My Marlin configs for Fabrikator Mini and CTC i3 Pro B

configuration_store.cpp 60KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V43"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V43 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM CRC16 (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time_us (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Global Leveling:
  64. * 219 z_fade_height (float)
  65. *
  66. * MESH_BED_LEVELING: 43 bytes
  67. * 223 M420 S planner.leveling_active (bool)
  68. * 224 mbl.z_offset (float)
  69. * 228 GRID_MAX_POINTS_X (uint8_t)
  70. * 229 GRID_MAX_POINTS_Y (uint8_t)
  71. * 230 G29 S3 XYZ z_values[][] (float x9, up to float x81) +288
  72. *
  73. * HAS_BED_PROBE: 4 bytes
  74. * 266 M851 zprobe_zoffset (float)
  75. *
  76. * ABL_PLANAR: 36 bytes
  77. * 270 planner.bed_level_matrix (matrix_3x3 = float x9)
  78. *
  79. * AUTO_BED_LEVELING_BILINEAR: 47 bytes
  80. * 306 GRID_MAX_POINTS_X (uint8_t)
  81. * 307 GRID_MAX_POINTS_Y (uint8_t)
  82. * 308 bilinear_grid_spacing (int x2)
  83. * 312 G29 L F bilinear_start (int x2)
  84. * 316 z_values[][] (float x9, up to float x256) +988
  85. *
  86. * AUTO_BED_LEVELING_UBL: 2 bytes
  87. * 324 G29 A planner.leveling_active (bool)
  88. * 325 G29 S ubl.storage_slot (int8_t)
  89. *
  90. * DELTA: 40 bytes
  91. * 352 M666 XYZ delta_endstop_adj (float x3)
  92. * 364 M665 R delta_radius (float)
  93. * 368 M665 L delta_diagonal_rod (float)
  94. * 372 M665 S delta_segments_per_second (float)
  95. * 376 M665 B delta_calibration_radius (float)
  96. * 380 M665 X delta_tower_angle_trim[A] (float)
  97. * 384 M665 Y delta_tower_angle_trim[B] (float)
  98. * 388 M665 Z delta_tower_angle_trim[C] (float)
  99. *
  100. * [XYZ]_DUAL_ENDSTOPS: 12 bytes
  101. * 352 M666 X x_endstop_adj (float)
  102. * 356 M666 Y y_endstop_adj (float)
  103. * 360 M666 Z z_endstop_adj (float)
  104. *
  105. * ULTIPANEL: 6 bytes
  106. * 392 M145 S0 H lcd_preheat_hotend_temp (int x2)
  107. * 396 M145 S0 B lcd_preheat_bed_temp (int x2)
  108. * 400 M145 S0 F lcd_preheat_fan_speed (int x2)
  109. *
  110. * PIDTEMP: 82 bytes
  111. * 404 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  112. * 420 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  113. * 436 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  114. * 452 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  115. * 468 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  116. * 484 M301 L lpq_len (int)
  117. *
  118. * PIDTEMPBED: 12 bytes
  119. * 486 M304 PID thermalManager.bedKp, .bedKi, .bedKd (float x3)
  120. *
  121. * DOGLCD: 2 bytes
  122. * 498 M250 C lcd_contrast (uint16_t)
  123. *
  124. * FWRETRACT: 33 bytes
  125. * 500 M209 S autoretract_enabled (bool)
  126. * 501 M207 S retract_length (float)
  127. * 505 M207 F retract_feedrate_mm_s (float)
  128. * 509 M207 Z retract_zlift (float)
  129. * 513 M208 S retract_recover_length (float)
  130. * 517 M208 F retract_recover_feedrate_mm_s (float)
  131. * 521 M207 W swap_retract_length (float)
  132. * 525 M208 W swap_retract_recover_length (float)
  133. * 529 M208 R swap_retract_recover_feedrate_mm_s (float)
  134. *
  135. * Volumetric Extrusion: 21 bytes
  136. * 533 M200 D volumetric_enabled (bool)
  137. * 534 M200 T D filament_size (float x5) (T0..3)
  138. *
  139. * HAVE_TMC2130: 22 bytes
  140. * 554 M906 X Stepper X current (uint16_t)
  141. * 556 M906 Y Stepper Y current (uint16_t)
  142. * 558 M906 Z Stepper Z current (uint16_t)
  143. * 560 M906 X2 Stepper X2 current (uint16_t)
  144. * 562 M906 Y2 Stepper Y2 current (uint16_t)
  145. * 564 M906 Z2 Stepper Z2 current (uint16_t)
  146. * 566 M906 E0 Stepper E0 current (uint16_t)
  147. * 568 M906 E1 Stepper E1 current (uint16_t)
  148. * 570 M906 E2 Stepper E2 current (uint16_t)
  149. * 572 M906 E3 Stepper E3 current (uint16_t)
  150. * 574 M906 E4 Stepper E4 current (uint16_t)
  151. *
  152. * LIN_ADVANCE: 8 bytes
  153. * 576 M900 K extruder_advance_k (float)
  154. * 580 M900 WHD advance_ed_ratio (float)
  155. *
  156. * HAS_MOTOR_CURRENT_PWM:
  157. * 584 M907 X Stepper XY current (uint32_t)
  158. * 588 M907 Z Stepper Z current (uint32_t)
  159. * 592 M907 E Stepper E current (uint32_t)
  160. *
  161. * 596 Minimum end-point
  162. * 1917 (596 + 36 + 9 + 288 + 988) Maximum end-point
  163. *
  164. * ========================================================================
  165. * meshes_begin (between max and min end-point, directly above)
  166. * -- MESHES --
  167. * meshes_end
  168. * -- MAT (Mesh Allocation Table) -- 128 bytes (placeholder size)
  169. * mat_end = E2END (0xFFF)
  170. *
  171. */
  172. #include "configuration_store.h"
  173. MarlinSettings settings;
  174. #include "Marlin.h"
  175. #include "language.h"
  176. #include "endstops.h"
  177. #include "planner.h"
  178. #include "temperature.h"
  179. #include "ultralcd.h"
  180. #include "stepper.h"
  181. #if ENABLED(INCH_MODE_SUPPORT) || (ENABLED(ULTIPANEL) && ENABLED(TEMPERATURE_UNITS_SUPPORT))
  182. #include "gcode.h"
  183. #endif
  184. #if ENABLED(MESH_BED_LEVELING)
  185. #include "mesh_bed_leveling.h"
  186. #endif
  187. #if ENABLED(HAVE_TMC2130)
  188. #include "stepper_indirection.h"
  189. #endif
  190. #if ENABLED(AUTO_BED_LEVELING_UBL)
  191. #include "ubl.h"
  192. #endif
  193. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  194. extern void refresh_bed_level();
  195. #endif
  196. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  197. float new_z_fade_height;
  198. #endif
  199. /**
  200. * Post-process after Retrieve or Reset
  201. */
  202. void MarlinSettings::postprocess() {
  203. // steps per s2 needs to be updated to agree with units per s2
  204. planner.reset_acceleration_rates();
  205. // Make sure delta kinematics are updated before refreshing the
  206. // planner position so the stepper counts will be set correctly.
  207. #if ENABLED(DELTA)
  208. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  209. #endif
  210. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  211. // and init stepper.count[], planner.position[] with current_position
  212. planner.refresh_positioning();
  213. #if ENABLED(PIDTEMP)
  214. thermalManager.updatePID();
  215. #endif
  216. calculate_volumetric_multipliers();
  217. #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  218. // Software endstops depend on home_offset
  219. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  220. #endif
  221. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  222. set_z_fade_height(new_z_fade_height);
  223. #endif
  224. #if HAS_BED_PROBE
  225. refresh_zprobe_zoffset();
  226. #endif
  227. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  228. refresh_bed_level();
  229. //set_bed_leveling_enabled(leveling_is_on);
  230. #endif
  231. #if HAS_MOTOR_CURRENT_PWM
  232. stepper.refresh_motor_power();
  233. #endif
  234. }
  235. #if ENABLED(EEPROM_SETTINGS)
  236. #define DUMMY_PID_VALUE 3000.0f
  237. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  238. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  239. #define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  240. #define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  241. #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0)
  242. const char version[4] = EEPROM_VERSION;
  243. bool MarlinSettings::eeprom_error;
  244. #if ENABLED(AUTO_BED_LEVELING_UBL)
  245. int MarlinSettings::meshes_begin;
  246. #endif
  247. void MarlinSettings::write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
  248. if (eeprom_error) return;
  249. while (size--) {
  250. uint8_t * const p = (uint8_t * const)pos;
  251. uint8_t v = *value;
  252. // EEPROM has only ~100,000 write cycles,
  253. // so only write bytes that have changed!
  254. if (v != eeprom_read_byte(p)) {
  255. eeprom_write_byte(p, v);
  256. if (eeprom_read_byte(p) != v) {
  257. SERIAL_ECHO_START();
  258. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  259. eeprom_error = true;
  260. return;
  261. }
  262. }
  263. crc16(crc, &v, 1);
  264. pos++;
  265. value++;
  266. };
  267. }
  268. void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) {
  269. if (eeprom_error) return;
  270. do {
  271. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  272. *value = c;
  273. crc16(crc, &c, 1);
  274. pos++;
  275. value++;
  276. } while (--size);
  277. }
  278. /**
  279. * M500 - Store Configuration
  280. */
  281. bool MarlinSettings::save() {
  282. float dummy = 0.0f;
  283. char ver[4] = "000";
  284. uint16_t working_crc = 0;
  285. EEPROM_START();
  286. eeprom_error = false;
  287. EEPROM_WRITE(ver); // invalidate data first
  288. EEPROM_SKIP(working_crc); // Skip the checksum slot
  289. working_crc = 0; // clear before first "real data"
  290. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  291. EEPROM_WRITE(esteppers);
  292. EEPROM_WRITE(planner.axis_steps_per_mm);
  293. EEPROM_WRITE(planner.max_feedrate_mm_s);
  294. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  295. EEPROM_WRITE(planner.acceleration);
  296. EEPROM_WRITE(planner.retract_acceleration);
  297. EEPROM_WRITE(planner.travel_acceleration);
  298. EEPROM_WRITE(planner.min_feedrate_mm_s);
  299. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  300. EEPROM_WRITE(planner.min_segment_time_us);
  301. EEPROM_WRITE(planner.max_jerk);
  302. #if !HAS_HOME_OFFSET
  303. const float home_offset[XYZ] = { 0 };
  304. #endif
  305. #if ENABLED(DELTA)
  306. dummy = 0.0;
  307. EEPROM_WRITE(dummy);
  308. EEPROM_WRITE(dummy);
  309. dummy = DELTA_HEIGHT + home_offset[Z_AXIS];
  310. EEPROM_WRITE(dummy);
  311. #else
  312. EEPROM_WRITE(home_offset);
  313. #endif
  314. #if HOTENDS > 1
  315. // Skip hotend 0 which must be 0
  316. for (uint8_t e = 1; e < HOTENDS; e++)
  317. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  318. #endif
  319. //
  320. // Global Leveling
  321. //
  322. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  323. const float zfh = planner.z_fade_height;
  324. #else
  325. const float zfh = 10.0;
  326. #endif
  327. EEPROM_WRITE(zfh);
  328. //
  329. // Mesh Bed Leveling
  330. //
  331. #if ENABLED(MESH_BED_LEVELING)
  332. // Compile time test that sizeof(mbl.z_values) is as expected
  333. static_assert(
  334. sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
  335. "MBL Z array is the wrong size."
  336. );
  337. const bool leveling_is_on = mbl.has_mesh;
  338. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  339. EEPROM_WRITE(leveling_is_on);
  340. EEPROM_WRITE(mbl.z_offset);
  341. EEPROM_WRITE(mesh_num_x);
  342. EEPROM_WRITE(mesh_num_y);
  343. EEPROM_WRITE(mbl.z_values);
  344. #else // For disabled MBL write a default mesh
  345. const bool leveling_is_on = false;
  346. dummy = 0.0f;
  347. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  348. EEPROM_WRITE(leveling_is_on);
  349. EEPROM_WRITE(dummy); // z_offset
  350. EEPROM_WRITE(mesh_num_x);
  351. EEPROM_WRITE(mesh_num_y);
  352. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  353. #endif // MESH_BED_LEVELING
  354. #if !HAS_BED_PROBE
  355. const float zprobe_zoffset = 0;
  356. #endif
  357. EEPROM_WRITE(zprobe_zoffset);
  358. //
  359. // Planar Bed Leveling matrix
  360. //
  361. #if ABL_PLANAR
  362. EEPROM_WRITE(planner.bed_level_matrix);
  363. #else
  364. dummy = 0.0;
  365. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  366. #endif
  367. //
  368. // Bilinear Auto Bed Leveling
  369. //
  370. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  371. // Compile time test that sizeof(z_values) is as expected
  372. static_assert(
  373. sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
  374. "Bilinear Z array is the wrong size."
  375. );
  376. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  377. EEPROM_WRITE(grid_max_x); // 1 byte
  378. EEPROM_WRITE(grid_max_y); // 1 byte
  379. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  380. EEPROM_WRITE(bilinear_start); // 2 ints
  381. EEPROM_WRITE(z_values); // 9-256 floats
  382. #else
  383. // For disabled Bilinear Grid write an empty 3x3 grid
  384. const uint8_t grid_max_x = 3, grid_max_y = 3;
  385. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  386. dummy = 0.0f;
  387. EEPROM_WRITE(grid_max_x);
  388. EEPROM_WRITE(grid_max_y);
  389. EEPROM_WRITE(bilinear_grid_spacing);
  390. EEPROM_WRITE(bilinear_start);
  391. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  392. #endif // AUTO_BED_LEVELING_BILINEAR
  393. #if ENABLED(AUTO_BED_LEVELING_UBL)
  394. EEPROM_WRITE(planner.leveling_active);
  395. EEPROM_WRITE(ubl.storage_slot);
  396. #else
  397. const bool ubl_active = false;
  398. const int8_t storage_slot = -1;
  399. EEPROM_WRITE(ubl_active);
  400. EEPROM_WRITE(storage_slot);
  401. #endif // AUTO_BED_LEVELING_UBL
  402. // 10 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
  403. #if ENABLED(DELTA)
  404. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  405. EEPROM_WRITE(delta_radius); // 1 float
  406. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  407. EEPROM_WRITE(delta_segments_per_second); // 1 float
  408. EEPROM_WRITE(delta_calibration_radius); // 1 float
  409. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  410. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  411. // Write dual endstops in X, Y, Z order. Unused = 0.0
  412. dummy = 0.0f;
  413. #if ENABLED(X_DUAL_ENDSTOPS)
  414. EEPROM_WRITE(x_endstop_adj); // 1 float
  415. #else
  416. EEPROM_WRITE(dummy);
  417. #endif
  418. #if ENABLED(Y_DUAL_ENDSTOPS)
  419. EEPROM_WRITE(y_endstop_adj); // 1 float
  420. #else
  421. EEPROM_WRITE(dummy);
  422. #endif
  423. #if ENABLED(Z_DUAL_ENDSTOPS)
  424. EEPROM_WRITE(z_endstop_adj); // 1 float
  425. #else
  426. EEPROM_WRITE(dummy);
  427. #endif
  428. for (uint8_t q = 7; q--;) EEPROM_WRITE(dummy);
  429. #else
  430. dummy = 0.0f;
  431. for (uint8_t q = 10; q--;) EEPROM_WRITE(dummy);
  432. #endif
  433. #if DISABLED(ULTIPANEL)
  434. constexpr int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  435. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  436. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  437. #endif
  438. EEPROM_WRITE(lcd_preheat_hotend_temp);
  439. EEPROM_WRITE(lcd_preheat_bed_temp);
  440. EEPROM_WRITE(lcd_preheat_fan_speed);
  441. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  442. #if ENABLED(PIDTEMP)
  443. if (e < HOTENDS) {
  444. EEPROM_WRITE(PID_PARAM(Kp, e));
  445. EEPROM_WRITE(PID_PARAM(Ki, e));
  446. EEPROM_WRITE(PID_PARAM(Kd, e));
  447. #if ENABLED(PID_EXTRUSION_SCALING)
  448. EEPROM_WRITE(PID_PARAM(Kc, e));
  449. #else
  450. dummy = 1.0f; // 1.0 = default kc
  451. EEPROM_WRITE(dummy);
  452. #endif
  453. }
  454. else
  455. #endif // !PIDTEMP
  456. {
  457. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  458. EEPROM_WRITE(dummy); // Kp
  459. dummy = 0.0f;
  460. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  461. }
  462. } // Hotends Loop
  463. #if DISABLED(PID_EXTRUSION_SCALING)
  464. int lpq_len = 20;
  465. #endif
  466. EEPROM_WRITE(lpq_len);
  467. #if DISABLED(PIDTEMPBED)
  468. dummy = DUMMY_PID_VALUE;
  469. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  470. #else
  471. EEPROM_WRITE(thermalManager.bedKp);
  472. EEPROM_WRITE(thermalManager.bedKi);
  473. EEPROM_WRITE(thermalManager.bedKd);
  474. #endif
  475. #if !HAS_LCD_CONTRAST
  476. const uint16_t lcd_contrast = 32;
  477. #endif
  478. EEPROM_WRITE(lcd_contrast);
  479. #if DISABLED(FWRETRACT)
  480. const bool autoretract_enabled = false;
  481. const float retract_length = 3,
  482. retract_feedrate_mm_s = 45,
  483. retract_zlift = 0,
  484. retract_recover_length = 0,
  485. retract_recover_feedrate_mm_s = 0,
  486. swap_retract_length = 13,
  487. swap_retract_recover_length = 0,
  488. swap_retract_recover_feedrate_mm_s = 8;
  489. #endif
  490. EEPROM_WRITE(autoretract_enabled);
  491. EEPROM_WRITE(retract_length);
  492. EEPROM_WRITE(retract_feedrate_mm_s);
  493. EEPROM_WRITE(retract_zlift);
  494. EEPROM_WRITE(retract_recover_length);
  495. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  496. EEPROM_WRITE(swap_retract_length);
  497. EEPROM_WRITE(swap_retract_recover_length);
  498. EEPROM_WRITE(swap_retract_recover_feedrate_mm_s);
  499. EEPROM_WRITE(volumetric_enabled);
  500. // Save filament sizes
  501. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  502. if (q < COUNT(filament_size)) dummy = filament_size[q];
  503. EEPROM_WRITE(dummy);
  504. }
  505. // Save TMC2130 Configuration, and placeholder values
  506. uint16_t val;
  507. #if ENABLED(HAVE_TMC2130)
  508. #if ENABLED(X_IS_TMC2130)
  509. val = stepperX.getCurrent();
  510. #else
  511. val = 0;
  512. #endif
  513. EEPROM_WRITE(val);
  514. #if ENABLED(Y_IS_TMC2130)
  515. val = stepperY.getCurrent();
  516. #else
  517. val = 0;
  518. #endif
  519. EEPROM_WRITE(val);
  520. #if ENABLED(Z_IS_TMC2130)
  521. val = stepperZ.getCurrent();
  522. #else
  523. val = 0;
  524. #endif
  525. EEPROM_WRITE(val);
  526. #if ENABLED(X2_IS_TMC2130)
  527. val = stepperX2.getCurrent();
  528. #else
  529. val = 0;
  530. #endif
  531. EEPROM_WRITE(val);
  532. #if ENABLED(Y2_IS_TMC2130)
  533. val = stepperY2.getCurrent();
  534. #else
  535. val = 0;
  536. #endif
  537. EEPROM_WRITE(val);
  538. #if ENABLED(Z2_IS_TMC2130)
  539. val = stepperZ2.getCurrent();
  540. #else
  541. val = 0;
  542. #endif
  543. EEPROM_WRITE(val);
  544. #if ENABLED(E0_IS_TMC2130)
  545. val = stepperE0.getCurrent();
  546. #else
  547. val = 0;
  548. #endif
  549. EEPROM_WRITE(val);
  550. #if ENABLED(E1_IS_TMC2130)
  551. val = stepperE1.getCurrent();
  552. #else
  553. val = 0;
  554. #endif
  555. EEPROM_WRITE(val);
  556. #if ENABLED(E2_IS_TMC2130)
  557. val = stepperE2.getCurrent();
  558. #else
  559. val = 0;
  560. #endif
  561. EEPROM_WRITE(val);
  562. #if ENABLED(E3_IS_TMC2130)
  563. val = stepperE3.getCurrent();
  564. #else
  565. val = 0;
  566. #endif
  567. EEPROM_WRITE(val);
  568. #if ENABLED(E4_IS_TMC2130)
  569. val = stepperE4.getCurrent();
  570. #else
  571. val = 0;
  572. #endif
  573. EEPROM_WRITE(val);
  574. #else
  575. val = 0;
  576. for (uint8_t q = 11; q--;) EEPROM_WRITE(val);
  577. #endif
  578. //
  579. // Linear Advance
  580. //
  581. #if ENABLED(LIN_ADVANCE)
  582. EEPROM_WRITE(planner.extruder_advance_k);
  583. EEPROM_WRITE(planner.advance_ed_ratio);
  584. #else
  585. dummy = 0.0f;
  586. EEPROM_WRITE(dummy);
  587. EEPROM_WRITE(dummy);
  588. #endif
  589. #if HAS_MOTOR_CURRENT_PWM
  590. for (uint8_t q = 3; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
  591. #else
  592. const uint32_t dummyui32 = 0;
  593. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummyui32);
  594. #endif
  595. if (!eeprom_error) {
  596. const int eeprom_size = eeprom_index;
  597. const uint16_t final_crc = working_crc;
  598. // Write the EEPROM header
  599. eeprom_index = EEPROM_OFFSET;
  600. EEPROM_WRITE(version);
  601. EEPROM_WRITE(final_crc);
  602. // Report storage size
  603. #if ENABLED(EEPROM_CHITCHAT)
  604. SERIAL_ECHO_START();
  605. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  606. SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)final_crc);
  607. SERIAL_ECHOLNPGM(")");
  608. #endif
  609. }
  610. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  611. if (ubl.storage_slot >= 0)
  612. store_mesh(ubl.storage_slot);
  613. #endif
  614. return !eeprom_error;
  615. }
  616. /**
  617. * M501 - Retrieve Configuration
  618. */
  619. bool MarlinSettings::load() {
  620. uint16_t working_crc = 0;
  621. EEPROM_START();
  622. char stored_ver[4];
  623. EEPROM_READ(stored_ver);
  624. uint16_t stored_crc;
  625. EEPROM_READ(stored_crc);
  626. // Version has to match or defaults are used
  627. if (strncmp(version, stored_ver, 3) != 0) {
  628. if (stored_ver[0] != 'V') {
  629. stored_ver[0] = '?';
  630. stored_ver[1] = '\0';
  631. }
  632. #if ENABLED(EEPROM_CHITCHAT)
  633. SERIAL_ECHO_START();
  634. SERIAL_ECHOPGM("EEPROM version mismatch ");
  635. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  636. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  637. #endif
  638. reset();
  639. }
  640. else {
  641. float dummy = 0;
  642. bool dummyb;
  643. working_crc = 0; //clear before reading first "real data"
  644. // Number of esteppers may change
  645. uint8_t esteppers;
  646. EEPROM_READ(esteppers);
  647. // Get only the number of E stepper parameters previously stored
  648. // Any steppers added later are set to their defaults
  649. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  650. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  651. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  652. uint32_t tmp3[XYZ + esteppers];
  653. EEPROM_READ(tmp1);
  654. EEPROM_READ(tmp2);
  655. EEPROM_READ(tmp3);
  656. LOOP_XYZE_N(i) {
  657. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  658. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  659. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  660. }
  661. EEPROM_READ(planner.acceleration);
  662. EEPROM_READ(planner.retract_acceleration);
  663. EEPROM_READ(planner.travel_acceleration);
  664. EEPROM_READ(planner.min_feedrate_mm_s);
  665. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  666. EEPROM_READ(planner.min_segment_time_us);
  667. EEPROM_READ(planner.max_jerk);
  668. #if !HAS_HOME_OFFSET
  669. float home_offset[XYZ];
  670. #endif
  671. EEPROM_READ(home_offset);
  672. #if ENABLED(DELTA)
  673. home_offset[X_AXIS] = 0.0;
  674. home_offset[Y_AXIS] = 0.0;
  675. home_offset[Z_AXIS] -= DELTA_HEIGHT;
  676. #endif
  677. #if HOTENDS > 1
  678. // Skip hotend 0 which must be 0
  679. for (uint8_t e = 1; e < HOTENDS; e++)
  680. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  681. #endif
  682. //
  683. // Global Leveling
  684. //
  685. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  686. EEPROM_READ(new_z_fade_height);
  687. #else
  688. EEPROM_READ(dummy);
  689. #endif
  690. //
  691. // Mesh (Manual) Bed Leveling
  692. //
  693. bool leveling_is_on;
  694. uint8_t mesh_num_x, mesh_num_y;
  695. EEPROM_READ(leveling_is_on);
  696. EEPROM_READ(dummy);
  697. EEPROM_READ(mesh_num_x);
  698. EEPROM_READ(mesh_num_y);
  699. #if ENABLED(MESH_BED_LEVELING)
  700. mbl.has_mesh = leveling_is_on;
  701. mbl.z_offset = dummy;
  702. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  703. // EEPROM data fits the current mesh
  704. EEPROM_READ(mbl.z_values);
  705. }
  706. else {
  707. // EEPROM data is stale
  708. mbl.reset();
  709. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  710. }
  711. #else
  712. // MBL is disabled - skip the stored data
  713. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  714. #endif // MESH_BED_LEVELING
  715. #if !HAS_BED_PROBE
  716. float zprobe_zoffset;
  717. #endif
  718. EEPROM_READ(zprobe_zoffset);
  719. //
  720. // Planar Bed Leveling matrix
  721. //
  722. #if ABL_PLANAR
  723. EEPROM_READ(planner.bed_level_matrix);
  724. #else
  725. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  726. #endif
  727. //
  728. // Bilinear Auto Bed Leveling
  729. //
  730. uint8_t grid_max_x, grid_max_y;
  731. EEPROM_READ(grid_max_x); // 1 byte
  732. EEPROM_READ(grid_max_y); // 1 byte
  733. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  734. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  735. set_bed_leveling_enabled(false);
  736. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  737. EEPROM_READ(bilinear_start); // 2 ints
  738. EEPROM_READ(z_values); // 9 to 256 floats
  739. }
  740. else // EEPROM data is stale
  741. #endif // AUTO_BED_LEVELING_BILINEAR
  742. {
  743. // Skip past disabled (or stale) Bilinear Grid data
  744. int bgs[2], bs[2];
  745. EEPROM_READ(bgs);
  746. EEPROM_READ(bs);
  747. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  748. }
  749. #if ENABLED(AUTO_BED_LEVELING_UBL)
  750. EEPROM_READ(planner.leveling_active);
  751. EEPROM_READ(ubl.storage_slot);
  752. #else
  753. uint8_t dummyui8;
  754. EEPROM_READ(dummyb);
  755. EEPROM_READ(dummyui8);
  756. #endif // AUTO_BED_LEVELING_UBL
  757. #if ENABLED(DELTA)
  758. EEPROM_READ(delta_endstop_adj); // 3 floats
  759. EEPROM_READ(delta_radius); // 1 float
  760. EEPROM_READ(delta_diagonal_rod); // 1 float
  761. EEPROM_READ(delta_segments_per_second); // 1 float
  762. EEPROM_READ(delta_calibration_radius); // 1 float
  763. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  764. dummy = 0.0f;
  765. for (uint8_t q=2; q--;) EEPROM_READ(dummy);
  766. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  767. #if ENABLED(X_DUAL_ENDSTOPS)
  768. EEPROM_READ(x_endstop_adj); // 1 float
  769. #else
  770. EEPROM_READ(dummy);
  771. #endif
  772. #if ENABLED(Y_DUAL_ENDSTOPS)
  773. EEPROM_READ(y_endstop_adj); // 1 float
  774. #else
  775. EEPROM_READ(dummy);
  776. #endif
  777. #if ENABLED(Z_DUAL_ENDSTOPS)
  778. EEPROM_READ(z_endstop_adj); // 1 float
  779. #else
  780. EEPROM_READ(dummy);
  781. #endif
  782. for (uint8_t q=7; q--;) EEPROM_READ(dummy);
  783. #else
  784. for (uint8_t q=10; q--;) EEPROM_READ(dummy);
  785. #endif
  786. #if DISABLED(ULTIPANEL)
  787. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  788. #endif
  789. EEPROM_READ(lcd_preheat_hotend_temp);
  790. EEPROM_READ(lcd_preheat_bed_temp);
  791. EEPROM_READ(lcd_preheat_fan_speed);
  792. //EEPROM_ASSERT(
  793. // WITHIN(lcd_preheat_fan_speed, 0, 255),
  794. // "lcd_preheat_fan_speed out of range"
  795. //);
  796. #if ENABLED(PIDTEMP)
  797. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  798. EEPROM_READ(dummy); // Kp
  799. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  800. // do not need to scale PID values as the values in EEPROM are already scaled
  801. PID_PARAM(Kp, e) = dummy;
  802. EEPROM_READ(PID_PARAM(Ki, e));
  803. EEPROM_READ(PID_PARAM(Kd, e));
  804. #if ENABLED(PID_EXTRUSION_SCALING)
  805. EEPROM_READ(PID_PARAM(Kc, e));
  806. #else
  807. EEPROM_READ(dummy);
  808. #endif
  809. }
  810. else {
  811. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  812. }
  813. }
  814. #else // !PIDTEMP
  815. // 4 x 4 = 16 slots for PID parameters
  816. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  817. #endif // !PIDTEMP
  818. #if DISABLED(PID_EXTRUSION_SCALING)
  819. int lpq_len;
  820. #endif
  821. EEPROM_READ(lpq_len);
  822. #if ENABLED(PIDTEMPBED)
  823. EEPROM_READ(dummy); // bedKp
  824. if (dummy != DUMMY_PID_VALUE) {
  825. thermalManager.bedKp = dummy;
  826. EEPROM_READ(thermalManager.bedKi);
  827. EEPROM_READ(thermalManager.bedKd);
  828. }
  829. #else
  830. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  831. #endif
  832. #if !HAS_LCD_CONTRAST
  833. uint16_t lcd_contrast;
  834. #endif
  835. EEPROM_READ(lcd_contrast);
  836. #if ENABLED(FWRETRACT)
  837. EEPROM_READ(autoretract_enabled);
  838. EEPROM_READ(retract_length);
  839. EEPROM_READ(retract_feedrate_mm_s);
  840. EEPROM_READ(retract_zlift);
  841. EEPROM_READ(retract_recover_length);
  842. EEPROM_READ(retract_recover_feedrate_mm_s);
  843. EEPROM_READ(swap_retract_length);
  844. EEPROM_READ(swap_retract_recover_length);
  845. EEPROM_READ(swap_retract_recover_feedrate_mm_s);
  846. #else
  847. EEPROM_READ(dummyb);
  848. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  849. #endif
  850. EEPROM_READ(volumetric_enabled);
  851. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  852. EEPROM_READ(dummy);
  853. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  854. }
  855. uint16_t val;
  856. #if ENABLED(HAVE_TMC2130)
  857. EEPROM_READ(val);
  858. #if ENABLED(X_IS_TMC2130)
  859. stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  860. #endif
  861. EEPROM_READ(val);
  862. #if ENABLED(Y_IS_TMC2130)
  863. stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  864. #endif
  865. EEPROM_READ(val);
  866. #if ENABLED(Z_IS_TMC2130)
  867. stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  868. #endif
  869. EEPROM_READ(val);
  870. #if ENABLED(X2_IS_TMC2130)
  871. stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  872. #endif
  873. EEPROM_READ(val);
  874. #if ENABLED(Y2_IS_TMC2130)
  875. stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  876. #endif
  877. EEPROM_READ(val);
  878. #if ENABLED(Z2_IS_TMC2130)
  879. stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  880. #endif
  881. EEPROM_READ(val);
  882. #if ENABLED(E0_IS_TMC2130)
  883. stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  884. #endif
  885. EEPROM_READ(val);
  886. #if ENABLED(E1_IS_TMC2130)
  887. stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  888. #endif
  889. EEPROM_READ(val);
  890. #if ENABLED(E2_IS_TMC2130)
  891. stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  892. #endif
  893. EEPROM_READ(val);
  894. #if ENABLED(E3_IS_TMC2130)
  895. stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  896. #endif
  897. EEPROM_READ(val);
  898. #if ENABLED(E4_IS_TMC2130)
  899. stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  900. #endif
  901. #else
  902. for (uint8_t q = 0; q < 11; q++) EEPROM_READ(val);
  903. #endif
  904. //
  905. // Linear Advance
  906. //
  907. #if ENABLED(LIN_ADVANCE)
  908. EEPROM_READ(planner.extruder_advance_k);
  909. EEPROM_READ(planner.advance_ed_ratio);
  910. #else
  911. EEPROM_READ(dummy);
  912. EEPROM_READ(dummy);
  913. #endif
  914. #if HAS_MOTOR_CURRENT_PWM
  915. for (uint8_t q = 3; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
  916. #else
  917. uint32_t dummyui32;
  918. for (uint8_t q = 3; q--;) EEPROM_READ(dummyui32);
  919. #endif
  920. if (working_crc == stored_crc) {
  921. postprocess();
  922. #if ENABLED(EEPROM_CHITCHAT)
  923. SERIAL_ECHO_START();
  924. SERIAL_ECHO(version);
  925. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  926. SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)working_crc);
  927. SERIAL_ECHOLNPGM(")");
  928. #endif
  929. }
  930. else {
  931. #if ENABLED(EEPROM_CHITCHAT)
  932. SERIAL_ERROR_START();
  933. SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) ");
  934. SERIAL_ERROR(stored_crc);
  935. SERIAL_ERRORPGM(" != ");
  936. SERIAL_ERROR(working_crc);
  937. SERIAL_ERRORLNPGM(" (calculated)!");
  938. #endif
  939. reset();
  940. }
  941. #if ENABLED(AUTO_BED_LEVELING_UBL)
  942. meshes_begin = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
  943. // can float up or down a little bit without
  944. // disrupting the mesh data
  945. ubl.report_state();
  946. if (!ubl.sanity_check()) {
  947. SERIAL_EOL();
  948. #if ENABLED(EEPROM_CHITCHAT)
  949. ubl.echo_name();
  950. SERIAL_ECHOLNPGM(" initialized.\n");
  951. #endif
  952. }
  953. else {
  954. #if ENABLED(EEPROM_CHITCHAT)
  955. SERIAL_PROTOCOLPGM("?Can't enable ");
  956. ubl.echo_name();
  957. SERIAL_PROTOCOLLNPGM(".");
  958. #endif
  959. ubl.reset();
  960. }
  961. if (ubl.storage_slot >= 0) {
  962. load_mesh(ubl.storage_slot);
  963. #if ENABLED(EEPROM_CHITCHAT)
  964. SERIAL_ECHOPAIR("Mesh ", ubl.storage_slot);
  965. SERIAL_ECHOLNPGM(" loaded from storage.");
  966. #endif
  967. }
  968. else {
  969. ubl.reset();
  970. #if ENABLED(EEPROM_CHITCHAT)
  971. SERIAL_ECHOLNPGM("UBL System reset()");
  972. #endif
  973. }
  974. #endif
  975. }
  976. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  977. report();
  978. #endif
  979. return !eeprom_error;
  980. }
  981. #if ENABLED(AUTO_BED_LEVELING_UBL)
  982. #if ENABLED(EEPROM_CHITCHAT)
  983. void ubl_invalid_slot(const int s) {
  984. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  985. SERIAL_PROTOCOL(s);
  986. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  987. }
  988. #endif
  989. int MarlinSettings::calc_num_meshes() {
  990. //obviously this will get more sophisticated once we've added an actual MAT
  991. if (meshes_begin <= 0) return 0;
  992. return (meshes_end - meshes_begin) / sizeof(ubl.z_values);
  993. }
  994. void MarlinSettings::store_mesh(int8_t slot) {
  995. #if ENABLED(AUTO_BED_LEVELING_UBL)
  996. const int a = calc_num_meshes();
  997. if (!WITHIN(slot, 0, a - 1)) {
  998. #if ENABLED(EEPROM_CHITCHAT)
  999. ubl_invalid_slot(a);
  1000. SERIAL_PROTOCOLPAIR("E2END=", E2END);
  1001. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  1002. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  1003. SERIAL_EOL();
  1004. #endif
  1005. return;
  1006. }
  1007. uint16_t crc = 0;
  1008. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1009. write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1010. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1011. #if ENABLED(EEPROM_CHITCHAT)
  1012. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  1013. #endif
  1014. #else
  1015. // Other mesh types
  1016. #endif
  1017. }
  1018. void MarlinSettings::load_mesh(int8_t slot, void *into /* = 0 */) {
  1019. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1020. const int16_t a = settings.calc_num_meshes();
  1021. if (!WITHIN(slot, 0, a - 1)) {
  1022. #if ENABLED(EEPROM_CHITCHAT)
  1023. ubl_invalid_slot(a);
  1024. #endif
  1025. return;
  1026. }
  1027. uint16_t crc = 0;
  1028. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1029. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1030. read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1031. // Compare crc with crc from MAT, or read from end
  1032. #if ENABLED(EEPROM_CHITCHAT)
  1033. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  1034. #endif
  1035. #else
  1036. // Other mesh types
  1037. #endif
  1038. }
  1039. //void MarlinSettings::delete_mesh() { return; }
  1040. //void MarlinSettings::defrag_meshes() { return; }
  1041. #endif // AUTO_BED_LEVELING_UBL
  1042. #else // !EEPROM_SETTINGS
  1043. bool MarlinSettings::save() {
  1044. SERIAL_ERROR_START();
  1045. SERIAL_ERRORLNPGM("EEPROM disabled");
  1046. return false;
  1047. }
  1048. #endif // !EEPROM_SETTINGS
  1049. /**
  1050. * M502 - Reset Configuration
  1051. */
  1052. void MarlinSettings::reset() {
  1053. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1054. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1055. LOOP_XYZE_N(i) {
  1056. planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
  1057. planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
  1058. planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
  1059. }
  1060. planner.acceleration = DEFAULT_ACCELERATION;
  1061. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1062. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1063. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1064. planner.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1065. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1066. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1067. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1068. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1069. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1070. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1071. new_z_fade_height = 10.0;
  1072. #endif
  1073. #if HAS_HOME_OFFSET
  1074. ZERO(home_offset);
  1075. #endif
  1076. #if HOTENDS > 1
  1077. constexpr float tmp4[XYZ][HOTENDS] = {
  1078. HOTEND_OFFSET_X,
  1079. HOTEND_OFFSET_Y
  1080. #ifdef HOTEND_OFFSET_Z
  1081. , HOTEND_OFFSET_Z
  1082. #else
  1083. , { 0 }
  1084. #endif
  1085. };
  1086. static_assert(
  1087. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1088. "Offsets for the first hotend must be 0.0."
  1089. );
  1090. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1091. #endif
  1092. // Applies to all MBL and ABL
  1093. #if HAS_LEVELING
  1094. reset_bed_level();
  1095. #endif
  1096. #if HAS_BED_PROBE
  1097. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1098. #endif
  1099. #if ENABLED(DELTA)
  1100. const float adj[ABC] = DELTA_ENDSTOP_ADJ,
  1101. dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1102. COPY(delta_endstop_adj, adj);
  1103. delta_radius = DELTA_RADIUS;
  1104. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1105. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1106. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1107. COPY(delta_tower_angle_trim, dta);
  1108. home_offset[Z_AXIS] = 0;
  1109. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  1110. #if ENABLED(X_DUAL_ENDSTOPS)
  1111. x_endstop_adj = (
  1112. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1113. X_DUAL_ENDSTOPS_ADJUSTMENT
  1114. #else
  1115. 0
  1116. #endif
  1117. );
  1118. #endif
  1119. #if ENABLED(Y_DUAL_ENDSTOPS)
  1120. y_endstop_adj = (
  1121. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1122. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1123. #else
  1124. 0
  1125. #endif
  1126. );
  1127. #endif
  1128. #if ENABLED(Z_DUAL_ENDSTOPS)
  1129. z_endstop_adj = (
  1130. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1131. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1132. #else
  1133. 0
  1134. #endif
  1135. );
  1136. #endif
  1137. #endif
  1138. #if ENABLED(ULTIPANEL)
  1139. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1140. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1141. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1142. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1143. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1144. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1145. #endif
  1146. #if HAS_LCD_CONTRAST
  1147. lcd_contrast = DEFAULT_LCD_CONTRAST;
  1148. #endif
  1149. #if ENABLED(PIDTEMP)
  1150. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  1151. HOTEND_LOOP()
  1152. #endif
  1153. {
  1154. PID_PARAM(Kp, e) = DEFAULT_Kp;
  1155. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1156. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1157. #if ENABLED(PID_EXTRUSION_SCALING)
  1158. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1159. #endif
  1160. }
  1161. #if ENABLED(PID_EXTRUSION_SCALING)
  1162. lpq_len = 20; // default last-position-queue size
  1163. #endif
  1164. #endif // PIDTEMP
  1165. #if ENABLED(PIDTEMPBED)
  1166. thermalManager.bedKp = DEFAULT_bedKp;
  1167. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  1168. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  1169. #endif
  1170. #if ENABLED(FWRETRACT)
  1171. autoretract_enabled = false;
  1172. retract_length = RETRACT_LENGTH;
  1173. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  1174. retract_zlift = RETRACT_ZLIFT;
  1175. retract_recover_length = RETRACT_RECOVER_LENGTH;
  1176. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  1177. swap_retract_length = RETRACT_LENGTH_SWAP;
  1178. swap_retract_recover_length = RETRACT_RECOVER_LENGTH_SWAP;
  1179. swap_retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE_SWAP;
  1180. #endif // FWRETRACT
  1181. volumetric_enabled =
  1182. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1183. true
  1184. #else
  1185. false
  1186. #endif
  1187. ;
  1188. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  1189. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1190. endstops.enable_globally(
  1191. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1192. true
  1193. #else
  1194. false
  1195. #endif
  1196. );
  1197. #if ENABLED(HAVE_TMC2130)
  1198. #if ENABLED(X_IS_TMC2130)
  1199. stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1200. #endif
  1201. #if ENABLED(Y_IS_TMC2130)
  1202. stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1203. #endif
  1204. #if ENABLED(Z_IS_TMC2130)
  1205. stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1206. #endif
  1207. #if ENABLED(X2_IS_TMC2130)
  1208. stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1209. #endif
  1210. #if ENABLED(Y2_IS_TMC2130)
  1211. stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1212. #endif
  1213. #if ENABLED(Z2_IS_TMC2130)
  1214. stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1215. #endif
  1216. #if ENABLED(E0_IS_TMC2130)
  1217. stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1218. #endif
  1219. #if ENABLED(E1_IS_TMC2130)
  1220. stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1221. #endif
  1222. #if ENABLED(E2_IS_TMC2130)
  1223. stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1224. #endif
  1225. #if ENABLED(E3_IS_TMC2130)
  1226. stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1227. #endif
  1228. #endif
  1229. #if ENABLED(LIN_ADVANCE)
  1230. planner.extruder_advance_k = LIN_ADVANCE_K;
  1231. planner.advance_ed_ratio = LIN_ADVANCE_E_D_RATIO;
  1232. #endif
  1233. #if HAS_MOTOR_CURRENT_PWM
  1234. uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1235. for (uint8_t q = 3; q--;)
  1236. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1237. #endif
  1238. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1239. ubl.reset();
  1240. #endif
  1241. postprocess();
  1242. #if ENABLED(EEPROM_CHITCHAT)
  1243. SERIAL_ECHO_START();
  1244. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1245. #endif
  1246. }
  1247. #if DISABLED(DISABLE_M503)
  1248. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  1249. /**
  1250. * M503 - Report current settings in RAM
  1251. *
  1252. * Unless specifically disabled, M503 is available even without EEPROM
  1253. */
  1254. void MarlinSettings::report(bool forReplay) {
  1255. /**
  1256. * Announce current units, in case inches are being displayed
  1257. */
  1258. CONFIG_ECHO_START;
  1259. #if ENABLED(INCH_MODE_SUPPORT)
  1260. #define LINEAR_UNIT(N) ((N) / parser.linear_unit_factor)
  1261. #define VOLUMETRIC_UNIT(N) ((N) / (volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
  1262. SERIAL_ECHOPGM(" G2");
  1263. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  1264. SERIAL_ECHOPGM(" ; Units in ");
  1265. serialprintPGM(parser.linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
  1266. #else
  1267. #define LINEAR_UNIT(N) N
  1268. #define VOLUMETRIC_UNIT(N) N
  1269. SERIAL_ECHOLNPGM(" G21 ; Units in mm");
  1270. #endif
  1271. #if ENABLED(ULTIPANEL)
  1272. // Temperature units - for Ultipanel temperature options
  1273. CONFIG_ECHO_START;
  1274. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1275. #define TEMP_UNIT(N) parser.to_temp_units(N)
  1276. SERIAL_ECHOPGM(" M149 ");
  1277. SERIAL_CHAR(parser.temp_units_code());
  1278. SERIAL_ECHOPGM(" ; Units in ");
  1279. serialprintPGM(parser.temp_units_name());
  1280. #else
  1281. #define TEMP_UNIT(N) N
  1282. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  1283. #endif
  1284. #endif
  1285. SERIAL_EOL();
  1286. /**
  1287. * Volumetric extrusion M200
  1288. */
  1289. if (!forReplay) {
  1290. CONFIG_ECHO_START;
  1291. SERIAL_ECHOPGM("Filament settings:");
  1292. if (volumetric_enabled)
  1293. SERIAL_EOL();
  1294. else
  1295. SERIAL_ECHOLNPGM(" Disabled");
  1296. }
  1297. CONFIG_ECHO_START;
  1298. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  1299. SERIAL_EOL();
  1300. #if EXTRUDERS > 1
  1301. CONFIG_ECHO_START;
  1302. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  1303. SERIAL_EOL();
  1304. #if EXTRUDERS > 2
  1305. CONFIG_ECHO_START;
  1306. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  1307. SERIAL_EOL();
  1308. #if EXTRUDERS > 3
  1309. CONFIG_ECHO_START;
  1310. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  1311. SERIAL_EOL();
  1312. #if EXTRUDERS > 4
  1313. CONFIG_ECHO_START;
  1314. SERIAL_ECHOPAIR(" M200 T4 D", filament_size[4]);
  1315. SERIAL_EOL();
  1316. #endif // EXTRUDERS > 4
  1317. #endif // EXTRUDERS > 3
  1318. #endif // EXTRUDERS > 2
  1319. #endif // EXTRUDERS > 1
  1320. if (!volumetric_enabled) {
  1321. CONFIG_ECHO_START;
  1322. SERIAL_ECHOLNPGM(" M200 D0");
  1323. }
  1324. if (!forReplay) {
  1325. CONFIG_ECHO_START;
  1326. SERIAL_ECHOLNPGM("Steps per unit:");
  1327. }
  1328. CONFIG_ECHO_START;
  1329. SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
  1330. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
  1331. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
  1332. #if DISABLED(DISTINCT_E_FACTORS)
  1333. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
  1334. #endif
  1335. SERIAL_EOL();
  1336. #if ENABLED(DISTINCT_E_FACTORS)
  1337. CONFIG_ECHO_START;
  1338. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1339. SERIAL_ECHOPAIR(" M92 T", (int)i);
  1340. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
  1341. }
  1342. #endif
  1343. if (!forReplay) {
  1344. CONFIG_ECHO_START;
  1345. SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
  1346. }
  1347. CONFIG_ECHO_START;
  1348. SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
  1349. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
  1350. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
  1351. #if DISABLED(DISTINCT_E_FACTORS)
  1352. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
  1353. #endif
  1354. SERIAL_EOL();
  1355. #if ENABLED(DISTINCT_E_FACTORS)
  1356. CONFIG_ECHO_START;
  1357. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1358. SERIAL_ECHOPAIR(" M203 T", (int)i);
  1359. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
  1360. }
  1361. #endif
  1362. if (!forReplay) {
  1363. CONFIG_ECHO_START;
  1364. SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
  1365. }
  1366. CONFIG_ECHO_START;
  1367. SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
  1368. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
  1369. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
  1370. #if DISABLED(DISTINCT_E_FACTORS)
  1371. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
  1372. #endif
  1373. SERIAL_EOL();
  1374. #if ENABLED(DISTINCT_E_FACTORS)
  1375. CONFIG_ECHO_START;
  1376. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1377. SERIAL_ECHOPAIR(" M201 T", (int)i);
  1378. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
  1379. }
  1380. #endif
  1381. if (!forReplay) {
  1382. CONFIG_ECHO_START;
  1383. SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  1384. }
  1385. CONFIG_ECHO_START;
  1386. SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration));
  1387. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
  1388. SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
  1389. if (!forReplay) {
  1390. CONFIG_ECHO_START;
  1391. SERIAL_ECHOLNPGM("Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_us> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
  1392. }
  1393. CONFIG_ECHO_START;
  1394. SERIAL_ECHOPAIR(" M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
  1395. SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
  1396. SERIAL_ECHOPAIR(" B", planner.min_segment_time_us);
  1397. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  1398. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  1399. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  1400. SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  1401. #if HAS_M206_COMMAND
  1402. if (!forReplay) {
  1403. CONFIG_ECHO_START;
  1404. SERIAL_ECHOLNPGM("Home offset:");
  1405. }
  1406. CONFIG_ECHO_START;
  1407. SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  1408. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  1409. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  1410. #endif
  1411. #if HOTENDS > 1
  1412. if (!forReplay) {
  1413. CONFIG_ECHO_START;
  1414. SERIAL_ECHOLNPGM("Hotend offsets:");
  1415. }
  1416. CONFIG_ECHO_START;
  1417. for (uint8_t e = 1; e < HOTENDS; e++) {
  1418. SERIAL_ECHOPAIR(" M218 T", (int)e);
  1419. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  1420. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  1421. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) ||ENABLED(PARKING_EXTRUDER)
  1422. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
  1423. #endif
  1424. SERIAL_EOL();
  1425. }
  1426. #endif
  1427. /**
  1428. * Bed Leveling
  1429. */
  1430. #if HAS_LEVELING
  1431. #if ENABLED(MESH_BED_LEVELING)
  1432. if (!forReplay) {
  1433. CONFIG_ECHO_START;
  1434. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  1435. }
  1436. CONFIG_ECHO_START;
  1437. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1438. if (!forReplay) {
  1439. CONFIG_ECHO_START;
  1440. ubl.echo_name();
  1441. SERIAL_ECHOLNPGM(":");
  1442. }
  1443. CONFIG_ECHO_START;
  1444. #elif HAS_ABL
  1445. if (!forReplay) {
  1446. CONFIG_ECHO_START;
  1447. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  1448. }
  1449. CONFIG_ECHO_START;
  1450. #endif
  1451. CONFIG_ECHO_START;
  1452. SERIAL_ECHOPAIR(" M420 S", planner.leveling_active ? 1 : 0);
  1453. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1454. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1455. #endif
  1456. SERIAL_EOL();
  1457. #if ENABLED(MESH_BED_LEVELING)
  1458. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  1459. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  1460. CONFIG_ECHO_START;
  1461. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
  1462. SERIAL_ECHOPAIR(" Y", (int)py + 1);
  1463. SERIAL_ECHOPGM(" Z");
  1464. SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
  1465. SERIAL_EOL();
  1466. }
  1467. }
  1468. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1469. if (!forReplay) {
  1470. SERIAL_EOL();
  1471. ubl.report_state();
  1472. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
  1473. SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
  1474. SERIAL_ECHOLNPGM(" meshes.\n");
  1475. }
  1476. #endif
  1477. #endif // HAS_LEVELING
  1478. #if ENABLED(DELTA)
  1479. if (!forReplay) {
  1480. CONFIG_ECHO_START;
  1481. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1482. }
  1483. CONFIG_ECHO_START;
  1484. SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
  1485. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
  1486. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
  1487. if (!forReplay) {
  1488. CONFIG_ECHO_START;
  1489. SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  1490. }
  1491. CONFIG_ECHO_START;
  1492. SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
  1493. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
  1494. SERIAL_ECHOPAIR(" H", LINEAR_UNIT(DELTA_HEIGHT + home_offset[Z_AXIS]));
  1495. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  1496. SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
  1497. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  1498. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  1499. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  1500. SERIAL_EOL();
  1501. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  1502. if (!forReplay) {
  1503. CONFIG_ECHO_START;
  1504. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1505. }
  1506. CONFIG_ECHO_START;
  1507. SERIAL_ECHOPGM(" M666");
  1508. #if ENABLED(X_DUAL_ENDSTOPS)
  1509. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(x_endstop_adj));
  1510. #endif
  1511. #if ENABLED(Y_DUAL_ENDSTOPS)
  1512. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(y_endstop_adj));
  1513. #endif
  1514. #if ENABLED(Z_DUAL_ENDSTOPS)
  1515. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(z_endstop_adj));
  1516. #endif
  1517. SERIAL_EOL();
  1518. #endif // DELTA
  1519. #if ENABLED(ULTIPANEL)
  1520. if (!forReplay) {
  1521. CONFIG_ECHO_START;
  1522. SERIAL_ECHOLNPGM("Material heatup parameters:");
  1523. }
  1524. CONFIG_ECHO_START;
  1525. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1526. SERIAL_ECHOPAIR(" M145 S", (int)i);
  1527. SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
  1528. SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
  1529. SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
  1530. }
  1531. #endif // ULTIPANEL
  1532. #if HAS_PID_HEATING
  1533. if (!forReplay) {
  1534. CONFIG_ECHO_START;
  1535. SERIAL_ECHOLNPGM("PID settings:");
  1536. }
  1537. #if ENABLED(PIDTEMP)
  1538. #if HOTENDS > 1
  1539. if (forReplay) {
  1540. HOTEND_LOOP() {
  1541. CONFIG_ECHO_START;
  1542. SERIAL_ECHOPAIR(" M301 E", e);
  1543. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  1544. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  1545. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  1546. #if ENABLED(PID_EXTRUSION_SCALING)
  1547. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  1548. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  1549. #endif
  1550. SERIAL_EOL();
  1551. }
  1552. }
  1553. else
  1554. #endif // HOTENDS > 1
  1555. // !forReplay || HOTENDS == 1
  1556. {
  1557. CONFIG_ECHO_START;
  1558. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1559. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  1560. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  1561. #if ENABLED(PID_EXTRUSION_SCALING)
  1562. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  1563. SERIAL_ECHOPAIR(" L", lpq_len);
  1564. #endif
  1565. SERIAL_EOL();
  1566. }
  1567. #endif // PIDTEMP
  1568. #if ENABLED(PIDTEMPBED)
  1569. CONFIG_ECHO_START;
  1570. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  1571. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  1572. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  1573. SERIAL_EOL();
  1574. #endif
  1575. #endif // PIDTEMP || PIDTEMPBED
  1576. #if HAS_LCD_CONTRAST
  1577. if (!forReplay) {
  1578. CONFIG_ECHO_START;
  1579. SERIAL_ECHOLNPGM("LCD Contrast:");
  1580. }
  1581. CONFIG_ECHO_START;
  1582. SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast);
  1583. #endif
  1584. #if ENABLED(FWRETRACT)
  1585. if (!forReplay) {
  1586. CONFIG_ECHO_START;
  1587. SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
  1588. }
  1589. CONFIG_ECHO_START;
  1590. SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(retract_length));
  1591. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(swap_retract_length));
  1592. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_feedrate_mm_s)));
  1593. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(retract_zlift));
  1594. if (!forReplay) {
  1595. CONFIG_ECHO_START;
  1596. SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
  1597. }
  1598. CONFIG_ECHO_START;
  1599. SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(retract_recover_length));
  1600. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(swap_retract_recover_length));
  1601. SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_recover_feedrate_mm_s)));
  1602. if (!forReplay) {
  1603. CONFIG_ECHO_START;
  1604. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  1605. }
  1606. CONFIG_ECHO_START;
  1607. SERIAL_ECHOLNPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1608. #endif // FWRETRACT
  1609. /**
  1610. * Probe Offset
  1611. */
  1612. #if HAS_BED_PROBE
  1613. if (!forReplay) {
  1614. CONFIG_ECHO_START;
  1615. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1616. }
  1617. CONFIG_ECHO_START;
  1618. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  1619. #endif
  1620. /**
  1621. * TMC2130 stepper driver current
  1622. */
  1623. #if ENABLED(HAVE_TMC2130)
  1624. if (!forReplay) {
  1625. CONFIG_ECHO_START;
  1626. SERIAL_ECHOLNPGM("Stepper driver current:");
  1627. }
  1628. CONFIG_ECHO_START;
  1629. SERIAL_ECHO(" M906");
  1630. #if ENABLED(X_IS_TMC2130)
  1631. SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
  1632. #endif
  1633. #if ENABLED(Y_IS_TMC2130)
  1634. SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
  1635. #endif
  1636. #if ENABLED(Z_IS_TMC2130)
  1637. SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
  1638. #endif
  1639. #if ENABLED(X2_IS_TMC2130)
  1640. SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
  1641. #endif
  1642. #if ENABLED(Y2_IS_TMC2130)
  1643. SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
  1644. #endif
  1645. #if ENABLED(Z2_IS_TMC2130)
  1646. SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
  1647. #endif
  1648. #if ENABLED(E0_IS_TMC2130)
  1649. SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
  1650. #endif
  1651. #if ENABLED(E1_IS_TMC2130)
  1652. SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
  1653. #endif
  1654. #if ENABLED(E2_IS_TMC2130)
  1655. SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
  1656. #endif
  1657. #if ENABLED(E3_IS_TMC2130)
  1658. SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
  1659. #endif
  1660. SERIAL_EOL();
  1661. #endif
  1662. /**
  1663. * Linear Advance
  1664. */
  1665. #if ENABLED(LIN_ADVANCE)
  1666. if (!forReplay) {
  1667. CONFIG_ECHO_START;
  1668. SERIAL_ECHOLNPGM("Linear Advance:");
  1669. }
  1670. CONFIG_ECHO_START;
  1671. SERIAL_ECHOPAIR(" M900 K", planner.extruder_advance_k);
  1672. SERIAL_ECHOLNPAIR(" R", planner.advance_ed_ratio);
  1673. #endif
  1674. #if HAS_MOTOR_CURRENT_PWM
  1675. CONFIG_ECHO_START;
  1676. if (!forReplay) {
  1677. SERIAL_ECHOLNPGM("Stepper motor currents:");
  1678. CONFIG_ECHO_START;
  1679. }
  1680. SERIAL_ECHOPAIR(" M907 X", stepper.motor_current_setting[0]);
  1681. SERIAL_ECHOPAIR(" Z", stepper.motor_current_setting[1]);
  1682. SERIAL_ECHOPAIR(" E", stepper.motor_current_setting[2]);
  1683. SERIAL_EOL();
  1684. #endif
  1685. }
  1686. #endif // !DISABLE_M503