My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 241KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. /**
  70. * Look here for descriptions of G-codes:
  71. * - http://linuxcnc.org/handbook/gcode/g-code.html
  72. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  73. *
  74. * Help us document these G-codes online:
  75. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  76. * - http://reprap.org/wiki/G-code
  77. *
  78. * -----------------
  79. * Implemented Codes
  80. * -----------------
  81. *
  82. * "G" Codes
  83. *
  84. * G0 -> G1
  85. * G1 - Coordinated Movement X Y Z E
  86. * G2 - CW ARC
  87. * G3 - CCW ARC
  88. * G4 - Dwell S<seconds> or P<milliseconds>
  89. * G10 - retract filament according to settings of M207
  90. * G11 - retract recover filament according to settings of M208
  91. * G28 - Home one or more axes
  92. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  93. * G30 - Single Z probe, probes bed at current XY location.
  94. * G31 - Dock sled (Z_PROBE_SLED only)
  95. * G32 - Undock sled (Z_PROBE_SLED only)
  96. * G90 - Use Absolute Coordinates
  97. * G91 - Use Relative Coordinates
  98. * G92 - Set current position to coordinates given
  99. *
  100. * "M" Codes
  101. *
  102. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  103. * M1 - Same as M0
  104. * M17 - Enable/Power all stepper motors
  105. * M18 - Disable all stepper motors; same as M84
  106. * M20 - List SD card
  107. * M21 - Init SD card
  108. * M22 - Release SD card
  109. * M23 - Select SD file (M23 filename.g)
  110. * M24 - Start/resume SD print
  111. * M25 - Pause SD print
  112. * M26 - Set SD position in bytes (M26 S12345)
  113. * M27 - Report SD print status
  114. * M28 - Start SD write (M28 filename.g)
  115. * M29 - Stop SD write
  116. * M30 - Delete file from SD (M30 filename.g)
  117. * M31 - Output time since last M109 or SD card start to serial
  118. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  119. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  120. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  121. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  122. * M33 - Get the longname version of a path
  123. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  124. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  125. * M80 - Turn on Power Supply
  126. * M81 - Turn off Power Supply
  127. * M82 - Set E codes absolute (default)
  128. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  129. * M84 - Disable steppers until next move,
  130. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  131. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  132. * M92 - Set axis_steps_per_unit - same syntax as G92
  133. * M104 - Set extruder target temp
  134. * M105 - Read current temp
  135. * M106 - Fan on
  136. * M107 - Fan off
  137. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  138. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  139. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  140. * M110 - Set the current line number
  141. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  142. * M112 - Emergency stop
  143. * M114 - Output current position to serial port
  144. * M115 - Capabilities string
  145. * M117 - Display a message on the controller screen
  146. * M119 - Output Endstop status to serial port
  147. * M120 - Enable endstop detection
  148. * M121 - Disable endstop detection
  149. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  150. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  151. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  152. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  153. * M140 - Set bed target temp
  154. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  155. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  156. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  157. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  158. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  159. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  160. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  161. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  162. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  163. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  164. * M206 - Set additional homing offset
  165. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  166. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  167. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  168. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  169. * M220 - Set speed factor override percentage: S<factor in percent>
  170. * M221 - Set extrude factor override percentage: S<factor in percent>
  171. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  172. * M240 - Trigger a camera to take a photograph
  173. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  174. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  175. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  176. * M301 - Set PID parameters P I and D
  177. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  178. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  179. * M304 - Set bed PID parameters P I and D
  180. * M380 - Activate solenoid on active extruder
  181. * M381 - Disable all solenoids
  182. * M400 - Finish all moves
  183. * M401 - Lower Z probe if present
  184. * M402 - Raise Z probe if present
  185. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. * M406 - Turn off Filament Sensor extrusion control
  188. * M407 - Display measured filament diameter
  189. * M410 - Quickstop. Abort all the planned moves
  190. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  191. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  192. * M428 - Set the home_offset logically based on the current_position
  193. * M500 - Store parameters in EEPROM
  194. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  195. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  196. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  197. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  198. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  199. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  200. * M666 - Set delta endstop adjustment
  201. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  202. * M907 - Set digital trimpot motor current using axis codes.
  203. * M908 - Control digital trimpot directly.
  204. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  205. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  206. * M350 - Set microstepping mode.
  207. * M351 - Toggle MS1 MS2 pins directly.
  208. *
  209. * ************ SCARA Specific - This can change to suit future G-code regulations
  210. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  211. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  212. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  213. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  214. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  215. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  216. * ************* SCARA End ***************
  217. *
  218. * ************ Custom codes - This can change to suit future G-code regulations
  219. * M100 - Watch Free Memory (For Debugging Only)
  220. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  221. * M928 - Start SD logging (M928 filename.g) - ended by M29
  222. * M999 - Restart after being stopped by error
  223. *
  224. * "T" Codes
  225. *
  226. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  227. *
  228. */
  229. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  230. void gcode_M100();
  231. #endif
  232. #if ENABLED(SDSUPPORT)
  233. CardReader card;
  234. #endif
  235. bool Running = true;
  236. uint8_t marlin_debug_flags = DEBUG_INFO | DEBUG_ERRORS;
  237. static float feedrate = 1500.0, saved_feedrate;
  238. float current_position[NUM_AXIS] = { 0.0 };
  239. static float destination[NUM_AXIS] = { 0.0 };
  240. bool axis_known_position[3] = { false };
  241. bool axis_homed[3] = { false };
  242. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  243. static char* current_command, *current_command_args;
  244. static int cmd_queue_index_r = 0;
  245. static int cmd_queue_index_w = 0;
  246. static int commands_in_queue = 0;
  247. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  248. const float homing_feedrate[] = HOMING_FEEDRATE;
  249. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  250. int feedrate_multiplier = 100; //100->1 200->2
  251. int saved_feedrate_multiplier;
  252. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  253. bool volumetric_enabled = false;
  254. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  255. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  256. float home_offset[3] = { 0 };
  257. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  258. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  259. #if FAN_COUNT > 0
  260. int fanSpeeds[FAN_COUNT] = { 0 };
  261. #endif
  262. uint8_t active_extruder = 0;
  263. bool cancel_heatup = false;
  264. const char errormagic[] PROGMEM = "Error:";
  265. const char echomagic[] PROGMEM = "echo:";
  266. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  267. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  268. static int serial_count = 0;
  269. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  270. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  271. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  272. // Inactivity shutdown
  273. millis_t previous_cmd_ms = 0;
  274. static millis_t max_inactive_time = 0;
  275. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000L;
  276. millis_t print_job_start_ms = 0; ///< Print job start time
  277. millis_t print_job_stop_ms = 0; ///< Print job stop time
  278. static uint8_t target_extruder;
  279. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  280. int xy_travel_speed = XY_TRAVEL_SPEED;
  281. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  282. #endif
  283. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  284. float z_endstop_adj = 0;
  285. #endif
  286. // Extruder offsets
  287. #if EXTRUDERS > 1
  288. #ifndef EXTRUDER_OFFSET_X
  289. #define EXTRUDER_OFFSET_X { 0 }
  290. #endif
  291. #ifndef EXTRUDER_OFFSET_Y
  292. #define EXTRUDER_OFFSET_Y { 0 }
  293. #endif
  294. float extruder_offset[][EXTRUDERS] = {
  295. EXTRUDER_OFFSET_X,
  296. EXTRUDER_OFFSET_Y
  297. #if ENABLED(DUAL_X_CARRIAGE)
  298. , { 0 } // supports offsets in XYZ plane
  299. #endif
  300. };
  301. #endif
  302. #if HAS_SERVO_ENDSTOPS
  303. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  304. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  305. #endif
  306. #if ENABLED(BARICUDA)
  307. int ValvePressure = 0;
  308. int EtoPPressure = 0;
  309. #endif
  310. #if ENABLED(FWRETRACT)
  311. bool autoretract_enabled = false;
  312. bool retracted[EXTRUDERS] = { false };
  313. bool retracted_swap[EXTRUDERS] = { false };
  314. float retract_length = RETRACT_LENGTH;
  315. float retract_length_swap = RETRACT_LENGTH_SWAP;
  316. float retract_feedrate = RETRACT_FEEDRATE;
  317. float retract_zlift = RETRACT_ZLIFT;
  318. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  319. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  320. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  321. #endif // FWRETRACT
  322. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  323. bool powersupply =
  324. #if ENABLED(PS_DEFAULT_OFF)
  325. false
  326. #else
  327. true
  328. #endif
  329. ;
  330. #endif
  331. #if ENABLED(DELTA)
  332. #define TOWER_1 X_AXIS
  333. #define TOWER_2 Y_AXIS
  334. #define TOWER_3 Z_AXIS
  335. float delta[3] = { 0 };
  336. #define SIN_60 0.8660254037844386
  337. #define COS_60 0.5
  338. float endstop_adj[3] = { 0 };
  339. // these are the default values, can be overriden with M665
  340. float delta_radius = DELTA_RADIUS;
  341. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  342. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  343. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  344. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  345. float delta_tower3_x = 0; // back middle tower
  346. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  347. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  348. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  349. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  350. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  351. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  352. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  353. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  354. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  355. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  356. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  357. int delta_grid_spacing[2] = { 0, 0 };
  358. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  359. #endif
  360. #else
  361. static bool home_all_axis = true;
  362. #endif
  363. #if ENABLED(SCARA)
  364. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  365. static float delta[3] = { 0 };
  366. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  367. #endif
  368. #if ENABLED(FILAMENT_SENSOR)
  369. //Variables for Filament Sensor input
  370. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  371. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  372. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  373. signed char measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  374. int delay_index1 = 0; //index into ring buffer
  375. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  376. float delay_dist = 0; //delay distance counter
  377. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  378. #endif
  379. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  380. static bool filrunoutEnqueued = false;
  381. #endif
  382. static bool send_ok[BUFSIZE];
  383. #if HAS_SERVOS
  384. Servo servo[NUM_SERVOS];
  385. #endif
  386. #ifdef CHDK
  387. unsigned long chdkHigh = 0;
  388. boolean chdkActive = false;
  389. #endif
  390. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  391. int lpq_len = 20;
  392. #endif
  393. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  394. // States for managing Marlin and host communication
  395. // Marlin sends messages if blocked or busy
  396. enum MarlinBusyState {
  397. NOT_BUSY, // Not in a handler
  398. IN_HANDLER, // Processing a GCode
  399. IN_PROCESS, // Known to be blocking command input (as in G29)
  400. PAUSED_FOR_USER, // Blocking pending any input
  401. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  402. };
  403. static MarlinBusyState busy_state = NOT_BUSY;
  404. static millis_t next_busy_signal_ms = -1;
  405. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  406. #else
  407. #define host_keepalive() ;
  408. #define KEEPALIVE_STATE(n) ;
  409. #endif // HOST_KEEPALIVE_FEATURE
  410. /**
  411. * ***************************************************************************
  412. * ******************************** FUNCTIONS ********************************
  413. * ***************************************************************************
  414. */
  415. void process_next_command();
  416. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  417. bool setTargetedHotend(int code);
  418. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  419. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  420. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  421. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  422. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  423. void gcode_M114();
  424. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  425. float extrude_min_temp = EXTRUDE_MINTEMP;
  426. #endif
  427. #if ENABLED(HAS_Z_MIN_PROBE)
  428. extern volatile bool z_probe_is_active;
  429. #endif
  430. #if ENABLED(SDSUPPORT)
  431. #include "SdFatUtil.h"
  432. int freeMemory() { return SdFatUtil::FreeRam(); }
  433. #else
  434. extern "C" {
  435. extern unsigned int __bss_end;
  436. extern unsigned int __heap_start;
  437. extern void* __brkval;
  438. int freeMemory() {
  439. int free_memory;
  440. if ((int)__brkval == 0)
  441. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  442. else
  443. free_memory = ((int)&free_memory) - ((int)__brkval);
  444. return free_memory;
  445. }
  446. }
  447. #endif //!SDSUPPORT
  448. /**
  449. * Inject the next "immediate" command, when possible.
  450. * Return true if any immediate commands remain to inject.
  451. */
  452. static bool drain_queued_commands_P() {
  453. if (queued_commands_P != NULL) {
  454. size_t i = 0;
  455. char c, cmd[30];
  456. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  457. cmd[sizeof(cmd) - 1] = '\0';
  458. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  459. cmd[i] = '\0';
  460. if (enqueue_and_echo_command(cmd)) { // success?
  461. if (c) // newline char?
  462. queued_commands_P += i + 1; // advance to the next command
  463. else
  464. queued_commands_P = NULL; // nul char? no more commands
  465. }
  466. }
  467. return (queued_commands_P != NULL); // return whether any more remain
  468. }
  469. /**
  470. * Record one or many commands to run from program memory.
  471. * Aborts the current queue, if any.
  472. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  473. */
  474. void enqueue_and_echo_commands_P(const char* pgcode) {
  475. queued_commands_P = pgcode;
  476. drain_queued_commands_P(); // first command executed asap (when possible)
  477. }
  478. /**
  479. * Once a new command is in the ring buffer, call this to commit it
  480. */
  481. inline void _commit_command(bool say_ok) {
  482. send_ok[cmd_queue_index_w] = say_ok;
  483. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  484. commands_in_queue++;
  485. }
  486. /**
  487. * Copy a command directly into the main command buffer, from RAM.
  488. * Returns true if successfully adds the command
  489. */
  490. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  491. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  492. strcpy(command_queue[cmd_queue_index_w], cmd);
  493. _commit_command(say_ok);
  494. return true;
  495. }
  496. void enqueue_and_echo_command_now(const char* cmd) {
  497. while (!enqueue_and_echo_command(cmd)) idle();
  498. }
  499. /**
  500. * Enqueue with Serial Echo
  501. */
  502. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  503. if (_enqueuecommand(cmd, say_ok)) {
  504. SERIAL_ECHO_START;
  505. SERIAL_ECHOPGM(MSG_Enqueueing);
  506. SERIAL_ECHO(cmd);
  507. SERIAL_ECHOLNPGM("\"");
  508. return true;
  509. }
  510. return false;
  511. }
  512. void setup_killpin() {
  513. #if HAS_KILL
  514. SET_INPUT(KILL_PIN);
  515. WRITE(KILL_PIN, HIGH);
  516. #endif
  517. }
  518. void setup_filrunoutpin() {
  519. #if HAS_FILRUNOUT
  520. pinMode(FILRUNOUT_PIN, INPUT);
  521. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  522. WRITE(FILRUNOUT_PIN, HIGH);
  523. #endif
  524. #endif
  525. }
  526. // Set home pin
  527. void setup_homepin(void) {
  528. #if HAS_HOME
  529. SET_INPUT(HOME_PIN);
  530. WRITE(HOME_PIN, HIGH);
  531. #endif
  532. }
  533. void setup_photpin() {
  534. #if HAS_PHOTOGRAPH
  535. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  536. #endif
  537. }
  538. void setup_powerhold() {
  539. #if HAS_SUICIDE
  540. OUT_WRITE(SUICIDE_PIN, HIGH);
  541. #endif
  542. #if HAS_POWER_SWITCH
  543. #if ENABLED(PS_DEFAULT_OFF)
  544. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  545. #else
  546. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  547. #endif
  548. #endif
  549. }
  550. void suicide() {
  551. #if HAS_SUICIDE
  552. OUT_WRITE(SUICIDE_PIN, LOW);
  553. #endif
  554. }
  555. void servo_init() {
  556. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  557. servo[0].attach(SERVO0_PIN);
  558. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  559. #endif
  560. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  561. servo[1].attach(SERVO1_PIN);
  562. servo[1].detach();
  563. #endif
  564. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  565. servo[2].attach(SERVO2_PIN);
  566. servo[2].detach();
  567. #endif
  568. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  569. servo[3].attach(SERVO3_PIN);
  570. servo[3].detach();
  571. #endif
  572. #if HAS_SERVO_ENDSTOPS
  573. z_probe_is_active = false;
  574. /**
  575. * Set position of all defined Servo Endstops
  576. *
  577. * ** UNSAFE! - NEEDS UPDATE! **
  578. *
  579. * The servo might be deployed and positioned too low to stow
  580. * when starting up the machine or rebooting the board.
  581. * There's no way to know where the nozzle is positioned until
  582. * homing has been done - no homing with z-probe without init!
  583. *
  584. */
  585. for (int i = 0; i < 3; i++)
  586. if (servo_endstop_id[i] >= 0)
  587. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  588. #endif // HAS_SERVO_ENDSTOPS
  589. }
  590. /**
  591. * Stepper Reset (RigidBoard, et.al.)
  592. */
  593. #if HAS_STEPPER_RESET
  594. void disableStepperDrivers() {
  595. pinMode(STEPPER_RESET_PIN, OUTPUT);
  596. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  597. }
  598. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  599. #endif
  600. /**
  601. * Marlin entry-point: Set up before the program loop
  602. * - Set up the kill pin, filament runout, power hold
  603. * - Start the serial port
  604. * - Print startup messages and diagnostics
  605. * - Get EEPROM or default settings
  606. * - Initialize managers for:
  607. * • temperature
  608. * • planner
  609. * • watchdog
  610. * • stepper
  611. * • photo pin
  612. * • servos
  613. * • LCD controller
  614. * • Digipot I2C
  615. * • Z probe sled
  616. * • status LEDs
  617. */
  618. void setup() {
  619. #ifdef DISABLE_JTAG
  620. // Disable JTAG on AT90USB chips to free up pins for IO
  621. MCUCR = 0x80;
  622. MCUCR = 0x80;
  623. #endif
  624. setup_killpin();
  625. setup_filrunoutpin();
  626. setup_powerhold();
  627. #if HAS_STEPPER_RESET
  628. disableStepperDrivers();
  629. #endif
  630. MYSERIAL.begin(BAUDRATE);
  631. SERIAL_PROTOCOLLNPGM("start");
  632. SERIAL_ECHO_START;
  633. // Check startup - does nothing if bootloader sets MCUSR to 0
  634. byte mcu = MCUSR;
  635. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  636. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  637. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  638. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  639. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  640. MCUSR = 0;
  641. SERIAL_ECHOPGM(MSG_MARLIN);
  642. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  643. #ifdef STRING_DISTRIBUTION_DATE
  644. #ifdef STRING_CONFIG_H_AUTHOR
  645. SERIAL_ECHO_START;
  646. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  647. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  648. SERIAL_ECHOPGM(MSG_AUTHOR);
  649. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  650. SERIAL_ECHOPGM("Compiled: ");
  651. SERIAL_ECHOLNPGM(__DATE__);
  652. #endif // STRING_CONFIG_H_AUTHOR
  653. #endif // STRING_DISTRIBUTION_DATE
  654. SERIAL_ECHO_START;
  655. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  656. SERIAL_ECHO(freeMemory());
  657. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  658. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  659. // Send "ok" after commands by default
  660. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  661. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  662. Config_RetrieveSettings();
  663. lcd_init();
  664. tp_init(); // Initialize temperature loop
  665. plan_init(); // Initialize planner;
  666. #if ENABLED(USE_WATCHDOG)
  667. watchdog_init();
  668. #endif
  669. st_init(); // Initialize stepper, this enables interrupts!
  670. setup_photpin();
  671. servo_init();
  672. #if HAS_CONTROLLERFAN
  673. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  674. #endif
  675. #if HAS_STEPPER_RESET
  676. enableStepperDrivers();
  677. #endif
  678. #if ENABLED(DIGIPOT_I2C)
  679. digipot_i2c_init();
  680. #endif
  681. #if ENABLED(Z_PROBE_SLED)
  682. pinMode(SLED_PIN, OUTPUT);
  683. digitalWrite(SLED_PIN, LOW); // turn it off
  684. #endif // Z_PROBE_SLED
  685. setup_homepin();
  686. #ifdef STAT_LED_RED
  687. pinMode(STAT_LED_RED, OUTPUT);
  688. digitalWrite(STAT_LED_RED, LOW); // turn it off
  689. #endif
  690. #ifdef STAT_LED_BLUE
  691. pinMode(STAT_LED_BLUE, OUTPUT);
  692. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  693. #endif
  694. }
  695. /**
  696. * The main Marlin program loop
  697. *
  698. * - Save or log commands to SD
  699. * - Process available commands (if not saving)
  700. * - Call heater manager
  701. * - Call inactivity manager
  702. * - Call endstop manager
  703. * - Call LCD update
  704. */
  705. void loop() {
  706. if (commands_in_queue < BUFSIZE) get_command();
  707. #if ENABLED(SDSUPPORT)
  708. card.checkautostart(false);
  709. #endif
  710. if (commands_in_queue) {
  711. #if ENABLED(SDSUPPORT)
  712. if (card.saving) {
  713. char* command = command_queue[cmd_queue_index_r];
  714. if (strstr_P(command, PSTR("M29"))) {
  715. // M29 closes the file
  716. card.closefile();
  717. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  718. ok_to_send();
  719. }
  720. else {
  721. // Write the string from the read buffer to SD
  722. card.write_command(command);
  723. if (card.logging)
  724. process_next_command(); // The card is saving because it's logging
  725. else
  726. ok_to_send();
  727. }
  728. }
  729. else
  730. process_next_command();
  731. #else
  732. process_next_command();
  733. #endif // SDSUPPORT
  734. commands_in_queue--;
  735. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  736. }
  737. checkHitEndstops();
  738. idle();
  739. }
  740. void gcode_line_error(const char* err, bool doFlush = true) {
  741. SERIAL_ERROR_START;
  742. serialprintPGM(err);
  743. SERIAL_ERRORLN(gcode_LastN);
  744. //Serial.println(gcode_N);
  745. if (doFlush) FlushSerialRequestResend();
  746. serial_count = 0;
  747. }
  748. /**
  749. * Add to the circular command queue the next command from:
  750. * - The command-injection queue (queued_commands_P)
  751. * - The active serial input (usually USB)
  752. * - The SD card file being actively printed
  753. */
  754. void get_command() {
  755. static char serial_line_buffer[MAX_CMD_SIZE];
  756. static boolean serial_comment_mode = false;
  757. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  758. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  759. static millis_t last_command_time = 0;
  760. millis_t ms = millis();
  761. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  762. SERIAL_ECHOLNPGM(MSG_WAIT);
  763. last_command_time = ms;
  764. }
  765. #endif
  766. /**
  767. * Loop while serial characters are incoming and the queue is not full
  768. */
  769. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  770. char serial_char = MYSERIAL.read();
  771. /**
  772. * If the character ends the line
  773. */
  774. if (serial_char == '\n' || serial_char == '\r') {
  775. serial_comment_mode = false; // end of line == end of comment
  776. if (!serial_count) return; // empty lines just exit
  777. serial_line_buffer[serial_count] = 0; // terminate string
  778. serial_count = 0; //reset buffer
  779. char* command = serial_line_buffer;
  780. while (*command == ' ') command++; // skip any leading spaces
  781. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  782. char* apos = strchr(command, '*');
  783. if (npos) {
  784. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  785. if (M110) {
  786. char* n2pos = strchr(command + 4, 'N');
  787. if (n2pos) npos = n2pos;
  788. }
  789. gcode_N = strtol(npos + 1, NULL, 10);
  790. if (gcode_N != gcode_LastN + 1 && !M110) {
  791. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  792. return;
  793. }
  794. if (apos) {
  795. byte checksum = 0, count = 0;
  796. while (command[count] != '*') checksum ^= command[count++];
  797. if (strtol(apos + 1, NULL, 10) != checksum) {
  798. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  799. return;
  800. }
  801. // if no errors, continue parsing
  802. }
  803. else {
  804. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  805. return;
  806. }
  807. gcode_LastN = gcode_N;
  808. // if no errors, continue parsing
  809. }
  810. else if (apos) { // No '*' without 'N'
  811. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  812. return;
  813. }
  814. // Movement commands alert when stopped
  815. if (IsStopped()) {
  816. char* gpos = strchr(command, 'G');
  817. if (gpos) {
  818. int codenum = strtol(gpos + 1, NULL, 10);
  819. switch (codenum) {
  820. case 0:
  821. case 1:
  822. case 2:
  823. case 3:
  824. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  825. LCD_MESSAGEPGM(MSG_STOPPED);
  826. break;
  827. }
  828. }
  829. }
  830. // If command was e-stop process now
  831. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  832. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  833. last_command_time = ms;
  834. #endif
  835. // Add the command to the queue
  836. _enqueuecommand(serial_line_buffer, true);
  837. }
  838. else if (serial_count >= MAX_CMD_SIZE - 1) {
  839. // Keep fetching, but ignore normal characters beyond the max length
  840. // The command will be injected when EOL is reached
  841. }
  842. else if (serial_char == '\\') { // Handle escapes
  843. if (MYSERIAL.available() > 0) {
  844. // if we have one more character, copy it over
  845. serial_char = MYSERIAL.read();
  846. serial_line_buffer[serial_count++] = serial_char;
  847. }
  848. // otherwise do nothing
  849. }
  850. else { // it's not a newline, carriage return or escape char
  851. if (serial_char == ';') serial_comment_mode = true;
  852. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  853. }
  854. } // queue has space, serial has data
  855. #if ENABLED(SDSUPPORT)
  856. static bool stop_buffering = false,
  857. sd_comment_mode = false;
  858. if (!card.sdprinting) return;
  859. /**
  860. * '#' stops reading from SD to the buffer prematurely, so procedural
  861. * macro calls are possible. If it occurs, stop_buffering is triggered
  862. * and the buffer is run dry; this character _can_ occur in serial com
  863. * due to checksums, however, no checksums are used in SD printing.
  864. */
  865. if (commands_in_queue == 0) stop_buffering = false;
  866. uint16_t sd_count = 0;
  867. bool card_eof = card.eof();
  868. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  869. int16_t n = card.get();
  870. char sd_char = (char)n;
  871. card_eof = card.eof();
  872. if (card_eof || n == -1
  873. || sd_char == '\n' || sd_char == '\r'
  874. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  875. ) {
  876. if (card_eof) {
  877. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  878. print_job_stop(true);
  879. char time[30];
  880. millis_t t = print_job_timer();
  881. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  882. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  883. SERIAL_ECHO_START;
  884. SERIAL_ECHOLN(time);
  885. lcd_setstatus(time, true);
  886. card.printingHasFinished();
  887. card.checkautostart(true);
  888. }
  889. if (sd_char == '#') stop_buffering = true;
  890. sd_comment_mode = false; //for new command
  891. if (!sd_count) continue; //skip empty lines
  892. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  893. sd_count = 0; //clear buffer
  894. _commit_command(false);
  895. }
  896. else if (sd_count >= MAX_CMD_SIZE - 1) {
  897. /**
  898. * Keep fetching, but ignore normal characters beyond the max length
  899. * The command will be injected when EOL is reached
  900. */
  901. }
  902. else {
  903. if (sd_char == ';') sd_comment_mode = true;
  904. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  905. }
  906. }
  907. #endif // SDSUPPORT
  908. }
  909. bool code_has_value() {
  910. int i = 1;
  911. char c = seen_pointer[i];
  912. while (c == ' ') c = seen_pointer[++i];
  913. if (c == '-' || c == '+') c = seen_pointer[++i];
  914. if (c == '.') c = seen_pointer[++i];
  915. return (c >= '0' && c <= '9');
  916. }
  917. float code_value() {
  918. float ret;
  919. char* e = strchr(seen_pointer, 'E');
  920. if (e) {
  921. *e = 0;
  922. ret = strtod(seen_pointer + 1, NULL);
  923. *e = 'E';
  924. }
  925. else
  926. ret = strtod(seen_pointer + 1, NULL);
  927. return ret;
  928. }
  929. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  930. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  931. bool code_seen(char code) {
  932. seen_pointer = strchr(current_command_args, code);
  933. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  934. }
  935. #define DEFINE_PGM_READ_ANY(type, reader) \
  936. static inline type pgm_read_any(const type *p) \
  937. { return pgm_read_##reader##_near(p); }
  938. DEFINE_PGM_READ_ANY(float, float);
  939. DEFINE_PGM_READ_ANY(signed char, byte);
  940. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  941. static const PROGMEM type array##_P[3] = \
  942. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  943. static inline type array(int axis) \
  944. { return pgm_read_any(&array##_P[axis]); }
  945. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  946. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  947. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  948. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  949. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  950. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  951. #if ENABLED(DUAL_X_CARRIAGE)
  952. #define DXC_FULL_CONTROL_MODE 0
  953. #define DXC_AUTO_PARK_MODE 1
  954. #define DXC_DUPLICATION_MODE 2
  955. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  956. static float x_home_pos(int extruder) {
  957. if (extruder == 0)
  958. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  959. else
  960. /**
  961. * In dual carriage mode the extruder offset provides an override of the
  962. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  963. * This allow soft recalibration of the second extruder offset position
  964. * without firmware reflash (through the M218 command).
  965. */
  966. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  967. }
  968. static int x_home_dir(int extruder) {
  969. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  970. }
  971. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  972. static bool active_extruder_parked = false; // used in mode 1 & 2
  973. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  974. static millis_t delayed_move_time = 0; // used in mode 1
  975. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  976. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  977. bool extruder_duplication_enabled = false; // used in mode 2
  978. #endif //DUAL_X_CARRIAGE
  979. #if ENABLED(DEBUG_LEVELING_FEATURE)
  980. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  981. SERIAL_ECHO(prefix);
  982. SERIAL_ECHOPAIR(": (", x);
  983. SERIAL_ECHOPAIR(", ", y);
  984. SERIAL_ECHOPAIR(", ", z);
  985. SERIAL_ECHOLNPGM(")");
  986. }
  987. void print_xyz(const char* prefix, const float xyz[]) {
  988. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  989. }
  990. #endif
  991. static void set_axis_is_at_home(AxisEnum axis) {
  992. #if ENABLED(DUAL_X_CARRIAGE)
  993. if (axis == X_AXIS) {
  994. if (active_extruder != 0) {
  995. current_position[X_AXIS] = x_home_pos(active_extruder);
  996. min_pos[X_AXIS] = X2_MIN_POS;
  997. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  998. return;
  999. }
  1000. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1001. float xoff = home_offset[X_AXIS];
  1002. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  1003. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  1004. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  1005. return;
  1006. }
  1007. }
  1008. #endif
  1009. #if ENABLED(SCARA)
  1010. if (axis == X_AXIS || axis == Y_AXIS) {
  1011. float homeposition[3];
  1012. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1013. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1014. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1015. /**
  1016. * Works out real Homeposition angles using inverse kinematics,
  1017. * and calculates homing offset using forward kinematics
  1018. */
  1019. calculate_delta(homeposition);
  1020. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1021. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1022. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1023. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1024. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1025. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1026. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1027. calculate_SCARA_forward_Transform(delta);
  1028. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1029. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1030. current_position[axis] = delta[axis];
  1031. /**
  1032. * SCARA home positions are based on configuration since the actual
  1033. * limits are determined by the inverse kinematic transform.
  1034. */
  1035. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1036. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1037. }
  1038. else
  1039. #endif
  1040. {
  1041. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1042. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  1043. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  1044. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1045. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  1046. #endif
  1047. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1048. if (marlin_debug_flags & DEBUG_LEVELING) {
  1049. SERIAL_ECHOPAIR("set_axis_is_at_home ", (unsigned long)axis);
  1050. SERIAL_ECHOPAIR(" > (home_offset[axis]==", home_offset[axis]);
  1051. print_xyz(") > current_position", current_position);
  1052. }
  1053. #endif
  1054. }
  1055. }
  1056. /**
  1057. * Some planner shorthand inline functions
  1058. */
  1059. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1060. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1061. int hbd = homing_bump_divisor[axis];
  1062. if (hbd < 1) {
  1063. hbd = 10;
  1064. SERIAL_ECHO_START;
  1065. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1066. }
  1067. feedrate = homing_feedrate[axis] / hbd;
  1068. }
  1069. inline void line_to_current_position() {
  1070. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1071. }
  1072. inline void line_to_z(float zPosition) {
  1073. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1074. }
  1075. inline void line_to_destination(float mm_m) {
  1076. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1077. }
  1078. inline void line_to_destination() {
  1079. line_to_destination(feedrate);
  1080. }
  1081. inline void sync_plan_position() {
  1082. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1083. }
  1084. #if ENABLED(DELTA) || ENABLED(SCARA)
  1085. inline void sync_plan_position_delta() {
  1086. calculate_delta(current_position);
  1087. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1088. }
  1089. #endif
  1090. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1091. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1092. static void setup_for_endstop_move() {
  1093. saved_feedrate = feedrate;
  1094. saved_feedrate_multiplier = feedrate_multiplier;
  1095. feedrate_multiplier = 100;
  1096. refresh_cmd_timeout();
  1097. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1098. if (marlin_debug_flags & DEBUG_LEVELING) {
  1099. SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1100. }
  1101. #endif
  1102. enable_endstops(true);
  1103. }
  1104. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1105. #if ENABLED(DELTA)
  1106. /**
  1107. * Calculate delta, start a line, and set current_position to destination
  1108. */
  1109. void prepare_move_raw() {
  1110. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1111. if (marlin_debug_flags & DEBUG_LEVELING) {
  1112. print_xyz("prepare_move_raw > destination", destination);
  1113. }
  1114. #endif
  1115. refresh_cmd_timeout();
  1116. calculate_delta(destination);
  1117. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1118. set_current_to_destination();
  1119. }
  1120. #endif
  1121. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1122. #if DISABLED(DELTA)
  1123. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1124. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1125. planeNormal.debug("planeNormal");
  1126. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1127. //bedLevel.debug("bedLevel");
  1128. //plan_bed_level_matrix.debug("bed level before");
  1129. //vector_3 uncorrected_position = plan_get_position_mm();
  1130. //uncorrected_position.debug("position before");
  1131. vector_3 corrected_position = plan_get_position();
  1132. //corrected_position.debug("position after");
  1133. current_position[X_AXIS] = corrected_position.x;
  1134. current_position[Y_AXIS] = corrected_position.y;
  1135. current_position[Z_AXIS] = corrected_position.z;
  1136. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1137. if (marlin_debug_flags & DEBUG_LEVELING) {
  1138. print_xyz("set_bed_level_equation_lsq > current_position", current_position);
  1139. }
  1140. #endif
  1141. sync_plan_position();
  1142. }
  1143. #endif // !DELTA
  1144. #else // !AUTO_BED_LEVELING_GRID
  1145. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1146. plan_bed_level_matrix.set_to_identity();
  1147. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1148. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1149. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1150. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1151. if (planeNormal.z < 0) {
  1152. planeNormal.x = -planeNormal.x;
  1153. planeNormal.y = -planeNormal.y;
  1154. planeNormal.z = -planeNormal.z;
  1155. }
  1156. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1157. vector_3 corrected_position = plan_get_position();
  1158. current_position[X_AXIS] = corrected_position.x;
  1159. current_position[Y_AXIS] = corrected_position.y;
  1160. current_position[Z_AXIS] = corrected_position.z;
  1161. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1162. if (marlin_debug_flags & DEBUG_LEVELING) {
  1163. print_xyz("set_bed_level_equation_3pts > current_position", current_position);
  1164. }
  1165. #endif
  1166. sync_plan_position();
  1167. }
  1168. #endif // !AUTO_BED_LEVELING_GRID
  1169. static void run_z_probe() {
  1170. /**
  1171. * To prevent stepper_inactive_time from running out and
  1172. * EXTRUDER_RUNOUT_PREVENT from extruding
  1173. */
  1174. refresh_cmd_timeout();
  1175. #if ENABLED(DELTA)
  1176. float start_z = current_position[Z_AXIS];
  1177. long start_steps = st_get_position(Z_AXIS);
  1178. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1179. if (marlin_debug_flags & DEBUG_LEVELING) {
  1180. SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1181. }
  1182. #endif
  1183. // move down slowly until you find the bed
  1184. feedrate = homing_feedrate[Z_AXIS] / 4;
  1185. destination[Z_AXIS] = -10;
  1186. prepare_move_raw(); // this will also set_current_to_destination
  1187. st_synchronize();
  1188. endstops_hit_on_purpose(); // clear endstop hit flags
  1189. /**
  1190. * We have to let the planner know where we are right now as it
  1191. * is not where we said to go.
  1192. */
  1193. long stop_steps = st_get_position(Z_AXIS);
  1194. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1195. current_position[Z_AXIS] = mm;
  1196. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1197. if (marlin_debug_flags & DEBUG_LEVELING) {
  1198. print_xyz("run_z_probe (DELTA) 2 > current_position", current_position);
  1199. }
  1200. #endif
  1201. sync_plan_position_delta();
  1202. #else // !DELTA
  1203. plan_bed_level_matrix.set_to_identity();
  1204. feedrate = homing_feedrate[Z_AXIS];
  1205. // Move down until the Z probe (or endstop?) is triggered
  1206. float zPosition = -(Z_MAX_LENGTH + 10);
  1207. line_to_z(zPosition);
  1208. st_synchronize();
  1209. // Tell the planner where we ended up - Get this from the stepper handler
  1210. zPosition = st_get_axis_position_mm(Z_AXIS);
  1211. plan_set_position(
  1212. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1213. current_position[E_AXIS]
  1214. );
  1215. // move up the retract distance
  1216. zPosition += home_bump_mm(Z_AXIS);
  1217. line_to_z(zPosition);
  1218. st_synchronize();
  1219. endstops_hit_on_purpose(); // clear endstop hit flags
  1220. // move back down slowly to find bed
  1221. set_homing_bump_feedrate(Z_AXIS);
  1222. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1223. line_to_z(zPosition);
  1224. st_synchronize();
  1225. endstops_hit_on_purpose(); // clear endstop hit flags
  1226. // Get the current stepper position after bumping an endstop
  1227. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1228. sync_plan_position();
  1229. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1230. if (marlin_debug_flags & DEBUG_LEVELING) {
  1231. print_xyz("run_z_probe > current_position", current_position);
  1232. }
  1233. #endif
  1234. #endif // !DELTA
  1235. }
  1236. /**
  1237. * Plan a move to (X, Y, Z) and set the current_position
  1238. * The final current_position may not be the one that was requested
  1239. */
  1240. static void do_blocking_move_to(float x, float y, float z) {
  1241. float oldFeedRate = feedrate;
  1242. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1243. if (marlin_debug_flags & DEBUG_LEVELING) {
  1244. print_xyz("do_blocking_move_to", x, y, z);
  1245. }
  1246. #endif
  1247. #if ENABLED(DELTA)
  1248. feedrate = XY_TRAVEL_SPEED;
  1249. destination[X_AXIS] = x;
  1250. destination[Y_AXIS] = y;
  1251. destination[Z_AXIS] = z;
  1252. prepare_move_raw(); // this will also set_current_to_destination
  1253. st_synchronize();
  1254. #else
  1255. feedrate = homing_feedrate[Z_AXIS];
  1256. current_position[Z_AXIS] = z;
  1257. line_to_current_position();
  1258. st_synchronize();
  1259. feedrate = xy_travel_speed;
  1260. current_position[X_AXIS] = x;
  1261. current_position[Y_AXIS] = y;
  1262. line_to_current_position();
  1263. st_synchronize();
  1264. #endif
  1265. feedrate = oldFeedRate;
  1266. }
  1267. inline void do_blocking_move_to_xy(float x, float y) {
  1268. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1269. }
  1270. inline void do_blocking_move_to_x(float x) {
  1271. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1272. }
  1273. inline void do_blocking_move_to_z(float z) {
  1274. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1275. }
  1276. inline void raise_z_after_probing() {
  1277. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1278. }
  1279. static void clean_up_after_endstop_move() {
  1280. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1281. if (marlin_debug_flags & DEBUG_LEVELING) {
  1282. SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1283. }
  1284. #endif
  1285. endstops_not_homing();
  1286. feedrate = saved_feedrate;
  1287. feedrate_multiplier = saved_feedrate_multiplier;
  1288. refresh_cmd_timeout();
  1289. }
  1290. #if ENABLED(HAS_Z_MIN_PROBE)
  1291. static void deploy_z_probe() {
  1292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1293. if (marlin_debug_flags & DEBUG_LEVELING) {
  1294. print_xyz("deploy_z_probe > current_position", current_position);
  1295. }
  1296. #endif
  1297. if (z_probe_is_active) return;
  1298. #if HAS_SERVO_ENDSTOPS
  1299. // Engage Z Servo endstop if enabled
  1300. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1301. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1302. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1303. // If endstop is already false, the Z probe is deployed
  1304. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1305. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1306. if (z_probe_endstop)
  1307. #else
  1308. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1309. if (z_min_endstop)
  1310. #endif
  1311. {
  1312. // Move to the start position to initiate deployment
  1313. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1314. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1315. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1316. prepare_move_raw(); // this will also set_current_to_destination
  1317. // Move to engage deployment
  1318. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1319. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1320. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1321. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1322. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1323. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1324. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1325. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1326. prepare_move_raw();
  1327. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1328. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1329. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1330. // Move to trigger deployment
  1331. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1332. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1333. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1334. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1335. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1336. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1337. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1338. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1339. prepare_move_raw();
  1340. #endif
  1341. }
  1342. // Partially Home X,Y for safety
  1343. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1344. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1345. prepare_move_raw(); // this will also set_current_to_destination
  1346. st_synchronize();
  1347. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1348. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1349. if (z_probe_endstop)
  1350. #else
  1351. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1352. if (z_min_endstop)
  1353. #endif
  1354. {
  1355. if (IsRunning()) {
  1356. SERIAL_ERROR_START;
  1357. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1358. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1359. }
  1360. Stop();
  1361. }
  1362. #endif // Z_PROBE_ALLEN_KEY
  1363. #if ENABLED(FIX_MOUNTED_PROBE)
  1364. // Noting to be done. Just set z_probe_is_active
  1365. #endif
  1366. z_probe_is_active = true;
  1367. }
  1368. static void stow_z_probe(bool doRaise = true) {
  1369. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1370. if (marlin_debug_flags & DEBUG_LEVELING) {
  1371. print_xyz("stow_z_probe > current_position", current_position);
  1372. }
  1373. #endif
  1374. if (!z_probe_is_active) return;
  1375. #if HAS_SERVO_ENDSTOPS
  1376. // Retract Z Servo endstop if enabled
  1377. if (servo_endstop_id[Z_AXIS] >= 0) {
  1378. #if Z_RAISE_AFTER_PROBING > 0
  1379. if (doRaise) {
  1380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1381. if (marlin_debug_flags & DEBUG_LEVELING) {
  1382. SERIAL_ECHOPAIR("Raise Z (after) by ", (float)Z_RAISE_AFTER_PROBING);
  1383. SERIAL_EOL;
  1384. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1385. SERIAL_EOL;
  1386. }
  1387. #endif
  1388. raise_z_after_probing(); // this also updates current_position
  1389. st_synchronize();
  1390. }
  1391. #endif
  1392. // Change the Z servo angle
  1393. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1394. }
  1395. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1396. // Move up for safety
  1397. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1398. #if Z_RAISE_AFTER_PROBING > 0
  1399. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1400. prepare_move_raw(); // this will also set_current_to_destination
  1401. #endif
  1402. // Move to the start position to initiate retraction
  1403. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1404. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1405. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1406. prepare_move_raw();
  1407. // Move the nozzle down to push the Z probe into retracted position
  1408. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1409. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1410. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1411. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1412. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1413. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1414. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1415. prepare_move_raw();
  1416. // Move up for safety
  1417. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1418. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1419. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1420. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1421. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1422. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1423. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1424. prepare_move_raw();
  1425. // Home XY for safety
  1426. feedrate = homing_feedrate[X_AXIS] / 2;
  1427. destination[X_AXIS] = 0;
  1428. destination[Y_AXIS] = 0;
  1429. prepare_move_raw(); // this will also set_current_to_destination
  1430. st_synchronize();
  1431. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1432. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1433. if (!z_probe_endstop)
  1434. #else
  1435. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1436. if (!z_min_endstop)
  1437. #endif
  1438. {
  1439. if (IsRunning()) {
  1440. SERIAL_ERROR_START;
  1441. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1442. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1443. }
  1444. Stop();
  1445. }
  1446. #endif // Z_PROBE_ALLEN_KEY
  1447. #if ENABLED(FIX_MOUNTED_PROBE)
  1448. // Noting to be done. Just set z_probe_is_active
  1449. #endif
  1450. z_probe_is_active = false;
  1451. }
  1452. #endif // HAS_Z_MIN_PROBE
  1453. enum ProbeAction {
  1454. ProbeStay = 0,
  1455. ProbeDeploy = _BV(0),
  1456. ProbeStow = _BV(1),
  1457. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1458. };
  1459. // Probe bed height at position (x,y), returns the measured z value
  1460. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1461. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1462. if (marlin_debug_flags & DEBUG_LEVELING) {
  1463. SERIAL_ECHOLNPGM("probe_pt >>>");
  1464. SERIAL_ECHOPAIR("> ProbeAction:", (unsigned long)probe_action);
  1465. SERIAL_EOL;
  1466. print_xyz("> current_position", current_position);
  1467. }
  1468. #endif
  1469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1470. if (marlin_debug_flags & DEBUG_LEVELING) {
  1471. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1472. SERIAL_EOL;
  1473. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1474. SERIAL_EOL;
  1475. }
  1476. #endif
  1477. // Move Z up to the z_before height, then move the Z probe to the given XY
  1478. do_blocking_move_to_z(z_before); // this also updates current_position
  1479. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1480. if (marlin_debug_flags & DEBUG_LEVELING) {
  1481. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1482. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1483. SERIAL_EOL;
  1484. }
  1485. #endif
  1486. // this also updates current_position
  1487. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1488. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1489. if (probe_action & ProbeDeploy) {
  1490. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1491. if (marlin_debug_flags & DEBUG_LEVELING) {
  1492. SERIAL_ECHOLNPGM("> ProbeDeploy");
  1493. }
  1494. #endif
  1495. deploy_z_probe();
  1496. }
  1497. #endif
  1498. run_z_probe();
  1499. float measured_z = current_position[Z_AXIS];
  1500. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1501. if (probe_action & ProbeStow) {
  1502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1503. if (marlin_debug_flags & DEBUG_LEVELING) {
  1504. SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1505. }
  1506. #endif
  1507. stow_z_probe();
  1508. }
  1509. #endif
  1510. if (verbose_level > 2) {
  1511. SERIAL_PROTOCOLPGM("Bed X: ");
  1512. SERIAL_PROTOCOL_F(x, 3);
  1513. SERIAL_PROTOCOLPGM(" Y: ");
  1514. SERIAL_PROTOCOL_F(y, 3);
  1515. SERIAL_PROTOCOLPGM(" Z: ");
  1516. SERIAL_PROTOCOL_F(measured_z, 3);
  1517. SERIAL_EOL;
  1518. }
  1519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1520. if (marlin_debug_flags & DEBUG_LEVELING) {
  1521. SERIAL_ECHOLNPGM("<<< probe_pt");
  1522. }
  1523. #endif
  1524. return measured_z;
  1525. }
  1526. #if ENABLED(DELTA)
  1527. /**
  1528. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1529. */
  1530. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1531. if (bed_level[x][y] != 0.0) {
  1532. return; // Don't overwrite good values.
  1533. }
  1534. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1535. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1536. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1537. float median = c; // Median is robust (ignores outliers).
  1538. if (a < b) {
  1539. if (b < c) median = b;
  1540. if (c < a) median = a;
  1541. }
  1542. else { // b <= a
  1543. if (c < b) median = b;
  1544. if (a < c) median = a;
  1545. }
  1546. bed_level[x][y] = median;
  1547. }
  1548. /**
  1549. * Fill in the unprobed points (corners of circular print surface)
  1550. * using linear extrapolation, away from the center.
  1551. */
  1552. static void extrapolate_unprobed_bed_level() {
  1553. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1554. for (int y = 0; y <= half; y++) {
  1555. for (int x = 0; x <= half; x++) {
  1556. if (x + y < 3) continue;
  1557. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1558. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1559. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1560. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1561. }
  1562. }
  1563. }
  1564. /**
  1565. * Print calibration results for plotting or manual frame adjustment.
  1566. */
  1567. static void print_bed_level() {
  1568. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1569. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1570. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1571. SERIAL_PROTOCOLCHAR(' ');
  1572. }
  1573. SERIAL_EOL;
  1574. }
  1575. }
  1576. /**
  1577. * Reset calibration results to zero.
  1578. */
  1579. void reset_bed_level() {
  1580. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1581. if (marlin_debug_flags & DEBUG_LEVELING) {
  1582. SERIAL_ECHOLNPGM("reset_bed_level");
  1583. }
  1584. #endif
  1585. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1586. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1587. bed_level[x][y] = 0.0;
  1588. }
  1589. }
  1590. }
  1591. #endif // DELTA
  1592. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1593. void raise_z_for_servo() {
  1594. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1595. /**
  1596. * The zprobe_zoffset is negative any switch below the nozzle, so
  1597. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1598. */
  1599. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1600. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1601. }
  1602. #endif
  1603. #endif // AUTO_BED_LEVELING_FEATURE
  1604. static void axis_unhomed_error() {
  1605. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1606. SERIAL_ECHO_START;
  1607. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1608. }
  1609. #if ENABLED(Z_PROBE_SLED)
  1610. #ifndef SLED_DOCKING_OFFSET
  1611. #define SLED_DOCKING_OFFSET 0
  1612. #endif
  1613. /**
  1614. * Method to dock/undock a sled designed by Charles Bell.
  1615. *
  1616. * dock[in] If true, move to MAX_X and engage the electromagnet
  1617. * offset[in] The additional distance to move to adjust docking location
  1618. */
  1619. static void dock_sled(bool dock, int offset = 0) {
  1620. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1621. if (marlin_debug_flags & DEBUG_LEVELING) {
  1622. SERIAL_ECHOPAIR("dock_sled", dock);
  1623. SERIAL_EOL;
  1624. }
  1625. #endif
  1626. if (z_probe_is_active == dock) return;
  1627. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1628. axis_unhomed_error();
  1629. return;
  1630. }
  1631. float oldXpos = current_position[X_AXIS]; // save x position
  1632. if (dock) {
  1633. #if Z_RAISE_AFTER_PROBING > 0
  1634. raise_z_after_probing(); // raise Z
  1635. #endif
  1636. // Dock sled a bit closer to ensure proper capturing
  1637. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1638. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1639. }
  1640. else {
  1641. float z_loc = current_position[Z_AXIS];
  1642. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1643. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1644. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1645. }
  1646. do_blocking_move_to_x(oldXpos); // return to position before docking
  1647. z_probe_is_active = dock;
  1648. }
  1649. #endif // Z_PROBE_SLED
  1650. /**
  1651. * Home an individual axis
  1652. */
  1653. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1654. static void homeaxis(AxisEnum axis) {
  1655. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1656. if (marlin_debug_flags & DEBUG_LEVELING) {
  1657. SERIAL_ECHOPAIR(">>> homeaxis(", (unsigned long)axis);
  1658. SERIAL_CHAR(')');
  1659. SERIAL_EOL;
  1660. }
  1661. #endif
  1662. #define HOMEAXIS_DO(LETTER) \
  1663. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1664. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1665. int axis_home_dir =
  1666. #if ENABLED(DUAL_X_CARRIAGE)
  1667. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1668. #endif
  1669. home_dir(axis);
  1670. // Set the axis position as setup for the move
  1671. current_position[axis] = 0;
  1672. sync_plan_position();
  1673. #if ENABLED(Z_PROBE_SLED)
  1674. // Get Probe
  1675. if (axis == Z_AXIS) {
  1676. if (axis_home_dir < 0) dock_sled(false);
  1677. }
  1678. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1679. // Deploy a Z probe if there is one, and homing towards the bed
  1680. if (axis == Z_AXIS) {
  1681. if (axis_home_dir < 0) deploy_z_probe();
  1682. }
  1683. #endif
  1684. #if HAS_SERVO_ENDSTOPS
  1685. // Engage Servo endstop if enabled
  1686. if (axis != Z_AXIS && servo_endstop_id[axis] >= 0) {
  1687. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1688. z_probe_is_active = true;
  1689. }
  1690. #endif
  1691. // Set a flag for Z motor locking
  1692. #if ENABLED(Z_DUAL_ENDSTOPS)
  1693. if (axis == Z_AXIS) In_Homing_Process(true);
  1694. #endif
  1695. // Move towards the endstop until an endstop is triggered
  1696. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1697. feedrate = homing_feedrate[axis];
  1698. line_to_destination();
  1699. st_synchronize();
  1700. // Set the axis position as setup for the move
  1701. current_position[axis] = 0;
  1702. sync_plan_position();
  1703. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1704. if (marlin_debug_flags & DEBUG_LEVELING) {
  1705. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1706. }
  1707. #endif
  1708. enable_endstops(false); // Disable endstops while moving away
  1709. // Move away from the endstop by the axis HOME_BUMP_MM
  1710. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1711. line_to_destination();
  1712. st_synchronize();
  1713. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1714. if (marlin_debug_flags & DEBUG_LEVELING) {
  1715. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1716. }
  1717. #endif
  1718. enable_endstops(true); // Enable endstops for next homing move
  1719. // Slow down the feedrate for the next move
  1720. set_homing_bump_feedrate(axis);
  1721. // Move slowly towards the endstop until triggered
  1722. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1723. line_to_destination();
  1724. st_synchronize();
  1725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1726. if (marlin_debug_flags & DEBUG_LEVELING) {
  1727. print_xyz("> TRIGGER ENDSTOP > current_position", current_position);
  1728. }
  1729. #endif
  1730. #if ENABLED(Z_DUAL_ENDSTOPS)
  1731. if (axis == Z_AXIS) {
  1732. float adj = fabs(z_endstop_adj);
  1733. bool lockZ1;
  1734. if (axis_home_dir > 0) {
  1735. adj = -adj;
  1736. lockZ1 = (z_endstop_adj > 0);
  1737. }
  1738. else
  1739. lockZ1 = (z_endstop_adj < 0);
  1740. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1741. sync_plan_position();
  1742. // Move to the adjusted endstop height
  1743. feedrate = homing_feedrate[axis];
  1744. destination[Z_AXIS] = adj;
  1745. line_to_destination();
  1746. st_synchronize();
  1747. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1748. In_Homing_Process(false);
  1749. } // Z_AXIS
  1750. #endif
  1751. #if ENABLED(DELTA)
  1752. // retrace by the amount specified in endstop_adj
  1753. if (endstop_adj[axis] * axis_home_dir < 0) {
  1754. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1755. if (marlin_debug_flags & DEBUG_LEVELING) {
  1756. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1757. }
  1758. #endif
  1759. enable_endstops(false); // Disable endstops while moving away
  1760. sync_plan_position();
  1761. destination[axis] = endstop_adj[axis];
  1762. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1763. if (marlin_debug_flags & DEBUG_LEVELING) {
  1764. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1765. print_xyz(" > destination", destination);
  1766. }
  1767. #endif
  1768. line_to_destination();
  1769. st_synchronize();
  1770. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1771. if (marlin_debug_flags & DEBUG_LEVELING) {
  1772. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1773. }
  1774. #endif
  1775. enable_endstops(true); // Enable endstops for next homing move
  1776. }
  1777. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1778. else {
  1779. if (marlin_debug_flags & DEBUG_LEVELING) {
  1780. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1781. SERIAL_EOL;
  1782. }
  1783. }
  1784. #endif
  1785. #endif
  1786. // Set the axis position to its home position (plus home offsets)
  1787. set_axis_is_at_home(axis);
  1788. sync_plan_position();
  1789. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1790. if (marlin_debug_flags & DEBUG_LEVELING) {
  1791. print_xyz("> AFTER set_axis_is_at_home > current_position", current_position);
  1792. }
  1793. #endif
  1794. destination[axis] = current_position[axis];
  1795. feedrate = 0.0;
  1796. endstops_hit_on_purpose(); // clear endstop hit flags
  1797. axis_known_position[axis] = true;
  1798. axis_homed[axis] = true;
  1799. #if ENABLED(Z_PROBE_SLED)
  1800. // bring Z probe back
  1801. if (axis == Z_AXIS) {
  1802. if (axis_home_dir < 0) dock_sled(true);
  1803. }
  1804. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1805. // Deploy a Z probe if there is one, and homing towards the bed
  1806. if (axis == Z_AXIS) {
  1807. if (axis_home_dir < 0) {
  1808. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1809. if (marlin_debug_flags & DEBUG_LEVELING) {
  1810. SERIAL_ECHOLNPGM("> SERVO_LEVELING > stow_z_probe");
  1811. }
  1812. #endif
  1813. stow_z_probe();
  1814. }
  1815. }
  1816. else
  1817. #endif
  1818. {
  1819. #if HAS_SERVO_ENDSTOPS
  1820. // Retract Servo endstop if enabled
  1821. if (servo_endstop_id[axis] >= 0) {
  1822. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1823. if (marlin_debug_flags & DEBUG_LEVELING) {
  1824. SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1825. }
  1826. #endif
  1827. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1828. z_probe_is_active = false;
  1829. }
  1830. #endif
  1831. }
  1832. }
  1833. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1834. if (marlin_debug_flags & DEBUG_LEVELING) {
  1835. SERIAL_ECHOPAIR("<<< homeaxis(", (unsigned long)axis);
  1836. SERIAL_CHAR(')');
  1837. SERIAL_EOL;
  1838. }
  1839. #endif
  1840. }
  1841. #if ENABLED(FWRETRACT)
  1842. void retract(bool retracting, bool swapping = false) {
  1843. if (retracting == retracted[active_extruder]) return;
  1844. float oldFeedrate = feedrate;
  1845. set_destination_to_current();
  1846. if (retracting) {
  1847. feedrate = retract_feedrate * 60;
  1848. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1849. plan_set_e_position(current_position[E_AXIS]);
  1850. prepare_move();
  1851. if (retract_zlift > 0.01) {
  1852. current_position[Z_AXIS] -= retract_zlift;
  1853. #if ENABLED(DELTA)
  1854. sync_plan_position_delta();
  1855. #else
  1856. sync_plan_position();
  1857. #endif
  1858. prepare_move();
  1859. }
  1860. }
  1861. else {
  1862. if (retract_zlift > 0.01) {
  1863. current_position[Z_AXIS] += retract_zlift;
  1864. #if ENABLED(DELTA)
  1865. sync_plan_position_delta();
  1866. #else
  1867. sync_plan_position();
  1868. #endif
  1869. //prepare_move();
  1870. }
  1871. feedrate = retract_recover_feedrate * 60;
  1872. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1873. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1874. plan_set_e_position(current_position[E_AXIS]);
  1875. prepare_move();
  1876. }
  1877. feedrate = oldFeedrate;
  1878. retracted[active_extruder] = retracting;
  1879. } // retract()
  1880. #endif // FWRETRACT
  1881. /**
  1882. * ***************************************************************************
  1883. * ***************************** G-CODE HANDLING *****************************
  1884. * ***************************************************************************
  1885. */
  1886. /**
  1887. * Set XYZE destination and feedrate from the current GCode command
  1888. *
  1889. * - Set destination from included axis codes
  1890. * - Set to current for missing axis codes
  1891. * - Set the feedrate, if included
  1892. */
  1893. void gcode_get_destination() {
  1894. for (int i = 0; i < NUM_AXIS; i++) {
  1895. if (code_seen(axis_codes[i]))
  1896. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1897. else
  1898. destination[i] = current_position[i];
  1899. }
  1900. if (code_seen('F')) {
  1901. float next_feedrate = code_value();
  1902. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1903. }
  1904. }
  1905. void unknown_command_error() {
  1906. SERIAL_ECHO_START;
  1907. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1908. SERIAL_ECHO(current_command);
  1909. SERIAL_ECHOPGM("\"\n");
  1910. }
  1911. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1912. /**
  1913. * Output a "busy" message at regular intervals
  1914. * while the machine is not accepting commands.
  1915. */
  1916. void host_keepalive() {
  1917. millis_t ms = millis();
  1918. if (busy_state != NOT_BUSY) {
  1919. if (ms < next_busy_signal_ms) return;
  1920. switch (busy_state) {
  1921. case IN_HANDLER:
  1922. case IN_PROCESS:
  1923. SERIAL_ECHO_START;
  1924. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1925. break;
  1926. case PAUSED_FOR_USER:
  1927. SERIAL_ECHO_START;
  1928. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1929. break;
  1930. case PAUSED_FOR_INPUT:
  1931. SERIAL_ECHO_START;
  1932. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1933. break;
  1934. }
  1935. }
  1936. next_busy_signal_ms = ms + 10000UL; // "busy: ..." message every 10s
  1937. }
  1938. #endif //HOST_KEEPALIVE_FEATURE
  1939. /**
  1940. * G0, G1: Coordinated movement of X Y Z E axes
  1941. */
  1942. inline void gcode_G0_G1() {
  1943. if (IsRunning()) {
  1944. gcode_get_destination(); // For X Y Z E F
  1945. #if ENABLED(FWRETRACT)
  1946. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1947. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1948. // Is this move an attempt to retract or recover?
  1949. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1950. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1951. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1952. retract(!retracted[active_extruder]);
  1953. return;
  1954. }
  1955. }
  1956. #endif //FWRETRACT
  1957. prepare_move();
  1958. }
  1959. }
  1960. /**
  1961. * G2: Clockwise Arc
  1962. * G3: Counterclockwise Arc
  1963. */
  1964. inline void gcode_G2_G3(bool clockwise) {
  1965. if (IsRunning()) {
  1966. #if ENABLED(SF_ARC_FIX)
  1967. bool relative_mode_backup = relative_mode;
  1968. relative_mode = true;
  1969. #endif
  1970. gcode_get_destination();
  1971. #if ENABLED(SF_ARC_FIX)
  1972. relative_mode = relative_mode_backup;
  1973. #endif
  1974. // Center of arc as offset from current_position
  1975. float arc_offset[2] = {
  1976. code_seen('I') ? code_value() : 0,
  1977. code_seen('J') ? code_value() : 0
  1978. };
  1979. // Send an arc to the planner
  1980. plan_arc(destination, arc_offset, clockwise);
  1981. refresh_cmd_timeout();
  1982. }
  1983. }
  1984. /**
  1985. * G4: Dwell S<seconds> or P<milliseconds>
  1986. */
  1987. inline void gcode_G4() {
  1988. millis_t codenum = 0;
  1989. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1990. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1991. st_synchronize();
  1992. refresh_cmd_timeout();
  1993. codenum += previous_cmd_ms; // keep track of when we started waiting
  1994. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1995. while (millis() < codenum) idle();
  1996. }
  1997. #if ENABLED(FWRETRACT)
  1998. /**
  1999. * G10 - Retract filament according to settings of M207
  2000. * G11 - Recover filament according to settings of M208
  2001. */
  2002. inline void gcode_G10_G11(bool doRetract=false) {
  2003. #if EXTRUDERS > 1
  2004. if (doRetract) {
  2005. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2006. }
  2007. #endif
  2008. retract(doRetract
  2009. #if EXTRUDERS > 1
  2010. , retracted_swap[active_extruder]
  2011. #endif
  2012. );
  2013. }
  2014. #endif //FWRETRACT
  2015. /**
  2016. * G28: Home all axes according to settings
  2017. *
  2018. * Parameters
  2019. *
  2020. * None Home to all axes with no parameters.
  2021. * With QUICK_HOME enabled XY will home together, then Z.
  2022. *
  2023. * Cartesian parameters
  2024. *
  2025. * X Home to the X endstop
  2026. * Y Home to the Y endstop
  2027. * Z Home to the Z endstop
  2028. *
  2029. */
  2030. inline void gcode_G28() {
  2031. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2032. if (marlin_debug_flags & DEBUG_LEVELING) {
  2033. SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2034. }
  2035. #endif
  2036. // Wait for planner moves to finish!
  2037. st_synchronize();
  2038. // For auto bed leveling, clear the level matrix
  2039. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2040. plan_bed_level_matrix.set_to_identity();
  2041. #if ENABLED(DELTA)
  2042. reset_bed_level();
  2043. #endif
  2044. #endif
  2045. /**
  2046. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2047. * on again when homing all axis
  2048. */
  2049. #if ENABLED(MESH_BED_LEVELING)
  2050. uint8_t mbl_was_active = mbl.active;
  2051. mbl.active = 0;
  2052. #endif
  2053. setup_for_endstop_move();
  2054. /**
  2055. * Directly after a reset this is all 0. Later we get a hint if we have
  2056. * to raise z or not.
  2057. */
  2058. set_destination_to_current();
  2059. feedrate = 0.0;
  2060. #if ENABLED(DELTA)
  2061. /**
  2062. * A delta can only safely home all axis at the same time
  2063. * all axis have to home at the same time
  2064. */
  2065. // Pretend the current position is 0,0,0
  2066. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2067. sync_plan_position();
  2068. // Move all carriages up together until the first endstop is hit.
  2069. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2070. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2071. line_to_destination();
  2072. st_synchronize();
  2073. endstops_hit_on_purpose(); // clear endstop hit flags
  2074. // Destination reached
  2075. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2076. // take care of back off and rehome now we are all at the top
  2077. HOMEAXIS(X);
  2078. HOMEAXIS(Y);
  2079. HOMEAXIS(Z);
  2080. sync_plan_position_delta();
  2081. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2082. if (marlin_debug_flags & DEBUG_LEVELING) {
  2083. print_xyz("(DELTA) > current_position", current_position);
  2084. }
  2085. #endif
  2086. #else // NOT DELTA
  2087. bool homeX = code_seen(axis_codes[X_AXIS]),
  2088. homeY = code_seen(axis_codes[Y_AXIS]),
  2089. homeZ = code_seen(axis_codes[Z_AXIS]);
  2090. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2091. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2092. if (home_all_axis || homeZ) {
  2093. HOMEAXIS(Z);
  2094. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2095. if (marlin_debug_flags & DEBUG_LEVELING) {
  2096. print_xyz("> HOMEAXIS(Z) > current_position", current_position);
  2097. }
  2098. #endif
  2099. }
  2100. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2101. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2102. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2103. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2104. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2106. if (marlin_debug_flags & DEBUG_LEVELING) {
  2107. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (float)(MIN_Z_HEIGHT_FOR_HOMING));
  2108. SERIAL_EOL;
  2109. print_xyz("> (home_all_axis || homeZ) > current_position", current_position);
  2110. print_xyz("> (home_all_axis || homeZ) > destination", destination);
  2111. }
  2112. #endif
  2113. line_to_destination();
  2114. st_synchronize();
  2115. /**
  2116. * Update the current Z position even if it currently not real from
  2117. * Z-home otherwise each call to line_to_destination() will want to
  2118. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2119. */
  2120. current_position[Z_AXIS] = destination[Z_AXIS];
  2121. }
  2122. #endif
  2123. #if ENABLED(QUICK_HOME)
  2124. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2125. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2126. #if ENABLED(DUAL_X_CARRIAGE)
  2127. int x_axis_home_dir = x_home_dir(active_extruder);
  2128. extruder_duplication_enabled = false;
  2129. #else
  2130. int x_axis_home_dir = home_dir(X_AXIS);
  2131. #endif
  2132. sync_plan_position();
  2133. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2134. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2135. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2136. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2137. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2138. line_to_destination();
  2139. st_synchronize();
  2140. set_axis_is_at_home(X_AXIS);
  2141. set_axis_is_at_home(Y_AXIS);
  2142. sync_plan_position();
  2143. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2144. if (marlin_debug_flags & DEBUG_LEVELING) {
  2145. print_xyz("> QUICK_HOME > current_position 1", current_position);
  2146. }
  2147. #endif
  2148. destination[X_AXIS] = current_position[X_AXIS];
  2149. destination[Y_AXIS] = current_position[Y_AXIS];
  2150. line_to_destination();
  2151. feedrate = 0.0;
  2152. st_synchronize();
  2153. endstops_hit_on_purpose(); // clear endstop hit flags
  2154. current_position[X_AXIS] = destination[X_AXIS];
  2155. current_position[Y_AXIS] = destination[Y_AXIS];
  2156. #if DISABLED(SCARA)
  2157. current_position[Z_AXIS] = destination[Z_AXIS];
  2158. #endif
  2159. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2160. if (marlin_debug_flags & DEBUG_LEVELING) {
  2161. print_xyz("> QUICK_HOME > current_position 2", current_position);
  2162. }
  2163. #endif
  2164. }
  2165. #endif // QUICK_HOME
  2166. #if ENABLED(HOME_Y_BEFORE_X)
  2167. // Home Y
  2168. if (home_all_axis || homeY) HOMEAXIS(Y);
  2169. #endif
  2170. // Home X
  2171. if (home_all_axis || homeX) {
  2172. #if ENABLED(DUAL_X_CARRIAGE)
  2173. int tmp_extruder = active_extruder;
  2174. extruder_duplication_enabled = false;
  2175. active_extruder = !active_extruder;
  2176. HOMEAXIS(X);
  2177. inactive_extruder_x_pos = current_position[X_AXIS];
  2178. active_extruder = tmp_extruder;
  2179. HOMEAXIS(X);
  2180. // reset state used by the different modes
  2181. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2182. delayed_move_time = 0;
  2183. active_extruder_parked = true;
  2184. #else
  2185. HOMEAXIS(X);
  2186. #endif
  2187. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2188. if (marlin_debug_flags & DEBUG_LEVELING) {
  2189. print_xyz("> homeX", current_position);
  2190. }
  2191. #endif
  2192. }
  2193. #if DISABLED(HOME_Y_BEFORE_X)
  2194. // Home Y
  2195. if (home_all_axis || homeY) {
  2196. HOMEAXIS(Y);
  2197. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2198. if (marlin_debug_flags & DEBUG_LEVELING) {
  2199. print_xyz("> homeY", current_position);
  2200. }
  2201. #endif
  2202. }
  2203. #endif
  2204. // Home Z last if homing towards the bed
  2205. #if Z_HOME_DIR < 0
  2206. if (home_all_axis || homeZ) {
  2207. #if ENABLED(Z_SAFE_HOMING)
  2208. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2209. if (marlin_debug_flags & DEBUG_LEVELING) {
  2210. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2211. }
  2212. #endif
  2213. if (home_all_axis) {
  2214. /**
  2215. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2216. * No need to move Z any more as this height should already be safe
  2217. * enough to reach Z_SAFE_HOMING XY positions.
  2218. * Just make sure the planner is in sync.
  2219. */
  2220. sync_plan_position();
  2221. /**
  2222. * Set the Z probe (or just the nozzle) destination to the safe
  2223. * homing point
  2224. */
  2225. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2226. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2227. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2228. feedrate = XY_TRAVEL_SPEED;
  2229. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2230. if (marlin_debug_flags & DEBUG_LEVELING) {
  2231. print_xyz("> Z_SAFE_HOMING > home_all_axis > current_position", current_position);
  2232. print_xyz("> Z_SAFE_HOMING > home_all_axis > destination", destination);
  2233. }
  2234. #endif
  2235. // Move in the XY plane
  2236. line_to_destination();
  2237. st_synchronize();
  2238. /**
  2239. * Update the current positions for XY, Z is still at least at
  2240. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2241. */
  2242. current_position[X_AXIS] = destination[X_AXIS];
  2243. current_position[Y_AXIS] = destination[Y_AXIS];
  2244. // Home the Z axis
  2245. HOMEAXIS(Z);
  2246. }
  2247. else if (homeZ) { // Don't need to Home Z twice
  2248. // Let's see if X and Y are homed
  2249. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2250. /**
  2251. * Make sure the Z probe is within the physical limits
  2252. * NOTE: This doesn't necessarily ensure the Z probe is also
  2253. * within the bed!
  2254. */
  2255. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2256. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2257. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2258. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2259. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2260. // Home the Z axis
  2261. HOMEAXIS(Z);
  2262. }
  2263. else {
  2264. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2265. SERIAL_ECHO_START;
  2266. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2267. }
  2268. }
  2269. else {
  2270. axis_unhomed_error();
  2271. }
  2272. } // !home_all_axes && homeZ
  2273. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2274. if (marlin_debug_flags & DEBUG_LEVELING) {
  2275. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2276. }
  2277. #endif
  2278. #else // !Z_SAFE_HOMING
  2279. HOMEAXIS(Z);
  2280. #endif // !Z_SAFE_HOMING
  2281. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2282. if (marlin_debug_flags & DEBUG_LEVELING) {
  2283. print_xyz("> (home_all_axis || homeZ) > final", current_position);
  2284. }
  2285. #endif
  2286. } // home_all_axis || homeZ
  2287. #endif // Z_HOME_DIR < 0
  2288. sync_plan_position();
  2289. #endif // else DELTA
  2290. #if ENABLED(SCARA)
  2291. sync_plan_position_delta();
  2292. #endif
  2293. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2294. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2295. if (marlin_debug_flags & DEBUG_LEVELING) {
  2296. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2297. }
  2298. #endif
  2299. enable_endstops(false);
  2300. #endif
  2301. // For mesh leveling move back to Z=0
  2302. #if ENABLED(MESH_BED_LEVELING)
  2303. if (mbl_was_active && home_all_axis) {
  2304. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2305. sync_plan_position();
  2306. mbl.active = 1;
  2307. current_position[Z_AXIS] = 0.0;
  2308. set_destination_to_current();
  2309. feedrate = homing_feedrate[Z_AXIS];
  2310. line_to_destination();
  2311. st_synchronize();
  2312. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2313. if (marlin_debug_flags & DEBUG_LEVELING) {
  2314. print_xyz("mbl_was_active > current_position", current_position);
  2315. }
  2316. #endif
  2317. }
  2318. #endif
  2319. feedrate = saved_feedrate;
  2320. feedrate_multiplier = saved_feedrate_multiplier;
  2321. refresh_cmd_timeout();
  2322. endstops_hit_on_purpose(); // clear endstop hit flags
  2323. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2324. if (marlin_debug_flags & DEBUG_LEVELING) {
  2325. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2326. }
  2327. #endif
  2328. gcode_M114(); // Send end position to RepetierHost
  2329. }
  2330. #if ENABLED(MESH_BED_LEVELING)
  2331. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2332. /**
  2333. * G29: Mesh-based Z probe, probes a grid and produces a
  2334. * mesh to compensate for variable bed height
  2335. *
  2336. * Parameters With MESH_BED_LEVELING:
  2337. *
  2338. * S0 Produce a mesh report
  2339. * S1 Start probing mesh points
  2340. * S2 Probe the next mesh point
  2341. * S3 Xn Yn Zn.nn Manually modify a single point
  2342. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2343. *
  2344. * The S0 report the points as below
  2345. *
  2346. * +----> X-axis 1-n
  2347. * |
  2348. * |
  2349. * v Y-axis 1-n
  2350. *
  2351. */
  2352. inline void gcode_G29() {
  2353. static int probe_point = -1;
  2354. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2355. if (state < 0 || state > 4) {
  2356. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2357. return;
  2358. }
  2359. int ix, iy;
  2360. float z;
  2361. switch (state) {
  2362. case MeshReport:
  2363. if (mbl.active) {
  2364. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2365. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2366. SERIAL_PROTOCOLCHAR(',');
  2367. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2368. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2369. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2370. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2371. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2372. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2373. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2374. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2375. SERIAL_PROTOCOLPGM(" ");
  2376. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2377. }
  2378. SERIAL_EOL;
  2379. }
  2380. }
  2381. else
  2382. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2383. break;
  2384. case MeshStart:
  2385. mbl.reset();
  2386. probe_point = 0;
  2387. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2388. break;
  2389. case MeshNext:
  2390. if (probe_point < 0) {
  2391. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2392. return;
  2393. }
  2394. if (probe_point == 0) {
  2395. // Set Z to a positive value before recording the first Z.
  2396. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2397. sync_plan_position();
  2398. }
  2399. else {
  2400. // For others, save the Z of the previous point, then raise Z again.
  2401. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2402. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2403. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2404. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2405. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2406. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2407. st_synchronize();
  2408. }
  2409. // Is there another point to sample? Move there.
  2410. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2411. ix = probe_point % (MESH_NUM_X_POINTS);
  2412. iy = probe_point / (MESH_NUM_X_POINTS);
  2413. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2414. current_position[X_AXIS] = mbl.get_x(ix);
  2415. current_position[Y_AXIS] = mbl.get_y(iy);
  2416. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2417. st_synchronize();
  2418. probe_point++;
  2419. }
  2420. else {
  2421. // After recording the last point, activate the mbl and home
  2422. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2423. probe_point = -1;
  2424. mbl.active = 1;
  2425. enqueue_and_echo_commands_P(PSTR("G28"));
  2426. }
  2427. break;
  2428. case MeshSet:
  2429. if (code_seen('X')) {
  2430. ix = code_value_long() - 1;
  2431. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2432. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2433. return;
  2434. }
  2435. }
  2436. else {
  2437. SERIAL_PROTOCOLPGM("X not entered.\n");
  2438. return;
  2439. }
  2440. if (code_seen('Y')) {
  2441. iy = code_value_long() - 1;
  2442. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2443. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2444. return;
  2445. }
  2446. }
  2447. else {
  2448. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2449. return;
  2450. }
  2451. if (code_seen('Z')) {
  2452. z = code_value();
  2453. }
  2454. else {
  2455. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2456. return;
  2457. }
  2458. mbl.z_values[iy][ix] = z;
  2459. break;
  2460. case MeshSetZOffset:
  2461. if (code_seen('Z')) {
  2462. z = code_value();
  2463. }
  2464. else {
  2465. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2466. return;
  2467. }
  2468. mbl.z_offset = z;
  2469. } // switch(state)
  2470. }
  2471. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2472. void out_of_range_error(const char* p_edge) {
  2473. SERIAL_PROTOCOLPGM("?Probe ");
  2474. serialprintPGM(p_edge);
  2475. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2476. }
  2477. /**
  2478. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2479. * Will fail if the printer has not been homed with G28.
  2480. *
  2481. * Enhanced G29 Auto Bed Leveling Probe Routine
  2482. *
  2483. * Parameters With AUTO_BED_LEVELING_GRID:
  2484. *
  2485. * P Set the size of the grid that will be probed (P x P points).
  2486. * Not supported by non-linear delta printer bed leveling.
  2487. * Example: "G29 P4"
  2488. *
  2489. * S Set the XY travel speed between probe points (in mm/min)
  2490. *
  2491. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2492. * or clean the rotation Matrix. Useful to check the topology
  2493. * after a first run of G29.
  2494. *
  2495. * V Set the verbose level (0-4). Example: "G29 V3"
  2496. *
  2497. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2498. * This is useful for manual bed leveling and finding flaws in the bed (to
  2499. * assist with part placement).
  2500. * Not supported by non-linear delta printer bed leveling.
  2501. *
  2502. * F Set the Front limit of the probing grid
  2503. * B Set the Back limit of the probing grid
  2504. * L Set the Left limit of the probing grid
  2505. * R Set the Right limit of the probing grid
  2506. *
  2507. * Global Parameters:
  2508. *
  2509. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2510. * Include "E" to engage/disengage the Z probe for each sample.
  2511. * There's no extra effect if you have a fixed Z probe.
  2512. * Usage: "G29 E" or "G29 e"
  2513. *
  2514. */
  2515. inline void gcode_G29() {
  2516. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2517. if (marlin_debug_flags & DEBUG_LEVELING) {
  2518. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2519. }
  2520. #endif
  2521. // Don't allow auto-leveling without homing first
  2522. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2523. axis_unhomed_error();
  2524. return;
  2525. }
  2526. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2527. if (verbose_level < 0 || verbose_level > 4) {
  2528. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2529. return;
  2530. }
  2531. bool dryrun = code_seen('D'),
  2532. deploy_probe_for_each_reading = code_seen('E');
  2533. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2534. #if DISABLED(DELTA)
  2535. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2536. #endif
  2537. if (verbose_level > 0) {
  2538. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2539. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2540. }
  2541. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2542. #if DISABLED(DELTA)
  2543. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2544. if (auto_bed_leveling_grid_points < 2) {
  2545. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2546. return;
  2547. }
  2548. #endif
  2549. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2550. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2551. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2552. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2553. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2554. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2555. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2556. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2557. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2558. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2559. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2560. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2561. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2562. if (left_out || right_out || front_out || back_out) {
  2563. if (left_out) {
  2564. out_of_range_error(PSTR("(L)eft"));
  2565. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2566. }
  2567. if (right_out) {
  2568. out_of_range_error(PSTR("(R)ight"));
  2569. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2570. }
  2571. if (front_out) {
  2572. out_of_range_error(PSTR("(F)ront"));
  2573. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2574. }
  2575. if (back_out) {
  2576. out_of_range_error(PSTR("(B)ack"));
  2577. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2578. }
  2579. return;
  2580. }
  2581. #endif // AUTO_BED_LEVELING_GRID
  2582. #if ENABLED(Z_PROBE_SLED)
  2583. dock_sled(false); // engage (un-dock) the Z probe
  2584. #elif ENABLED(Z_PROBE_ALLEN_KEY) //|| SERVO_LEVELING
  2585. deploy_z_probe();
  2586. #endif
  2587. st_synchronize();
  2588. if (!dryrun) {
  2589. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2590. plan_bed_level_matrix.set_to_identity();
  2591. #if ENABLED(DELTA)
  2592. reset_bed_level();
  2593. #else //!DELTA
  2594. //vector_3 corrected_position = plan_get_position_mm();
  2595. //corrected_position.debug("position before G29");
  2596. vector_3 uncorrected_position = plan_get_position();
  2597. //uncorrected_position.debug("position during G29");
  2598. current_position[X_AXIS] = uncorrected_position.x;
  2599. current_position[Y_AXIS] = uncorrected_position.y;
  2600. current_position[Z_AXIS] = uncorrected_position.z;
  2601. sync_plan_position();
  2602. #endif // !DELTA
  2603. }
  2604. setup_for_endstop_move();
  2605. feedrate = homing_feedrate[Z_AXIS];
  2606. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2607. // probe at the points of a lattice grid
  2608. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2609. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2610. #if ENABLED(DELTA)
  2611. delta_grid_spacing[0] = xGridSpacing;
  2612. delta_grid_spacing[1] = yGridSpacing;
  2613. float z_offset = zprobe_zoffset;
  2614. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2615. #else // !DELTA
  2616. /**
  2617. * solve the plane equation ax + by + d = z
  2618. * A is the matrix with rows [x y 1] for all the probed points
  2619. * B is the vector of the Z positions
  2620. * the normal vector to the plane is formed by the coefficients of the
  2621. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2622. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2623. */
  2624. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2625. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2626. eqnBVector[abl2], // "B" vector of Z points
  2627. mean = 0.0;
  2628. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2629. #endif // !DELTA
  2630. int probePointCounter = 0;
  2631. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2632. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2633. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2634. int xStart, xStop, xInc;
  2635. if (zig) {
  2636. xStart = 0;
  2637. xStop = auto_bed_leveling_grid_points;
  2638. xInc = 1;
  2639. }
  2640. else {
  2641. xStart = auto_bed_leveling_grid_points - 1;
  2642. xStop = -1;
  2643. xInc = -1;
  2644. }
  2645. zig = !zig;
  2646. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2647. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2648. // raise extruder
  2649. float measured_z,
  2650. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2651. if (probePointCounter) {
  2652. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2653. if (marlin_debug_flags & DEBUG_LEVELING) {
  2654. SERIAL_ECHOPAIR("z_before = (between) ", (float)(Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2655. SERIAL_EOL;
  2656. }
  2657. #endif
  2658. }
  2659. else {
  2660. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2661. if (marlin_debug_flags & DEBUG_LEVELING) {
  2662. SERIAL_ECHOPAIR("z_before = (before) ", (float)Z_RAISE_BEFORE_PROBING);
  2663. SERIAL_EOL;
  2664. }
  2665. #endif
  2666. }
  2667. #if ENABLED(DELTA)
  2668. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2669. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2670. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2671. #endif //DELTA
  2672. ProbeAction act;
  2673. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2674. act = ProbeDeployAndStow;
  2675. else if (yCount == 0 && xCount == xStart)
  2676. act = ProbeDeploy;
  2677. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2678. act = ProbeStow;
  2679. else
  2680. act = ProbeStay;
  2681. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2682. #if DISABLED(DELTA)
  2683. mean += measured_z;
  2684. eqnBVector[probePointCounter] = measured_z;
  2685. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2686. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2687. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2688. indexIntoAB[xCount][yCount] = probePointCounter;
  2689. #else
  2690. bed_level[xCount][yCount] = measured_z + z_offset;
  2691. #endif
  2692. probePointCounter++;
  2693. idle();
  2694. } //xProbe
  2695. } //yProbe
  2696. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2697. if (marlin_debug_flags & DEBUG_LEVELING) {
  2698. print_xyz("> probing complete > current_position", current_position);
  2699. }
  2700. #endif
  2701. clean_up_after_endstop_move();
  2702. #if ENABLED(DELTA)
  2703. if (!dryrun) extrapolate_unprobed_bed_level();
  2704. print_bed_level();
  2705. #else // !DELTA
  2706. // solve lsq problem
  2707. double plane_equation_coefficients[3];
  2708. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2709. mean /= abl2;
  2710. if (verbose_level) {
  2711. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2712. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2713. SERIAL_PROTOCOLPGM(" b: ");
  2714. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2715. SERIAL_PROTOCOLPGM(" d: ");
  2716. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2717. SERIAL_EOL;
  2718. if (verbose_level > 2) {
  2719. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2720. SERIAL_PROTOCOL_F(mean, 8);
  2721. SERIAL_EOL;
  2722. }
  2723. }
  2724. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2725. // Show the Topography map if enabled
  2726. if (do_topography_map) {
  2727. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2728. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2729. SERIAL_PROTOCOLPGM(" | |\n");
  2730. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2731. SERIAL_PROTOCOLPGM(" E | | I\n");
  2732. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2733. SERIAL_PROTOCOLPGM(" T | | H\n");
  2734. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2735. SERIAL_PROTOCOLPGM(" | |\n");
  2736. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2737. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2738. float min_diff = 999;
  2739. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2740. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2741. int ind = indexIntoAB[xx][yy];
  2742. float diff = eqnBVector[ind] - mean;
  2743. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2744. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2745. z_tmp = 0;
  2746. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2747. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2748. if (diff >= 0.0)
  2749. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2750. else
  2751. SERIAL_PROTOCOLCHAR(' ');
  2752. SERIAL_PROTOCOL_F(diff, 5);
  2753. } // xx
  2754. SERIAL_EOL;
  2755. } // yy
  2756. SERIAL_EOL;
  2757. if (verbose_level > 3) {
  2758. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2759. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2760. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2761. int ind = indexIntoAB[xx][yy];
  2762. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2763. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2764. z_tmp = 0;
  2765. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2766. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2767. if (diff >= 0.0)
  2768. SERIAL_PROTOCOLPGM(" +");
  2769. // Include + for column alignment
  2770. else
  2771. SERIAL_PROTOCOLCHAR(' ');
  2772. SERIAL_PROTOCOL_F(diff, 5);
  2773. } // xx
  2774. SERIAL_EOL;
  2775. } // yy
  2776. SERIAL_EOL;
  2777. }
  2778. } //do_topography_map
  2779. #endif //!DELTA
  2780. #else // !AUTO_BED_LEVELING_GRID
  2781. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2782. if (marlin_debug_flags & DEBUG_LEVELING) {
  2783. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2784. }
  2785. #endif
  2786. // Actions for each probe
  2787. ProbeAction p1, p2, p3;
  2788. if (deploy_probe_for_each_reading)
  2789. p1 = p2 = p3 = ProbeDeployAndStow;
  2790. else
  2791. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2792. // Probe at 3 arbitrary points
  2793. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2794. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2795. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2796. clean_up_after_endstop_move();
  2797. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2798. #endif // !AUTO_BED_LEVELING_GRID
  2799. #if ENABLED(DELTA)
  2800. // Allen Key Probe for Delta
  2801. #if ENABLED(Z_PROBE_ALLEN_KEY)
  2802. stow_z_probe();
  2803. #elif Z_RAISE_AFTER_PROBING > 0
  2804. raise_z_after_probing(); // ???
  2805. #endif
  2806. #else // !DELTA
  2807. if (verbose_level > 0)
  2808. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2809. if (!dryrun) {
  2810. /**
  2811. * Correct the Z height difference from Z probe position and nozzle tip position.
  2812. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2813. * from the nozzle. When the bed is uneven, this height must be corrected.
  2814. */
  2815. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2816. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2817. z_tmp = current_position[Z_AXIS],
  2818. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2819. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2820. if (marlin_debug_flags & DEBUG_LEVELING) {
  2821. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2822. SERIAL_EOL;
  2823. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2824. SERIAL_EOL;
  2825. }
  2826. #endif
  2827. // Apply the correction sending the Z probe offset
  2828. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2829. /*
  2830. * Get the current Z position and send it to the planner.
  2831. *
  2832. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2833. * (most recent plan_set_position/sync_plan_position)
  2834. *
  2835. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2836. * (set by default, M851, EEPROM, or Menu)
  2837. *
  2838. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2839. * after the last probe
  2840. *
  2841. * >> Should home_offset[Z_AXIS] be included?
  2842. *
  2843. *
  2844. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2845. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2846. * not actually "homing" Z... then perhaps it should not be included
  2847. * here. The purpose of home_offset[] is to adjust for inaccurate
  2848. * endstops, not for reasonably accurate probes. If it were added
  2849. * here, it could be seen as a compensating factor for the Z probe.
  2850. */
  2851. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2852. if (marlin_debug_flags & DEBUG_LEVELING) {
  2853. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2854. SERIAL_EOL;
  2855. }
  2856. #endif
  2857. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2858. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2859. + Z_RAISE_AFTER_PROBING
  2860. #endif
  2861. ;
  2862. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2863. sync_plan_position();
  2864. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2865. if (marlin_debug_flags & DEBUG_LEVELING) {
  2866. print_xyz("> corrected Z in G29", current_position);
  2867. }
  2868. #endif
  2869. }
  2870. // Sled assembly for Cartesian bots
  2871. #if ENABLED(Z_PROBE_SLED)
  2872. dock_sled(true); // dock the sled
  2873. #elif Z_RAISE_AFTER_PROBING > 0
  2874. // Raise Z axis for non-delta and non servo based probes
  2875. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2876. raise_z_after_probing();
  2877. #endif
  2878. #endif
  2879. #endif // !DELTA
  2880. #ifdef Z_PROBE_END_SCRIPT
  2881. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2882. if (marlin_debug_flags & DEBUG_LEVELING) {
  2883. SERIAL_ECHO("Z Probe End Script: ");
  2884. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2885. }
  2886. #endif
  2887. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2888. #if ENABLED(HAS_Z_MIN_PROBE)
  2889. z_probe_is_active = false;
  2890. #endif
  2891. st_synchronize();
  2892. #endif
  2893. KEEPALIVE_STATE(IN_HANDLER);
  2894. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2895. if (marlin_debug_flags & DEBUG_LEVELING) {
  2896. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2897. }
  2898. #endif
  2899. gcode_M114(); // Send end position to RepetierHost
  2900. }
  2901. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2902. /**
  2903. * G30: Do a single Z probe at the current XY
  2904. */
  2905. inline void gcode_G30() {
  2906. #if HAS_SERVO_ENDSTOPS
  2907. raise_z_for_servo();
  2908. #endif
  2909. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2910. st_synchronize();
  2911. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2912. setup_for_endstop_move(); // Too late. Must be done before deploying.
  2913. feedrate = homing_feedrate[Z_AXIS];
  2914. run_z_probe();
  2915. SERIAL_PROTOCOLPGM("Bed X: ");
  2916. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2917. SERIAL_PROTOCOLPGM(" Y: ");
  2918. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2919. SERIAL_PROTOCOLPGM(" Z: ");
  2920. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2921. SERIAL_EOL;
  2922. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  2923. #if HAS_SERVO_ENDSTOPS
  2924. raise_z_for_servo();
  2925. #endif
  2926. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2927. gcode_M114(); // Send end position to RepetierHost
  2928. }
  2929. #endif //!Z_PROBE_SLED
  2930. #endif //AUTO_BED_LEVELING_FEATURE
  2931. /**
  2932. * G92: Set current position to given X Y Z E
  2933. */
  2934. inline void gcode_G92() {
  2935. if (!code_seen(axis_codes[E_AXIS]))
  2936. st_synchronize();
  2937. bool didXYZ = false;
  2938. for (int i = 0; i < NUM_AXIS; i++) {
  2939. if (code_seen(axis_codes[i])) {
  2940. float v = current_position[i] = code_value();
  2941. if (i == E_AXIS)
  2942. plan_set_e_position(v);
  2943. else
  2944. didXYZ = true;
  2945. }
  2946. }
  2947. if (didXYZ) {
  2948. #if ENABLED(DELTA) || ENABLED(SCARA)
  2949. sync_plan_position_delta();
  2950. #else
  2951. sync_plan_position();
  2952. #endif
  2953. }
  2954. }
  2955. #if ENABLED(ULTIPANEL)
  2956. /**
  2957. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2958. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2959. */
  2960. inline void gcode_M0_M1() {
  2961. char* args = current_command_args;
  2962. millis_t codenum = 0;
  2963. bool hasP = false, hasS = false;
  2964. if (code_seen('P')) {
  2965. codenum = code_value_short(); // milliseconds to wait
  2966. hasP = codenum > 0;
  2967. }
  2968. if (code_seen('S')) {
  2969. codenum = code_value() * 1000; // seconds to wait
  2970. hasS = codenum > 0;
  2971. }
  2972. if (!hasP && !hasS && *args != '\0')
  2973. lcd_setstatus(args, true);
  2974. else {
  2975. LCD_MESSAGEPGM(MSG_USERWAIT);
  2976. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2977. dontExpireStatus();
  2978. #endif
  2979. }
  2980. lcd_ignore_click();
  2981. st_synchronize();
  2982. refresh_cmd_timeout();
  2983. if (codenum > 0) {
  2984. codenum += previous_cmd_ms; // wait until this time for a click
  2985. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2986. while (millis() < codenum && !lcd_clicked()) idle();
  2987. KEEPALIVE_STATE(IN_HANDLER);
  2988. lcd_ignore_click(false);
  2989. }
  2990. else {
  2991. if (!lcd_detected()) return;
  2992. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2993. while (!lcd_clicked()) idle();
  2994. KEEPALIVE_STATE(IN_HANDLER);
  2995. }
  2996. if (IS_SD_PRINTING)
  2997. LCD_MESSAGEPGM(MSG_RESUMING);
  2998. else
  2999. LCD_MESSAGEPGM(WELCOME_MSG);
  3000. }
  3001. #endif // ULTIPANEL
  3002. /**
  3003. * M17: Enable power on all stepper motors
  3004. */
  3005. inline void gcode_M17() {
  3006. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3007. enable_all_steppers();
  3008. }
  3009. #if ENABLED(SDSUPPORT)
  3010. /**
  3011. * M20: List SD card to serial output
  3012. */
  3013. inline void gcode_M20() {
  3014. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3015. card.ls();
  3016. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3017. }
  3018. /**
  3019. * M21: Init SD Card
  3020. */
  3021. inline void gcode_M21() {
  3022. card.initsd();
  3023. }
  3024. /**
  3025. * M22: Release SD Card
  3026. */
  3027. inline void gcode_M22() {
  3028. card.release();
  3029. }
  3030. /**
  3031. * M23: Open a file
  3032. */
  3033. inline void gcode_M23() {
  3034. card.openFile(current_command_args, true);
  3035. }
  3036. /**
  3037. * M24: Start SD Print
  3038. */
  3039. inline void gcode_M24() {
  3040. card.startFileprint();
  3041. print_job_start();
  3042. }
  3043. /**
  3044. * M25: Pause SD Print
  3045. */
  3046. inline void gcode_M25() {
  3047. card.pauseSDPrint();
  3048. }
  3049. /**
  3050. * M26: Set SD Card file index
  3051. */
  3052. inline void gcode_M26() {
  3053. if (card.cardOK && code_seen('S'))
  3054. card.setIndex(code_value_short());
  3055. }
  3056. /**
  3057. * M27: Get SD Card status
  3058. */
  3059. inline void gcode_M27() {
  3060. card.getStatus();
  3061. }
  3062. /**
  3063. * M28: Start SD Write
  3064. */
  3065. inline void gcode_M28() {
  3066. card.openFile(current_command_args, false);
  3067. }
  3068. /**
  3069. * M29: Stop SD Write
  3070. * Processed in write to file routine above
  3071. */
  3072. inline void gcode_M29() {
  3073. // card.saving = false;
  3074. }
  3075. /**
  3076. * M30 <filename>: Delete SD Card file
  3077. */
  3078. inline void gcode_M30() {
  3079. if (card.cardOK) {
  3080. card.closefile();
  3081. card.removeFile(current_command_args);
  3082. }
  3083. }
  3084. #endif //SDSUPPORT
  3085. /**
  3086. * M31: Get the time since the start of SD Print (or last M109)
  3087. */
  3088. inline void gcode_M31() {
  3089. millis_t t = print_job_timer();
  3090. int min = t / 60, sec = t % 60;
  3091. char time[30];
  3092. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3093. SERIAL_ECHO_START;
  3094. SERIAL_ECHOLN(time);
  3095. lcd_setstatus(time);
  3096. autotempShutdown();
  3097. }
  3098. #if ENABLED(SDSUPPORT)
  3099. /**
  3100. * M32: Select file and start SD Print
  3101. */
  3102. inline void gcode_M32() {
  3103. if (card.sdprinting)
  3104. st_synchronize();
  3105. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3106. if (!namestartpos)
  3107. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3108. else
  3109. namestartpos++; //to skip the '!'
  3110. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3111. if (card.cardOK) {
  3112. card.openFile(namestartpos, true, !call_procedure);
  3113. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3114. card.setIndex(code_value_short());
  3115. card.startFileprint();
  3116. // Procedure calls count as normal print time.
  3117. if (!call_procedure) print_job_start();
  3118. }
  3119. }
  3120. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3121. /**
  3122. * M33: Get the long full path of a file or folder
  3123. *
  3124. * Parameters:
  3125. * <dospath> Case-insensitive DOS-style path to a file or folder
  3126. *
  3127. * Example:
  3128. * M33 miscel~1/armchair/armcha~1.gco
  3129. *
  3130. * Output:
  3131. * /Miscellaneous/Armchair/Armchair.gcode
  3132. */
  3133. inline void gcode_M33() {
  3134. card.printLongPath(current_command_args);
  3135. }
  3136. #endif
  3137. /**
  3138. * M928: Start SD Write
  3139. */
  3140. inline void gcode_M928() {
  3141. card.openLogFile(current_command_args);
  3142. }
  3143. #endif // SDSUPPORT
  3144. /**
  3145. * M42: Change pin status via GCode
  3146. *
  3147. * P<pin> Pin number (LED if omitted)
  3148. * S<byte> Pin status from 0 - 255
  3149. */
  3150. inline void gcode_M42() {
  3151. if (code_seen('S')) {
  3152. int pin_status = code_value_short();
  3153. if (pin_status < 0 || pin_status > 255) return;
  3154. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3155. if (pin_number < 0) return;
  3156. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3157. if (pin_number == sensitive_pins[i]) return;
  3158. pinMode(pin_number, OUTPUT);
  3159. digitalWrite(pin_number, pin_status);
  3160. analogWrite(pin_number, pin_status);
  3161. #if FAN_COUNT > 0
  3162. switch (pin_number) {
  3163. #if HAS_FAN0
  3164. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3165. #endif
  3166. #if HAS_FAN1
  3167. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3168. #endif
  3169. #if HAS_FAN2
  3170. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3171. #endif
  3172. }
  3173. #endif
  3174. } // code_seen('S')
  3175. }
  3176. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3177. /**
  3178. * This is redundant since the SanityCheck.h already checks for a valid
  3179. * Z_MIN_PROBE_PIN, but here for clarity.
  3180. */
  3181. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3182. #if !HAS_Z_PROBE
  3183. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3184. #endif
  3185. #elif !HAS_Z_MIN
  3186. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3187. #endif
  3188. /**
  3189. * M48: Z probe repeatability measurement function.
  3190. *
  3191. * Usage:
  3192. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3193. * P = Number of sampled points (4-50, default 10)
  3194. * X = Sample X position
  3195. * Y = Sample Y position
  3196. * V = Verbose level (0-4, default=1)
  3197. * E = Engage Z probe for each reading
  3198. * L = Number of legs of movement before probe
  3199. * S = Schizoid (Or Star if you prefer)
  3200. *
  3201. * This function assumes the bed has been homed. Specifically, that a G28 command
  3202. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3203. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3204. * regenerated.
  3205. */
  3206. inline void gcode_M48() {
  3207. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3208. axis_unhomed_error();
  3209. return;
  3210. }
  3211. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3212. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3213. if (code_seen('V')) {
  3214. verbose_level = code_value_short();
  3215. if (verbose_level < 0 || verbose_level > 4) {
  3216. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3217. return;
  3218. }
  3219. }
  3220. if (verbose_level > 0)
  3221. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3222. if (code_seen('P')) {
  3223. n_samples = code_value_short();
  3224. if (n_samples < 4 || n_samples > 50) {
  3225. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3226. return;
  3227. }
  3228. }
  3229. float X_current = current_position[X_AXIS],
  3230. Y_current = current_position[Y_AXIS],
  3231. Z_current = current_position[Z_AXIS],
  3232. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3233. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3234. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3235. bool deploy_probe_for_each_reading = code_seen('E');
  3236. if (code_seen('X')) {
  3237. X_probe_location = code_value();
  3238. #if DISABLED(DELTA)
  3239. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3240. out_of_range_error(PSTR("X"));
  3241. return;
  3242. }
  3243. #endif
  3244. }
  3245. if (code_seen('Y')) {
  3246. Y_probe_location = code_value();
  3247. #if DISABLED(DELTA)
  3248. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3249. out_of_range_error(PSTR("Y"));
  3250. return;
  3251. }
  3252. #endif
  3253. }
  3254. #if ENABLED(DELTA)
  3255. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3256. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3257. return;
  3258. }
  3259. #endif
  3260. bool seen_L = code_seen('L');
  3261. if (seen_L) {
  3262. n_legs = code_value_short();
  3263. if (n_legs < 0 || n_legs > 15) {
  3264. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3265. return;
  3266. }
  3267. if (n_legs == 1) n_legs = 2;
  3268. }
  3269. if (code_seen('S')) {
  3270. schizoid_flag++;
  3271. if (!seen_L) n_legs = 7;
  3272. }
  3273. /**
  3274. * Now get everything to the specified probe point So we can safely do a
  3275. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3276. * we don't want to use that as a starting point for each probe.
  3277. */
  3278. if (verbose_level > 2)
  3279. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3280. #if ENABLED(DELTA)
  3281. // we don't do bed level correction in M48 because we want the raw data when we probe
  3282. reset_bed_level();
  3283. #else
  3284. // we don't do bed level correction in M48 because we want the raw data when we probe
  3285. plan_bed_level_matrix.set_to_identity();
  3286. #endif
  3287. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3288. do_blocking_move_to_z(Z_start_location);
  3289. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3290. /**
  3291. * OK, do the initial probe to get us close to the bed.
  3292. * Then retrace the right amount and use that in subsequent probes
  3293. */
  3294. setup_for_endstop_move();
  3295. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3296. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3297. verbose_level);
  3298. raise_z_after_probing();
  3299. for (uint8_t n = 0; n < n_samples; n++) {
  3300. randomSeed(millis());
  3301. delay(500);
  3302. if (n_legs) {
  3303. float radius, angle = random(0.0, 360.0);
  3304. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3305. radius = random(
  3306. #if ENABLED(DELTA)
  3307. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3308. #else
  3309. 5, X_MAX_LENGTH / 8
  3310. #endif
  3311. );
  3312. if (verbose_level > 3) {
  3313. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3314. SERIAL_ECHOPAIR(" angle: ", angle);
  3315. delay(100);
  3316. if (dir > 0)
  3317. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3318. else
  3319. SERIAL_ECHO(" Direction: Clockwise \n");
  3320. delay(100);
  3321. }
  3322. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3323. double delta_angle;
  3324. if (schizoid_flag)
  3325. // The points of a 5 point star are 72 degrees apart. We need to
  3326. // skip a point and go to the next one on the star.
  3327. delta_angle = dir * 2.0 * 72.0;
  3328. else
  3329. // If we do this line, we are just trying to move further
  3330. // around the circle.
  3331. delta_angle = dir * (float) random(25, 45);
  3332. angle += delta_angle;
  3333. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3334. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3335. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3336. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3337. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
  3338. Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
  3339. #if DISABLED(DELTA)
  3340. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3341. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3342. #else
  3343. // If we have gone out too far, we can do a simple fix and scale the numbers
  3344. // back in closer to the origin.
  3345. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3346. X_current /= 1.25;
  3347. Y_current /= 1.25;
  3348. if (verbose_level > 3) {
  3349. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3350. SERIAL_ECHOPAIR(", ", Y_current);
  3351. SERIAL_EOL;
  3352. delay(50);
  3353. }
  3354. }
  3355. #endif
  3356. if (verbose_level > 3) {
  3357. SERIAL_PROTOCOL("Going to:");
  3358. SERIAL_ECHOPAIR("x: ", X_current);
  3359. SERIAL_ECHOPAIR("y: ", Y_current);
  3360. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3361. SERIAL_EOL;
  3362. delay(55);
  3363. }
  3364. do_blocking_move_to_xy(X_current, Y_current);
  3365. } // n_legs loop
  3366. } // n_legs
  3367. /**
  3368. * We don't really have to do this move, but if we don't we can see a
  3369. * funny shift in the Z Height because the user might not have the
  3370. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3371. * height. This gets us back to the probe location at the same height that
  3372. * we have been running around the circle at.
  3373. */
  3374. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3375. if (deploy_probe_for_each_reading)
  3376. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3377. else {
  3378. if (n == n_samples - 1)
  3379. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3380. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3381. }
  3382. /**
  3383. * Get the current mean for the data points we have so far
  3384. */
  3385. sum = 0.0;
  3386. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3387. mean = sum / (n + 1);
  3388. /**
  3389. * Now, use that mean to calculate the standard deviation for the
  3390. * data points we have so far
  3391. */
  3392. sum = 0.0;
  3393. for (uint8_t j = 0; j <= n; j++) {
  3394. float ss = sample_set[j] - mean;
  3395. sum += ss * ss;
  3396. }
  3397. sigma = sqrt(sum / (n + 1));
  3398. if (verbose_level > 1) {
  3399. SERIAL_PROTOCOL(n + 1);
  3400. SERIAL_PROTOCOLPGM(" of ");
  3401. SERIAL_PROTOCOL((int)n_samples);
  3402. SERIAL_PROTOCOLPGM(" z: ");
  3403. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3404. delay(50);
  3405. if (verbose_level > 2) {
  3406. SERIAL_PROTOCOLPGM(" mean: ");
  3407. SERIAL_PROTOCOL_F(mean, 6);
  3408. SERIAL_PROTOCOLPGM(" sigma: ");
  3409. SERIAL_PROTOCOL_F(sigma, 6);
  3410. }
  3411. }
  3412. if (verbose_level > 0) SERIAL_EOL;
  3413. delay(50);
  3414. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3415. } // End of probe loop code
  3416. // raise_z_after_probing();
  3417. if (verbose_level > 0) {
  3418. SERIAL_PROTOCOLPGM("Mean: ");
  3419. SERIAL_PROTOCOL_F(mean, 6);
  3420. SERIAL_EOL;
  3421. delay(25);
  3422. }
  3423. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3424. SERIAL_PROTOCOL_F(sigma, 6);
  3425. SERIAL_EOL; SERIAL_EOL;
  3426. delay(25);
  3427. clean_up_after_endstop_move();
  3428. gcode_M114(); // Send end position to RepetierHost
  3429. }
  3430. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3431. /**
  3432. * M104: Set hot end temperature
  3433. */
  3434. inline void gcode_M104() {
  3435. if (setTargetedHotend(104)) return;
  3436. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3437. // Start hook must happen before setTargetHotend()
  3438. print_job_start();
  3439. if (code_seen('S')) {
  3440. float temp = code_value();
  3441. setTargetHotend(temp, target_extruder);
  3442. #if ENABLED(DUAL_X_CARRIAGE)
  3443. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3444. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3445. #endif
  3446. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3447. }
  3448. if (print_job_stop()) LCD_MESSAGEPGM(WELCOME_MSG);
  3449. }
  3450. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3451. void print_heaterstates() {
  3452. #if HAS_TEMP_0 || ENABLED(HEATER_0_USES_MAX6675)
  3453. SERIAL_PROTOCOLPGM(" T:");
  3454. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3455. SERIAL_PROTOCOLPGM(" /");
  3456. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3457. #endif
  3458. #if HAS_TEMP_BED
  3459. SERIAL_PROTOCOLPGM(" B:");
  3460. SERIAL_PROTOCOL_F(degBed(), 1);
  3461. SERIAL_PROTOCOLPGM(" /");
  3462. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3463. #endif
  3464. #if EXTRUDERS > 1
  3465. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3466. SERIAL_PROTOCOLPGM(" T");
  3467. SERIAL_PROTOCOL(e);
  3468. SERIAL_PROTOCOLCHAR(':');
  3469. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3470. SERIAL_PROTOCOLPGM(" /");
  3471. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3472. }
  3473. #endif
  3474. #if HAS_TEMP_BED
  3475. SERIAL_PROTOCOLPGM(" B@:");
  3476. #ifdef BED_WATTS
  3477. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3478. SERIAL_PROTOCOLCHAR('W');
  3479. #else
  3480. SERIAL_PROTOCOL(getHeaterPower(-1));
  3481. #endif
  3482. #endif
  3483. SERIAL_PROTOCOLPGM(" @:");
  3484. #ifdef EXTRUDER_WATTS
  3485. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3486. SERIAL_PROTOCOLCHAR('W');
  3487. #else
  3488. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3489. #endif
  3490. #if EXTRUDERS > 1
  3491. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3492. SERIAL_PROTOCOLPGM(" @");
  3493. SERIAL_PROTOCOL(e);
  3494. SERIAL_PROTOCOLCHAR(':');
  3495. #ifdef EXTRUDER_WATTS
  3496. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3497. SERIAL_PROTOCOLCHAR('W');
  3498. #else
  3499. SERIAL_PROTOCOL(getHeaterPower(e));
  3500. #endif
  3501. }
  3502. #endif
  3503. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3504. #if HAS_TEMP_BED
  3505. SERIAL_PROTOCOLPGM(" ADC B:");
  3506. SERIAL_PROTOCOL_F(degBed(), 1);
  3507. SERIAL_PROTOCOLPGM("C->");
  3508. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3509. #endif
  3510. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3511. SERIAL_PROTOCOLPGM(" T");
  3512. SERIAL_PROTOCOL(cur_extruder);
  3513. SERIAL_PROTOCOLCHAR(':');
  3514. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3515. SERIAL_PROTOCOLPGM("C->");
  3516. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3517. }
  3518. #endif
  3519. }
  3520. #endif
  3521. /**
  3522. * M105: Read hot end and bed temperature
  3523. */
  3524. inline void gcode_M105() {
  3525. if (setTargetedHotend(105)) return;
  3526. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3527. SERIAL_PROTOCOLPGM(MSG_OK);
  3528. print_heaterstates();
  3529. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  3530. SERIAL_ERROR_START;
  3531. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3532. #endif
  3533. SERIAL_EOL;
  3534. }
  3535. #if FAN_COUNT > 0
  3536. /**
  3537. * M106: Set Fan Speed
  3538. *
  3539. * S<int> Speed between 0-255
  3540. * P<index> Fan index, if more than one fan
  3541. */
  3542. inline void gcode_M106() {
  3543. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3544. p = code_seen('P') ? code_value_short() : 0;
  3545. NOMORE(s, 255);
  3546. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3547. }
  3548. /**
  3549. * M107: Fan Off
  3550. */
  3551. inline void gcode_M107() {
  3552. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3553. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3554. }
  3555. #endif // FAN_COUNT > 0
  3556. /**
  3557. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3558. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3559. */
  3560. inline void gcode_M109() {
  3561. bool no_wait_for_cooling = true;
  3562. if (setTargetedHotend(109)) return;
  3563. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3564. // Start hook must happen before setTargetHotend()
  3565. print_job_start();
  3566. no_wait_for_cooling = code_seen('S');
  3567. if (no_wait_for_cooling || code_seen('R')) {
  3568. float temp = code_value();
  3569. setTargetHotend(temp, target_extruder);
  3570. #if ENABLED(DUAL_X_CARRIAGE)
  3571. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3572. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3573. #endif
  3574. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3575. }
  3576. if (print_job_stop()) LCD_MESSAGEPGM(WELCOME_MSG);
  3577. #if ENABLED(AUTOTEMP)
  3578. autotemp_enabled = code_seen('F');
  3579. if (autotemp_enabled) autotemp_factor = code_value();
  3580. if (code_seen('S')) autotemp_min = code_value();
  3581. if (code_seen('B')) autotemp_max = code_value();
  3582. #endif
  3583. // Exit if the temperature is above target and not waiting for cooling
  3584. if (no_wait_for_cooling && !isHeatingHotend(target_extruder)) return;
  3585. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3586. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3587. if (degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP/2)) return;
  3588. #ifdef TEMP_RESIDENCY_TIME
  3589. long residency_start_ms = -1;
  3590. // Loop until the temperature has stabilized
  3591. #define TEMP_CONDITIONS (residency_start_ms < 0 || now < residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)
  3592. #else
  3593. // Loop until the temperature is very close target
  3594. #define TEMP_CONDITIONS (fabs(degHotend(target_extruder) - degTargetHotend(target_extruder)) < 0.75f)
  3595. #endif //TEMP_RESIDENCY_TIME
  3596. cancel_heatup = false;
  3597. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3598. while (!cancel_heatup && TEMP_CONDITIONS) {
  3599. now = millis();
  3600. if (now > next_temp_ms) { //Print temp & remaining time every 1s while waiting
  3601. next_temp_ms = now + 1000UL;
  3602. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3603. print_heaterstates();
  3604. #endif
  3605. #ifdef TEMP_RESIDENCY_TIME
  3606. SERIAL_PROTOCOLPGM(" W:");
  3607. if (residency_start_ms >= 0) {
  3608. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3609. SERIAL_PROTOCOLLN(rem);
  3610. }
  3611. else {
  3612. SERIAL_PROTOCOLLNPGM("?");
  3613. }
  3614. #else
  3615. SERIAL_EOL;
  3616. #endif
  3617. }
  3618. idle();
  3619. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3620. #ifdef TEMP_RESIDENCY_TIME
  3621. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3622. // Restart the timer whenever the temperature falls outside the hysteresis.
  3623. if (labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > ((residency_start_ms < 0) ? TEMP_WINDOW : TEMP_HYSTERESIS))
  3624. residency_start_ms = millis();
  3625. #endif //TEMP_RESIDENCY_TIME
  3626. } // while(!cancel_heatup && TEMP_CONDITIONS)
  3627. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3628. }
  3629. #if HAS_TEMP_BED
  3630. /**
  3631. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3632. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3633. */
  3634. inline void gcode_M190() {
  3635. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3636. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3637. bool no_wait_for_cooling = code_seen('S');
  3638. if (no_wait_for_cooling || code_seen('R'))
  3639. setTargetBed(code_value());
  3640. // Exit if the temperature is above target and not waiting for cooling
  3641. if (no_wait_for_cooling && !isHeatingBed()) return;
  3642. cancel_heatup = false;
  3643. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3644. while (!cancel_heatup && degTargetBed() != degBed()) {
  3645. millis_t now = millis();
  3646. if (now > next_temp_ms) { //Print Temp Reading every 1 second while heating up.
  3647. next_temp_ms = now + 1000UL;
  3648. print_heaterstates();
  3649. SERIAL_EOL;
  3650. }
  3651. idle();
  3652. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3653. }
  3654. LCD_MESSAGEPGM(MSG_BED_DONE);
  3655. }
  3656. #endif // HAS_TEMP_BED
  3657. /**
  3658. * M110: Set Current Line Number
  3659. */
  3660. inline void gcode_M110() {
  3661. if (code_seen('N')) gcode_N = code_value_long();
  3662. }
  3663. /**
  3664. * M111: Set the debug level
  3665. */
  3666. inline void gcode_M111() {
  3667. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO | DEBUG_COMMUNICATION;
  3668. if (marlin_debug_flags & DEBUG_ECHO) {
  3669. SERIAL_ECHO_START;
  3670. SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  3671. }
  3672. // FOR MOMENT NOT ACTIVE
  3673. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3674. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3675. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3676. SERIAL_ECHO_START;
  3677. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3678. disable_all_heaters();
  3679. }
  3680. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3681. if (marlin_debug_flags & DEBUG_LEVELING) {
  3682. SERIAL_ECHO_START;
  3683. SERIAL_ECHOLNPGM(MSG_DEBUG_LEVELING);
  3684. }
  3685. #endif
  3686. }
  3687. /**
  3688. * M112: Emergency Stop
  3689. */
  3690. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3691. #if ENABLED(BARICUDA)
  3692. #if HAS_HEATER_1
  3693. /**
  3694. * M126: Heater 1 valve open
  3695. */
  3696. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3697. /**
  3698. * M127: Heater 1 valve close
  3699. */
  3700. inline void gcode_M127() { ValvePressure = 0; }
  3701. #endif
  3702. #if HAS_HEATER_2
  3703. /**
  3704. * M128: Heater 2 valve open
  3705. */
  3706. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3707. /**
  3708. * M129: Heater 2 valve close
  3709. */
  3710. inline void gcode_M129() { EtoPPressure = 0; }
  3711. #endif
  3712. #endif //BARICUDA
  3713. /**
  3714. * M140: Set bed temperature
  3715. */
  3716. inline void gcode_M140() {
  3717. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3718. if (code_seen('S')) setTargetBed(code_value());
  3719. }
  3720. #if ENABLED(ULTIPANEL)
  3721. /**
  3722. * M145: Set the heatup state for a material in the LCD menu
  3723. * S<material> (0=PLA, 1=ABS)
  3724. * H<hotend temp>
  3725. * B<bed temp>
  3726. * F<fan speed>
  3727. */
  3728. inline void gcode_M145() {
  3729. int8_t material = code_seen('S') ? code_value_short() : 0;
  3730. if (material < 0 || material > 1) {
  3731. SERIAL_ERROR_START;
  3732. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3733. }
  3734. else {
  3735. int v;
  3736. switch (material) {
  3737. case 0:
  3738. if (code_seen('H')) {
  3739. v = code_value_short();
  3740. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3741. }
  3742. if (code_seen('F')) {
  3743. v = code_value_short();
  3744. plaPreheatFanSpeed = constrain(v, 0, 255);
  3745. }
  3746. #if TEMP_SENSOR_BED != 0
  3747. if (code_seen('B')) {
  3748. v = code_value_short();
  3749. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3750. }
  3751. #endif
  3752. break;
  3753. case 1:
  3754. if (code_seen('H')) {
  3755. v = code_value_short();
  3756. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3757. }
  3758. if (code_seen('F')) {
  3759. v = code_value_short();
  3760. absPreheatFanSpeed = constrain(v, 0, 255);
  3761. }
  3762. #if TEMP_SENSOR_BED != 0
  3763. if (code_seen('B')) {
  3764. v = code_value_short();
  3765. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3766. }
  3767. #endif
  3768. break;
  3769. }
  3770. }
  3771. }
  3772. #endif
  3773. #if HAS_POWER_SWITCH
  3774. /**
  3775. * M80: Turn on Power Supply
  3776. */
  3777. inline void gcode_M80() {
  3778. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3779. /**
  3780. * If you have a switch on suicide pin, this is useful
  3781. * if you want to start another print with suicide feature after
  3782. * a print without suicide...
  3783. */
  3784. #if HAS_SUICIDE
  3785. OUT_WRITE(SUICIDE_PIN, HIGH);
  3786. #endif
  3787. #if ENABLED(ULTIPANEL)
  3788. powersupply = true;
  3789. LCD_MESSAGEPGM(WELCOME_MSG);
  3790. lcd_update();
  3791. #endif
  3792. }
  3793. #endif // HAS_POWER_SWITCH
  3794. /**
  3795. * M81: Turn off Power, including Power Supply, if there is one.
  3796. *
  3797. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3798. */
  3799. inline void gcode_M81() {
  3800. disable_all_heaters();
  3801. finishAndDisableSteppers();
  3802. #if FAN_COUNT > 0
  3803. #if FAN_COUNT > 1
  3804. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3805. #else
  3806. fanSpeeds[0] = 0;
  3807. #endif
  3808. #endif
  3809. delay(1000); // Wait 1 second before switching off
  3810. #if HAS_SUICIDE
  3811. st_synchronize();
  3812. suicide();
  3813. #elif HAS_POWER_SWITCH
  3814. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3815. #endif
  3816. #if ENABLED(ULTIPANEL)
  3817. #if HAS_POWER_SWITCH
  3818. powersupply = false;
  3819. #endif
  3820. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3821. lcd_update();
  3822. #endif
  3823. }
  3824. /**
  3825. * M82: Set E codes absolute (default)
  3826. */
  3827. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3828. /**
  3829. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3830. */
  3831. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3832. /**
  3833. * M18, M84: Disable all stepper motors
  3834. */
  3835. inline void gcode_M18_M84() {
  3836. if (code_seen('S')) {
  3837. stepper_inactive_time = code_value() * 1000;
  3838. }
  3839. else {
  3840. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3841. if (all_axis) {
  3842. finishAndDisableSteppers();
  3843. }
  3844. else {
  3845. st_synchronize();
  3846. if (code_seen('X')) disable_x();
  3847. if (code_seen('Y')) disable_y();
  3848. if (code_seen('Z')) disable_z();
  3849. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3850. if (code_seen('E')) {
  3851. disable_e0();
  3852. disable_e1();
  3853. disable_e2();
  3854. disable_e3();
  3855. }
  3856. #endif
  3857. }
  3858. }
  3859. }
  3860. /**
  3861. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3862. */
  3863. inline void gcode_M85() {
  3864. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3865. }
  3866. /**
  3867. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3868. * (Follows the same syntax as G92)
  3869. */
  3870. inline void gcode_M92() {
  3871. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3872. if (code_seen(axis_codes[i])) {
  3873. if (i == E_AXIS) {
  3874. float value = code_value();
  3875. if (value < 20.0) {
  3876. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3877. max_e_jerk *= factor;
  3878. max_feedrate[i] *= factor;
  3879. axis_steps_per_sqr_second[i] *= factor;
  3880. }
  3881. axis_steps_per_unit[i] = value;
  3882. }
  3883. else {
  3884. axis_steps_per_unit[i] = code_value();
  3885. }
  3886. }
  3887. }
  3888. }
  3889. /**
  3890. * M114: Output current position to serial port
  3891. */
  3892. inline void gcode_M114() {
  3893. SERIAL_PROTOCOLPGM("X:");
  3894. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3895. SERIAL_PROTOCOLPGM(" Y:");
  3896. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3897. SERIAL_PROTOCOLPGM(" Z:");
  3898. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3899. SERIAL_PROTOCOLPGM(" E:");
  3900. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3901. CRITICAL_SECTION_START;
  3902. extern volatile long count_position[NUM_AXIS];
  3903. long xpos = count_position[X_AXIS],
  3904. ypos = count_position[Y_AXIS],
  3905. zpos = count_position[Z_AXIS];
  3906. CRITICAL_SECTION_END;
  3907. #if ENABLED(COREXY) || ENABLED(COREXZ)
  3908. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  3909. #else
  3910. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3911. #endif
  3912. SERIAL_PROTOCOL(xpos);
  3913. #if ENABLED(COREXY)
  3914. SERIAL_PROTOCOLPGM(" B:");
  3915. #else
  3916. SERIAL_PROTOCOLPGM(" Y:");
  3917. #endif
  3918. SERIAL_PROTOCOL(ypos);
  3919. #if ENABLED(COREXZ)
  3920. SERIAL_PROTOCOLPGM(" C:");
  3921. #else
  3922. SERIAL_PROTOCOLPGM(" Z:");
  3923. #endif
  3924. SERIAL_PROTOCOL(zpos);
  3925. SERIAL_EOL;
  3926. #if ENABLED(SCARA)
  3927. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3928. SERIAL_PROTOCOL(delta[X_AXIS]);
  3929. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3930. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3931. SERIAL_EOL;
  3932. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3933. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  3934. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3935. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  3936. SERIAL_EOL;
  3937. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3938. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  3939. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3940. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  3941. SERIAL_EOL; SERIAL_EOL;
  3942. #endif
  3943. }
  3944. /**
  3945. * M115: Capabilities string
  3946. */
  3947. inline void gcode_M115() {
  3948. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3949. }
  3950. /**
  3951. * M117: Set LCD Status Message
  3952. */
  3953. inline void gcode_M117() {
  3954. lcd_setstatus(current_command_args);
  3955. }
  3956. /**
  3957. * M119: Output endstop states to serial output
  3958. */
  3959. inline void gcode_M119() {
  3960. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3961. #if HAS_X_MIN
  3962. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3963. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3964. #endif
  3965. #if HAS_X_MAX
  3966. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3967. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3968. #endif
  3969. #if HAS_Y_MIN
  3970. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3971. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3972. #endif
  3973. #if HAS_Y_MAX
  3974. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3975. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3976. #endif
  3977. #if HAS_Z_MIN
  3978. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3979. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3980. #endif
  3981. #if HAS_Z_MAX
  3982. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3983. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3984. #endif
  3985. #if HAS_Z2_MAX
  3986. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3987. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3988. #endif
  3989. #if HAS_Z_PROBE
  3990. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3991. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3992. #endif
  3993. }
  3994. /**
  3995. * M120: Enable endstops and set non-homing endstop state to "enabled"
  3996. */
  3997. inline void gcode_M120() { enable_endstops_globally(true); }
  3998. /**
  3999. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4000. */
  4001. inline void gcode_M121() { enable_endstops_globally(false); }
  4002. #if ENABLED(BLINKM)
  4003. /**
  4004. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4005. */
  4006. inline void gcode_M150() {
  4007. SendColors(
  4008. code_seen('R') ? (byte)code_value_short() : 0,
  4009. code_seen('U') ? (byte)code_value_short() : 0,
  4010. code_seen('B') ? (byte)code_value_short() : 0
  4011. );
  4012. }
  4013. #endif // BLINKM
  4014. /**
  4015. * M200: Set filament diameter and set E axis units to cubic millimeters
  4016. *
  4017. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4018. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4019. */
  4020. inline void gcode_M200() {
  4021. if (setTargetedHotend(200)) return;
  4022. if (code_seen('D')) {
  4023. float diameter = code_value();
  4024. // setting any extruder filament size disables volumetric on the assumption that
  4025. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4026. // for all extruders
  4027. volumetric_enabled = (diameter != 0.0);
  4028. if (volumetric_enabled) {
  4029. filament_size[target_extruder] = diameter;
  4030. // make sure all extruders have some sane value for the filament size
  4031. for (int i = 0; i < EXTRUDERS; i++)
  4032. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4033. }
  4034. }
  4035. else {
  4036. //reserved for setting filament diameter via UFID or filament measuring device
  4037. return;
  4038. }
  4039. calculate_volumetric_multipliers();
  4040. }
  4041. /**
  4042. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4043. */
  4044. inline void gcode_M201() {
  4045. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4046. if (code_seen(axis_codes[i])) {
  4047. max_acceleration_units_per_sq_second[i] = code_value();
  4048. }
  4049. }
  4050. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4051. reset_acceleration_rates();
  4052. }
  4053. #if 0 // Not used for Sprinter/grbl gen6
  4054. inline void gcode_M202() {
  4055. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4056. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4057. }
  4058. }
  4059. #endif
  4060. /**
  4061. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4062. */
  4063. inline void gcode_M203() {
  4064. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4065. if (code_seen(axis_codes[i])) {
  4066. max_feedrate[i] = code_value();
  4067. }
  4068. }
  4069. }
  4070. /**
  4071. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4072. *
  4073. * P = Printing moves
  4074. * R = Retract only (no X, Y, Z) moves
  4075. * T = Travel (non printing) moves
  4076. *
  4077. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4078. */
  4079. inline void gcode_M204() {
  4080. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4081. travel_acceleration = acceleration = code_value();
  4082. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4083. SERIAL_EOL;
  4084. }
  4085. if (code_seen('P')) {
  4086. acceleration = code_value();
  4087. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4088. SERIAL_EOL;
  4089. }
  4090. if (code_seen('R')) {
  4091. retract_acceleration = code_value();
  4092. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4093. SERIAL_EOL;
  4094. }
  4095. if (code_seen('T')) {
  4096. travel_acceleration = code_value();
  4097. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4098. SERIAL_EOL;
  4099. }
  4100. }
  4101. /**
  4102. * M205: Set Advanced Settings
  4103. *
  4104. * S = Min Feed Rate (mm/s)
  4105. * T = Min Travel Feed Rate (mm/s)
  4106. * B = Min Segment Time (µs)
  4107. * X = Max XY Jerk (mm/s/s)
  4108. * Z = Max Z Jerk (mm/s/s)
  4109. * E = Max E Jerk (mm/s/s)
  4110. */
  4111. inline void gcode_M205() {
  4112. if (code_seen('S')) minimumfeedrate = code_value();
  4113. if (code_seen('T')) mintravelfeedrate = code_value();
  4114. if (code_seen('B')) minsegmenttime = code_value();
  4115. if (code_seen('X')) max_xy_jerk = code_value();
  4116. if (code_seen('Z')) max_z_jerk = code_value();
  4117. if (code_seen('E')) max_e_jerk = code_value();
  4118. }
  4119. /**
  4120. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4121. */
  4122. inline void gcode_M206() {
  4123. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4124. if (code_seen(axis_codes[i])) {
  4125. home_offset[i] = code_value();
  4126. }
  4127. }
  4128. #if ENABLED(SCARA)
  4129. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  4130. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  4131. #endif
  4132. }
  4133. #if ENABLED(DELTA)
  4134. /**
  4135. * M665: Set delta configurations
  4136. *
  4137. * L = diagonal rod
  4138. * R = delta radius
  4139. * S = segments per second
  4140. * A = Alpha (Tower 1) diagonal rod trim
  4141. * B = Beta (Tower 2) diagonal rod trim
  4142. * C = Gamma (Tower 3) diagonal rod trim
  4143. */
  4144. inline void gcode_M665() {
  4145. if (code_seen('L')) delta_diagonal_rod = code_value();
  4146. if (code_seen('R')) delta_radius = code_value();
  4147. if (code_seen('S')) delta_segments_per_second = code_value();
  4148. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4149. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4150. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4151. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4152. }
  4153. /**
  4154. * M666: Set delta endstop adjustment
  4155. */
  4156. inline void gcode_M666() {
  4157. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4158. if (marlin_debug_flags & DEBUG_LEVELING) {
  4159. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4160. }
  4161. #endif
  4162. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4163. if (code_seen(axis_codes[i])) {
  4164. endstop_adj[i] = code_value();
  4165. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4166. if (marlin_debug_flags & DEBUG_LEVELING) {
  4167. SERIAL_ECHOPGM("endstop_adj[");
  4168. SERIAL_ECHO(axis_codes[i]);
  4169. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4170. SERIAL_EOL;
  4171. }
  4172. #endif
  4173. }
  4174. }
  4175. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4176. if (marlin_debug_flags & DEBUG_LEVELING) {
  4177. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4178. }
  4179. #endif
  4180. }
  4181. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4182. /**
  4183. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4184. */
  4185. inline void gcode_M666() {
  4186. if (code_seen('Z')) z_endstop_adj = code_value();
  4187. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4188. SERIAL_EOL;
  4189. }
  4190. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4191. #if ENABLED(FWRETRACT)
  4192. /**
  4193. * M207: Set firmware retraction values
  4194. *
  4195. * S[+mm] retract_length
  4196. * W[+mm] retract_length_swap (multi-extruder)
  4197. * F[mm/min] retract_feedrate
  4198. * Z[mm] retract_zlift
  4199. */
  4200. inline void gcode_M207() {
  4201. if (code_seen('S')) retract_length = code_value();
  4202. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4203. if (code_seen('Z')) retract_zlift = code_value();
  4204. #if EXTRUDERS > 1
  4205. if (code_seen('W')) retract_length_swap = code_value();
  4206. #endif
  4207. }
  4208. /**
  4209. * M208: Set firmware un-retraction values
  4210. *
  4211. * S[+mm] retract_recover_length (in addition to M207 S*)
  4212. * W[+mm] retract_recover_length_swap (multi-extruder)
  4213. * F[mm/min] retract_recover_feedrate
  4214. */
  4215. inline void gcode_M208() {
  4216. if (code_seen('S')) retract_recover_length = code_value();
  4217. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4218. #if EXTRUDERS > 1
  4219. if (code_seen('W')) retract_recover_length_swap = code_value();
  4220. #endif
  4221. }
  4222. /**
  4223. * M209: Enable automatic retract (M209 S1)
  4224. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4225. */
  4226. inline void gcode_M209() {
  4227. if (code_seen('S')) {
  4228. int t = code_value_short();
  4229. switch (t) {
  4230. case 0:
  4231. autoretract_enabled = false;
  4232. break;
  4233. case 1:
  4234. autoretract_enabled = true;
  4235. break;
  4236. default:
  4237. unknown_command_error();
  4238. return;
  4239. }
  4240. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4241. }
  4242. }
  4243. #endif // FWRETRACT
  4244. #if EXTRUDERS > 1
  4245. /**
  4246. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4247. */
  4248. inline void gcode_M218() {
  4249. if (setTargetedHotend(218)) return;
  4250. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4251. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4252. #if ENABLED(DUAL_X_CARRIAGE)
  4253. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4254. #endif
  4255. SERIAL_ECHO_START;
  4256. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4257. for (int e = 0; e < EXTRUDERS; e++) {
  4258. SERIAL_CHAR(' ');
  4259. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4260. SERIAL_CHAR(',');
  4261. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4262. #if ENABLED(DUAL_X_CARRIAGE)
  4263. SERIAL_CHAR(',');
  4264. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4265. #endif
  4266. }
  4267. SERIAL_EOL;
  4268. }
  4269. #endif // EXTRUDERS > 1
  4270. /**
  4271. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4272. */
  4273. inline void gcode_M220() {
  4274. if (code_seen('S')) feedrate_multiplier = code_value();
  4275. }
  4276. /**
  4277. * M221: Set extrusion percentage (M221 T0 S95)
  4278. */
  4279. inline void gcode_M221() {
  4280. if (code_seen('S')) {
  4281. int sval = code_value();
  4282. if (setTargetedHotend(221)) return;
  4283. extruder_multiplier[target_extruder] = sval;
  4284. }
  4285. }
  4286. /**
  4287. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4288. */
  4289. inline void gcode_M226() {
  4290. if (code_seen('P')) {
  4291. int pin_number = code_value();
  4292. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4293. if (pin_state >= -1 && pin_state <= 1) {
  4294. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4295. if (sensitive_pins[i] == pin_number) {
  4296. pin_number = -1;
  4297. break;
  4298. }
  4299. }
  4300. if (pin_number > -1) {
  4301. int target = LOW;
  4302. st_synchronize();
  4303. pinMode(pin_number, INPUT);
  4304. switch (pin_state) {
  4305. case 1:
  4306. target = HIGH;
  4307. break;
  4308. case 0:
  4309. target = LOW;
  4310. break;
  4311. case -1:
  4312. target = !digitalRead(pin_number);
  4313. break;
  4314. }
  4315. while (digitalRead(pin_number) != target) idle();
  4316. } // pin_number > -1
  4317. } // pin_state -1 0 1
  4318. } // code_seen('P')
  4319. }
  4320. #if HAS_SERVOS
  4321. /**
  4322. * M280: Get or set servo position. P<index> S<angle>
  4323. */
  4324. inline void gcode_M280() {
  4325. int servo_index = code_seen('P') ? code_value_short() : -1;
  4326. int servo_position = 0;
  4327. if (code_seen('S')) {
  4328. servo_position = code_value_short();
  4329. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4330. servo[servo_index].move(servo_position);
  4331. else {
  4332. SERIAL_ERROR_START;
  4333. SERIAL_ERROR("Servo ");
  4334. SERIAL_ERROR(servo_index);
  4335. SERIAL_ERRORLN(" out of range");
  4336. }
  4337. }
  4338. else if (servo_index >= 0) {
  4339. SERIAL_ECHO_START;
  4340. SERIAL_ECHO(" Servo ");
  4341. SERIAL_ECHO(servo_index);
  4342. SERIAL_ECHO(": ");
  4343. SERIAL_ECHOLN(servo[servo_index].read());
  4344. }
  4345. }
  4346. #endif // HAS_SERVOS
  4347. #if HAS_BUZZER
  4348. /**
  4349. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4350. */
  4351. inline void gcode_M300() {
  4352. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4353. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4354. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4355. buzz(beepP, beepS);
  4356. }
  4357. #endif // HAS_BUZZER
  4358. #if ENABLED(PIDTEMP)
  4359. /**
  4360. * M301: Set PID parameters P I D (and optionally C, L)
  4361. *
  4362. * P[float] Kp term
  4363. * I[float] Ki term (unscaled)
  4364. * D[float] Kd term (unscaled)
  4365. *
  4366. * With PID_ADD_EXTRUSION_RATE:
  4367. *
  4368. * C[float] Kc term
  4369. * L[float] LPQ length
  4370. */
  4371. inline void gcode_M301() {
  4372. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4373. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4374. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4375. if (e < EXTRUDERS) { // catch bad input value
  4376. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4377. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4378. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4379. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4380. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4381. if (code_seen('L')) lpq_len = code_value();
  4382. NOMORE(lpq_len, LPQ_MAX_LEN);
  4383. #endif
  4384. updatePID();
  4385. SERIAL_ECHO_START;
  4386. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4387. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4388. SERIAL_ECHO(e);
  4389. #endif // PID_PARAMS_PER_EXTRUDER
  4390. SERIAL_ECHO(" p:");
  4391. SERIAL_ECHO(PID_PARAM(Kp, e));
  4392. SERIAL_ECHO(" i:");
  4393. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4394. SERIAL_ECHO(" d:");
  4395. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4396. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4397. SERIAL_ECHO(" c:");
  4398. //Kc does not have scaling applied above, or in resetting defaults
  4399. SERIAL_ECHO(PID_PARAM(Kc, e));
  4400. #endif
  4401. SERIAL_EOL;
  4402. }
  4403. else {
  4404. SERIAL_ERROR_START;
  4405. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4406. }
  4407. }
  4408. #endif // PIDTEMP
  4409. #if ENABLED(PIDTEMPBED)
  4410. inline void gcode_M304() {
  4411. if (code_seen('P')) bedKp = code_value();
  4412. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4413. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4414. updatePID();
  4415. SERIAL_ECHO_START;
  4416. SERIAL_ECHO(" p:");
  4417. SERIAL_ECHO(bedKp);
  4418. SERIAL_ECHO(" i:");
  4419. SERIAL_ECHO(unscalePID_i(bedKi));
  4420. SERIAL_ECHO(" d:");
  4421. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4422. }
  4423. #endif // PIDTEMPBED
  4424. #if defined(CHDK) || HAS_PHOTOGRAPH
  4425. /**
  4426. * M240: Trigger a camera by emulating a Canon RC-1
  4427. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4428. */
  4429. inline void gcode_M240() {
  4430. #ifdef CHDK
  4431. OUT_WRITE(CHDK, HIGH);
  4432. chdkHigh = millis();
  4433. chdkActive = true;
  4434. #elif HAS_PHOTOGRAPH
  4435. const uint8_t NUM_PULSES = 16;
  4436. const float PULSE_LENGTH = 0.01524;
  4437. for (int i = 0; i < NUM_PULSES; i++) {
  4438. WRITE(PHOTOGRAPH_PIN, HIGH);
  4439. _delay_ms(PULSE_LENGTH);
  4440. WRITE(PHOTOGRAPH_PIN, LOW);
  4441. _delay_ms(PULSE_LENGTH);
  4442. }
  4443. delay(7.33);
  4444. for (int i = 0; i < NUM_PULSES; i++) {
  4445. WRITE(PHOTOGRAPH_PIN, HIGH);
  4446. _delay_ms(PULSE_LENGTH);
  4447. WRITE(PHOTOGRAPH_PIN, LOW);
  4448. _delay_ms(PULSE_LENGTH);
  4449. }
  4450. #endif // !CHDK && HAS_PHOTOGRAPH
  4451. }
  4452. #endif // CHDK || PHOTOGRAPH_PIN
  4453. #if ENABLED(HAS_LCD_CONTRAST)
  4454. /**
  4455. * M250: Read and optionally set the LCD contrast
  4456. */
  4457. inline void gcode_M250() {
  4458. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4459. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4460. SERIAL_PROTOCOL(lcd_contrast);
  4461. SERIAL_EOL;
  4462. }
  4463. #endif // HAS_LCD_CONTRAST
  4464. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4465. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4466. /**
  4467. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4468. */
  4469. inline void gcode_M302() {
  4470. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4471. }
  4472. #endif // PREVENT_DANGEROUS_EXTRUDE
  4473. /**
  4474. * M303: PID relay autotune
  4475. *
  4476. * S<temperature> sets the target temperature. (default 150C)
  4477. * E<extruder> (-1 for the bed) (default 0)
  4478. * C<cycles>
  4479. * U<bool> with a non-zero value will apply the result to current settings
  4480. */
  4481. inline void gcode_M303() {
  4482. int e = code_seen('E') ? code_value_short() : 0;
  4483. int c = code_seen('C') ? code_value_short() : 5;
  4484. bool u = code_seen('U') && code_value_short() != 0;
  4485. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4486. if (e >= 0 && e < EXTRUDERS)
  4487. target_extruder = e;
  4488. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4489. PID_autotune(temp, e, c, u);
  4490. KEEPALIVE_STATE(IN_HANDLER);
  4491. }
  4492. #if ENABLED(SCARA)
  4493. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4494. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4495. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4496. if (IsRunning()) {
  4497. //gcode_get_destination(); // For X Y Z E F
  4498. delta[X_AXIS] = delta_x;
  4499. delta[Y_AXIS] = delta_y;
  4500. calculate_SCARA_forward_Transform(delta);
  4501. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4502. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4503. prepare_move();
  4504. //ok_to_send();
  4505. return true;
  4506. }
  4507. return false;
  4508. }
  4509. /**
  4510. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4511. */
  4512. inline bool gcode_M360() {
  4513. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4514. return SCARA_move_to_cal(0, 120);
  4515. }
  4516. /**
  4517. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4518. */
  4519. inline bool gcode_M361() {
  4520. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4521. return SCARA_move_to_cal(90, 130);
  4522. }
  4523. /**
  4524. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4525. */
  4526. inline bool gcode_M362() {
  4527. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4528. return SCARA_move_to_cal(60, 180);
  4529. }
  4530. /**
  4531. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4532. */
  4533. inline bool gcode_M363() {
  4534. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4535. return SCARA_move_to_cal(50, 90);
  4536. }
  4537. /**
  4538. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4539. */
  4540. inline bool gcode_M364() {
  4541. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4542. return SCARA_move_to_cal(45, 135);
  4543. }
  4544. /**
  4545. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4546. */
  4547. inline void gcode_M365() {
  4548. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4549. if (code_seen(axis_codes[i])) {
  4550. axis_scaling[i] = code_value();
  4551. }
  4552. }
  4553. }
  4554. #endif // SCARA
  4555. #if ENABLED(EXT_SOLENOID)
  4556. void enable_solenoid(uint8_t num) {
  4557. switch (num) {
  4558. case 0:
  4559. OUT_WRITE(SOL0_PIN, HIGH);
  4560. break;
  4561. #if HAS_SOLENOID_1
  4562. case 1:
  4563. OUT_WRITE(SOL1_PIN, HIGH);
  4564. break;
  4565. #endif
  4566. #if HAS_SOLENOID_2
  4567. case 2:
  4568. OUT_WRITE(SOL2_PIN, HIGH);
  4569. break;
  4570. #endif
  4571. #if HAS_SOLENOID_3
  4572. case 3:
  4573. OUT_WRITE(SOL3_PIN, HIGH);
  4574. break;
  4575. #endif
  4576. default:
  4577. SERIAL_ECHO_START;
  4578. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4579. break;
  4580. }
  4581. }
  4582. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4583. void disable_all_solenoids() {
  4584. OUT_WRITE(SOL0_PIN, LOW);
  4585. OUT_WRITE(SOL1_PIN, LOW);
  4586. OUT_WRITE(SOL2_PIN, LOW);
  4587. OUT_WRITE(SOL3_PIN, LOW);
  4588. }
  4589. /**
  4590. * M380: Enable solenoid on the active extruder
  4591. */
  4592. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4593. /**
  4594. * M381: Disable all solenoids
  4595. */
  4596. inline void gcode_M381() { disable_all_solenoids(); }
  4597. #endif // EXT_SOLENOID
  4598. /**
  4599. * M400: Finish all moves
  4600. */
  4601. inline void gcode_M400() { st_synchronize(); }
  4602. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4603. /**
  4604. * M401: Engage Z Servo endstop if available
  4605. */
  4606. inline void gcode_M401() {
  4607. #if HAS_SERVO_ENDSTOPS
  4608. raise_z_for_servo();
  4609. #endif
  4610. deploy_z_probe();
  4611. }
  4612. /**
  4613. * M402: Retract Z Servo endstop if enabled
  4614. */
  4615. inline void gcode_M402() {
  4616. #if HAS_SERVO_ENDSTOPS
  4617. raise_z_for_servo();
  4618. #endif
  4619. stow_z_probe(false);
  4620. }
  4621. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4622. #if ENABLED(FILAMENT_SENSOR)
  4623. /**
  4624. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4625. */
  4626. inline void gcode_M404() {
  4627. #if HAS_FILWIDTH
  4628. if (code_seen('W')) {
  4629. filament_width_nominal = code_value();
  4630. }
  4631. else {
  4632. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4633. SERIAL_PROTOCOLLN(filament_width_nominal);
  4634. }
  4635. #endif
  4636. }
  4637. /**
  4638. * M405: Turn on filament sensor for control
  4639. */
  4640. inline void gcode_M405() {
  4641. if (code_seen('D')) meas_delay_cm = code_value();
  4642. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4643. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  4644. int temp_ratio = widthFil_to_size_ratio();
  4645. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  4646. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  4647. delay_index1 = delay_index2 = 0;
  4648. }
  4649. filament_sensor = true;
  4650. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4651. //SERIAL_PROTOCOL(filament_width_meas);
  4652. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4653. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4654. }
  4655. /**
  4656. * M406: Turn off filament sensor for control
  4657. */
  4658. inline void gcode_M406() { filament_sensor = false; }
  4659. /**
  4660. * M407: Get measured filament diameter on serial output
  4661. */
  4662. inline void gcode_M407() {
  4663. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4664. SERIAL_PROTOCOLLN(filament_width_meas);
  4665. }
  4666. #endif // FILAMENT_SENSOR
  4667. /**
  4668. * M410: Quickstop - Abort all planned moves
  4669. *
  4670. * This will stop the carriages mid-move, so most likely they
  4671. * will be out of sync with the stepper position after this.
  4672. */
  4673. inline void gcode_M410() { quickStop(); }
  4674. #if ENABLED(MESH_BED_LEVELING)
  4675. /**
  4676. * M420: Enable/Disable Mesh Bed Leveling
  4677. */
  4678. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4679. /**
  4680. * M421: Set a single Mesh Bed Leveling Z coordinate
  4681. */
  4682. inline void gcode_M421() {
  4683. float x, y, z;
  4684. bool err = false, hasX, hasY, hasZ;
  4685. if ((hasX = code_seen('X'))) x = code_value();
  4686. if ((hasY = code_seen('Y'))) y = code_value();
  4687. if ((hasZ = code_seen('Z'))) z = code_value();
  4688. if (!hasX || !hasY || !hasZ) {
  4689. SERIAL_ERROR_START;
  4690. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4691. err = true;
  4692. }
  4693. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4694. SERIAL_ERROR_START;
  4695. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4696. err = true;
  4697. }
  4698. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4699. }
  4700. #endif
  4701. /**
  4702. * M428: Set home_offset based on the distance between the
  4703. * current_position and the nearest "reference point."
  4704. * If an axis is past center its endstop position
  4705. * is the reference-point. Otherwise it uses 0. This allows
  4706. * the Z offset to be set near the bed when using a max endstop.
  4707. *
  4708. * M428 can't be used more than 2cm away from 0 or an endstop.
  4709. *
  4710. * Use M206 to set these values directly.
  4711. */
  4712. inline void gcode_M428() {
  4713. bool err = false;
  4714. float new_offs[3], new_pos[3];
  4715. memcpy(new_pos, current_position, sizeof(new_pos));
  4716. memcpy(new_offs, home_offset, sizeof(new_offs));
  4717. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4718. if (axis_homed[i]) {
  4719. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4720. diff = new_pos[i] - base;
  4721. if (diff > -20 && diff < 20) {
  4722. new_offs[i] -= diff;
  4723. new_pos[i] = base;
  4724. }
  4725. else {
  4726. SERIAL_ERROR_START;
  4727. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4728. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4729. #if HAS_BUZZER
  4730. buzz(200, 40);
  4731. #endif
  4732. err = true;
  4733. break;
  4734. }
  4735. }
  4736. }
  4737. if (!err) {
  4738. memcpy(current_position, new_pos, sizeof(new_pos));
  4739. memcpy(home_offset, new_offs, sizeof(new_offs));
  4740. sync_plan_position();
  4741. LCD_ALERTMESSAGEPGM("Offset applied.");
  4742. #if HAS_BUZZER
  4743. buzz(200, 659);
  4744. buzz(200, 698);
  4745. #endif
  4746. }
  4747. }
  4748. /**
  4749. * M500: Store settings in EEPROM
  4750. */
  4751. inline void gcode_M500() {
  4752. Config_StoreSettings();
  4753. }
  4754. /**
  4755. * M501: Read settings from EEPROM
  4756. */
  4757. inline void gcode_M501() {
  4758. Config_RetrieveSettings();
  4759. }
  4760. /**
  4761. * M502: Revert to default settings
  4762. */
  4763. inline void gcode_M502() {
  4764. Config_ResetDefault();
  4765. }
  4766. /**
  4767. * M503: print settings currently in memory
  4768. */
  4769. inline void gcode_M503() {
  4770. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4771. }
  4772. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4773. /**
  4774. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4775. */
  4776. inline void gcode_M540() {
  4777. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4778. }
  4779. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4780. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4781. inline void gcode_SET_Z_PROBE_OFFSET() {
  4782. SERIAL_ECHO_START;
  4783. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4784. SERIAL_CHAR(' ');
  4785. if (code_seen('Z')) {
  4786. float value = code_value();
  4787. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4788. zprobe_zoffset = value;
  4789. SERIAL_ECHO(zprobe_zoffset);
  4790. }
  4791. else {
  4792. SERIAL_ECHOPGM(MSG_Z_MIN);
  4793. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4794. SERIAL_ECHOPGM(MSG_Z_MAX);
  4795. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4796. }
  4797. }
  4798. else {
  4799. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4800. }
  4801. SERIAL_EOL;
  4802. }
  4803. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4804. #if ENABLED(FILAMENTCHANGEENABLE)
  4805. /**
  4806. * M600: Pause for filament change
  4807. *
  4808. * E[distance] - Retract the filament this far (negative value)
  4809. * Z[distance] - Move the Z axis by this distance
  4810. * X[position] - Move to this X position, with Y
  4811. * Y[position] - Move to this Y position, with X
  4812. * L[distance] - Retract distance for removal (manual reload)
  4813. *
  4814. * Default values are used for omitted arguments.
  4815. *
  4816. */
  4817. inline void gcode_M600() {
  4818. if (degHotend(active_extruder) < extrude_min_temp) {
  4819. SERIAL_ERROR_START;
  4820. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4821. return;
  4822. }
  4823. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4824. for (int i = 0; i < NUM_AXIS; i++)
  4825. lastpos[i] = destination[i] = current_position[i];
  4826. #if ENABLED(DELTA)
  4827. #define RUNPLAN calculate_delta(destination); \
  4828. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4829. #else
  4830. #define RUNPLAN line_to_destination();
  4831. #endif
  4832. //retract by E
  4833. if (code_seen('E')) destination[E_AXIS] += code_value();
  4834. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4835. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4836. #endif
  4837. RUNPLAN;
  4838. //lift Z
  4839. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4840. #ifdef FILAMENTCHANGE_ZADD
  4841. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4842. #endif
  4843. RUNPLAN;
  4844. //move xy
  4845. if (code_seen('X')) destination[X_AXIS] = code_value();
  4846. #ifdef FILAMENTCHANGE_XPOS
  4847. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4848. #endif
  4849. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4850. #ifdef FILAMENTCHANGE_YPOS
  4851. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4852. #endif
  4853. RUNPLAN;
  4854. if (code_seen('L')) destination[E_AXIS] += code_value();
  4855. #ifdef FILAMENTCHANGE_FINALRETRACT
  4856. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4857. #endif
  4858. RUNPLAN;
  4859. //finish moves
  4860. st_synchronize();
  4861. //disable extruder steppers so filament can be removed
  4862. disable_e0();
  4863. disable_e1();
  4864. disable_e2();
  4865. disable_e3();
  4866. delay(100);
  4867. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4868. millis_t next_tick = 0;
  4869. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4870. while (!lcd_clicked()) {
  4871. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4872. millis_t ms = millis();
  4873. if (ms >= next_tick) {
  4874. lcd_quick_feedback();
  4875. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4876. }
  4877. idle(true);
  4878. #else
  4879. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4880. destination[E_AXIS] = current_position[E_AXIS];
  4881. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4882. st_synchronize();
  4883. #endif
  4884. } // while(!lcd_clicked)
  4885. KEEPALIVE_STATE(IN_HANDLER);
  4886. lcd_quick_feedback(); // click sound feedback
  4887. #if ENABLED(AUTO_FILAMENT_CHANGE)
  4888. current_position[E_AXIS] = 0;
  4889. st_synchronize();
  4890. #endif
  4891. //return to normal
  4892. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4893. #ifdef FILAMENTCHANGE_FINALRETRACT
  4894. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4895. #endif
  4896. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4897. plan_set_e_position(current_position[E_AXIS]);
  4898. RUNPLAN; //should do nothing
  4899. lcd_reset_alert_level();
  4900. #if ENABLED(DELTA)
  4901. // Move XYZ to starting position, then E
  4902. calculate_delta(lastpos);
  4903. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4904. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4905. #else
  4906. // Move XY to starting position, then Z, then E
  4907. destination[X_AXIS] = lastpos[X_AXIS];
  4908. destination[Y_AXIS] = lastpos[Y_AXIS];
  4909. line_to_destination();
  4910. destination[Z_AXIS] = lastpos[Z_AXIS];
  4911. line_to_destination();
  4912. destination[E_AXIS] = lastpos[E_AXIS];
  4913. line_to_destination();
  4914. #endif
  4915. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4916. filrunoutEnqueued = false;
  4917. #endif
  4918. }
  4919. #endif // FILAMENTCHANGEENABLE
  4920. #if ENABLED(DUAL_X_CARRIAGE)
  4921. /**
  4922. * M605: Set dual x-carriage movement mode
  4923. *
  4924. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4925. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4926. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4927. * millimeters x-offset and an optional differential hotend temperature of
  4928. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4929. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4930. *
  4931. * Note: the X axis should be homed after changing dual x-carriage mode.
  4932. */
  4933. inline void gcode_M605() {
  4934. st_synchronize();
  4935. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4936. switch (dual_x_carriage_mode) {
  4937. case DXC_DUPLICATION_MODE:
  4938. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4939. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4940. SERIAL_ECHO_START;
  4941. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4942. SERIAL_CHAR(' ');
  4943. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4944. SERIAL_CHAR(',');
  4945. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4946. SERIAL_CHAR(' ');
  4947. SERIAL_ECHO(duplicate_extruder_x_offset);
  4948. SERIAL_CHAR(',');
  4949. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4950. break;
  4951. case DXC_FULL_CONTROL_MODE:
  4952. case DXC_AUTO_PARK_MODE:
  4953. break;
  4954. default:
  4955. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4956. break;
  4957. }
  4958. active_extruder_parked = false;
  4959. extruder_duplication_enabled = false;
  4960. delayed_move_time = 0;
  4961. }
  4962. #endif // DUAL_X_CARRIAGE
  4963. /**
  4964. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4965. */
  4966. inline void gcode_M907() {
  4967. #if HAS_DIGIPOTSS
  4968. for (int i = 0; i < NUM_AXIS; i++)
  4969. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4970. if (code_seen('B')) digipot_current(4, code_value());
  4971. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  4972. #endif
  4973. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  4974. if (code_seen('X')) digipot_current(0, code_value());
  4975. #endif
  4976. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  4977. if (code_seen('Z')) digipot_current(1, code_value());
  4978. #endif
  4979. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  4980. if (code_seen('E')) digipot_current(2, code_value());
  4981. #endif
  4982. #if ENABLED(DIGIPOT_I2C)
  4983. // this one uses actual amps in floating point
  4984. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4985. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4986. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  4987. #endif
  4988. #if ENABLED(DAC_STEPPER_CURRENT)
  4989. if (code_seen('S')) {
  4990. float dac_percent = code_value();
  4991. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  4992. }
  4993. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  4994. #endif
  4995. }
  4996. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  4997. /**
  4998. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4999. */
  5000. inline void gcode_M908() {
  5001. #if HAS_DIGIPOTSS
  5002. digitalPotWrite(
  5003. code_seen('P') ? code_value() : 0,
  5004. code_seen('S') ? code_value() : 0
  5005. );
  5006. #endif
  5007. #ifdef DAC_STEPPER_CURRENT
  5008. dac_current_raw(
  5009. code_seen('P') ? code_value_long() : -1,
  5010. code_seen('S') ? code_value_short() : 0
  5011. );
  5012. #endif
  5013. }
  5014. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5015. inline void gcode_M909() { dac_print_values(); }
  5016. inline void gcode_M910() { dac_commit_eeprom(); }
  5017. #endif
  5018. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5019. #if HAS_MICROSTEPS
  5020. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5021. inline void gcode_M350() {
  5022. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5023. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5024. if (code_seen('B')) microstep_mode(4, code_value());
  5025. microstep_readings();
  5026. }
  5027. /**
  5028. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5029. * S# determines MS1 or MS2, X# sets the pin high/low.
  5030. */
  5031. inline void gcode_M351() {
  5032. if (code_seen('S')) switch (code_value_short()) {
  5033. case 1:
  5034. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5035. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5036. break;
  5037. case 2:
  5038. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5039. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5040. break;
  5041. }
  5042. microstep_readings();
  5043. }
  5044. #endif // HAS_MICROSTEPS
  5045. /**
  5046. * M999: Restart after being stopped
  5047. */
  5048. inline void gcode_M999() {
  5049. Running = true;
  5050. lcd_reset_alert_level();
  5051. // gcode_LastN = Stopped_gcode_LastN;
  5052. FlushSerialRequestResend();
  5053. }
  5054. /**
  5055. * T0-T3: Switch tool, usually switching extruders
  5056. *
  5057. * F[mm/min] Set the movement feedrate
  5058. */
  5059. inline void gcode_T(uint8_t tmp_extruder) {
  5060. if (tmp_extruder >= EXTRUDERS) {
  5061. SERIAL_ECHO_START;
  5062. SERIAL_CHAR('T');
  5063. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5064. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5065. }
  5066. else {
  5067. target_extruder = tmp_extruder;
  5068. #if EXTRUDERS > 1
  5069. bool make_move = false;
  5070. #endif
  5071. if (code_seen('F')) {
  5072. #if EXTRUDERS > 1
  5073. make_move = true;
  5074. #endif
  5075. float next_feedrate = code_value();
  5076. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5077. }
  5078. #if EXTRUDERS > 1
  5079. if (tmp_extruder != active_extruder) {
  5080. // Save current position to return to after applying extruder offset
  5081. set_destination_to_current();
  5082. #if ENABLED(DUAL_X_CARRIAGE)
  5083. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5084. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5085. // Park old head: 1) raise 2) move to park position 3) lower
  5086. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5087. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5088. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5089. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5090. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5091. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5092. st_synchronize();
  5093. }
  5094. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5095. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5096. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5097. active_extruder = tmp_extruder;
  5098. // This function resets the max/min values - the current position may be overwritten below.
  5099. set_axis_is_at_home(X_AXIS);
  5100. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5101. current_position[X_AXIS] = inactive_extruder_x_pos;
  5102. inactive_extruder_x_pos = destination[X_AXIS];
  5103. }
  5104. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5105. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5106. if (active_extruder == 0 || active_extruder_parked)
  5107. current_position[X_AXIS] = inactive_extruder_x_pos;
  5108. else
  5109. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5110. inactive_extruder_x_pos = destination[X_AXIS];
  5111. extruder_duplication_enabled = false;
  5112. }
  5113. else {
  5114. // record raised toolhead position for use by unpark
  5115. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5116. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5117. active_extruder_parked = true;
  5118. delayed_move_time = 0;
  5119. }
  5120. #else // !DUAL_X_CARRIAGE
  5121. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5122. // Offset extruder, make sure to apply the bed level rotation matrix
  5123. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5124. extruder_offset[Y_AXIS][tmp_extruder],
  5125. extruder_offset[Z_AXIS][tmp_extruder]),
  5126. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5127. extruder_offset[Y_AXIS][active_extruder],
  5128. extruder_offset[Z_AXIS][active_extruder]),
  5129. offset_vec = tmp_offset_vec - act_offset_vec;
  5130. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5131. current_position[X_AXIS] += offset_vec.x;
  5132. current_position[Y_AXIS] += offset_vec.y;
  5133. current_position[Z_AXIS] += offset_vec.z;
  5134. #else // !AUTO_BED_LEVELING_FEATURE
  5135. // Offset extruder (only by XY)
  5136. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5137. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5138. #endif // !AUTO_BED_LEVELING_FEATURE
  5139. // Set the new active extruder and position
  5140. active_extruder = tmp_extruder;
  5141. #endif // !DUAL_X_CARRIAGE
  5142. #if ENABLED(DELTA)
  5143. sync_plan_position_delta();
  5144. #else
  5145. sync_plan_position();
  5146. #endif
  5147. // Move to the old position if 'F' was in the parameters
  5148. if (make_move && IsRunning()) prepare_move();
  5149. }
  5150. #if ENABLED(EXT_SOLENOID)
  5151. st_synchronize();
  5152. disable_all_solenoids();
  5153. enable_solenoid_on_active_extruder();
  5154. #endif // EXT_SOLENOID
  5155. #endif // EXTRUDERS > 1
  5156. SERIAL_ECHO_START;
  5157. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5158. SERIAL_PROTOCOLLN((int)active_extruder);
  5159. }
  5160. }
  5161. /**
  5162. * Process a single command and dispatch it to its handler
  5163. * This is called from the main loop()
  5164. */
  5165. void process_next_command() {
  5166. current_command = command_queue[cmd_queue_index_r];
  5167. if ((marlin_debug_flags & DEBUG_ECHO)) {
  5168. SERIAL_ECHO_START;
  5169. SERIAL_ECHOLN(current_command);
  5170. }
  5171. // Sanitize the current command:
  5172. // - Skip leading spaces
  5173. // - Bypass N[-0-9][0-9]*[ ]*
  5174. // - Overwrite * with nul to mark the end
  5175. while (*current_command == ' ') ++current_command;
  5176. if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
  5177. current_command += 2; // skip N[-0-9]
  5178. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  5179. while (*current_command == ' ') ++current_command; // skip [ ]*
  5180. }
  5181. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5182. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5183. char *cmd_ptr = current_command;
  5184. // Get the command code, which must be G, M, or T
  5185. char command_code = *cmd_ptr++;
  5186. // Skip spaces to get the numeric part
  5187. while (*cmd_ptr == ' ') cmd_ptr++;
  5188. // The code must have a numeric value
  5189. bool code_is_good = false;
  5190. int codenum = 0; // define ahead of goto
  5191. // Get and skip the code number
  5192. while (*cmd_ptr >= '0' && *cmd_ptr <= '9') {
  5193. code_is_good = true;
  5194. codenum = codenum * 10 + *cmd_ptr - '0';
  5195. cmd_ptr++;
  5196. }
  5197. // Bail early if there's no code
  5198. if (!code_is_good) goto ExitUnknownCommand;
  5199. // Skip all spaces to get to the first argument
  5200. while (*cmd_ptr == ' ') cmd_ptr++;
  5201. // The command's arguments start here, for sure!
  5202. current_command_args = cmd_ptr;
  5203. KEEPALIVE_STATE(IN_HANDLER);
  5204. // Handle a known G, M, or T
  5205. switch (command_code) {
  5206. case 'G': switch (codenum) {
  5207. // G0, G1
  5208. case 0:
  5209. case 1:
  5210. gcode_G0_G1();
  5211. break;
  5212. // G2, G3
  5213. #if DISABLED(SCARA)
  5214. case 2: // G2 - CW ARC
  5215. case 3: // G3 - CCW ARC
  5216. gcode_G2_G3(codenum == 2);
  5217. break;
  5218. #endif
  5219. // G4 Dwell
  5220. case 4:
  5221. gcode_G4();
  5222. break;
  5223. #if ENABLED(FWRETRACT)
  5224. case 10: // G10: retract
  5225. case 11: // G11: retract_recover
  5226. gcode_G10_G11(codenum == 10);
  5227. break;
  5228. #endif //FWRETRACT
  5229. case 28: // G28: Home all axes, one at a time
  5230. gcode_G28();
  5231. break;
  5232. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5233. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5234. gcode_G29();
  5235. break;
  5236. #endif
  5237. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5238. #if DISABLED(Z_PROBE_SLED)
  5239. case 30: // G30 Single Z probe
  5240. gcode_G30();
  5241. break;
  5242. #else // Z_PROBE_SLED
  5243. case 31: // G31: dock the sled
  5244. case 32: // G32: undock the sled
  5245. dock_sled(codenum == 31);
  5246. break;
  5247. #endif // Z_PROBE_SLED
  5248. #endif // AUTO_BED_LEVELING_FEATURE
  5249. case 90: // G90
  5250. relative_mode = false;
  5251. break;
  5252. case 91: // G91
  5253. relative_mode = true;
  5254. break;
  5255. case 92: // G92
  5256. gcode_G92();
  5257. break;
  5258. }
  5259. break;
  5260. case 'M': switch (codenum) {
  5261. #if ENABLED(ULTIPANEL)
  5262. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5263. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5264. gcode_M0_M1();
  5265. break;
  5266. #endif // ULTIPANEL
  5267. case 17:
  5268. gcode_M17();
  5269. break;
  5270. #if ENABLED(SDSUPPORT)
  5271. case 20: // M20 - list SD card
  5272. gcode_M20(); break;
  5273. case 21: // M21 - init SD card
  5274. gcode_M21(); break;
  5275. case 22: //M22 - release SD card
  5276. gcode_M22(); break;
  5277. case 23: //M23 - Select file
  5278. gcode_M23(); break;
  5279. case 24: //M24 - Start SD print
  5280. gcode_M24(); break;
  5281. case 25: //M25 - Pause SD print
  5282. gcode_M25(); break;
  5283. case 26: //M26 - Set SD index
  5284. gcode_M26(); break;
  5285. case 27: //M27 - Get SD status
  5286. gcode_M27(); break;
  5287. case 28: //M28 - Start SD write
  5288. gcode_M28(); break;
  5289. case 29: //M29 - Stop SD write
  5290. gcode_M29(); break;
  5291. case 30: //M30 <filename> Delete File
  5292. gcode_M30(); break;
  5293. case 32: //M32 - Select file and start SD print
  5294. gcode_M32(); break;
  5295. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5296. case 33: //M33 - Get the long full path to a file or folder
  5297. gcode_M33(); break;
  5298. #endif // LONG_FILENAME_HOST_SUPPORT
  5299. case 928: //M928 - Start SD write
  5300. gcode_M928(); break;
  5301. #endif //SDSUPPORT
  5302. case 31: //M31 take time since the start of the SD print or an M109 command
  5303. gcode_M31();
  5304. break;
  5305. case 42: //M42 -Change pin status via gcode
  5306. gcode_M42();
  5307. break;
  5308. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5309. case 48: // M48 Z probe repeatability
  5310. gcode_M48();
  5311. break;
  5312. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5313. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5314. case 100:
  5315. gcode_M100();
  5316. break;
  5317. #endif
  5318. case 104: // M104
  5319. gcode_M104();
  5320. break;
  5321. case 110: // M110: Set Current Line Number
  5322. gcode_M110();
  5323. break;
  5324. case 111: // M111: Set debug level
  5325. gcode_M111();
  5326. break;
  5327. case 112: // M112: Emergency Stop
  5328. gcode_M112();
  5329. break;
  5330. case 140: // M140: Set bed temp
  5331. gcode_M140();
  5332. break;
  5333. case 105: // M105: Read current temperature
  5334. gcode_M105();
  5335. KEEPALIVE_STATE(NOT_BUSY);
  5336. return; // "ok" already printed
  5337. case 109: // M109: Wait for temperature
  5338. gcode_M109();
  5339. break;
  5340. #if HAS_TEMP_BED
  5341. case 190: // M190: Wait for bed heater to reach target
  5342. gcode_M190();
  5343. break;
  5344. #endif // HAS_TEMP_BED
  5345. #if FAN_COUNT > 0
  5346. case 106: // M106: Fan On
  5347. gcode_M106();
  5348. break;
  5349. case 107: // M107: Fan Off
  5350. gcode_M107();
  5351. break;
  5352. #endif // FAN_COUNT > 0
  5353. #if ENABLED(BARICUDA)
  5354. // PWM for HEATER_1_PIN
  5355. #if HAS_HEATER_1
  5356. case 126: // M126: valve open
  5357. gcode_M126();
  5358. break;
  5359. case 127: // M127: valve closed
  5360. gcode_M127();
  5361. break;
  5362. #endif // HAS_HEATER_1
  5363. // PWM for HEATER_2_PIN
  5364. #if HAS_HEATER_2
  5365. case 128: // M128: valve open
  5366. gcode_M128();
  5367. break;
  5368. case 129: // M129: valve closed
  5369. gcode_M129();
  5370. break;
  5371. #endif // HAS_HEATER_2
  5372. #endif // BARICUDA
  5373. #if HAS_POWER_SWITCH
  5374. case 80: // M80: Turn on Power Supply
  5375. gcode_M80();
  5376. break;
  5377. #endif // HAS_POWER_SWITCH
  5378. case 81: // M81: Turn off Power, including Power Supply, if possible
  5379. gcode_M81();
  5380. break;
  5381. case 82:
  5382. gcode_M82();
  5383. break;
  5384. case 83:
  5385. gcode_M83();
  5386. break;
  5387. case 18: // (for compatibility)
  5388. case 84: // M84
  5389. gcode_M18_M84();
  5390. break;
  5391. case 85: // M85
  5392. gcode_M85();
  5393. break;
  5394. case 92: // M92: Set the steps-per-unit for one or more axes
  5395. gcode_M92();
  5396. break;
  5397. case 115: // M115: Report capabilities
  5398. gcode_M115();
  5399. break;
  5400. case 117: // M117: Set LCD message text, if possible
  5401. gcode_M117();
  5402. break;
  5403. case 114: // M114: Report current position
  5404. gcode_M114();
  5405. break;
  5406. case 120: // M120: Enable endstops
  5407. gcode_M120();
  5408. break;
  5409. case 121: // M121: Disable endstops
  5410. gcode_M121();
  5411. break;
  5412. case 119: // M119: Report endstop states
  5413. gcode_M119();
  5414. break;
  5415. #if ENABLED(ULTIPANEL)
  5416. case 145: // M145: Set material heatup parameters
  5417. gcode_M145();
  5418. break;
  5419. #endif
  5420. #if ENABLED(BLINKM)
  5421. case 150: // M150
  5422. gcode_M150();
  5423. break;
  5424. #endif //BLINKM
  5425. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5426. gcode_M200();
  5427. break;
  5428. case 201: // M201
  5429. gcode_M201();
  5430. break;
  5431. #if 0 // Not used for Sprinter/grbl gen6
  5432. case 202: // M202
  5433. gcode_M202();
  5434. break;
  5435. #endif
  5436. case 203: // M203 max feedrate mm/sec
  5437. gcode_M203();
  5438. break;
  5439. case 204: // M204 acclereration S normal moves T filmanent only moves
  5440. gcode_M204();
  5441. break;
  5442. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5443. gcode_M205();
  5444. break;
  5445. case 206: // M206 additional homing offset
  5446. gcode_M206();
  5447. break;
  5448. #if ENABLED(DELTA)
  5449. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5450. gcode_M665();
  5451. break;
  5452. #endif
  5453. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5454. case 666: // M666 set delta / dual endstop adjustment
  5455. gcode_M666();
  5456. break;
  5457. #endif
  5458. #if ENABLED(FWRETRACT)
  5459. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5460. gcode_M207();
  5461. break;
  5462. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5463. gcode_M208();
  5464. break;
  5465. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5466. gcode_M209();
  5467. break;
  5468. #endif // FWRETRACT
  5469. #if EXTRUDERS > 1
  5470. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5471. gcode_M218();
  5472. break;
  5473. #endif
  5474. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5475. gcode_M220();
  5476. break;
  5477. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5478. gcode_M221();
  5479. break;
  5480. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5481. gcode_M226();
  5482. break;
  5483. #if HAS_SERVOS
  5484. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5485. gcode_M280();
  5486. break;
  5487. #endif // HAS_SERVOS
  5488. #if HAS_BUZZER
  5489. case 300: // M300 - Play beep tone
  5490. gcode_M300();
  5491. break;
  5492. #endif // HAS_BUZZER
  5493. #if ENABLED(PIDTEMP)
  5494. case 301: // M301
  5495. gcode_M301();
  5496. break;
  5497. #endif // PIDTEMP
  5498. #if ENABLED(PIDTEMPBED)
  5499. case 304: // M304
  5500. gcode_M304();
  5501. break;
  5502. #endif // PIDTEMPBED
  5503. #if defined(CHDK) || HAS_PHOTOGRAPH
  5504. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5505. gcode_M240();
  5506. break;
  5507. #endif // CHDK || PHOTOGRAPH_PIN
  5508. #if ENABLED(HAS_LCD_CONTRAST)
  5509. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5510. gcode_M250();
  5511. break;
  5512. #endif // HAS_LCD_CONTRAST
  5513. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5514. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5515. gcode_M302();
  5516. break;
  5517. #endif // PREVENT_DANGEROUS_EXTRUDE
  5518. case 303: // M303 PID autotune
  5519. gcode_M303();
  5520. break;
  5521. #if ENABLED(SCARA)
  5522. case 360: // M360 SCARA Theta pos1
  5523. if (gcode_M360()) return;
  5524. break;
  5525. case 361: // M361 SCARA Theta pos2
  5526. if (gcode_M361()) return;
  5527. break;
  5528. case 362: // M362 SCARA Psi pos1
  5529. if (gcode_M362()) return;
  5530. break;
  5531. case 363: // M363 SCARA Psi pos2
  5532. if (gcode_M363()) return;
  5533. break;
  5534. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5535. if (gcode_M364()) return;
  5536. break;
  5537. case 365: // M365 Set SCARA scaling for X Y Z
  5538. gcode_M365();
  5539. break;
  5540. #endif // SCARA
  5541. case 400: // M400 finish all moves
  5542. gcode_M400();
  5543. break;
  5544. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5545. case 401:
  5546. gcode_M401();
  5547. break;
  5548. case 402:
  5549. gcode_M402();
  5550. break;
  5551. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5552. #if ENABLED(FILAMENT_SENSOR)
  5553. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5554. gcode_M404();
  5555. break;
  5556. case 405: //M405 Turn on filament sensor for control
  5557. gcode_M405();
  5558. break;
  5559. case 406: //M406 Turn off filament sensor for control
  5560. gcode_M406();
  5561. break;
  5562. case 407: //M407 Display measured filament diameter
  5563. gcode_M407();
  5564. break;
  5565. #endif // FILAMENT_SENSOR
  5566. case 410: // M410 quickstop - Abort all the planned moves.
  5567. gcode_M410();
  5568. break;
  5569. #if ENABLED(MESH_BED_LEVELING)
  5570. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5571. gcode_M420();
  5572. break;
  5573. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5574. gcode_M421();
  5575. break;
  5576. #endif
  5577. case 428: // M428 Apply current_position to home_offset
  5578. gcode_M428();
  5579. break;
  5580. case 500: // M500 Store settings in EEPROM
  5581. gcode_M500();
  5582. break;
  5583. case 501: // M501 Read settings from EEPROM
  5584. gcode_M501();
  5585. break;
  5586. case 502: // M502 Revert to default settings
  5587. gcode_M502();
  5588. break;
  5589. case 503: // M503 print settings currently in memory
  5590. gcode_M503();
  5591. break;
  5592. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5593. case 540:
  5594. gcode_M540();
  5595. break;
  5596. #endif
  5597. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5598. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5599. gcode_SET_Z_PROBE_OFFSET();
  5600. break;
  5601. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5602. #if ENABLED(FILAMENTCHANGEENABLE)
  5603. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5604. gcode_M600();
  5605. break;
  5606. #endif // FILAMENTCHANGEENABLE
  5607. #if ENABLED(DUAL_X_CARRIAGE)
  5608. case 605:
  5609. gcode_M605();
  5610. break;
  5611. #endif // DUAL_X_CARRIAGE
  5612. case 907: // M907 Set digital trimpot motor current using axis codes.
  5613. gcode_M907();
  5614. break;
  5615. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5616. case 908: // M908 Control digital trimpot directly.
  5617. gcode_M908();
  5618. break;
  5619. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5620. case 909: // M909 Print digipot/DAC current value
  5621. gcode_M909();
  5622. break;
  5623. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5624. gcode_M910();
  5625. break;
  5626. #endif
  5627. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5628. #if HAS_MICROSTEPS
  5629. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5630. gcode_M350();
  5631. break;
  5632. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5633. gcode_M351();
  5634. break;
  5635. #endif // HAS_MICROSTEPS
  5636. case 999: // M999: Restart after being Stopped
  5637. gcode_M999();
  5638. break;
  5639. }
  5640. break;
  5641. case 'T':
  5642. gcode_T(codenum);
  5643. break;
  5644. default: code_is_good = false;
  5645. }
  5646. KEEPALIVE_STATE(NOT_BUSY);
  5647. ExitUnknownCommand:
  5648. // Still unknown command? Throw an error
  5649. if (!code_is_good) unknown_command_error();
  5650. ok_to_send();
  5651. }
  5652. void FlushSerialRequestResend() {
  5653. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5654. MYSERIAL.flush();
  5655. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5656. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5657. ok_to_send();
  5658. }
  5659. void ok_to_send() {
  5660. refresh_cmd_timeout();
  5661. if (!send_ok[cmd_queue_index_r]) return;
  5662. SERIAL_PROTOCOLPGM(MSG_OK);
  5663. #if ENABLED(ADVANCED_OK)
  5664. char* p = command_queue[cmd_queue_index_r];
  5665. if (*p == 'N') {
  5666. SERIAL_PROTOCOL(' ');
  5667. SERIAL_ECHO(*p++);
  5668. while ((*p >= '0' && *p <= '9') || *p == '-')
  5669. SERIAL_ECHO(*p++);
  5670. }
  5671. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5672. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5673. #endif
  5674. SERIAL_EOL;
  5675. }
  5676. void clamp_to_software_endstops(float target[3]) {
  5677. if (min_software_endstops) {
  5678. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5679. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5680. float negative_z_offset = 0;
  5681. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5682. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5683. if (home_offset[Z_AXIS] < 0) {
  5684. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5685. if (marlin_debug_flags & DEBUG_LEVELING) {
  5686. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5687. SERIAL_EOL;
  5688. }
  5689. #endif
  5690. negative_z_offset += home_offset[Z_AXIS];
  5691. }
  5692. #endif
  5693. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5694. }
  5695. if (max_software_endstops) {
  5696. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5697. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5698. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5699. }
  5700. }
  5701. #if ENABLED(DELTA)
  5702. void recalc_delta_settings(float radius, float diagonal_rod) {
  5703. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5704. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5705. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5706. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5707. delta_tower3_x = 0.0; // back middle tower
  5708. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5709. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5710. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5711. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5712. }
  5713. void calculate_delta(float cartesian[3]) {
  5714. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5715. - sq(delta_tower1_x - cartesian[X_AXIS])
  5716. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5717. ) + cartesian[Z_AXIS];
  5718. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5719. - sq(delta_tower2_x - cartesian[X_AXIS])
  5720. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5721. ) + cartesian[Z_AXIS];
  5722. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5723. - sq(delta_tower3_x - cartesian[X_AXIS])
  5724. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5725. ) + cartesian[Z_AXIS];
  5726. /**
  5727. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5728. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5729. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5730. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5731. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5732. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5733. */
  5734. }
  5735. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5736. // Adjust print surface height by linear interpolation over the bed_level array.
  5737. void adjust_delta(float cartesian[3]) {
  5738. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5739. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5740. float h1 = 0.001 - half, h2 = half - 0.001,
  5741. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5742. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5743. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5744. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5745. z1 = bed_level[floor_x + half][floor_y + half],
  5746. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5747. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5748. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5749. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5750. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5751. offset = (1 - ratio_x) * left + ratio_x * right;
  5752. delta[X_AXIS] += offset;
  5753. delta[Y_AXIS] += offset;
  5754. delta[Z_AXIS] += offset;
  5755. /**
  5756. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5757. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5758. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5759. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5760. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5761. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5762. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5763. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5764. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5765. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5766. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5767. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5768. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5769. */
  5770. }
  5771. #endif // AUTO_BED_LEVELING_FEATURE
  5772. #endif // DELTA
  5773. #if ENABLED(MESH_BED_LEVELING)
  5774. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5775. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5776. if (!mbl.active) {
  5777. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5778. set_current_to_destination();
  5779. return;
  5780. }
  5781. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5782. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5783. int ix = mbl.select_x_index(x);
  5784. int iy = mbl.select_y_index(y);
  5785. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5786. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5787. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5788. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5789. if (pix == ix && piy == iy) {
  5790. // Start and end on same mesh square
  5791. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5792. set_current_to_destination();
  5793. return;
  5794. }
  5795. float nx, ny, nz, ne, normalized_dist;
  5796. if (ix > pix && TEST(x_splits, ix)) {
  5797. nx = mbl.get_x(ix);
  5798. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5799. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5800. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5801. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5802. CBI(x_splits, ix);
  5803. }
  5804. else if (ix < pix && TEST(x_splits, pix)) {
  5805. nx = mbl.get_x(pix);
  5806. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5807. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5808. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5809. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5810. CBI(x_splits, pix);
  5811. }
  5812. else if (iy > piy && TEST(y_splits, iy)) {
  5813. ny = mbl.get_y(iy);
  5814. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5815. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5816. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5817. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5818. CBI(y_splits, iy);
  5819. }
  5820. else if (iy < piy && TEST(y_splits, piy)) {
  5821. ny = mbl.get_y(piy);
  5822. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5823. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5824. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5825. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5826. CBI(y_splits, piy);
  5827. }
  5828. else {
  5829. // Already split on a border
  5830. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5831. set_current_to_destination();
  5832. return;
  5833. }
  5834. // Do the split and look for more borders
  5835. destination[X_AXIS] = nx;
  5836. destination[Y_AXIS] = ny;
  5837. destination[Z_AXIS] = nz;
  5838. destination[E_AXIS] = ne;
  5839. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  5840. destination[X_AXIS] = x;
  5841. destination[Y_AXIS] = y;
  5842. destination[Z_AXIS] = z;
  5843. destination[E_AXIS] = e;
  5844. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5845. }
  5846. #endif // MESH_BED_LEVELING
  5847. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5848. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  5849. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5850. float de = dest_e - curr_e;
  5851. if (de) {
  5852. if (degHotend(active_extruder) < extrude_min_temp) {
  5853. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5854. SERIAL_ECHO_START;
  5855. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5856. }
  5857. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5858. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5859. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5860. SERIAL_ECHO_START;
  5861. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5862. }
  5863. #endif
  5864. }
  5865. }
  5866. #endif // PREVENT_DANGEROUS_EXTRUDE
  5867. #if ENABLED(DELTA) || ENABLED(SCARA)
  5868. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5869. float difference[NUM_AXIS];
  5870. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5871. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5872. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5873. if (cartesian_mm < 0.000001) return false;
  5874. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5875. int steps = max(1, int(delta_segments_per_second * seconds));
  5876. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5877. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5878. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5879. for (int s = 1; s <= steps; s++) {
  5880. float fraction = float(s) / float(steps);
  5881. for (int8_t i = 0; i < NUM_AXIS; i++)
  5882. target[i] = current_position[i] + difference[i] * fraction;
  5883. calculate_delta(target);
  5884. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5885. adjust_delta(target);
  5886. #endif
  5887. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5888. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5889. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5890. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5891. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5892. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5893. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  5894. }
  5895. return true;
  5896. }
  5897. #endif // DELTA || SCARA
  5898. #if ENABLED(SCARA)
  5899. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5900. #endif
  5901. #if ENABLED(DUAL_X_CARRIAGE)
  5902. inline bool prepare_move_dual_x_carriage() {
  5903. if (active_extruder_parked) {
  5904. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5905. // move duplicate extruder into correct duplication position.
  5906. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5907. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5908. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5909. sync_plan_position();
  5910. st_synchronize();
  5911. extruder_duplication_enabled = true;
  5912. active_extruder_parked = false;
  5913. }
  5914. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5915. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5916. // This is a travel move (with no extrusion)
  5917. // Skip it, but keep track of the current position
  5918. // (so it can be used as the start of the next non-travel move)
  5919. if (delayed_move_time != 0xFFFFFFFFUL) {
  5920. set_current_to_destination();
  5921. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5922. delayed_move_time = millis();
  5923. return false;
  5924. }
  5925. }
  5926. delayed_move_time = 0;
  5927. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5928. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5929. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5931. active_extruder_parked = false;
  5932. }
  5933. }
  5934. return true;
  5935. }
  5936. #endif // DUAL_X_CARRIAGE
  5937. #if DISABLED(DELTA) && DISABLED(SCARA)
  5938. inline bool prepare_move_cartesian() {
  5939. // Do not use feedrate_multiplier for E or Z only moves
  5940. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5941. line_to_destination();
  5942. }
  5943. else {
  5944. #if ENABLED(MESH_BED_LEVELING)
  5945. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  5946. return false;
  5947. #else
  5948. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5949. #endif
  5950. }
  5951. return true;
  5952. }
  5953. #endif // !DELTA && !SCARA
  5954. /**
  5955. * Prepare a single move and get ready for the next one
  5956. *
  5957. * (This may call plan_buffer_line several times to put
  5958. * smaller moves into the planner for DELTA or SCARA.)
  5959. */
  5960. void prepare_move() {
  5961. clamp_to_software_endstops(destination);
  5962. refresh_cmd_timeout();
  5963. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5964. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5965. #endif
  5966. #if ENABLED(SCARA)
  5967. if (!prepare_move_scara(destination)) return;
  5968. #elif ENABLED(DELTA)
  5969. if (!prepare_move_delta(destination)) return;
  5970. #endif
  5971. #if ENABLED(DUAL_X_CARRIAGE)
  5972. if (!prepare_move_dual_x_carriage()) return;
  5973. #endif
  5974. #if DISABLED(DELTA) && DISABLED(SCARA)
  5975. if (!prepare_move_cartesian()) return;
  5976. #endif
  5977. set_current_to_destination();
  5978. }
  5979. /**
  5980. * Plan an arc in 2 dimensions
  5981. *
  5982. * The arc is approximated by generating many small linear segments.
  5983. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  5984. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  5985. * larger segments will tend to be more efficient. Your slicer should have
  5986. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  5987. */
  5988. void plan_arc(
  5989. float target[NUM_AXIS], // Destination position
  5990. float* offset, // Center of rotation relative to current_position
  5991. uint8_t clockwise // Clockwise?
  5992. ) {
  5993. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  5994. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  5995. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  5996. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  5997. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  5998. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  5999. r_axis1 = -offset[Y_AXIS],
  6000. rt_axis0 = target[X_AXIS] - center_axis0,
  6001. rt_axis1 = target[Y_AXIS] - center_axis1;
  6002. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6003. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  6004. if (angular_travel < 0) angular_travel += RADIANS(360);
  6005. if (clockwise) angular_travel -= RADIANS(360);
  6006. // Make a circle if the angular rotation is 0
  6007. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  6008. angular_travel += RADIANS(360);
  6009. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6010. if (mm_of_travel < 0.001) return;
  6011. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6012. if (segments == 0) segments = 1;
  6013. float theta_per_segment = angular_travel / segments;
  6014. float linear_per_segment = linear_travel / segments;
  6015. float extruder_per_segment = extruder_travel / segments;
  6016. /**
  6017. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6018. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6019. * r_T = [cos(phi) -sin(phi);
  6020. * sin(phi) cos(phi] * r ;
  6021. *
  6022. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6023. * defined from the circle center to the initial position. Each line segment is formed by successive
  6024. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6025. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6026. * all double numbers are single precision on the Arduino. (True double precision will not have
  6027. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6028. * tool precision in some cases. Therefore, arc path correction is implemented.
  6029. *
  6030. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6031. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6032. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6033. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6034. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6035. * issue for CNC machines with the single precision Arduino calculations.
  6036. *
  6037. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6038. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6039. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6040. * This is important when there are successive arc motions.
  6041. */
  6042. // Vector rotation matrix values
  6043. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6044. float sin_T = theta_per_segment;
  6045. float arc_target[NUM_AXIS];
  6046. float sin_Ti;
  6047. float cos_Ti;
  6048. float r_axisi;
  6049. uint16_t i;
  6050. int8_t count = 0;
  6051. // Initialize the linear axis
  6052. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6053. // Initialize the extruder axis
  6054. arc_target[E_AXIS] = current_position[E_AXIS];
  6055. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6056. for (i = 1; i < segments; i++) { // Increment (segments-1)
  6057. if (count < N_ARC_CORRECTION) {
  6058. // Apply vector rotation matrix to previous r_axis0 / 1
  6059. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  6060. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  6061. r_axis1 = r_axisi;
  6062. count++;
  6063. }
  6064. else {
  6065. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6066. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6067. cos_Ti = cos(i * theta_per_segment);
  6068. sin_Ti = sin(i * theta_per_segment);
  6069. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6070. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6071. count = 0;
  6072. }
  6073. // Update arc_target location
  6074. arc_target[X_AXIS] = center_axis0 + r_axis0;
  6075. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  6076. arc_target[Z_AXIS] += linear_per_segment;
  6077. arc_target[E_AXIS] += extruder_per_segment;
  6078. clamp_to_software_endstops(arc_target);
  6079. #if ENABLED(DELTA) || ENABLED(SCARA)
  6080. calculate_delta(arc_target);
  6081. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6082. adjust_delta(arc_target);
  6083. #endif
  6084. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6085. #else
  6086. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6087. #endif
  6088. }
  6089. // Ensure last segment arrives at target location.
  6090. #if ENABLED(DELTA) || ENABLED(SCARA)
  6091. calculate_delta(target);
  6092. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6093. adjust_delta(target);
  6094. #endif
  6095. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6096. #else
  6097. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6098. #endif
  6099. // As far as the parser is concerned, the position is now == target. In reality the
  6100. // motion control system might still be processing the action and the real tool position
  6101. // in any intermediate location.
  6102. set_current_to_destination();
  6103. }
  6104. #if HAS_CONTROLLERFAN
  6105. void controllerFan() {
  6106. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6107. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6108. millis_t ms = millis();
  6109. if (ms >= nextMotorCheck) {
  6110. nextMotorCheck = ms + 2500; // Not a time critical function, so only check every 2.5s
  6111. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6112. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6113. #if EXTRUDERS > 1
  6114. || E1_ENABLE_READ == E_ENABLE_ON
  6115. #if HAS_X2_ENABLE
  6116. || X2_ENABLE_READ == X_ENABLE_ON
  6117. #endif
  6118. #if EXTRUDERS > 2
  6119. || E2_ENABLE_READ == E_ENABLE_ON
  6120. #if EXTRUDERS > 3
  6121. || E3_ENABLE_READ == E_ENABLE_ON
  6122. #endif
  6123. #endif
  6124. #endif
  6125. ) {
  6126. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6127. }
  6128. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6129. uint8_t speed = (lastMotorOn == 0 || ms >= lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL) ? 0 : CONTROLLERFAN_SPEED;
  6130. // allows digital or PWM fan output to be used (see M42 handling)
  6131. digitalWrite(CONTROLLERFAN_PIN, speed);
  6132. analogWrite(CONTROLLERFAN_PIN, speed);
  6133. }
  6134. }
  6135. #endif // HAS_CONTROLLERFAN
  6136. #if ENABLED(SCARA)
  6137. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6138. // Perform forward kinematics, and place results in delta[3]
  6139. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6140. float x_sin, x_cos, y_sin, y_cos;
  6141. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6142. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6143. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6144. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6145. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6146. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6147. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6148. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6149. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6150. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6151. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6152. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6153. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6154. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6155. }
  6156. void calculate_delta(float cartesian[3]) {
  6157. //reverse kinematics.
  6158. // Perform reversed kinematics, and place results in delta[3]
  6159. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6160. float SCARA_pos[2];
  6161. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6162. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6163. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6164. #if (Linkage_1 == Linkage_2)
  6165. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6166. #else
  6167. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6168. #endif
  6169. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6170. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6171. SCARA_K2 = Linkage_2 * SCARA_S2;
  6172. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6173. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6174. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6175. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6176. delta[Z_AXIS] = cartesian[Z_AXIS];
  6177. /**
  6178. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6179. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6180. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6181. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6182. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6183. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6184. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6185. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6186. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6187. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6188. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6189. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6190. SERIAL_EOL;
  6191. */
  6192. }
  6193. #endif // SCARA
  6194. #if ENABLED(TEMP_STAT_LEDS)
  6195. static bool red_led = false;
  6196. static millis_t next_status_led_update_ms = 0;
  6197. void handle_status_leds(void) {
  6198. float max_temp = 0.0;
  6199. if (millis() > next_status_led_update_ms) {
  6200. next_status_led_update_ms += 500; // Update every 0.5s
  6201. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6202. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6203. #if HAS_TEMP_BED
  6204. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6205. #endif
  6206. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6207. if (new_led != red_led) {
  6208. red_led = new_led;
  6209. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6210. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6211. }
  6212. }
  6213. }
  6214. #endif
  6215. void enable_all_steppers() {
  6216. enable_x();
  6217. enable_y();
  6218. enable_z();
  6219. enable_e0();
  6220. enable_e1();
  6221. enable_e2();
  6222. enable_e3();
  6223. }
  6224. void disable_all_steppers() {
  6225. disable_x();
  6226. disable_y();
  6227. disable_z();
  6228. disable_e0();
  6229. disable_e1();
  6230. disable_e2();
  6231. disable_e3();
  6232. }
  6233. /**
  6234. * Standard idle routine keeps the machine alive
  6235. */
  6236. void idle(
  6237. #if ENABLED(FILAMENTCHANGEENABLE)
  6238. bool no_stepper_sleep/*=false*/
  6239. #endif
  6240. ) {
  6241. manage_heater();
  6242. manage_inactivity(
  6243. #if ENABLED(FILAMENTCHANGEENABLE)
  6244. no_stepper_sleep
  6245. #endif
  6246. );
  6247. host_keepalive();
  6248. lcd_update();
  6249. }
  6250. /**
  6251. * Manage several activities:
  6252. * - Check for Filament Runout
  6253. * - Keep the command buffer full
  6254. * - Check for maximum inactive time between commands
  6255. * - Check for maximum inactive time between stepper commands
  6256. * - Check if pin CHDK needs to go LOW
  6257. * - Check for KILL button held down
  6258. * - Check for HOME button held down
  6259. * - Check if cooling fan needs to be switched on
  6260. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6261. */
  6262. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6263. #if HAS_FILRUNOUT
  6264. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6265. filrunout();
  6266. #endif
  6267. if (commands_in_queue < BUFSIZE) get_command();
  6268. millis_t ms = millis();
  6269. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  6270. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  6271. && !ignore_stepper_queue && !blocks_queued()) {
  6272. #if ENABLED(DISABLE_INACTIVE_X)
  6273. disable_x();
  6274. #endif
  6275. #if ENABLED(DISABLE_INACTIVE_Y)
  6276. disable_y();
  6277. #endif
  6278. #if ENABLED(DISABLE_INACTIVE_Z)
  6279. disable_z();
  6280. #endif
  6281. #if ENABLED(DISABLE_INACTIVE_E)
  6282. disable_e0();
  6283. disable_e1();
  6284. disable_e2();
  6285. disable_e3();
  6286. #endif
  6287. }
  6288. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6289. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  6290. chdkActive = false;
  6291. WRITE(CHDK, LOW);
  6292. }
  6293. #endif
  6294. #if HAS_KILL
  6295. // Check if the kill button was pressed and wait just in case it was an accidental
  6296. // key kill key press
  6297. // -------------------------------------------------------------------------------
  6298. static int killCount = 0; // make the inactivity button a bit less responsive
  6299. const int KILL_DELAY = 750;
  6300. if (!READ(KILL_PIN))
  6301. killCount++;
  6302. else if (killCount > 0)
  6303. killCount--;
  6304. // Exceeded threshold and we can confirm that it was not accidental
  6305. // KILL the machine
  6306. // ----------------------------------------------------------------
  6307. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6308. #endif
  6309. #if HAS_HOME
  6310. // Check to see if we have to home, use poor man's debouncer
  6311. // ---------------------------------------------------------
  6312. static int homeDebounceCount = 0; // poor man's debouncing count
  6313. const int HOME_DEBOUNCE_DELAY = 2500;
  6314. if (!READ(HOME_PIN)) {
  6315. if (!homeDebounceCount) {
  6316. enqueue_and_echo_commands_P(PSTR("G28"));
  6317. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6318. }
  6319. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6320. homeDebounceCount++;
  6321. else
  6322. homeDebounceCount = 0;
  6323. }
  6324. #endif
  6325. #if HAS_CONTROLLERFAN
  6326. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6327. #endif
  6328. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6329. if (ms > previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000)
  6330. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6331. bool oldstatus;
  6332. switch (active_extruder) {
  6333. case 0:
  6334. oldstatus = E0_ENABLE_READ;
  6335. enable_e0();
  6336. break;
  6337. #if EXTRUDERS > 1
  6338. case 1:
  6339. oldstatus = E1_ENABLE_READ;
  6340. enable_e1();
  6341. break;
  6342. #if EXTRUDERS > 2
  6343. case 2:
  6344. oldstatus = E2_ENABLE_READ;
  6345. enable_e2();
  6346. break;
  6347. #if EXTRUDERS > 3
  6348. case 3:
  6349. oldstatus = E3_ENABLE_READ;
  6350. enable_e3();
  6351. break;
  6352. #endif
  6353. #endif
  6354. #endif
  6355. }
  6356. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6358. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6359. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6360. current_position[E_AXIS] = oldepos;
  6361. destination[E_AXIS] = oldedes;
  6362. plan_set_e_position(oldepos);
  6363. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6364. st_synchronize();
  6365. switch (active_extruder) {
  6366. case 0:
  6367. E0_ENABLE_WRITE(oldstatus);
  6368. break;
  6369. #if EXTRUDERS > 1
  6370. case 1:
  6371. E1_ENABLE_WRITE(oldstatus);
  6372. break;
  6373. #if EXTRUDERS > 2
  6374. case 2:
  6375. E2_ENABLE_WRITE(oldstatus);
  6376. break;
  6377. #if EXTRUDERS > 3
  6378. case 3:
  6379. E3_ENABLE_WRITE(oldstatus);
  6380. break;
  6381. #endif
  6382. #endif
  6383. #endif
  6384. }
  6385. }
  6386. #endif
  6387. #if ENABLED(DUAL_X_CARRIAGE)
  6388. // handle delayed move timeout
  6389. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  6390. // travel moves have been received so enact them
  6391. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6392. set_destination_to_current();
  6393. prepare_move();
  6394. }
  6395. #endif
  6396. #if ENABLED(TEMP_STAT_LEDS)
  6397. handle_status_leds();
  6398. #endif
  6399. check_axes_activity();
  6400. }
  6401. void kill(const char* lcd_msg) {
  6402. #if ENABLED(ULTRA_LCD)
  6403. lcd_setalertstatuspgm(lcd_msg);
  6404. #else
  6405. UNUSED(lcd_msg);
  6406. #endif
  6407. cli(); // Stop interrupts
  6408. disable_all_heaters();
  6409. disable_all_steppers();
  6410. #if HAS_POWER_SWITCH
  6411. pinMode(PS_ON_PIN, INPUT);
  6412. #endif
  6413. SERIAL_ERROR_START;
  6414. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6415. // FMC small patch to update the LCD before ending
  6416. sei(); // enable interrupts
  6417. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6418. cli(); // disable interrupts
  6419. suicide();
  6420. while (1) {
  6421. #if ENABLED(USE_WATCHDOG)
  6422. watchdog_reset();
  6423. #endif
  6424. } // Wait for reset
  6425. }
  6426. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6427. void filrunout() {
  6428. if (!filrunoutEnqueued) {
  6429. filrunoutEnqueued = true;
  6430. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6431. st_synchronize();
  6432. }
  6433. }
  6434. #endif // FILAMENT_RUNOUT_SENSOR
  6435. #if ENABLED(FAST_PWM_FAN)
  6436. void setPwmFrequency(uint8_t pin, int val) {
  6437. val &= 0x07;
  6438. switch (digitalPinToTimer(pin)) {
  6439. #if defined(TCCR0A)
  6440. case TIMER0A:
  6441. case TIMER0B:
  6442. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6443. // TCCR0B |= val;
  6444. break;
  6445. #endif
  6446. #if defined(TCCR1A)
  6447. case TIMER1A:
  6448. case TIMER1B:
  6449. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6450. // TCCR1B |= val;
  6451. break;
  6452. #endif
  6453. #if defined(TCCR2)
  6454. case TIMER2:
  6455. case TIMER2:
  6456. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6457. TCCR2 |= val;
  6458. break;
  6459. #endif
  6460. #if defined(TCCR2A)
  6461. case TIMER2A:
  6462. case TIMER2B:
  6463. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6464. TCCR2B |= val;
  6465. break;
  6466. #endif
  6467. #if defined(TCCR3A)
  6468. case TIMER3A:
  6469. case TIMER3B:
  6470. case TIMER3C:
  6471. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6472. TCCR3B |= val;
  6473. break;
  6474. #endif
  6475. #if defined(TCCR4A)
  6476. case TIMER4A:
  6477. case TIMER4B:
  6478. case TIMER4C:
  6479. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6480. TCCR4B |= val;
  6481. break;
  6482. #endif
  6483. #if defined(TCCR5A)
  6484. case TIMER5A:
  6485. case TIMER5B:
  6486. case TIMER5C:
  6487. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6488. TCCR5B |= val;
  6489. break;
  6490. #endif
  6491. }
  6492. }
  6493. #endif // FAST_PWM_FAN
  6494. void Stop() {
  6495. disable_all_heaters();
  6496. if (IsRunning()) {
  6497. Running = false;
  6498. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6499. SERIAL_ERROR_START;
  6500. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6501. LCD_MESSAGEPGM(MSG_STOPPED);
  6502. }
  6503. }
  6504. /**
  6505. * Set target_extruder from the T parameter or the active_extruder
  6506. *
  6507. * Returns TRUE if the target is invalid
  6508. */
  6509. bool setTargetedHotend(int code) {
  6510. target_extruder = active_extruder;
  6511. if (code_seen('T')) {
  6512. target_extruder = code_value_short();
  6513. if (target_extruder >= EXTRUDERS) {
  6514. SERIAL_ECHO_START;
  6515. SERIAL_CHAR('M');
  6516. SERIAL_ECHO(code);
  6517. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6518. SERIAL_ECHOLN((int)target_extruder);
  6519. return true;
  6520. }
  6521. }
  6522. return false;
  6523. }
  6524. float calculate_volumetric_multiplier(float diameter) {
  6525. if (!volumetric_enabled || diameter == 0) return 1.0;
  6526. float d2 = diameter * 0.5;
  6527. return 1.0 / (M_PI * d2 * d2);
  6528. }
  6529. void calculate_volumetric_multipliers() {
  6530. for (int i = 0; i < EXTRUDERS; i++)
  6531. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6532. }
  6533. /**
  6534. * Start the print job timer
  6535. *
  6536. * The print job is only started if all extruders have their target temp at zero
  6537. * otherwise the print job timew would be reset everytime a M109 is received.
  6538. *
  6539. * @param t start timer timestamp
  6540. *
  6541. * @return true if the timer was started at function call
  6542. */
  6543. bool print_job_start(millis_t t /* = 0 */) {
  6544. for (int i = 0; i < EXTRUDERS; i++) if (degTargetHotend(i) > 0) return false;
  6545. print_job_start_ms = (t) ? t : millis();
  6546. print_job_stop_ms = 0;
  6547. return true;
  6548. }
  6549. /**
  6550. * Check if the running print job has finished and stop the timer
  6551. *
  6552. * When the target temperature for all extruders is zero then we assume that the
  6553. * print job has finished printing. There are some special conditions under which
  6554. * this assumption may not be valid: If during a print job for some reason the
  6555. * user decides to bring a nozzle temp down and only then heat the other afterwards.
  6556. *
  6557. * @param force stops the timer ignoring all pre-checks
  6558. *
  6559. * @return boolean true if the print job has finished printing
  6560. */
  6561. bool print_job_stop(bool force /* = false */) {
  6562. if (!print_job_start_ms) return false;
  6563. if (!force) for (int i = 0; i < EXTRUDERS; i++) if (degTargetHotend(i) > 0) return false;
  6564. print_job_stop_ms = millis();
  6565. return true;
  6566. }
  6567. /**
  6568. * Output the print job timer in seconds
  6569. *
  6570. * @return the number of seconds
  6571. */
  6572. millis_t print_job_timer() {
  6573. if (!print_job_start_ms) return 0;
  6574. return (((print_job_stop_ms > print_job_start_ms)
  6575. ? print_job_stop_ms : millis()) - print_job_start_ms) / 1000;
  6576. }