My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

Marlin_main.cpp 354KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  63. * G90 - Use Absolute Coordinates
  64. * G91 - Use Relative Coordinates
  65. * G92 - Set current position to coordinates given
  66. *
  67. * "M" Codes
  68. *
  69. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  70. * M1 - Same as M0
  71. * M17 - Enable/Power all stepper motors
  72. * M18 - Disable all stepper motors; same as M84
  73. * M20 - List SD card. (Requires SDSUPPORT)
  74. * M21 - Init SD card. (Requires SDSUPPORT)
  75. * M22 - Release SD card. (Requires SDSUPPORT)
  76. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  77. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  78. * M25 - Pause SD print. (Requires SDSUPPORT)
  79. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  80. * M27 - Report SD print status. (Requires SDSUPPORT)
  81. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  82. * M29 - Stop SD write. (Requires SDSUPPORT)
  83. * M30 - Delete file from SD: "M30 /path/file.gco"
  84. * M31 - Report time since last M109 or SD card start to serial.
  85. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  86. * Use P to run other files as sub-programs: "M32 P !filename#"
  87. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  88. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  89. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  90. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  91. * M43 - Monitor pins & report changes - report active pins
  92. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  93. * M75 - Start the print job timer.
  94. * M76 - Pause the print job timer.
  95. * M77 - Stop the print job timer.
  96. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  97. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  98. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  99. * M82 - Set E codes absolute (default).
  100. * M83 - Set E codes relative while in Absolute (G90) mode.
  101. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  102. * duration after which steppers should turn off. S0 disables the timeout.
  103. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  105. * M104 - Set extruder target temp.
  106. * M105 - Report current temperatures.
  107. * M106 - Fan on.
  108. * M107 - Fan off.
  109. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  110. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  111. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  112. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  113. * M110 - Set the current line number. (Used by host printing)
  114. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  115. * M112 - Emergency stop.
  116. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  117. * M114 - Report current position.
  118. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  119. * M117 - Display a message on the controller screen. (Requires an LCD)
  120. * M119 - Report endstops status.
  121. * M120 - Enable endstops detection.
  122. * M121 - Disable endstops detection.
  123. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  124. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  125. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  126. * M128 - EtoP Open. (Requires BARICUDA)
  127. * M129 - EtoP Closed. (Requires BARICUDA)
  128. * M140 - Set bed target temp. S<temp>
  129. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  130. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  131. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  132. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  133. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  134. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  135. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  136. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  137. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  138. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  139. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  140. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  141. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  142. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  143. * M205 - Set advanced settings. Current units apply:
  144. S<print> T<travel> minimum speeds
  145. B<minimum segment time>
  146. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  147. * M206 - Set additional homing offset.
  148. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  149. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  150. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  151. Every normal extrude-only move will be classified as retract depending on the direction.
  152. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  153. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  154. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  155. * M221 - Set Flow Percentage: "M221 S<percent>"
  156. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  157. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  158. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  159. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  160. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  162. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  163. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  164. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  165. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  166. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  167. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  168. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  169. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  170. * M400 - Finish all moves.
  171. * M401 - Lower Z probe. (Requires a probe)
  172. * M402 - Raise Z probe. (Requires a probe)
  173. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  174. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  176. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M410 - Quickstop. Abort all planned moves.
  178. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  179. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  180. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  181. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  182. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  183. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  184. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  185. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  186. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  187. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  188. * M666 - Set delta endstop adjustment. (Requires DELTA)
  189. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  190. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  191. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  197. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  198. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  199. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  200. *
  201. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  202. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  203. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  204. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  205. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if HAS_ABL
  232. #include "vector_3.h"
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. #include "qr_solve.h"
  235. #endif
  236. #elif ENABLED(MESH_BED_LEVELING)
  237. #include "mesh_bed_leveling.h"
  238. #endif
  239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  240. #include "planner_bezier.h"
  241. #endif
  242. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  243. #include "buzzer.h"
  244. #endif
  245. #if ENABLED(USE_WATCHDOG)
  246. #include "watchdog.h"
  247. #endif
  248. #if ENABLED(BLINKM)
  249. #include "blinkm.h"
  250. #include "Wire.h"
  251. #endif
  252. #if HAS_SERVOS
  253. #include "servo.h"
  254. #endif
  255. #if HAS_DIGIPOTSS
  256. #include <SPI.h>
  257. #endif
  258. #if ENABLED(DAC_STEPPER_CURRENT)
  259. #include "stepper_dac.h"
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. #include "twibus.h"
  263. #endif
  264. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  265. #include "endstop_interrupts.h"
  266. #endif
  267. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  268. void gcode_M100();
  269. #endif
  270. #if ENABLED(SDSUPPORT)
  271. CardReader card;
  272. #endif
  273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  274. TWIBus i2c;
  275. #endif
  276. #if ENABLED(G38_PROBE_TARGET)
  277. bool G38_move = false,
  278. G38_endstop_hit = false;
  279. #endif
  280. #if ENABLED(AUTO_BED_LEVELING_UBL)
  281. #include "UBL.h"
  282. unified_bed_leveling ubl;
  283. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  284. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  285. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  286. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  287. || isnan(ubl.z_values[0][0]))
  288. #endif
  289. bool Running = true;
  290. uint8_t marlin_debug_flags = DEBUG_NONE;
  291. /**
  292. * Cartesian Current Position
  293. * Used to track the logical position as moves are queued.
  294. * Used by 'line_to_current_position' to do a move after changing it.
  295. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  296. */
  297. float current_position[XYZE] = { 0.0 };
  298. /**
  299. * Cartesian Destination
  300. * A temporary position, usually applied to 'current_position'.
  301. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  302. * 'line_to_destination' sets 'current_position' to 'destination'.
  303. */
  304. float destination[XYZE] = { 0.0 };
  305. /**
  306. * axis_homed
  307. * Flags that each linear axis was homed.
  308. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  309. *
  310. * axis_known_position
  311. * Flags that the position is known in each linear axis. Set when homed.
  312. * Cleared whenever a stepper powers off, potentially losing its position.
  313. */
  314. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  315. /**
  316. * GCode line number handling. Hosts may opt to include line numbers when
  317. * sending commands to Marlin, and lines will be checked for sequentiality.
  318. * M110 N<int> sets the current line number.
  319. */
  320. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  321. /**
  322. * GCode Command Queue
  323. * A simple ring buffer of BUFSIZE command strings.
  324. *
  325. * Commands are copied into this buffer by the command injectors
  326. * (immediate, serial, sd card) and they are processed sequentially by
  327. * the main loop. The process_next_command function parses the next
  328. * command and hands off execution to individual handler functions.
  329. */
  330. uint8_t commands_in_queue = 0; // Count of commands in the queue
  331. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  332. cmd_queue_index_w = 0; // Ring buffer write position
  333. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  334. /**
  335. * Current GCode Command
  336. * When a GCode handler is running, these will be set
  337. */
  338. static char *current_command, // The command currently being executed
  339. *current_command_args, // The address where arguments begin
  340. *seen_pointer; // Set by code_seen(), used by the code_value functions
  341. /**
  342. * Next Injected Command pointer. NULL if no commands are being injected.
  343. * Used by Marlin internally to ensure that commands initiated from within
  344. * are enqueued ahead of any pending serial or sd card commands.
  345. */
  346. static const char *injected_commands_P = NULL;
  347. #if ENABLED(INCH_MODE_SUPPORT)
  348. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  349. #endif
  350. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  351. TempUnit input_temp_units = TEMPUNIT_C;
  352. #endif
  353. /**
  354. * Feed rates are often configured with mm/m
  355. * but the planner and stepper like mm/s units.
  356. */
  357. float constexpr homing_feedrate_mm_s[] = {
  358. #if ENABLED(DELTA)
  359. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  360. #else
  361. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  362. #endif
  363. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  364. };
  365. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  366. int feedrate_percentage = 100, saved_feedrate_percentage,
  367. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  368. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  369. volumetric_enabled =
  370. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  371. true
  372. #else
  373. false
  374. #endif
  375. ;
  376. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  377. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  378. #if DISABLED(NO_WORKSPACE_OFFSETS)
  379. // The distance that XYZ has been offset by G92. Reset by G28.
  380. float position_shift[XYZ] = { 0 };
  381. // This offset is added to the configured home position.
  382. // Set by M206, M428, or menu item. Saved to EEPROM.
  383. float home_offset[XYZ] = { 0 };
  384. // The above two are combined to save on computes
  385. float workspace_offset[XYZ] = { 0 };
  386. #endif
  387. // Software Endstops are based on the configured limits.
  388. #if HAS_SOFTWARE_ENDSTOPS
  389. bool soft_endstops_enabled = true;
  390. #endif
  391. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  392. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  393. #if FAN_COUNT > 0
  394. int fanSpeeds[FAN_COUNT] = { 0 };
  395. #endif
  396. // The active extruder (tool). Set with T<extruder> command.
  397. uint8_t active_extruder = 0;
  398. // Relative Mode. Enable with G91, disable with G90.
  399. static bool relative_mode = false;
  400. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  401. volatile bool wait_for_heatup = true;
  402. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  403. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  404. volatile bool wait_for_user = false;
  405. #endif
  406. const char errormagic[] PROGMEM = "Error:";
  407. const char echomagic[] PROGMEM = "echo:";
  408. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  409. // Number of characters read in the current line of serial input
  410. static int serial_count = 0;
  411. // Inactivity shutdown
  412. millis_t previous_cmd_ms = 0;
  413. static millis_t max_inactive_time = 0;
  414. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  415. // Print Job Timer
  416. #if ENABLED(PRINTCOUNTER)
  417. PrintCounter print_job_timer = PrintCounter();
  418. #else
  419. Stopwatch print_job_timer = Stopwatch();
  420. #endif
  421. // Buzzer - I2C on the LCD or a BEEPER_PIN
  422. #if ENABLED(LCD_USE_I2C_BUZZER)
  423. #define BUZZ(d,f) lcd_buzz(d, f)
  424. #elif PIN_EXISTS(BEEPER)
  425. Buzzer buzzer;
  426. #define BUZZ(d,f) buzzer.tone(d, f)
  427. #else
  428. #define BUZZ(d,f) NOOP
  429. #endif
  430. static uint8_t target_extruder;
  431. #if HAS_BED_PROBE
  432. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  433. #endif
  434. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  435. #if HAS_ABL
  436. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  437. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  438. #elif defined(XY_PROBE_SPEED)
  439. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  440. #else
  441. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  442. #endif
  443. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  444. #if ENABLED(DELTA)
  445. #define ADJUST_DELTA(V) \
  446. if (planner.abl_enabled) { \
  447. const float zadj = bilinear_z_offset(V); \
  448. delta[A_AXIS] += zadj; \
  449. delta[B_AXIS] += zadj; \
  450. delta[C_AXIS] += zadj; \
  451. }
  452. #else
  453. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  454. #endif
  455. #elif IS_KINEMATIC
  456. #define ADJUST_DELTA(V) NOOP
  457. #endif
  458. #if ENABLED(Z_DUAL_ENDSTOPS)
  459. float z_endstop_adj =
  460. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  461. Z_DUAL_ENDSTOPS_ADJUSTMENT
  462. #else
  463. 0
  464. #endif
  465. ;
  466. #endif
  467. // Extruder offsets
  468. #if HOTENDS > 1
  469. float hotend_offset[XYZ][HOTENDS];
  470. #endif
  471. #if HAS_Z_SERVO_ENDSTOP
  472. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  473. #endif
  474. #if ENABLED(BARICUDA)
  475. int baricuda_valve_pressure = 0;
  476. int baricuda_e_to_p_pressure = 0;
  477. #endif
  478. #if ENABLED(FWRETRACT)
  479. bool autoretract_enabled = false;
  480. bool retracted[EXTRUDERS] = { false };
  481. bool retracted_swap[EXTRUDERS] = { false };
  482. float retract_length = RETRACT_LENGTH;
  483. float retract_length_swap = RETRACT_LENGTH_SWAP;
  484. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  485. float retract_zlift = RETRACT_ZLIFT;
  486. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  487. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  488. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  489. #endif // FWRETRACT
  490. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  491. bool powersupply =
  492. #if ENABLED(PS_DEFAULT_OFF)
  493. false
  494. #else
  495. true
  496. #endif
  497. ;
  498. #endif
  499. #if HAS_CASE_LIGHT
  500. bool case_light_on =
  501. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  502. true
  503. #else
  504. false
  505. #endif
  506. ;
  507. #endif
  508. #if ENABLED(DELTA)
  509. float delta[ABC],
  510. endstop_adj[ABC] = { 0 };
  511. // These values are loaded or reset at boot time when setup() calls
  512. // Config_RetrieveSettings(), which calls recalc_delta_settings().
  513. float delta_radius,
  514. delta_tower_angle_trim[ABC],
  515. delta_tower[ABC][2],
  516. delta_diagonal_rod,
  517. delta_diagonal_rod_trim[ABC],
  518. delta_diagonal_rod_2_tower[ABC],
  519. delta_segments_per_second,
  520. delta_clip_start_height = Z_MAX_POS;
  521. float delta_safe_distance_from_top();
  522. #endif
  523. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  524. #define UNPROBED 9999.0f
  525. int bilinear_grid_spacing[2], bilinear_start[2];
  526. float bed_level_grid[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y];
  527. #endif
  528. #if IS_SCARA
  529. // Float constants for SCARA calculations
  530. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  531. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  532. L2_2 = sq(float(L2));
  533. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  534. delta[ABC];
  535. #endif
  536. float cartes[XYZ] = { 0 };
  537. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  538. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  539. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  540. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  541. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  542. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  543. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  544. #endif
  545. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  546. static bool filament_ran_out = false;
  547. #endif
  548. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  549. FilamentChangeMenuResponse filament_change_menu_response;
  550. #endif
  551. #if ENABLED(MIXING_EXTRUDER)
  552. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  553. #if MIXING_VIRTUAL_TOOLS > 1
  554. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  555. #endif
  556. #endif
  557. static bool send_ok[BUFSIZE];
  558. #if HAS_SERVOS
  559. Servo servo[NUM_SERVOS];
  560. #define MOVE_SERVO(I, P) servo[I].move(P)
  561. #if HAS_Z_SERVO_ENDSTOP
  562. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  563. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  564. #endif
  565. #endif
  566. #ifdef CHDK
  567. millis_t chdkHigh = 0;
  568. bool chdkActive = false;
  569. #endif
  570. #if ENABLED(PID_EXTRUSION_SCALING)
  571. int lpq_len = 20;
  572. #endif
  573. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  574. MarlinBusyState busy_state = NOT_BUSY;
  575. static millis_t next_busy_signal_ms = 0;
  576. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  577. #else
  578. #define host_keepalive() NOOP
  579. #endif
  580. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  581. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  582. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  583. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  584. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); }
  585. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  586. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  587. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  588. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  589. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  590. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  591. /**
  592. * ***************************************************************************
  593. * ******************************** FUNCTIONS ********************************
  594. * ***************************************************************************
  595. */
  596. void stop();
  597. void get_available_commands();
  598. void process_next_command();
  599. void prepare_move_to_destination();
  600. void get_cartesian_from_steppers();
  601. void set_current_from_steppers_for_axis(const AxisEnum axis);
  602. #if ENABLED(ARC_SUPPORT)
  603. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  604. #endif
  605. #if ENABLED(BEZIER_CURVE_SUPPORT)
  606. void plan_cubic_move(const float offset[4]);
  607. #endif
  608. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  609. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  610. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  611. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  612. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  613. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  614. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  615. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  616. static void report_current_position();
  617. #if ENABLED(DEBUG_LEVELING_FEATURE)
  618. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  619. serialprintPGM(prefix);
  620. SERIAL_ECHOPAIR("(", x);
  621. SERIAL_ECHOPAIR(", ", y);
  622. SERIAL_ECHOPAIR(", ", z);
  623. SERIAL_CHAR(')');
  624. if (suffix) serialprintPGM(suffix);
  625. else SERIAL_EOL;
  626. }
  627. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  628. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  629. }
  630. #if HAS_ABL
  631. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  632. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  633. }
  634. #endif
  635. #define DEBUG_POS(SUFFIX,VAR) do { \
  636. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  637. #endif
  638. /**
  639. * sync_plan_position
  640. *
  641. * Set the planner/stepper positions directly from current_position with
  642. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  643. */
  644. inline void sync_plan_position() {
  645. #if ENABLED(DEBUG_LEVELING_FEATURE)
  646. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  647. #endif
  648. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  649. }
  650. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  651. #if IS_KINEMATIC
  652. inline void sync_plan_position_kinematic() {
  653. #if ENABLED(DEBUG_LEVELING_FEATURE)
  654. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  655. #endif
  656. planner.set_position_mm_kinematic(current_position);
  657. }
  658. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  659. #else
  660. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  661. #endif
  662. #if ENABLED(SDSUPPORT)
  663. #include "SdFatUtil.h"
  664. int freeMemory() { return SdFatUtil::FreeRam(); }
  665. #else
  666. extern "C" {
  667. extern char __bss_end;
  668. extern char __heap_start;
  669. extern void* __brkval;
  670. int freeMemory() {
  671. int free_memory;
  672. if ((int)__brkval == 0)
  673. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  674. else
  675. free_memory = ((int)&free_memory) - ((int)__brkval);
  676. return free_memory;
  677. }
  678. }
  679. #endif //!SDSUPPORT
  680. #if ENABLED(DIGIPOT_I2C)
  681. extern void digipot_i2c_set_current(int channel, float current);
  682. extern void digipot_i2c_init();
  683. #endif
  684. inline void echo_command(const char* cmd) {
  685. SERIAL_ECHO_START;
  686. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  687. SERIAL_CHAR('"');
  688. SERIAL_EOL;
  689. }
  690. /**
  691. * Shove a command in RAM to the front of the main command queue.
  692. * Return true if the command is successfully added.
  693. */
  694. inline bool _shovecommand(const char* cmd, bool say_ok=false) {
  695. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  696. cmd_queue_index_r = (cmd_queue_index_r + BUFSIZE - 1) % BUFSIZE; // Index of the previous slot
  697. commands_in_queue++;
  698. strcpy(command_queue[cmd_queue_index_r], cmd);
  699. send_ok[cmd_queue_index_r] = say_ok;
  700. return true;
  701. }
  702. /**
  703. * Shove a command to the front of the queue with Serial Echo
  704. * Return true if the command is successfully added.
  705. */
  706. bool shove_and_echo_command(const char* cmd, bool say_ok=false) {
  707. if (_shovecommand(cmd, say_ok)) {
  708. echo_command(cmd);
  709. return true;
  710. }
  711. return false;
  712. }
  713. /**
  714. * Shove a command onto the front of the queue,
  715. * and don't return until successful.
  716. */
  717. void shove_and_echo_command_now(const char* cmd) {
  718. while (!shove_and_echo_command(cmd)) idle();
  719. }
  720. /**
  721. * Inject the next "immediate" command, when possible, onto the front of the queue.
  722. * Return true if any immediate commands remain to inject.
  723. */
  724. static bool drain_injected_commands_P() {
  725. if (injected_commands_P != NULL) {
  726. size_t i = 0;
  727. char c, cmd[30];
  728. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  729. cmd[sizeof(cmd) - 1] = '\0';
  730. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  731. cmd[i] = '\0';
  732. if (shove_and_echo_command(cmd)) // success?
  733. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  734. }
  735. return (injected_commands_P != NULL); // return whether any more remain
  736. }
  737. /**
  738. * Record one or many commands to run from program memory.
  739. * Aborts the current queue, if any.
  740. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  741. */
  742. void enqueue_and_echo_commands_P(const char* pgcode) {
  743. injected_commands_P = pgcode;
  744. drain_injected_commands_P(); // first command executed asap (when possible)
  745. }
  746. /**
  747. * Clear the Marlin command queue
  748. */
  749. void clear_command_queue() {
  750. cmd_queue_index_r = cmd_queue_index_w;
  751. commands_in_queue = 0;
  752. }
  753. /**
  754. * Once a new command is in the ring buffer, call this to commit it
  755. */
  756. inline void _commit_command(bool say_ok) {
  757. send_ok[cmd_queue_index_w] = say_ok;
  758. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  759. commands_in_queue++;
  760. }
  761. /**
  762. * Copy a command from RAM into the main command buffer.
  763. * Return true if the command was successfully added.
  764. * Return false for a full buffer, or if the 'command' is a comment.
  765. */
  766. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  767. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  768. strcpy(command_queue[cmd_queue_index_w], cmd);
  769. _commit_command(say_ok);
  770. return true;
  771. }
  772. /**
  773. * Enqueue with Serial Echo
  774. */
  775. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  776. if (_enqueuecommand(cmd, say_ok)) {
  777. echo_command(cmd);
  778. return true;
  779. }
  780. return false;
  781. }
  782. void setup_killpin() {
  783. #if HAS_KILL
  784. SET_INPUT_PULLUP(KILL_PIN);
  785. #endif
  786. }
  787. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  788. void setup_filrunoutpin() {
  789. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  790. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  791. #else
  792. SET_INPUT(FIL_RUNOUT_PIN);
  793. #endif
  794. }
  795. #endif
  796. void setup_homepin(void) {
  797. #if HAS_HOME
  798. SET_INPUT_PULLUP(HOME_PIN);
  799. #endif
  800. }
  801. void setup_powerhold() {
  802. #if HAS_SUICIDE
  803. OUT_WRITE(SUICIDE_PIN, HIGH);
  804. #endif
  805. #if HAS_POWER_SWITCH
  806. #if ENABLED(PS_DEFAULT_OFF)
  807. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  808. #else
  809. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  810. #endif
  811. #endif
  812. }
  813. void suicide() {
  814. #if HAS_SUICIDE
  815. OUT_WRITE(SUICIDE_PIN, LOW);
  816. #endif
  817. }
  818. void servo_init() {
  819. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  820. servo[0].attach(SERVO0_PIN);
  821. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  822. #endif
  823. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  824. servo[1].attach(SERVO1_PIN);
  825. servo[1].detach();
  826. #endif
  827. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  828. servo[2].attach(SERVO2_PIN);
  829. servo[2].detach();
  830. #endif
  831. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  832. servo[3].attach(SERVO3_PIN);
  833. servo[3].detach();
  834. #endif
  835. #if HAS_Z_SERVO_ENDSTOP
  836. /**
  837. * Set position of Z Servo Endstop
  838. *
  839. * The servo might be deployed and positioned too low to stow
  840. * when starting up the machine or rebooting the board.
  841. * There's no way to know where the nozzle is positioned until
  842. * homing has been done - no homing with z-probe without init!
  843. *
  844. */
  845. STOW_Z_SERVO();
  846. #endif
  847. }
  848. /**
  849. * Stepper Reset (RigidBoard, et.al.)
  850. */
  851. #if HAS_STEPPER_RESET
  852. void disableStepperDrivers() {
  853. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  854. }
  855. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  856. #endif
  857. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  858. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  859. i2c.receive(bytes);
  860. }
  861. void i2c_on_request() { // just send dummy data for now
  862. i2c.reply("Hello World!\n");
  863. }
  864. #endif
  865. void gcode_line_error(const char* err, bool doFlush = true) {
  866. SERIAL_ERROR_START;
  867. serialprintPGM(err);
  868. SERIAL_ERRORLN(gcode_LastN);
  869. //Serial.println(gcode_N);
  870. if (doFlush) FlushSerialRequestResend();
  871. serial_count = 0;
  872. }
  873. /**
  874. * Get all commands waiting on the serial port and queue them.
  875. * Exit when the buffer is full or when no more characters are
  876. * left on the serial port.
  877. */
  878. inline void get_serial_commands() {
  879. static char serial_line_buffer[MAX_CMD_SIZE];
  880. static bool serial_comment_mode = false;
  881. // If the command buffer is empty for too long,
  882. // send "wait" to indicate Marlin is still waiting.
  883. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  884. static millis_t last_command_time = 0;
  885. const millis_t ms = millis();
  886. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  887. SERIAL_ECHOLNPGM(MSG_WAIT);
  888. last_command_time = ms;
  889. }
  890. #endif
  891. /**
  892. * Loop while serial characters are incoming and the queue is not full
  893. */
  894. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  895. char serial_char = MYSERIAL.read();
  896. /**
  897. * If the character ends the line
  898. */
  899. if (serial_char == '\n' || serial_char == '\r') {
  900. serial_comment_mode = false; // end of line == end of comment
  901. if (!serial_count) continue; // skip empty lines
  902. serial_line_buffer[serial_count] = 0; // terminate string
  903. serial_count = 0; //reset buffer
  904. char* command = serial_line_buffer;
  905. while (*command == ' ') command++; // skip any leading spaces
  906. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  907. char* apos = strchr(command, '*');
  908. if (npos) {
  909. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  910. if (M110) {
  911. char* n2pos = strchr(command + 4, 'N');
  912. if (n2pos) npos = n2pos;
  913. }
  914. gcode_N = strtol(npos + 1, NULL, 10);
  915. if (gcode_N != gcode_LastN + 1 && !M110) {
  916. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  917. return;
  918. }
  919. if (apos) {
  920. byte checksum = 0, count = 0;
  921. while (command[count] != '*') checksum ^= command[count++];
  922. if (strtol(apos + 1, NULL, 10) != checksum) {
  923. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  924. return;
  925. }
  926. // if no errors, continue parsing
  927. }
  928. else {
  929. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  930. return;
  931. }
  932. gcode_LastN = gcode_N;
  933. // if no errors, continue parsing
  934. }
  935. else if (apos) { // No '*' without 'N'
  936. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  937. return;
  938. }
  939. // Movement commands alert when stopped
  940. if (IsStopped()) {
  941. char* gpos = strchr(command, 'G');
  942. if (gpos) {
  943. int codenum = strtol(gpos + 1, NULL, 10);
  944. switch (codenum) {
  945. case 0:
  946. case 1:
  947. case 2:
  948. case 3:
  949. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  950. LCD_MESSAGEPGM(MSG_STOPPED);
  951. break;
  952. }
  953. }
  954. }
  955. #if DISABLED(EMERGENCY_PARSER)
  956. // If command was e-stop process now
  957. if (strcmp(command, "M108") == 0) {
  958. wait_for_heatup = false;
  959. #if ENABLED(ULTIPANEL)
  960. wait_for_user = false;
  961. #endif
  962. }
  963. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  964. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  965. #endif
  966. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  967. last_command_time = ms;
  968. #endif
  969. // Add the command to the queue
  970. _enqueuecommand(serial_line_buffer, true);
  971. }
  972. else if (serial_count >= MAX_CMD_SIZE - 1) {
  973. // Keep fetching, but ignore normal characters beyond the max length
  974. // The command will be injected when EOL is reached
  975. }
  976. else if (serial_char == '\\') { // Handle escapes
  977. if (MYSERIAL.available() > 0) {
  978. // if we have one more character, copy it over
  979. serial_char = MYSERIAL.read();
  980. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  981. }
  982. // otherwise do nothing
  983. }
  984. else { // it's not a newline, carriage return or escape char
  985. if (serial_char == ';') serial_comment_mode = true;
  986. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  987. }
  988. } // queue has space, serial has data
  989. }
  990. #if ENABLED(SDSUPPORT)
  991. /**
  992. * Get commands from the SD Card until the command buffer is full
  993. * or until the end of the file is reached. The special character '#'
  994. * can also interrupt buffering.
  995. */
  996. inline void get_sdcard_commands() {
  997. static bool stop_buffering = false,
  998. sd_comment_mode = false;
  999. if (!card.sdprinting) return;
  1000. /**
  1001. * '#' stops reading from SD to the buffer prematurely, so procedural
  1002. * macro calls are possible. If it occurs, stop_buffering is triggered
  1003. * and the buffer is run dry; this character _can_ occur in serial com
  1004. * due to checksums, however, no checksums are used in SD printing.
  1005. */
  1006. if (commands_in_queue == 0) stop_buffering = false;
  1007. uint16_t sd_count = 0;
  1008. bool card_eof = card.eof();
  1009. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1010. const int16_t n = card.get();
  1011. char sd_char = (char)n;
  1012. card_eof = card.eof();
  1013. if (card_eof || n == -1
  1014. || sd_char == '\n' || sd_char == '\r'
  1015. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1016. ) {
  1017. if (card_eof) {
  1018. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1019. card.printingHasFinished();
  1020. card.checkautostart(true);
  1021. }
  1022. else if (n == -1) {
  1023. SERIAL_ERROR_START;
  1024. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1025. }
  1026. if (sd_char == '#') stop_buffering = true;
  1027. sd_comment_mode = false; // for new command
  1028. if (!sd_count) continue; // skip empty lines (and comment lines)
  1029. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1030. sd_count = 0; // clear sd line buffer
  1031. _commit_command(false);
  1032. }
  1033. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1034. /**
  1035. * Keep fetching, but ignore normal characters beyond the max length
  1036. * The command will be injected when EOL is reached
  1037. */
  1038. }
  1039. else {
  1040. if (sd_char == ';') sd_comment_mode = true;
  1041. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1042. }
  1043. }
  1044. }
  1045. #endif // SDSUPPORT
  1046. /**
  1047. * Add to the circular command queue the next command from:
  1048. * - The command-injection queue (injected_commands_P)
  1049. * - The active serial input (usually USB)
  1050. * - The SD card file being actively printed
  1051. */
  1052. void get_available_commands() {
  1053. // if any immediate commands remain, don't get other commands yet
  1054. if (drain_injected_commands_P()) return;
  1055. get_serial_commands();
  1056. #if ENABLED(SDSUPPORT)
  1057. get_sdcard_commands();
  1058. #endif
  1059. }
  1060. inline bool code_has_value() {
  1061. int i = 1;
  1062. char c = seen_pointer[i];
  1063. while (c == ' ') c = seen_pointer[++i];
  1064. if (c == '-' || c == '+') c = seen_pointer[++i];
  1065. if (c == '.') c = seen_pointer[++i];
  1066. return NUMERIC(c);
  1067. }
  1068. inline float code_value_float() {
  1069. char* e = strchr(seen_pointer, 'E');
  1070. if (!e) return strtod(seen_pointer + 1, NULL);
  1071. *e = 0;
  1072. float ret = strtod(seen_pointer + 1, NULL);
  1073. *e = 'E';
  1074. return ret;
  1075. }
  1076. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1077. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1078. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1079. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1080. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1081. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1082. #if ENABLED(INCH_MODE_SUPPORT)
  1083. inline void set_input_linear_units(LinearUnit units) {
  1084. switch (units) {
  1085. case LINEARUNIT_INCH:
  1086. linear_unit_factor = 25.4;
  1087. break;
  1088. case LINEARUNIT_MM:
  1089. default:
  1090. linear_unit_factor = 1.0;
  1091. break;
  1092. }
  1093. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1094. }
  1095. inline float axis_unit_factor(int axis) {
  1096. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1097. }
  1098. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1099. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1100. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1101. #else
  1102. inline float code_value_linear_units() { return code_value_float(); }
  1103. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1104. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1105. #endif
  1106. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1107. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1108. float code_value_temp_abs() {
  1109. switch (input_temp_units) {
  1110. case TEMPUNIT_C:
  1111. return code_value_float();
  1112. case TEMPUNIT_F:
  1113. return (code_value_float() - 32) * 0.5555555556;
  1114. case TEMPUNIT_K:
  1115. return code_value_float() - 273.15;
  1116. default:
  1117. return code_value_float();
  1118. }
  1119. }
  1120. float code_value_temp_diff() {
  1121. switch (input_temp_units) {
  1122. case TEMPUNIT_C:
  1123. case TEMPUNIT_K:
  1124. return code_value_float();
  1125. case TEMPUNIT_F:
  1126. return code_value_float() * 0.5555555556;
  1127. default:
  1128. return code_value_float();
  1129. }
  1130. }
  1131. #else
  1132. float code_value_temp_abs() { return code_value_float(); }
  1133. float code_value_temp_diff() { return code_value_float(); }
  1134. #endif
  1135. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1136. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1137. bool code_seen(char code) {
  1138. seen_pointer = strchr(current_command_args, code);
  1139. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1140. }
  1141. /**
  1142. * Set target_extruder from the T parameter or the active_extruder
  1143. *
  1144. * Returns TRUE if the target is invalid
  1145. */
  1146. bool get_target_extruder_from_command(int code) {
  1147. if (code_seen('T')) {
  1148. if (code_value_byte() >= EXTRUDERS) {
  1149. SERIAL_ECHO_START;
  1150. SERIAL_CHAR('M');
  1151. SERIAL_ECHO(code);
  1152. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1153. return true;
  1154. }
  1155. target_extruder = code_value_byte();
  1156. }
  1157. else
  1158. target_extruder = active_extruder;
  1159. return false;
  1160. }
  1161. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1162. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1163. #endif
  1164. #if ENABLED(DUAL_X_CARRIAGE)
  1165. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1166. static float x_home_pos(const int extruder) {
  1167. if (extruder == 0)
  1168. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1169. else
  1170. /**
  1171. * In dual carriage mode the extruder offset provides an override of the
  1172. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1173. * This allows soft recalibration of the second extruder home position
  1174. * without firmware reflash (through the M218 command).
  1175. */
  1176. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1177. }
  1178. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1179. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1180. static bool active_extruder_parked = false; // used in mode 1 & 2
  1181. static float raised_parked_position[XYZE]; // used in mode 1
  1182. static millis_t delayed_move_time = 0; // used in mode 1
  1183. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1184. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1185. #endif // DUAL_X_CARRIAGE
  1186. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  1187. /**
  1188. * Software endstops can be used to monitor the open end of
  1189. * an axis that has a hardware endstop on the other end. Or
  1190. * they can prevent axes from moving past endstops and grinding.
  1191. *
  1192. * To keep doing their job as the coordinate system changes,
  1193. * the software endstop positions must be refreshed to remain
  1194. * at the same positions relative to the machine.
  1195. */
  1196. void update_software_endstops(const AxisEnum axis) {
  1197. const float offs = workspace_offset[axis] = LOGICAL_POSITION(0, axis);
  1198. #if ENABLED(DUAL_X_CARRIAGE)
  1199. if (axis == X_AXIS) {
  1200. // In Dual X mode hotend_offset[X] is T1's home position
  1201. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1202. if (active_extruder != 0) {
  1203. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1204. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1205. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1206. }
  1207. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1208. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1209. // but not so far to the right that T1 would move past the end
  1210. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1211. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1212. }
  1213. else {
  1214. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1215. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1216. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1217. }
  1218. }
  1219. #else
  1220. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1221. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1222. #endif
  1223. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1224. if (DEBUGGING(LEVELING)) {
  1225. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1226. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1227. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1228. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1229. #endif
  1230. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1231. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1232. }
  1233. #endif
  1234. #if ENABLED(DELTA)
  1235. if (axis == Z_AXIS)
  1236. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1237. #endif
  1238. }
  1239. #endif // NO_WORKSPACE_OFFSETS
  1240. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1241. /**
  1242. * Change the home offset for an axis, update the current
  1243. * position and the software endstops to retain the same
  1244. * relative distance to the new home.
  1245. *
  1246. * Since this changes the current_position, code should
  1247. * call sync_plan_position soon after this.
  1248. */
  1249. static void set_home_offset(const AxisEnum axis, const float v) {
  1250. current_position[axis] += v - home_offset[axis];
  1251. home_offset[axis] = v;
  1252. update_software_endstops(axis);
  1253. }
  1254. #endif // NO_WORKSPACE_OFFSETS
  1255. /**
  1256. * Set an axis' current position to its home position (after homing).
  1257. *
  1258. * For Core and Cartesian robots this applies one-to-one when an
  1259. * individual axis has been homed.
  1260. *
  1261. * DELTA should wait until all homing is done before setting the XYZ
  1262. * current_position to home, because homing is a single operation.
  1263. * In the case where the axis positions are already known and previously
  1264. * homed, DELTA could home to X or Y individually by moving either one
  1265. * to the center. However, homing Z always homes XY and Z.
  1266. *
  1267. * SCARA should wait until all XY homing is done before setting the XY
  1268. * current_position to home, because neither X nor Y is at home until
  1269. * both are at home. Z can however be homed individually.
  1270. *
  1271. * Callers must sync the planner position after calling this!
  1272. */
  1273. static void set_axis_is_at_home(AxisEnum axis) {
  1274. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1275. if (DEBUGGING(LEVELING)) {
  1276. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1277. SERIAL_CHAR(')');
  1278. SERIAL_EOL;
  1279. }
  1280. #endif
  1281. axis_known_position[axis] = axis_homed[axis] = true;
  1282. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1283. position_shift[axis] = 0;
  1284. update_software_endstops(axis);
  1285. #endif
  1286. #if ENABLED(DUAL_X_CARRIAGE)
  1287. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1288. current_position[X_AXIS] = x_home_pos(active_extruder);
  1289. return;
  1290. }
  1291. #endif
  1292. #if ENABLED(MORGAN_SCARA)
  1293. /**
  1294. * Morgan SCARA homes XY at the same time
  1295. */
  1296. if (axis == X_AXIS || axis == Y_AXIS) {
  1297. float homeposition[XYZ];
  1298. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1299. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1300. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1301. /**
  1302. * Get Home position SCARA arm angles using inverse kinematics,
  1303. * and calculate homing offset using forward kinematics
  1304. */
  1305. inverse_kinematics(homeposition);
  1306. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1307. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1308. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1309. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1310. /**
  1311. * SCARA home positions are based on configuration since the actual
  1312. * limits are determined by the inverse kinematic transform.
  1313. */
  1314. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1315. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1316. }
  1317. else
  1318. #endif
  1319. {
  1320. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1321. }
  1322. /**
  1323. * Z Probe Z Homing? Account for the probe's Z offset.
  1324. */
  1325. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1326. if (axis == Z_AXIS) {
  1327. #if HOMING_Z_WITH_PROBE
  1328. current_position[Z_AXIS] -= zprobe_zoffset;
  1329. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1330. if (DEBUGGING(LEVELING)) {
  1331. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1332. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1333. }
  1334. #endif
  1335. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1336. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1337. #endif
  1338. }
  1339. #endif
  1340. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1341. if (DEBUGGING(LEVELING)) {
  1342. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1343. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1344. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1345. #endif
  1346. DEBUG_POS("", current_position);
  1347. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1348. SERIAL_CHAR(')');
  1349. SERIAL_EOL;
  1350. }
  1351. #endif
  1352. }
  1353. /**
  1354. * Some planner shorthand inline functions
  1355. */
  1356. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1357. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1358. int hbd = homing_bump_divisor[axis];
  1359. if (hbd < 1) {
  1360. hbd = 10;
  1361. SERIAL_ECHO_START;
  1362. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1363. }
  1364. return homing_feedrate_mm_s[axis] / hbd;
  1365. }
  1366. //
  1367. // line_to_current_position
  1368. // Move the planner to the current position from wherever it last moved
  1369. // (or from wherever it has been told it is located).
  1370. //
  1371. inline void line_to_current_position() {
  1372. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1373. }
  1374. //
  1375. // line_to_destination
  1376. // Move the planner, not necessarily synced with current_position
  1377. //
  1378. inline void line_to_destination(float fr_mm_s) {
  1379. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1380. }
  1381. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1382. inline void set_current_to_destination() { COPY(current_position, destination); }
  1383. inline void set_destination_to_current() { COPY(destination, current_position); }
  1384. #if IS_KINEMATIC
  1385. /**
  1386. * Calculate delta, start a line, and set current_position to destination
  1387. */
  1388. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1390. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1391. #endif
  1392. if ( current_position[X_AXIS] == destination[X_AXIS]
  1393. && current_position[Y_AXIS] == destination[Y_AXIS]
  1394. && current_position[Z_AXIS] == destination[Z_AXIS]
  1395. && current_position[E_AXIS] == destination[E_AXIS]
  1396. ) return;
  1397. refresh_cmd_timeout();
  1398. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1399. set_current_to_destination();
  1400. }
  1401. #endif // IS_KINEMATIC
  1402. /**
  1403. * Plan a move to (X, Y, Z) and set the current_position
  1404. * The final current_position may not be the one that was requested
  1405. */
  1406. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1407. const float old_feedrate_mm_s = feedrate_mm_s;
  1408. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1409. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1410. #endif
  1411. #if ENABLED(DELTA)
  1412. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1413. set_destination_to_current(); // sync destination at the start
  1414. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1415. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1416. #endif
  1417. // when in the danger zone
  1418. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1419. if (z > delta_clip_start_height) { // staying in the danger zone
  1420. destination[X_AXIS] = x; // move directly (uninterpolated)
  1421. destination[Y_AXIS] = y;
  1422. destination[Z_AXIS] = z;
  1423. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1424. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1425. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1426. #endif
  1427. return;
  1428. }
  1429. else {
  1430. destination[Z_AXIS] = delta_clip_start_height;
  1431. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1432. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1433. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1434. #endif
  1435. }
  1436. }
  1437. if (z > current_position[Z_AXIS]) { // raising?
  1438. destination[Z_AXIS] = z;
  1439. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1440. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1441. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1442. #endif
  1443. }
  1444. destination[X_AXIS] = x;
  1445. destination[Y_AXIS] = y;
  1446. prepare_move_to_destination(); // set_current_to_destination
  1447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1448. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1449. #endif
  1450. if (z < current_position[Z_AXIS]) { // lowering?
  1451. destination[Z_AXIS] = z;
  1452. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1453. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1454. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1455. #endif
  1456. }
  1457. #elif IS_SCARA
  1458. set_destination_to_current();
  1459. // If Z needs to raise, do it before moving XY
  1460. if (destination[Z_AXIS] < z) {
  1461. destination[Z_AXIS] = z;
  1462. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1463. }
  1464. destination[X_AXIS] = x;
  1465. destination[Y_AXIS] = y;
  1466. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1467. // If Z needs to lower, do it after moving XY
  1468. if (destination[Z_AXIS] > z) {
  1469. destination[Z_AXIS] = z;
  1470. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1471. }
  1472. #else
  1473. // If Z needs to raise, do it before moving XY
  1474. if (current_position[Z_AXIS] < z) {
  1475. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1476. current_position[Z_AXIS] = z;
  1477. line_to_current_position();
  1478. }
  1479. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1480. current_position[X_AXIS] = x;
  1481. current_position[Y_AXIS] = y;
  1482. line_to_current_position();
  1483. // If Z needs to lower, do it after moving XY
  1484. if (current_position[Z_AXIS] > z) {
  1485. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1486. current_position[Z_AXIS] = z;
  1487. line_to_current_position();
  1488. }
  1489. #endif
  1490. stepper.synchronize();
  1491. feedrate_mm_s = old_feedrate_mm_s;
  1492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1493. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1494. #endif
  1495. }
  1496. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1497. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1498. }
  1499. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1500. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1501. }
  1502. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1503. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1504. }
  1505. //
  1506. // Prepare to do endstop or probe moves
  1507. // with custom feedrates.
  1508. //
  1509. // - Save current feedrates
  1510. // - Reset the rate multiplier
  1511. // - Reset the command timeout
  1512. // - Enable the endstops (for endstop moves)
  1513. //
  1514. static void setup_for_endstop_or_probe_move() {
  1515. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1516. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1517. #endif
  1518. saved_feedrate_mm_s = feedrate_mm_s;
  1519. saved_feedrate_percentage = feedrate_percentage;
  1520. feedrate_percentage = 100;
  1521. refresh_cmd_timeout();
  1522. }
  1523. static void clean_up_after_endstop_or_probe_move() {
  1524. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1525. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1526. #endif
  1527. feedrate_mm_s = saved_feedrate_mm_s;
  1528. feedrate_percentage = saved_feedrate_percentage;
  1529. refresh_cmd_timeout();
  1530. }
  1531. #if HAS_BED_PROBE
  1532. /**
  1533. * Raise Z to a minimum height to make room for a probe to move
  1534. */
  1535. inline void do_probe_raise(float z_raise) {
  1536. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1537. if (DEBUGGING(LEVELING)) {
  1538. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1539. SERIAL_CHAR(')');
  1540. SERIAL_EOL;
  1541. }
  1542. #endif
  1543. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1544. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1545. if (z_dest > current_position[Z_AXIS])
  1546. do_blocking_move_to_z(z_dest);
  1547. }
  1548. #endif //HAS_BED_PROBE
  1549. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1550. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1551. const bool xx = x && !axis_homed[X_AXIS],
  1552. yy = y && !axis_homed[Y_AXIS],
  1553. zz = z && !axis_homed[Z_AXIS];
  1554. if (xx || yy || zz) {
  1555. SERIAL_ECHO_START;
  1556. SERIAL_ECHOPGM(MSG_HOME " ");
  1557. if (xx) SERIAL_ECHOPGM(MSG_X);
  1558. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1559. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1560. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1561. #if ENABLED(ULTRA_LCD)
  1562. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1563. strcat_P(message, PSTR(MSG_HOME " "));
  1564. if (xx) strcat_P(message, PSTR(MSG_X));
  1565. if (yy) strcat_P(message, PSTR(MSG_Y));
  1566. if (zz) strcat_P(message, PSTR(MSG_Z));
  1567. strcat_P(message, PSTR(" " MSG_FIRST));
  1568. lcd_setstatus(message);
  1569. #endif
  1570. return true;
  1571. }
  1572. return false;
  1573. }
  1574. #endif
  1575. #if ENABLED(Z_PROBE_SLED)
  1576. #ifndef SLED_DOCKING_OFFSET
  1577. #define SLED_DOCKING_OFFSET 0
  1578. #endif
  1579. /**
  1580. * Method to dock/undock a sled designed by Charles Bell.
  1581. *
  1582. * stow[in] If false, move to MAX_X and engage the solenoid
  1583. * If true, move to MAX_X and release the solenoid
  1584. */
  1585. static void dock_sled(bool stow) {
  1586. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1587. if (DEBUGGING(LEVELING)) {
  1588. SERIAL_ECHOPAIR("dock_sled(", stow);
  1589. SERIAL_CHAR(')');
  1590. SERIAL_EOL;
  1591. }
  1592. #endif
  1593. // Dock sled a bit closer to ensure proper capturing
  1594. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1595. #if PIN_EXISTS(SLED)
  1596. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1597. #endif
  1598. }
  1599. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1600. void run_deploy_moves_script() {
  1601. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1602. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1603. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1607. #endif
  1608. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1609. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1610. #endif
  1611. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1612. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1613. #endif
  1614. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1615. #endif
  1616. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1617. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1618. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1619. #endif
  1620. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1621. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1622. #endif
  1623. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1624. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1625. #endif
  1626. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1627. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1628. #endif
  1629. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1630. #endif
  1631. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1632. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1633. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1634. #endif
  1635. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1636. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1637. #endif
  1638. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1639. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1640. #endif
  1641. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1642. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1643. #endif
  1644. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1645. #endif
  1646. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1647. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1648. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1649. #endif
  1650. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1651. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1652. #endif
  1653. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1654. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1655. #endif
  1656. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1657. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1658. #endif
  1659. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1660. #endif
  1661. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1662. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1663. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1664. #endif
  1665. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1666. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1667. #endif
  1668. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1669. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1670. #endif
  1671. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1672. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1673. #endif
  1674. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1675. #endif
  1676. }
  1677. void run_stow_moves_script() {
  1678. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1679. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1680. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1681. #endif
  1682. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1683. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1684. #endif
  1685. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1686. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1687. #endif
  1688. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1689. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1690. #endif
  1691. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1692. #endif
  1693. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1694. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1695. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1696. #endif
  1697. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1698. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1699. #endif
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1701. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1702. #endif
  1703. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1704. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1705. #endif
  1706. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1707. #endif
  1708. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1709. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1710. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1711. #endif
  1712. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1713. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1714. #endif
  1715. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1716. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1717. #endif
  1718. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1719. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1720. #endif
  1721. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1722. #endif
  1723. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1724. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1725. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1726. #endif
  1727. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1728. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1729. #endif
  1730. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1731. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1732. #endif
  1733. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1734. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1735. #endif
  1736. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1737. #endif
  1738. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1739. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1740. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1741. #endif
  1742. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1743. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1744. #endif
  1745. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1746. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1747. #endif
  1748. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1749. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1750. #endif
  1751. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1752. #endif
  1753. }
  1754. #endif
  1755. #if HAS_BED_PROBE
  1756. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1757. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1758. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1759. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1760. #else
  1761. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1762. #endif
  1763. #endif
  1764. #define DEPLOY_PROBE() set_probe_deployed(true)
  1765. #define STOW_PROBE() set_probe_deployed(false)
  1766. #if ENABLED(BLTOUCH)
  1767. void bltouch_command(int angle) {
  1768. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1769. safe_delay(375);
  1770. }
  1771. void set_bltouch_deployed(const bool deploy) {
  1772. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1773. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1774. if (DEBUGGING(LEVELING)) {
  1775. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1776. SERIAL_CHAR(')');
  1777. SERIAL_EOL;
  1778. }
  1779. #endif
  1780. }
  1781. #endif
  1782. // returns false for ok and true for failure
  1783. bool set_probe_deployed(bool deploy) {
  1784. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1785. if (DEBUGGING(LEVELING)) {
  1786. DEBUG_POS("set_probe_deployed", current_position);
  1787. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1788. }
  1789. #endif
  1790. if (endstops.z_probe_enabled == deploy) return false;
  1791. // Make room for probe
  1792. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1793. // When deploying make sure BLTOUCH is not already triggered
  1794. #if ENABLED(BLTOUCH)
  1795. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1796. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1797. set_bltouch_deployed(true); // Also needs to deploy and stow to
  1798. set_bltouch_deployed(false); // clear the triggered condition.
  1799. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1800. SERIAL_ERROR_START;
  1801. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1802. stop(); // punt!
  1803. return true;
  1804. }
  1805. }
  1806. #elif ENABLED(Z_PROBE_SLED)
  1807. if (axis_unhomed_error(true, false, false)) {
  1808. SERIAL_ERROR_START;
  1809. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1810. stop();
  1811. return true;
  1812. }
  1813. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1814. if (axis_unhomed_error(true, true, true )) {
  1815. SERIAL_ERROR_START;
  1816. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1817. stop();
  1818. return true;
  1819. }
  1820. #endif
  1821. const float oldXpos = current_position[X_AXIS],
  1822. oldYpos = current_position[Y_AXIS];
  1823. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1824. // If endstop is already false, the Z probe is deployed
  1825. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1826. // Would a goto be less ugly?
  1827. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1828. // for a triggered when stowed manual probe.
  1829. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1830. // otherwise an Allen-Key probe can't be stowed.
  1831. #endif
  1832. #if ENABLED(Z_PROBE_SLED)
  1833. dock_sled(!deploy);
  1834. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1835. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1836. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1837. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1838. #endif
  1839. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1840. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1841. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1842. if (IsRunning()) {
  1843. SERIAL_ERROR_START;
  1844. SERIAL_ERRORLNPGM("Z-Probe failed");
  1845. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1846. }
  1847. stop();
  1848. return true;
  1849. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1850. #endif
  1851. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1852. endstops.enable_z_probe(deploy);
  1853. return false;
  1854. }
  1855. static void do_probe_move(float z, float fr_mm_m) {
  1856. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1857. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1858. #endif
  1859. // Deploy BLTouch at the start of any probe
  1860. #if ENABLED(BLTOUCH)
  1861. set_bltouch_deployed(true);
  1862. #endif
  1863. // Move down until probe triggered
  1864. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1865. // Retract BLTouch immediately after a probe
  1866. #if ENABLED(BLTOUCH)
  1867. set_bltouch_deployed(false);
  1868. #endif
  1869. // Clear endstop flags
  1870. endstops.hit_on_purpose();
  1871. // Get Z where the steppers were interrupted
  1872. set_current_from_steppers_for_axis(Z_AXIS);
  1873. // Tell the planner where we actually are
  1874. SYNC_PLAN_POSITION_KINEMATIC();
  1875. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1876. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1877. #endif
  1878. }
  1879. // Do a single Z probe and return with current_position[Z_AXIS]
  1880. // at the height where the probe triggered.
  1881. static float run_z_probe() {
  1882. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1883. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1884. #endif
  1885. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1886. refresh_cmd_timeout();
  1887. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1888. // Do a first probe at the fast speed
  1889. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1890. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1891. float first_probe_z = current_position[Z_AXIS];
  1892. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1893. #endif
  1894. // move up by the bump distance
  1895. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1896. #else
  1897. // If the nozzle is above the travel height then
  1898. // move down quickly before doing the slow probe
  1899. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1900. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1901. if (z < current_position[Z_AXIS])
  1902. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1903. #endif
  1904. // move down slowly to find bed
  1905. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1906. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1907. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1908. #endif
  1909. // Debug: compare probe heights
  1910. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1911. if (DEBUGGING(LEVELING)) {
  1912. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1913. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1914. }
  1915. #endif
  1916. return current_position[Z_AXIS] + zprobe_zoffset;
  1917. }
  1918. //
  1919. // - Move to the given XY
  1920. // - Deploy the probe, if not already deployed
  1921. // - Probe the bed, get the Z position
  1922. // - Depending on the 'stow' flag
  1923. // - Stow the probe, or
  1924. // - Raise to the BETWEEN height
  1925. // - Return the probed Z position
  1926. //
  1927. //float probe_pt(const float &x, const float &y, const bool stow = true, const int verbose_level = 1) {
  1928. float probe_pt(const float x, const float y, const bool stow, const int verbose_level) {
  1929. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1930. if (DEBUGGING(LEVELING)) {
  1931. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1932. SERIAL_ECHOPAIR(", ", y);
  1933. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1934. SERIAL_ECHOLNPGM("stow)");
  1935. DEBUG_POS("", current_position);
  1936. }
  1937. #endif
  1938. const float old_feedrate_mm_s = feedrate_mm_s;
  1939. #if ENABLED(DELTA)
  1940. if (current_position[Z_AXIS] > delta_clip_start_height)
  1941. do_blocking_move_to_z(delta_clip_start_height);
  1942. #endif
  1943. // Ensure a minimum height before moving the probe
  1944. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1945. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1946. // Move the probe to the given XY
  1947. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1948. if (DEPLOY_PROBE()) return NAN;
  1949. const float measured_z = run_z_probe();
  1950. if (!stow)
  1951. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1952. else
  1953. if (STOW_PROBE()) return NAN;
  1954. if (verbose_level > 2) {
  1955. SERIAL_PROTOCOLPGM("Bed X: ");
  1956. SERIAL_PROTOCOL_F(x, 3);
  1957. SERIAL_PROTOCOLPGM(" Y: ");
  1958. SERIAL_PROTOCOL_F(y, 3);
  1959. SERIAL_PROTOCOLPGM(" Z: ");
  1960. SERIAL_PROTOCOL_F(FIXFLOAT(measured_z), 3);
  1961. SERIAL_EOL;
  1962. }
  1963. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1964. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1965. #endif
  1966. feedrate_mm_s = old_feedrate_mm_s;
  1967. return measured_z;
  1968. }
  1969. #endif // HAS_BED_PROBE
  1970. #if PLANNER_LEVELING
  1971. /**
  1972. * Turn bed leveling on or off, fixing the current
  1973. * position as-needed.
  1974. *
  1975. * Disable: Current position = physical position
  1976. * Enable: Current position = "unleveled" physical position
  1977. */
  1978. void set_bed_leveling_enabled(bool enable/*=true*/) {
  1979. #if ENABLED(MESH_BED_LEVELING)
  1980. if (enable != mbl.active()) {
  1981. if (!enable)
  1982. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1983. mbl.set_active(enable && mbl.has_mesh());
  1984. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  1985. }
  1986. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  1987. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1988. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  1989. #else
  1990. constexpr bool can_change = true;
  1991. #endif
  1992. if (can_change && enable != planner.abl_enabled) {
  1993. planner.abl_enabled = enable;
  1994. if (!enable)
  1995. set_current_from_steppers_for_axis(
  1996. #if ABL_PLANAR
  1997. ALL_AXES
  1998. #else
  1999. Z_AXIS
  2000. #endif
  2001. );
  2002. else
  2003. planner.unapply_leveling(current_position);
  2004. }
  2005. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2006. ubl.state.active = enable;
  2007. //set_current_from_steppers_for_axis(Z_AXIS);
  2008. #endif
  2009. }
  2010. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2011. void set_z_fade_height(const float zfh) {
  2012. planner.z_fade_height = zfh;
  2013. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2014. if (
  2015. #if ENABLED(MESH_BED_LEVELING)
  2016. mbl.active()
  2017. #else
  2018. planner.abl_enabled
  2019. #endif
  2020. ) {
  2021. set_current_from_steppers_for_axis(
  2022. #if ABL_PLANAR
  2023. ALL_AXES
  2024. #else
  2025. Z_AXIS
  2026. #endif
  2027. );
  2028. }
  2029. }
  2030. #endif // LEVELING_FADE_HEIGHT
  2031. /**
  2032. * Reset calibration results to zero.
  2033. */
  2034. void reset_bed_level() {
  2035. set_bed_leveling_enabled(false);
  2036. #if ENABLED(MESH_BED_LEVELING)
  2037. if (mbl.has_mesh()) {
  2038. mbl.reset();
  2039. mbl.set_has_mesh(false);
  2040. }
  2041. #else
  2042. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2043. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2044. #endif
  2045. #if ABL_PLANAR
  2046. planner.bed_level_matrix.set_to_identity();
  2047. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2048. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2049. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2050. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2051. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2052. bed_level_grid[x][y] = UNPROBED;
  2053. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2054. ubl.reset();
  2055. #endif
  2056. #endif
  2057. }
  2058. #endif // PLANNER_LEVELING
  2059. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2060. /**
  2061. * Extrapolate a single point from its neighbors
  2062. */
  2063. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2064. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2065. if (DEBUGGING(LEVELING)) {
  2066. SERIAL_ECHOPGM("Extrapolate [");
  2067. if (x < 10) SERIAL_CHAR(' ');
  2068. SERIAL_ECHO((int)x);
  2069. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2070. SERIAL_CHAR(' ');
  2071. if (y < 10) SERIAL_CHAR(' ');
  2072. SERIAL_ECHO((int)y);
  2073. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2074. SERIAL_CHAR(']');
  2075. }
  2076. #endif
  2077. if (bed_level_grid[x][y] != UNPROBED) {
  2078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2079. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2080. #endif
  2081. return; // Don't overwrite good values.
  2082. }
  2083. SERIAL_EOL;
  2084. // Get X neighbors, Y neighbors, and XY neighbors
  2085. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2086. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2087. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2088. // Treat far unprobed points as zero, near as equal to far
  2089. if (a2 == UNPROBED) a2 = 0.0; if (a1 == UNPROBED) a1 = a2;
  2090. if (b2 == UNPROBED) b2 = 0.0; if (b1 == UNPROBED) b1 = b2;
  2091. if (c2 == UNPROBED) c2 = 0.0; if (c1 == UNPROBED) c1 = c2;
  2092. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2093. // Take the average instead of the median
  2094. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2095. // Median is robust (ignores outliers).
  2096. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2097. // : ((c < b) ? b : (a < c) ? a : c);
  2098. }
  2099. //Enable this if your SCARA uses 180° of total area
  2100. //#define EXTRAPOLATE_FROM_EDGE
  2101. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2102. #if ABL_GRID_MAX_POINTS_X < ABL_GRID_MAX_POINTS_Y
  2103. #define HALF_IN_X
  2104. #elif ABL_GRID_MAX_POINTS_Y < ABL_GRID_MAX_POINTS_X
  2105. #define HALF_IN_Y
  2106. #endif
  2107. #endif
  2108. /**
  2109. * Fill in the unprobed points (corners of circular print surface)
  2110. * using linear extrapolation, away from the center.
  2111. */
  2112. static void extrapolate_unprobed_bed_level() {
  2113. #ifdef HALF_IN_X
  2114. const uint8_t ctrx2 = 0, xlen = ABL_GRID_MAX_POINTS_X - 1;
  2115. #else
  2116. const uint8_t ctrx1 = (ABL_GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2117. ctrx2 = ABL_GRID_MAX_POINTS_X / 2, // right-of-center
  2118. xlen = ctrx1;
  2119. #endif
  2120. #ifdef HALF_IN_Y
  2121. const uint8_t ctry2 = 0, ylen = ABL_GRID_MAX_POINTS_Y - 1;
  2122. #else
  2123. const uint8_t ctry1 = (ABL_GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2124. ctry2 = ABL_GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2125. ylen = ctry1;
  2126. #endif
  2127. for (uint8_t xo = 0; xo <= xlen; xo++)
  2128. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2129. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2130. #ifndef HALF_IN_X
  2131. const uint8_t x1 = ctrx1 - xo;
  2132. #endif
  2133. #ifndef HALF_IN_Y
  2134. const uint8_t y1 = ctry1 - yo;
  2135. #ifndef HALF_IN_X
  2136. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2137. #endif
  2138. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2139. #endif
  2140. #ifndef HALF_IN_X
  2141. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2142. #endif
  2143. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2144. }
  2145. }
  2146. /**
  2147. * Print calibration results for plotting or manual frame adjustment.
  2148. */
  2149. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2150. for (uint8_t x = 0; x < sx; x++) {
  2151. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2152. SERIAL_PROTOCOLCHAR(' ');
  2153. SERIAL_PROTOCOL((int)x);
  2154. }
  2155. SERIAL_EOL;
  2156. for (uint8_t y = 0; y < sy; y++) {
  2157. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2158. SERIAL_PROTOCOL((int)y);
  2159. for (uint8_t x = 0; x < sx; x++) {
  2160. SERIAL_PROTOCOLCHAR(' ');
  2161. float offset = fn(x, y);
  2162. if (offset != UNPROBED) {
  2163. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2164. SERIAL_PROTOCOL_F(offset, precision);
  2165. }
  2166. else
  2167. for (uint8_t i = 0; i < precision + 3; i++)
  2168. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2169. }
  2170. SERIAL_EOL;
  2171. }
  2172. SERIAL_EOL;
  2173. }
  2174. static void print_bilinear_leveling_grid() {
  2175. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2176. print_2d_array(ABL_GRID_MAX_POINTS_X, ABL_GRID_MAX_POINTS_Y, 2,
  2177. [](const uint8_t x, const uint8_t y) { return bed_level_grid[x][y]; }
  2178. );
  2179. }
  2180. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2181. #define ABL_GRID_POINTS_VIRT_X (ABL_GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2182. #define ABL_GRID_POINTS_VIRT_Y (ABL_GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2183. #define ABL_TEMP_POINTS_X (ABL_GRID_MAX_POINTS_X + 2)
  2184. #define ABL_TEMP_POINTS_Y (ABL_GRID_MAX_POINTS_Y + 2)
  2185. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2186. int bilinear_grid_spacing_virt[2] = { 0 };
  2187. static void bed_level_virt_print() {
  2188. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2189. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2190. [](const uint8_t x, const uint8_t y) { return bed_level_grid_virt[x][y]; }
  2191. );
  2192. }
  2193. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2194. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2195. uint8_t ep = 0, ip = 1;
  2196. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2197. if (x) {
  2198. ep = ABL_GRID_MAX_POINTS_X - 1;
  2199. ip = ABL_GRID_MAX_POINTS_X - 2;
  2200. }
  2201. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2202. return LINEAR_EXTRAPOLATION(
  2203. bed_level_grid[ep][y - 1],
  2204. bed_level_grid[ip][y - 1]
  2205. );
  2206. else
  2207. return LINEAR_EXTRAPOLATION(
  2208. bed_level_virt_coord(ep + 1, y),
  2209. bed_level_virt_coord(ip + 1, y)
  2210. );
  2211. }
  2212. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2213. if (y) {
  2214. ep = ABL_GRID_MAX_POINTS_Y - 1;
  2215. ip = ABL_GRID_MAX_POINTS_Y - 2;
  2216. }
  2217. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2218. return LINEAR_EXTRAPOLATION(
  2219. bed_level_grid[x - 1][ep],
  2220. bed_level_grid[x - 1][ip]
  2221. );
  2222. else
  2223. return LINEAR_EXTRAPOLATION(
  2224. bed_level_virt_coord(x, ep + 1),
  2225. bed_level_virt_coord(x, ip + 1)
  2226. );
  2227. }
  2228. return bed_level_grid[x - 1][y - 1];
  2229. }
  2230. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2231. return (
  2232. p[i-1] * -t * sq(1 - t)
  2233. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2234. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2235. - p[i+2] * sq(t) * (1 - t)
  2236. ) * 0.5;
  2237. }
  2238. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2239. float row[4], column[4];
  2240. for (uint8_t i = 0; i < 4; i++) {
  2241. for (uint8_t j = 0; j < 4; j++) {
  2242. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2243. }
  2244. row[i] = bed_level_virt_cmr(column, 1, ty);
  2245. }
  2246. return bed_level_virt_cmr(row, 1, tx);
  2247. }
  2248. void bed_level_virt_interpolate() {
  2249. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2250. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2251. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2252. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2253. if ((ty && y == ABL_GRID_MAX_POINTS_Y - 1) || (tx && x == ABL_GRID_MAX_POINTS_X - 1))
  2254. continue;
  2255. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2256. bed_level_virt_2cmr(
  2257. x + 1,
  2258. y + 1,
  2259. (float)tx / (BILINEAR_SUBDIVISIONS),
  2260. (float)ty / (BILINEAR_SUBDIVISIONS)
  2261. );
  2262. }
  2263. }
  2264. #endif // ABL_BILINEAR_SUBDIVISION
  2265. #endif // AUTO_BED_LEVELING_BILINEAR
  2266. /**
  2267. * Home an individual linear axis
  2268. */
  2269. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2270. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2271. if (DEBUGGING(LEVELING)) {
  2272. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2273. SERIAL_ECHOPAIR(", ", distance);
  2274. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2275. SERIAL_CHAR(')');
  2276. SERIAL_EOL;
  2277. }
  2278. #endif
  2279. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2280. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2281. if (deploy_bltouch) set_bltouch_deployed(true);
  2282. #endif
  2283. // Tell the planner we're at Z=0
  2284. current_position[axis] = 0;
  2285. #if IS_SCARA
  2286. SYNC_PLAN_POSITION_KINEMATIC();
  2287. current_position[axis] = distance;
  2288. inverse_kinematics(current_position);
  2289. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2290. #else
  2291. sync_plan_position();
  2292. current_position[axis] = distance;
  2293. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2294. #endif
  2295. stepper.synchronize();
  2296. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2297. if (deploy_bltouch) set_bltouch_deployed(false);
  2298. #endif
  2299. endstops.hit_on_purpose();
  2300. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2301. if (DEBUGGING(LEVELING)) {
  2302. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2303. SERIAL_CHAR(')');
  2304. SERIAL_EOL;
  2305. }
  2306. #endif
  2307. }
  2308. /**
  2309. * Home an individual "raw axis" to its endstop.
  2310. * This applies to XYZ on Cartesian and Core robots, and
  2311. * to the individual ABC steppers on DELTA and SCARA.
  2312. *
  2313. * At the end of the procedure the axis is marked as
  2314. * homed and the current position of that axis is updated.
  2315. * Kinematic robots should wait till all axes are homed
  2316. * before updating the current position.
  2317. */
  2318. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2319. static void homeaxis(const AxisEnum axis) {
  2320. #if IS_SCARA
  2321. // Only Z homing (with probe) is permitted
  2322. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2323. #else
  2324. #define CAN_HOME(A) \
  2325. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2326. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2327. #endif
  2328. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2329. if (DEBUGGING(LEVELING)) {
  2330. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2331. SERIAL_CHAR(')');
  2332. SERIAL_EOL;
  2333. }
  2334. #endif
  2335. const int axis_home_dir =
  2336. #if ENABLED(DUAL_X_CARRIAGE)
  2337. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2338. #endif
  2339. home_dir(axis);
  2340. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2341. #if HOMING_Z_WITH_PROBE
  2342. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2343. #endif
  2344. // Set a flag for Z motor locking
  2345. #if ENABLED(Z_DUAL_ENDSTOPS)
  2346. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2347. #endif
  2348. // Fast move towards endstop until triggered
  2349. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2350. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2351. #endif
  2352. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2353. // When homing Z with probe respect probe clearance
  2354. const float bump = axis_home_dir * (
  2355. #if HOMING_Z_WITH_PROBE
  2356. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2357. #endif
  2358. home_bump_mm(axis)
  2359. );
  2360. // If a second homing move is configured...
  2361. if (bump) {
  2362. // Move away from the endstop by the axis HOME_BUMP_MM
  2363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2364. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2365. #endif
  2366. do_homing_move(axis, -bump);
  2367. // Slow move towards endstop until triggered
  2368. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2369. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2370. #endif
  2371. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2372. }
  2373. #if ENABLED(Z_DUAL_ENDSTOPS)
  2374. if (axis == Z_AXIS) {
  2375. float adj = fabs(z_endstop_adj);
  2376. bool lockZ1;
  2377. if (axis_home_dir > 0) {
  2378. adj = -adj;
  2379. lockZ1 = (z_endstop_adj > 0);
  2380. }
  2381. else
  2382. lockZ1 = (z_endstop_adj < 0);
  2383. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2384. // Move to the adjusted endstop height
  2385. do_homing_move(axis, adj);
  2386. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2387. stepper.set_homing_flag(false);
  2388. } // Z_AXIS
  2389. #endif
  2390. #if IS_SCARA
  2391. set_axis_is_at_home(axis);
  2392. SYNC_PLAN_POSITION_KINEMATIC();
  2393. #elif ENABLED(DELTA)
  2394. // Delta has already moved all three towers up in G28
  2395. // so here it re-homes each tower in turn.
  2396. // Delta homing treats the axes as normal linear axes.
  2397. // retrace by the amount specified in endstop_adj
  2398. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2399. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2400. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2401. #endif
  2402. do_homing_move(axis, endstop_adj[axis]);
  2403. }
  2404. #else
  2405. // For cartesian/core machines,
  2406. // set the axis to its home position
  2407. set_axis_is_at_home(axis);
  2408. sync_plan_position();
  2409. destination[axis] = current_position[axis];
  2410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2411. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2412. #endif
  2413. #endif
  2414. // Put away the Z probe
  2415. #if HOMING_Z_WITH_PROBE
  2416. if (axis == Z_AXIS && STOW_PROBE()) return;
  2417. #endif
  2418. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2419. if (DEBUGGING(LEVELING)) {
  2420. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2421. SERIAL_CHAR(')');
  2422. SERIAL_EOL;
  2423. }
  2424. #endif
  2425. } // homeaxis()
  2426. #if ENABLED(FWRETRACT)
  2427. void retract(const bool retracting, const bool swapping = false) {
  2428. static float hop_height;
  2429. if (retracting == retracted[active_extruder]) return;
  2430. const float old_feedrate_mm_s = feedrate_mm_s;
  2431. set_destination_to_current();
  2432. if (retracting) {
  2433. feedrate_mm_s = retract_feedrate_mm_s;
  2434. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2435. sync_plan_position_e();
  2436. prepare_move_to_destination();
  2437. if (retract_zlift > 0.01) {
  2438. hop_height = current_position[Z_AXIS];
  2439. // Pretend current position is lower
  2440. current_position[Z_AXIS] -= retract_zlift;
  2441. SYNC_PLAN_POSITION_KINEMATIC();
  2442. // Raise up to the old current_position
  2443. prepare_move_to_destination();
  2444. }
  2445. }
  2446. else {
  2447. // If the height hasn't been altered, undo the Z hop
  2448. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2449. // Pretend current position is higher. Z will lower on the next move
  2450. current_position[Z_AXIS] += retract_zlift;
  2451. SYNC_PLAN_POSITION_KINEMATIC();
  2452. }
  2453. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2454. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2455. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2456. sync_plan_position_e();
  2457. // Lower Z and recover E
  2458. prepare_move_to_destination();
  2459. }
  2460. feedrate_mm_s = old_feedrate_mm_s;
  2461. retracted[active_extruder] = retracting;
  2462. } // retract()
  2463. #endif // FWRETRACT
  2464. #if ENABLED(MIXING_EXTRUDER)
  2465. void normalize_mix() {
  2466. float mix_total = 0.0;
  2467. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2468. // Scale all values if they don't add up to ~1.0
  2469. if (!NEAR(mix_total, 1.0)) {
  2470. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2471. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2472. }
  2473. }
  2474. #if ENABLED(DIRECT_MIXING_IN_G1)
  2475. // Get mixing parameters from the GCode
  2476. // The total "must" be 1.0 (but it will be normalized)
  2477. // If no mix factors are given, the old mix is preserved
  2478. void gcode_get_mix() {
  2479. const char* mixing_codes = "ABCDHI";
  2480. byte mix_bits = 0;
  2481. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2482. if (code_seen(mixing_codes[i])) {
  2483. SBI(mix_bits, i);
  2484. float v = code_value_float();
  2485. NOLESS(v, 0.0);
  2486. mixing_factor[i] = RECIPROCAL(v);
  2487. }
  2488. }
  2489. // If any mixing factors were included, clear the rest
  2490. // If none were included, preserve the last mix
  2491. if (mix_bits) {
  2492. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2493. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2494. normalize_mix();
  2495. }
  2496. }
  2497. #endif
  2498. #endif
  2499. /**
  2500. * ***************************************************************************
  2501. * ***************************** G-CODE HANDLING *****************************
  2502. * ***************************************************************************
  2503. */
  2504. /**
  2505. * Set XYZE destination and feedrate from the current GCode command
  2506. *
  2507. * - Set destination from included axis codes
  2508. * - Set to current for missing axis codes
  2509. * - Set the feedrate, if included
  2510. */
  2511. void gcode_get_destination() {
  2512. LOOP_XYZE(i) {
  2513. if (code_seen(axis_codes[i]))
  2514. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2515. else
  2516. destination[i] = current_position[i];
  2517. }
  2518. if (code_seen('F') && code_value_linear_units() > 0.0)
  2519. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2520. #if ENABLED(PRINTCOUNTER)
  2521. if (!DEBUGGING(DRYRUN))
  2522. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2523. #endif
  2524. // Get ABCDHI mixing factors
  2525. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2526. gcode_get_mix();
  2527. #endif
  2528. }
  2529. void unknown_command_error() {
  2530. SERIAL_ECHO_START;
  2531. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2532. SERIAL_CHAR('"');
  2533. SERIAL_EOL;
  2534. }
  2535. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2536. /**
  2537. * Output a "busy" message at regular intervals
  2538. * while the machine is not accepting commands.
  2539. */
  2540. void host_keepalive() {
  2541. const millis_t ms = millis();
  2542. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2543. if (PENDING(ms, next_busy_signal_ms)) return;
  2544. switch (busy_state) {
  2545. case IN_HANDLER:
  2546. case IN_PROCESS:
  2547. SERIAL_ECHO_START;
  2548. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2549. break;
  2550. case PAUSED_FOR_USER:
  2551. SERIAL_ECHO_START;
  2552. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2553. break;
  2554. case PAUSED_FOR_INPUT:
  2555. SERIAL_ECHO_START;
  2556. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2557. break;
  2558. default:
  2559. break;
  2560. }
  2561. }
  2562. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2563. }
  2564. #endif //HOST_KEEPALIVE_FEATURE
  2565. bool position_is_reachable(float target[XYZ]
  2566. #if HAS_BED_PROBE
  2567. , bool by_probe=false
  2568. #endif
  2569. ) {
  2570. float dx = RAW_X_POSITION(target[X_AXIS]),
  2571. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2572. #if HAS_BED_PROBE
  2573. if (by_probe) {
  2574. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2575. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2576. }
  2577. #endif
  2578. #if IS_SCARA
  2579. #if MIDDLE_DEAD_ZONE_R > 0
  2580. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2581. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2582. #else
  2583. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2584. #endif
  2585. #elif ENABLED(DELTA)
  2586. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2587. #else
  2588. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2589. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2590. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2591. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2592. #endif
  2593. }
  2594. /**************************************************
  2595. ***************** GCode Handlers *****************
  2596. **************************************************/
  2597. /**
  2598. * G0, G1: Coordinated movement of X Y Z E axes
  2599. */
  2600. inline void gcode_G0_G1(
  2601. #if IS_SCARA
  2602. bool fast_move=false
  2603. #endif
  2604. ) {
  2605. if (IsRunning()) {
  2606. gcode_get_destination(); // For X Y Z E F
  2607. #if ENABLED(FWRETRACT)
  2608. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2609. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2610. // Is this move an attempt to retract or recover?
  2611. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2612. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2613. sync_plan_position_e(); // AND from the planner
  2614. retract(!retracted[active_extruder]);
  2615. return;
  2616. }
  2617. }
  2618. #endif //FWRETRACT
  2619. #if IS_SCARA
  2620. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2621. #else
  2622. prepare_move_to_destination();
  2623. #endif
  2624. }
  2625. }
  2626. /**
  2627. * G2: Clockwise Arc
  2628. * G3: Counterclockwise Arc
  2629. *
  2630. * This command has two forms: IJ-form and R-form.
  2631. *
  2632. * - I specifies an X offset. J specifies a Y offset.
  2633. * At least one of the IJ parameters is required.
  2634. * X and Y can be omitted to do a complete circle.
  2635. * The given XY is not error-checked. The arc ends
  2636. * based on the angle of the destination.
  2637. * Mixing I or J with R will throw an error.
  2638. *
  2639. * - R specifies the radius. X or Y is required.
  2640. * Omitting both X and Y will throw an error.
  2641. * X or Y must differ from the current XY.
  2642. * Mixing R with I or J will throw an error.
  2643. *
  2644. * Examples:
  2645. *
  2646. * G2 I10 ; CW circle centered at X+10
  2647. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2648. */
  2649. #if ENABLED(ARC_SUPPORT)
  2650. inline void gcode_G2_G3(bool clockwise) {
  2651. if (IsRunning()) {
  2652. #if ENABLED(SF_ARC_FIX)
  2653. const bool relative_mode_backup = relative_mode;
  2654. relative_mode = true;
  2655. #endif
  2656. gcode_get_destination();
  2657. #if ENABLED(SF_ARC_FIX)
  2658. relative_mode = relative_mode_backup;
  2659. #endif
  2660. float arc_offset[2] = { 0.0, 0.0 };
  2661. if (code_seen('R')) {
  2662. const float r = code_value_axis_units(X_AXIS),
  2663. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2664. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2665. if (r && (x2 != x1 || y2 != y1)) {
  2666. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2667. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2668. d = HYPOT(dx, dy), // Linear distance between the points
  2669. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2670. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2671. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2672. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2673. arc_offset[X_AXIS] = cx - x1;
  2674. arc_offset[Y_AXIS] = cy - y1;
  2675. }
  2676. }
  2677. else {
  2678. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2679. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2680. }
  2681. if (arc_offset[0] || arc_offset[1]) {
  2682. // Send an arc to the planner
  2683. plan_arc(destination, arc_offset, clockwise);
  2684. refresh_cmd_timeout();
  2685. }
  2686. else {
  2687. // Bad arguments
  2688. SERIAL_ERROR_START;
  2689. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2690. }
  2691. }
  2692. }
  2693. #endif
  2694. /**
  2695. * G4: Dwell S<seconds> or P<milliseconds>
  2696. */
  2697. inline void gcode_G4() {
  2698. millis_t dwell_ms = 0;
  2699. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2700. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2701. stepper.synchronize();
  2702. refresh_cmd_timeout();
  2703. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2704. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2705. while (PENDING(millis(), dwell_ms)) idle();
  2706. }
  2707. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2708. /**
  2709. * Parameters interpreted according to:
  2710. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2711. * However I, J omission is not supported at this point; all
  2712. * parameters can be omitted and default to zero.
  2713. */
  2714. /**
  2715. * G5: Cubic B-spline
  2716. */
  2717. inline void gcode_G5() {
  2718. if (IsRunning()) {
  2719. gcode_get_destination();
  2720. const float offset[] = {
  2721. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2722. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2723. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2724. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2725. };
  2726. plan_cubic_move(offset);
  2727. }
  2728. }
  2729. #endif // BEZIER_CURVE_SUPPORT
  2730. #if ENABLED(FWRETRACT)
  2731. /**
  2732. * G10 - Retract filament according to settings of M207
  2733. * G11 - Recover filament according to settings of M208
  2734. */
  2735. inline void gcode_G10_G11(bool doRetract=false) {
  2736. #if EXTRUDERS > 1
  2737. if (doRetract) {
  2738. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2739. }
  2740. #endif
  2741. retract(doRetract
  2742. #if EXTRUDERS > 1
  2743. , retracted_swap[active_extruder]
  2744. #endif
  2745. );
  2746. }
  2747. #endif //FWRETRACT
  2748. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2749. /**
  2750. * G12: Clean the nozzle
  2751. */
  2752. inline void gcode_G12() {
  2753. // Don't allow nozzle cleaning without homing first
  2754. if (axis_unhomed_error(true, true, true)) return;
  2755. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2756. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2757. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2758. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2759. Nozzle::clean(pattern, strokes, radius, objects);
  2760. }
  2761. #endif
  2762. #if ENABLED(INCH_MODE_SUPPORT)
  2763. /**
  2764. * G20: Set input mode to inches
  2765. */
  2766. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2767. /**
  2768. * G21: Set input mode to millimeters
  2769. */
  2770. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2771. #endif
  2772. #if ENABLED(NOZZLE_PARK_FEATURE)
  2773. /**
  2774. * G27: Park the nozzle
  2775. */
  2776. inline void gcode_G27() {
  2777. // Don't allow nozzle parking without homing first
  2778. if (axis_unhomed_error(true, true, true)) return;
  2779. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2780. }
  2781. #endif // NOZZLE_PARK_FEATURE
  2782. #if ENABLED(QUICK_HOME)
  2783. static void quick_home_xy() {
  2784. // Pretend the current position is 0,0
  2785. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2786. sync_plan_position();
  2787. const int x_axis_home_dir =
  2788. #if ENABLED(DUAL_X_CARRIAGE)
  2789. x_home_dir(active_extruder)
  2790. #else
  2791. home_dir(X_AXIS)
  2792. #endif
  2793. ;
  2794. const float mlx = max_length(X_AXIS),
  2795. mly = max_length(Y_AXIS),
  2796. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2797. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2798. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2799. endstops.hit_on_purpose(); // clear endstop hit flags
  2800. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2801. }
  2802. #endif // QUICK_HOME
  2803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2804. void log_machine_info() {
  2805. SERIAL_ECHOPGM("Machine Type: ");
  2806. #if ENABLED(DELTA)
  2807. SERIAL_ECHOLNPGM("Delta");
  2808. #elif IS_SCARA
  2809. SERIAL_ECHOLNPGM("SCARA");
  2810. #elif IS_CORE
  2811. SERIAL_ECHOLNPGM("Core");
  2812. #else
  2813. SERIAL_ECHOLNPGM("Cartesian");
  2814. #endif
  2815. SERIAL_ECHOPGM("Probe: ");
  2816. #if ENABLED(PROBE_MANUALLY)
  2817. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2818. #elif ENABLED(FIX_MOUNTED_PROBE)
  2819. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2820. #elif ENABLED(BLTOUCH)
  2821. SERIAL_ECHOLNPGM("BLTOUCH");
  2822. #elif HAS_Z_SERVO_ENDSTOP
  2823. SERIAL_ECHOLNPGM("SERVO PROBE");
  2824. #elif ENABLED(Z_PROBE_SLED)
  2825. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2826. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2827. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2828. #else
  2829. SERIAL_ECHOLNPGM("NONE");
  2830. #endif
  2831. #if HAS_BED_PROBE
  2832. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2833. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2834. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2835. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2836. SERIAL_ECHOPGM(" (Right");
  2837. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2838. SERIAL_ECHOPGM(" (Left");
  2839. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2840. SERIAL_ECHOPGM(" (Middle");
  2841. #else
  2842. SERIAL_ECHOPGM(" (Aligned With");
  2843. #endif
  2844. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2845. SERIAL_ECHOPGM("-Back");
  2846. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2847. SERIAL_ECHOPGM("-Front");
  2848. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2849. SERIAL_ECHOPGM("-Center");
  2850. #endif
  2851. if (zprobe_zoffset < 0)
  2852. SERIAL_ECHOPGM(" & Below");
  2853. else if (zprobe_zoffset > 0)
  2854. SERIAL_ECHOPGM(" & Above");
  2855. else
  2856. SERIAL_ECHOPGM(" & Same Z as");
  2857. SERIAL_ECHOLNPGM(" Nozzle)");
  2858. #endif
  2859. #if HAS_ABL
  2860. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2861. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2862. SERIAL_ECHOPGM("LINEAR");
  2863. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2864. SERIAL_ECHOPGM("BILINEAR");
  2865. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2866. SERIAL_ECHOPGM("3POINT");
  2867. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2868. SERIAL_ECHOPGM("UBL");
  2869. #endif
  2870. if (planner.abl_enabled) {
  2871. SERIAL_ECHOLNPGM(" (enabled)");
  2872. #if ABL_PLANAR
  2873. float diff[XYZ] = {
  2874. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2875. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2876. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2877. };
  2878. SERIAL_ECHOPGM("ABL Adjustment X");
  2879. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2880. SERIAL_ECHO(diff[X_AXIS]);
  2881. SERIAL_ECHOPGM(" Y");
  2882. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2883. SERIAL_ECHO(diff[Y_AXIS]);
  2884. SERIAL_ECHOPGM(" Z");
  2885. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2886. SERIAL_ECHO(diff[Z_AXIS]);
  2887. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2888. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  2889. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2890. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2891. #endif
  2892. }
  2893. else
  2894. SERIAL_ECHOLNPGM(" (disabled)");
  2895. SERIAL_EOL;
  2896. #elif ENABLED(MESH_BED_LEVELING)
  2897. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2898. if (mbl.active()) {
  2899. float lz = current_position[Z_AXIS];
  2900. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  2901. SERIAL_ECHOLNPGM(" (enabled)");
  2902. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  2903. }
  2904. else
  2905. SERIAL_ECHOPGM(" (disabled)");
  2906. SERIAL_EOL;
  2907. #endif // MESH_BED_LEVELING
  2908. }
  2909. #endif // DEBUG_LEVELING_FEATURE
  2910. #if ENABLED(DELTA)
  2911. /**
  2912. * A delta can only safely home all axes at the same time
  2913. * This is like quick_home_xy() but for 3 towers.
  2914. */
  2915. inline void home_delta() {
  2916. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2917. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2918. #endif
  2919. // Init the current position of all carriages to 0,0,0
  2920. ZERO(current_position);
  2921. sync_plan_position();
  2922. // Move all carriages together linearly until an endstop is hit.
  2923. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2924. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2925. line_to_current_position();
  2926. stepper.synchronize();
  2927. endstops.hit_on_purpose(); // clear endstop hit flags
  2928. // At least one carriage has reached the top.
  2929. // Now re-home each carriage separately.
  2930. HOMEAXIS(A);
  2931. HOMEAXIS(B);
  2932. HOMEAXIS(C);
  2933. // Set all carriages to their home positions
  2934. // Do this here all at once for Delta, because
  2935. // XYZ isn't ABC. Applying this per-tower would
  2936. // give the impression that they are the same.
  2937. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2938. SYNC_PLAN_POSITION_KINEMATIC();
  2939. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2940. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2941. #endif
  2942. }
  2943. #endif // DELTA
  2944. #if ENABLED(Z_SAFE_HOMING)
  2945. inline void home_z_safely() {
  2946. // Disallow Z homing if X or Y are unknown
  2947. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2948. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2949. SERIAL_ECHO_START;
  2950. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2951. return;
  2952. }
  2953. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2954. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2955. #endif
  2956. SYNC_PLAN_POSITION_KINEMATIC();
  2957. /**
  2958. * Move the Z probe (or just the nozzle) to the safe homing point
  2959. */
  2960. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2961. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2962. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2963. if (position_is_reachable(
  2964. destination
  2965. #if HOMING_Z_WITH_PROBE
  2966. , true
  2967. #endif
  2968. )
  2969. ) {
  2970. #if HOMING_Z_WITH_PROBE
  2971. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2972. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2973. #endif
  2974. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2975. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2976. #endif
  2977. // This causes the carriage on Dual X to unpark
  2978. #if ENABLED(DUAL_X_CARRIAGE)
  2979. active_extruder_parked = false;
  2980. #endif
  2981. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2982. HOMEAXIS(Z);
  2983. }
  2984. else {
  2985. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2986. SERIAL_ECHO_START;
  2987. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2988. }
  2989. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2990. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2991. #endif
  2992. }
  2993. #endif // Z_SAFE_HOMING
  2994. #if ENABLED(PROBE_MANUALLY)
  2995. bool g29_in_progress = false;
  2996. #else
  2997. constexpr bool g29_in_progress = false;
  2998. #endif
  2999. /**
  3000. * G28: Home all axes according to settings
  3001. *
  3002. * Parameters
  3003. *
  3004. * None Home to all axes with no parameters.
  3005. * With QUICK_HOME enabled XY will home together, then Z.
  3006. *
  3007. * Cartesian parameters
  3008. *
  3009. * X Home to the X endstop
  3010. * Y Home to the Y endstop
  3011. * Z Home to the Z endstop
  3012. *
  3013. */
  3014. inline void gcode_G28() {
  3015. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3016. if (DEBUGGING(LEVELING)) {
  3017. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3018. log_machine_info();
  3019. }
  3020. #endif
  3021. // Wait for planner moves to finish!
  3022. stepper.synchronize();
  3023. // Cancel the active G29 session
  3024. #if ENABLED(PROBE_MANUALLY)
  3025. g29_in_progress = false;
  3026. #endif
  3027. // Disable the leveling matrix before homing
  3028. #if PLANNER_LEVELING
  3029. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3030. const bool bed_leveling_state_at_entry = ubl.state.active;
  3031. #endif
  3032. set_bed_leveling_enabled(false);
  3033. #endif
  3034. // Always home with tool 0 active
  3035. #if HOTENDS > 1
  3036. const uint8_t old_tool_index = active_extruder;
  3037. tool_change(0, 0, true);
  3038. #endif
  3039. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3040. extruder_duplication_enabled = false;
  3041. #endif
  3042. setup_for_endstop_or_probe_move();
  3043. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3044. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3045. #endif
  3046. endstops.enable(true); // Enable endstops for next homing move
  3047. #if ENABLED(DELTA)
  3048. home_delta();
  3049. #else // NOT DELTA
  3050. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3051. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3052. set_destination_to_current();
  3053. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3054. if (home_all_axis || homeZ) {
  3055. HOMEAXIS(Z);
  3056. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3057. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3058. #endif
  3059. }
  3060. #else
  3061. if (home_all_axis || homeX || homeY) {
  3062. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3063. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3064. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3065. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3066. if (DEBUGGING(LEVELING))
  3067. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3068. #endif
  3069. do_blocking_move_to_z(destination[Z_AXIS]);
  3070. }
  3071. }
  3072. #endif
  3073. #if ENABLED(QUICK_HOME)
  3074. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3075. #endif
  3076. #if ENABLED(HOME_Y_BEFORE_X)
  3077. // Home Y
  3078. if (home_all_axis || homeY) {
  3079. HOMEAXIS(Y);
  3080. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3081. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3082. #endif
  3083. }
  3084. #endif
  3085. // Home X
  3086. if (home_all_axis || homeX) {
  3087. #if ENABLED(DUAL_X_CARRIAGE)
  3088. // Always home the 2nd (right) extruder first
  3089. active_extruder = 1;
  3090. HOMEAXIS(X);
  3091. // Remember this extruder's position for later tool change
  3092. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3093. // Home the 1st (left) extruder
  3094. active_extruder = 0;
  3095. HOMEAXIS(X);
  3096. // Consider the active extruder to be parked
  3097. COPY(raised_parked_position, current_position);
  3098. delayed_move_time = 0;
  3099. active_extruder_parked = true;
  3100. #else
  3101. HOMEAXIS(X);
  3102. #endif
  3103. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3104. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3105. #endif
  3106. }
  3107. #if DISABLED(HOME_Y_BEFORE_X)
  3108. // Home Y
  3109. if (home_all_axis || homeY) {
  3110. HOMEAXIS(Y);
  3111. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3112. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3113. #endif
  3114. }
  3115. #endif
  3116. // Home Z last if homing towards the bed
  3117. #if Z_HOME_DIR < 0
  3118. if (home_all_axis || homeZ) {
  3119. #if ENABLED(Z_SAFE_HOMING)
  3120. home_z_safely();
  3121. #else
  3122. HOMEAXIS(Z);
  3123. #endif
  3124. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3125. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3126. #endif
  3127. } // home_all_axis || homeZ
  3128. #endif // Z_HOME_DIR < 0
  3129. SYNC_PLAN_POSITION_KINEMATIC();
  3130. #endif // !DELTA (gcode_G28)
  3131. endstops.not_homing();
  3132. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3133. // move to a height where we can use the full xy-area
  3134. do_blocking_move_to_z(delta_clip_start_height);
  3135. #endif
  3136. // Enable mesh leveling again
  3137. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3138. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3139. #endif
  3140. #if ENABLED(MESH_BED_LEVELING)
  3141. if (mbl.reactivate()) {
  3142. set_bed_leveling_enabled(true);
  3143. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3144. #if ENABLED(MESH_G28_REST_ORIGIN)
  3145. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3146. set_destination_to_current();
  3147. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3148. stepper.synchronize();
  3149. #endif
  3150. }
  3151. }
  3152. #endif
  3153. clean_up_after_endstop_or_probe_move();
  3154. // Restore the active tool after homing
  3155. #if HOTENDS > 1
  3156. tool_change(old_tool_index, 0, true);
  3157. #endif
  3158. report_current_position();
  3159. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3160. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3161. #endif
  3162. }
  3163. #if HAS_PROBING_PROCEDURE
  3164. void out_of_range_error(const char* p_edge) {
  3165. SERIAL_PROTOCOLPGM("?Probe ");
  3166. serialprintPGM(p_edge);
  3167. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3168. }
  3169. #endif
  3170. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3171. inline void _manual_goto_xy(const float &x, const float &y) {
  3172. const float old_feedrate_mm_s = feedrate_mm_s;
  3173. #if MANUAL_PROBE_HEIGHT > 0
  3174. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3175. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3176. line_to_current_position();
  3177. #endif
  3178. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3179. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3180. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3181. line_to_current_position();
  3182. #if MANUAL_PROBE_HEIGHT > 0
  3183. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3184. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3185. line_to_current_position();
  3186. #endif
  3187. feedrate_mm_s = old_feedrate_mm_s;
  3188. stepper.synchronize();
  3189. }
  3190. #endif
  3191. #if ENABLED(MESH_BED_LEVELING)
  3192. // Save 130 bytes with non-duplication of PSTR
  3193. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3194. void mbl_mesh_report() {
  3195. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  3196. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3197. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3198. for (uint8_t py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3199. for (uint8_t px = 0; px < MESH_NUM_X_POINTS; px++) {
  3200. SERIAL_PROTOCOLPGM(" ");
  3201. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3202. }
  3203. SERIAL_EOL;
  3204. }
  3205. }
  3206. /**
  3207. * G29: Mesh-based Z probe, probes a grid and produces a
  3208. * mesh to compensate for variable bed height
  3209. *
  3210. * Parameters With MESH_BED_LEVELING:
  3211. *
  3212. * S0 Produce a mesh report
  3213. * S1 Start probing mesh points
  3214. * S2 Probe the next mesh point
  3215. * S3 Xn Yn Zn.nn Manually modify a single point
  3216. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3217. * S5 Reset and disable mesh
  3218. *
  3219. * The S0 report the points as below
  3220. *
  3221. * +----> X-axis 1-n
  3222. * |
  3223. * |
  3224. * v Y-axis 1-n
  3225. *
  3226. */
  3227. inline void gcode_G29() {
  3228. static int mbl_probe_index = -1;
  3229. #if HAS_SOFTWARE_ENDSTOPS
  3230. static bool enable_soft_endstops;
  3231. #endif
  3232. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3233. if (!WITHIN(state, 0, 5)) {
  3234. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3235. return;
  3236. }
  3237. int8_t px, py;
  3238. switch (state) {
  3239. case MeshReport:
  3240. if (mbl.has_mesh()) {
  3241. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3242. mbl_mesh_report();
  3243. }
  3244. else
  3245. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3246. break;
  3247. case MeshStart:
  3248. mbl.reset();
  3249. mbl_probe_index = 0;
  3250. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3251. break;
  3252. case MeshNext:
  3253. if (mbl_probe_index < 0) {
  3254. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3255. return;
  3256. }
  3257. // For each G29 S2...
  3258. if (mbl_probe_index == 0) {
  3259. #if HAS_SOFTWARE_ENDSTOPS
  3260. // For the initial G29 S2 save software endstop state
  3261. enable_soft_endstops = soft_endstops_enabled;
  3262. #endif
  3263. }
  3264. else {
  3265. // For G29 S2 after adjusting Z.
  3266. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3267. #if HAS_SOFTWARE_ENDSTOPS
  3268. soft_endstops_enabled = enable_soft_endstops;
  3269. #endif
  3270. }
  3271. // If there's another point to sample, move there with optional lift.
  3272. if (mbl_probe_index < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3273. mbl.zigzag(mbl_probe_index, px, py);
  3274. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3275. #if HAS_SOFTWARE_ENDSTOPS
  3276. // Disable software endstops to allow manual adjustment
  3277. // If G29 is not completed, they will not be re-enabled
  3278. soft_endstops_enabled = false;
  3279. #endif
  3280. mbl_probe_index++;
  3281. }
  3282. else {
  3283. // One last "return to the bed" (as originally coded) at completion
  3284. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3285. line_to_current_position();
  3286. stepper.synchronize();
  3287. // After recording the last point, activate the mbl and home
  3288. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3289. mbl_probe_index = -1;
  3290. mbl.set_has_mesh(true);
  3291. mbl.set_reactivate(true);
  3292. enqueue_and_echo_commands_P(PSTR("G28"));
  3293. BUZZ(100, 659);
  3294. BUZZ(100, 698);
  3295. }
  3296. break;
  3297. case MeshSet:
  3298. if (code_seen('X')) {
  3299. px = code_value_int() - 1;
  3300. if (!WITHIN(px, 0, MESH_NUM_X_POINTS - 1)) {
  3301. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3302. return;
  3303. }
  3304. }
  3305. else {
  3306. SERIAL_CHAR('X'); say_not_entered();
  3307. return;
  3308. }
  3309. if (code_seen('Y')) {
  3310. py = code_value_int() - 1;
  3311. if (!WITHIN(py, 0, MESH_NUM_Y_POINTS - 1)) {
  3312. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3313. return;
  3314. }
  3315. }
  3316. else {
  3317. SERIAL_CHAR('Y'); say_not_entered();
  3318. return;
  3319. }
  3320. if (code_seen('Z')) {
  3321. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3322. }
  3323. else {
  3324. SERIAL_CHAR('Z'); say_not_entered();
  3325. return;
  3326. }
  3327. break;
  3328. case MeshSetZOffset:
  3329. if (code_seen('Z')) {
  3330. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3331. }
  3332. else {
  3333. SERIAL_CHAR('Z'); say_not_entered();
  3334. return;
  3335. }
  3336. break;
  3337. case MeshReset:
  3338. reset_bed_level();
  3339. break;
  3340. } // switch(state)
  3341. report_current_position();
  3342. }
  3343. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3344. #if ABL_GRID
  3345. #if ENABLED(PROBE_Y_FIRST)
  3346. #define PR_OUTER_VAR xCount
  3347. #define PR_OUTER_END abl_grid_points_x
  3348. #define PR_INNER_VAR yCount
  3349. #define PR_INNER_END abl_grid_points_y
  3350. #else
  3351. #define PR_OUTER_VAR yCount
  3352. #define PR_OUTER_END abl_grid_points_y
  3353. #define PR_INNER_VAR xCount
  3354. #define PR_INNER_END abl_grid_points_x
  3355. #endif
  3356. #endif
  3357. /**
  3358. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3359. * Will fail if the printer has not been homed with G28.
  3360. *
  3361. * Enhanced G29 Auto Bed Leveling Probe Routine
  3362. *
  3363. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3364. * or alter the bed level data. Useful to check the topology
  3365. * after a first run of G29.
  3366. *
  3367. * J Jettison current bed leveling data
  3368. *
  3369. * V Set the verbose level (0-4). Example: "G29 V3"
  3370. *
  3371. * Parameters With LINEAR leveling only:
  3372. *
  3373. * P Set the size of the grid that will be probed (P x P points).
  3374. * Example: "G29 P4"
  3375. *
  3376. * X Set the X size of the grid that will be probed (X x Y points).
  3377. * Example: "G29 X7 Y5"
  3378. *
  3379. * Y Set the Y size of the grid that will be probed (X x Y points).
  3380. *
  3381. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3382. * This is useful for manual bed leveling and finding flaws in the bed (to
  3383. * assist with part placement).
  3384. * Not supported by non-linear delta printer bed leveling.
  3385. *
  3386. * Parameters With LINEAR and BILINEAR leveling only:
  3387. *
  3388. * S Set the XY travel speed between probe points (in units/min)
  3389. *
  3390. * F Set the Front limit of the probing grid
  3391. * B Set the Back limit of the probing grid
  3392. * L Set the Left limit of the probing grid
  3393. * R Set the Right limit of the probing grid
  3394. *
  3395. * Parameters with BILINEAR leveling only:
  3396. *
  3397. * Z Supply an additional Z probe offset
  3398. *
  3399. * Extra parameters with PROBE_MANUALLY:
  3400. *
  3401. * To do manual probing simply repeat G29 until the procedure is complete.
  3402. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3403. *
  3404. * Q Query leveling and G29 state
  3405. *
  3406. * A Abort current leveling procedure
  3407. *
  3408. * W Write a mesh point. (Ignored during leveling.)
  3409. * X Required X for mesh point
  3410. * Y Required Y for mesh point
  3411. * Z Required Z for mesh point
  3412. *
  3413. * Without PROBE_MANUALLY:
  3414. *
  3415. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3416. * Include "E" to engage/disengage the Z probe for each sample.
  3417. * There's no extra effect if you have a fixed Z probe.
  3418. *
  3419. */
  3420. inline void gcode_G29() {
  3421. // G29 Q is also available if debugging
  3422. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3423. const bool query = code_seen('Q');
  3424. const uint8_t old_debug_flags = marlin_debug_flags;
  3425. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3426. if (DEBUGGING(LEVELING)) {
  3427. DEBUG_POS(">>> gcode_G29", current_position);
  3428. log_machine_info();
  3429. }
  3430. marlin_debug_flags = old_debug_flags;
  3431. #if DISABLED(PROBE_MANUALLY)
  3432. if (query) return;
  3433. #endif
  3434. #endif
  3435. // Don't allow auto-leveling without homing first
  3436. if (axis_unhomed_error(true, true, true)) return;
  3437. // Define local vars 'static' for manual probing, 'auto' otherwise
  3438. #if ENABLED(PROBE_MANUALLY)
  3439. #define ABL_VAR static
  3440. #else
  3441. #define ABL_VAR
  3442. #endif
  3443. ABL_VAR int verbose_level, abl_probe_index;
  3444. ABL_VAR float xProbe, yProbe, measured_z;
  3445. ABL_VAR bool dryrun, abl_should_enable;
  3446. #if HAS_SOFTWARE_ENDSTOPS
  3447. ABL_VAR bool enable_soft_endstops = true;
  3448. #endif
  3449. #if ABL_GRID
  3450. ABL_VAR uint8_t PR_OUTER_VAR;
  3451. ABL_VAR int8_t PR_INNER_VAR;
  3452. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3453. ABL_VAR float xGridSpacing, yGridSpacing;
  3454. #define ABL_GRID_MAX (ABL_GRID_MAX_POINTS_X) * (ABL_GRID_MAX_POINTS_Y)
  3455. #if ABL_PLANAR
  3456. ABL_VAR uint8_t abl_grid_points_x = ABL_GRID_MAX_POINTS_X,
  3457. abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
  3458. ABL_VAR int abl2;
  3459. ABL_VAR bool do_topography_map;
  3460. #else // 3-point
  3461. uint8_t constexpr abl_grid_points_x = ABL_GRID_MAX_POINTS_X,
  3462. abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
  3463. int constexpr abl2 = ABL_GRID_MAX;
  3464. #endif
  3465. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3466. ABL_VAR float zoffset;
  3467. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3468. ABL_VAR int indexIntoAB[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y];
  3469. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3470. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3471. mean;
  3472. #endif
  3473. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3474. // Probe at 3 arbitrary points
  3475. ABL_VAR vector_3 points[3] = {
  3476. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3477. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3478. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3479. };
  3480. #endif // AUTO_BED_LEVELING_3POINT
  3481. /**
  3482. * On the initial G29 fetch command parameters.
  3483. */
  3484. if (!g29_in_progress) {
  3485. abl_probe_index = 0;
  3486. abl_should_enable = planner.abl_enabled;
  3487. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3488. if (code_seen('W')) {
  3489. if (!bilinear_grid_spacing[X_AXIS]) {
  3490. SERIAL_ERROR_START;
  3491. SERIAL_ERRORLNPGM("No bilinear grid");
  3492. return;
  3493. }
  3494. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3495. if (!WITHIN(z, -10, 10)) {
  3496. SERIAL_ERROR_START;
  3497. SERIAL_ERRORLNPGM("Bad Z value");
  3498. return;
  3499. }
  3500. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3501. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3502. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3503. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3504. if (x < 99998 && y < 99998) {
  3505. // Get nearest i / j from x / y
  3506. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3507. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3508. i = constrain(i, 0, ABL_GRID_MAX_POINTS_X - 1);
  3509. j = constrain(j, 0, ABL_GRID_MAX_POINTS_Y - 1);
  3510. }
  3511. if (WITHIN(i, 0, ABL_GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, ABL_GRID_MAX_POINTS_Y)) {
  3512. set_bed_leveling_enabled(false);
  3513. bed_level_grid[i][j] = z;
  3514. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3515. bed_level_virt_interpolate();
  3516. #endif
  3517. set_bed_leveling_enabled(abl_should_enable);
  3518. }
  3519. return;
  3520. } // code_seen('W')
  3521. #endif
  3522. #if PLANNER_LEVELING
  3523. // Jettison bed leveling data
  3524. if (code_seen('J')) {
  3525. reset_bed_level();
  3526. return;
  3527. }
  3528. #endif
  3529. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3530. if (!WITHIN(verbose_level, 0, 4)) {
  3531. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3532. return;
  3533. }
  3534. dryrun = code_seen('D') ? code_value_bool() : false;
  3535. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3536. do_topography_map = verbose_level > 2 || code_seen('T');
  3537. // X and Y specify points in each direction, overriding the default
  3538. // These values may be saved with the completed mesh
  3539. abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_MAX_POINTS_X;
  3540. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_MAX_POINTS_Y;
  3541. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3542. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3543. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3544. return;
  3545. }
  3546. abl2 = abl_grid_points_x * abl_grid_points_y;
  3547. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3548. zoffset = code_seen('Z') ? code_value_axis_units(Z_AXIS) : 0;
  3549. #if HAS_BED_PROBE
  3550. zoffset += zprobe_zoffset;
  3551. #endif
  3552. #endif
  3553. #if ABL_GRID
  3554. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3555. left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3556. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3557. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3558. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3559. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3560. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3561. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3562. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3563. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3564. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3565. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3566. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3567. if (left_out || right_out || front_out || back_out) {
  3568. if (left_out) {
  3569. out_of_range_error(PSTR("(L)eft"));
  3570. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3571. }
  3572. if (right_out) {
  3573. out_of_range_error(PSTR("(R)ight"));
  3574. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3575. }
  3576. if (front_out) {
  3577. out_of_range_error(PSTR("(F)ront"));
  3578. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3579. }
  3580. if (back_out) {
  3581. out_of_range_error(PSTR("(B)ack"));
  3582. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3583. }
  3584. return;
  3585. }
  3586. // probe at the points of a lattice grid
  3587. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3588. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3589. #endif // ABL_GRID
  3590. if (verbose_level > 0) {
  3591. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3592. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3593. }
  3594. stepper.synchronize();
  3595. // Disable auto bed leveling during G29
  3596. planner.abl_enabled = false;
  3597. if (!dryrun) {
  3598. // Re-orient the current position without leveling
  3599. // based on where the steppers are positioned.
  3600. set_current_from_steppers_for_axis(ALL_AXES);
  3601. // Sync the planner to where the steppers stopped
  3602. SYNC_PLAN_POSITION_KINEMATIC();
  3603. }
  3604. setup_for_endstop_or_probe_move();
  3605. //xProbe = yProbe = measured_z = 0;
  3606. #if HAS_BED_PROBE
  3607. // Deploy the probe. Probe will raise if needed.
  3608. if (DEPLOY_PROBE()) {
  3609. planner.abl_enabled = abl_should_enable;
  3610. return;
  3611. }
  3612. #endif
  3613. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3614. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3615. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3616. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3617. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3618. ) {
  3619. if (dryrun) {
  3620. // Before reset bed level, re-enable to correct the position
  3621. planner.abl_enabled = abl_should_enable;
  3622. }
  3623. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3624. reset_bed_level();
  3625. // Initialize a grid with the given dimensions
  3626. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3627. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3628. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3629. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3630. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3631. bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS);
  3632. bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS);
  3633. #endif
  3634. // Can't re-enable (on error) until the new grid is written
  3635. abl_should_enable = false;
  3636. }
  3637. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3638. mean = 0.0;
  3639. #endif // AUTO_BED_LEVELING_LINEAR
  3640. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3641. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3642. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3643. #endif
  3644. // Probe at 3 arbitrary points
  3645. points[0].z = points[1].z = points[2].z = 0;
  3646. #endif // AUTO_BED_LEVELING_3POINT
  3647. } // !g29_in_progress
  3648. #if ENABLED(PROBE_MANUALLY)
  3649. // Abort current G29 procedure, go back to ABLStart
  3650. if (code_seen('A') && g29_in_progress) {
  3651. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3652. #if HAS_SOFTWARE_ENDSTOPS
  3653. soft_endstops_enabled = enable_soft_endstops;
  3654. #endif
  3655. planner.abl_enabled = abl_should_enable;
  3656. g29_in_progress = false;
  3657. }
  3658. // Query G29 status
  3659. if (code_seen('Q')) {
  3660. if (!g29_in_progress)
  3661. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3662. else {
  3663. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3664. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3665. }
  3666. }
  3667. if (code_seen('A') || code_seen('Q')) return;
  3668. // Fall through to probe the first point
  3669. g29_in_progress = true;
  3670. if (abl_probe_index == 0) {
  3671. // For the initial G29 S2 save software endstop state
  3672. #if HAS_SOFTWARE_ENDSTOPS
  3673. enable_soft_endstops = soft_endstops_enabled;
  3674. #endif
  3675. }
  3676. else {
  3677. // For G29 after adjusting Z.
  3678. // Save the previous Z before going to the next point
  3679. measured_z = current_position[Z_AXIS];
  3680. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3681. mean += measured_z;
  3682. eqnBVector[abl_probe_index] = measured_z;
  3683. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3684. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3685. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3686. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3687. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3688. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3689. points[i].z = measured_z;
  3690. #endif
  3691. }
  3692. //
  3693. // If there's another point to sample, move there with optional lift.
  3694. //
  3695. #if ABL_GRID
  3696. // Find a next point to probe
  3697. // On the first G29 this will be the first probe point
  3698. while (abl_probe_index < abl2) {
  3699. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3700. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3701. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3702. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3703. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3704. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3705. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3706. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3707. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3708. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3709. indexIntoAB[xCount][yCount] = abl_probe_index;
  3710. #endif
  3711. float pos[XYZ] = { xProbe, yProbe, 0 };
  3712. if (position_is_reachable(pos)) break;
  3713. ++abl_probe_index;
  3714. }
  3715. // Is there a next point to move to?
  3716. if (abl_probe_index < abl2) {
  3717. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3718. ++abl_probe_index;
  3719. #if HAS_SOFTWARE_ENDSTOPS
  3720. // Disable software endstops to allow manual adjustment
  3721. // If G29 is not completed, they will not be re-enabled
  3722. soft_endstops_enabled = false;
  3723. #endif
  3724. return;
  3725. }
  3726. else {
  3727. // Then leveling is done!
  3728. // G29 finishing code goes here
  3729. // After recording the last point, activate abl
  3730. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3731. g29_in_progress = false;
  3732. // Re-enable software endstops, if needed
  3733. #if HAS_SOFTWARE_ENDSTOPS
  3734. soft_endstops_enabled = enable_soft_endstops;
  3735. #endif
  3736. }
  3737. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3738. // Probe at 3 arbitrary points
  3739. if (abl_probe_index < 3) {
  3740. xProbe = LOGICAL_X_POSITION(points[i].x);
  3741. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3742. ++abl_probe_index;
  3743. #if HAS_SOFTWARE_ENDSTOPS
  3744. // Disable software endstops to allow manual adjustment
  3745. // If G29 is not completed, they will not be re-enabled
  3746. soft_endstops_enabled = false;
  3747. #endif
  3748. return;
  3749. }
  3750. else {
  3751. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3752. g29_in_progress = false;
  3753. // Re-enable software endstops, if needed
  3754. #if HAS_SOFTWARE_ENDSTOPS
  3755. soft_endstops_enabled = enable_soft_endstops;
  3756. #endif
  3757. if (!dryrun) {
  3758. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3759. if (planeNormal.z < 0) {
  3760. planeNormal.x *= -1;
  3761. planeNormal.y *= -1;
  3762. planeNormal.z *= -1;
  3763. }
  3764. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3765. // Can't re-enable (on error) until the new grid is written
  3766. abl_should_enable = false;
  3767. }
  3768. }
  3769. #endif // AUTO_BED_LEVELING_3POINT
  3770. #else // !PROBE_MANUALLY
  3771. bool stow_probe_after_each = code_seen('E');
  3772. #if ABL_GRID
  3773. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3774. // Outer loop is Y with PROBE_Y_FIRST disabled
  3775. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3776. int8_t inStart, inStop, inInc;
  3777. if (zig) { // away from origin
  3778. inStart = 0;
  3779. inStop = PR_INNER_END;
  3780. inInc = 1;
  3781. }
  3782. else { // towards origin
  3783. inStart = PR_INNER_END - 1;
  3784. inStop = -1;
  3785. inInc = -1;
  3786. }
  3787. zig = !zig; // zag
  3788. // Inner loop is Y with PROBE_Y_FIRST enabled
  3789. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3790. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3791. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3792. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3793. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3794. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3795. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3796. #endif
  3797. #if IS_KINEMATIC
  3798. // Avoid probing outside the round or hexagonal area
  3799. float pos[XYZ] = { xProbe, yProbe, 0 };
  3800. if (!position_is_reachable(pos, true)) continue;
  3801. #endif
  3802. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3803. if (measured_z == NAN) {
  3804. planner.abl_enabled = abl_should_enable;
  3805. return;
  3806. }
  3807. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3808. mean += measured_z;
  3809. eqnBVector[abl_probe_index] = measured_z;
  3810. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3811. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3812. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3813. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3814. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3815. #endif
  3816. abl_should_enable = false;
  3817. idle();
  3818. } // inner
  3819. } // outer
  3820. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3821. // Probe at 3 arbitrary points
  3822. for (uint8_t i = 0; i < 3; ++i) {
  3823. // Retain the last probe position
  3824. xProbe = LOGICAL_X_POSITION(points[i].x);
  3825. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3826. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3827. }
  3828. if (measured_z == NAN) {
  3829. planner.abl_enabled = abl_should_enable;
  3830. return;
  3831. }
  3832. if (!dryrun) {
  3833. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3834. if (planeNormal.z < 0) {
  3835. planeNormal.x *= -1;
  3836. planeNormal.y *= -1;
  3837. planeNormal.z *= -1;
  3838. }
  3839. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3840. // Can't re-enable (on error) until the new grid is written
  3841. abl_should_enable = false;
  3842. }
  3843. #endif // AUTO_BED_LEVELING_3POINT
  3844. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3845. if (STOW_PROBE()) {
  3846. planner.abl_enabled = abl_should_enable;
  3847. return;
  3848. }
  3849. #endif // !PROBE_MANUALLY
  3850. //
  3851. // G29 Finishing Code
  3852. //
  3853. // Unless this is a dry run, auto bed leveling will
  3854. // definitely be enabled after this point
  3855. //
  3856. // Restore state after probing
  3857. clean_up_after_endstop_or_probe_move();
  3858. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3859. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3860. #endif
  3861. // Calculate leveling, print reports, correct the position
  3862. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3863. if (!dryrun) extrapolate_unprobed_bed_level();
  3864. print_bilinear_leveling_grid();
  3865. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3866. bed_level_virt_interpolate();
  3867. bed_level_virt_print();
  3868. #endif
  3869. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3870. // For LINEAR leveling calculate matrix, print reports, correct the position
  3871. /**
  3872. * solve the plane equation ax + by + d = z
  3873. * A is the matrix with rows [x y 1] for all the probed points
  3874. * B is the vector of the Z positions
  3875. * the normal vector to the plane is formed by the coefficients of the
  3876. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3877. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3878. */
  3879. float plane_equation_coefficients[3];
  3880. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3881. mean /= abl2;
  3882. if (verbose_level) {
  3883. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3884. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3885. SERIAL_PROTOCOLPGM(" b: ");
  3886. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3887. SERIAL_PROTOCOLPGM(" d: ");
  3888. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3889. SERIAL_EOL;
  3890. if (verbose_level > 2) {
  3891. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3892. SERIAL_PROTOCOL_F(mean, 8);
  3893. SERIAL_EOL;
  3894. }
  3895. }
  3896. // Create the matrix but don't correct the position yet
  3897. if (!dryrun) {
  3898. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3899. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3900. );
  3901. }
  3902. // Show the Topography map if enabled
  3903. if (do_topography_map) {
  3904. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3905. " +--- BACK --+\n"
  3906. " | |\n"
  3907. " L | (+) | R\n"
  3908. " E | | I\n"
  3909. " F | (-) N (+) | G\n"
  3910. " T | | H\n"
  3911. " | (-) | T\n"
  3912. " | |\n"
  3913. " O-- FRONT --+\n"
  3914. " (0,0)");
  3915. float min_diff = 999;
  3916. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3917. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3918. int ind = indexIntoAB[xx][yy];
  3919. float diff = eqnBVector[ind] - mean,
  3920. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3921. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3922. z_tmp = 0;
  3923. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3924. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3925. if (diff >= 0.0)
  3926. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3927. else
  3928. SERIAL_PROTOCOLCHAR(' ');
  3929. SERIAL_PROTOCOL_F(diff, 5);
  3930. } // xx
  3931. SERIAL_EOL;
  3932. } // yy
  3933. SERIAL_EOL;
  3934. if (verbose_level > 3) {
  3935. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3936. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3937. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3938. int ind = indexIntoAB[xx][yy];
  3939. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3940. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3941. z_tmp = 0;
  3942. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3943. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3944. if (diff >= 0.0)
  3945. SERIAL_PROTOCOLPGM(" +");
  3946. // Include + for column alignment
  3947. else
  3948. SERIAL_PROTOCOLCHAR(' ');
  3949. SERIAL_PROTOCOL_F(diff, 5);
  3950. } // xx
  3951. SERIAL_EOL;
  3952. } // yy
  3953. SERIAL_EOL;
  3954. }
  3955. } //do_topography_map
  3956. #endif // AUTO_BED_LEVELING_LINEAR
  3957. #if ABL_PLANAR
  3958. // For LINEAR and 3POINT leveling correct the current position
  3959. if (verbose_level > 0)
  3960. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3961. if (!dryrun) {
  3962. //
  3963. // Correct the current XYZ position based on the tilted plane.
  3964. //
  3965. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3966. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3967. #endif
  3968. float converted[XYZ];
  3969. COPY(converted, current_position);
  3970. planner.abl_enabled = true;
  3971. planner.unapply_leveling(converted); // use conversion machinery
  3972. planner.abl_enabled = false;
  3973. // Use the last measured distance to the bed, if possible
  3974. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3975. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3976. ) {
  3977. float simple_z = current_position[Z_AXIS] - measured_z;
  3978. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3979. if (DEBUGGING(LEVELING)) {
  3980. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3981. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  3982. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  3983. }
  3984. #endif
  3985. converted[Z_AXIS] = simple_z;
  3986. }
  3987. // The rotated XY and corrected Z are now current_position
  3988. COPY(current_position, converted);
  3989. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3990. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3991. #endif
  3992. }
  3993. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3994. if (!dryrun) {
  3995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3996. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3997. #endif
  3998. // Unapply the offset because it is going to be immediately applied
  3999. // and cause compensation movement in Z
  4000. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4001. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4002. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4003. #endif
  4004. }
  4005. #endif // ABL_PLANAR
  4006. #ifdef Z_PROBE_END_SCRIPT
  4007. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4008. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4009. #endif
  4010. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4011. stepper.synchronize();
  4012. #endif
  4013. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4014. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4015. #endif
  4016. report_current_position();
  4017. KEEPALIVE_STATE(IN_HANDLER);
  4018. // Auto Bed Leveling is complete! Enable if possible.
  4019. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4020. if (planner.abl_enabled)
  4021. SYNC_PLAN_POSITION_KINEMATIC();
  4022. }
  4023. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  4024. #if HAS_BED_PROBE
  4025. /**
  4026. * G30: Do a single Z probe at the current XY
  4027. * Usage:
  4028. * G30 <X#> <Y#> <S#>
  4029. * X = Probe X position (default=current probe position)
  4030. * Y = Probe Y position (default=current probe position)
  4031. * S = Stows the probe if 1 (default=1)
  4032. */
  4033. inline void gcode_G30() {
  4034. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4035. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4036. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  4037. if (!position_is_reachable(pos, true)) return;
  4038. bool stow = code_seen('S') ? code_value_bool() : true;
  4039. // Disable leveling so the planner won't mess with us
  4040. #if PLANNER_LEVELING
  4041. set_bed_leveling_enabled(false);
  4042. #endif
  4043. setup_for_endstop_or_probe_move();
  4044. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  4045. SERIAL_PROTOCOLPGM("Bed X: ");
  4046. SERIAL_PROTOCOL(FIXFLOAT(X_probe_location));
  4047. SERIAL_PROTOCOLPGM(" Y: ");
  4048. SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location));
  4049. SERIAL_PROTOCOLPGM(" Z: ");
  4050. SERIAL_PROTOCOLLN(FIXFLOAT(measured_z));
  4051. clean_up_after_endstop_or_probe_move();
  4052. report_current_position();
  4053. }
  4054. #if ENABLED(Z_PROBE_SLED)
  4055. /**
  4056. * G31: Deploy the Z probe
  4057. */
  4058. inline void gcode_G31() { DEPLOY_PROBE(); }
  4059. /**
  4060. * G32: Stow the Z probe
  4061. */
  4062. inline void gcode_G32() { STOW_PROBE(); }
  4063. #endif // Z_PROBE_SLED
  4064. #endif // HAS_BED_PROBE
  4065. #if ENABLED(G38_PROBE_TARGET)
  4066. static bool G38_run_probe() {
  4067. bool G38_pass_fail = false;
  4068. // Get direction of move and retract
  4069. float retract_mm[XYZ];
  4070. LOOP_XYZ(i) {
  4071. float dist = destination[i] - current_position[i];
  4072. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4073. }
  4074. stepper.synchronize(); // wait until the machine is idle
  4075. // Move until destination reached or target hit
  4076. endstops.enable(true);
  4077. G38_move = true;
  4078. G38_endstop_hit = false;
  4079. prepare_move_to_destination();
  4080. stepper.synchronize();
  4081. G38_move = false;
  4082. endstops.hit_on_purpose();
  4083. set_current_from_steppers_for_axis(ALL_AXES);
  4084. SYNC_PLAN_POSITION_KINEMATIC();
  4085. // Only do remaining moves if target was hit
  4086. if (G38_endstop_hit) {
  4087. G38_pass_fail = true;
  4088. // Move away by the retract distance
  4089. set_destination_to_current();
  4090. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4091. endstops.enable(false);
  4092. prepare_move_to_destination();
  4093. stepper.synchronize();
  4094. feedrate_mm_s /= 4;
  4095. // Bump the target more slowly
  4096. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4097. endstops.enable(true);
  4098. G38_move = true;
  4099. prepare_move_to_destination();
  4100. stepper.synchronize();
  4101. G38_move = false;
  4102. set_current_from_steppers_for_axis(ALL_AXES);
  4103. SYNC_PLAN_POSITION_KINEMATIC();
  4104. }
  4105. endstops.hit_on_purpose();
  4106. endstops.not_homing();
  4107. return G38_pass_fail;
  4108. }
  4109. /**
  4110. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4111. * G38.3 - probe toward workpiece, stop on contact
  4112. *
  4113. * Like G28 except uses Z min endstop for all axes
  4114. */
  4115. inline void gcode_G38(bool is_38_2) {
  4116. // Get X Y Z E F
  4117. gcode_get_destination();
  4118. setup_for_endstop_or_probe_move();
  4119. // If any axis has enough movement, do the move
  4120. LOOP_XYZ(i)
  4121. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4122. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4123. // If G38.2 fails throw an error
  4124. if (!G38_run_probe() && is_38_2) {
  4125. SERIAL_ERROR_START;
  4126. SERIAL_ERRORLNPGM("Failed to reach target");
  4127. }
  4128. break;
  4129. }
  4130. clean_up_after_endstop_or_probe_move();
  4131. }
  4132. #endif // G38_PROBE_TARGET
  4133. /**
  4134. * G92: Set current position to given X Y Z E
  4135. */
  4136. inline void gcode_G92() {
  4137. bool didXYZ = false,
  4138. didE = code_seen('E');
  4139. if (!didE) stepper.synchronize();
  4140. LOOP_XYZE(i) {
  4141. if (code_seen(axis_codes[i])) {
  4142. #if IS_SCARA
  4143. current_position[i] = code_value_axis_units(i);
  4144. if (i != E_AXIS) didXYZ = true;
  4145. #else
  4146. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4147. float p = current_position[i];
  4148. #endif
  4149. float v = code_value_axis_units(i);
  4150. current_position[i] = v;
  4151. if (i != E_AXIS) {
  4152. didXYZ = true;
  4153. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4154. position_shift[i] += v - p; // Offset the coordinate space
  4155. update_software_endstops((AxisEnum)i);
  4156. #endif
  4157. }
  4158. #endif
  4159. }
  4160. }
  4161. if (didXYZ)
  4162. SYNC_PLAN_POSITION_KINEMATIC();
  4163. else if (didE)
  4164. sync_plan_position_e();
  4165. report_current_position();
  4166. }
  4167. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4168. /**
  4169. * M0: Unconditional stop - Wait for user button press on LCD
  4170. * M1: Conditional stop - Wait for user button press on LCD
  4171. */
  4172. inline void gcode_M0_M1() {
  4173. char* args = current_command_args;
  4174. millis_t codenum = 0;
  4175. bool hasP = false, hasS = false;
  4176. if (code_seen('P')) {
  4177. codenum = code_value_millis(); // milliseconds to wait
  4178. hasP = codenum > 0;
  4179. }
  4180. if (code_seen('S')) {
  4181. codenum = code_value_millis_from_seconds(); // seconds to wait
  4182. hasS = codenum > 0;
  4183. }
  4184. #if ENABLED(ULTIPANEL)
  4185. if (!hasP && !hasS && *args != '\0')
  4186. lcd_setstatus(args, true);
  4187. else {
  4188. LCD_MESSAGEPGM(MSG_USERWAIT);
  4189. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4190. dontExpireStatus();
  4191. #endif
  4192. }
  4193. #else
  4194. if (!hasP && !hasS && *args != '\0') {
  4195. SERIAL_ECHO_START;
  4196. SERIAL_ECHOLN(args);
  4197. }
  4198. #endif
  4199. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4200. wait_for_user = true;
  4201. stepper.synchronize();
  4202. refresh_cmd_timeout();
  4203. if (codenum > 0) {
  4204. codenum += previous_cmd_ms; // wait until this time for a click
  4205. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4206. }
  4207. else {
  4208. #if ENABLED(ULTIPANEL)
  4209. if (lcd_detected()) {
  4210. while (wait_for_user) idle();
  4211. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4212. }
  4213. #else
  4214. while (wait_for_user) idle();
  4215. #endif
  4216. }
  4217. wait_for_user = false;
  4218. KEEPALIVE_STATE(IN_HANDLER);
  4219. }
  4220. #endif // EMERGENCY_PARSER || ULTIPANEL
  4221. /**
  4222. * M17: Enable power on all stepper motors
  4223. */
  4224. inline void gcode_M17() {
  4225. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4226. enable_all_steppers();
  4227. }
  4228. #if IS_KINEMATIC
  4229. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4230. #else
  4231. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4232. #endif
  4233. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4234. float resume_position[XYZE];
  4235. bool move_away_flag = false;
  4236. inline void move_back_on_resume() {
  4237. if (!move_away_flag) return;
  4238. move_away_flag = false;
  4239. // Set extruder to saved position
  4240. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4241. planner.set_e_position_mm(current_position[E_AXIS]);
  4242. #if IS_KINEMATIC
  4243. // Move XYZ to starting position
  4244. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4245. #else
  4246. // Move XY to starting position, then Z
  4247. destination[X_AXIS] = resume_position[X_AXIS];
  4248. destination[Y_AXIS] = resume_position[Y_AXIS];
  4249. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4250. destination[Z_AXIS] = resume_position[Z_AXIS];
  4251. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4252. #endif
  4253. stepper.synchronize();
  4254. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4255. filament_ran_out = false;
  4256. #endif
  4257. set_current_to_destination();
  4258. }
  4259. #endif // PARK_HEAD_ON_PAUSE
  4260. #if ENABLED(SDSUPPORT)
  4261. /**
  4262. * M20: List SD card to serial output
  4263. */
  4264. inline void gcode_M20() {
  4265. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4266. card.ls();
  4267. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4268. }
  4269. /**
  4270. * M21: Init SD Card
  4271. */
  4272. inline void gcode_M21() { card.initsd(); }
  4273. /**
  4274. * M22: Release SD Card
  4275. */
  4276. inline void gcode_M22() { card.release(); }
  4277. /**
  4278. * M23: Open a file
  4279. */
  4280. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4281. /**
  4282. * M24: Start or Resume SD Print
  4283. */
  4284. inline void gcode_M24() {
  4285. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4286. move_back_on_resume();
  4287. #endif
  4288. card.startFileprint();
  4289. print_job_timer.start();
  4290. }
  4291. /**
  4292. * M25: Pause SD Print
  4293. */
  4294. inline void gcode_M25() {
  4295. card.pauseSDPrint();
  4296. print_job_timer.pause();
  4297. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4298. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4299. #endif
  4300. }
  4301. /**
  4302. * M26: Set SD Card file index
  4303. */
  4304. inline void gcode_M26() {
  4305. if (card.cardOK && code_seen('S'))
  4306. card.setIndex(code_value_long());
  4307. }
  4308. /**
  4309. * M27: Get SD Card status
  4310. */
  4311. inline void gcode_M27() { card.getStatus(); }
  4312. /**
  4313. * M28: Start SD Write
  4314. */
  4315. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4316. /**
  4317. * M29: Stop SD Write
  4318. * Processed in write to file routine above
  4319. */
  4320. inline void gcode_M29() {
  4321. // card.saving = false;
  4322. }
  4323. /**
  4324. * M30 <filename>: Delete SD Card file
  4325. */
  4326. inline void gcode_M30() {
  4327. if (card.cardOK) {
  4328. card.closefile();
  4329. card.removeFile(current_command_args);
  4330. }
  4331. }
  4332. #endif // SDSUPPORT
  4333. /**
  4334. * M31: Get the time since the start of SD Print (or last M109)
  4335. */
  4336. inline void gcode_M31() {
  4337. char buffer[21];
  4338. duration_t elapsed = print_job_timer.duration();
  4339. elapsed.toString(buffer);
  4340. lcd_setstatus(buffer);
  4341. SERIAL_ECHO_START;
  4342. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4343. #if ENABLED(AUTOTEMP)
  4344. thermalManager.autotempShutdown();
  4345. #endif
  4346. }
  4347. #if ENABLED(SDSUPPORT)
  4348. /**
  4349. * M32: Select file and start SD Print
  4350. */
  4351. inline void gcode_M32() {
  4352. if (card.sdprinting)
  4353. stepper.synchronize();
  4354. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4355. if (!namestartpos)
  4356. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4357. else
  4358. namestartpos++; //to skip the '!'
  4359. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4360. if (card.cardOK) {
  4361. card.openFile(namestartpos, true, call_procedure);
  4362. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4363. card.setIndex(code_value_long());
  4364. card.startFileprint();
  4365. // Procedure calls count as normal print time.
  4366. if (!call_procedure) print_job_timer.start();
  4367. }
  4368. }
  4369. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4370. /**
  4371. * M33: Get the long full path of a file or folder
  4372. *
  4373. * Parameters:
  4374. * <dospath> Case-insensitive DOS-style path to a file or folder
  4375. *
  4376. * Example:
  4377. * M33 miscel~1/armchair/armcha~1.gco
  4378. *
  4379. * Output:
  4380. * /Miscellaneous/Armchair/Armchair.gcode
  4381. */
  4382. inline void gcode_M33() {
  4383. card.printLongPath(current_command_args);
  4384. }
  4385. #endif
  4386. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4387. /**
  4388. * M34: Set SD Card Sorting Options
  4389. */
  4390. inline void gcode_M34() {
  4391. if (code_seen('S')) card.setSortOn(code_value_bool());
  4392. if (code_seen('F')) {
  4393. int v = code_value_long();
  4394. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4395. }
  4396. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4397. }
  4398. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4399. /**
  4400. * M928: Start SD Write
  4401. */
  4402. inline void gcode_M928() {
  4403. card.openLogFile(current_command_args);
  4404. }
  4405. #endif // SDSUPPORT
  4406. /**
  4407. * Sensitive pin test for M42, M226
  4408. */
  4409. static bool pin_is_protected(uint8_t pin) {
  4410. static const int sensitive_pins[] = SENSITIVE_PINS;
  4411. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4412. if (sensitive_pins[i] == pin) return true;
  4413. return false;
  4414. }
  4415. /**
  4416. * M42: Change pin status via GCode
  4417. *
  4418. * P<pin> Pin number (LED if omitted)
  4419. * S<byte> Pin status from 0 - 255
  4420. */
  4421. inline void gcode_M42() {
  4422. if (!code_seen('S')) return;
  4423. int pin_status = code_value_int();
  4424. if (!WITHIN(pin_status, 0, 255)) return;
  4425. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4426. if (pin_number < 0) return;
  4427. if (pin_is_protected(pin_number)) {
  4428. SERIAL_ERROR_START;
  4429. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4430. return;
  4431. }
  4432. pinMode(pin_number, OUTPUT);
  4433. digitalWrite(pin_number, pin_status);
  4434. analogWrite(pin_number, pin_status);
  4435. #if FAN_COUNT > 0
  4436. switch (pin_number) {
  4437. #if HAS_FAN0
  4438. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4439. #endif
  4440. #if HAS_FAN1
  4441. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4442. #endif
  4443. #if HAS_FAN2
  4444. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4445. #endif
  4446. }
  4447. #endif
  4448. }
  4449. #if ENABLED(PINS_DEBUGGING)
  4450. #include "pinsDebug.h"
  4451. /**
  4452. * M43: Pin report and debug
  4453. *
  4454. * E<bool> Enable / disable background endstop monitoring
  4455. * - Machine continues to operate
  4456. * - Reports changes to endstops
  4457. * - Toggles LED when an endstop changes
  4458. *
  4459. * or
  4460. *
  4461. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  4462. * W<bool> Watch pins -reporting changes- until reset, click, or M108.
  4463. * I<bool> Flag to ignore Marlin's pin protection.
  4464. *
  4465. */
  4466. inline void gcode_M43() {
  4467. // Enable or disable endstop monitoring
  4468. if (code_seen('E')) {
  4469. endstop_monitor_flag = code_value_bool();
  4470. SERIAL_PROTOCOLPGM("endstop monitor ");
  4471. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  4472. SERIAL_PROTOCOLLNPGM("abled");
  4473. return;
  4474. }
  4475. // Get the range of pins to test or watch
  4476. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  4477. if (code_seen('P')) {
  4478. first_pin = last_pin = code_value_byte();
  4479. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  4480. }
  4481. const bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  4482. // Watch until click, M108, or reset
  4483. if (code_seen('W') && code_value_bool()) { // watch digital pins
  4484. byte pin_state[last_pin - first_pin + 1];
  4485. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4486. if (pin_is_protected(pin) && !ignore_protection) continue;
  4487. pinMode(pin, INPUT_PULLUP);
  4488. // if (IS_ANALOG(pin))
  4489. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4490. // else
  4491. pin_state[pin - first_pin] = digitalRead(pin);
  4492. }
  4493. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4494. wait_for_user = true;
  4495. #endif
  4496. for(;;) {
  4497. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4498. if (pin_is_protected(pin)) continue;
  4499. byte val;
  4500. // if (IS_ANALOG(pin))
  4501. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4502. // else
  4503. val = digitalRead(pin);
  4504. if (val != pin_state[pin - first_pin]) {
  4505. report_pin_state(pin);
  4506. pin_state[pin - first_pin] = val;
  4507. }
  4508. }
  4509. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4510. if (!wait_for_user) break;
  4511. #endif
  4512. safe_delay(500);
  4513. }
  4514. return;
  4515. }
  4516. // Report current state of selected pin(s)
  4517. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4518. report_pin_state_extended(pin, ignore_protection);
  4519. }
  4520. #endif // PINS_DEBUGGING
  4521. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4522. /**
  4523. * M48: Z probe repeatability measurement function.
  4524. *
  4525. * Usage:
  4526. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4527. * P = Number of sampled points (4-50, default 10)
  4528. * X = Sample X position
  4529. * Y = Sample Y position
  4530. * V = Verbose level (0-4, default=1)
  4531. * E = Engage Z probe for each reading
  4532. * L = Number of legs of movement before probe
  4533. * S = Schizoid (Or Star if you prefer)
  4534. *
  4535. * This function assumes the bed has been homed. Specifically, that a G28 command
  4536. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4537. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4538. * regenerated.
  4539. */
  4540. inline void gcode_M48() {
  4541. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4542. bool bed_leveling_state_at_entry=0;
  4543. bed_leveling_state_at_entry = ubl.state.active;
  4544. #endif
  4545. if (axis_unhomed_error(true, true, true)) return;
  4546. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4547. if (!WITHIN(verbose_level, 0, 4)) {
  4548. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4549. return;
  4550. }
  4551. if (verbose_level > 0)
  4552. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4553. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4554. if (!WITHIN(n_samples, 4, 50)) {
  4555. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4556. return;
  4557. }
  4558. float X_current = current_position[X_AXIS],
  4559. Y_current = current_position[Y_AXIS];
  4560. bool stow_probe_after_each = code_seen('E');
  4561. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4562. #if DISABLED(DELTA)
  4563. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  4564. out_of_range_error(PSTR("X"));
  4565. return;
  4566. }
  4567. #endif
  4568. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4569. #if DISABLED(DELTA)
  4570. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  4571. out_of_range_error(PSTR("Y"));
  4572. return;
  4573. }
  4574. #else
  4575. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4576. if (!position_is_reachable(pos, true)) {
  4577. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4578. return;
  4579. }
  4580. #endif
  4581. bool seen_L = code_seen('L');
  4582. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4583. if (n_legs > 15) {
  4584. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4585. return;
  4586. }
  4587. if (n_legs == 1) n_legs = 2;
  4588. bool schizoid_flag = code_seen('S');
  4589. if (schizoid_flag && !seen_L) n_legs = 7;
  4590. /**
  4591. * Now get everything to the specified probe point So we can safely do a
  4592. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4593. * we don't want to use that as a starting point for each probe.
  4594. */
  4595. if (verbose_level > 2)
  4596. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4597. // Disable bed level correction in M48 because we want the raw data when we probe
  4598. #if HAS_ABL
  4599. const bool abl_was_enabled = planner.abl_enabled;
  4600. set_bed_leveling_enabled(false);
  4601. #endif
  4602. setup_for_endstop_or_probe_move();
  4603. // Move to the first point, deploy, and probe
  4604. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4605. randomSeed(millis());
  4606. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4607. for (uint8_t n = 0; n < n_samples; n++) {
  4608. if (n_legs) {
  4609. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4610. float angle = random(0.0, 360.0),
  4611. radius = random(
  4612. #if ENABLED(DELTA)
  4613. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4614. #else
  4615. 5, X_MAX_LENGTH / 8
  4616. #endif
  4617. );
  4618. if (verbose_level > 3) {
  4619. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4620. SERIAL_ECHOPAIR(" angle: ", angle);
  4621. SERIAL_ECHOPGM(" Direction: ");
  4622. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4623. SERIAL_ECHOLNPGM("Clockwise");
  4624. }
  4625. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4626. double delta_angle;
  4627. if (schizoid_flag)
  4628. // The points of a 5 point star are 72 degrees apart. We need to
  4629. // skip a point and go to the next one on the star.
  4630. delta_angle = dir * 2.0 * 72.0;
  4631. else
  4632. // If we do this line, we are just trying to move further
  4633. // around the circle.
  4634. delta_angle = dir * (float) random(25, 45);
  4635. angle += delta_angle;
  4636. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4637. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4638. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4639. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4640. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4641. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4642. #if DISABLED(DELTA)
  4643. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4644. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4645. #else
  4646. // If we have gone out too far, we can do a simple fix and scale the numbers
  4647. // back in closer to the origin.
  4648. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4649. X_current /= 1.25;
  4650. Y_current /= 1.25;
  4651. if (verbose_level > 3) {
  4652. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4653. SERIAL_ECHOLNPAIR(", ", Y_current);
  4654. }
  4655. }
  4656. #endif
  4657. if (verbose_level > 3) {
  4658. SERIAL_PROTOCOLPGM("Going to:");
  4659. SERIAL_ECHOPAIR(" X", X_current);
  4660. SERIAL_ECHOPAIR(" Y", Y_current);
  4661. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4662. }
  4663. do_blocking_move_to_xy(X_current, Y_current);
  4664. } // n_legs loop
  4665. } // n_legs
  4666. // Probe a single point
  4667. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4668. /**
  4669. * Get the current mean for the data points we have so far
  4670. */
  4671. double sum = 0.0;
  4672. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4673. mean = sum / (n + 1);
  4674. NOMORE(min, sample_set[n]);
  4675. NOLESS(max, sample_set[n]);
  4676. /**
  4677. * Now, use that mean to calculate the standard deviation for the
  4678. * data points we have so far
  4679. */
  4680. sum = 0.0;
  4681. for (uint8_t j = 0; j <= n; j++)
  4682. sum += sq(sample_set[j] - mean);
  4683. sigma = sqrt(sum / (n + 1));
  4684. if (verbose_level > 0) {
  4685. if (verbose_level > 1) {
  4686. SERIAL_PROTOCOL(n + 1);
  4687. SERIAL_PROTOCOLPGM(" of ");
  4688. SERIAL_PROTOCOL((int)n_samples);
  4689. SERIAL_PROTOCOLPGM(": z: ");
  4690. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4691. if (verbose_level > 2) {
  4692. SERIAL_PROTOCOLPGM(" mean: ");
  4693. SERIAL_PROTOCOL_F(mean, 4);
  4694. SERIAL_PROTOCOLPGM(" sigma: ");
  4695. SERIAL_PROTOCOL_F(sigma, 6);
  4696. SERIAL_PROTOCOLPGM(" min: ");
  4697. SERIAL_PROTOCOL_F(min, 3);
  4698. SERIAL_PROTOCOLPGM(" max: ");
  4699. SERIAL_PROTOCOL_F(max, 3);
  4700. SERIAL_PROTOCOLPGM(" range: ");
  4701. SERIAL_PROTOCOL_F(max-min, 3);
  4702. }
  4703. SERIAL_EOL;
  4704. }
  4705. }
  4706. } // End of probe loop
  4707. if (STOW_PROBE()) return;
  4708. SERIAL_PROTOCOLPGM("Finished!");
  4709. SERIAL_EOL;
  4710. if (verbose_level > 0) {
  4711. SERIAL_PROTOCOLPGM("Mean: ");
  4712. SERIAL_PROTOCOL_F(mean, 6);
  4713. SERIAL_PROTOCOLPGM(" Min: ");
  4714. SERIAL_PROTOCOL_F(min, 3);
  4715. SERIAL_PROTOCOLPGM(" Max: ");
  4716. SERIAL_PROTOCOL_F(max, 3);
  4717. SERIAL_PROTOCOLPGM(" Range: ");
  4718. SERIAL_PROTOCOL_F(max-min, 3);
  4719. SERIAL_EOL;
  4720. }
  4721. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4722. SERIAL_PROTOCOL_F(sigma, 6);
  4723. SERIAL_EOL;
  4724. SERIAL_EOL;
  4725. clean_up_after_endstop_or_probe_move();
  4726. // Re-enable bed level correction if it has been on
  4727. #if HAS_ABL
  4728. set_bed_leveling_enabled(abl_was_enabled);
  4729. #endif
  4730. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4731. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  4732. ubl.state.active = bed_leveling_state_at_entry;
  4733. #endif
  4734. report_current_position();
  4735. }
  4736. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4737. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  4738. inline void gcode_M49() {
  4739. ubl.g26_debug_flag = !ubl.g26_debug_flag;
  4740. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  4741. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  4742. }
  4743. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  4744. /**
  4745. * M75: Start print timer
  4746. */
  4747. inline void gcode_M75() { print_job_timer.start(); }
  4748. /**
  4749. * M76: Pause print timer
  4750. */
  4751. inline void gcode_M76() { print_job_timer.pause(); }
  4752. /**
  4753. * M77: Stop print timer
  4754. */
  4755. inline void gcode_M77() { print_job_timer.stop(); }
  4756. #if ENABLED(PRINTCOUNTER)
  4757. /**
  4758. * M78: Show print statistics
  4759. */
  4760. inline void gcode_M78() {
  4761. // "M78 S78" will reset the statistics
  4762. if (code_seen('S') && code_value_int() == 78)
  4763. print_job_timer.initStats();
  4764. else
  4765. print_job_timer.showStats();
  4766. }
  4767. #endif
  4768. /**
  4769. * M104: Set hot end temperature
  4770. */
  4771. inline void gcode_M104() {
  4772. if (get_target_extruder_from_command(104)) return;
  4773. if (DEBUGGING(DRYRUN)) return;
  4774. #if ENABLED(SINGLENOZZLE)
  4775. if (target_extruder != active_extruder) return;
  4776. #endif
  4777. if (code_seen('S')) {
  4778. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4779. #if ENABLED(DUAL_X_CARRIAGE)
  4780. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4781. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4782. #endif
  4783. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4784. /**
  4785. * Stop the timer at the end of print, starting is managed by
  4786. * 'heat and wait' M109.
  4787. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4788. * stand by mode, for instance in a dual extruder setup, without affecting
  4789. * the running print timer.
  4790. */
  4791. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4792. print_job_timer.stop();
  4793. LCD_MESSAGEPGM(WELCOME_MSG);
  4794. }
  4795. #endif
  4796. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) status_printf(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4797. }
  4798. #if ENABLED(AUTOTEMP)
  4799. planner.autotemp_M104_M109();
  4800. #endif
  4801. }
  4802. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4803. void print_heaterstates() {
  4804. #if HAS_TEMP_HOTEND
  4805. SERIAL_PROTOCOLPGM(" T:");
  4806. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4807. SERIAL_PROTOCOLPGM(" /");
  4808. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4809. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4810. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4811. SERIAL_PROTOCOLCHAR(')');
  4812. #endif
  4813. #endif
  4814. #if HAS_TEMP_BED
  4815. SERIAL_PROTOCOLPGM(" B:");
  4816. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4817. SERIAL_PROTOCOLPGM(" /");
  4818. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4819. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4820. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4821. SERIAL_PROTOCOLCHAR(')');
  4822. #endif
  4823. #endif
  4824. #if HOTENDS > 1
  4825. HOTEND_LOOP() {
  4826. SERIAL_PROTOCOLPAIR(" T", e);
  4827. SERIAL_PROTOCOLCHAR(':');
  4828. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4829. SERIAL_PROTOCOLPGM(" /");
  4830. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4831. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4832. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4833. SERIAL_PROTOCOLCHAR(')');
  4834. #endif
  4835. }
  4836. #endif
  4837. SERIAL_PROTOCOLPGM(" @:");
  4838. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4839. #if HAS_TEMP_BED
  4840. SERIAL_PROTOCOLPGM(" B@:");
  4841. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4842. #endif
  4843. #if HOTENDS > 1
  4844. HOTEND_LOOP() {
  4845. SERIAL_PROTOCOLPAIR(" @", e);
  4846. SERIAL_PROTOCOLCHAR(':');
  4847. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4848. }
  4849. #endif
  4850. }
  4851. #endif
  4852. /**
  4853. * M105: Read hot end and bed temperature
  4854. */
  4855. inline void gcode_M105() {
  4856. if (get_target_extruder_from_command(105)) return;
  4857. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4858. SERIAL_PROTOCOLPGM(MSG_OK);
  4859. print_heaterstates();
  4860. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4861. SERIAL_ERROR_START;
  4862. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4863. #endif
  4864. SERIAL_EOL;
  4865. }
  4866. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  4867. static uint8_t auto_report_temp_interval;
  4868. static millis_t next_temp_report_ms;
  4869. /**
  4870. * M155: Set temperature auto-report interval. M155 S<seconds>
  4871. */
  4872. inline void gcode_M155() {
  4873. if (code_seen('S')) {
  4874. auto_report_temp_interval = code_value_byte();
  4875. NOMORE(auto_report_temp_interval, 60);
  4876. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4877. }
  4878. }
  4879. inline void auto_report_temperatures() {
  4880. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  4881. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4882. print_heaterstates();
  4883. SERIAL_EOL;
  4884. }
  4885. }
  4886. #endif // AUTO_REPORT_TEMPERATURES
  4887. #if FAN_COUNT > 0
  4888. /**
  4889. * M106: Set Fan Speed
  4890. *
  4891. * S<int> Speed between 0-255
  4892. * P<index> Fan index, if more than one fan
  4893. */
  4894. inline void gcode_M106() {
  4895. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4896. p = code_seen('P') ? code_value_ushort() : 0;
  4897. NOMORE(s, 255);
  4898. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4899. }
  4900. /**
  4901. * M107: Fan Off
  4902. */
  4903. inline void gcode_M107() {
  4904. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4905. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4906. }
  4907. #endif // FAN_COUNT > 0
  4908. #if DISABLED(EMERGENCY_PARSER)
  4909. /**
  4910. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4911. */
  4912. inline void gcode_M108() { wait_for_heatup = false; }
  4913. /**
  4914. * M112: Emergency Stop
  4915. */
  4916. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4917. /**
  4918. * M410: Quickstop - Abort all planned moves
  4919. *
  4920. * This will stop the carriages mid-move, so most likely they
  4921. * will be out of sync with the stepper position after this.
  4922. */
  4923. inline void gcode_M410() { quickstop_stepper(); }
  4924. #endif
  4925. #ifndef MIN_COOLING_SLOPE_DEG
  4926. #define MIN_COOLING_SLOPE_DEG 1.50
  4927. #endif
  4928. #ifndef MIN_COOLING_SLOPE_TIME
  4929. #define MIN_COOLING_SLOPE_TIME 60
  4930. #endif
  4931. /**
  4932. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4933. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4934. */
  4935. inline void gcode_M109() {
  4936. if (get_target_extruder_from_command(109)) return;
  4937. if (DEBUGGING(DRYRUN)) return;
  4938. #if ENABLED(SINGLENOZZLE)
  4939. if (target_extruder != active_extruder) return;
  4940. #endif
  4941. bool no_wait_for_cooling = code_seen('S');
  4942. if (no_wait_for_cooling || code_seen('R')) {
  4943. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4944. #if ENABLED(DUAL_X_CARRIAGE)
  4945. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4946. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4947. #endif
  4948. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4949. /**
  4950. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4951. * stand by mode, for instance in a dual extruder setup, without affecting
  4952. * the running print timer.
  4953. */
  4954. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4955. print_job_timer.stop();
  4956. LCD_MESSAGEPGM(WELCOME_MSG);
  4957. }
  4958. /**
  4959. * We do not check if the timer is already running because this check will
  4960. * be done for us inside the Stopwatch::start() method thus a running timer
  4961. * will not restart.
  4962. */
  4963. else print_job_timer.start();
  4964. #endif
  4965. if (thermalManager.isHeatingHotend(target_extruder)) status_printf(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4966. }
  4967. #if ENABLED(AUTOTEMP)
  4968. planner.autotemp_M104_M109();
  4969. #endif
  4970. #if TEMP_RESIDENCY_TIME > 0
  4971. millis_t residency_start_ms = 0;
  4972. // Loop until the temperature has stabilized
  4973. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4974. #else
  4975. // Loop until the temperature is very close target
  4976. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4977. #endif //TEMP_RESIDENCY_TIME > 0
  4978. float theTarget = -1.0, old_temp = 9999.0;
  4979. bool wants_to_cool = false;
  4980. wait_for_heatup = true;
  4981. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4982. KEEPALIVE_STATE(NOT_BUSY);
  4983. do {
  4984. // Target temperature might be changed during the loop
  4985. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4986. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4987. theTarget = thermalManager.degTargetHotend(target_extruder);
  4988. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4989. if (no_wait_for_cooling && wants_to_cool) break;
  4990. }
  4991. now = millis();
  4992. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4993. next_temp_ms = now + 1000UL;
  4994. print_heaterstates();
  4995. #if TEMP_RESIDENCY_TIME > 0
  4996. SERIAL_PROTOCOLPGM(" W:");
  4997. if (residency_start_ms) {
  4998. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4999. SERIAL_PROTOCOLLN(rem);
  5000. }
  5001. else {
  5002. SERIAL_PROTOCOLLNPGM("?");
  5003. }
  5004. #else
  5005. SERIAL_EOL;
  5006. #endif
  5007. }
  5008. idle();
  5009. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5010. float temp = thermalManager.degHotend(target_extruder);
  5011. #if TEMP_RESIDENCY_TIME > 0
  5012. float temp_diff = fabs(theTarget - temp);
  5013. if (!residency_start_ms) {
  5014. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5015. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5016. }
  5017. else if (temp_diff > TEMP_HYSTERESIS) {
  5018. // Restart the timer whenever the temperature falls outside the hysteresis.
  5019. residency_start_ms = now;
  5020. }
  5021. #endif //TEMP_RESIDENCY_TIME > 0
  5022. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5023. if (wants_to_cool) {
  5024. // break after MIN_COOLING_SLOPE_TIME seconds
  5025. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5026. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5027. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5028. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5029. old_temp = temp;
  5030. }
  5031. }
  5032. } while (wait_for_heatup && TEMP_CONDITIONS);
  5033. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5034. KEEPALIVE_STATE(IN_HANDLER);
  5035. }
  5036. #if HAS_TEMP_BED
  5037. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5038. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5039. #endif
  5040. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5041. #define MIN_COOLING_SLOPE_TIME_BED 60
  5042. #endif
  5043. /**
  5044. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5045. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5046. */
  5047. inline void gcode_M190() {
  5048. if (DEBUGGING(DRYRUN)) return;
  5049. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5050. bool no_wait_for_cooling = code_seen('S');
  5051. if (no_wait_for_cooling || code_seen('R')) {
  5052. thermalManager.setTargetBed(code_value_temp_abs());
  5053. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5054. if (code_value_temp_abs() > BED_MINTEMP) {
  5055. /**
  5056. * We start the timer when 'heating and waiting' command arrives, LCD
  5057. * functions never wait. Cooling down managed by extruders.
  5058. *
  5059. * We do not check if the timer is already running because this check will
  5060. * be done for us inside the Stopwatch::start() method thus a running timer
  5061. * will not restart.
  5062. */
  5063. print_job_timer.start();
  5064. }
  5065. #endif
  5066. }
  5067. #if TEMP_BED_RESIDENCY_TIME > 0
  5068. millis_t residency_start_ms = 0;
  5069. // Loop until the temperature has stabilized
  5070. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5071. #else
  5072. // Loop until the temperature is very close target
  5073. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5074. #endif //TEMP_BED_RESIDENCY_TIME > 0
  5075. float theTarget = -1.0, old_temp = 9999.0;
  5076. bool wants_to_cool = false;
  5077. wait_for_heatup = true;
  5078. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5079. KEEPALIVE_STATE(NOT_BUSY);
  5080. target_extruder = active_extruder; // for print_heaterstates
  5081. do {
  5082. // Target temperature might be changed during the loop
  5083. if (theTarget != thermalManager.degTargetBed()) {
  5084. wants_to_cool = thermalManager.isCoolingBed();
  5085. theTarget = thermalManager.degTargetBed();
  5086. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5087. if (no_wait_for_cooling && wants_to_cool) break;
  5088. }
  5089. now = millis();
  5090. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5091. next_temp_ms = now + 1000UL;
  5092. print_heaterstates();
  5093. #if TEMP_BED_RESIDENCY_TIME > 0
  5094. SERIAL_PROTOCOLPGM(" W:");
  5095. if (residency_start_ms) {
  5096. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5097. SERIAL_PROTOCOLLN(rem);
  5098. }
  5099. else {
  5100. SERIAL_PROTOCOLLNPGM("?");
  5101. }
  5102. #else
  5103. SERIAL_EOL;
  5104. #endif
  5105. }
  5106. idle();
  5107. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5108. float temp = thermalManager.degBed();
  5109. #if TEMP_BED_RESIDENCY_TIME > 0
  5110. float temp_diff = fabs(theTarget - temp);
  5111. if (!residency_start_ms) {
  5112. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5113. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5114. }
  5115. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5116. // Restart the timer whenever the temperature falls outside the hysteresis.
  5117. residency_start_ms = now;
  5118. }
  5119. #endif //TEMP_BED_RESIDENCY_TIME > 0
  5120. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5121. if (wants_to_cool) {
  5122. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  5123. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5124. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5125. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5126. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5127. old_temp = temp;
  5128. }
  5129. }
  5130. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5131. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5132. KEEPALIVE_STATE(IN_HANDLER);
  5133. }
  5134. #endif // HAS_TEMP_BED
  5135. /**
  5136. * M110: Set Current Line Number
  5137. */
  5138. inline void gcode_M110() {
  5139. if (code_seen('N')) gcode_LastN = code_value_long();
  5140. }
  5141. /**
  5142. * M111: Set the debug level
  5143. */
  5144. inline void gcode_M111() {
  5145. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  5146. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5147. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5148. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5149. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5150. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5151. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5152. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5153. #endif
  5154. const static char* const debug_strings[] PROGMEM = {
  5155. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5156. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5157. str_debug_32
  5158. #endif
  5159. };
  5160. SERIAL_ECHO_START;
  5161. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5162. if (marlin_debug_flags) {
  5163. uint8_t comma = 0;
  5164. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5165. if (TEST(marlin_debug_flags, i)) {
  5166. if (comma++) SERIAL_CHAR(',');
  5167. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5168. }
  5169. }
  5170. }
  5171. else {
  5172. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5173. }
  5174. SERIAL_EOL;
  5175. }
  5176. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5177. /**
  5178. * M113: Get or set Host Keepalive interval (0 to disable)
  5179. *
  5180. * S<seconds> Optional. Set the keepalive interval.
  5181. */
  5182. inline void gcode_M113() {
  5183. if (code_seen('S')) {
  5184. host_keepalive_interval = code_value_byte();
  5185. NOMORE(host_keepalive_interval, 60);
  5186. }
  5187. else {
  5188. SERIAL_ECHO_START;
  5189. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5190. }
  5191. }
  5192. #endif
  5193. #if ENABLED(BARICUDA)
  5194. #if HAS_HEATER_1
  5195. /**
  5196. * M126: Heater 1 valve open
  5197. */
  5198. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5199. /**
  5200. * M127: Heater 1 valve close
  5201. */
  5202. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5203. #endif
  5204. #if HAS_HEATER_2
  5205. /**
  5206. * M128: Heater 2 valve open
  5207. */
  5208. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5209. /**
  5210. * M129: Heater 2 valve close
  5211. */
  5212. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5213. #endif
  5214. #endif //BARICUDA
  5215. /**
  5216. * M140: Set bed temperature
  5217. */
  5218. inline void gcode_M140() {
  5219. if (DEBUGGING(DRYRUN)) return;
  5220. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5221. }
  5222. #if ENABLED(ULTIPANEL)
  5223. /**
  5224. * M145: Set the heatup state for a material in the LCD menu
  5225. * S<material> (0=PLA, 1=ABS)
  5226. * H<hotend temp>
  5227. * B<bed temp>
  5228. * F<fan speed>
  5229. */
  5230. inline void gcode_M145() {
  5231. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5232. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5233. SERIAL_ERROR_START;
  5234. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5235. }
  5236. else {
  5237. int v;
  5238. if (code_seen('H')) {
  5239. v = code_value_int();
  5240. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5241. }
  5242. if (code_seen('F')) {
  5243. v = code_value_int();
  5244. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5245. }
  5246. #if TEMP_SENSOR_BED != 0
  5247. if (code_seen('B')) {
  5248. v = code_value_int();
  5249. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5250. }
  5251. #endif
  5252. }
  5253. }
  5254. #endif // ULTIPANEL
  5255. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5256. /**
  5257. * M149: Set temperature units
  5258. */
  5259. inline void gcode_M149() {
  5260. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5261. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5262. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5263. }
  5264. #endif
  5265. #if HAS_POWER_SWITCH
  5266. /**
  5267. * M80: Turn on Power Supply
  5268. */
  5269. inline void gcode_M80() {
  5270. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5271. /**
  5272. * If you have a switch on suicide pin, this is useful
  5273. * if you want to start another print with suicide feature after
  5274. * a print without suicide...
  5275. */
  5276. #if HAS_SUICIDE
  5277. OUT_WRITE(SUICIDE_PIN, HIGH);
  5278. #endif
  5279. #if ENABLED(ULTIPANEL)
  5280. powersupply = true;
  5281. LCD_MESSAGEPGM(WELCOME_MSG);
  5282. lcd_update();
  5283. #endif
  5284. }
  5285. #endif // HAS_POWER_SWITCH
  5286. /**
  5287. * M81: Turn off Power, including Power Supply, if there is one.
  5288. *
  5289. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5290. */
  5291. inline void gcode_M81() {
  5292. thermalManager.disable_all_heaters();
  5293. stepper.finish_and_disable();
  5294. #if FAN_COUNT > 0
  5295. #if FAN_COUNT > 1
  5296. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5297. #else
  5298. fanSpeeds[0] = 0;
  5299. #endif
  5300. #endif
  5301. safe_delay(1000); // Wait 1 second before switching off
  5302. #if HAS_SUICIDE
  5303. stepper.synchronize();
  5304. suicide();
  5305. #elif HAS_POWER_SWITCH
  5306. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5307. #endif
  5308. #if ENABLED(ULTIPANEL)
  5309. #if HAS_POWER_SWITCH
  5310. powersupply = false;
  5311. #endif
  5312. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5313. lcd_update();
  5314. #endif
  5315. }
  5316. /**
  5317. * M82: Set E codes absolute (default)
  5318. */
  5319. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5320. /**
  5321. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5322. */
  5323. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5324. /**
  5325. * M18, M84: Disable all stepper motors
  5326. */
  5327. inline void gcode_M18_M84() {
  5328. if (code_seen('S')) {
  5329. stepper_inactive_time = code_value_millis_from_seconds();
  5330. }
  5331. else {
  5332. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5333. if (all_axis) {
  5334. stepper.finish_and_disable();
  5335. }
  5336. else {
  5337. stepper.synchronize();
  5338. if (code_seen('X')) disable_x();
  5339. if (code_seen('Y')) disable_y();
  5340. if (code_seen('Z')) disable_z();
  5341. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5342. if (code_seen('E')) disable_e_steppers();
  5343. #endif
  5344. }
  5345. }
  5346. }
  5347. /**
  5348. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  5349. */
  5350. inline void gcode_M85() {
  5351. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  5352. }
  5353. /**
  5354. * Multi-stepper support for M92, M201, M203
  5355. */
  5356. #if ENABLED(DISTINCT_E_FACTORS)
  5357. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  5358. #define TARGET_EXTRUDER target_extruder
  5359. #else
  5360. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5361. #define TARGET_EXTRUDER 0
  5362. #endif
  5363. /**
  5364. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5365. * (Follows the same syntax as G92)
  5366. *
  5367. * With multiple extruders use T to specify which one.
  5368. */
  5369. inline void gcode_M92() {
  5370. GET_TARGET_EXTRUDER(92);
  5371. LOOP_XYZE(i) {
  5372. if (code_seen(axis_codes[i])) {
  5373. if (i == E_AXIS) {
  5374. float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5375. if (value < 20.0) {
  5376. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5377. planner.max_jerk[E_AXIS] *= factor;
  5378. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5379. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5380. }
  5381. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5382. }
  5383. else {
  5384. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5385. }
  5386. }
  5387. }
  5388. planner.refresh_positioning();
  5389. }
  5390. /**
  5391. * Output the current position to serial
  5392. */
  5393. static void report_current_position() {
  5394. SERIAL_PROTOCOLPGM("X:");
  5395. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5396. SERIAL_PROTOCOLPGM(" Y:");
  5397. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5398. SERIAL_PROTOCOLPGM(" Z:");
  5399. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5400. SERIAL_PROTOCOLPGM(" E:");
  5401. SERIAL_PROTOCOL(current_position[E_AXIS]);
  5402. stepper.report_positions();
  5403. #if IS_SCARA
  5404. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  5405. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  5406. SERIAL_EOL;
  5407. #endif
  5408. }
  5409. /**
  5410. * M114: Output current position to serial port
  5411. */
  5412. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  5413. /**
  5414. * M115: Capabilities string
  5415. */
  5416. inline void gcode_M115() {
  5417. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  5418. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  5419. // EEPROM (M500, M501)
  5420. #if ENABLED(EEPROM_SETTINGS)
  5421. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  5422. #else
  5423. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  5424. #endif
  5425. // AUTOREPORT_TEMP (M155)
  5426. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  5427. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  5428. #else
  5429. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  5430. #endif
  5431. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  5432. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  5433. // AUTOLEVEL (G29)
  5434. #if HAS_ABL
  5435. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  5436. #else
  5437. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  5438. #endif
  5439. // Z_PROBE (G30)
  5440. #if HAS_BED_PROBE
  5441. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  5442. #else
  5443. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  5444. #endif
  5445. // SOFTWARE_POWER (G30)
  5446. #if HAS_POWER_SWITCH
  5447. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  5448. #else
  5449. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  5450. #endif
  5451. // TOGGLE_LIGHTS (M355)
  5452. #if HAS_CASE_LIGHT
  5453. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  5454. #else
  5455. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  5456. #endif
  5457. // EMERGENCY_PARSER (M108, M112, M410)
  5458. #if ENABLED(EMERGENCY_PARSER)
  5459. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  5460. #else
  5461. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  5462. #endif
  5463. #endif // EXTENDED_CAPABILITIES_REPORT
  5464. }
  5465. /**
  5466. * M117: Set LCD Status Message
  5467. */
  5468. inline void gcode_M117() {
  5469. lcd_setstatus(current_command_args);
  5470. }
  5471. /**
  5472. * M119: Output endstop states to serial output
  5473. */
  5474. inline void gcode_M119() { endstops.M119(); }
  5475. /**
  5476. * M120: Enable endstops and set non-homing endstop state to "enabled"
  5477. */
  5478. inline void gcode_M120() { endstops.enable_globally(true); }
  5479. /**
  5480. * M121: Disable endstops and set non-homing endstop state to "disabled"
  5481. */
  5482. inline void gcode_M121() { endstops.enable_globally(false); }
  5483. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5484. /**
  5485. * M125: Store current position and move to filament change position.
  5486. * Called on pause (by M25) to prevent material leaking onto the
  5487. * object. On resume (M24) the head will be moved back and the
  5488. * print will resume.
  5489. *
  5490. * If Marlin is compiled without SD Card support, M125 can be
  5491. * used directly to pause the print and move to park position,
  5492. * resuming with a button click or M108.
  5493. *
  5494. * L = override retract length
  5495. * X = override X
  5496. * Y = override Y
  5497. * Z = override Z raise
  5498. */
  5499. inline void gcode_M125() {
  5500. if (move_away_flag) return; // already paused
  5501. const bool job_running = print_job_timer.isRunning();
  5502. // there are blocks after this one, or sd printing
  5503. move_away_flag = job_running || planner.blocks_queued()
  5504. #if ENABLED(SDSUPPORT)
  5505. || card.sdprinting
  5506. #endif
  5507. ;
  5508. if (!move_away_flag) return; // nothing to pause
  5509. // M125 can be used to pause a print too
  5510. #if ENABLED(SDSUPPORT)
  5511. card.pauseSDPrint();
  5512. #endif
  5513. print_job_timer.pause();
  5514. // Save current position
  5515. COPY(resume_position, current_position);
  5516. set_destination_to_current();
  5517. // Initial retract before move to filament change position
  5518. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  5519. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5520. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  5521. #endif
  5522. ;
  5523. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5524. // Lift Z axis
  5525. const float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5526. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5527. FILAMENT_CHANGE_Z_ADD
  5528. #else
  5529. 0
  5530. #endif
  5531. ;
  5532. if (z_lift > 0) {
  5533. destination[Z_AXIS] += z_lift;
  5534. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5535. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5536. }
  5537. // Move XY axes to filament change position or given position
  5538. destination[X_AXIS] = code_seen('X') ? code_value_axis_units(X_AXIS) : 0
  5539. #ifdef FILAMENT_CHANGE_X_POS
  5540. + FILAMENT_CHANGE_X_POS
  5541. #endif
  5542. ;
  5543. destination[Y_AXIS] = code_seen('Y') ? code_value_axis_units(Y_AXIS) : 0
  5544. #ifdef FILAMENT_CHANGE_Y_POS
  5545. + FILAMENT_CHANGE_Y_POS
  5546. #endif
  5547. ;
  5548. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  5549. if (active_extruder > 0) {
  5550. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  5551. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  5552. }
  5553. #endif
  5554. clamp_to_software_endstops(destination);
  5555. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5556. set_current_to_destination();
  5557. stepper.synchronize();
  5558. disable_e_steppers();
  5559. #if DISABLED(SDSUPPORT)
  5560. // Wait for lcd click or M108
  5561. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5562. wait_for_user = true;
  5563. while (wait_for_user) idle();
  5564. KEEPALIVE_STATE(IN_HANDLER);
  5565. // Return to print position and continue
  5566. move_back_on_resume();
  5567. if (job_running) print_job_timer.start();
  5568. move_away_flag = false;
  5569. #endif
  5570. }
  5571. #endif // PARK_HEAD_ON_PAUSE
  5572. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  5573. void set_led_color(const uint8_t r, const uint8_t g, const uint8_t b) {
  5574. #if ENABLED(BLINKM)
  5575. // This variant uses i2c to send the RGB components to the device.
  5576. SendColors(r, g, b);
  5577. #else
  5578. // This variant uses 3 separate pins for the RGB components.
  5579. // If the pins can do PWM then their intensity will be set.
  5580. digitalWrite(RGB_LED_R_PIN, r ? HIGH : LOW);
  5581. digitalWrite(RGB_LED_G_PIN, g ? HIGH : LOW);
  5582. digitalWrite(RGB_LED_B_PIN, b ? HIGH : LOW);
  5583. analogWrite(RGB_LED_R_PIN, r);
  5584. analogWrite(RGB_LED_G_PIN, g);
  5585. analogWrite(RGB_LED_B_PIN, b);
  5586. #endif
  5587. }
  5588. /**
  5589. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5590. *
  5591. * Always sets all 3 components. If a component is left out, set to 0.
  5592. *
  5593. * Examples:
  5594. *
  5595. * M150 R255 ; Turn LED red
  5596. * M150 R255 U127 ; Turn LED orange (PWM only)
  5597. * M150 ; Turn LED off
  5598. * M150 R U B ; Turn LED white
  5599. *
  5600. */
  5601. inline void gcode_M150() {
  5602. set_led_color(
  5603. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5604. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5605. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  5606. );
  5607. }
  5608. #endif // BLINKM || RGB_LED
  5609. /**
  5610. * M200: Set filament diameter and set E axis units to cubic units
  5611. *
  5612. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5613. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5614. */
  5615. inline void gcode_M200() {
  5616. if (get_target_extruder_from_command(200)) return;
  5617. if (code_seen('D')) {
  5618. // setting any extruder filament size disables volumetric on the assumption that
  5619. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5620. // for all extruders
  5621. volumetric_enabled = (code_value_linear_units() != 0.0);
  5622. if (volumetric_enabled) {
  5623. filament_size[target_extruder] = code_value_linear_units();
  5624. // make sure all extruders have some sane value for the filament size
  5625. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5626. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5627. }
  5628. }
  5629. else {
  5630. //reserved for setting filament diameter via UFID or filament measuring device
  5631. return;
  5632. }
  5633. calculate_volumetric_multipliers();
  5634. }
  5635. /**
  5636. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5637. *
  5638. * With multiple extruders use T to specify which one.
  5639. */
  5640. inline void gcode_M201() {
  5641. GET_TARGET_EXTRUDER(201);
  5642. LOOP_XYZE(i) {
  5643. if (code_seen(axis_codes[i])) {
  5644. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5645. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units(a);
  5646. }
  5647. }
  5648. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5649. planner.reset_acceleration_rates();
  5650. }
  5651. #if 0 // Not used for Sprinter/grbl gen6
  5652. inline void gcode_M202() {
  5653. LOOP_XYZE(i) {
  5654. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5655. }
  5656. }
  5657. #endif
  5658. /**
  5659. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5660. *
  5661. * With multiple extruders use T to specify which one.
  5662. */
  5663. inline void gcode_M203() {
  5664. GET_TARGET_EXTRUDER(203);
  5665. LOOP_XYZE(i)
  5666. if (code_seen(axis_codes[i])) {
  5667. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5668. planner.max_feedrate_mm_s[a] = code_value_axis_units(a);
  5669. }
  5670. }
  5671. /**
  5672. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5673. *
  5674. * P = Printing moves
  5675. * R = Retract only (no X, Y, Z) moves
  5676. * T = Travel (non printing) moves
  5677. *
  5678. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5679. */
  5680. inline void gcode_M204() {
  5681. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5682. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5683. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5684. }
  5685. if (code_seen('P')) {
  5686. planner.acceleration = code_value_linear_units();
  5687. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5688. }
  5689. if (code_seen('R')) {
  5690. planner.retract_acceleration = code_value_linear_units();
  5691. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5692. }
  5693. if (code_seen('T')) {
  5694. planner.travel_acceleration = code_value_linear_units();
  5695. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5696. }
  5697. }
  5698. /**
  5699. * M205: Set Advanced Settings
  5700. *
  5701. * S = Min Feed Rate (units/s)
  5702. * T = Min Travel Feed Rate (units/s)
  5703. * B = Min Segment Time (µs)
  5704. * X = Max X Jerk (units/sec^2)
  5705. * Y = Max Y Jerk (units/sec^2)
  5706. * Z = Max Z Jerk (units/sec^2)
  5707. * E = Max E Jerk (units/sec^2)
  5708. */
  5709. inline void gcode_M205() {
  5710. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5711. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5712. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5713. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5714. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5715. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5716. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5717. }
  5718. #if DISABLED(NO_WORKSPACE_OFFSETS)
  5719. /**
  5720. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5721. */
  5722. inline void gcode_M206() {
  5723. LOOP_XYZ(i)
  5724. if (code_seen(axis_codes[i]))
  5725. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5726. #if ENABLED(MORGAN_SCARA)
  5727. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5728. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5729. #endif
  5730. SYNC_PLAN_POSITION_KINEMATIC();
  5731. report_current_position();
  5732. }
  5733. #endif // NO_WORKSPACE_OFFSETS
  5734. #if ENABLED(DELTA)
  5735. /**
  5736. * M665: Set delta configurations
  5737. *
  5738. * L = diagonal rod
  5739. * R = delta radius
  5740. * S = segments per second
  5741. * A = Alpha (Tower 1) diagonal rod trim
  5742. * B = Beta (Tower 2) diagonal rod trim
  5743. * C = Gamma (Tower 3) diagonal rod trim
  5744. */
  5745. inline void gcode_M665() {
  5746. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5747. if (code_seen('R')) delta_radius = code_value_linear_units();
  5748. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5749. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  5750. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  5751. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  5752. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  5753. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  5754. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  5755. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5756. }
  5757. /**
  5758. * M666: Set delta endstop adjustment
  5759. */
  5760. inline void gcode_M666() {
  5761. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5762. if (DEBUGGING(LEVELING)) {
  5763. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5764. }
  5765. #endif
  5766. LOOP_XYZ(i) {
  5767. if (code_seen(axis_codes[i])) {
  5768. endstop_adj[i] = code_value_axis_units(i);
  5769. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5770. if (DEBUGGING(LEVELING)) {
  5771. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5772. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5773. }
  5774. #endif
  5775. }
  5776. }
  5777. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5778. if (DEBUGGING(LEVELING)) {
  5779. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5780. }
  5781. #endif
  5782. }
  5783. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5784. /**
  5785. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5786. */
  5787. inline void gcode_M666() {
  5788. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5789. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5790. }
  5791. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5792. #if ENABLED(FWRETRACT)
  5793. /**
  5794. * M207: Set firmware retraction values
  5795. *
  5796. * S[+units] retract_length
  5797. * W[+units] retract_length_swap (multi-extruder)
  5798. * F[units/min] retract_feedrate_mm_s
  5799. * Z[units] retract_zlift
  5800. */
  5801. inline void gcode_M207() {
  5802. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5803. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5804. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5805. #if EXTRUDERS > 1
  5806. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5807. #endif
  5808. }
  5809. /**
  5810. * M208: Set firmware un-retraction values
  5811. *
  5812. * S[+units] retract_recover_length (in addition to M207 S*)
  5813. * W[+units] retract_recover_length_swap (multi-extruder)
  5814. * F[units/min] retract_recover_feedrate_mm_s
  5815. */
  5816. inline void gcode_M208() {
  5817. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5818. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5819. #if EXTRUDERS > 1
  5820. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5821. #endif
  5822. }
  5823. /**
  5824. * M209: Enable automatic retract (M209 S1)
  5825. * For slicers that don't support G10/11, reversed extrude-only
  5826. * moves will be classified as retraction.
  5827. */
  5828. inline void gcode_M209() {
  5829. if (code_seen('S')) {
  5830. autoretract_enabled = code_value_bool();
  5831. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5832. }
  5833. }
  5834. #endif // FWRETRACT
  5835. /**
  5836. * M211: Enable, Disable, and/or Report software endstops
  5837. *
  5838. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5839. */
  5840. inline void gcode_M211() {
  5841. SERIAL_ECHO_START;
  5842. #if HAS_SOFTWARE_ENDSTOPS
  5843. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5844. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5845. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5846. #else
  5847. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5848. SERIAL_ECHOPGM(MSG_OFF);
  5849. #endif
  5850. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5851. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5852. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5853. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5854. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5855. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5856. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5857. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5858. }
  5859. #if HOTENDS > 1
  5860. /**
  5861. * M218 - set hotend offset (in linear units)
  5862. *
  5863. * T<tool>
  5864. * X<xoffset>
  5865. * Y<yoffset>
  5866. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5867. */
  5868. inline void gcode_M218() {
  5869. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  5870. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5871. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5872. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5873. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5874. #endif
  5875. SERIAL_ECHO_START;
  5876. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5877. HOTEND_LOOP() {
  5878. SERIAL_CHAR(' ');
  5879. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5880. SERIAL_CHAR(',');
  5881. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5882. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5883. SERIAL_CHAR(',');
  5884. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5885. #endif
  5886. }
  5887. SERIAL_EOL;
  5888. }
  5889. #endif // HOTENDS > 1
  5890. /**
  5891. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5892. */
  5893. inline void gcode_M220() {
  5894. if (code_seen('S')) feedrate_percentage = code_value_int();
  5895. }
  5896. /**
  5897. * M221: Set extrusion percentage (M221 T0 S95)
  5898. */
  5899. inline void gcode_M221() {
  5900. if (get_target_extruder_from_command(221)) return;
  5901. if (code_seen('S'))
  5902. flow_percentage[target_extruder] = code_value_int();
  5903. }
  5904. /**
  5905. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5906. */
  5907. inline void gcode_M226() {
  5908. if (code_seen('P')) {
  5909. int pin_number = code_value_int(),
  5910. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5911. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5912. int target = LOW;
  5913. stepper.synchronize();
  5914. pinMode(pin_number, INPUT);
  5915. switch (pin_state) {
  5916. case 1:
  5917. target = HIGH;
  5918. break;
  5919. case 0:
  5920. target = LOW;
  5921. break;
  5922. case -1:
  5923. target = !digitalRead(pin_number);
  5924. break;
  5925. }
  5926. while (digitalRead(pin_number) != target) idle();
  5927. } // pin_state -1 0 1 && pin_number > -1
  5928. } // code_seen('P')
  5929. }
  5930. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5931. /**
  5932. * M260: Send data to a I2C slave device
  5933. *
  5934. * This is a PoC, the formating and arguments for the GCODE will
  5935. * change to be more compatible, the current proposal is:
  5936. *
  5937. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  5938. *
  5939. * M260 B<byte-1 value in base 10>
  5940. * M260 B<byte-2 value in base 10>
  5941. * M260 B<byte-3 value in base 10>
  5942. *
  5943. * M260 S1 ; Send the buffered data and reset the buffer
  5944. * M260 R1 ; Reset the buffer without sending data
  5945. *
  5946. */
  5947. inline void gcode_M260() {
  5948. // Set the target address
  5949. if (code_seen('A')) i2c.address(code_value_byte());
  5950. // Add a new byte to the buffer
  5951. if (code_seen('B')) i2c.addbyte(code_value_byte());
  5952. // Flush the buffer to the bus
  5953. if (code_seen('S')) i2c.send();
  5954. // Reset and rewind the buffer
  5955. else if (code_seen('R')) i2c.reset();
  5956. }
  5957. /**
  5958. * M261: Request X bytes from I2C slave device
  5959. *
  5960. * Usage: M261 A<slave device address base 10> B<number of bytes>
  5961. */
  5962. inline void gcode_M261() {
  5963. if (code_seen('A')) i2c.address(code_value_byte());
  5964. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  5965. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  5966. i2c.relay(bytes);
  5967. }
  5968. else {
  5969. SERIAL_ERROR_START;
  5970. SERIAL_ERRORLN("Bad i2c request");
  5971. }
  5972. }
  5973. #endif // EXPERIMENTAL_I2CBUS
  5974. #if HAS_SERVOS
  5975. /**
  5976. * M280: Get or set servo position. P<index> [S<angle>]
  5977. */
  5978. inline void gcode_M280() {
  5979. if (!code_seen('P')) return;
  5980. int servo_index = code_value_int();
  5981. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  5982. if (code_seen('S'))
  5983. MOVE_SERVO(servo_index, code_value_int());
  5984. else {
  5985. SERIAL_ECHO_START;
  5986. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5987. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5988. }
  5989. }
  5990. else {
  5991. SERIAL_ERROR_START;
  5992. SERIAL_ECHOPAIR("Servo ", servo_index);
  5993. SERIAL_ECHOLNPGM(" out of range");
  5994. }
  5995. }
  5996. #endif // HAS_SERVOS
  5997. #if HAS_BUZZER
  5998. /**
  5999. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6000. */
  6001. inline void gcode_M300() {
  6002. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6003. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6004. // Limits the tone duration to 0-5 seconds.
  6005. NOMORE(duration, 5000);
  6006. BUZZ(duration, frequency);
  6007. }
  6008. #endif // HAS_BUZZER
  6009. #if ENABLED(PIDTEMP)
  6010. /**
  6011. * M301: Set PID parameters P I D (and optionally C, L)
  6012. *
  6013. * P[float] Kp term
  6014. * I[float] Ki term (unscaled)
  6015. * D[float] Kd term (unscaled)
  6016. *
  6017. * With PID_EXTRUSION_SCALING:
  6018. *
  6019. * C[float] Kc term
  6020. * L[float] LPQ length
  6021. */
  6022. inline void gcode_M301() {
  6023. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6024. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6025. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6026. if (e < HOTENDS) { // catch bad input value
  6027. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6028. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6029. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6030. #if ENABLED(PID_EXTRUSION_SCALING)
  6031. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6032. if (code_seen('L')) lpq_len = code_value_float();
  6033. NOMORE(lpq_len, LPQ_MAX_LEN);
  6034. #endif
  6035. thermalManager.updatePID();
  6036. SERIAL_ECHO_START;
  6037. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6038. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6039. #endif // PID_PARAMS_PER_HOTEND
  6040. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6041. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6042. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6043. #if ENABLED(PID_EXTRUSION_SCALING)
  6044. //Kc does not have scaling applied above, or in resetting defaults
  6045. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6046. #endif
  6047. SERIAL_EOL;
  6048. }
  6049. else {
  6050. SERIAL_ERROR_START;
  6051. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6052. }
  6053. }
  6054. #endif // PIDTEMP
  6055. #if ENABLED(PIDTEMPBED)
  6056. inline void gcode_M304() {
  6057. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6058. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6059. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6060. thermalManager.updatePID();
  6061. SERIAL_ECHO_START;
  6062. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6063. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6064. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6065. }
  6066. #endif // PIDTEMPBED
  6067. #if defined(CHDK) || HAS_PHOTOGRAPH
  6068. /**
  6069. * M240: Trigger a camera by emulating a Canon RC-1
  6070. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6071. */
  6072. inline void gcode_M240() {
  6073. #ifdef CHDK
  6074. OUT_WRITE(CHDK, HIGH);
  6075. chdkHigh = millis();
  6076. chdkActive = true;
  6077. #elif HAS_PHOTOGRAPH
  6078. const uint8_t NUM_PULSES = 16;
  6079. const float PULSE_LENGTH = 0.01524;
  6080. for (int i = 0; i < NUM_PULSES; i++) {
  6081. WRITE(PHOTOGRAPH_PIN, HIGH);
  6082. _delay_ms(PULSE_LENGTH);
  6083. WRITE(PHOTOGRAPH_PIN, LOW);
  6084. _delay_ms(PULSE_LENGTH);
  6085. }
  6086. delay(7.33);
  6087. for (int i = 0; i < NUM_PULSES; i++) {
  6088. WRITE(PHOTOGRAPH_PIN, HIGH);
  6089. _delay_ms(PULSE_LENGTH);
  6090. WRITE(PHOTOGRAPH_PIN, LOW);
  6091. _delay_ms(PULSE_LENGTH);
  6092. }
  6093. #endif // !CHDK && HAS_PHOTOGRAPH
  6094. }
  6095. #endif // CHDK || PHOTOGRAPH_PIN
  6096. #if HAS_LCD_CONTRAST
  6097. /**
  6098. * M250: Read and optionally set the LCD contrast
  6099. */
  6100. inline void gcode_M250() {
  6101. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6102. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6103. SERIAL_PROTOCOL(lcd_contrast);
  6104. SERIAL_EOL;
  6105. }
  6106. #endif // HAS_LCD_CONTRAST
  6107. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6108. /**
  6109. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6110. *
  6111. * S<temperature> sets the minimum extrude temperature
  6112. * P<bool> enables (1) or disables (0) cold extrusion
  6113. *
  6114. * Examples:
  6115. *
  6116. * M302 ; report current cold extrusion state
  6117. * M302 P0 ; enable cold extrusion checking
  6118. * M302 P1 ; disables cold extrusion checking
  6119. * M302 S0 ; always allow extrusion (disables checking)
  6120. * M302 S170 ; only allow extrusion above 170
  6121. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6122. */
  6123. inline void gcode_M302() {
  6124. bool seen_S = code_seen('S');
  6125. if (seen_S) {
  6126. thermalManager.extrude_min_temp = code_value_temp_abs();
  6127. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6128. }
  6129. if (code_seen('P'))
  6130. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6131. else if (!seen_S) {
  6132. // Report current state
  6133. SERIAL_ECHO_START;
  6134. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6135. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6136. SERIAL_ECHOLNPGM("C)");
  6137. }
  6138. }
  6139. #endif // PREVENT_COLD_EXTRUSION
  6140. /**
  6141. * M303: PID relay autotune
  6142. *
  6143. * S<temperature> sets the target temperature. (default 150C)
  6144. * E<extruder> (-1 for the bed) (default 0)
  6145. * C<cycles>
  6146. * U<bool> with a non-zero value will apply the result to current settings
  6147. */
  6148. inline void gcode_M303() {
  6149. #if HAS_PID_HEATING
  6150. int e = code_seen('E') ? code_value_int() : 0;
  6151. int c = code_seen('C') ? code_value_int() : 5;
  6152. bool u = code_seen('U') && code_value_bool();
  6153. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6154. if (WITHIN(e, 0, HOTENDS - 1))
  6155. target_extruder = e;
  6156. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6157. thermalManager.PID_autotune(temp, e, c, u);
  6158. KEEPALIVE_STATE(IN_HANDLER);
  6159. #else
  6160. SERIAL_ERROR_START;
  6161. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6162. #endif
  6163. }
  6164. #if ENABLED(MORGAN_SCARA)
  6165. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6166. if (IsRunning()) {
  6167. forward_kinematics_SCARA(delta_a, delta_b);
  6168. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6169. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6170. destination[Z_AXIS] = current_position[Z_AXIS];
  6171. prepare_move_to_destination();
  6172. return true;
  6173. }
  6174. return false;
  6175. }
  6176. /**
  6177. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6178. */
  6179. inline bool gcode_M360() {
  6180. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6181. return SCARA_move_to_cal(0, 120);
  6182. }
  6183. /**
  6184. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6185. */
  6186. inline bool gcode_M361() {
  6187. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6188. return SCARA_move_to_cal(90, 130);
  6189. }
  6190. /**
  6191. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6192. */
  6193. inline bool gcode_M362() {
  6194. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6195. return SCARA_move_to_cal(60, 180);
  6196. }
  6197. /**
  6198. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6199. */
  6200. inline bool gcode_M363() {
  6201. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6202. return SCARA_move_to_cal(50, 90);
  6203. }
  6204. /**
  6205. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6206. */
  6207. inline bool gcode_M364() {
  6208. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6209. return SCARA_move_to_cal(45, 135);
  6210. }
  6211. #endif // SCARA
  6212. #if ENABLED(EXT_SOLENOID)
  6213. void enable_solenoid(uint8_t num) {
  6214. switch (num) {
  6215. case 0:
  6216. OUT_WRITE(SOL0_PIN, HIGH);
  6217. break;
  6218. #if HAS_SOLENOID_1
  6219. case 1:
  6220. OUT_WRITE(SOL1_PIN, HIGH);
  6221. break;
  6222. #endif
  6223. #if HAS_SOLENOID_2
  6224. case 2:
  6225. OUT_WRITE(SOL2_PIN, HIGH);
  6226. break;
  6227. #endif
  6228. #if HAS_SOLENOID_3
  6229. case 3:
  6230. OUT_WRITE(SOL3_PIN, HIGH);
  6231. break;
  6232. #endif
  6233. default:
  6234. SERIAL_ECHO_START;
  6235. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6236. break;
  6237. }
  6238. }
  6239. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6240. void disable_all_solenoids() {
  6241. OUT_WRITE(SOL0_PIN, LOW);
  6242. OUT_WRITE(SOL1_PIN, LOW);
  6243. OUT_WRITE(SOL2_PIN, LOW);
  6244. OUT_WRITE(SOL3_PIN, LOW);
  6245. }
  6246. /**
  6247. * M380: Enable solenoid on the active extruder
  6248. */
  6249. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6250. /**
  6251. * M381: Disable all solenoids
  6252. */
  6253. inline void gcode_M381() { disable_all_solenoids(); }
  6254. #endif // EXT_SOLENOID
  6255. /**
  6256. * M400: Finish all moves
  6257. */
  6258. inline void gcode_M400() { stepper.synchronize(); }
  6259. #if HAS_BED_PROBE
  6260. /**
  6261. * M401: Engage Z Servo endstop if available
  6262. */
  6263. inline void gcode_M401() { DEPLOY_PROBE(); }
  6264. /**
  6265. * M402: Retract Z Servo endstop if enabled
  6266. */
  6267. inline void gcode_M402() { STOW_PROBE(); }
  6268. #endif // HAS_BED_PROBE
  6269. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6270. /**
  6271. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6272. */
  6273. inline void gcode_M404() {
  6274. if (code_seen('W')) {
  6275. filament_width_nominal = code_value_linear_units();
  6276. }
  6277. else {
  6278. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6279. SERIAL_PROTOCOLLN(filament_width_nominal);
  6280. }
  6281. }
  6282. /**
  6283. * M405: Turn on filament sensor for control
  6284. */
  6285. inline void gcode_M405() {
  6286. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6287. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6288. if (code_seen('D')) meas_delay_cm = code_value_int();
  6289. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6290. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6291. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  6292. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6293. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  6294. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6295. }
  6296. filament_sensor = true;
  6297. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6298. //SERIAL_PROTOCOL(filament_width_meas);
  6299. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6300. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6301. }
  6302. /**
  6303. * M406: Turn off filament sensor for control
  6304. */
  6305. inline void gcode_M406() { filament_sensor = false; }
  6306. /**
  6307. * M407: Get measured filament diameter on serial output
  6308. */
  6309. inline void gcode_M407() {
  6310. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6311. SERIAL_PROTOCOLLN(filament_width_meas);
  6312. }
  6313. #endif // FILAMENT_WIDTH_SENSOR
  6314. void quickstop_stepper() {
  6315. stepper.quick_stop();
  6316. stepper.synchronize();
  6317. set_current_from_steppers_for_axis(ALL_AXES);
  6318. SYNC_PLAN_POSITION_KINEMATIC();
  6319. }
  6320. #if PLANNER_LEVELING
  6321. /**
  6322. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6323. *
  6324. * S[bool] Turns leveling on or off
  6325. * Z[height] Sets the Z fade height (0 or none to disable)
  6326. * V[bool] Verbose - Print the leveling grid
  6327. *
  6328. * With AUTO_BED_LEVELING_UBL only:
  6329. *
  6330. * L[index] Load UBL mesh from index (0 is default)
  6331. */
  6332. inline void gcode_M420() {
  6333. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6334. // L to load a mesh from the EEPROM
  6335. if (code_seen('L')) {
  6336. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  6337. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  6338. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  6339. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  6340. return;
  6341. }
  6342. ubl.load_mesh(storage_slot);
  6343. if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state();
  6344. ubl.state.eeprom_storage_slot = storage_slot;
  6345. ubl.display_map(0); // Right now, we only support one type of map
  6346. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  6347. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  6348. }
  6349. #endif // AUTO_BED_LEVELING_UBL
  6350. // V to print the matrix or mesh
  6351. if (code_seen('V')) {
  6352. #if ABL_PLANAR
  6353. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  6354. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6355. if (bilinear_grid_spacing[X_AXIS]) {
  6356. print_bilinear_leveling_grid();
  6357. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6358. bed_level_virt_print();
  6359. #endif
  6360. }
  6361. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6362. ubl.display_map(0); // Currently only supports one map type
  6363. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  6364. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  6365. #elif ENABLED(MESH_BED_LEVELING)
  6366. if (mbl.has_mesh()) {
  6367. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  6368. mbl_mesh_report();
  6369. }
  6370. #endif
  6371. }
  6372. bool to_enable = false;
  6373. if (code_seen('S')) {
  6374. to_enable = code_value_bool();
  6375. set_bed_leveling_enabled(to_enable);
  6376. }
  6377. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  6378. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  6379. #endif
  6380. const bool new_status =
  6381. #if ENABLED(MESH_BED_LEVELING)
  6382. mbl.active()
  6383. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6384. ubl.state.active
  6385. #else
  6386. planner.abl_enabled
  6387. #endif
  6388. ;
  6389. if (to_enable && !new_status) {
  6390. SERIAL_ERROR_START;
  6391. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  6392. }
  6393. SERIAL_ECHO_START;
  6394. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  6395. }
  6396. #endif
  6397. #if ENABLED(MESH_BED_LEVELING)
  6398. /**
  6399. * M421: Set a single Mesh Bed Leveling Z coordinate
  6400. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  6401. */
  6402. inline void gcode_M421() {
  6403. int8_t px = 0, py = 0;
  6404. float z = 0;
  6405. bool hasX, hasY, hasZ, hasI, hasJ;
  6406. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  6407. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  6408. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6409. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6410. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6411. if (hasX && hasY && hasZ) {
  6412. if (px >= 0 && py >= 0)
  6413. mbl.set_z(px, py, z);
  6414. else {
  6415. SERIAL_ERROR_START;
  6416. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6417. }
  6418. }
  6419. else if (hasI && hasJ && hasZ) {
  6420. if (WITHIN(px, 0, MESH_NUM_X_POINTS - 1) && WITHIN(py, 0, MESH_NUM_Y_POINTS - 1))
  6421. mbl.set_z(px, py, z);
  6422. else {
  6423. SERIAL_ERROR_START;
  6424. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6425. }
  6426. }
  6427. else {
  6428. SERIAL_ERROR_START;
  6429. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6430. }
  6431. }
  6432. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6433. /**
  6434. * M421: Set a single Mesh Bed Leveling Z coordinate
  6435. *
  6436. * M421 I<xindex> J<yindex> Z<linear>
  6437. */
  6438. inline void gcode_M421() {
  6439. int8_t px = 0, py = 0;
  6440. float z = 0;
  6441. bool hasI, hasJ, hasZ;
  6442. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6443. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6444. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6445. if (hasI && hasJ && hasZ) {
  6446. if (WITHIN(px, 0, ABL_GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, ABL_GRID_MAX_POINTS_X - 1)) {
  6447. bed_level_grid[px][py] = z;
  6448. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6449. bed_level_virt_interpolate();
  6450. #endif
  6451. }
  6452. else {
  6453. SERIAL_ERROR_START;
  6454. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6455. }
  6456. }
  6457. else {
  6458. SERIAL_ERROR_START;
  6459. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6460. }
  6461. }
  6462. #endif
  6463. #if DISABLED(NO_WORKSPACE_OFFSETS)
  6464. /**
  6465. * M428: Set home_offset based on the distance between the
  6466. * current_position and the nearest "reference point."
  6467. * If an axis is past center its endstop position
  6468. * is the reference-point. Otherwise it uses 0. This allows
  6469. * the Z offset to be set near the bed when using a max endstop.
  6470. *
  6471. * M428 can't be used more than 2cm away from 0 or an endstop.
  6472. *
  6473. * Use M206 to set these values directly.
  6474. */
  6475. inline void gcode_M428() {
  6476. bool err = false;
  6477. LOOP_XYZ(i) {
  6478. if (axis_homed[i]) {
  6479. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  6480. diff = current_position[i] - LOGICAL_POSITION(base, i);
  6481. if (WITHIN(diff, -20, 20)) {
  6482. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  6483. }
  6484. else {
  6485. SERIAL_ERROR_START;
  6486. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  6487. LCD_ALERTMESSAGEPGM("Err: Too far!");
  6488. BUZZ(200, 40);
  6489. err = true;
  6490. break;
  6491. }
  6492. }
  6493. }
  6494. if (!err) {
  6495. SYNC_PLAN_POSITION_KINEMATIC();
  6496. report_current_position();
  6497. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  6498. BUZZ(100, 659);
  6499. BUZZ(100, 698);
  6500. }
  6501. }
  6502. #endif // NO_WORKSPACE_OFFSETS
  6503. /**
  6504. * M500: Store settings in EEPROM
  6505. */
  6506. inline void gcode_M500() {
  6507. (void)Config_StoreSettings();
  6508. }
  6509. /**
  6510. * M501: Read settings from EEPROM
  6511. */
  6512. inline void gcode_M501() {
  6513. (void)Config_RetrieveSettings();
  6514. }
  6515. /**
  6516. * M502: Revert to default settings
  6517. */
  6518. inline void gcode_M502() {
  6519. (void)Config_ResetDefault();
  6520. }
  6521. /**
  6522. * M503: print settings currently in memory
  6523. */
  6524. inline void gcode_M503() {
  6525. (void)Config_PrintSettings(code_seen('S') && !code_value_bool());
  6526. }
  6527. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6528. /**
  6529. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  6530. */
  6531. inline void gcode_M540() {
  6532. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  6533. }
  6534. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6535. #if HAS_BED_PROBE
  6536. inline void gcode_M851() {
  6537. SERIAL_ECHO_START;
  6538. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  6539. SERIAL_CHAR(' ');
  6540. if (code_seen('Z')) {
  6541. float value = code_value_axis_units(Z_AXIS);
  6542. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  6543. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6544. // Correct bilinear grid for new probe offset
  6545. const float diff = value - zprobe_zoffset;
  6546. if (diff) {
  6547. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  6548. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  6549. bed_level_grid[x][y] += diff;
  6550. }
  6551. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6552. bed_level_virt_interpolate();
  6553. #endif
  6554. #endif
  6555. zprobe_zoffset = value;
  6556. SERIAL_ECHO(zprobe_zoffset);
  6557. }
  6558. else {
  6559. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  6560. SERIAL_CHAR(' ');
  6561. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  6562. }
  6563. }
  6564. else {
  6565. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  6566. }
  6567. SERIAL_EOL;
  6568. }
  6569. #endif // HAS_BED_PROBE
  6570. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6571. void filament_change_beep(const bool init=false) {
  6572. static millis_t next_buzz = 0;
  6573. static uint16_t runout_beep = 0;
  6574. if (init) next_buzz = runout_beep = 0;
  6575. const millis_t ms = millis();
  6576. if (ELAPSED(ms, next_buzz)) {
  6577. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  6578. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  6579. BUZZ(300, 2000);
  6580. runout_beep++;
  6581. }
  6582. }
  6583. }
  6584. static bool busy_doing_M600 = false;
  6585. /**
  6586. * M600: Pause for filament change
  6587. *
  6588. * E[distance] - Retract the filament this far (negative value)
  6589. * Z[distance] - Move the Z axis by this distance
  6590. * X[position] - Move to this X position, with Y
  6591. * Y[position] - Move to this Y position, with X
  6592. * L[distance] - Retract distance for removal (manual reload)
  6593. *
  6594. * Default values are used for omitted arguments.
  6595. *
  6596. */
  6597. inline void gcode_M600() {
  6598. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  6599. SERIAL_ERROR_START;
  6600. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  6601. return;
  6602. }
  6603. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  6604. // Pause the print job timer
  6605. const bool job_running = print_job_timer.isRunning();
  6606. print_job_timer.pause();
  6607. // Show initial message and wait for synchronize steppers
  6608. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  6609. stepper.synchronize();
  6610. // Save current position of all axes
  6611. float lastpos[XYZE];
  6612. COPY(lastpos, current_position);
  6613. set_destination_to_current();
  6614. // Initial retract before move to filament change position
  6615. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  6616. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6617. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6618. #endif
  6619. ;
  6620. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6621. // Lift Z axis
  6622. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  6623. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6624. FILAMENT_CHANGE_Z_ADD
  6625. #else
  6626. 0
  6627. #endif
  6628. ;
  6629. if (z_lift > 0) {
  6630. destination[Z_AXIS] += z_lift;
  6631. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6632. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6633. }
  6634. // Move XY axes to filament exchange position
  6635. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  6636. #ifdef FILAMENT_CHANGE_X_POS
  6637. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  6638. #endif
  6639. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  6640. #ifdef FILAMENT_CHANGE_Y_POS
  6641. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  6642. #endif
  6643. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6644. stepper.synchronize();
  6645. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  6646. idle();
  6647. // Unload filament
  6648. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6649. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  6650. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  6651. #endif
  6652. ;
  6653. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  6654. // Synchronize steppers and then disable extruders steppers for manual filament changing
  6655. stepper.synchronize();
  6656. disable_e_steppers();
  6657. safe_delay(100);
  6658. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  6659. bool nozzle_timed_out = false;
  6660. float temps[4];
  6661. // Wait for filament insert by user and press button
  6662. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6663. #if HAS_BUZZER
  6664. filament_change_beep(true);
  6665. #endif
  6666. idle();
  6667. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  6668. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6669. wait_for_user = true; // LCD click or M108 will clear this
  6670. while (wait_for_user) {
  6671. if (nozzle_timed_out)
  6672. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6673. #if HAS_BUZZER
  6674. filament_change_beep();
  6675. #endif
  6676. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  6677. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  6678. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  6679. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6680. }
  6681. idle(true);
  6682. }
  6683. KEEPALIVE_STATE(IN_HANDLER);
  6684. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  6685. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  6686. // Show "wait for heating"
  6687. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  6688. wait_for_heatup = true;
  6689. while (wait_for_heatup) {
  6690. idle();
  6691. wait_for_heatup = false;
  6692. HOTEND_LOOP() {
  6693. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  6694. wait_for_heatup = true;
  6695. break;
  6696. }
  6697. }
  6698. }
  6699. // Show "insert filament"
  6700. if (nozzle_timed_out)
  6701. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6702. #if HAS_BUZZER
  6703. filament_change_beep(true);
  6704. #endif
  6705. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6706. wait_for_user = true; // LCD click or M108 will clear this
  6707. while (wait_for_user && nozzle_timed_out) {
  6708. #if HAS_BUZZER
  6709. filament_change_beep();
  6710. #endif
  6711. idle(true);
  6712. }
  6713. KEEPALIVE_STATE(IN_HANDLER);
  6714. // Show "load" message
  6715. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  6716. // Load filament
  6717. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  6718. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  6719. + FILAMENT_CHANGE_LOAD_LENGTH
  6720. #endif
  6721. ;
  6722. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  6723. stepper.synchronize();
  6724. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  6725. do {
  6726. // "Wait for filament extrude"
  6727. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  6728. // Extrude filament to get into hotend
  6729. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  6730. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  6731. stepper.synchronize();
  6732. // Show "Extrude More" / "Resume" menu and wait for reply
  6733. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6734. wait_for_user = false;
  6735. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  6736. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  6737. KEEPALIVE_STATE(IN_HANDLER);
  6738. // Keep looping if "Extrude More" was selected
  6739. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  6740. #endif
  6741. // "Wait for print to resume"
  6742. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  6743. // Set extruder to saved position
  6744. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6745. planner.set_e_position_mm(current_position[E_AXIS]);
  6746. #if IS_KINEMATIC
  6747. // Move XYZ to starting position
  6748. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6749. #else
  6750. // Move XY to starting position, then Z
  6751. destination[X_AXIS] = lastpos[X_AXIS];
  6752. destination[Y_AXIS] = lastpos[Y_AXIS];
  6753. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6754. destination[Z_AXIS] = lastpos[Z_AXIS];
  6755. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6756. #endif
  6757. stepper.synchronize();
  6758. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6759. filament_ran_out = false;
  6760. #endif
  6761. // Show status screen
  6762. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6763. // Resume the print job timer if it was running
  6764. if (job_running) print_job_timer.start();
  6765. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  6766. }
  6767. #endif // FILAMENT_CHANGE_FEATURE
  6768. #if ENABLED(DUAL_X_CARRIAGE)
  6769. /**
  6770. * M605: Set dual x-carriage movement mode
  6771. *
  6772. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6773. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6774. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6775. * units x-offset and an optional differential hotend temperature of
  6776. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6777. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6778. *
  6779. * Note: the X axis should be homed after changing dual x-carriage mode.
  6780. */
  6781. inline void gcode_M605() {
  6782. stepper.synchronize();
  6783. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6784. switch (dual_x_carriage_mode) {
  6785. case DXC_FULL_CONTROL_MODE:
  6786. case DXC_AUTO_PARK_MODE:
  6787. break;
  6788. case DXC_DUPLICATION_MODE:
  6789. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6790. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6791. SERIAL_ECHO_START;
  6792. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6793. SERIAL_CHAR(' ');
  6794. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6795. SERIAL_CHAR(',');
  6796. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6797. SERIAL_CHAR(' ');
  6798. SERIAL_ECHO(duplicate_extruder_x_offset);
  6799. SERIAL_CHAR(',');
  6800. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6801. break;
  6802. default:
  6803. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6804. break;
  6805. }
  6806. active_extruder_parked = false;
  6807. extruder_duplication_enabled = false;
  6808. delayed_move_time = 0;
  6809. }
  6810. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  6811. inline void gcode_M605() {
  6812. stepper.synchronize();
  6813. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  6814. SERIAL_ECHO_START;
  6815. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  6816. }
  6817. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  6818. #if ENABLED(LIN_ADVANCE)
  6819. /**
  6820. * M905: Set advance factor
  6821. */
  6822. inline void gcode_M905() {
  6823. stepper.synchronize();
  6824. const float newK = code_seen('K') ? code_value_float() : -1,
  6825. newD = code_seen('D') ? code_value_float() : -1,
  6826. newW = code_seen('W') ? code_value_float() : -1,
  6827. newH = code_seen('H') ? code_value_float() : -1;
  6828. if (newK >= 0.0) planner.set_extruder_advance_k(newK);
  6829. SERIAL_ECHO_START;
  6830. SERIAL_ECHOLNPAIR("Advance factor: ", planner.get_extruder_advance_k());
  6831. if (newD >= 0 || newW >= 0 || newH >= 0) {
  6832. const float ratio = (!newD || !newW || !newH) ? 0 : (newW * newH) / (sq(newD * 0.5) * M_PI);
  6833. planner.set_advance_ed_ratio(ratio);
  6834. SERIAL_ECHO_START;
  6835. SERIAL_ECHOPGM("E/D ratio: ");
  6836. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Automatic");
  6837. }
  6838. }
  6839. #endif // LIN_ADVANCE
  6840. #if ENABLED(HAVE_TMC2130)
  6841. static void tmc2130_print_current(const int mA, const char name) {
  6842. SERIAL_CHAR(name);
  6843. SERIAL_ECHOPGM(" axis driver current: ");
  6844. SERIAL_ECHOLN(mA);
  6845. }
  6846. static void tmc2130_set_current(const int mA, TMC2130Stepper &st, const char name) {
  6847. tmc2130_print_current(mA, name);
  6848. st.setCurrent(mA, 0.11, 0.5);
  6849. }
  6850. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  6851. tmc2130_print_current(st.getCurrent(), name);
  6852. }
  6853. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  6854. SERIAL_CHAR(name);
  6855. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  6856. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  6857. }
  6858. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  6859. st.clear_otpw();
  6860. SERIAL_CHAR(name);
  6861. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  6862. }
  6863. /**
  6864. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  6865. *
  6866. * Report driver currents when no axis specified
  6867. */
  6868. inline void gcode_M906() {
  6869. uint16_t values[XYZE];
  6870. LOOP_XYZE(i)
  6871. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  6872. #if ENABLED(X_IS_TMC2130)
  6873. if (values[X_AXIS]) tmc2130_set_current(values[X_AXIS], stepperX, 'X');
  6874. else tmc2130_get_current(stepperX, 'X');
  6875. #endif
  6876. #if ENABLED(Y_IS_TMC2130)
  6877. if (values[Y_AXIS]) tmc2130_set_current(values[Y_AXIS], stepperY, 'Y');
  6878. else tmc2130_get_current(stepperY, 'Y');
  6879. #endif
  6880. #if ENABLED(Z_IS_TMC2130)
  6881. if (values[Z_AXIS]) tmc2130_set_current(values[Z_AXIS], stepperZ, 'Z');
  6882. else tmc2130_get_current(stepperZ, 'Z');
  6883. #endif
  6884. #if ENABLED(E0_IS_TMC2130)
  6885. if (values[E_AXIS]) tmc2130_set_current(values[E_AXIS], stepperE0, 'E');
  6886. else tmc2130_get_current(stepperE0, 'E');
  6887. #endif
  6888. }
  6889. /**
  6890. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  6891. * The flag is held by the library and persist until manually cleared by M912
  6892. */
  6893. inline void gcode_M911() {
  6894. #if ENABLED(X_IS_TMC2130)
  6895. tmc2130_report_otpw(stepperX, 'X');
  6896. #endif
  6897. #if ENABLED(Y_IS_TMC2130)
  6898. tmc2130_report_otpw(stepperY, 'Y');
  6899. #endif
  6900. #if ENABLED(Z_IS_TMC2130)
  6901. tmc2130_report_otpw(stepperZ, 'Z');
  6902. #endif
  6903. #if ENABLED(E0_IS_TMC2130)
  6904. tmc2130_report_otpw(stepperE0, 'E');
  6905. #endif
  6906. }
  6907. /**
  6908. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  6909. */
  6910. inline void gcode_M912() {
  6911. #if ENABLED(X_IS_TMC2130)
  6912. if (code_seen('X')) tmc2130_clear_otpw(stepperX, 'X');
  6913. #endif
  6914. #if ENABLED(Y_IS_TMC2130)
  6915. if (code_seen('Y')) tmc2130_clear_otpw(stepperY, 'Y');
  6916. #endif
  6917. #if ENABLED(Z_IS_TMC2130)
  6918. if (code_seen('Z')) tmc2130_clear_otpw(stepperZ, 'Z');
  6919. #endif
  6920. #if ENABLED(E0_IS_TMC2130)
  6921. if (code_seen('E')) tmc2130_clear_otpw(stepperE0, 'E');
  6922. #endif
  6923. }
  6924. #endif // HAVE_TMC2130
  6925. /**
  6926. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  6927. */
  6928. inline void gcode_M907() {
  6929. #if HAS_DIGIPOTSS
  6930. LOOP_XYZE(i)
  6931. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  6932. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  6933. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  6934. #elif HAS_MOTOR_CURRENT_PWM
  6935. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  6936. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  6937. #endif
  6938. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  6939. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  6940. #endif
  6941. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  6942. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  6943. #endif
  6944. #endif
  6945. #if ENABLED(DIGIPOT_I2C)
  6946. // this one uses actual amps in floating point
  6947. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  6948. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  6949. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  6950. #endif
  6951. #if ENABLED(DAC_STEPPER_CURRENT)
  6952. if (code_seen('S')) {
  6953. float dac_percent = code_value_float();
  6954. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  6955. }
  6956. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  6957. #endif
  6958. }
  6959. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6960. /**
  6961. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  6962. */
  6963. inline void gcode_M908() {
  6964. #if HAS_DIGIPOTSS
  6965. stepper.digitalPotWrite(
  6966. code_seen('P') ? code_value_int() : 0,
  6967. code_seen('S') ? code_value_int() : 0
  6968. );
  6969. #endif
  6970. #ifdef DAC_STEPPER_CURRENT
  6971. dac_current_raw(
  6972. code_seen('P') ? code_value_byte() : -1,
  6973. code_seen('S') ? code_value_ushort() : 0
  6974. );
  6975. #endif
  6976. }
  6977. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6978. inline void gcode_M909() { dac_print_values(); }
  6979. inline void gcode_M910() { dac_commit_eeprom(); }
  6980. #endif
  6981. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6982. #if HAS_MICROSTEPS
  6983. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6984. inline void gcode_M350() {
  6985. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  6986. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  6987. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  6988. stepper.microstep_readings();
  6989. }
  6990. /**
  6991. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  6992. * S# determines MS1 or MS2, X# sets the pin high/low.
  6993. */
  6994. inline void gcode_M351() {
  6995. if (code_seen('S')) switch (code_value_byte()) {
  6996. case 1:
  6997. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  6998. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  6999. break;
  7000. case 2:
  7001. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7002. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7003. break;
  7004. }
  7005. stepper.microstep_readings();
  7006. }
  7007. #endif // HAS_MICROSTEPS
  7008. #if HAS_CASE_LIGHT
  7009. uint8_t case_light_brightness = 255;
  7010. void update_case_light() {
  7011. digitalWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7012. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7013. }
  7014. #endif // HAS_CASE_LIGHT
  7015. /**
  7016. * M355: Turn case lights on/off and set brightness
  7017. *
  7018. * S<bool> Turn case light on or off
  7019. * P<byte> Set case light brightness (PWM pin required)
  7020. */
  7021. inline void gcode_M355() {
  7022. #if HAS_CASE_LIGHT
  7023. if (code_seen('P')) case_light_brightness = code_value_byte();
  7024. if (code_seen('S')) case_light_on = code_value_bool();
  7025. update_case_light();
  7026. SERIAL_ECHO_START;
  7027. SERIAL_ECHOPGM("Case lights ");
  7028. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7029. #else
  7030. SERIAL_ERROR_START;
  7031. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7032. #endif // HAS_CASE_LIGHT
  7033. }
  7034. #if ENABLED(MIXING_EXTRUDER)
  7035. /**
  7036. * M163: Set a single mix factor for a mixing extruder
  7037. * This is called "weight" by some systems.
  7038. *
  7039. * S[index] The channel index to set
  7040. * P[float] The mix value
  7041. *
  7042. */
  7043. inline void gcode_M163() {
  7044. int mix_index = code_seen('S') ? code_value_int() : 0;
  7045. if (mix_index < MIXING_STEPPERS) {
  7046. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7047. NOLESS(mix_value, 0.0);
  7048. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7049. }
  7050. }
  7051. #if MIXING_VIRTUAL_TOOLS > 1
  7052. /**
  7053. * M164: Store the current mix factors as a virtual tool.
  7054. *
  7055. * S[index] The virtual tool to store
  7056. *
  7057. */
  7058. inline void gcode_M164() {
  7059. int tool_index = code_seen('S') ? code_value_int() : 0;
  7060. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7061. normalize_mix();
  7062. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7063. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7064. }
  7065. }
  7066. #endif
  7067. #if ENABLED(DIRECT_MIXING_IN_G1)
  7068. /**
  7069. * M165: Set multiple mix factors for a mixing extruder.
  7070. * Factors that are left out will be set to 0.
  7071. * All factors together must add up to 1.0.
  7072. *
  7073. * A[factor] Mix factor for extruder stepper 1
  7074. * B[factor] Mix factor for extruder stepper 2
  7075. * C[factor] Mix factor for extruder stepper 3
  7076. * D[factor] Mix factor for extruder stepper 4
  7077. * H[factor] Mix factor for extruder stepper 5
  7078. * I[factor] Mix factor for extruder stepper 6
  7079. *
  7080. */
  7081. inline void gcode_M165() { gcode_get_mix(); }
  7082. #endif
  7083. #endif // MIXING_EXTRUDER
  7084. /**
  7085. * M999: Restart after being stopped
  7086. *
  7087. * Default behaviour is to flush the serial buffer and request
  7088. * a resend to the host starting on the last N line received.
  7089. *
  7090. * Sending "M999 S1" will resume printing without flushing the
  7091. * existing command buffer.
  7092. *
  7093. */
  7094. inline void gcode_M999() {
  7095. Running = true;
  7096. lcd_reset_alert_level();
  7097. if (code_seen('S') && code_value_bool()) return;
  7098. // gcode_LastN = Stopped_gcode_LastN;
  7099. FlushSerialRequestResend();
  7100. }
  7101. #if ENABLED(SWITCHING_EXTRUDER)
  7102. inline void move_extruder_servo(uint8_t e) {
  7103. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7104. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7105. safe_delay(500);
  7106. }
  7107. #endif
  7108. inline void invalid_extruder_error(const uint8_t &e) {
  7109. SERIAL_ECHO_START;
  7110. SERIAL_CHAR('T');
  7111. SERIAL_ECHO_F(e, DEC);
  7112. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7113. }
  7114. /**
  7115. * Perform a tool-change, which may result in moving the
  7116. * previous tool out of the way and the new tool into place.
  7117. */
  7118. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7119. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7120. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7121. return invalid_extruder_error(tmp_extruder);
  7122. // T0-Tnnn: Switch virtual tool by changing the mix
  7123. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7124. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7125. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7126. #if HOTENDS > 1
  7127. if (tmp_extruder >= EXTRUDERS)
  7128. return invalid_extruder_error(tmp_extruder);
  7129. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7130. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7131. if (tmp_extruder != active_extruder) {
  7132. if (!no_move && axis_unhomed_error(true, true, true)) {
  7133. SERIAL_ECHOLNPGM("No move on toolchange");
  7134. no_move = true;
  7135. }
  7136. // Save current position to destination, for use later
  7137. set_destination_to_current();
  7138. #if ENABLED(DUAL_X_CARRIAGE)
  7139. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7140. if (DEBUGGING(LEVELING)) {
  7141. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7142. switch (dual_x_carriage_mode) {
  7143. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7144. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7145. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7146. }
  7147. }
  7148. #endif
  7149. const float xhome = x_home_pos(active_extruder);
  7150. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7151. && IsRunning()
  7152. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7153. ) {
  7154. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7155. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7156. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7157. #endif
  7158. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7159. if (DEBUGGING(LEVELING)) {
  7160. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7161. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7162. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7163. }
  7164. #endif
  7165. // Park old head: 1) raise 2) move to park position 3) lower
  7166. for (uint8_t i = 0; i < 3; i++)
  7167. planner.buffer_line(
  7168. i == 0 ? current_position[X_AXIS] : xhome,
  7169. current_position[Y_AXIS],
  7170. i == 2 ? current_position[Z_AXIS] : raised_z,
  7171. current_position[E_AXIS],
  7172. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7173. active_extruder
  7174. );
  7175. stepper.synchronize();
  7176. }
  7177. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7178. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7179. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7180. // Activate the new extruder
  7181. active_extruder = tmp_extruder;
  7182. // This function resets the max/min values - the current position may be overwritten below.
  7183. set_axis_is_at_home(X_AXIS);
  7184. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7185. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7186. #endif
  7187. // Only when auto-parking are carriages safe to move
  7188. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7189. switch (dual_x_carriage_mode) {
  7190. case DXC_FULL_CONTROL_MODE:
  7191. // New current position is the position of the activated extruder
  7192. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7193. // Save the inactive extruder's position (from the old current_position)
  7194. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7195. break;
  7196. case DXC_AUTO_PARK_MODE:
  7197. // record raised toolhead position for use by unpark
  7198. COPY(raised_parked_position, current_position);
  7199. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7200. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7201. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7202. #endif
  7203. active_extruder_parked = true;
  7204. delayed_move_time = 0;
  7205. break;
  7206. case DXC_DUPLICATION_MODE:
  7207. // If the new extruder is the left one, set it "parked"
  7208. // This triggers the second extruder to move into the duplication position
  7209. active_extruder_parked = (active_extruder == 0);
  7210. if (active_extruder_parked)
  7211. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7212. else
  7213. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7214. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7215. extruder_duplication_enabled = false;
  7216. break;
  7217. }
  7218. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7219. if (DEBUGGING(LEVELING)) {
  7220. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  7221. DEBUG_POS("New extruder (parked)", current_position);
  7222. }
  7223. #endif
  7224. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  7225. #else // !DUAL_X_CARRIAGE
  7226. #if ENABLED(SWITCHING_EXTRUDER)
  7227. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  7228. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  7229. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  7230. // Always raise by some amount (destination copied from current_position earlier)
  7231. current_position[Z_AXIS] += z_raise;
  7232. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7233. stepper.synchronize();
  7234. move_extruder_servo(active_extruder);
  7235. #endif
  7236. /**
  7237. * Set current_position to the position of the new nozzle.
  7238. * Offsets are based on linear distance, so we need to get
  7239. * the resulting position in coordinate space.
  7240. *
  7241. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  7242. * - With mesh leveling, update Z for the new position
  7243. * - Otherwise, just use the raw linear distance
  7244. *
  7245. * Software endstops are altered here too. Consider a case where:
  7246. * E0 at X=0 ... E1 at X=10
  7247. * When we switch to E1 now X=10, but E1 can't move left.
  7248. * To express this we apply the change in XY to the software endstops.
  7249. * E1 can move farther right than E0, so the right limit is extended.
  7250. *
  7251. * Note that we don't adjust the Z software endstops. Why not?
  7252. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  7253. * because the bed is 1mm lower at the new position. As long as
  7254. * the first nozzle is out of the way, the carriage should be
  7255. * allowed to move 1mm lower. This technically "breaks" the
  7256. * Z software endstop. But this is technically correct (and
  7257. * there is no viable alternative).
  7258. */
  7259. #if ABL_PLANAR
  7260. // Offset extruder, make sure to apply the bed level rotation matrix
  7261. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  7262. hotend_offset[Y_AXIS][tmp_extruder],
  7263. 0),
  7264. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  7265. hotend_offset[Y_AXIS][active_extruder],
  7266. 0),
  7267. offset_vec = tmp_offset_vec - act_offset_vec;
  7268. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7269. if (DEBUGGING(LEVELING)) {
  7270. tmp_offset_vec.debug("tmp_offset_vec");
  7271. act_offset_vec.debug("act_offset_vec");
  7272. offset_vec.debug("offset_vec (BEFORE)");
  7273. }
  7274. #endif
  7275. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  7276. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7277. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  7278. #endif
  7279. // Adjustments to the current position
  7280. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  7281. current_position[Z_AXIS] += offset_vec.z;
  7282. #else // !ABL_PLANAR
  7283. const float xydiff[2] = {
  7284. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  7285. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  7286. };
  7287. #if ENABLED(MESH_BED_LEVELING)
  7288. if (mbl.active()) {
  7289. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7290. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  7291. #endif
  7292. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  7293. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  7294. z1 = current_position[Z_AXIS], z2 = z1;
  7295. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  7296. planner.apply_leveling(x2, y2, z2);
  7297. current_position[Z_AXIS] += z2 - z1;
  7298. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7299. if (DEBUGGING(LEVELING))
  7300. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  7301. #endif
  7302. }
  7303. #endif // MESH_BED_LEVELING
  7304. #endif // !HAS_ABL
  7305. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7306. if (DEBUGGING(LEVELING)) {
  7307. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  7308. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  7309. SERIAL_ECHOLNPGM(" }");
  7310. }
  7311. #endif
  7312. // The newly-selected extruder XY is actually at...
  7313. current_position[X_AXIS] += xydiff[X_AXIS];
  7314. current_position[Y_AXIS] += xydiff[Y_AXIS];
  7315. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE)
  7316. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  7317. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7318. position_shift[i] += xydiff[i];
  7319. #endif
  7320. update_software_endstops((AxisEnum)i);
  7321. }
  7322. #endif
  7323. // Set the new active extruder
  7324. active_extruder = tmp_extruder;
  7325. #endif // !DUAL_X_CARRIAGE
  7326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7327. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  7328. #endif
  7329. // Tell the planner the new "current position"
  7330. SYNC_PLAN_POSITION_KINEMATIC();
  7331. // Move to the "old position" (move the extruder into place)
  7332. if (!no_move && IsRunning()) {
  7333. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7334. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  7335. #endif
  7336. prepare_move_to_destination();
  7337. }
  7338. #if ENABLED(SWITCHING_EXTRUDER)
  7339. // Move back down, if needed. (Including when the new tool is higher.)
  7340. if (z_raise != z_diff) {
  7341. destination[Z_AXIS] += z_diff;
  7342. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  7343. prepare_move_to_destination();
  7344. }
  7345. #endif
  7346. } // (tmp_extruder != active_extruder)
  7347. stepper.synchronize();
  7348. #if ENABLED(EXT_SOLENOID)
  7349. disable_all_solenoids();
  7350. enable_solenoid_on_active_extruder();
  7351. #endif // EXT_SOLENOID
  7352. feedrate_mm_s = old_feedrate_mm_s;
  7353. #else // HOTENDS <= 1
  7354. // Set the new active extruder
  7355. active_extruder = tmp_extruder;
  7356. UNUSED(fr_mm_s);
  7357. UNUSED(no_move);
  7358. #endif // HOTENDS <= 1
  7359. SERIAL_ECHO_START;
  7360. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  7361. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7362. }
  7363. /**
  7364. * T0-T3: Switch tool, usually switching extruders
  7365. *
  7366. * F[units/min] Set the movement feedrate
  7367. * S1 Don't move the tool in XY after change
  7368. */
  7369. inline void gcode_T(uint8_t tmp_extruder) {
  7370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7371. if (DEBUGGING(LEVELING)) {
  7372. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  7373. SERIAL_CHAR(')');
  7374. SERIAL_EOL;
  7375. DEBUG_POS("BEFORE", current_position);
  7376. }
  7377. #endif
  7378. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  7379. tool_change(tmp_extruder);
  7380. #elif HOTENDS > 1
  7381. tool_change(
  7382. tmp_extruder,
  7383. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  7384. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  7385. );
  7386. #endif
  7387. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7388. if (DEBUGGING(LEVELING)) {
  7389. DEBUG_POS("AFTER", current_position);
  7390. SERIAL_ECHOLNPGM("<<< gcode_T");
  7391. }
  7392. #endif
  7393. }
  7394. /**
  7395. * Process a single command and dispatch it to its handler
  7396. * This is called from the main loop()
  7397. */
  7398. void process_next_command() {
  7399. current_command = command_queue[cmd_queue_index_r];
  7400. if (DEBUGGING(ECHO)) {
  7401. SERIAL_ECHO_START;
  7402. SERIAL_ECHOLN(current_command);
  7403. }
  7404. // Sanitize the current command:
  7405. // - Skip leading spaces
  7406. // - Bypass N[-0-9][0-9]*[ ]*
  7407. // - Overwrite * with nul to mark the end
  7408. while (*current_command == ' ') ++current_command;
  7409. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  7410. current_command += 2; // skip N[-0-9]
  7411. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  7412. while (*current_command == ' ') ++current_command; // skip [ ]*
  7413. }
  7414. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  7415. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  7416. char *cmd_ptr = current_command;
  7417. // Get the command code, which must be G, M, or T
  7418. char command_code = *cmd_ptr++;
  7419. // Skip spaces to get the numeric part
  7420. while (*cmd_ptr == ' ') cmd_ptr++;
  7421. // Allow for decimal point in command
  7422. #if ENABLED(G38_PROBE_TARGET)
  7423. uint8_t subcode = 0;
  7424. #endif
  7425. uint16_t codenum = 0; // define ahead of goto
  7426. // Bail early if there's no code
  7427. bool code_is_good = NUMERIC(*cmd_ptr);
  7428. if (!code_is_good) goto ExitUnknownCommand;
  7429. // Get and skip the code number
  7430. do {
  7431. codenum = (codenum * 10) + (*cmd_ptr - '0');
  7432. cmd_ptr++;
  7433. } while (NUMERIC(*cmd_ptr));
  7434. // Allow for decimal point in command
  7435. #if ENABLED(G38_PROBE_TARGET)
  7436. if (*cmd_ptr == '.') {
  7437. cmd_ptr++;
  7438. while (NUMERIC(*cmd_ptr))
  7439. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  7440. }
  7441. #endif
  7442. // Skip all spaces to get to the first argument, or nul
  7443. while (*cmd_ptr == ' ') cmd_ptr++;
  7444. // The command's arguments (if any) start here, for sure!
  7445. current_command_args = cmd_ptr;
  7446. KEEPALIVE_STATE(IN_HANDLER);
  7447. // Handle a known G, M, or T
  7448. switch (command_code) {
  7449. case 'G': switch (codenum) {
  7450. // G0, G1
  7451. case 0:
  7452. case 1:
  7453. #if IS_SCARA
  7454. gcode_G0_G1(codenum == 0);
  7455. #else
  7456. gcode_G0_G1();
  7457. #endif
  7458. break;
  7459. // G2, G3
  7460. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  7461. case 2: // G2 - CW ARC
  7462. case 3: // G3 - CCW ARC
  7463. gcode_G2_G3(codenum == 2);
  7464. break;
  7465. #endif
  7466. // G4 Dwell
  7467. case 4:
  7468. gcode_G4();
  7469. break;
  7470. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7471. // G5
  7472. case 5: // G5 - Cubic B_spline
  7473. gcode_G5();
  7474. break;
  7475. #endif // BEZIER_CURVE_SUPPORT
  7476. #if ENABLED(FWRETRACT)
  7477. case 10: // G10: retract
  7478. case 11: // G11: retract_recover
  7479. gcode_G10_G11(codenum == 10);
  7480. break;
  7481. #endif // FWRETRACT
  7482. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  7483. case 12:
  7484. gcode_G12(); // G12: Nozzle Clean
  7485. break;
  7486. #endif // NOZZLE_CLEAN_FEATURE
  7487. #if ENABLED(INCH_MODE_SUPPORT)
  7488. case 20: //G20: Inch Mode
  7489. gcode_G20();
  7490. break;
  7491. case 21: //G21: MM Mode
  7492. gcode_G21();
  7493. break;
  7494. #endif // INCH_MODE_SUPPORT
  7495. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7496. case 26: // G26: Mesh Validation Pattern generation
  7497. gcode_G26();
  7498. break;
  7499. #endif // AUTO_BED_LEVELING_UBL
  7500. #if ENABLED(NOZZLE_PARK_FEATURE)
  7501. case 27: // G27: Nozzle Park
  7502. gcode_G27();
  7503. break;
  7504. #endif // NOZZLE_PARK_FEATURE
  7505. case 28: // G28: Home all axes, one at a time
  7506. gcode_G28();
  7507. break;
  7508. #if PLANNER_LEVELING && !ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7509. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  7510. // or provides access to the UBL System if enabled.
  7511. gcode_G29();
  7512. break;
  7513. #endif // PLANNER_LEVELING
  7514. #if HAS_BED_PROBE
  7515. case 30: // G30 Single Z probe
  7516. gcode_G30();
  7517. break;
  7518. #if ENABLED(Z_PROBE_SLED)
  7519. case 31: // G31: dock the sled
  7520. gcode_G31();
  7521. break;
  7522. case 32: // G32: undock the sled
  7523. gcode_G32();
  7524. break;
  7525. #endif // Z_PROBE_SLED
  7526. #endif // HAS_BED_PROBE
  7527. #if ENABLED(G38_PROBE_TARGET)
  7528. case 38: // G38.2 & G38.3
  7529. if (subcode == 2 || subcode == 3)
  7530. gcode_G38(subcode == 2);
  7531. break;
  7532. #endif
  7533. case 90: // G90
  7534. relative_mode = false;
  7535. break;
  7536. case 91: // G91
  7537. relative_mode = true;
  7538. break;
  7539. case 92: // G92
  7540. gcode_G92();
  7541. break;
  7542. }
  7543. break;
  7544. case 'M': switch (codenum) {
  7545. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  7546. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  7547. case 1: // M1: Conditional stop - Wait for user button press on LCD
  7548. gcode_M0_M1();
  7549. break;
  7550. #endif // ULTIPANEL
  7551. case 17: // M17: Enable all stepper motors
  7552. gcode_M17();
  7553. break;
  7554. #if ENABLED(SDSUPPORT)
  7555. case 20: // M20: list SD card
  7556. gcode_M20(); break;
  7557. case 21: // M21: init SD card
  7558. gcode_M21(); break;
  7559. case 22: // M22: release SD card
  7560. gcode_M22(); break;
  7561. case 23: // M23: Select file
  7562. gcode_M23(); break;
  7563. case 24: // M24: Start SD print
  7564. gcode_M24(); break;
  7565. case 25: // M25: Pause SD print
  7566. gcode_M25(); break;
  7567. case 26: // M26: Set SD index
  7568. gcode_M26(); break;
  7569. case 27: // M27: Get SD status
  7570. gcode_M27(); break;
  7571. case 28: // M28: Start SD write
  7572. gcode_M28(); break;
  7573. case 29: // M29: Stop SD write
  7574. gcode_M29(); break;
  7575. case 30: // M30 <filename> Delete File
  7576. gcode_M30(); break;
  7577. case 32: // M32: Select file and start SD print
  7578. gcode_M32(); break;
  7579. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  7580. case 33: // M33: Get the long full path to a file or folder
  7581. gcode_M33(); break;
  7582. #endif
  7583. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  7584. case 34: //M34 - Set SD card sorting options
  7585. gcode_M34(); break;
  7586. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  7587. case 928: // M928: Start SD write
  7588. gcode_M928(); break;
  7589. #endif //SDSUPPORT
  7590. case 31: // M31: Report time since the start of SD print or last M109
  7591. gcode_M31(); break;
  7592. case 42: // M42: Change pin state
  7593. gcode_M42(); break;
  7594. #if ENABLED(PINS_DEBUGGING)
  7595. case 43: // M43: Read pin state
  7596. gcode_M43(); break;
  7597. #endif
  7598. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  7599. case 48: // M48: Z probe repeatability test
  7600. gcode_M48();
  7601. break;
  7602. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  7603. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7604. case 49: // M49: Turn on or off G26 debug flag for verbose output
  7605. gcode_M49();
  7606. break;
  7607. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  7608. case 75: // M75: Start print timer
  7609. gcode_M75(); break;
  7610. case 76: // M76: Pause print timer
  7611. gcode_M76(); break;
  7612. case 77: // M77: Stop print timer
  7613. gcode_M77(); break;
  7614. #if ENABLED(PRINTCOUNTER)
  7615. case 78: // M78: Show print statistics
  7616. gcode_M78(); break;
  7617. #endif
  7618. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  7619. case 100: // M100: Free Memory Report
  7620. gcode_M100();
  7621. break;
  7622. #endif
  7623. case 104: // M104: Set hot end temperature
  7624. gcode_M104();
  7625. break;
  7626. case 110: // M110: Set Current Line Number
  7627. gcode_M110();
  7628. break;
  7629. case 111: // M111: Set debug level
  7630. gcode_M111();
  7631. break;
  7632. #if DISABLED(EMERGENCY_PARSER)
  7633. case 108: // M108: Cancel Waiting
  7634. gcode_M108();
  7635. break;
  7636. case 112: // M112: Emergency Stop
  7637. gcode_M112();
  7638. break;
  7639. case 410: // M410 quickstop - Abort all the planned moves.
  7640. gcode_M410();
  7641. break;
  7642. #endif
  7643. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  7644. case 113: // M113: Set Host Keepalive interval
  7645. gcode_M113();
  7646. break;
  7647. #endif
  7648. case 140: // M140: Set bed temperature
  7649. gcode_M140();
  7650. break;
  7651. case 105: // M105: Report current temperature
  7652. gcode_M105();
  7653. KEEPALIVE_STATE(NOT_BUSY);
  7654. return; // "ok" already printed
  7655. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  7656. case 155: // M155: Set temperature auto-report interval
  7657. gcode_M155();
  7658. break;
  7659. #endif
  7660. case 109: // M109: Wait for hotend temperature to reach target
  7661. gcode_M109();
  7662. break;
  7663. #if HAS_TEMP_BED
  7664. case 190: // M190: Wait for bed temperature to reach target
  7665. gcode_M190();
  7666. break;
  7667. #endif // HAS_TEMP_BED
  7668. #if FAN_COUNT > 0
  7669. case 106: // M106: Fan On
  7670. gcode_M106();
  7671. break;
  7672. case 107: // M107: Fan Off
  7673. gcode_M107();
  7674. break;
  7675. #endif // FAN_COUNT > 0
  7676. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7677. case 125: // M125: Store current position and move to filament change position
  7678. gcode_M125(); break;
  7679. #endif
  7680. #if ENABLED(BARICUDA)
  7681. // PWM for HEATER_1_PIN
  7682. #if HAS_HEATER_1
  7683. case 126: // M126: valve open
  7684. gcode_M126();
  7685. break;
  7686. case 127: // M127: valve closed
  7687. gcode_M127();
  7688. break;
  7689. #endif // HAS_HEATER_1
  7690. // PWM for HEATER_2_PIN
  7691. #if HAS_HEATER_2
  7692. case 128: // M128: valve open
  7693. gcode_M128();
  7694. break;
  7695. case 129: // M129: valve closed
  7696. gcode_M129();
  7697. break;
  7698. #endif // HAS_HEATER_2
  7699. #endif // BARICUDA
  7700. #if HAS_POWER_SWITCH
  7701. case 80: // M80: Turn on Power Supply
  7702. gcode_M80();
  7703. break;
  7704. #endif // HAS_POWER_SWITCH
  7705. case 81: // M81: Turn off Power, including Power Supply, if possible
  7706. gcode_M81();
  7707. break;
  7708. case 82: // M83: Set E axis normal mode (same as other axes)
  7709. gcode_M82();
  7710. break;
  7711. case 83: // M83: Set E axis relative mode
  7712. gcode_M83();
  7713. break;
  7714. case 18: // M18 => M84
  7715. case 84: // M84: Disable all steppers or set timeout
  7716. gcode_M18_M84();
  7717. break;
  7718. case 85: // M85: Set inactivity stepper shutdown timeout
  7719. gcode_M85();
  7720. break;
  7721. case 92: // M92: Set the steps-per-unit for one or more axes
  7722. gcode_M92();
  7723. break;
  7724. case 114: // M114: Report current position
  7725. gcode_M114();
  7726. break;
  7727. case 115: // M115: Report capabilities
  7728. gcode_M115();
  7729. break;
  7730. case 117: // M117: Set LCD message text, if possible
  7731. gcode_M117();
  7732. break;
  7733. case 119: // M119: Report endstop states
  7734. gcode_M119();
  7735. break;
  7736. case 120: // M120: Enable endstops
  7737. gcode_M120();
  7738. break;
  7739. case 121: // M121: Disable endstops
  7740. gcode_M121();
  7741. break;
  7742. #if ENABLED(ULTIPANEL)
  7743. case 145: // M145: Set material heatup parameters
  7744. gcode_M145();
  7745. break;
  7746. #endif
  7747. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7748. case 149: // M149: Set temperature units
  7749. gcode_M149();
  7750. break;
  7751. #endif
  7752. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  7753. case 150: // M150: Set Status LED Color
  7754. gcode_M150();
  7755. break;
  7756. #endif // BLINKM
  7757. #if ENABLED(MIXING_EXTRUDER)
  7758. case 163: // M163: Set a component weight for mixing extruder
  7759. gcode_M163();
  7760. break;
  7761. #if MIXING_VIRTUAL_TOOLS > 1
  7762. case 164: // M164: Save current mix as a virtual extruder
  7763. gcode_M164();
  7764. break;
  7765. #endif
  7766. #if ENABLED(DIRECT_MIXING_IN_G1)
  7767. case 165: // M165: Set multiple mix weights
  7768. gcode_M165();
  7769. break;
  7770. #endif
  7771. #endif
  7772. case 200: // M200: Set filament diameter, E to cubic units
  7773. gcode_M200();
  7774. break;
  7775. case 201: // M201: Set max acceleration for print moves (units/s^2)
  7776. gcode_M201();
  7777. break;
  7778. #if 0 // Not used for Sprinter/grbl gen6
  7779. case 202: // M202
  7780. gcode_M202();
  7781. break;
  7782. #endif
  7783. case 203: // M203: Set max feedrate (units/sec)
  7784. gcode_M203();
  7785. break;
  7786. case 204: // M204: Set acceleration
  7787. gcode_M204();
  7788. break;
  7789. case 205: //M205: Set advanced settings
  7790. gcode_M205();
  7791. break;
  7792. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7793. case 206: // M206: Set home offsets
  7794. gcode_M206();
  7795. break;
  7796. #endif
  7797. #if ENABLED(DELTA)
  7798. case 665: // M665: Set delta configurations
  7799. gcode_M665();
  7800. break;
  7801. #endif
  7802. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  7803. case 666: // M666: Set delta or dual endstop adjustment
  7804. gcode_M666();
  7805. break;
  7806. #endif
  7807. #if ENABLED(FWRETRACT)
  7808. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  7809. gcode_M207();
  7810. break;
  7811. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  7812. gcode_M208();
  7813. break;
  7814. case 209: // M209: Turn Automatic Retract Detection on/off
  7815. gcode_M209();
  7816. break;
  7817. #endif // FWRETRACT
  7818. case 211: // M211: Enable, Disable, and/or Report software endstops
  7819. gcode_M211();
  7820. break;
  7821. #if HOTENDS > 1
  7822. case 218: // M218: Set a tool offset
  7823. gcode_M218();
  7824. break;
  7825. #endif
  7826. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  7827. gcode_M220();
  7828. break;
  7829. case 221: // M221: Set Flow Percentage
  7830. gcode_M221();
  7831. break;
  7832. case 226: // M226: Wait until a pin reaches a state
  7833. gcode_M226();
  7834. break;
  7835. #if HAS_SERVOS
  7836. case 280: // M280: Set servo position absolute
  7837. gcode_M280();
  7838. break;
  7839. #endif // HAS_SERVOS
  7840. #if HAS_BUZZER
  7841. case 300: // M300: Play beep tone
  7842. gcode_M300();
  7843. break;
  7844. #endif // HAS_BUZZER
  7845. #if ENABLED(PIDTEMP)
  7846. case 301: // M301: Set hotend PID parameters
  7847. gcode_M301();
  7848. break;
  7849. #endif // PIDTEMP
  7850. #if ENABLED(PIDTEMPBED)
  7851. case 304: // M304: Set bed PID parameters
  7852. gcode_M304();
  7853. break;
  7854. #endif // PIDTEMPBED
  7855. #if defined(CHDK) || HAS_PHOTOGRAPH
  7856. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  7857. gcode_M240();
  7858. break;
  7859. #endif // CHDK || PHOTOGRAPH_PIN
  7860. #if HAS_LCD_CONTRAST
  7861. case 250: // M250: Set LCD contrast
  7862. gcode_M250();
  7863. break;
  7864. #endif // HAS_LCD_CONTRAST
  7865. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7866. case 260: // M260: Send data to an i2c slave
  7867. gcode_M260();
  7868. break;
  7869. case 261: // M261: Request data from an i2c slave
  7870. gcode_M261();
  7871. break;
  7872. #endif // EXPERIMENTAL_I2CBUS
  7873. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7874. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  7875. gcode_M302();
  7876. break;
  7877. #endif // PREVENT_COLD_EXTRUSION
  7878. case 303: // M303: PID autotune
  7879. gcode_M303();
  7880. break;
  7881. #if ENABLED(MORGAN_SCARA)
  7882. case 360: // M360: SCARA Theta pos1
  7883. if (gcode_M360()) return;
  7884. break;
  7885. case 361: // M361: SCARA Theta pos2
  7886. if (gcode_M361()) return;
  7887. break;
  7888. case 362: // M362: SCARA Psi pos1
  7889. if (gcode_M362()) return;
  7890. break;
  7891. case 363: // M363: SCARA Psi pos2
  7892. if (gcode_M363()) return;
  7893. break;
  7894. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  7895. if (gcode_M364()) return;
  7896. break;
  7897. #endif // SCARA
  7898. case 400: // M400: Finish all moves
  7899. gcode_M400();
  7900. break;
  7901. #if HAS_BED_PROBE
  7902. case 401: // M401: Deploy probe
  7903. gcode_M401();
  7904. break;
  7905. case 402: // M402: Stow probe
  7906. gcode_M402();
  7907. break;
  7908. #endif // HAS_BED_PROBE
  7909. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7910. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  7911. gcode_M404();
  7912. break;
  7913. case 405: // M405: Turn on filament sensor for control
  7914. gcode_M405();
  7915. break;
  7916. case 406: // M406: Turn off filament sensor for control
  7917. gcode_M406();
  7918. break;
  7919. case 407: // M407: Display measured filament diameter
  7920. gcode_M407();
  7921. break;
  7922. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  7923. #if PLANNER_LEVELING
  7924. case 420: // M420: Enable/Disable Bed Leveling
  7925. gcode_M420();
  7926. break;
  7927. #endif
  7928. #if ENABLED(MESH_BED_LEVELING)
  7929. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  7930. gcode_M421();
  7931. break;
  7932. #endif
  7933. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7934. case 428: // M428: Apply current_position to home_offset
  7935. gcode_M428();
  7936. break;
  7937. #endif
  7938. case 500: // M500: Store settings in EEPROM
  7939. gcode_M500();
  7940. break;
  7941. case 501: // M501: Read settings from EEPROM
  7942. gcode_M501();
  7943. break;
  7944. case 502: // M502: Revert to default settings
  7945. gcode_M502();
  7946. break;
  7947. case 503: // M503: print settings currently in memory
  7948. gcode_M503();
  7949. break;
  7950. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7951. case 540: // M540: Set abort on endstop hit for SD printing
  7952. gcode_M540();
  7953. break;
  7954. #endif
  7955. #if HAS_BED_PROBE
  7956. case 851: // M851: Set Z Probe Z Offset
  7957. gcode_M851();
  7958. break;
  7959. #endif // HAS_BED_PROBE
  7960. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7961. case 600: // M600: Pause for filament change
  7962. gcode_M600();
  7963. break;
  7964. #endif // FILAMENT_CHANGE_FEATURE
  7965. #if ENABLED(DUAL_X_CARRIAGE)
  7966. case 605: // M605: Set Dual X Carriage movement mode
  7967. gcode_M605();
  7968. break;
  7969. #endif // DUAL_X_CARRIAGE
  7970. #if ENABLED(LIN_ADVANCE)
  7971. case 905: // M905: Set advance K factor.
  7972. gcode_M905();
  7973. break;
  7974. #endif
  7975. #if ENABLED(HAVE_TMC2130)
  7976. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7977. gcode_M906();
  7978. break;
  7979. #endif
  7980. case 907: // M907: Set digital trimpot motor current using axis codes.
  7981. gcode_M907();
  7982. break;
  7983. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7984. case 908: // M908: Control digital trimpot directly.
  7985. gcode_M908();
  7986. break;
  7987. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7988. case 909: // M909: Print digipot/DAC current value
  7989. gcode_M909();
  7990. break;
  7991. case 910: // M910: Commit digipot/DAC value to external EEPROM
  7992. gcode_M910();
  7993. break;
  7994. #endif
  7995. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7996. #if ENABLED(HAVE_TMC2130)
  7997. case 911: // M911: Report TMC2130 prewarn triggered flags
  7998. gcode_M911();
  7999. break;
  8000. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8001. gcode_M912();
  8002. break;
  8003. #endif
  8004. #if HAS_MICROSTEPS
  8005. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8006. gcode_M350();
  8007. break;
  8008. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8009. gcode_M351();
  8010. break;
  8011. #endif // HAS_MICROSTEPS
  8012. case 355: // M355 Turn case lights on/off
  8013. gcode_M355();
  8014. break;
  8015. case 999: // M999: Restart after being Stopped
  8016. gcode_M999();
  8017. break;
  8018. }
  8019. break;
  8020. case 'T':
  8021. gcode_T(codenum);
  8022. break;
  8023. default: code_is_good = false;
  8024. }
  8025. KEEPALIVE_STATE(NOT_BUSY);
  8026. ExitUnknownCommand:
  8027. // Still unknown command? Throw an error
  8028. if (!code_is_good) unknown_command_error();
  8029. ok_to_send();
  8030. }
  8031. /**
  8032. * Send a "Resend: nnn" message to the host to
  8033. * indicate that a command needs to be re-sent.
  8034. */
  8035. void FlushSerialRequestResend() {
  8036. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8037. MYSERIAL.flush();
  8038. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8039. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8040. ok_to_send();
  8041. }
  8042. /**
  8043. * Send an "ok" message to the host, indicating
  8044. * that a command was successfully processed.
  8045. *
  8046. * If ADVANCED_OK is enabled also include:
  8047. * N<int> Line number of the command, if any
  8048. * P<int> Planner space remaining
  8049. * B<int> Block queue space remaining
  8050. */
  8051. void ok_to_send() {
  8052. refresh_cmd_timeout();
  8053. if (!send_ok[cmd_queue_index_r]) return;
  8054. SERIAL_PROTOCOLPGM(MSG_OK);
  8055. #if ENABLED(ADVANCED_OK)
  8056. char* p = command_queue[cmd_queue_index_r];
  8057. if (*p == 'N') {
  8058. SERIAL_PROTOCOL(' ');
  8059. SERIAL_ECHO(*p++);
  8060. while (NUMERIC_SIGNED(*p))
  8061. SERIAL_ECHO(*p++);
  8062. }
  8063. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8064. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8065. #endif
  8066. SERIAL_EOL;
  8067. }
  8068. #if HAS_SOFTWARE_ENDSTOPS
  8069. /**
  8070. * Constrain the given coordinates to the software endstops.
  8071. */
  8072. void clamp_to_software_endstops(float target[XYZ]) {
  8073. if (!soft_endstops_enabled) return;
  8074. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8075. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8076. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8077. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8078. #endif
  8079. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8080. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8081. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8082. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8083. #endif
  8084. }
  8085. #endif
  8086. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8087. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8088. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8089. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8090. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8091. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  8092. #else
  8093. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8094. #define ABL_BG_POINTS_X ABL_GRID_MAX_POINTS_X
  8095. #define ABL_BG_POINTS_Y ABL_GRID_MAX_POINTS_Y
  8096. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  8097. #endif
  8098. // Get the Z adjustment for non-linear bed leveling
  8099. float bilinear_z_offset(float cartesian[XYZ]) {
  8100. // XY relative to the probed area
  8101. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  8102. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  8103. // Convert to grid box units
  8104. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  8105. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  8106. // Whole units for the grid line indices. Constrained within bounds.
  8107. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  8108. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  8109. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  8110. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8111. // Subtract whole to get the ratio within the grid box
  8112. ratio_x -= gridx; ratio_y -= gridy;
  8113. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  8114. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  8115. // Z at the box corners
  8116. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  8117. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  8118. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  8119. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  8120. // Bilinear interpolate
  8121. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  8122. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  8123. offset = L + ratio_x * (R - L);
  8124. /*
  8125. static float last_offset = 0;
  8126. if (fabs(last_offset - offset) > 0.2) {
  8127. SERIAL_ECHOPGM("Sudden Shift at ");
  8128. SERIAL_ECHOPAIR("x=", x);
  8129. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8130. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8131. SERIAL_ECHOPAIR(" y=", y);
  8132. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8133. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8134. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8135. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8136. SERIAL_ECHOPAIR(" z1=", z1);
  8137. SERIAL_ECHOPAIR(" z2=", z2);
  8138. SERIAL_ECHOPAIR(" z3=", z3);
  8139. SERIAL_ECHOLNPAIR(" z4=", z4);
  8140. SERIAL_ECHOPAIR(" L=", L);
  8141. SERIAL_ECHOPAIR(" R=", R);
  8142. SERIAL_ECHOLNPAIR(" offset=", offset);
  8143. }
  8144. last_offset = offset;
  8145. */
  8146. return offset;
  8147. }
  8148. #endif // AUTO_BED_LEVELING_BILINEAR
  8149. #if ENABLED(DELTA)
  8150. /**
  8151. * Recalculate factors used for delta kinematics whenever
  8152. * settings have been changed (e.g., by M665).
  8153. */
  8154. void recalc_delta_settings(float radius, float diagonal_rod) {
  8155. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  8156. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  8157. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  8158. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  8159. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower
  8160. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3);
  8161. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  8162. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  8163. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  8164. }
  8165. #if ENABLED(DELTA_FAST_SQRT)
  8166. /**
  8167. * Fast inverse sqrt from Quake III Arena
  8168. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  8169. */
  8170. float Q_rsqrt(float number) {
  8171. long i;
  8172. float x2, y;
  8173. const float threehalfs = 1.5f;
  8174. x2 = number * 0.5f;
  8175. y = number;
  8176. i = * ( long * ) &y; // evil floating point bit level hacking
  8177. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  8178. y = * ( float * ) &i;
  8179. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  8180. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  8181. return y;
  8182. }
  8183. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  8184. #else
  8185. #define _SQRT(n) sqrt(n)
  8186. #endif
  8187. /**
  8188. * Delta Inverse Kinematics
  8189. *
  8190. * Calculate the tower positions for a given logical
  8191. * position, storing the result in the delta[] array.
  8192. *
  8193. * This is an expensive calculation, requiring 3 square
  8194. * roots per segmented linear move, and strains the limits
  8195. * of a Mega2560 with a Graphical Display.
  8196. *
  8197. * Suggested optimizations include:
  8198. *
  8199. * - Disable the home_offset (M206) and/or position_shift (G92)
  8200. * features to remove up to 12 float additions.
  8201. *
  8202. * - Use a fast-inverse-sqrt function and add the reciprocal.
  8203. * (see above)
  8204. */
  8205. // Macro to obtain the Z position of an individual tower
  8206. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  8207. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  8208. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  8209. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  8210. ) \
  8211. )
  8212. #define DELTA_RAW_IK() do { \
  8213. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  8214. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  8215. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  8216. } while(0)
  8217. #define DELTA_LOGICAL_IK() do { \
  8218. const float raw[XYZ] = { \
  8219. RAW_X_POSITION(logical[X_AXIS]), \
  8220. RAW_Y_POSITION(logical[Y_AXIS]), \
  8221. RAW_Z_POSITION(logical[Z_AXIS]) \
  8222. }; \
  8223. DELTA_RAW_IK(); \
  8224. } while(0)
  8225. #define DELTA_DEBUG() do { \
  8226. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  8227. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  8228. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  8229. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  8230. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  8231. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  8232. } while(0)
  8233. void inverse_kinematics(const float logical[XYZ]) {
  8234. DELTA_LOGICAL_IK();
  8235. // DELTA_DEBUG();
  8236. }
  8237. /**
  8238. * Calculate the highest Z position where the
  8239. * effector has the full range of XY motion.
  8240. */
  8241. float delta_safe_distance_from_top() {
  8242. float cartesian[XYZ] = {
  8243. LOGICAL_X_POSITION(0),
  8244. LOGICAL_Y_POSITION(0),
  8245. LOGICAL_Z_POSITION(0)
  8246. };
  8247. inverse_kinematics(cartesian);
  8248. float distance = delta[A_AXIS];
  8249. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  8250. inverse_kinematics(cartesian);
  8251. return abs(distance - delta[A_AXIS]);
  8252. }
  8253. /**
  8254. * Delta Forward Kinematics
  8255. *
  8256. * See the Wikipedia article "Trilateration"
  8257. * https://en.wikipedia.org/wiki/Trilateration
  8258. *
  8259. * Establish a new coordinate system in the plane of the
  8260. * three carriage points. This system has its origin at
  8261. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  8262. * plane with a Z component of zero.
  8263. * We will define unit vectors in this coordinate system
  8264. * in our original coordinate system. Then when we calculate
  8265. * the Xnew, Ynew and Znew values, we can translate back into
  8266. * the original system by moving along those unit vectors
  8267. * by the corresponding values.
  8268. *
  8269. * Variable names matched to Marlin, c-version, and avoid the
  8270. * use of any vector library.
  8271. *
  8272. * by Andreas Hardtung 2016-06-07
  8273. * based on a Java function from "Delta Robot Kinematics V3"
  8274. * by Steve Graves
  8275. *
  8276. * The result is stored in the cartes[] array.
  8277. */
  8278. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  8279. // Create a vector in old coordinates along x axis of new coordinate
  8280. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  8281. // Get the Magnitude of vector.
  8282. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  8283. // Create unit vector by dividing by magnitude.
  8284. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  8285. // Get the vector from the origin of the new system to the third point.
  8286. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  8287. // Use the dot product to find the component of this vector on the X axis.
  8288. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  8289. // Create a vector along the x axis that represents the x component of p13.
  8290. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  8291. // Subtract the X component from the original vector leaving only Y. We use the
  8292. // variable that will be the unit vector after we scale it.
  8293. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  8294. // The magnitude of Y component
  8295. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  8296. // Convert to a unit vector
  8297. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  8298. // The cross product of the unit x and y is the unit z
  8299. // float[] ez = vectorCrossProd(ex, ey);
  8300. float ez[3] = {
  8301. ex[1] * ey[2] - ex[2] * ey[1],
  8302. ex[2] * ey[0] - ex[0] * ey[2],
  8303. ex[0] * ey[1] - ex[1] * ey[0]
  8304. };
  8305. // We now have the d, i and j values defined in Wikipedia.
  8306. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  8307. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  8308. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  8309. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  8310. // Start from the origin of the old coordinates and add vectors in the
  8311. // old coords that represent the Xnew, Ynew and Znew to find the point
  8312. // in the old system.
  8313. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  8314. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  8315. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  8316. }
  8317. void forward_kinematics_DELTA(float point[ABC]) {
  8318. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  8319. }
  8320. #endif // DELTA
  8321. /**
  8322. * Get the stepper positions in the cartes[] array.
  8323. * Forward kinematics are applied for DELTA and SCARA.
  8324. *
  8325. * The result is in the current coordinate space with
  8326. * leveling applied. The coordinates need to be run through
  8327. * unapply_leveling to obtain the "ideal" coordinates
  8328. * suitable for current_position, etc.
  8329. */
  8330. void get_cartesian_from_steppers() {
  8331. #if ENABLED(DELTA)
  8332. forward_kinematics_DELTA(
  8333. stepper.get_axis_position_mm(A_AXIS),
  8334. stepper.get_axis_position_mm(B_AXIS),
  8335. stepper.get_axis_position_mm(C_AXIS)
  8336. );
  8337. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8338. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8339. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  8340. #elif IS_SCARA
  8341. forward_kinematics_SCARA(
  8342. stepper.get_axis_position_degrees(A_AXIS),
  8343. stepper.get_axis_position_degrees(B_AXIS)
  8344. );
  8345. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8346. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8347. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8348. #else
  8349. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  8350. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  8351. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8352. #endif
  8353. }
  8354. /**
  8355. * Set the current_position for an axis based on
  8356. * the stepper positions, removing any leveling that
  8357. * may have been applied.
  8358. */
  8359. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  8360. get_cartesian_from_steppers();
  8361. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  8362. planner.unapply_leveling(cartes);
  8363. #endif
  8364. if (axis == ALL_AXES)
  8365. COPY(current_position, cartes);
  8366. else
  8367. current_position[axis] = cartes[axis];
  8368. }
  8369. #if ENABLED(MESH_BED_LEVELING)
  8370. /**
  8371. * Prepare a mesh-leveled linear move in a Cartesian setup,
  8372. * splitting the move where it crosses mesh borders.
  8373. */
  8374. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  8375. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  8376. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  8377. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  8378. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  8379. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  8380. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  8381. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  8382. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  8383. if (cx1 == cx2 && cy1 == cy2) {
  8384. // Start and end on same mesh square
  8385. line_to_destination(fr_mm_s);
  8386. set_current_to_destination();
  8387. return;
  8388. }
  8389. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8390. float normalized_dist, end[XYZE];
  8391. // Split at the left/front border of the right/top square
  8392. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8393. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8394. COPY(end, destination);
  8395. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  8396. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8397. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  8398. CBI(x_splits, gcx);
  8399. }
  8400. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8401. COPY(end, destination);
  8402. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  8403. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8404. destination[X_AXIS] = MBL_SEGMENT_END(X);
  8405. CBI(y_splits, gcy);
  8406. }
  8407. else {
  8408. // Already split on a border
  8409. line_to_destination(fr_mm_s);
  8410. set_current_to_destination();
  8411. return;
  8412. }
  8413. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  8414. destination[E_AXIS] = MBL_SEGMENT_END(E);
  8415. // Do the split and look for more borders
  8416. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8417. // Restore destination from stack
  8418. COPY(destination, end);
  8419. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8420. }
  8421. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  8422. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  8423. /**
  8424. * Prepare a bilinear-leveled linear move on Cartesian,
  8425. * splitting the move where it crosses grid borders.
  8426. */
  8427. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  8428. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  8429. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  8430. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  8431. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  8432. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  8433. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  8434. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  8435. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  8436. if (cx1 == cx2 && cy1 == cy2) {
  8437. // Start and end on same mesh square
  8438. line_to_destination(fr_mm_s);
  8439. set_current_to_destination();
  8440. return;
  8441. }
  8442. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8443. float normalized_dist, end[XYZE];
  8444. // Split at the left/front border of the right/top square
  8445. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8446. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8447. COPY(end, destination);
  8448. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  8449. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8450. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  8451. CBI(x_splits, gcx);
  8452. }
  8453. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8454. COPY(end, destination);
  8455. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  8456. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8457. destination[X_AXIS] = LINE_SEGMENT_END(X);
  8458. CBI(y_splits, gcy);
  8459. }
  8460. else {
  8461. // Already split on a border
  8462. line_to_destination(fr_mm_s);
  8463. set_current_to_destination();
  8464. return;
  8465. }
  8466. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  8467. destination[E_AXIS] = LINE_SEGMENT_END(E);
  8468. // Do the split and look for more borders
  8469. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8470. // Restore destination from stack
  8471. COPY(destination, end);
  8472. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8473. }
  8474. #endif // AUTO_BED_LEVELING_BILINEAR
  8475. #if IS_KINEMATIC
  8476. /**
  8477. * Prepare a linear move in a DELTA or SCARA setup.
  8478. *
  8479. * This calls planner.buffer_line several times, adding
  8480. * small incremental moves for DELTA or SCARA.
  8481. */
  8482. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  8483. // Get the top feedrate of the move in the XY plane
  8484. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  8485. // If the move is only in Z/E don't split up the move
  8486. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  8487. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8488. return true;
  8489. }
  8490. // Get the cartesian distances moved in XYZE
  8491. float difference[XYZE];
  8492. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  8493. // Get the linear distance in XYZ
  8494. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  8495. // If the move is very short, check the E move distance
  8496. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  8497. // No E move either? Game over.
  8498. if (UNEAR_ZERO(cartesian_mm)) return false;
  8499. // Minimum number of seconds to move the given distance
  8500. float seconds = cartesian_mm / _feedrate_mm_s;
  8501. // The number of segments-per-second times the duration
  8502. // gives the number of segments
  8503. uint16_t segments = delta_segments_per_second * seconds;
  8504. // For SCARA minimum segment size is 0.25mm
  8505. #if IS_SCARA
  8506. NOMORE(segments, cartesian_mm * 4);
  8507. #endif
  8508. // At least one segment is required
  8509. NOLESS(segments, 1);
  8510. // The approximate length of each segment
  8511. const float inv_segments = 1.0 / float(segments),
  8512. segment_distance[XYZE] = {
  8513. difference[X_AXIS] * inv_segments,
  8514. difference[Y_AXIS] * inv_segments,
  8515. difference[Z_AXIS] * inv_segments,
  8516. difference[E_AXIS] * inv_segments
  8517. };
  8518. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  8519. // SERIAL_ECHOPAIR(" seconds=", seconds);
  8520. // SERIAL_ECHOLNPAIR(" segments=", segments);
  8521. #if IS_SCARA
  8522. // SCARA needs to scale the feed rate from mm/s to degrees/s
  8523. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  8524. feed_factor = inv_segment_length * _feedrate_mm_s;
  8525. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  8526. oldB = stepper.get_axis_position_degrees(B_AXIS);
  8527. #endif
  8528. // Get the logical current position as starting point
  8529. float logical[XYZE];
  8530. COPY(logical, current_position);
  8531. // Drop one segment so the last move is to the exact target.
  8532. // If there's only 1 segment, loops will be skipped entirely.
  8533. --segments;
  8534. // Calculate and execute the segments
  8535. for (uint16_t s = segments + 1; --s;) {
  8536. LOOP_XYZE(i) logical[i] += segment_distance[i];
  8537. #if ENABLED(DELTA)
  8538. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  8539. #else
  8540. inverse_kinematics(logical);
  8541. #endif
  8542. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  8543. #if IS_SCARA
  8544. // For SCARA scale the feed rate from mm/s to degrees/s
  8545. // Use ratio between the length of the move and the larger angle change
  8546. const float adiff = abs(delta[A_AXIS] - oldA),
  8547. bdiff = abs(delta[B_AXIS] - oldB);
  8548. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8549. oldA = delta[A_AXIS];
  8550. oldB = delta[B_AXIS];
  8551. #else
  8552. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  8553. #endif
  8554. }
  8555. // Since segment_distance is only approximate,
  8556. // the final move must be to the exact destination.
  8557. #if IS_SCARA
  8558. // For SCARA scale the feed rate from mm/s to degrees/s
  8559. // With segments > 1 length is 1 segment, otherwise total length
  8560. inverse_kinematics(ltarget);
  8561. ADJUST_DELTA(logical);
  8562. const float adiff = abs(delta[A_AXIS] - oldA),
  8563. bdiff = abs(delta[B_AXIS] - oldB);
  8564. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8565. #else
  8566. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8567. #endif
  8568. return true;
  8569. }
  8570. #else // !IS_KINEMATIC
  8571. /**
  8572. * Prepare a linear move in a Cartesian setup.
  8573. * If Mesh Bed Leveling is enabled, perform a mesh move.
  8574. */
  8575. inline bool prepare_move_to_destination_cartesian() {
  8576. // Do not use feedrate_percentage for E or Z only moves
  8577. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  8578. line_to_destination();
  8579. }
  8580. else {
  8581. #if ENABLED(MESH_BED_LEVELING)
  8582. if (mbl.active()) {
  8583. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8584. return false;
  8585. }
  8586. else
  8587. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8588. if (ubl.state.active) {
  8589. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  8590. return false;
  8591. }
  8592. else
  8593. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8594. if (planner.abl_enabled) {
  8595. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8596. return false;
  8597. }
  8598. else
  8599. #endif
  8600. line_to_destination(MMS_SCALED(feedrate_mm_s));
  8601. }
  8602. return true;
  8603. }
  8604. #endif // !IS_KINEMATIC
  8605. #if ENABLED(DUAL_X_CARRIAGE)
  8606. /**
  8607. * Prepare a linear move in a dual X axis setup
  8608. */
  8609. inline bool prepare_move_to_destination_dualx() {
  8610. if (active_extruder_parked) {
  8611. switch (dual_x_carriage_mode) {
  8612. case DXC_FULL_CONTROL_MODE:
  8613. break;
  8614. case DXC_AUTO_PARK_MODE:
  8615. if (current_position[E_AXIS] == destination[E_AXIS]) {
  8616. // This is a travel move (with no extrusion)
  8617. // Skip it, but keep track of the current position
  8618. // (so it can be used as the start of the next non-travel move)
  8619. if (delayed_move_time != 0xFFFFFFFFUL) {
  8620. set_current_to_destination();
  8621. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  8622. delayed_move_time = millis();
  8623. return false;
  8624. }
  8625. }
  8626. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  8627. for (uint8_t i = 0; i < 3; i++)
  8628. planner.buffer_line(
  8629. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  8630. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  8631. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  8632. current_position[E_AXIS],
  8633. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  8634. active_extruder
  8635. );
  8636. delayed_move_time = 0;
  8637. active_extruder_parked = false;
  8638. break;
  8639. case DXC_DUPLICATION_MODE:
  8640. if (active_extruder == 0) {
  8641. // move duplicate extruder into correct duplication position.
  8642. planner.set_position_mm(
  8643. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  8644. current_position[Y_AXIS],
  8645. current_position[Z_AXIS],
  8646. current_position[E_AXIS]
  8647. );
  8648. planner.buffer_line(
  8649. current_position[X_AXIS] + duplicate_extruder_x_offset,
  8650. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  8651. planner.max_feedrate_mm_s[X_AXIS], 1
  8652. );
  8653. SYNC_PLAN_POSITION_KINEMATIC();
  8654. stepper.synchronize();
  8655. extruder_duplication_enabled = true;
  8656. active_extruder_parked = false;
  8657. }
  8658. break;
  8659. }
  8660. }
  8661. return true;
  8662. }
  8663. #endif // DUAL_X_CARRIAGE
  8664. /**
  8665. * Prepare a single move and get ready for the next one
  8666. *
  8667. * This may result in several calls to planner.buffer_line to
  8668. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  8669. */
  8670. void prepare_move_to_destination() {
  8671. clamp_to_software_endstops(destination);
  8672. refresh_cmd_timeout();
  8673. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8674. if (!DEBUGGING(DRYRUN)) {
  8675. if (destination[E_AXIS] != current_position[E_AXIS]) {
  8676. if (thermalManager.tooColdToExtrude(active_extruder)) {
  8677. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8678. SERIAL_ECHO_START;
  8679. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  8680. }
  8681. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  8682. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  8683. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8684. SERIAL_ECHO_START;
  8685. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  8686. }
  8687. #endif
  8688. }
  8689. }
  8690. #endif
  8691. #if IS_KINEMATIC
  8692. if (!prepare_kinematic_move_to(destination)) return;
  8693. #else
  8694. #if ENABLED(DUAL_X_CARRIAGE)
  8695. if (!prepare_move_to_destination_dualx()) return;
  8696. #endif
  8697. if (!prepare_move_to_destination_cartesian()) return;
  8698. #endif
  8699. set_current_to_destination();
  8700. }
  8701. #if ENABLED(ARC_SUPPORT)
  8702. /**
  8703. * Plan an arc in 2 dimensions
  8704. *
  8705. * The arc is approximated by generating many small linear segments.
  8706. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  8707. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  8708. * larger segments will tend to be more efficient. Your slicer should have
  8709. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  8710. */
  8711. void plan_arc(
  8712. float logical[XYZE], // Destination position
  8713. float* offset, // Center of rotation relative to current_position
  8714. uint8_t clockwise // Clockwise?
  8715. ) {
  8716. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  8717. center_X = current_position[X_AXIS] + offset[X_AXIS],
  8718. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  8719. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  8720. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  8721. r_X = -offset[X_AXIS], // Radius vector from center to current location
  8722. r_Y = -offset[Y_AXIS],
  8723. rt_X = logical[X_AXIS] - center_X,
  8724. rt_Y = logical[Y_AXIS] - center_Y;
  8725. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  8726. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  8727. if (angular_travel < 0) angular_travel += RADIANS(360);
  8728. if (clockwise) angular_travel -= RADIANS(360);
  8729. // Make a circle if the angular rotation is 0
  8730. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  8731. angular_travel += RADIANS(360);
  8732. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  8733. if (mm_of_travel < 0.001) return;
  8734. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  8735. if (segments == 0) segments = 1;
  8736. /**
  8737. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  8738. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  8739. * r_T = [cos(phi) -sin(phi);
  8740. * sin(phi) cos(phi)] * r ;
  8741. *
  8742. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  8743. * defined from the circle center to the initial position. Each line segment is formed by successive
  8744. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  8745. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  8746. * all double numbers are single precision on the Arduino. (True double precision will not have
  8747. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  8748. * tool precision in some cases. Therefore, arc path correction is implemented.
  8749. *
  8750. * Small angle approximation may be used to reduce computation overhead further. This approximation
  8751. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  8752. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  8753. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  8754. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  8755. * issue for CNC machines with the single precision Arduino calculations.
  8756. *
  8757. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  8758. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  8759. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  8760. * This is important when there are successive arc motions.
  8761. */
  8762. // Vector rotation matrix values
  8763. float arc_target[XYZE],
  8764. theta_per_segment = angular_travel / segments,
  8765. linear_per_segment = linear_travel / segments,
  8766. extruder_per_segment = extruder_travel / segments,
  8767. sin_T = theta_per_segment,
  8768. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  8769. // Initialize the linear axis
  8770. arc_target[Z_AXIS] = current_position[Z_AXIS];
  8771. // Initialize the extruder axis
  8772. arc_target[E_AXIS] = current_position[E_AXIS];
  8773. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  8774. millis_t next_idle_ms = millis() + 200UL;
  8775. int8_t count = 0;
  8776. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  8777. thermalManager.manage_heater();
  8778. if (ELAPSED(millis(), next_idle_ms)) {
  8779. next_idle_ms = millis() + 200UL;
  8780. idle();
  8781. }
  8782. if (++count < N_ARC_CORRECTION) {
  8783. // Apply vector rotation matrix to previous r_X / 1
  8784. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  8785. r_X = r_X * cos_T - r_Y * sin_T;
  8786. r_Y = r_new_Y;
  8787. }
  8788. else {
  8789. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  8790. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  8791. // To reduce stuttering, the sin and cos could be computed at different times.
  8792. // For now, compute both at the same time.
  8793. float cos_Ti = cos(i * theta_per_segment),
  8794. sin_Ti = sin(i * theta_per_segment);
  8795. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  8796. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  8797. count = 0;
  8798. }
  8799. // Update arc_target location
  8800. arc_target[X_AXIS] = center_X + r_X;
  8801. arc_target[Y_AXIS] = center_Y + r_Y;
  8802. arc_target[Z_AXIS] += linear_per_segment;
  8803. arc_target[E_AXIS] += extruder_per_segment;
  8804. clamp_to_software_endstops(arc_target);
  8805. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  8806. }
  8807. // Ensure last segment arrives at target location.
  8808. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  8809. // As far as the parser is concerned, the position is now == target. In reality the
  8810. // motion control system might still be processing the action and the real tool position
  8811. // in any intermediate location.
  8812. set_current_to_destination();
  8813. }
  8814. #endif
  8815. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8816. void plan_cubic_move(const float offset[4]) {
  8817. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  8818. // As far as the parser is concerned, the position is now == destination. In reality the
  8819. // motion control system might still be processing the action and the real tool position
  8820. // in any intermediate location.
  8821. set_current_to_destination();
  8822. }
  8823. #endif // BEZIER_CURVE_SUPPORT
  8824. #if HAS_CONTROLLERFAN
  8825. void controllerFan() {
  8826. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  8827. nextMotorCheck = 0; // Last time the state was checked
  8828. const millis_t ms = millis();
  8829. if (ELAPSED(ms, nextMotorCheck)) {
  8830. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  8831. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  8832. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  8833. #if E_STEPPERS > 1
  8834. || E1_ENABLE_READ == E_ENABLE_ON
  8835. #if HAS_X2_ENABLE
  8836. || X2_ENABLE_READ == X_ENABLE_ON
  8837. #endif
  8838. #if E_STEPPERS > 2
  8839. || E2_ENABLE_READ == E_ENABLE_ON
  8840. #if E_STEPPERS > 3
  8841. || E3_ENABLE_READ == E_ENABLE_ON
  8842. #endif
  8843. #endif
  8844. #endif
  8845. ) {
  8846. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  8847. }
  8848. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  8849. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  8850. // allows digital or PWM fan output to be used (see M42 handling)
  8851. digitalWrite(CONTROLLERFAN_PIN, speed);
  8852. analogWrite(CONTROLLERFAN_PIN, speed);
  8853. }
  8854. }
  8855. #endif // HAS_CONTROLLERFAN
  8856. #if ENABLED(MORGAN_SCARA)
  8857. /**
  8858. * Morgan SCARA Forward Kinematics. Results in cartes[].
  8859. * Maths and first version by QHARLEY.
  8860. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8861. */
  8862. void forward_kinematics_SCARA(const float &a, const float &b) {
  8863. float a_sin = sin(RADIANS(a)) * L1,
  8864. a_cos = cos(RADIANS(a)) * L1,
  8865. b_sin = sin(RADIANS(b)) * L2,
  8866. b_cos = cos(RADIANS(b)) * L2;
  8867. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  8868. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  8869. /*
  8870. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  8871. SERIAL_ECHOPAIR(" b=", b);
  8872. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  8873. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  8874. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  8875. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  8876. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  8877. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  8878. //*/
  8879. }
  8880. /**
  8881. * Morgan SCARA Inverse Kinematics. Results in delta[].
  8882. *
  8883. * See http://forums.reprap.org/read.php?185,283327
  8884. *
  8885. * Maths and first version by QHARLEY.
  8886. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8887. */
  8888. void inverse_kinematics(const float logical[XYZ]) {
  8889. static float C2, S2, SK1, SK2, THETA, PSI;
  8890. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  8891. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  8892. if (L1 == L2)
  8893. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  8894. else
  8895. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  8896. S2 = sqrt(sq(C2) - 1);
  8897. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  8898. SK1 = L1 + L2 * C2;
  8899. // Rotated Arm2 gives the distance from Arm1 to Arm2
  8900. SK2 = L2 * S2;
  8901. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  8902. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  8903. // Angle of Arm2
  8904. PSI = atan2(S2, C2);
  8905. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  8906. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  8907. delta[C_AXIS] = logical[Z_AXIS];
  8908. /*
  8909. DEBUG_POS("SCARA IK", logical);
  8910. DEBUG_POS("SCARA IK", delta);
  8911. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  8912. SERIAL_ECHOPAIR(",", sy);
  8913. SERIAL_ECHOPAIR(" C2=", C2);
  8914. SERIAL_ECHOPAIR(" S2=", S2);
  8915. SERIAL_ECHOPAIR(" Theta=", THETA);
  8916. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  8917. //*/
  8918. }
  8919. #endif // MORGAN_SCARA
  8920. #if ENABLED(TEMP_STAT_LEDS)
  8921. static bool red_led = false;
  8922. static millis_t next_status_led_update_ms = 0;
  8923. void handle_status_leds(void) {
  8924. if (ELAPSED(millis(), next_status_led_update_ms)) {
  8925. next_status_led_update_ms += 500; // Update every 0.5s
  8926. float max_temp = 0.0;
  8927. #if HAS_TEMP_BED
  8928. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  8929. #endif
  8930. HOTEND_LOOP() {
  8931. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  8932. }
  8933. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  8934. if (new_led != red_led) {
  8935. red_led = new_led;
  8936. #if PIN_EXISTS(STAT_LED_RED)
  8937. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  8938. #if PIN_EXISTS(STAT_LED_BLUE)
  8939. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  8940. #endif
  8941. #else
  8942. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  8943. #endif
  8944. }
  8945. }
  8946. }
  8947. #endif
  8948. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8949. void handle_filament_runout() {
  8950. if (!filament_ran_out) {
  8951. filament_ran_out = true;
  8952. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  8953. stepper.synchronize();
  8954. }
  8955. }
  8956. #endif // FILAMENT_RUNOUT_SENSOR
  8957. #if ENABLED(FAST_PWM_FAN)
  8958. void setPwmFrequency(uint8_t pin, int val) {
  8959. val &= 0x07;
  8960. switch (digitalPinToTimer(pin)) {
  8961. #ifdef TCCR0A
  8962. case TIMER0A:
  8963. case TIMER0B:
  8964. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8965. // TCCR0B |= val;
  8966. break;
  8967. #endif
  8968. #ifdef TCCR1A
  8969. case TIMER1A:
  8970. case TIMER1B:
  8971. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8972. // TCCR1B |= val;
  8973. break;
  8974. #endif
  8975. #ifdef TCCR2
  8976. case TIMER2:
  8977. case TIMER2:
  8978. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8979. TCCR2 |= val;
  8980. break;
  8981. #endif
  8982. #ifdef TCCR2A
  8983. case TIMER2A:
  8984. case TIMER2B:
  8985. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8986. TCCR2B |= val;
  8987. break;
  8988. #endif
  8989. #ifdef TCCR3A
  8990. case TIMER3A:
  8991. case TIMER3B:
  8992. case TIMER3C:
  8993. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8994. TCCR3B |= val;
  8995. break;
  8996. #endif
  8997. #ifdef TCCR4A
  8998. case TIMER4A:
  8999. case TIMER4B:
  9000. case TIMER4C:
  9001. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  9002. TCCR4B |= val;
  9003. break;
  9004. #endif
  9005. #ifdef TCCR5A
  9006. case TIMER5A:
  9007. case TIMER5B:
  9008. case TIMER5C:
  9009. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  9010. TCCR5B |= val;
  9011. break;
  9012. #endif
  9013. }
  9014. }
  9015. #endif // FAST_PWM_FAN
  9016. float calculate_volumetric_multiplier(float diameter) {
  9017. if (!volumetric_enabled || diameter == 0) return 1.0;
  9018. return 1.0 / (M_PI * sq(diameter * 0.5));
  9019. }
  9020. void calculate_volumetric_multipliers() {
  9021. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9022. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9023. }
  9024. void enable_all_steppers() {
  9025. enable_x();
  9026. enable_y();
  9027. enable_z();
  9028. enable_e0();
  9029. enable_e1();
  9030. enable_e2();
  9031. enable_e3();
  9032. }
  9033. void disable_e_steppers() {
  9034. disable_e0();
  9035. disable_e1();
  9036. disable_e2();
  9037. disable_e3();
  9038. }
  9039. void disable_all_steppers() {
  9040. disable_x();
  9041. disable_y();
  9042. disable_z();
  9043. disable_e_steppers();
  9044. }
  9045. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9046. void automatic_current_control(const TMC2130Stepper &st) {
  9047. #if CURRENT_STEP > 0
  9048. const bool is_otpw = st.checkOT(), // Check otpw even if we don't adjust. Allows for flag inspection.
  9049. is_otpw_triggered = st.getOTPW();
  9050. if (!is_otpw && !is_otpw_triggered) {
  9051. // OTPW bit not triggered yet -> Increase current
  9052. const uint16_t current = st.getCurrent() + CURRENT_STEP;
  9053. if (current <= AUTO_ADJUST_MAX) st.SilentStepStick2130(current);
  9054. }
  9055. else if (is_otpw && is_otpw_triggered) {
  9056. // OTPW bit triggered, triggered flag raised -> Decrease current
  9057. st.SilentStepStick2130((float)st.getCurrent() - CURRENT_STEP);
  9058. }
  9059. // OTPW bit cleared (we've cooled down), triggered flag still raised until manually cleared -> Do nothing, we're good
  9060. #endif
  9061. }
  9062. void checkOverTemp() {
  9063. static millis_t next_cOT = 0;
  9064. if (ELAPSED(millis(), next_cOT)) {
  9065. next_cOT = millis() + 5000;
  9066. #if ENABLED(X_IS_TMC2130)
  9067. automatic_current_control(stepperX);
  9068. #endif
  9069. #if ENABLED(Y_IS_TMC2130)
  9070. automatic_current_control(stepperY);
  9071. #endif
  9072. #if ENABLED(Z_IS_TMC2130)
  9073. automatic_current_control(stepperZ);
  9074. #endif
  9075. #if ENABLED(X2_IS_TMC2130)
  9076. automatic_current_control(stepperX2);
  9077. #endif
  9078. #if ENABLED(Y2_IS_TMC2130)
  9079. automatic_current_control(stepperY2);
  9080. #endif
  9081. #if ENABLED(Z2_IS_TMC2130)
  9082. automatic_current_control(stepperZ2);
  9083. #endif
  9084. #if ENABLED(E0_IS_TMC2130)
  9085. automatic_current_control(stepperE0);
  9086. #endif
  9087. #if ENABLED(E1_IS_TMC2130)
  9088. automatic_current_control(stepperE1);
  9089. #endif
  9090. #if ENABLED(E2_IS_TMC2130)
  9091. automatic_current_control(stepperE2);
  9092. #endif
  9093. #if ENABLED(E3_IS_TMC2130)
  9094. automatic_current_control(stepperE3);
  9095. #endif
  9096. }
  9097. }
  9098. #endif // AUTOMATIC_CURRENT_CONTROL
  9099. /**
  9100. * Manage several activities:
  9101. * - Check for Filament Runout
  9102. * - Keep the command buffer full
  9103. * - Check for maximum inactive time between commands
  9104. * - Check for maximum inactive time between stepper commands
  9105. * - Check if pin CHDK needs to go LOW
  9106. * - Check for KILL button held down
  9107. * - Check for HOME button held down
  9108. * - Check if cooling fan needs to be switched on
  9109. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  9110. */
  9111. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  9112. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9113. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  9114. handle_filament_runout();
  9115. #endif
  9116. if (commands_in_queue < BUFSIZE) get_available_commands();
  9117. const millis_t ms = millis();
  9118. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  9119. SERIAL_ERROR_START;
  9120. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  9121. kill(PSTR(MSG_KILLED));
  9122. }
  9123. // Prevent steppers timing-out in the middle of M600
  9124. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  9125. #define M600_TEST !busy_doing_M600
  9126. #else
  9127. #define M600_TEST true
  9128. #endif
  9129. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  9130. && !ignore_stepper_queue && !planner.blocks_queued()) {
  9131. #if ENABLED(DISABLE_INACTIVE_X)
  9132. disable_x();
  9133. #endif
  9134. #if ENABLED(DISABLE_INACTIVE_Y)
  9135. disable_y();
  9136. #endif
  9137. #if ENABLED(DISABLE_INACTIVE_Z)
  9138. disable_z();
  9139. #endif
  9140. #if ENABLED(DISABLE_INACTIVE_E)
  9141. disable_e_steppers();
  9142. #endif
  9143. }
  9144. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  9145. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  9146. chdkActive = false;
  9147. WRITE(CHDK, LOW);
  9148. }
  9149. #endif
  9150. #if HAS_KILL
  9151. // Check if the kill button was pressed and wait just in case it was an accidental
  9152. // key kill key press
  9153. // -------------------------------------------------------------------------------
  9154. static int killCount = 0; // make the inactivity button a bit less responsive
  9155. const int KILL_DELAY = 750;
  9156. if (!READ(KILL_PIN))
  9157. killCount++;
  9158. else if (killCount > 0)
  9159. killCount--;
  9160. // Exceeded threshold and we can confirm that it was not accidental
  9161. // KILL the machine
  9162. // ----------------------------------------------------------------
  9163. if (killCount >= KILL_DELAY) {
  9164. SERIAL_ERROR_START;
  9165. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  9166. kill(PSTR(MSG_KILLED));
  9167. }
  9168. #endif
  9169. #if HAS_HOME
  9170. // Check to see if we have to home, use poor man's debouncer
  9171. // ---------------------------------------------------------
  9172. static int homeDebounceCount = 0; // poor man's debouncing count
  9173. const int HOME_DEBOUNCE_DELAY = 2500;
  9174. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  9175. if (!homeDebounceCount) {
  9176. enqueue_and_echo_commands_P(PSTR("G28"));
  9177. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  9178. }
  9179. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  9180. homeDebounceCount++;
  9181. else
  9182. homeDebounceCount = 0;
  9183. }
  9184. #endif
  9185. #if HAS_CONTROLLERFAN
  9186. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  9187. #endif
  9188. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  9189. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  9190. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  9191. bool oldstatus;
  9192. #if ENABLED(SWITCHING_EXTRUDER)
  9193. oldstatus = E0_ENABLE_READ;
  9194. enable_e0();
  9195. #else // !SWITCHING_EXTRUDER
  9196. switch (active_extruder) {
  9197. case 0:
  9198. oldstatus = E0_ENABLE_READ;
  9199. enable_e0();
  9200. break;
  9201. #if E_STEPPERS > 1
  9202. case 1:
  9203. oldstatus = E1_ENABLE_READ;
  9204. enable_e1();
  9205. break;
  9206. #if E_STEPPERS > 2
  9207. case 2:
  9208. oldstatus = E2_ENABLE_READ;
  9209. enable_e2();
  9210. break;
  9211. #if E_STEPPERS > 3
  9212. case 3:
  9213. oldstatus = E3_ENABLE_READ;
  9214. enable_e3();
  9215. break;
  9216. #endif
  9217. #endif
  9218. #endif
  9219. }
  9220. #endif // !SWITCHING_EXTRUDER
  9221. previous_cmd_ms = ms; // refresh_cmd_timeout()
  9222. const float olde = current_position[E_AXIS];
  9223. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  9224. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  9225. current_position[E_AXIS] = olde;
  9226. planner.set_e_position_mm(olde);
  9227. stepper.synchronize();
  9228. #if ENABLED(SWITCHING_EXTRUDER)
  9229. E0_ENABLE_WRITE(oldstatus);
  9230. #else
  9231. switch (active_extruder) {
  9232. case 0:
  9233. E0_ENABLE_WRITE(oldstatus);
  9234. break;
  9235. #if E_STEPPERS > 1
  9236. case 1:
  9237. E1_ENABLE_WRITE(oldstatus);
  9238. break;
  9239. #if E_STEPPERS > 2
  9240. case 2:
  9241. E2_ENABLE_WRITE(oldstatus);
  9242. break;
  9243. #if E_STEPPERS > 3
  9244. case 3:
  9245. E3_ENABLE_WRITE(oldstatus);
  9246. break;
  9247. #endif
  9248. #endif
  9249. #endif
  9250. }
  9251. #endif // !SWITCHING_EXTRUDER
  9252. }
  9253. #endif // EXTRUDER_RUNOUT_PREVENT
  9254. #if ENABLED(DUAL_X_CARRIAGE)
  9255. // handle delayed move timeout
  9256. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  9257. // travel moves have been received so enact them
  9258. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  9259. set_destination_to_current();
  9260. prepare_move_to_destination();
  9261. }
  9262. #endif
  9263. #if ENABLED(TEMP_STAT_LEDS)
  9264. handle_status_leds();
  9265. #endif
  9266. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9267. checkOverTemp();
  9268. #endif
  9269. planner.check_axes_activity();
  9270. }
  9271. /**
  9272. * Standard idle routine keeps the machine alive
  9273. */
  9274. void idle(
  9275. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9276. bool no_stepper_sleep/*=false*/
  9277. #endif
  9278. ) {
  9279. lcd_update();
  9280. host_keepalive();
  9281. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9282. auto_report_temperatures();
  9283. #endif
  9284. manage_inactivity(
  9285. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9286. no_stepper_sleep
  9287. #endif
  9288. );
  9289. thermalManager.manage_heater();
  9290. #if ENABLED(PRINTCOUNTER)
  9291. print_job_timer.tick();
  9292. #endif
  9293. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  9294. buzzer.tick();
  9295. #endif
  9296. }
  9297. /**
  9298. * Kill all activity and lock the machine.
  9299. * After this the machine will need to be reset.
  9300. */
  9301. void kill(const char* lcd_msg) {
  9302. SERIAL_ERROR_START;
  9303. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  9304. thermalManager.disable_all_heaters();
  9305. disable_all_steppers();
  9306. #if ENABLED(ULTRA_LCD)
  9307. kill_screen(lcd_msg);
  9308. #else
  9309. UNUSED(lcd_msg);
  9310. #endif
  9311. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  9312. cli(); // Stop interrupts
  9313. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  9314. thermalManager.disable_all_heaters(); //turn off heaters again
  9315. #if HAS_POWER_SWITCH
  9316. SET_INPUT(PS_ON_PIN);
  9317. #endif
  9318. suicide();
  9319. while (1) {
  9320. #if ENABLED(USE_WATCHDOG)
  9321. watchdog_reset();
  9322. #endif
  9323. } // Wait for reset
  9324. }
  9325. /**
  9326. * Turn off heaters and stop the print in progress
  9327. * After a stop the machine may be resumed with M999
  9328. */
  9329. void stop() {
  9330. thermalManager.disable_all_heaters();
  9331. if (IsRunning()) {
  9332. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  9333. SERIAL_ERROR_START;
  9334. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  9335. LCD_MESSAGEPGM(MSG_STOPPED);
  9336. safe_delay(350); // allow enough time for messages to get out before stopping
  9337. Running = false;
  9338. }
  9339. }
  9340. /**
  9341. * Marlin entry-point: Set up before the program loop
  9342. * - Set up the kill pin, filament runout, power hold
  9343. * - Start the serial port
  9344. * - Print startup messages and diagnostics
  9345. * - Get EEPROM or default settings
  9346. * - Initialize managers for:
  9347. * • temperature
  9348. * • planner
  9349. * • watchdog
  9350. * • stepper
  9351. * • photo pin
  9352. * • servos
  9353. * • LCD controller
  9354. * • Digipot I2C
  9355. * • Z probe sled
  9356. * • status LEDs
  9357. */
  9358. void setup() {
  9359. #ifdef DISABLE_JTAG
  9360. // Disable JTAG on AT90USB chips to free up pins for IO
  9361. MCUCR = 0x80;
  9362. MCUCR = 0x80;
  9363. #endif
  9364. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9365. setup_filrunoutpin();
  9366. #endif
  9367. setup_killpin();
  9368. setup_powerhold();
  9369. #if HAS_STEPPER_RESET
  9370. disableStepperDrivers();
  9371. #endif
  9372. MYSERIAL.begin(BAUDRATE);
  9373. SERIAL_PROTOCOLLNPGM("start");
  9374. SERIAL_ECHO_START;
  9375. // Check startup - does nothing if bootloader sets MCUSR to 0
  9376. byte mcu = MCUSR;
  9377. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  9378. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  9379. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  9380. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  9381. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  9382. MCUSR = 0;
  9383. SERIAL_ECHOPGM(MSG_MARLIN);
  9384. SERIAL_CHAR(' ');
  9385. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  9386. SERIAL_EOL;
  9387. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  9388. SERIAL_ECHO_START;
  9389. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  9390. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  9391. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  9392. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  9393. #endif
  9394. SERIAL_ECHO_START;
  9395. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  9396. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  9397. // Send "ok" after commands by default
  9398. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  9399. // Load data from EEPROM if available (or use defaults)
  9400. // This also updates variables in the planner, elsewhere
  9401. (void)Config_RetrieveSettings();
  9402. #if DISABLED(NO_WORKSPACE_OFFSETS)
  9403. // Initialize current position based on home_offset
  9404. COPY(current_position, home_offset);
  9405. #else
  9406. ZERO(current_position);
  9407. #endif
  9408. // Vital to init stepper/planner equivalent for current_position
  9409. SYNC_PLAN_POSITION_KINEMATIC();
  9410. thermalManager.init(); // Initialize temperature loop
  9411. #if ENABLED(USE_WATCHDOG)
  9412. watchdog_init();
  9413. #endif
  9414. stepper.init(); // Initialize stepper, this enables interrupts!
  9415. servo_init();
  9416. #if HAS_PHOTOGRAPH
  9417. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  9418. #endif
  9419. #if HAS_CASE_LIGHT
  9420. update_case_light();
  9421. #endif
  9422. #if HAS_BED_PROBE
  9423. endstops.enable_z_probe(false);
  9424. #endif
  9425. #if HAS_CONTROLLERFAN
  9426. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  9427. #endif
  9428. #if HAS_STEPPER_RESET
  9429. enableStepperDrivers();
  9430. #endif
  9431. #if ENABLED(DIGIPOT_I2C)
  9432. digipot_i2c_init();
  9433. #endif
  9434. #if ENABLED(DAC_STEPPER_CURRENT)
  9435. dac_init();
  9436. #endif
  9437. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  9438. OUT_WRITE(SLED_PIN, LOW); // turn it off
  9439. #endif // Z_PROBE_SLED
  9440. setup_homepin();
  9441. #if PIN_EXISTS(STAT_LED_RED)
  9442. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  9443. #endif
  9444. #if PIN_EXISTS(STAT_LED_BLUE)
  9445. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  9446. #endif
  9447. #if ENABLED(RGB_LED)
  9448. SET_OUTPUT(RGB_LED_R_PIN);
  9449. SET_OUTPUT(RGB_LED_G_PIN);
  9450. SET_OUTPUT(RGB_LED_B_PIN);
  9451. #endif
  9452. lcd_init();
  9453. #if ENABLED(SHOW_BOOTSCREEN)
  9454. #if ENABLED(DOGLCD)
  9455. safe_delay(BOOTSCREEN_TIMEOUT);
  9456. #elif ENABLED(ULTRA_LCD)
  9457. bootscreen();
  9458. #if DISABLED(SDSUPPORT)
  9459. lcd_init();
  9460. #endif
  9461. #endif
  9462. #endif
  9463. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9464. // Initialize mixing to 100% color 1
  9465. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9466. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  9467. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  9468. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9469. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  9470. #endif
  9471. #if ENABLED(BLTOUCH)
  9472. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  9473. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  9474. set_bltouch_deployed(false); // error condition.
  9475. #endif
  9476. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  9477. i2c.onReceive(i2c_on_receive);
  9478. i2c.onRequest(i2c_on_request);
  9479. #endif
  9480. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  9481. setup_endstop_interrupts();
  9482. #endif
  9483. }
  9484. /**
  9485. * The main Marlin program loop
  9486. *
  9487. * - Save or log commands to SD
  9488. * - Process available commands (if not saving)
  9489. * - Call heater manager
  9490. * - Call inactivity manager
  9491. * - Call endstop manager
  9492. * - Call LCD update
  9493. */
  9494. void loop() {
  9495. if (commands_in_queue < BUFSIZE) get_available_commands();
  9496. #if ENABLED(SDSUPPORT)
  9497. card.checkautostart(false);
  9498. #endif
  9499. if (commands_in_queue) {
  9500. #if ENABLED(SDSUPPORT)
  9501. if (card.saving) {
  9502. char* command = command_queue[cmd_queue_index_r];
  9503. if (strstr_P(command, PSTR("M29"))) {
  9504. // M29 closes the file
  9505. card.closefile();
  9506. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  9507. ok_to_send();
  9508. }
  9509. else {
  9510. // Write the string from the read buffer to SD
  9511. card.write_command(command);
  9512. if (card.logging)
  9513. process_next_command(); // The card is saving because it's logging
  9514. else
  9515. ok_to_send();
  9516. }
  9517. }
  9518. else
  9519. process_next_command();
  9520. #else
  9521. process_next_command();
  9522. #endif // SDSUPPORT
  9523. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  9524. if (commands_in_queue) {
  9525. --commands_in_queue;
  9526. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  9527. }
  9528. }
  9529. endstops.report_state();
  9530. idle();
  9531. }