  9149. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  9150. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  9151. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  9152. // Activate the new extruder ahead of calling set_axis_is_at_home!
  9153. active_extruder = tmp_extruder;
  9154. // This function resets the max/min values - the current position may be overwritten below.
  9155. set_axis_is_at_home(X_AXIS);
  9156. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9157. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  9158. #endif
  9159. // Only when auto-parking are carriages safe to move
  9160. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  9161. switch (dual_x_carriage_mode) {
  9162. case DXC_FULL_CONTROL_MODE:
  9163. // New current position is the position of the activated extruder
  9164. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  9165. // Save the inactive extruder's position (from the old current_position)
  9166. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  9167. break;
  9168. case DXC_AUTO_PARK_MODE:
  9169. // record raised toolhead position for use by unpark
  9170. COPY(raised_parked_position, current_position);
  9171. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  9172. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9173. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9174. #endif
  9175. active_extruder_parked = true;
  9176. delayed_move_time = 0;
  9177. break;
  9178. case DXC_DUPLICATION_MODE:
  9179. // If the new extruder is the left one, set it "parked"
  9180. // This triggers the second extruder to move into the duplication position
  9181. active_extruder_parked = (active_extruder == 0);
  9182. if (active_extruder_parked)
  9183. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  9184. else
  9185. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  9186. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  9187. extruder_duplication_enabled = false;
  9188. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9189. if (DEBUGGING(LEVELING)) {
  9190. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  9191. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  9192. }
  9193. #endif
  9194. break;
  9195. }
  9196. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9197. if (DEBUGGING(LEVELING)) {
  9198. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  9199. DEBUG_POS("New extruder (parked)", current_position);
  9200. }
  9201. #endif
  9202. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  9203. #else // !DUAL_X_CARRIAGE
  9204. #if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder
  9205. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  9206. float z_raise = 0;
  9207. if (!no_move) {
  9208. const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
  9209. midpos = ((parkingposx[1] - parkingposx[0])/2) + parkingposx[0] + hotend_offset[X_AXIS][active_extruder],
  9210. grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
  9211. + (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
  9212. /**
  9213. * Steps:
  9214. * 1. Raise Z-Axis to give enough clearance
  9215. * 2. Move to park position of old extruder
  9216. * 3. Disengage magnetic field, wait for delay
  9217. * 4. Move near new extruder
  9218. * 5. Engage magnetic field for new extruder
  9219. * 6. Move to parking incl. offset of new extruder
  9220. * 7. Lower Z-Axis
  9221. */
  9222. // STEP 1
  9223. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9224. SERIAL_ECHOLNPGM("Starting Autopark");
  9225. if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
  9226. #endif
  9227. z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
  9228. current_position[Z_AXIS] += z_raise;
  9229. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9230. SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
  9231. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
  9232. #endif
  9233. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9234. stepper.synchronize();
  9235. // STEP 2
  9236. current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
  9237. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9238. SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
  9239. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
  9240. #endif
  9241. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9242. stepper.synchronize();
  9243. // STEP 3
  9244. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9245. SERIAL_ECHOLNPGM("(3) Disengage magnet ");
  9246. #endif
  9247. pe_deactivate_magnet(active_extruder);
  9248. // STEP 4
  9249. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9250. SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
  9251. #endif
  9252. current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
  9253. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9254. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
  9255. #endif
  9256. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9257. stepper.synchronize();
  9258. // STEP 5
  9259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9260. SERIAL_ECHOLNPGM("(5) Engage magnetic field");
  9261. #endif
  9262. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9263. pe_activate_magnet(active_extruder); //just save power for inverted magnets
  9264. #endif
  9265. pe_activate_magnet(tmp_extruder);
  9266. // STEP 6
  9267. current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
  9268. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9269. current_position[X_AXIS] = grabpos;
  9270. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9271. SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
  9272. if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
  9273. #endif
  9274. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
  9275. stepper.synchronize();
  9276. // Step 7
  9277. current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
  9278. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9279. SERIAL_ECHOLNPGM("(7) Move midway between hotends");
  9280. if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
  9281. #endif
  9282. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9283. stepper.synchronize();
  9284. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9285. SERIAL_ECHOLNPGM("Autopark done.");
  9286. #endif
  9287. }
  9288. else { // nomove == true
  9289. // Only engage magnetic field for new extruder
  9290. pe_activate_magnet(tmp_extruder);
  9291. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9292. pe_activate_magnet(active_extruder); // Just save power for inverted magnets
  9293. #endif
  9294. }
  9295. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; // Apply Zoffset
  9296. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9297. if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
  9298. #endif
  9299. #endif // dualParking extruder
  9300. #if ENABLED(SWITCHING_NOZZLE)
  9301. #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
  9302. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  9303. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  9304. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  9305. // Always raise by some amount (destination copied from current_position earlier)
  9306. current_position[Z_AXIS] += z_raise;
  9307. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9308. move_nozzle_servo(tmp_extruder);
  9309. #endif
  9310. /**
  9311. * Set current_position to the position of the new nozzle.
  9312. * Offsets are based on linear distance, so we need to get
  9313. * the resulting position in coordinate space.
  9314. *
  9315. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  9316. * - With mesh leveling, update Z for the new position
  9317. * - Otherwise, just use the raw linear distance
  9318. *
  9319. * Software endstops are altered here too. Consider a case where:
  9320. * E0 at X=0 ... E1 at X=10
  9321. * When we switch to E1 now X=10, but E1 can't move left.
  9322. * To express this we apply the change in XY to the software endstops.
  9323. * E1 can move farther right than E0, so the right limit is extended.
  9324. *
  9325. * Note that we don't adjust the Z software endstops. Why not?
  9326. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  9327. * because the bed is 1mm lower at the new position. As long as
  9328. * the first nozzle is out of the way, the carriage should be
  9329. * allowed to move 1mm lower. This technically "breaks" the
  9330. * Z software endstop. But this is technically correct (and
  9331. * there is no viable alternative).
  9332. */
  9333. #if ABL_PLANAR
  9334. // Offset extruder, make sure to apply the bed level rotation matrix
  9335. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  9336. hotend_offset[Y_AXIS][tmp_extruder],
  9337. 0),
  9338. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  9339. hotend_offset[Y_AXIS][active_extruder],
  9340. 0),
  9341. offset_vec = tmp_offset_vec - act_offset_vec;
  9342. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9343. if (DEBUGGING(LEVELING)) {
  9344. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  9345. act_offset_vec.debug(PSTR("act_offset_vec"));
  9346. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  9347. }
  9348. #endif
  9349. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  9350. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9351. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  9352. #endif
  9353. // Adjustments to the current position
  9354. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  9355. current_position[Z_AXIS] += offset_vec.z;
  9356. #else // !ABL_PLANAR
  9357. const float xydiff[2] = {
  9358. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  9359. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  9360. };
  9361. #if ENABLED(MESH_BED_LEVELING)
  9362. if (planner.leveling_active) {
  9363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9364. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  9365. #endif
  9366. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  9367. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  9368. z1 = current_position[Z_AXIS], z2 = z1;
  9369. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  9370. planner.apply_leveling(x2, y2, z2);
  9371. current_position[Z_AXIS] += z2 - z1;
  9372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9373. if (DEBUGGING(LEVELING))
  9374. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  9375. #endif
  9376. }
  9377. #endif // MESH_BED_LEVELING
  9378. #endif // !HAS_ABL
  9379. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9380. if (DEBUGGING(LEVELING)) {
  9381. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  9382. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  9383. SERIAL_ECHOLNPGM(" }");
  9384. }
  9385. #endif
  9386. // The newly-selected extruder XY is actually at...
  9387. current_position[X_AXIS] += xydiff[X_AXIS];
  9388. current_position[Y_AXIS] += xydiff[Y_AXIS];
  9389. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(PARKING_EXTRUDER)
  9390. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  9391. #if HAS_POSITION_SHIFT
  9392. position_shift[i] += xydiff[i];
  9393. #endif
  9394. update_software_endstops((AxisEnum)i);
  9395. }
  9396. #endif
  9397. // Set the new active extruder
  9398. active_extruder = tmp_extruder;
  9399. #endif // !DUAL_X_CARRIAGE
  9400. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9401. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  9402. #endif
  9403. // Tell the planner the new "current position"
  9404. SYNC_PLAN_POSITION_KINEMATIC();
  9405. // Move to the "old position" (move the extruder into place)
  9406. if (!no_move && IsRunning()) {
  9407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9408. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  9409. #endif
  9410. prepare_move_to_destination();
  9411. }
  9412. #if ENABLED(SWITCHING_NOZZLE)
  9413. // Move back down, if needed. (Including when the new tool is higher.)
  9414. if (z_raise != z_diff) {
  9415. destination[Z_AXIS] += z_diff;
  9416. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  9417. prepare_move_to_destination();
  9418. }
  9419. #endif
  9420. } // (tmp_extruder != active_extruder)
  9421. stepper.synchronize();
  9422. #if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
  9423. disable_all_solenoids();
  9424. enable_solenoid_on_active_extruder();
  9425. #endif // EXT_SOLENOID
  9426. feedrate_mm_s = old_feedrate_mm_s;
  9427. #else // HOTENDS <= 1
  9428. UNUSED(fr_mm_s);
  9429. UNUSED(no_move);
  9430. #if ENABLED(MK2_MULTIPLEXER)
  9431. if (tmp_extruder >= E_STEPPERS)
  9432. return invalid_extruder_error(tmp_extruder);
  9433. select_multiplexed_stepper(tmp_extruder);
  9434. #endif
  9435. // Set the new active extruder
  9436. active_extruder = tmp_extruder;
  9437. #endif // HOTENDS <= 1
  9438. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  9439. stepper.synchronize();
  9440. move_extruder_servo(active_extruder);
  9441. #endif
  9442. #if HAS_FANMUX
  9443. fanmux_switch(active_extruder);
  9444. #endif
  9445. SERIAL_ECHO_START();
  9446. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  9447. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9448. }
  9449. /**
  9450. * T0-T3: Switch tool, usually switching extruders
  9451. *
  9452. * F[units/min] Set the movement feedrate
  9453. * S1 Don't move the tool in XY after change
  9454. */
  9455. inline void gcode_T(const uint8_t tmp_extruder) {
  9456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9457. if (DEBUGGING(LEVELING)) {
  9458. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  9459. SERIAL_CHAR(')');
  9460. SERIAL_EOL();
  9461. DEBUG_POS("BEFORE", current_position);
  9462. }
  9463. #endif
  9464. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  9465. tool_change(tmp_extruder);
  9466. #elif HOTENDS > 1
  9467. tool_change(
  9468. tmp_extruder,
  9469. MMM_TO_MMS(parser.linearval('F')),
  9470. (tmp_extruder == active_extruder) || parser.boolval('S')
  9471. );
  9472. #endif
  9473. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9474. if (DEBUGGING(LEVELING)) {
  9475. DEBUG_POS("AFTER", current_position);
  9476. SERIAL_ECHOLNPGM("<<< gcode_T");
  9477. }
  9478. #endif
  9479. }
  9480. /**
  9481. * Process a single command and dispatch it to its handler
  9482. * This is called from the main loop()
  9483. */
  9484. void process_next_command() {
  9485. char * const current_command = command_queue[cmd_queue_index_r];
  9486. if (DEBUGGING(ECHO)) {
  9487. SERIAL_ECHO_START();
  9488. SERIAL_ECHOLN(current_command);
  9489. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9490. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  9491. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  9492. #endif
  9493. }
  9494. KEEPALIVE_STATE(IN_HANDLER);
  9495. // Parse the next command in the queue
  9496. parser.parse(current_command);
  9497. // Handle a known G, M, or T
  9498. switch (parser.command_letter) {
  9499. case 'G': switch (parser.codenum) {
  9500. // G0, G1
  9501. case 0:
  9502. case 1:
  9503. #if IS_SCARA
  9504. gcode_G0_G1(parser.codenum == 0);
  9505. #else
  9506. gcode_G0_G1();
  9507. #endif
  9508. break;
  9509. // G2, G3
  9510. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  9511. case 2: // G2: CW ARC
  9512. case 3: // G3: CCW ARC
  9513. gcode_G2_G3(parser.codenum == 2);
  9514. break;
  9515. #endif
  9516. // G4 Dwell
  9517. case 4:
  9518. gcode_G4();
  9519. break;
  9520. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9521. case 5: // G5: Cubic B_spline
  9522. gcode_G5();
  9523. break;
  9524. #endif // BEZIER_CURVE_SUPPORT
  9525. #if ENABLED(FWRETRACT)
  9526. case 10: // G10: retract
  9527. gcode_G10();
  9528. break;
  9529. case 11: // G11: retract_recover
  9530. gcode_G11();
  9531. break;
  9532. #endif // FWRETRACT
  9533. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  9534. case 12:
  9535. gcode_G12(); // G12: Nozzle Clean
  9536. break;
  9537. #endif // NOZZLE_CLEAN_FEATURE
  9538. #if ENABLED(CNC_WORKSPACE_PLANES)
  9539. case 17: // G17: Select Plane XY
  9540. gcode_G17();
  9541. break;
  9542. case 18: // G18: Select Plane ZX
  9543. gcode_G18();
  9544. break;
  9545. case 19: // G19: Select Plane YZ
  9546. gcode_G19();
  9547. break;
  9548. #endif // CNC_WORKSPACE_PLANES
  9549. #if ENABLED(INCH_MODE_SUPPORT)
  9550. case 20: // G20: Inch Mode
  9551. gcode_G20();
  9552. break;
  9553. case 21: // G21: MM Mode
  9554. gcode_G21();
  9555. break;
  9556. #endif // INCH_MODE_SUPPORT
  9557. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  9558. case 26: // G26: Mesh Validation Pattern generation
  9559. gcode_G26();
  9560. break;
  9561. #endif // AUTO_BED_LEVELING_UBL
  9562. #if ENABLED(NOZZLE_PARK_FEATURE)
  9563. case 27: // G27: Nozzle Park
  9564. gcode_G27();
  9565. break;
  9566. #endif // NOZZLE_PARK_FEATURE
  9567. case 28: // G28: Home all axes, one at a time
  9568. gcode_G28(false);
  9569. break;
  9570. #if HAS_LEVELING
  9571. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  9572. // or provides access to the UBL System if enabled.
  9573. gcode_G29();
  9574. break;
  9575. #endif // HAS_LEVELING
  9576. #if HAS_BED_PROBE
  9577. case 30: // G30 Single Z probe
  9578. gcode_G30();
  9579. break;
  9580. #if ENABLED(Z_PROBE_SLED)
  9581. case 31: // G31: dock the sled
  9582. gcode_G31();
  9583. break;
  9584. case 32: // G32: undock the sled
  9585. gcode_G32();
  9586. break;
  9587. #endif // Z_PROBE_SLED
  9588. #endif // HAS_BED_PROBE
  9589. #if PROBE_SELECTED
  9590. #if ENABLED(DELTA_AUTO_CALIBRATION)
  9591. case 33: // G33: Delta Auto-Calibration
  9592. gcode_G33();
  9593. break;
  9594. #endif // DELTA_AUTO_CALIBRATION
  9595. #endif // PROBE_SELECTED
  9596. #if ENABLED(G38_PROBE_TARGET)
  9597. case 38: // G38.2 & G38.3
  9598. if (parser.subcode == 2 || parser.subcode == 3)
  9599. gcode_G38(parser.subcode == 2);
  9600. break;
  9601. #endif
  9602. case 90: // G90
  9603. relative_mode = false;
  9604. break;
  9605. case 91: // G91
  9606. relative_mode = true;
  9607. break;
  9608. case 92: // G92
  9609. gcode_G92();
  9610. break;
  9611. #if HAS_MESH
  9612. case 42:
  9613. gcode_G42();
  9614. break;
  9615. #endif
  9616. #if ENABLED(DEBUG_GCODE_PARSER)
  9617. case 800:
  9618. parser.debug(); // GCode Parser Test for G
  9619. break;
  9620. #endif
  9621. }
  9622. break;
  9623. case 'M': switch (parser.codenum) {
  9624. #if HAS_RESUME_CONTINUE
  9625. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  9626. case 1: // M1: Conditional stop - Wait for user button press on LCD
  9627. gcode_M0_M1();
  9628. break;
  9629. #endif // ULTIPANEL
  9630. #if ENABLED(SPINDLE_LASER_ENABLE)
  9631. case 3:
  9632. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  9633. break; // synchronizes with movement commands
  9634. case 4:
  9635. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  9636. break; // synchronizes with movement commands
  9637. case 5:
  9638. gcode_M5(); // M5 - turn spindle/laser off
  9639. break; // synchronizes with movement commands
  9640. #endif
  9641. case 17: // M17: Enable all stepper motors
  9642. gcode_M17();
  9643. break;
  9644. #if ENABLED(SDSUPPORT)
  9645. case 20: // M20: list SD card
  9646. gcode_M20(); break;
  9647. case 21: // M21: init SD card
  9648. gcode_M21(); break;
  9649. case 22: // M22: release SD card
  9650. gcode_M22(); break;
  9651. case 23: // M23: Select file
  9652. gcode_M23(); break;
  9653. case 24: // M24: Start SD print
  9654. gcode_M24(); break;
  9655. case 25: // M25: Pause SD print
  9656. gcode_M25(); break;
  9657. case 26: // M26: Set SD index
  9658. gcode_M26(); break;
  9659. case 27: // M27: Get SD status
  9660. gcode_M27(); break;
  9661. case 28: // M28: Start SD write
  9662. gcode_M28(); break;
  9663. case 29: // M29: Stop SD write
  9664. gcode_M29(); break;
  9665. case 30: // M30 <filename> Delete File
  9666. gcode_M30(); break;
  9667. case 32: // M32: Select file and start SD print
  9668. gcode_M32(); break;
  9669. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  9670. case 33: // M33: Get the long full path to a file or folder
  9671. gcode_M33(); break;
  9672. #endif
  9673. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  9674. case 34: // M34: Set SD card sorting options
  9675. gcode_M34(); break;
  9676. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  9677. case 928: // M928: Start SD write
  9678. gcode_M928(); break;
  9679. #endif // SDSUPPORT
  9680. case 31: // M31: Report time since the start of SD print or last M109
  9681. gcode_M31(); break;
  9682. case 42: // M42: Change pin state
  9683. gcode_M42(); break;
  9684. #if ENABLED(PINS_DEBUGGING)
  9685. case 43: // M43: Read pin state
  9686. gcode_M43(); break;
  9687. #endif
  9688. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  9689. case 48: // M48: Z probe repeatability test
  9690. gcode_M48();
  9691. break;
  9692. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  9693. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  9694. case 49: // M49: Turn on or off G26 debug flag for verbose output
  9695. gcode_M49();
  9696. break;
  9697. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  9698. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  9699. case 73: // M73: Set print progress percentage
  9700. gcode_M73(); break;
  9701. #endif
  9702. case 75: // M75: Start print timer
  9703. gcode_M75(); break;
  9704. case 76: // M76: Pause print timer
  9705. gcode_M76(); break;
  9706. case 77: // M77: Stop print timer
  9707. gcode_M77(); break;
  9708. #if ENABLED(PRINTCOUNTER)
  9709. case 78: // M78: Show print statistics
  9710. gcode_M78(); break;
  9711. #endif
  9712. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9713. case 100: // M100: Free Memory Report
  9714. gcode_M100();
  9715. break;
  9716. #endif
  9717. case 104: // M104: Set hot end temperature
  9718. gcode_M104();
  9719. break;
  9720. case 110: // M110: Set Current Line Number
  9721. gcode_M110();
  9722. break;
  9723. case 111: // M111: Set debug level
  9724. gcode_M111();
  9725. break;
  9726. #if DISABLED(EMERGENCY_PARSER)
  9727. case 108: // M108: Cancel Waiting
  9728. gcode_M108();
  9729. break;
  9730. case 112: // M112: Emergency Stop
  9731. gcode_M112();
  9732. break;
  9733. case 410: // M410 quickstop - Abort all the planned moves.
  9734. gcode_M410();
  9735. break;
  9736. #endif
  9737. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  9738. case 113: // M113: Set Host Keepalive interval
  9739. gcode_M113();
  9740. break;
  9741. #endif
  9742. case 140: // M140: Set bed temperature
  9743. gcode_M140();
  9744. break;
  9745. case 105: // M105: Report current temperature
  9746. gcode_M105();
  9747. KEEPALIVE_STATE(NOT_BUSY);
  9748. return; // "ok" already printed
  9749. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9750. case 155: // M155: Set temperature auto-report interval
  9751. gcode_M155();
  9752. break;
  9753. #endif
  9754. case 109: // M109: Wait for hotend temperature to reach target
  9755. gcode_M109();
  9756. break;
  9757. #if HAS_TEMP_BED
  9758. case 190: // M190: Wait for bed temperature to reach target
  9759. gcode_M190();
  9760. break;
  9761. #endif // HAS_TEMP_BED
  9762. #if FAN_COUNT > 0
  9763. case 106: // M106: Fan On
  9764. gcode_M106();
  9765. break;
  9766. case 107: // M107: Fan Off
  9767. gcode_M107();
  9768. break;
  9769. #endif // FAN_COUNT > 0
  9770. #if ENABLED(PARK_HEAD_ON_PAUSE)
  9771. case 125: // M125: Store current position and move to filament change position
  9772. gcode_M125(); break;
  9773. #endif
  9774. #if ENABLED(BARICUDA)
  9775. // PWM for HEATER_1_PIN
  9776. #if HAS_HEATER_1
  9777. case 126: // M126: valve open
  9778. gcode_M126();
  9779. break;
  9780. case 127: // M127: valve closed
  9781. gcode_M127();
  9782. break;
  9783. #endif // HAS_HEATER_1
  9784. // PWM for HEATER_2_PIN
  9785. #if HAS_HEATER_2
  9786. case 128: // M128: valve open
  9787. gcode_M128();
  9788. break;
  9789. case 129: // M129: valve closed
  9790. gcode_M129();
  9791. break;
  9792. #endif // HAS_HEATER_2
  9793. #endif // BARICUDA
  9794. #if HAS_POWER_SWITCH
  9795. case 80: // M80: Turn on Power Supply
  9796. gcode_M80();
  9797. break;
  9798. #endif // HAS_POWER_SWITCH
  9799. case 81: // M81: Turn off Power, including Power Supply, if possible
  9800. gcode_M81();
  9801. break;
  9802. case 82: // M82: Set E axis normal mode (same as other axes)
  9803. gcode_M82();
  9804. break;
  9805. case 83: // M83: Set E axis relative mode
  9806. gcode_M83();
  9807. break;
  9808. case 18: // M18 => M84
  9809. case 84: // M84: Disable all steppers or set timeout
  9810. gcode_M18_M84();
  9811. break;
  9812. case 85: // M85: Set inactivity stepper shutdown timeout
  9813. gcode_M85();
  9814. break;
  9815. case 92: // M92: Set the steps-per-unit for one or more axes
  9816. gcode_M92();
  9817. break;
  9818. case 114: // M114: Report current position
  9819. gcode_M114();
  9820. break;
  9821. case 115: // M115: Report capabilities
  9822. gcode_M115();
  9823. break;
  9824. case 117: // M117: Set LCD message text, if possible
  9825. gcode_M117();
  9826. break;
  9827. case 118: // M118: Display a message in the host console
  9828. gcode_M118();
  9829. break;
  9830. case 119: // M119: Report endstop states
  9831. gcode_M119();
  9832. break;
  9833. case 120: // M120: Enable endstops
  9834. gcode_M120();
  9835. break;
  9836. case 121: // M121: Disable endstops
  9837. gcode_M121();
  9838. break;
  9839. #if ENABLED(ULTIPANEL)
  9840. case 145: // M145: Set material heatup parameters
  9841. gcode_M145();
  9842. break;
  9843. #endif
  9844. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  9845. case 149: // M149: Set temperature units
  9846. gcode_M149();
  9847. break;
  9848. #endif
  9849. #if HAS_COLOR_LEDS
  9850. case 150: // M150: Set Status LED Color
  9851. gcode_M150();
  9852. break;
  9853. #endif // HAS_COLOR_LEDS
  9854. #if ENABLED(MIXING_EXTRUDER)
  9855. case 163: // M163: Set a component weight for mixing extruder
  9856. gcode_M163();
  9857. break;
  9858. #if MIXING_VIRTUAL_TOOLS > 1
  9859. case 164: // M164: Save current mix as a virtual extruder
  9860. gcode_M164();
  9861. break;
  9862. #endif
  9863. #if ENABLED(DIRECT_MIXING_IN_G1)
  9864. case 165: // M165: Set multiple mix weights
  9865. gcode_M165();
  9866. break;
  9867. #endif
  9868. #endif
  9869. case 200: // M200: Set filament diameter, E to cubic units
  9870. gcode_M200();
  9871. break;
  9872. case 201: // M201: Set max acceleration for print moves (units/s^2)
  9873. gcode_M201();
  9874. break;
  9875. #if 0 // Not used for Sprinter/grbl gen6
  9876. case 202: // M202
  9877. gcode_M202();
  9878. break;
  9879. #endif
  9880. case 203: // M203: Set max feedrate (units/sec)
  9881. gcode_M203();
  9882. break;
  9883. case 204: // M204: Set acceleration
  9884. gcode_M204();
  9885. break;
  9886. case 205: // M205: Set advanced settings
  9887. gcode_M205();
  9888. break;
  9889. #if HAS_M206_COMMAND
  9890. case 206: // M206: Set home offsets
  9891. gcode_M206();
  9892. break;
  9893. #endif
  9894. #if ENABLED(DELTA)
  9895. case 665: // M665: Set delta configurations
  9896. gcode_M665();
  9897. break;
  9898. #endif
  9899. #if ENABLED(DELTA) || ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  9900. case 666: // M666: Set delta or dual endstop adjustment
  9901. gcode_M666();
  9902. break;
  9903. #endif
  9904. #if ENABLED(FWRETRACT)
  9905. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  9906. gcode_M207();
  9907. break;
  9908. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  9909. gcode_M208();
  9910. break;
  9911. case 209: // M209: Turn Automatic Retract Detection on/off
  9912. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209();
  9913. break;
  9914. #endif // FWRETRACT
  9915. case 211: // M211: Enable, Disable, and/or Report software endstops
  9916. gcode_M211();
  9917. break;
  9918. #if HOTENDS > 1
  9919. case 218: // M218: Set a tool offset
  9920. gcode_M218();
  9921. break;
  9922. #endif // HOTENDS > 1
  9923. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  9924. gcode_M220();
  9925. break;
  9926. case 221: // M221: Set Flow Percentage
  9927. gcode_M221();
  9928. break;
  9929. case 226: // M226: Wait until a pin reaches a state
  9930. gcode_M226();
  9931. break;
  9932. #if HAS_SERVOS
  9933. case 280: // M280: Set servo position absolute
  9934. gcode_M280();
  9935. break;
  9936. #endif // HAS_SERVOS
  9937. #if ENABLED(BABYSTEPPING)
  9938. case 290: // M290: Babystepping
  9939. gcode_M290();
  9940. break;
  9941. #endif // BABYSTEPPING
  9942. #if HAS_BUZZER
  9943. case 300: // M300: Play beep tone
  9944. gcode_M300();
  9945. break;
  9946. #endif // HAS_BUZZER
  9947. #if ENABLED(PIDTEMP)
  9948. case 301: // M301: Set hotend PID parameters
  9949. gcode_M301();
  9950. break;
  9951. #endif // PIDTEMP
  9952. #if ENABLED(PIDTEMPBED)
  9953. case 304: // M304: Set bed PID parameters
  9954. gcode_M304();
  9955. break;
  9956. #endif // PIDTEMPBED
  9957. #if defined(CHDK) || HAS_PHOTOGRAPH
  9958. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  9959. gcode_M240();
  9960. break;
  9961. #endif // CHDK || PHOTOGRAPH_PIN
  9962. #if HAS_LCD_CONTRAST
  9963. case 250: // M250: Set LCD contrast
  9964. gcode_M250();
  9965. break;
  9966. #endif // HAS_LCD_CONTRAST
  9967. #if ENABLED(EXPERIMENTAL_I2CBUS)
  9968. case 260: // M260: Send data to an i2c slave
  9969. gcode_M260();
  9970. break;
  9971. case 261: // M261: Request data from an i2c slave
  9972. gcode_M261();
  9973. break;
  9974. #endif // EXPERIMENTAL_I2CBUS
  9975. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9976. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  9977. gcode_M302();
  9978. break;
  9979. #endif // PREVENT_COLD_EXTRUSION
  9980. case 303: // M303: PID autotune
  9981. gcode_M303();
  9982. break;
  9983. #if ENABLED(MORGAN_SCARA)
  9984. case 360: // M360: SCARA Theta pos1
  9985. if (gcode_M360()) return;
  9986. break;
  9987. case 361: // M361: SCARA Theta pos2
  9988. if (gcode_M361()) return;
  9989. break;
  9990. case 362: // M362: SCARA Psi pos1
  9991. if (gcode_M362()) return;
  9992. break;
  9993. case 363: // M363: SCARA Psi pos2
  9994. if (gcode_M363()) return;
  9995. break;
  9996. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  9997. if (gcode_M364()) return;
  9998. break;
  9999. #endif // SCARA
  10000. case 400: // M400: Finish all moves
  10001. gcode_M400();
  10002. break;
  10003. #if HAS_BED_PROBE
  10004. case 401: // M401: Deploy probe
  10005. gcode_M401();
  10006. break;
  10007. case 402: // M402: Stow probe
  10008. gcode_M402();
  10009. break;
  10010. #endif // HAS_BED_PROBE
  10011. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  10012. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  10013. gcode_M404();
  10014. break;
  10015. case 405: // M405: Turn on filament sensor for control
  10016. gcode_M405();
  10017. break;
  10018. case 406: // M406: Turn off filament sensor for control
  10019. gcode_M406();
  10020. break;
  10021. case 407: // M407: Display measured filament diameter
  10022. gcode_M407();
  10023. break;
  10024. #endif // FILAMENT_WIDTH_SENSOR
  10025. #if HAS_LEVELING
  10026. case 420: // M420: Enable/Disable Bed Leveling
  10027. gcode_M420();
  10028. break;
  10029. #endif
  10030. #if HAS_MESH
  10031. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  10032. gcode_M421();
  10033. break;
  10034. #endif
  10035. #if HAS_M206_COMMAND
  10036. case 428: // M428: Apply current_position to home_offset
  10037. gcode_M428();
  10038. break;
  10039. #endif
  10040. case 500: // M500: Store settings in EEPROM
  10041. gcode_M500();
  10042. break;
  10043. case 501: // M501: Read settings from EEPROM
  10044. gcode_M501();
  10045. break;
  10046. case 502: // M502: Revert to default settings
  10047. gcode_M502();
  10048. break;
  10049. #if DISABLED(DISABLE_M503)
  10050. case 503: // M503: print settings currently in memory
  10051. gcode_M503();
  10052. break;
  10053. #endif
  10054. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  10055. case 540: // M540: Set abort on endstop hit for SD printing
  10056. gcode_M540();
  10057. break;
  10058. #endif
  10059. #if HAS_BED_PROBE
  10060. case 851: // M851: Set Z Probe Z Offset
  10061. gcode_M851();
  10062. break;
  10063. #endif // HAS_BED_PROBE
  10064. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  10065. case 600: // M600: Pause for filament change
  10066. gcode_M600();
  10067. break;
  10068. #endif // ADVANCED_PAUSE_FEATURE
  10069. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  10070. case 605: // M605: Set Dual X Carriage movement mode
  10071. gcode_M605();
  10072. break;
  10073. #endif // DUAL_X_CARRIAGE
  10074. #if ENABLED(MK2_MULTIPLEXER)
  10075. case 702: // M702: Unload all extruders
  10076. gcode_M702();
  10077. break;
  10078. #endif
  10079. #if ENABLED(LIN_ADVANCE)
  10080. case 900: // M900: Set advance K factor.
  10081. gcode_M900();
  10082. break;
  10083. #endif
  10084. #if ENABLED(HAVE_TMC2130)
  10085. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  10086. gcode_M906();
  10087. break;
  10088. #endif
  10089. case 907: // M907: Set digital trimpot motor current using axis codes.
  10090. gcode_M907();
  10091. break;
  10092. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  10093. case 908: // M908: Control digital trimpot directly.
  10094. gcode_M908();
  10095. break;
  10096. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  10097. case 909: // M909: Print digipot/DAC current value
  10098. gcode_M909();
  10099. break;
  10100. case 910: // M910: Commit digipot/DAC value to external EEPROM
  10101. gcode_M910();
  10102. break;
  10103. #endif
  10104. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  10105. #if ENABLED(HAVE_TMC2130)
  10106. case 911: // M911: Report TMC2130 prewarn triggered flags
  10107. gcode_M911();
  10108. break;
  10109. case 912: // M911: Clear TMC2130 prewarn triggered flags
  10110. gcode_M912();
  10111. break;
  10112. #if ENABLED(HYBRID_THRESHOLD)
  10113. case 913: // M913: Set HYBRID_THRESHOLD speed.
  10114. gcode_M913();
  10115. break;
  10116. #endif
  10117. #if ENABLED(SENSORLESS_HOMING)
  10118. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  10119. gcode_M914();
  10120. break;
  10121. #endif
  10122. #endif
  10123. #if HAS_MICROSTEPS
  10124. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  10125. gcode_M350();
  10126. break;
  10127. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  10128. gcode_M351();
  10129. break;
  10130. #endif // HAS_MICROSTEPS
  10131. case 355: // M355 set case light brightness
  10132. gcode_M355();
  10133. break;
  10134. #if ENABLED(DEBUG_GCODE_PARSER)
  10135. case 800:
  10136. parser.debug(); // GCode Parser Test for M
  10137. break;
  10138. #endif
  10139. #if ENABLED(I2C_POSITION_ENCODERS)
  10140. case 860: // M860 Report encoder module position
  10141. gcode_M860();
  10142. break;
  10143. case 861: // M861 Report encoder module status
  10144. gcode_M861();
  10145. break;
  10146. case 862: // M862 Perform axis test
  10147. gcode_M862();
  10148. break;
  10149. case 863: // M863 Calibrate steps/mm
  10150. gcode_M863();
  10151. break;
  10152. case 864: // M864 Change module address
  10153. gcode_M864();
  10154. break;
  10155. case 865: // M865 Check module firmware version
  10156. gcode_M865();
  10157. break;
  10158. case 866: // M866 Report axis error count
  10159. gcode_M866();
  10160. break;
  10161. case 867: // M867 Toggle error correction
  10162. gcode_M867();
  10163. break;
  10164. case 868: // M868 Set error correction threshold
  10165. gcode_M868();
  10166. break;
  10167. case 869: // M869 Report axis error
  10168. gcode_M869();
  10169. break;
  10170. #endif // I2C_POSITION_ENCODERS
  10171. case 999: // M999: Restart after being Stopped
  10172. gcode_M999();
  10173. break;
  10174. }
  10175. break;
  10176. case 'T':
  10177. gcode_T(parser.codenum);
  10178. break;
  10179. default: parser.unknown_command_error();
  10180. }
  10181. KEEPALIVE_STATE(NOT_BUSY);
  10182. ok_to_send();
  10183. }
  10184. /**
  10185. * Send a "Resend: nnn" message to the host to
  10186. * indicate that a command needs to be re-sent.
  10187. */
  10188. void FlushSerialRequestResend() {
  10189. //char command_queue[cmd_queue_index_r][100]="Resend:";
  10190. MYSERIAL.flush();
  10191. SERIAL_PROTOCOLPGM(MSG_RESEND);
  10192. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  10193. ok_to_send();
  10194. }
  10195. /**
  10196. * Send an "ok" message to the host, indicating
  10197. * that a command was successfully processed.
  10198. *
  10199. * If ADVANCED_OK is enabled also include:
  10200. * N<int> Line number of the command, if any
  10201. * P<int> Planner space remaining
  10202. * B<int> Block queue space remaining
  10203. */
  10204. void ok_to_send() {
  10205. refresh_cmd_timeout();
  10206. if (!send_ok[cmd_queue_index_r]) return;
  10207. SERIAL_PROTOCOLPGM(MSG_OK);
  10208. #if ENABLED(ADVANCED_OK)
  10209. char* p = command_queue[cmd_queue_index_r];
  10210. if (*p == 'N') {
  10211. SERIAL_PROTOCOL(' ');
  10212. SERIAL_ECHO(*p++);
  10213. while (NUMERIC_SIGNED(*p))
  10214. SERIAL_ECHO(*p++);
  10215. }
  10216. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  10217. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  10218. #endif
  10219. SERIAL_EOL();
  10220. }
  10221. #if HAS_SOFTWARE_ENDSTOPS
  10222. /**
  10223. * Constrain the given coordinates to the software endstops.
  10224. *
  10225. * For DELTA/SCARA the XY constraint is based on the smallest
  10226. * radius within the set software endstops.
  10227. */
  10228. void clamp_to_software_endstops(float target[XYZ]) {
  10229. if (!soft_endstops_enabled) return;
  10230. #if IS_KINEMATIC
  10231. const float dist_2 = HYPOT2(target[X_AXIS], target[Y_AXIS]);
  10232. if (dist_2 > soft_endstop_radius_2) {
  10233. const float ratio = soft_endstop_radius / SQRT(dist_2); // 200 / 300 = 0.66
  10234. target[X_AXIS] *= ratio;
  10235. target[Y_AXIS] *= ratio;
  10236. }
  10237. #else
  10238. #if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
  10239. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  10240. #endif
  10241. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
  10242. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  10243. #endif
  10244. #if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
  10245. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  10246. #endif
  10247. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
  10248. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  10249. #endif
  10250. #endif
  10251. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
  10252. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  10253. #endif
  10254. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
  10255. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  10256. #endif
  10257. }
  10258. #endif
  10259. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10260. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  10261. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  10262. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  10263. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  10264. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  10265. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  10266. #else
  10267. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  10268. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  10269. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  10270. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  10271. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  10272. #endif
  10273. // Get the Z adjustment for non-linear bed leveling
  10274. float bilinear_z_offset(const float logical[XYZ]) {
  10275. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  10276. last_x = -999.999, last_y = -999.999;
  10277. // Whole units for the grid line indices. Constrained within bounds.
  10278. static int8_t gridx, gridy, nextx, nexty,
  10279. last_gridx = -99, last_gridy = -99;
  10280. // XY relative to the probed area
  10281. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  10282. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  10283. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  10284. // Keep using the last grid box
  10285. #define FAR_EDGE_OR_BOX 2
  10286. #else
  10287. // Just use the grid far edge
  10288. #define FAR_EDGE_OR_BOX 1
  10289. #endif
  10290. if (last_x != x) {
  10291. last_x = x;
  10292. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  10293. const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  10294. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  10295. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10296. // Beyond the grid maintain height at grid edges
  10297. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  10298. #endif
  10299. gridx = gx;
  10300. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  10301. }
  10302. if (last_y != y || last_gridx != gridx) {
  10303. if (last_y != y) {
  10304. last_y = y;
  10305. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  10306. const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  10307. ratio_y -= gy;
  10308. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10309. // Beyond the grid maintain height at grid edges
  10310. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  10311. #endif
  10312. gridy = gy;
  10313. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  10314. }
  10315. if (last_gridx != gridx || last_gridy != gridy) {
  10316. last_gridx = gridx;
  10317. last_gridy = gridy;
  10318. // Z at the box corners
  10319. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  10320. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  10321. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  10322. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  10323. }
  10324. // Bilinear interpolate. Needed since y or gridx has changed.
  10325. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  10326. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  10327. D = R - L;
  10328. }
  10329. const float offset = L + ratio_x * D; // the offset almost always changes
  10330. /*
  10331. static float last_offset = 0;
  10332. if (FABS(last_offset - offset) > 0.2) {
  10333. SERIAL_ECHOPGM("Sudden Shift at ");
  10334. SERIAL_ECHOPAIR("x=", x);
  10335. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  10336. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  10337. SERIAL_ECHOPAIR(" y=", y);
  10338. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  10339. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  10340. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  10341. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  10342. SERIAL_ECHOPAIR(" z1=", z1);
  10343. SERIAL_ECHOPAIR(" z2=", z2);
  10344. SERIAL_ECHOPAIR(" z3=", z3);
  10345. SERIAL_ECHOLNPAIR(" z4=", z4);
  10346. SERIAL_ECHOPAIR(" L=", L);
  10347. SERIAL_ECHOPAIR(" R=", R);
  10348. SERIAL_ECHOLNPAIR(" offset=", offset);
  10349. }
  10350. last_offset = offset;
  10351. //*/
  10352. return offset;
  10353. }
  10354. #endif // AUTO_BED_LEVELING_BILINEAR
  10355. #if ENABLED(DELTA)
  10356. /**
  10357. * Recalculate factors used for delta kinematics whenever
  10358. * settings have been changed (e.g., by M665).
  10359. */
  10360. void recalc_delta_settings(float radius, float diagonal_rod, float tower_angle_trim[ABC]) {
  10361. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  10362. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  10363. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
  10364. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
  10365. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
  10366. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
  10367. delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]); // back middle tower
  10368. delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]);
  10369. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
  10370. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
  10371. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  10372. }
  10373. #if ENABLED(DELTA_FAST_SQRT)
  10374. /**
  10375. * Fast inverse sqrt from Quake III Arena
  10376. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  10377. */
  10378. float Q_rsqrt(float number) {
  10379. long i;
  10380. float x2, y;
  10381. const float threehalfs = 1.5f;
  10382. x2 = number * 0.5f;
  10383. y = number;
  10384. i = * ( long * ) &y; // evil floating point bit level hacking
  10385. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  10386. y = * ( float * ) &i;
  10387. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  10388. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  10389. return y;
  10390. }
  10391. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  10392. #else
  10393. #define _SQRT(n) SQRT(n)
  10394. #endif
  10395. /**
  10396. * Delta Inverse Kinematics
  10397. *
  10398. * Calculate the tower positions for a given logical
  10399. * position, storing the result in the delta[] array.
  10400. *
  10401. * This is an expensive calculation, requiring 3 square
  10402. * roots per segmented linear move, and strains the limits
  10403. * of a Mega2560 with a Graphical Display.
  10404. *
  10405. * Suggested optimizations include:
  10406. *
  10407. * - Disable the home_offset (M206) and/or position_shift (G92)
  10408. * features to remove up to 12 float additions.
  10409. *
  10410. * - Use a fast-inverse-sqrt function and add the reciprocal.
  10411. * (see above)
  10412. */
  10413. // Macro to obtain the Z position of an individual tower
  10414. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  10415. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  10416. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  10417. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  10418. ) \
  10419. )
  10420. #define DELTA_RAW_IK() do { \
  10421. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  10422. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  10423. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  10424. }while(0)
  10425. #define DELTA_LOGICAL_IK() do { \
  10426. const float raw[XYZ] = { \
  10427. RAW_X_POSITION(logical[X_AXIS]), \
  10428. RAW_Y_POSITION(logical[Y_AXIS]), \
  10429. RAW_Z_POSITION(logical[Z_AXIS]) \
  10430. }; \
  10431. DELTA_RAW_IK(); \
  10432. }while(0)
  10433. #define DELTA_DEBUG() do { \
  10434. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  10435. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  10436. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  10437. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  10438. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  10439. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  10440. }while(0)
  10441. void inverse_kinematics(const float logical[XYZ]) {
  10442. DELTA_LOGICAL_IK();
  10443. // DELTA_DEBUG();
  10444. }
  10445. /**
  10446. * Calculate the highest Z position where the
  10447. * effector has the full range of XY motion.
  10448. */
  10449. float delta_safe_distance_from_top() {
  10450. float cartesian[XYZ] = {
  10451. LOGICAL_X_POSITION(0),
  10452. LOGICAL_Y_POSITION(0),
  10453. LOGICAL_Z_POSITION(0)
  10454. };
  10455. inverse_kinematics(cartesian);
  10456. float distance = delta[A_AXIS];
  10457. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  10458. inverse_kinematics(cartesian);
  10459. return FABS(distance - delta[A_AXIS]);
  10460. }
  10461. /**
  10462. * Delta Forward Kinematics
  10463. *
  10464. * See the Wikipedia article "Trilateration"
  10465. * https://en.wikipedia.org/wiki/Trilateration
  10466. *
  10467. * Establish a new coordinate system in the plane of the
  10468. * three carriage points. This system has its origin at
  10469. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  10470. * plane with a Z component of zero.
  10471. * We will define unit vectors in this coordinate system
  10472. * in our original coordinate system. Then when we calculate
  10473. * the Xnew, Ynew and Znew values, we can translate back into
  10474. * the original system by moving along those unit vectors
  10475. * by the corresponding values.
  10476. *
  10477. * Variable names matched to Marlin, c-version, and avoid the
  10478. * use of any vector library.
  10479. *
  10480. * by Andreas Hardtung 2016-06-07
  10481. * based on a Java function from "Delta Robot Kinematics V3"
  10482. * by Steve Graves
  10483. *
  10484. * The result is stored in the cartes[] array.
  10485. */
  10486. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  10487. // Create a vector in old coordinates along x axis of new coordinate
  10488. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  10489. // Get the Magnitude of vector.
  10490. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  10491. // Create unit vector by dividing by magnitude.
  10492. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  10493. // Get the vector from the origin of the new system to the third point.
  10494. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  10495. // Use the dot product to find the component of this vector on the X axis.
  10496. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  10497. // Create a vector along the x axis that represents the x component of p13.
  10498. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  10499. // Subtract the X component from the original vector leaving only Y. We use the
  10500. // variable that will be the unit vector after we scale it.
  10501. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  10502. // The magnitude of Y component
  10503. float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  10504. // Convert to a unit vector
  10505. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  10506. // The cross product of the unit x and y is the unit z
  10507. // float[] ez = vectorCrossProd(ex, ey);
  10508. float ez[3] = {
  10509. ex[1] * ey[2] - ex[2] * ey[1],
  10510. ex[2] * ey[0] - ex[0] * ey[2],
  10511. ex[0] * ey[1] - ex[1] * ey[0]
  10512. };
  10513. // We now have the d, i and j values defined in Wikipedia.
  10514. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  10515. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  10516. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  10517. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  10518. // Start from the origin of the old coordinates and add vectors in the
  10519. // old coords that represent the Xnew, Ynew and Znew to find the point
  10520. // in the old system.
  10521. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  10522. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  10523. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  10524. }
  10525. void forward_kinematics_DELTA(float point[ABC]) {
  10526. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  10527. }
  10528. #endif // DELTA
  10529. /**
  10530. * Get the stepper positions in the cartes[] array.
  10531. * Forward kinematics are applied for DELTA and SCARA.
  10532. *
  10533. * The result is in the current coordinate space with
  10534. * leveling applied. The coordinates need to be run through
  10535. * unapply_leveling to obtain the "ideal" coordinates
  10536. * suitable for current_position, etc.
  10537. */
  10538. void get_cartesian_from_steppers() {
  10539. #if ENABLED(DELTA)
  10540. forward_kinematics_DELTA(
  10541. stepper.get_axis_position_mm(A_AXIS),
  10542. stepper.get_axis_position_mm(B_AXIS),
  10543. stepper.get_axis_position_mm(C_AXIS)
  10544. );
  10545. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  10546. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  10547. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  10548. #elif IS_SCARA
  10549. forward_kinematics_SCARA(
  10550. stepper.get_axis_position_degrees(A_AXIS),
  10551. stepper.get_axis_position_degrees(B_AXIS)
  10552. );
  10553. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  10554. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  10555. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10556. #else
  10557. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  10558. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  10559. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10560. #endif
  10561. }
  10562. /**
  10563. * Set the current_position for an axis based on
  10564. * the stepper positions, removing any leveling that
  10565. * may have been applied.
  10566. */
  10567. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  10568. get_cartesian_from_steppers();
  10569. #if PLANNER_LEVELING
  10570. planner.unapply_leveling(cartes);
  10571. #endif
  10572. if (axis == ALL_AXES)
  10573. COPY(current_position, cartes);
  10574. else
  10575. current_position[axis] = cartes[axis];
  10576. }
  10577. #if ENABLED(MESH_BED_LEVELING)
  10578. /**
  10579. * Prepare a mesh-leveled linear move in a Cartesian setup,
  10580. * splitting the move where it crosses mesh borders.
  10581. */
  10582. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  10583. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  10584. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  10585. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  10586. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  10587. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  10588. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  10589. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  10590. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  10591. if (cx1 == cx2 && cy1 == cy2) {
  10592. // Start and end on same mesh square
  10593. line_to_destination(fr_mm_s);
  10594. set_current_from_destination();
  10595. return;
  10596. }
  10597. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10598. float normalized_dist, end[XYZE];
  10599. // Split at the left/front border of the right/top square
  10600. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10601. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10602. COPY(end, destination);
  10603. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  10604. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10605. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  10606. CBI(x_splits, gcx);
  10607. }
  10608. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10609. COPY(end, destination);
  10610. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  10611. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10612. destination[X_AXIS] = MBL_SEGMENT_END(X);
  10613. CBI(y_splits, gcy);
  10614. }
  10615. else {
  10616. // Already split on a border
  10617. line_to_destination(fr_mm_s);
  10618. set_current_from_destination();
  10619. return;
  10620. }
  10621. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  10622. destination[E_AXIS] = MBL_SEGMENT_END(E);
  10623. // Do the split and look for more borders
  10624. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10625. // Restore destination from stack
  10626. COPY(destination, end);
  10627. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10628. }
  10629. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  10630. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  10631. /**
  10632. * Prepare a bilinear-leveled linear move on Cartesian,
  10633. * splitting the move where it crosses grid borders.
  10634. */
  10635. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  10636. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  10637. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  10638. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  10639. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  10640. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  10641. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  10642. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  10643. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  10644. if (cx1 == cx2 && cy1 == cy2) {
  10645. // Start and end on same mesh square
  10646. line_to_destination(fr_mm_s);
  10647. set_current_from_destination();
  10648. return;
  10649. }
  10650. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10651. float normalized_dist, end[XYZE];
  10652. // Split at the left/front border of the right/top square
  10653. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10654. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10655. COPY(end, destination);
  10656. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  10657. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10658. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  10659. CBI(x_splits, gcx);
  10660. }
  10661. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10662. COPY(end, destination);
  10663. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  10664. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10665. destination[X_AXIS] = LINE_SEGMENT_END(X);
  10666. CBI(y_splits, gcy);
  10667. }
  10668. else {
  10669. // Already split on a border
  10670. line_to_destination(fr_mm_s);
  10671. set_current_from_destination();
  10672. return;
  10673. }
  10674. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  10675. destination[E_AXIS] = LINE_SEGMENT_END(E);
  10676. // Do the split and look for more borders
  10677. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10678. // Restore destination from stack
  10679. COPY(destination, end);
  10680. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10681. }
  10682. #endif // AUTO_BED_LEVELING_BILINEAR
  10683. #if IS_KINEMATIC && !UBL_DELTA
  10684. /**
  10685. * Prepare a linear move in a DELTA or SCARA setup.
  10686. *
  10687. * This calls planner.buffer_line several times, adding
  10688. * small incremental moves for DELTA or SCARA.
  10689. */
  10690. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  10691. // Get the top feedrate of the move in the XY plane
  10692. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  10693. // If the move is only in Z/E don't split up the move
  10694. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  10695. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10696. return false;
  10697. }
  10698. // Fail if attempting move outside printable radius
  10699. if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
  10700. // Get the cartesian distances moved in XYZE
  10701. const float difference[XYZE] = {
  10702. ltarget[X_AXIS] - current_position[X_AXIS],
  10703. ltarget[Y_AXIS] - current_position[Y_AXIS],
  10704. ltarget[Z_AXIS] - current_position[Z_AXIS],
  10705. ltarget[E_AXIS] - current_position[E_AXIS]
  10706. };
  10707. // Get the linear distance in XYZ
  10708. float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  10709. // If the move is very short, check the E move distance
  10710. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
  10711. // No E move either? Game over.
  10712. if (UNEAR_ZERO(cartesian_mm)) return true;
  10713. // Minimum number of seconds to move the given distance
  10714. const float seconds = cartesian_mm / _feedrate_mm_s;
  10715. // The number of segments-per-second times the duration
  10716. // gives the number of segments
  10717. uint16_t segments = delta_segments_per_second * seconds;
  10718. // For SCARA minimum segment size is 0.25mm
  10719. #if IS_SCARA
  10720. NOMORE(segments, cartesian_mm * 4);
  10721. #endif
  10722. // At least one segment is required
  10723. NOLESS(segments, 1);
  10724. // The approximate length of each segment
  10725. const float inv_segments = 1.0 / float(segments),
  10726. segment_distance[XYZE] = {
  10727. difference[X_AXIS] * inv_segments,
  10728. difference[Y_AXIS] * inv_segments,
  10729. difference[Z_AXIS] * inv_segments,
  10730. difference[E_AXIS] * inv_segments
  10731. };
  10732. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  10733. // SERIAL_ECHOPAIR(" seconds=", seconds);
  10734. // SERIAL_ECHOLNPAIR(" segments=", segments);
  10735. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10736. // SCARA needs to scale the feed rate from mm/s to degrees/s
  10737. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  10738. feed_factor = inv_segment_length * _feedrate_mm_s;
  10739. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  10740. oldB = stepper.get_axis_position_degrees(B_AXIS);
  10741. #endif
  10742. // Get the logical current position as starting point
  10743. float logical[XYZE];
  10744. COPY(logical, current_position);
  10745. // Drop one segment so the last move is to the exact target.
  10746. // If there's only 1 segment, loops will be skipped entirely.
  10747. --segments;
  10748. // Calculate and execute the segments
  10749. for (uint16_t s = segments + 1; --s;) {
  10750. LOOP_XYZE(i) logical[i] += segment_distance[i];
  10751. #if ENABLED(DELTA)
  10752. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  10753. #else
  10754. inverse_kinematics(logical);
  10755. #endif
  10756. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  10757. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10758. // For SCARA scale the feed rate from mm/s to degrees/s
  10759. // Use ratio between the length of the move and the larger angle change
  10760. const float adiff = abs(delta[A_AXIS] - oldA),
  10761. bdiff = abs(delta[B_AXIS] - oldB);
  10762. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10763. oldA = delta[A_AXIS];
  10764. oldB = delta[B_AXIS];
  10765. #else
  10766. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  10767. #endif
  10768. }
  10769. // Since segment_distance is only approximate,
  10770. // the final move must be to the exact destination.
  10771. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10772. // For SCARA scale the feed rate from mm/s to degrees/s
  10773. // With segments > 1 length is 1 segment, otherwise total length
  10774. inverse_kinematics(ltarget);
  10775. ADJUST_DELTA(ltarget);
  10776. const float adiff = abs(delta[A_AXIS] - oldA),
  10777. bdiff = abs(delta[B_AXIS] - oldB);
  10778. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10779. #else
  10780. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10781. #endif
  10782. return false;
  10783. }
  10784. #else // !IS_KINEMATIC || UBL_DELTA
  10785. /**
  10786. * Prepare a linear move in a Cartesian setup.
  10787. * If Mesh Bed Leveling is enabled, perform a mesh move.
  10788. *
  10789. * Returns true if current_position[] was set to destination[]
  10790. */
  10791. inline bool prepare_move_to_destination_cartesian() {
  10792. if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
  10793. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  10794. #if HAS_MESH
  10795. if (planner.leveling_active) {
  10796. #if ENABLED(AUTO_BED_LEVELING_UBL)
  10797. ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
  10798. #elif ENABLED(MESH_BED_LEVELING)
  10799. mesh_line_to_destination(fr_scaled);
  10800. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10801. bilinear_line_to_destination(fr_scaled);
  10802. #endif
  10803. return true;
  10804. }
  10805. #endif // HAS_MESH
  10806. line_to_destination(fr_scaled);
  10807. }
  10808. else
  10809. line_to_destination();
  10810. return false;
  10811. }
  10812. #endif // !IS_KINEMATIC || UBL_DELTA
  10813. #if ENABLED(DUAL_X_CARRIAGE)
  10814. /**
  10815. * Prepare a linear move in a dual X axis setup
  10816. */
  10817. inline bool prepare_move_to_destination_dualx() {
  10818. if (active_extruder_parked) {
  10819. switch (dual_x_carriage_mode) {
  10820. case DXC_FULL_CONTROL_MODE:
  10821. break;
  10822. case DXC_AUTO_PARK_MODE:
  10823. if (current_position[E_AXIS] == destination[E_AXIS]) {
  10824. // This is a travel move (with no extrusion)
  10825. // Skip it, but keep track of the current position
  10826. // (so it can be used as the start of the next non-travel move)
  10827. if (delayed_move_time != 0xFFFFFFFFUL) {
  10828. set_current_from_destination();
  10829. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  10830. delayed_move_time = millis();
  10831. return true;
  10832. }
  10833. }
  10834. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  10835. for (uint8_t i = 0; i < 3; i++)
  10836. planner.buffer_line(
  10837. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  10838. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  10839. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  10840. current_position[E_AXIS],
  10841. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  10842. active_extruder
  10843. );
  10844. delayed_move_time = 0;
  10845. active_extruder_parked = false;
  10846. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10847. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  10848. #endif
  10849. break;
  10850. case DXC_DUPLICATION_MODE:
  10851. if (active_extruder == 0) {
  10852. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10853. if (DEBUGGING(LEVELING)) {
  10854. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  10855. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  10856. }
  10857. #endif
  10858. // move duplicate extruder into correct duplication position.
  10859. planner.set_position_mm(
  10860. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  10861. current_position[Y_AXIS],
  10862. current_position[Z_AXIS],
  10863. current_position[E_AXIS]
  10864. );
  10865. planner.buffer_line(
  10866. current_position[X_AXIS] + duplicate_extruder_x_offset,
  10867. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  10868. planner.max_feedrate_mm_s[X_AXIS], 1
  10869. );
  10870. SYNC_PLAN_POSITION_KINEMATIC();
  10871. stepper.synchronize();
  10872. extruder_duplication_enabled = true;
  10873. active_extruder_parked = false;
  10874. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10875. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  10876. #endif
  10877. }
  10878. else {
  10879. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10880. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  10881. #endif
  10882. }
  10883. break;
  10884. }
  10885. }
  10886. return prepare_move_to_destination_cartesian();
  10887. }
  10888. #endif // DUAL_X_CARRIAGE
  10889. /**
  10890. * Prepare a single move and get ready for the next one
  10891. *
  10892. * This may result in several calls to planner.buffer_line to
  10893. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  10894. */
  10895. void prepare_move_to_destination() {
  10896. clamp_to_software_endstops(destination);
  10897. refresh_cmd_timeout();
  10898. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10899. if (!DEBUGGING(DRYRUN)) {
  10900. if (destination[E_AXIS] != current_position[E_AXIS]) {
  10901. if (thermalManager.tooColdToExtrude(active_extruder)) {
  10902. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10903. SERIAL_ECHO_START();
  10904. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  10905. }
  10906. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10907. if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) {
  10908. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10909. SERIAL_ECHO_START();
  10910. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  10911. }
  10912. #endif
  10913. }
  10914. }
  10915. #endif
  10916. if (
  10917. #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
  10918. ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s))
  10919. #elif IS_KINEMATIC
  10920. prepare_kinematic_move_to(destination)
  10921. #elif ENABLED(DUAL_X_CARRIAGE)
  10922. prepare_move_to_destination_dualx()
  10923. #else
  10924. prepare_move_to_destination_cartesian()
  10925. #endif
  10926. ) return;
  10927. set_current_from_destination();
  10928. }
  10929. #if ENABLED(ARC_SUPPORT)
  10930. #if N_ARC_CORRECTION < 1
  10931. #undef N_ARC_CORRECTION
  10932. #define N_ARC_CORRECTION 1
  10933. #endif
  10934. /**
  10935. * Plan an arc in 2 dimensions
  10936. *
  10937. * The arc is approximated by generating many small linear segments.
  10938. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  10939. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  10940. * larger segments will tend to be more efficient. Your slicer should have
  10941. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  10942. */
  10943. void plan_arc(
  10944. float logical[XYZE], // Destination position
  10945. float *offset, // Center of rotation relative to current_position
  10946. uint8_t clockwise // Clockwise?
  10947. ) {
  10948. #if ENABLED(CNC_WORKSPACE_PLANES)
  10949. AxisEnum p_axis, q_axis, l_axis;
  10950. switch (workspace_plane) {
  10951. case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  10952. case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  10953. case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  10954. }
  10955. #else
  10956. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  10957. #endif
  10958. // Radius vector from center to current location
  10959. float r_P = -offset[0], r_Q = -offset[1];
  10960. const float radius = HYPOT(r_P, r_Q),
  10961. center_P = current_position[p_axis] - r_P,
  10962. center_Q = current_position[q_axis] - r_Q,
  10963. rt_X = logical[p_axis] - center_P,
  10964. rt_Y = logical[q_axis] - center_Q,
  10965. linear_travel = logical[l_axis] - current_position[l_axis],
  10966. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  10967. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  10968. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
  10969. if (angular_travel < 0) angular_travel += RADIANS(360);
  10970. if (clockwise) angular_travel -= RADIANS(360);
  10971. // Make a circle if the angular rotation is 0 and the target is current position
  10972. if (angular_travel == 0 && current_position[p_axis] == logical[p_axis] && current_position[q_axis] == logical[q_axis])
  10973. angular_travel = RADIANS(360);
  10974. const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
  10975. if (mm_of_travel < 0.001) return;
  10976. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  10977. if (segments == 0) segments = 1;
  10978. /**
  10979. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  10980. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  10981. * r_T = [cos(phi) -sin(phi);
  10982. * sin(phi) cos(phi)] * r ;
  10983. *
  10984. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  10985. * defined from the circle center to the initial position. Each line segment is formed by successive
  10986. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  10987. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  10988. * all double numbers are single precision on the Arduino. (True double precision will not have
  10989. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  10990. * tool precision in some cases. Therefore, arc path correction is implemented.
  10991. *
  10992. * Small angle approximation may be used to reduce computation overhead further. This approximation
  10993. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  10994. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  10995. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  10996. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  10997. * issue for CNC machines with the single precision Arduino calculations.
  10998. *
  10999. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  11000. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  11001. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  11002. * This is important when there are successive arc motions.
  11003. */
  11004. // Vector rotation matrix values
  11005. float arc_target[XYZE];
  11006. const float theta_per_segment = angular_travel / segments,
  11007. linear_per_segment = linear_travel / segments,
  11008. extruder_per_segment = extruder_travel / segments,
  11009. sin_T = theta_per_segment,
  11010. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  11011. // Initialize the linear axis
  11012. arc_target[l_axis] = current_position[l_axis];
  11013. // Initialize the extruder axis
  11014. arc_target[E_AXIS] = current_position[E_AXIS];
  11015. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  11016. millis_t next_idle_ms = millis() + 200UL;
  11017. #if N_ARC_CORRECTION > 1
  11018. int8_t arc_recalc_count = N_ARC_CORRECTION;
  11019. #endif
  11020. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  11021. thermalManager.manage_heater();
  11022. if (ELAPSED(millis(), next_idle_ms)) {
  11023. next_idle_ms = millis() + 200UL;
  11024. idle();
  11025. }
  11026. #if N_ARC_CORRECTION > 1
  11027. if (--arc_recalc_count) {
  11028. // Apply vector rotation matrix to previous r_P / 1
  11029. const float r_new_Y = r_P * sin_T + r_Q * cos_T;
  11030. r_P = r_P * cos_T - r_Q * sin_T;
  11031. r_Q = r_new_Y;
  11032. }
  11033. else
  11034. #endif
  11035. {
  11036. #if N_ARC_CORRECTION > 1
  11037. arc_recalc_count = N_ARC_CORRECTION;
  11038. #endif
  11039. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  11040. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  11041. // To reduce stuttering, the sin and cos could be computed at different times.
  11042. // For now, compute both at the same time.
  11043. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  11044. r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  11045. r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  11046. }
  11047. // Update arc_target location
  11048. arc_target[p_axis] = center_P + r_P;
  11049. arc_target[q_axis] = center_Q + r_Q;
  11050. arc_target[l_axis] += linear_per_segment;
  11051. arc_target[E_AXIS] += extruder_per_segment;
  11052. clamp_to_software_endstops(arc_target);
  11053. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  11054. }
  11055. // Ensure last segment arrives at target location.
  11056. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  11057. // As far as the parser is concerned, the position is now == target. In reality the
  11058. // motion control system might still be processing the action and the real tool position
  11059. // in any intermediate location.
  11060. set_current_from_destination();
  11061. } // plan_arc
  11062. #endif // ARC_SUPPORT
  11063. #if ENABLED(BEZIER_CURVE_SUPPORT)
  11064. void plan_cubic_move(const float offset[4]) {
  11065. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  11066. // As far as the parser is concerned, the position is now == destination. In reality the
  11067. // motion control system might still be processing the action and the real tool position
  11068. // in any intermediate location.
  11069. set_current_from_destination();
  11070. }
  11071. #endif // BEZIER_CURVE_SUPPORT
  11072. #if ENABLED(USE_CONTROLLER_FAN)
  11073. void controllerFan() {
  11074. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  11075. nextMotorCheck = 0; // Last time the state was checked
  11076. const millis_t ms = millis();
  11077. if (ELAPSED(ms, nextMotorCheck)) {
  11078. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  11079. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  11080. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  11081. #if E_STEPPERS > 1
  11082. || E1_ENABLE_READ == E_ENABLE_ON
  11083. #if HAS_X2_ENABLE
  11084. || X2_ENABLE_READ == X_ENABLE_ON
  11085. #endif
  11086. #if E_STEPPERS > 2
  11087. || E2_ENABLE_READ == E_ENABLE_ON
  11088. #if E_STEPPERS > 3
  11089. || E3_ENABLE_READ == E_ENABLE_ON
  11090. #if E_STEPPERS > 4
  11091. || E4_ENABLE_READ == E_ENABLE_ON
  11092. #endif // E_STEPPERS > 4
  11093. #endif // E_STEPPERS > 3
  11094. #endif // E_STEPPERS > 2
  11095. #endif // E_STEPPERS > 1
  11096. ) {
  11097. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  11098. }
  11099. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  11100. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  11101. // allows digital or PWM fan output to be used (see M42 handling)
  11102. WRITE(CONTROLLER_FAN_PIN, speed);
  11103. analogWrite(CONTROLLER_FAN_PIN, speed);
  11104. }
  11105. }
  11106. #endif // USE_CONTROLLER_FAN
  11107. #if ENABLED(MORGAN_SCARA)
  11108. /**
  11109. * Morgan SCARA Forward Kinematics. Results in cartes[].
  11110. * Maths and first version by QHARLEY.
  11111. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  11112. */
  11113. void forward_kinematics_SCARA(const float &a, const float &b) {
  11114. float a_sin = sin(RADIANS(a)) * L1,
  11115. a_cos = cos(RADIANS(a)) * L1,
  11116. b_sin = sin(RADIANS(b)) * L2,
  11117. b_cos = cos(RADIANS(b)) * L2;
  11118. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  11119. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  11120. /*
  11121. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  11122. SERIAL_ECHOPAIR(" b=", b);
  11123. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  11124. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  11125. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  11126. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  11127. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  11128. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  11129. //*/
  11130. }
  11131. /**
  11132. * Morgan SCARA Inverse Kinematics. Results in delta[].
  11133. *
  11134. * See http://forums.reprap.org/read.php?185,283327
  11135. *
  11136. * Maths and first version by QHARLEY.
  11137. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  11138. */
  11139. void inverse_kinematics(const float logical[XYZ]) {
  11140. static float C2, S2, SK1, SK2, THETA, PSI;
  11141. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  11142. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  11143. if (L1 == L2)
  11144. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  11145. else
  11146. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  11147. S2 = SQRT(1 - sq(C2));
  11148. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  11149. SK1 = L1 + L2 * C2;
  11150. // Rotated Arm2 gives the distance from Arm1 to Arm2
  11151. SK2 = L2 * S2;
  11152. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  11153. THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
  11154. // Angle of Arm2
  11155. PSI = ATAN2(S2, C2);
  11156. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  11157. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  11158. delta[C_AXIS] = logical[Z_AXIS];
  11159. /*
  11160. DEBUG_POS("SCARA IK", logical);
  11161. DEBUG_POS("SCARA IK", delta);
  11162. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  11163. SERIAL_ECHOPAIR(",", sy);
  11164. SERIAL_ECHOPAIR(" C2=", C2);
  11165. SERIAL_ECHOPAIR(" S2=", S2);
  11166. SERIAL_ECHOPAIR(" Theta=", THETA);
  11167. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  11168. //*/
  11169. }
  11170. #endif // MORGAN_SCARA
  11171. #if ENABLED(TEMP_STAT_LEDS)
  11172. static bool red_led = false;
  11173. static millis_t next_status_led_update_ms = 0;
  11174. void handle_status_leds(void) {
  11175. if (ELAPSED(millis(), next_status_led_update_ms)) {
  11176. next_status_led_update_ms += 500; // Update every 0.5s
  11177. float max_temp = 0.0;
  11178. #if HAS_TEMP_BED
  11179. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  11180. #endif
  11181. HOTEND_LOOP()
  11182. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  11183. const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  11184. if (new_led != red_led) {
  11185. red_led = new_led;
  11186. #if PIN_EXISTS(STAT_LED_RED)
  11187. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  11188. #if PIN_EXISTS(STAT_LED_BLUE)
  11189. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  11190. #endif
  11191. #else
  11192. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  11193. #endif
  11194. }
  11195. }
  11196. }
  11197. #endif
  11198. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11199. void handle_filament_runout() {
  11200. if (!filament_ran_out) {
  11201. filament_ran_out = true;
  11202. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  11203. stepper.synchronize();
  11204. }
  11205. }
  11206. #endif // FILAMENT_RUNOUT_SENSOR
  11207. #if ENABLED(FAST_PWM_FAN)
  11208. void setPwmFrequency(uint8_t pin, int val) {
  11209. val &= 0x07;
  11210. switch (digitalPinToTimer(pin)) {
  11211. #ifdef TCCR0A
  11212. #if !AVR_AT90USB1286_FAMILY
  11213. case TIMER0A:
  11214. #endif
  11215. case TIMER0B:
  11216. //_SET_CS(0, val);
  11217. break;
  11218. #endif
  11219. #ifdef TCCR1A
  11220. case TIMER1A:
  11221. case TIMER1B:
  11222. //_SET_CS(1, val);
  11223. break;
  11224. #endif
  11225. #ifdef TCCR2
  11226. case TIMER2:
  11227. case TIMER2:
  11228. _SET_CS(2, val);
  11229. break;
  11230. #endif
  11231. #ifdef TCCR2A
  11232. case TIMER2A:
  11233. case TIMER2B:
  11234. _SET_CS(2, val);
  11235. break;
  11236. #endif
  11237. #ifdef TCCR3A
  11238. case TIMER3A:
  11239. case TIMER3B:
  11240. case TIMER3C:
  11241. _SET_CS(3, val);
  11242. break;
  11243. #endif
  11244. #ifdef TCCR4A
  11245. case TIMER4A:
  11246. case TIMER4B:
  11247. case TIMER4C:
  11248. _SET_CS(4, val);
  11249. break;
  11250. #endif
  11251. #ifdef TCCR5A
  11252. case TIMER5A:
  11253. case TIMER5B:
  11254. case TIMER5C:
  11255. _SET_CS(5, val);
  11256. break;
  11257. #endif
  11258. }
  11259. }
  11260. #endif // FAST_PWM_FAN
  11261. float calculate_volumetric_multiplier(const float diameter) {
  11262. if (!volumetric_enabled || diameter == 0) return 1.0;
  11263. return 1.0 / (M_PI * sq(diameter * 0.5));
  11264. }
  11265. void calculate_volumetric_multipliers() {
  11266. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  11267. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  11268. }
  11269. void enable_all_steppers() {
  11270. enable_X();
  11271. enable_Y();
  11272. enable_Z();
  11273. enable_E0();
  11274. enable_E1();
  11275. enable_E2();
  11276. enable_E3();
  11277. enable_E4();
  11278. }
  11279. void disable_e_steppers() {
  11280. disable_E0();
  11281. disable_E1();
  11282. disable_E2();
  11283. disable_E3();
  11284. disable_E4();
  11285. }
  11286. void disable_all_steppers() {
  11287. disable_X();
  11288. disable_Y();
  11289. disable_Z();
  11290. disable_e_steppers();
  11291. }
  11292. #if ENABLED(HAVE_TMC2130)
  11293. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  11294. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  11295. const bool is_otpw = st.checkOT();
  11296. // Report if a warning was triggered
  11297. static bool previous_otpw = false;
  11298. if (is_otpw && !previous_otpw) {
  11299. char timestamp[10];
  11300. duration_t elapsed = print_job_timer.duration();
  11301. const bool has_days = (elapsed.value > 60*60*24L);
  11302. (void)elapsed.toDigital(timestamp, has_days);
  11303. SERIAL_ECHO(timestamp);
  11304. SERIAL_ECHOPGM(": ");
  11305. SERIAL_ECHO(axisID);
  11306. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  11307. }
  11308. previous_otpw = is_otpw;
  11309. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  11310. // Return if user has not enabled current control start with M906 S1.
  11311. if (!auto_current_control) return;
  11312. /**
  11313. * Decrease current if is_otpw is true.
  11314. * Bail out if driver is disabled.
  11315. * Increase current if OTPW has not been triggered yet.
  11316. */
  11317. uint16_t current = st.getCurrent();
  11318. if (is_otpw) {
  11319. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  11320. #if ENABLED(REPORT_CURRENT_CHANGE)
  11321. SERIAL_ECHO(axisID);
  11322. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  11323. #endif
  11324. }
  11325. else if (!st.isEnabled())
  11326. return;
  11327. else if (!is_otpw && !st.getOTPW()) {
  11328. current += CURRENT_STEP;
  11329. if (current <= AUTO_ADJUST_MAX) {
  11330. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  11331. #if ENABLED(REPORT_CURRENT_CHANGE)
  11332. SERIAL_ECHO(axisID);
  11333. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  11334. #endif
  11335. }
  11336. }
  11337. SERIAL_EOL();
  11338. #endif
  11339. }
  11340. void checkOverTemp() {
  11341. static millis_t next_cOT = 0;
  11342. if (ELAPSED(millis(), next_cOT)) {
  11343. next_cOT = millis() + 5000;
  11344. #if ENABLED(X_IS_TMC2130)
  11345. automatic_current_control(stepperX, "X");
  11346. #endif
  11347. #if ENABLED(Y_IS_TMC2130)
  11348. automatic_current_control(stepperY, "Y");
  11349. #endif
  11350. #if ENABLED(Z_IS_TMC2130)
  11351. automatic_current_control(stepperZ, "Z");
  11352. #endif
  11353. #if ENABLED(X2_IS_TMC2130)
  11354. automatic_current_control(stepperX2, "X2");
  11355. #endif
  11356. #if ENABLED(Y2_IS_TMC2130)
  11357. automatic_current_control(stepperY2, "Y2");
  11358. #endif
  11359. #if ENABLED(Z2_IS_TMC2130)
  11360. automatic_current_control(stepperZ2, "Z2");
  11361. #endif
  11362. #if ENABLED(E0_IS_TMC2130)
  11363. automatic_current_control(stepperE0, "E0");
  11364. #endif
  11365. #if ENABLED(E1_IS_TMC2130)
  11366. automatic_current_control(stepperE1, "E1");
  11367. #endif
  11368. #if ENABLED(E2_IS_TMC2130)
  11369. automatic_current_control(stepperE2, "E2");
  11370. #endif
  11371. #if ENABLED(E3_IS_TMC2130)
  11372. automatic_current_control(stepperE3, "E3");
  11373. #endif
  11374. #if ENABLED(E4_IS_TMC2130)
  11375. automatic_current_control(stepperE4, "E4");
  11376. #endif
  11377. }
  11378. }
  11379. #endif // HAVE_TMC2130
  11380. /**
  11381. * Manage several activities:
  11382. * - Check for Filament Runout
  11383. * - Keep the command buffer full
  11384. * - Check for maximum inactive time between commands
  11385. * - Check for maximum inactive time between stepper commands
  11386. * - Check if pin CHDK needs to go LOW
  11387. * - Check for KILL button held down
  11388. * - Check for HOME button held down
  11389. * - Check if cooling fan needs to be switched on
  11390. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  11391. */
  11392. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  11393. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11394. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  11395. handle_filament_runout();
  11396. #endif
  11397. if (commands_in_queue < BUFSIZE) get_available_commands();
  11398. const millis_t ms = millis();
  11399. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  11400. SERIAL_ERROR_START();
  11401. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
  11402. kill(PSTR(MSG_KILLED));
  11403. }
  11404. // Prevent steppers timing-out in the middle of M600
  11405. #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
  11406. #define MOVE_AWAY_TEST !move_away_flag
  11407. #else
  11408. #define MOVE_AWAY_TEST true
  11409. #endif
  11410. if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  11411. && !ignore_stepper_queue && !planner.blocks_queued()) {
  11412. #if ENABLED(DISABLE_INACTIVE_X)
  11413. disable_X();
  11414. #endif
  11415. #if ENABLED(DISABLE_INACTIVE_Y)
  11416. disable_Y();
  11417. #endif
  11418. #if ENABLED(DISABLE_INACTIVE_Z)
  11419. disable_Z();
  11420. #endif
  11421. #if ENABLED(DISABLE_INACTIVE_E)
  11422. disable_e_steppers();
  11423. #endif
  11424. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  11425. ubl_lcd_map_control = defer_return_to_status = false;
  11426. #endif
  11427. }
  11428. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  11429. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  11430. chdkActive = false;
  11431. WRITE(CHDK, LOW);
  11432. }
  11433. #endif
  11434. #if HAS_KILL
  11435. // Check if the kill button was pressed and wait just in case it was an accidental
  11436. // key kill key press
  11437. // -------------------------------------------------------------------------------
  11438. static int killCount = 0; // make the inactivity button a bit less responsive
  11439. const int KILL_DELAY = 750;
  11440. if (!READ(KILL_PIN))
  11441. killCount++;
  11442. else if (killCount > 0)
  11443. killCount--;
  11444. // Exceeded threshold and we can confirm that it was not accidental
  11445. // KILL the machine
  11446. // ----------------------------------------------------------------
  11447. if (killCount >= KILL_DELAY) {
  11448. SERIAL_ERROR_START();
  11449. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  11450. kill(PSTR(MSG_KILLED));
  11451. }
  11452. #endif
  11453. #if HAS_HOME
  11454. // Check to see if we have to home, use poor man's debouncer
  11455. // ---------------------------------------------------------
  11456. static int homeDebounceCount = 0; // poor man's debouncing count
  11457. const int HOME_DEBOUNCE_DELAY = 2500;
  11458. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  11459. if (!homeDebounceCount) {
  11460. enqueue_and_echo_commands_P(PSTR("G28"));
  11461. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  11462. }
  11463. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  11464. homeDebounceCount++;
  11465. else
  11466. homeDebounceCount = 0;
  11467. }
  11468. #endif
  11469. #if ENABLED(USE_CONTROLLER_FAN)
  11470. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  11471. #endif
  11472. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  11473. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  11474. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  11475. #if ENABLED(SWITCHING_EXTRUDER)
  11476. const bool oldstatus = E0_ENABLE_READ;
  11477. enable_E0();
  11478. #else // !SWITCHING_EXTRUDER
  11479. bool oldstatus;
  11480. switch (active_extruder) {
  11481. default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  11482. #if E_STEPPERS > 1
  11483. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  11484. #if E_STEPPERS > 2
  11485. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  11486. #if E_STEPPERS > 3
  11487. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  11488. #if E_STEPPERS > 4
  11489. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  11490. #endif // E_STEPPERS > 4
  11491. #endif // E_STEPPERS > 3
  11492. #endif // E_STEPPERS > 2
  11493. #endif // E_STEPPERS > 1
  11494. }
  11495. #endif // !SWITCHING_EXTRUDER
  11496. previous_cmd_ms = ms; // refresh_cmd_timeout()
  11497. const float olde = current_position[E_AXIS];
  11498. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  11499. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  11500. current_position[E_AXIS] = olde;
  11501. planner.set_e_position_mm(olde);
  11502. stepper.synchronize();
  11503. #if ENABLED(SWITCHING_EXTRUDER)
  11504. E0_ENABLE_WRITE(oldstatus);
  11505. #else
  11506. switch (active_extruder) {
  11507. case 0: E0_ENABLE_WRITE(oldstatus); break;
  11508. #if E_STEPPERS > 1
  11509. case 1: E1_ENABLE_WRITE(oldstatus); break;
  11510. #if E_STEPPERS > 2
  11511. case 2: E2_ENABLE_WRITE(oldstatus); break;
  11512. #if E_STEPPERS > 3
  11513. case 3: E3_ENABLE_WRITE(oldstatus); break;
  11514. #if E_STEPPERS > 4
  11515. case 4: E4_ENABLE_WRITE(oldstatus); break;
  11516. #endif // E_STEPPERS > 4
  11517. #endif // E_STEPPERS > 3
  11518. #endif // E_STEPPERS > 2
  11519. #endif // E_STEPPERS > 1
  11520. }
  11521. #endif // !SWITCHING_EXTRUDER
  11522. }
  11523. #endif // EXTRUDER_RUNOUT_PREVENT
  11524. #if ENABLED(DUAL_X_CARRIAGE)
  11525. // handle delayed move timeout
  11526. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  11527. // travel moves have been received so enact them
  11528. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  11529. set_destination_from_current();
  11530. prepare_move_to_destination();
  11531. }
  11532. #endif
  11533. #if ENABLED(TEMP_STAT_LEDS)
  11534. handle_status_leds();
  11535. #endif
  11536. #if ENABLED(HAVE_TMC2130)
  11537. checkOverTemp();
  11538. #endif
  11539. planner.check_axes_activity();
  11540. }
  11541. /**
  11542. * Standard idle routine keeps the machine alive
  11543. */
  11544. void idle(
  11545. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11546. bool no_stepper_sleep/*=false*/
  11547. #endif
  11548. ) {
  11549. #if ENABLED(MAX7219_DEBUG)
  11550. Max7219_idle_tasks();
  11551. #endif // MAX7219_DEBUG
  11552. lcd_update();
  11553. host_keepalive();
  11554. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  11555. auto_report_temperatures();
  11556. #endif
  11557. manage_inactivity(
  11558. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11559. no_stepper_sleep
  11560. #endif
  11561. );
  11562. thermalManager.manage_heater();
  11563. #if ENABLED(PRINTCOUNTER)
  11564. print_job_timer.tick();
  11565. #endif
  11566. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  11567. buzzer.tick();
  11568. #endif
  11569. #if ENABLED(I2C_POSITION_ENCODERS)
  11570. if (planner.blocks_queued() &&
  11571. ( (blockBufferIndexRef != planner.block_buffer_head) ||
  11572. ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
  11573. blockBufferIndexRef = planner.block_buffer_head;
  11574. I2CPEM.update();
  11575. lastUpdateMillis = millis();
  11576. }
  11577. #endif
  11578. }
  11579. /**
  11580. * Kill all activity and lock the machine.
  11581. * After this the machine will need to be reset.
  11582. */
  11583. void kill(const char* lcd_msg) {
  11584. SERIAL_ERROR_START();
  11585. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  11586. thermalManager.disable_all_heaters();
  11587. disable_all_steppers();
  11588. #if ENABLED(ULTRA_LCD)
  11589. kill_screen(lcd_msg);
  11590. #else
  11591. UNUSED(lcd_msg);
  11592. #endif
  11593. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  11594. cli(); // Stop interrupts
  11595. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  11596. thermalManager.disable_all_heaters(); //turn off heaters again
  11597. #ifdef ACTION_ON_KILL
  11598. SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
  11599. #endif
  11600. #if HAS_POWER_SWITCH
  11601. SET_INPUT(PS_ON_PIN);
  11602. #endif
  11603. suicide();
  11604. while (1) {
  11605. #if ENABLED(USE_WATCHDOG)
  11606. watchdog_reset();
  11607. #endif
  11608. } // Wait for reset
  11609. }
  11610. /**
  11611. * Turn off heaters and stop the print in progress
  11612. * After a stop the machine may be resumed with M999
  11613. */
  11614. void stop() {
  11615. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  11616. #if ENABLED(PROBING_FANS_OFF)
  11617. if (fans_paused) fans_pause(false); // put things back the way they were
  11618. #endif
  11619. if (IsRunning()) {
  11620. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  11621. SERIAL_ERROR_START();
  11622. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  11623. LCD_MESSAGEPGM(MSG_STOPPED);
  11624. safe_delay(350); // allow enough time for messages to get out before stopping
  11625. Running = false;
  11626. }
  11627. }
  11628. /**
  11629. * Marlin entry-point: Set up before the program loop
  11630. * - Set up the kill pin, filament runout, power hold
  11631. * - Start the serial port
  11632. * - Print startup messages and diagnostics
  11633. * - Get EEPROM or default settings
  11634. * - Initialize managers for:
  11635. * • temperature
  11636. * • planner
  11637. * • watchdog
  11638. * • stepper
  11639. * • photo pin
  11640. * • servos
  11641. * • LCD controller
  11642. * • Digipot I2C
  11643. * • Z probe sled
  11644. * • status LEDs
  11645. */
  11646. void setup() {
  11647. #if ENABLED(MAX7219_DEBUG)
  11648. Max7219_init();
  11649. #endif
  11650. #ifdef DISABLE_JTAG
  11651. // Disable JTAG on AT90USB chips to free up pins for IO
  11652. MCUCR = 0x80;
  11653. MCUCR = 0x80;
  11654. #endif
  11655. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11656. setup_filrunoutpin();
  11657. #endif
  11658. setup_killpin();
  11659. setup_powerhold();
  11660. #if HAS_STEPPER_RESET
  11661. disableStepperDrivers();
  11662. #endif
  11663. MYSERIAL.begin(BAUDRATE);
  11664. SERIAL_PROTOCOLLNPGM("start");
  11665. SERIAL_ECHO_START();
  11666. // Check startup - does nothing if bootloader sets MCUSR to 0
  11667. byte mcu = MCUSR;
  11668. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  11669. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  11670. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  11671. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  11672. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  11673. MCUSR = 0;
  11674. SERIAL_ECHOPGM(MSG_MARLIN);
  11675. SERIAL_CHAR(' ');
  11676. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  11677. SERIAL_EOL();
  11678. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  11679. SERIAL_ECHO_START();
  11680. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  11681. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  11682. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  11683. SERIAL_ECHO_START();
  11684. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  11685. #endif
  11686. SERIAL_ECHO_START();
  11687. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  11688. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  11689. // Send "ok" after commands by default
  11690. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  11691. // Load data from EEPROM if available (or use defaults)
  11692. // This also updates variables in the planner, elsewhere
  11693. (void)settings.load();
  11694. #if HAS_M206_COMMAND
  11695. // Initialize current position based on home_offset
  11696. COPY(current_position, home_offset);
  11697. #else
  11698. ZERO(current_position);
  11699. #endif
  11700. // Vital to init stepper/planner equivalent for current_position
  11701. SYNC_PLAN_POSITION_KINEMATIC();
  11702. thermalManager.init(); // Initialize temperature loop
  11703. #if ENABLED(USE_WATCHDOG)
  11704. watchdog_init();
  11705. #endif
  11706. stepper.init(); // Initialize stepper, this enables interrupts!
  11707. servo_init();
  11708. #if HAS_PHOTOGRAPH
  11709. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  11710. #endif
  11711. #if HAS_CASE_LIGHT
  11712. case_light_on = CASE_LIGHT_DEFAULT_ON;
  11713. case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
  11714. update_case_light();
  11715. #endif
  11716. #if ENABLED(SPINDLE_LASER_ENABLE)
  11717. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  11718. #if SPINDLE_DIR_CHANGE
  11719. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  11720. #endif
  11721. #if ENABLED(SPINDLE_LASER_PWM)
  11722. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  11723. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  11724. #endif
  11725. #endif
  11726. #if HAS_BED_PROBE
  11727. endstops.enable_z_probe(false);
  11728. #endif
  11729. #if ENABLED(USE_CONTROLLER_FAN)
  11730. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  11731. #endif
  11732. #if HAS_STEPPER_RESET
  11733. enableStepperDrivers();
  11734. #endif
  11735. #if ENABLED(DIGIPOT_I2C)
  11736. digipot_i2c_init();
  11737. #endif
  11738. #if ENABLED(DAC_STEPPER_CURRENT)
  11739. dac_init();
  11740. #endif
  11741. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  11742. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  11743. #endif
  11744. #if HAS_HOME
  11745. SET_INPUT_PULLUP(HOME_PIN);
  11746. #endif
  11747. #if PIN_EXISTS(STAT_LED_RED)
  11748. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  11749. #endif
  11750. #if PIN_EXISTS(STAT_LED_BLUE)
  11751. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  11752. #endif
  11753. #if ENABLED(NEOPIXEL_LED)
  11754. SET_OUTPUT(NEOPIXEL_PIN);
  11755. setup_neopixel();
  11756. #endif
  11757. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  11758. SET_OUTPUT(RGB_LED_R_PIN);
  11759. SET_OUTPUT(RGB_LED_G_PIN);
  11760. SET_OUTPUT(RGB_LED_B_PIN);
  11761. #if ENABLED(RGBW_LED)
  11762. SET_OUTPUT(RGB_LED_W_PIN);
  11763. #endif
  11764. #endif
  11765. #if ENABLED(MK2_MULTIPLEXER)
  11766. SET_OUTPUT(E_MUX0_PIN);
  11767. SET_OUTPUT(E_MUX1_PIN);
  11768. SET_OUTPUT(E_MUX2_PIN);
  11769. #endif
  11770. #if HAS_FANMUX
  11771. fanmux_init();
  11772. #endif
  11773. lcd_init();
  11774. #if ENABLED(SHOW_BOOTSCREEN)
  11775. lcd_bootscreen();
  11776. #if ENABLED(ULTRA_LCD) && DISABLED(SDSUPPORT)
  11777. lcd_init();
  11778. #endif
  11779. #endif
  11780. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  11781. // Initialize mixing to 100% color 1
  11782. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11783. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  11784. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  11785. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11786. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  11787. #endif
  11788. #if ENABLED(BLTOUCH)
  11789. // Make sure any BLTouch error condition is cleared
  11790. bltouch_command(BLTOUCH_RESET);
  11791. set_bltouch_deployed(true);
  11792. set_bltouch_deployed(false);
  11793. #endif
  11794. #if ENABLED(I2C_POSITION_ENCODERS)
  11795. I2CPEM.init();
  11796. #endif
  11797. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  11798. i2c.onReceive(i2c_on_receive);
  11799. i2c.onRequest(i2c_on_request);
  11800. #endif
  11801. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  11802. setup_endstop_interrupts();
  11803. #endif
  11804. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  11805. move_extruder_servo(0); // Initialize extruder servo
  11806. #endif
  11807. #if ENABLED(SWITCHING_NOZZLE)
  11808. move_nozzle_servo(0); // Initialize nozzle servo
  11809. #endif
  11810. #if ENABLED(PARKING_EXTRUDER)
  11811. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  11812. pe_activate_magnet(0);
  11813. pe_activate_magnet(1);
  11814. #else
  11815. pe_deactivate_magnet(0);
  11816. pe_deactivate_magnet(1);
  11817. #endif
  11818. #endif
  11819. #if ENABLED(MKS_12864OLED)
  11820. SET_OUTPUT(LCD_PINS_DC);
  11821. OUT_WRITE(LCD_PINS_RS, LOW);
  11822. delay(1000);
  11823. WRITE(LCD_PINS_RS, HIGH);
  11824. #endif
  11825. }
  11826. /**
  11827. * The main Marlin program loop
  11828. *
  11829. * - Save or log commands to SD
  11830. * - Process available commands (if not saving)
  11831. * - Call heater manager
  11832. * - Call inactivity manager
  11833. * - Call endstop manager
  11834. * - Call LCD update
  11835. */
  11836. void loop() {
  11837. if (commands_in_queue < BUFSIZE) get_available_commands();
  11838. #if ENABLED(SDSUPPORT)
  11839. card.checkautostart(false);
  11840. #endif
  11841. if (commands_in_queue) {
  11842. #if ENABLED(SDSUPPORT)
  11843. if (card.saving) {
  11844. char* command = command_queue[cmd_queue_index_r];
  11845. if (strstr_P(command, PSTR("M29"))) {
  11846. // M29 closes the file
  11847. card.closefile();
  11848. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  11849. #if ENABLED(SERIAL_STATS_DROPPED_RX)
  11850. SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped());
  11851. #endif
  11852. #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
  11853. SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued());
  11854. #endif
  11855. ok_to_send();
  11856. }
  11857. else {
  11858. // Write the string from the read buffer to SD
  11859. card.write_command(command);
  11860. if (card.logging)
  11861. process_next_command(); // The card is saving because it's logging
  11862. else
  11863. ok_to_send();
  11864. }
  11865. }
  11866. else
  11867. process_next_command();
  11868. #else
  11869. process_next_command();
  11870. #endif // SDSUPPORT
  11871. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  11872. if (commands_in_queue) {
  11873. --commands_in_queue;
  11874. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  11875. }
  11876. }
  11877. endstops.report_state();
  11878. idle();
  11879. }