My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 219KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  31. #include "vector_3.h"
  32. #if ENABLED(AUTO_BED_LEVELING_GRID)
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // AUTO_BED_LEVELING_FEATURE
  36. #if ENABLED(MESH_BED_LEVELING)
  37. #include "mesh_bed_leveling.h"
  38. #endif
  39. #include "ultralcd.h"
  40. #include "planner.h"
  41. #include "stepper.h"
  42. #include "temperature.h"
  43. #include "cardreader.h"
  44. #include "watchdog.h"
  45. #include "configuration_store.h"
  46. #include "language.h"
  47. #include "pins_arduino.h"
  48. #include "math.h"
  49. #include "buzzer.h"
  50. #if ENABLED(BLINKM)
  51. #include "blinkm.h"
  52. #include "Wire.h"
  53. #endif
  54. #if HAS_SERVOS
  55. #include "servo.h"
  56. #endif
  57. #if HAS_DIGIPOTSS
  58. #include <SPI.h>
  59. #endif
  60. /**
  61. * Look here for descriptions of G-codes:
  62. * - http://linuxcnc.org/handbook/gcode/g-code.html
  63. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  64. *
  65. * Help us document these G-codes online:
  66. * - http://www.marlinfirmware.org/index.php/G-Code
  67. * - http://reprap.org/wiki/G-code
  68. *
  69. * -----------------
  70. * Implemented Codes
  71. * -----------------
  72. *
  73. * "G" Codes
  74. *
  75. * G0 -> G1
  76. * G1 - Coordinated Movement X Y Z E
  77. * G2 - CW ARC
  78. * G3 - CCW ARC
  79. * G4 - Dwell S<seconds> or P<milliseconds>
  80. * G10 - retract filament according to settings of M207
  81. * G11 - retract recover filament according to settings of M208
  82. * G28 - Home one or more axes
  83. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  84. * G30 - Single Z probe, probes bed at current XY location.
  85. * G31 - Dock sled (Z_PROBE_SLED only)
  86. * G32 - Undock sled (Z_PROBE_SLED only)
  87. * G90 - Use Absolute Coordinates
  88. * G91 - Use Relative Coordinates
  89. * G92 - Set current position to coordinates given
  90. *
  91. * "M" Codes
  92. *
  93. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  94. * M1 - Same as M0
  95. * M17 - Enable/Power all stepper motors
  96. * M18 - Disable all stepper motors; same as M84
  97. * M20 - List SD card
  98. * M21 - Init SD card
  99. * M22 - Release SD card
  100. * M23 - Select SD file (M23 filename.g)
  101. * M24 - Start/resume SD print
  102. * M25 - Pause SD print
  103. * M26 - Set SD position in bytes (M26 S12345)
  104. * M27 - Report SD print status
  105. * M28 - Start SD write (M28 filename.g)
  106. * M29 - Stop SD write
  107. * M30 - Delete file from SD (M30 filename.g)
  108. * M31 - Output time since last M109 or SD card start to serial
  109. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  110. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  111. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  112. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  113. * M33 - Get the longname version of a path
  114. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  115. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  116. * M80 - Turn on Power Supply
  117. * M81 - Turn off Power Supply
  118. * M82 - Set E codes absolute (default)
  119. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  120. * M84 - Disable steppers until next move,
  121. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  122. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  123. * M92 - Set axis_steps_per_unit - same syntax as G92
  124. * M104 - Set extruder target temp
  125. * M105 - Read current temp
  126. * M106 - Fan on
  127. * M107 - Fan off
  128. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  129. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  130. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  131. * M110 - Set the current line number
  132. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  133. * M112 - Emergency stop
  134. * M114 - Output current position to serial port
  135. * M115 - Capabilities string
  136. * M117 - Display a message on the controller screen
  137. * M119 - Output Endstop status to serial port
  138. * M120 - Enable endstop detection
  139. * M121 - Disable endstop detection
  140. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  141. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  142. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  143. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  144. * M140 - Set bed target temp
  145. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  146. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  147. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  148. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  149. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  150. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  151. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  152. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  153. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  154. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  155. * M206 - Set additional homing offset
  156. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  157. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  158. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  159. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  160. * M220 - Set speed factor override percentage: S<factor in percent>
  161. * M221 - Set extrude factor override percentage: S<factor in percent>
  162. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  163. * M240 - Trigger a camera to take a photograph
  164. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  165. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  166. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  167. * M301 - Set PID parameters P I and D
  168. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  169. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  170. * M304 - Set bed PID parameters P I and D
  171. * M380 - Activate solenoid on active extruder
  172. * M381 - Disable all solenoids
  173. * M400 - Finish all moves
  174. * M401 - Lower Z probe if present
  175. * M402 - Raise Z probe if present
  176. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  177. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  178. * M406 - Turn off Filament Sensor extrusion control
  179. * M407 - Display measured filament diameter
  180. * M410 - Quickstop. Abort all the planned moves
  181. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  182. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  183. * M428 - Set the home_offset logically based on the current_position
  184. * M500 - Store parameters in EEPROM
  185. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  188. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  189. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  190. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  191. * M666 - Set delta endstop adjustment
  192. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  193. * M907 - Set digital trimpot motor current using axis codes.
  194. * M908 - Control digital trimpot directly.
  195. * M350 - Set microstepping mode.
  196. * M351 - Toggle MS1 MS2 pins directly.
  197. *
  198. * ************ SCARA Specific - This can change to suit future G-code regulations
  199. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  200. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  201. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  202. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  203. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  204. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging Only)
  209. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  210. * M928 - Start SD logging (M928 filename.g) - ended by M29
  211. * M999 - Restart after being stopped by error
  212. *
  213. * "T" Codes
  214. *
  215. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  216. *
  217. */
  218. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  219. void gcode_M100();
  220. #endif
  221. #if ENABLED(SDSUPPORT)
  222. CardReader card;
  223. #endif
  224. bool Running = true;
  225. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  226. static float feedrate = 1500.0, saved_feedrate;
  227. float current_position[NUM_AXIS] = { 0.0 };
  228. static float destination[NUM_AXIS] = { 0.0 };
  229. bool axis_known_position[3] = { false };
  230. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  231. static char *current_command, *current_command_args;
  232. static int cmd_queue_index_r = 0;
  233. static int cmd_queue_index_w = 0;
  234. static int commands_in_queue = 0;
  235. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  236. const float homing_feedrate[] = HOMING_FEEDRATE;
  237. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  238. int feedrate_multiplier = 100; //100->1 200->2
  239. int saved_feedrate_multiplier;
  240. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  241. bool volumetric_enabled = false;
  242. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  243. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  244. float home_offset[3] = { 0 };
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. uint8_t active_extruder = 0;
  248. int fanSpeed = 0;
  249. bool cancel_heatup = false;
  250. const char errormagic[] PROGMEM = "Error:";
  251. const char echomagic[] PROGMEM = "echo:";
  252. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  253. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  254. static char serial_char;
  255. static int serial_count = 0;
  256. static boolean comment_mode = false;
  257. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  258. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  259. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  260. // Inactivity shutdown
  261. millis_t previous_cmd_ms = 0;
  262. static millis_t max_inactive_time = 0;
  263. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  264. millis_t print_job_start_ms = 0; ///< Print job start time
  265. millis_t print_job_stop_ms = 0; ///< Print job stop time
  266. static uint8_t target_extruder;
  267. bool no_wait_for_cooling = true;
  268. bool target_direction;
  269. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  270. int xy_travel_speed = XY_TRAVEL_SPEED;
  271. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  272. #endif
  273. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  274. float z_endstop_adj = 0;
  275. #endif
  276. // Extruder offsets
  277. #if EXTRUDERS > 1
  278. #ifndef EXTRUDER_OFFSET_X
  279. #define EXTRUDER_OFFSET_X { 0 }
  280. #endif
  281. #ifndef EXTRUDER_OFFSET_Y
  282. #define EXTRUDER_OFFSET_Y { 0 }
  283. #endif
  284. float extruder_offset[][EXTRUDERS] = {
  285. EXTRUDER_OFFSET_X,
  286. EXTRUDER_OFFSET_Y
  287. #if ENABLED(DUAL_X_CARRIAGE)
  288. , { 0 } // supports offsets in XYZ plane
  289. #endif
  290. };
  291. #endif
  292. #if HAS_SERVO_ENDSTOPS
  293. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  294. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  295. #endif
  296. #if ENABLED(BARICUDA)
  297. int ValvePressure = 0;
  298. int EtoPPressure = 0;
  299. #endif
  300. #if ENABLED(FWRETRACT)
  301. bool autoretract_enabled = false;
  302. bool retracted[EXTRUDERS] = { false };
  303. bool retracted_swap[EXTRUDERS] = { false };
  304. float retract_length = RETRACT_LENGTH;
  305. float retract_length_swap = RETRACT_LENGTH_SWAP;
  306. float retract_feedrate = RETRACT_FEEDRATE;
  307. float retract_zlift = RETRACT_ZLIFT;
  308. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  309. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  310. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  311. #endif // FWRETRACT
  312. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  313. bool powersupply =
  314. #if ENABLED(PS_DEFAULT_OFF)
  315. false
  316. #else
  317. true
  318. #endif
  319. ;
  320. #endif
  321. #if ENABLED(DELTA)
  322. float delta[3] = { 0 };
  323. #define SIN_60 0.8660254037844386
  324. #define COS_60 0.5
  325. float endstop_adj[3] = { 0 };
  326. // these are the default values, can be overriden with M665
  327. float delta_radius = DELTA_RADIUS;
  328. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  329. float delta_tower1_y = -COS_60 * delta_radius;
  330. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  331. float delta_tower2_y = -COS_60 * delta_radius;
  332. float delta_tower3_x = 0; // back middle tower
  333. float delta_tower3_y = delta_radius;
  334. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  335. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  336. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  337. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  338. int delta_grid_spacing[2] = { 0, 0 };
  339. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  340. #endif
  341. #else
  342. static bool home_all_axis = true;
  343. #endif
  344. #if ENABLED(SCARA)
  345. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  346. static float delta[3] = { 0 };
  347. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  348. #endif
  349. #if ENABLED(FILAMENT_SENSOR)
  350. //Variables for Filament Sensor input
  351. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  352. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  353. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  354. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  355. int delay_index1 = 0; //index into ring buffer
  356. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  357. float delay_dist = 0; //delay distance counter
  358. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  359. #endif
  360. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  361. static bool filrunoutEnqueued = false;
  362. #endif
  363. #if ENABLED(SDSUPPORT)
  364. static bool fromsd[BUFSIZE];
  365. #endif
  366. #if HAS_SERVOS
  367. Servo servo[NUM_SERVOS];
  368. #endif
  369. #ifdef CHDK
  370. unsigned long chdkHigh = 0;
  371. boolean chdkActive = false;
  372. #endif
  373. //===========================================================================
  374. //================================ Functions ================================
  375. //===========================================================================
  376. void process_next_command();
  377. void plan_arc(float target[NUM_AXIS], float *offset, uint8_t clockwise);
  378. bool setTargetedHotend(int code);
  379. void serial_echopair_P(const char *s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  380. void serial_echopair_P(const char *s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  381. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  382. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  383. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  384. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  385. float extrude_min_temp = EXTRUDE_MINTEMP;
  386. #endif
  387. #if ENABLED(SDSUPPORT)
  388. #include "SdFatUtil.h"
  389. int freeMemory() { return SdFatUtil::FreeRam(); }
  390. #else
  391. extern "C" {
  392. extern unsigned int __bss_end;
  393. extern unsigned int __heap_start;
  394. extern void *__brkval;
  395. int freeMemory() {
  396. int free_memory;
  397. if ((int)__brkval == 0)
  398. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  399. else
  400. free_memory = ((int)&free_memory) - ((int)__brkval);
  401. return free_memory;
  402. }
  403. }
  404. #endif //!SDSUPPORT
  405. /**
  406. * Inject the next command from the command queue, when possible
  407. * Return false only if no command was pending
  408. */
  409. static bool drain_queued_commands_P() {
  410. if (!queued_commands_P) return false;
  411. // Get the next 30 chars from the sequence of gcodes to run
  412. char cmd[30];
  413. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  414. cmd[sizeof(cmd) - 1] = '\0';
  415. // Look for the end of line, or the end of sequence
  416. size_t i = 0;
  417. char c;
  418. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  419. cmd[i] = '\0';
  420. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  421. if (c)
  422. queued_commands_P += i + 1; // move to next command
  423. else
  424. queued_commands_P = NULL; // will have no more commands in the sequence
  425. }
  426. return true;
  427. }
  428. /**
  429. * Record one or many commands to run from program memory.
  430. * Aborts the current queue, if any.
  431. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  432. */
  433. void enqueuecommands_P(const char* pgcode) {
  434. queued_commands_P = pgcode;
  435. drain_queued_commands_P(); // first command executed asap (when possible)
  436. }
  437. /**
  438. * Copy a command directly into the main command buffer, from RAM.
  439. *
  440. * This is done in a non-safe way and needs a rework someday.
  441. * Returns false if it doesn't add any command
  442. */
  443. bool enqueuecommand(const char *cmd) {
  444. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  445. // This is dangerous if a mixing of serial and this happens
  446. char *command = command_queue[cmd_queue_index_w];
  447. strcpy(command, cmd);
  448. SERIAL_ECHO_START;
  449. SERIAL_ECHOPGM(MSG_Enqueueing);
  450. SERIAL_ECHO(command);
  451. SERIAL_ECHOLNPGM("\"");
  452. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  453. commands_in_queue++;
  454. return true;
  455. }
  456. void setup_killpin() {
  457. #if HAS_KILL
  458. SET_INPUT(KILL_PIN);
  459. WRITE(KILL_PIN, HIGH);
  460. #endif
  461. }
  462. void setup_filrunoutpin() {
  463. #if HAS_FILRUNOUT
  464. pinMode(FILRUNOUT_PIN, INPUT);
  465. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  466. WRITE(FILRUNOUT_PIN, HIGH);
  467. #endif
  468. #endif
  469. }
  470. // Set home pin
  471. void setup_homepin(void) {
  472. #if HAS_HOME
  473. SET_INPUT(HOME_PIN);
  474. WRITE(HOME_PIN, HIGH);
  475. #endif
  476. }
  477. void setup_photpin() {
  478. #if HAS_PHOTOGRAPH
  479. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  480. #endif
  481. }
  482. void setup_powerhold() {
  483. #if HAS_SUICIDE
  484. OUT_WRITE(SUICIDE_PIN, HIGH);
  485. #endif
  486. #if HAS_POWER_SWITCH
  487. #if ENABLED(PS_DEFAULT_OFF)
  488. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  489. #else
  490. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  491. #endif
  492. #endif
  493. }
  494. void suicide() {
  495. #if HAS_SUICIDE
  496. OUT_WRITE(SUICIDE_PIN, LOW);
  497. #endif
  498. }
  499. void servo_init() {
  500. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  501. servo[0].attach(SERVO0_PIN);
  502. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  503. #endif
  504. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  505. servo[1].attach(SERVO1_PIN);
  506. servo[1].detach();
  507. #endif
  508. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  509. servo[2].attach(SERVO2_PIN);
  510. servo[2].detach();
  511. #endif
  512. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  513. servo[3].attach(SERVO3_PIN);
  514. servo[3].detach();
  515. #endif
  516. // Set position of Servo Endstops that are defined
  517. #if HAS_SERVO_ENDSTOPS
  518. for (int i = 0; i < 3; i++)
  519. if (servo_endstop_id[i] >= 0)
  520. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  521. #endif
  522. }
  523. /**
  524. * Stepper Reset (RigidBoard, et.al.)
  525. */
  526. #if HAS_STEPPER_RESET
  527. void disableStepperDrivers() {
  528. pinMode(STEPPER_RESET_PIN, OUTPUT);
  529. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  530. }
  531. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  532. #endif
  533. /**
  534. * Marlin entry-point: Set up before the program loop
  535. * - Set up the kill pin, filament runout, power hold
  536. * - Start the serial port
  537. * - Print startup messages and diagnostics
  538. * - Get EEPROM or default settings
  539. * - Initialize managers for:
  540. * • temperature
  541. * • planner
  542. * • watchdog
  543. * • stepper
  544. * • photo pin
  545. * • servos
  546. * • LCD controller
  547. * • Digipot I2C
  548. * • Z probe sled
  549. * • status LEDs
  550. */
  551. void setup() {
  552. setup_killpin();
  553. setup_filrunoutpin();
  554. setup_powerhold();
  555. #if HAS_STEPPER_RESET
  556. disableStepperDrivers();
  557. #endif
  558. MYSERIAL.begin(BAUDRATE);
  559. SERIAL_PROTOCOLLNPGM("start");
  560. SERIAL_ECHO_START;
  561. // Check startup - does nothing if bootloader sets MCUSR to 0
  562. byte mcu = MCUSR;
  563. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  564. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  565. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  566. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  567. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  568. MCUSR = 0;
  569. SERIAL_ECHOPGM(MSG_MARLIN);
  570. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  571. #ifdef STRING_DISTRIBUTION_DATE
  572. #ifdef STRING_CONFIG_H_AUTHOR
  573. SERIAL_ECHO_START;
  574. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  575. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  576. SERIAL_ECHOPGM(MSG_AUTHOR);
  577. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  578. SERIAL_ECHOPGM("Compiled: ");
  579. SERIAL_ECHOLNPGM(__DATE__);
  580. #endif // STRING_CONFIG_H_AUTHOR
  581. #endif // STRING_DISTRIBUTION_DATE
  582. SERIAL_ECHO_START;
  583. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  584. SERIAL_ECHO(freeMemory());
  585. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  586. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  587. #if ENABLED(SDSUPPORT)
  588. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  589. #endif
  590. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  591. Config_RetrieveSettings();
  592. lcd_init();
  593. tp_init(); // Initialize temperature loop
  594. plan_init(); // Initialize planner;
  595. watchdog_init();
  596. st_init(); // Initialize stepper, this enables interrupts!
  597. setup_photpin();
  598. servo_init();
  599. #if HAS_CONTROLLERFAN
  600. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  601. #endif
  602. #if HAS_STEPPER_RESET
  603. enableStepperDrivers();
  604. #endif
  605. #if ENABLED(DIGIPOT_I2C)
  606. digipot_i2c_init();
  607. #endif
  608. #if ENABLED(Z_PROBE_SLED)
  609. pinMode(SLED_PIN, OUTPUT);
  610. digitalWrite(SLED_PIN, LOW); // turn it off
  611. #endif // Z_PROBE_SLED
  612. setup_homepin();
  613. #ifdef STAT_LED_RED
  614. pinMode(STAT_LED_RED, OUTPUT);
  615. digitalWrite(STAT_LED_RED, LOW); // turn it off
  616. #endif
  617. #ifdef STAT_LED_BLUE
  618. pinMode(STAT_LED_BLUE, OUTPUT);
  619. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  620. #endif
  621. }
  622. /**
  623. * The main Marlin program loop
  624. *
  625. * - Save or log commands to SD
  626. * - Process available commands (if not saving)
  627. * - Call heater manager
  628. * - Call inactivity manager
  629. * - Call endstop manager
  630. * - Call LCD update
  631. */
  632. void loop() {
  633. if (commands_in_queue < BUFSIZE - 1) get_command();
  634. #if ENABLED(SDSUPPORT)
  635. card.checkautostart(false);
  636. #endif
  637. if (commands_in_queue) {
  638. #if ENABLED(SDSUPPORT)
  639. if (card.saving) {
  640. char *command = command_queue[cmd_queue_index_r];
  641. if (strstr_P(command, PSTR("M29"))) {
  642. // M29 closes the file
  643. card.closefile();
  644. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  645. }
  646. else {
  647. // Write the string from the read buffer to SD
  648. card.write_command(command);
  649. if (card.logging)
  650. process_next_command(); // The card is saving because it's logging
  651. else
  652. SERIAL_PROTOCOLLNPGM(MSG_OK);
  653. }
  654. }
  655. else
  656. process_next_command();
  657. #else
  658. process_next_command();
  659. #endif // SDSUPPORT
  660. commands_in_queue--;
  661. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  662. }
  663. checkHitEndstops();
  664. idle();
  665. }
  666. void gcode_line_error(const char *err, bool doFlush=true) {
  667. SERIAL_ERROR_START;
  668. serialprintPGM(err);
  669. SERIAL_ERRORLN(gcode_LastN);
  670. //Serial.println(gcode_N);
  671. if (doFlush) FlushSerialRequestResend();
  672. serial_count = 0;
  673. }
  674. /**
  675. * Add to the circular command queue the next command from:
  676. * - The command-injection queue (queued_commands_P)
  677. * - The active serial input (usually USB)
  678. * - The SD card file being actively printed
  679. */
  680. void get_command() {
  681. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  682. #if ENABLED(NO_TIMEOUTS)
  683. static millis_t last_command_time = 0;
  684. millis_t ms = millis();
  685. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  686. SERIAL_ECHOLNPGM(MSG_WAIT);
  687. last_command_time = ms;
  688. }
  689. #endif
  690. //
  691. // Loop while serial characters are incoming and the queue is not full
  692. //
  693. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  694. #if ENABLED(NO_TIMEOUTS)
  695. last_command_time = ms;
  696. #endif
  697. serial_char = MYSERIAL.read();
  698. //
  699. // If the character ends the line, or the line is full...
  700. //
  701. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  702. // end of line == end of comment
  703. comment_mode = false;
  704. if (!serial_count) return; // empty lines just exit
  705. char *command = command_queue[cmd_queue_index_w];
  706. command[serial_count] = 0; // terminate string
  707. // this item in the queue is not from sd
  708. #if ENABLED(SDSUPPORT)
  709. fromsd[cmd_queue_index_w] = false;
  710. #endif
  711. char *npos = strchr(command, 'N');
  712. char *apos = strchr(command, '*');
  713. if (npos) {
  714. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  715. if (M110) {
  716. char *n2pos = strchr(command + 4, 'N');
  717. if (n2pos) npos = n2pos;
  718. }
  719. gcode_N = strtol(npos + 1, NULL, 10);
  720. if (gcode_N != gcode_LastN + 1 && !M110) {
  721. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  722. return;
  723. }
  724. if (apos) {
  725. byte checksum = 0, count = 0;
  726. while (command[count] != '*') checksum ^= command[count++];
  727. if (strtol(apos + 1, NULL, 10) != checksum) {
  728. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  729. return;
  730. }
  731. // if no errors, continue parsing
  732. }
  733. else if (npos == command) {
  734. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  735. return;
  736. }
  737. gcode_LastN = gcode_N;
  738. // if no errors, continue parsing
  739. }
  740. else if (apos) { // No '*' without 'N'
  741. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  742. return;
  743. }
  744. // Movement commands alert when stopped
  745. if (IsStopped()) {
  746. char *gpos = strchr(command, 'G');
  747. if (gpos) {
  748. int codenum = strtol(gpos + 1, NULL, 10);
  749. switch (codenum) {
  750. case 0:
  751. case 1:
  752. case 2:
  753. case 3:
  754. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  755. LCD_MESSAGEPGM(MSG_STOPPED);
  756. break;
  757. }
  758. }
  759. }
  760. // If command was e-stop process now
  761. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  762. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  763. commands_in_queue += 1;
  764. serial_count = 0; //clear buffer
  765. }
  766. else if (serial_char == '\\') { // Handle escapes
  767. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  768. // if we have one more character, copy it over
  769. serial_char = MYSERIAL.read();
  770. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  771. }
  772. // otherwise do nothing
  773. }
  774. else { // its not a newline, carriage return or escape char
  775. if (serial_char == ';') comment_mode = true;
  776. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  777. }
  778. }
  779. #if ENABLED(SDSUPPORT)
  780. if (!card.sdprinting || serial_count) return;
  781. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  782. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  783. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  784. static bool stop_buffering = false;
  785. if (commands_in_queue == 0) stop_buffering = false;
  786. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  787. int16_t n = card.get();
  788. serial_char = (char)n;
  789. if (serial_char == '\n' || serial_char == '\r' ||
  790. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  791. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  792. ) {
  793. if (card.eof()) {
  794. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  795. print_job_stop_ms = millis();
  796. char time[30];
  797. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  798. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  799. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  800. SERIAL_ECHO_START;
  801. SERIAL_ECHOLN(time);
  802. lcd_setstatus(time, true);
  803. card.printingHasFinished();
  804. card.checkautostart(true);
  805. }
  806. if (serial_char == '#') stop_buffering = true;
  807. if (!serial_count) {
  808. comment_mode = false; //for new command
  809. return; //if empty line
  810. }
  811. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  812. // if (!comment_mode) {
  813. fromsd[cmd_queue_index_w] = true;
  814. commands_in_queue += 1;
  815. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  816. // }
  817. comment_mode = false; //for new command
  818. serial_count = 0; //clear buffer
  819. }
  820. else {
  821. if (serial_char == ';') comment_mode = true;
  822. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  823. }
  824. }
  825. #endif // SDSUPPORT
  826. }
  827. bool code_has_value() {
  828. int i = 1;
  829. char c = seen_pointer[i];
  830. if (c == '-' || c == '+') c = seen_pointer[++i];
  831. if (c == '.') c = seen_pointer[++i];
  832. return (c >= '0' && c <= '9');
  833. }
  834. float code_value() {
  835. float ret;
  836. char *e = strchr(seen_pointer, 'E');
  837. if (e) {
  838. *e = 0;
  839. ret = strtod(seen_pointer+1, NULL);
  840. *e = 'E';
  841. }
  842. else
  843. ret = strtod(seen_pointer+1, NULL);
  844. return ret;
  845. }
  846. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  847. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  848. bool code_seen(char code) {
  849. seen_pointer = strchr(current_command_args, code);
  850. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  851. }
  852. #define DEFINE_PGM_READ_ANY(type, reader) \
  853. static inline type pgm_read_any(const type *p) \
  854. { return pgm_read_##reader##_near(p); }
  855. DEFINE_PGM_READ_ANY(float, float);
  856. DEFINE_PGM_READ_ANY(signed char, byte);
  857. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  858. static const PROGMEM type array##_P[3] = \
  859. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  860. static inline type array(int axis) \
  861. { return pgm_read_any(&array##_P[axis]); }
  862. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  863. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  864. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  865. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  866. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  867. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  868. #if ENABLED(DUAL_X_CARRIAGE)
  869. #define DXC_FULL_CONTROL_MODE 0
  870. #define DXC_AUTO_PARK_MODE 1
  871. #define DXC_DUPLICATION_MODE 2
  872. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  873. static float x_home_pos(int extruder) {
  874. if (extruder == 0)
  875. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  876. else
  877. // In dual carriage mode the extruder offset provides an override of the
  878. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  879. // This allow soft recalibration of the second extruder offset position without firmware reflash
  880. // (through the M218 command).
  881. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  882. }
  883. static int x_home_dir(int extruder) {
  884. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  885. }
  886. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  887. static bool active_extruder_parked = false; // used in mode 1 & 2
  888. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  889. static millis_t delayed_move_time = 0; // used in mode 1
  890. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  891. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  892. bool extruder_duplication_enabled = false; // used in mode 2
  893. #endif //DUAL_X_CARRIAGE
  894. #ifdef DEBUG_LEVELING
  895. void print_xyz(const char *prefix, const float x, const float y, const float z) {
  896. SERIAL_ECHO(prefix);
  897. SERIAL_ECHOPAIR(": (", x);
  898. SERIAL_ECHOPAIR(", ", y);
  899. SERIAL_ECHOPAIR(", ", z);
  900. SERIAL_ECHOLNPGM(")");
  901. }
  902. void print_xyz(const char *prefix, const float xyz[]) {
  903. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  904. }
  905. #endif
  906. static void set_axis_is_at_home(AxisEnum axis) {
  907. #if ENABLED(DUAL_X_CARRIAGE)
  908. if (axis == X_AXIS) {
  909. if (active_extruder != 0) {
  910. current_position[X_AXIS] = x_home_pos(active_extruder);
  911. min_pos[X_AXIS] = X2_MIN_POS;
  912. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  913. return;
  914. }
  915. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  916. float xoff = home_offset[X_AXIS];
  917. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  918. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  919. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  920. return;
  921. }
  922. }
  923. #endif
  924. #if ENABLED(SCARA)
  925. if (axis == X_AXIS || axis == Y_AXIS) {
  926. float homeposition[3];
  927. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  928. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  929. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  930. // Works out real Homeposition angles using inverse kinematics,
  931. // and calculates homing offset using forward kinematics
  932. calculate_delta(homeposition);
  933. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  934. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  935. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  936. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  937. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  938. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  939. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  940. calculate_SCARA_forward_Transform(delta);
  941. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  942. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  943. current_position[axis] = delta[axis];
  944. // SCARA home positions are based on configuration since the actual limits are determined by the
  945. // inverse kinematic transform.
  946. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  947. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  948. }
  949. else
  950. #endif
  951. {
  952. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  953. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  954. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  955. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  956. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  957. #endif
  958. #ifdef DEBUG_LEVELING
  959. SERIAL_ECHOPAIR("set_axis_is_at_home ", (unsigned long)axis);
  960. SERIAL_ECHOPAIR(" > (home_offset[axis]==", home_offset[axis]);
  961. print_xyz(") > current_position", current_position);
  962. #endif
  963. }
  964. }
  965. /**
  966. * Some planner shorthand inline functions
  967. */
  968. inline void set_homing_bump_feedrate(AxisEnum axis) {
  969. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  970. int hbd = homing_bump_divisor[axis];
  971. if (hbd < 1) {
  972. hbd = 10;
  973. SERIAL_ECHO_START;
  974. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  975. }
  976. feedrate = homing_feedrate[axis] / hbd;
  977. }
  978. inline void line_to_current_position() {
  979. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  980. }
  981. inline void line_to_z(float zPosition) {
  982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  983. }
  984. inline void line_to_destination(float mm_m) {
  985. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  986. }
  987. inline void line_to_destination() {
  988. line_to_destination(feedrate);
  989. }
  990. inline void sync_plan_position() {
  991. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  992. }
  993. #if ENABLED(DELTA) || ENABLED(SCARA)
  994. inline void sync_plan_position_delta() {
  995. calculate_delta(current_position);
  996. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  997. }
  998. #endif
  999. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1000. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1001. static void setup_for_endstop_move() {
  1002. saved_feedrate = feedrate;
  1003. saved_feedrate_multiplier = feedrate_multiplier;
  1004. feedrate_multiplier = 100;
  1005. refresh_cmd_timeout();
  1006. #ifdef DEBUG_LEVELING
  1007. SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1008. #endif
  1009. enable_endstops(true);
  1010. }
  1011. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1012. #if ENABLED(DELTA)
  1013. /**
  1014. * Calculate delta, start a line, and set current_position to destination
  1015. */
  1016. void prepare_move_raw() {
  1017. #ifdef DEBUG_LEVELING
  1018. print_xyz("prepare_move_raw > destination", destination);
  1019. #endif
  1020. refresh_cmd_timeout();
  1021. calculate_delta(destination);
  1022. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  1023. set_current_to_destination();
  1024. }
  1025. #endif
  1026. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1027. #if DISABLED(DELTA)
  1028. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  1029. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1030. planeNormal.debug("planeNormal");
  1031. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1032. //bedLevel.debug("bedLevel");
  1033. //plan_bed_level_matrix.debug("bed level before");
  1034. //vector_3 uncorrected_position = plan_get_position_mm();
  1035. //uncorrected_position.debug("position before");
  1036. vector_3 corrected_position = plan_get_position();
  1037. //corrected_position.debug("position after");
  1038. current_position[X_AXIS] = corrected_position.x;
  1039. current_position[Y_AXIS] = corrected_position.y;
  1040. current_position[Z_AXIS] = corrected_position.z;
  1041. #ifdef DEBUG_LEVELING
  1042. print_xyz("set_bed_level_equation_lsq > current_position", current_position);
  1043. #endif
  1044. sync_plan_position();
  1045. }
  1046. #endif // !DELTA
  1047. #else // !AUTO_BED_LEVELING_GRID
  1048. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1049. plan_bed_level_matrix.set_to_identity();
  1050. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1051. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1052. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1053. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1054. if (planeNormal.z < 0) {
  1055. planeNormal.x = -planeNormal.x;
  1056. planeNormal.y = -planeNormal.y;
  1057. planeNormal.z = -planeNormal.z;
  1058. }
  1059. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1060. vector_3 corrected_position = plan_get_position();
  1061. current_position[X_AXIS] = corrected_position.x;
  1062. current_position[Y_AXIS] = corrected_position.y;
  1063. current_position[Z_AXIS] = corrected_position.z;
  1064. #ifdef DEBUG_LEVELING
  1065. print_xyz("set_bed_level_equation_3pts > current_position", current_position);
  1066. #endif
  1067. sync_plan_position();
  1068. }
  1069. #endif // !AUTO_BED_LEVELING_GRID
  1070. static void run_z_probe() {
  1071. #if ENABLED(DELTA)
  1072. float start_z = current_position[Z_AXIS];
  1073. long start_steps = st_get_position(Z_AXIS);
  1074. #ifdef DEBUG_LEVELING
  1075. SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1076. #endif
  1077. // move down slowly until you find the bed
  1078. feedrate = homing_feedrate[Z_AXIS] / 4;
  1079. destination[Z_AXIS] = -10;
  1080. prepare_move_raw(); // this will also set_current_to_destination
  1081. st_synchronize();
  1082. endstops_hit_on_purpose(); // clear endstop hit flags
  1083. // we have to let the planner know where we are right now as it is not where we said to go.
  1084. long stop_steps = st_get_position(Z_AXIS);
  1085. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1086. current_position[Z_AXIS] = mm;
  1087. #ifdef DEBUG_LEVELING
  1088. print_xyz("run_z_probe (DELTA) 2 > current_position", current_position);
  1089. #endif
  1090. sync_plan_position_delta();
  1091. #else // !DELTA
  1092. plan_bed_level_matrix.set_to_identity();
  1093. feedrate = homing_feedrate[Z_AXIS];
  1094. // Move down until the Z probe (or endstop?) is triggered
  1095. float zPosition = -(Z_MAX_LENGTH + 10);
  1096. line_to_z(zPosition);
  1097. st_synchronize();
  1098. // Tell the planner where we ended up - Get this from the stepper handler
  1099. zPosition = st_get_position_mm(Z_AXIS);
  1100. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1101. // move up the retract distance
  1102. zPosition += home_bump_mm(Z_AXIS);
  1103. line_to_z(zPosition);
  1104. st_synchronize();
  1105. endstops_hit_on_purpose(); // clear endstop hit flags
  1106. // move back down slowly to find bed
  1107. set_homing_bump_feedrate(Z_AXIS);
  1108. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1109. line_to_z(zPosition);
  1110. st_synchronize();
  1111. endstops_hit_on_purpose(); // clear endstop hit flags
  1112. // Get the current stepper position after bumping an endstop
  1113. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1114. sync_plan_position();
  1115. #ifdef DEBUG_LEVELING
  1116. print_xyz("run_z_probe > current_position", current_position);
  1117. #endif
  1118. #endif // !DELTA
  1119. }
  1120. /**
  1121. * Plan a move to (X, Y, Z) and set the current_position
  1122. * The final current_position may not be the one that was requested
  1123. */
  1124. static void do_blocking_move_to(float x, float y, float z) {
  1125. float oldFeedRate = feedrate;
  1126. #ifdef DEBUG_LEVELING
  1127. print_xyz("do_blocking_move_to", x, y, z);
  1128. #endif
  1129. #if ENABLED(DELTA)
  1130. feedrate = XY_TRAVEL_SPEED;
  1131. destination[X_AXIS] = x;
  1132. destination[Y_AXIS] = y;
  1133. destination[Z_AXIS] = z;
  1134. prepare_move_raw(); // this will also set_current_to_destination
  1135. st_synchronize();
  1136. #else
  1137. feedrate = homing_feedrate[Z_AXIS];
  1138. current_position[Z_AXIS] = z;
  1139. line_to_current_position();
  1140. st_synchronize();
  1141. feedrate = xy_travel_speed;
  1142. current_position[X_AXIS] = x;
  1143. current_position[Y_AXIS] = y;
  1144. line_to_current_position();
  1145. st_synchronize();
  1146. #endif
  1147. feedrate = oldFeedRate;
  1148. }
  1149. inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); }
  1150. inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); }
  1151. inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); }
  1152. static void clean_up_after_endstop_move() {
  1153. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  1154. #if ENABLED(DEBUG_LEVELING)
  1155. SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > enable_endstops(false)");
  1156. #endif
  1157. enable_endstops(false);
  1158. #endif
  1159. feedrate = saved_feedrate;
  1160. feedrate_multiplier = saved_feedrate_multiplier;
  1161. refresh_cmd_timeout();
  1162. }
  1163. static void deploy_z_probe() {
  1164. #ifdef DEBUG_LEVELING
  1165. print_xyz("deploy_z_probe > current_position", current_position);
  1166. #endif
  1167. #if HAS_SERVO_ENDSTOPS
  1168. // Engage Z Servo endstop if enabled
  1169. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1170. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1171. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1172. // If endstop is already false, the Z probe is deployed
  1173. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1174. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1175. if (z_probe_endstop)
  1176. #else
  1177. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1178. if (z_min_endstop)
  1179. #endif
  1180. {
  1181. // Move to the start position to initiate deployment
  1182. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1183. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1184. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1185. prepare_move_raw(); // this will also set_current_to_destination
  1186. // Move to engage deployment
  1187. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE) {
  1188. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1189. }
  1190. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X) {
  1191. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1192. }
  1193. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) {
  1194. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1195. }
  1196. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) {
  1197. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1198. }
  1199. prepare_move_raw();
  1200. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1201. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1202. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1203. }
  1204. // Move to trigger deployment
  1205. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1206. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1207. }
  1208. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X) {
  1209. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1210. }
  1211. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) {
  1212. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1213. }
  1214. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) {
  1215. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1216. }
  1217. prepare_move_raw();
  1218. #endif
  1219. }
  1220. // Partially Home X,Y for safety
  1221. destination[X_AXIS] = destination[X_AXIS]*0.75;
  1222. destination[Y_AXIS] = destination[Y_AXIS]*0.75;
  1223. prepare_move_raw(); // this will also set_current_to_destination
  1224. st_synchronize();
  1225. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1226. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1227. if (z_probe_endstop)
  1228. #else
  1229. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1230. if (z_min_endstop)
  1231. #endif
  1232. {
  1233. if (IsRunning()) {
  1234. SERIAL_ERROR_START;
  1235. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1236. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1237. }
  1238. Stop();
  1239. }
  1240. #endif // Z_PROBE_ALLEN_KEY
  1241. }
  1242. static void stow_z_probe(bool doRaise=true) {
  1243. #ifdef DEBUG_LEVELING
  1244. print_xyz("stow_z_probe > current_position", current_position);
  1245. #endif
  1246. #if HAS_SERVO_ENDSTOPS
  1247. // Retract Z Servo endstop if enabled
  1248. if (servo_endstop_id[Z_AXIS] >= 0) {
  1249. #if Z_RAISE_AFTER_PROBING > 0
  1250. if (doRaise) {
  1251. #ifdef DEBUG_LEVELING
  1252. SERIAL_ECHOPAIR("Raise Z (after) by ", (float)Z_RAISE_AFTER_PROBING);
  1253. SERIAL_EOL;
  1254. SERIAL_ECHOPAIR("> SERVO_ENDSTOPS > do_blocking_move_to_z ", current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1255. SERIAL_EOL;
  1256. #endif
  1257. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1258. st_synchronize();
  1259. }
  1260. #endif
  1261. // Change the Z servo angle
  1262. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1263. }
  1264. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1265. // Move up for safety
  1266. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1267. #if Z_RAISE_AFTER_PROBING > 0
  1268. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1269. prepare_move_raw(); // this will also set_current_to_destination
  1270. #endif
  1271. // Move to the start position to initiate retraction
  1272. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1273. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1274. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1275. prepare_move_raw();
  1276. // Move the nozzle down to push the Z probe into retracted position
  1277. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE) {
  1278. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1279. }
  1280. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X) {
  1281. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1282. }
  1283. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y) {
  1284. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1285. }
  1286. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1287. prepare_move_raw();
  1288. // Move up for safety
  1289. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) {
  1290. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1291. }
  1292. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X) {
  1293. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1294. }
  1295. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y) {
  1296. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1297. }
  1298. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1299. prepare_move_raw();
  1300. // Home XY for safety
  1301. feedrate = homing_feedrate[X_AXIS]/2;
  1302. destination[X_AXIS] = 0;
  1303. destination[Y_AXIS] = 0;
  1304. prepare_move_raw(); // this will also set_current_to_destination
  1305. st_synchronize();
  1306. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1307. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1308. if (!z_probe_endstop)
  1309. #else
  1310. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1311. if (!z_min_endstop)
  1312. #endif
  1313. {
  1314. if (IsRunning()) {
  1315. SERIAL_ERROR_START;
  1316. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1317. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1318. }
  1319. Stop();
  1320. }
  1321. #endif // Z_PROBE_ALLEN_KEY
  1322. }
  1323. enum ProbeAction {
  1324. ProbeStay = 0,
  1325. ProbeDeploy = BIT(0),
  1326. ProbeStow = BIT(1),
  1327. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1328. };
  1329. // Probe bed height at position (x,y), returns the measured z value
  1330. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1331. #ifdef DEBUG_LEVELING
  1332. SERIAL_ECHOLNPGM("probe_pt >>>");
  1333. SERIAL_ECHOPAIR("> ProbeAction:", (unsigned long)probe_action);
  1334. SERIAL_EOL;
  1335. print_xyz("> current_position", current_position);
  1336. #endif
  1337. #ifdef DEBUG_LEVELING
  1338. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1339. SERIAL_EOL;
  1340. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1341. SERIAL_EOL;
  1342. #endif
  1343. // Move Z up to the z_before height, then move the Z probe to the given XY
  1344. do_blocking_move_to_z(z_before); // this also updates current_position
  1345. #ifdef DEBUG_LEVELING
  1346. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - X_PROBE_OFFSET_FROM_EXTRUDER);
  1347. SERIAL_ECHOPAIR(", ", y - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1348. SERIAL_EOL;
  1349. #endif
  1350. do_blocking_move_to_xy(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER); // this also updates current_position
  1351. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1352. if (probe_action & ProbeDeploy) {
  1353. #ifdef DEBUG_LEVELING
  1354. SERIAL_ECHOLNPGM("> ProbeDeploy");
  1355. #endif
  1356. deploy_z_probe();
  1357. }
  1358. #endif
  1359. run_z_probe();
  1360. float measured_z = current_position[Z_AXIS];
  1361. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1362. if (probe_action & ProbeStow) {
  1363. #ifdef DEBUG_LEVELING
  1364. SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1365. #endif
  1366. stow_z_probe();
  1367. }
  1368. #endif
  1369. if (verbose_level > 2) {
  1370. SERIAL_PROTOCOLPGM("Bed X: ");
  1371. SERIAL_PROTOCOL_F(x, 3);
  1372. SERIAL_PROTOCOLPGM(" Y: ");
  1373. SERIAL_PROTOCOL_F(y, 3);
  1374. SERIAL_PROTOCOLPGM(" Z: ");
  1375. SERIAL_PROTOCOL_F(measured_z, 3);
  1376. SERIAL_EOL;
  1377. }
  1378. #ifdef DEBUG_LEVELING
  1379. SERIAL_ECHOLNPGM("<<< probe_pt");
  1380. #endif
  1381. return measured_z;
  1382. }
  1383. #if ENABLED(DELTA)
  1384. /**
  1385. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1386. */
  1387. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1388. if (bed_level[x][y] != 0.0) {
  1389. return; // Don't overwrite good values.
  1390. }
  1391. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1392. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1393. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1394. float median = c; // Median is robust (ignores outliers).
  1395. if (a < b) {
  1396. if (b < c) median = b;
  1397. if (c < a) median = a;
  1398. } else { // b <= a
  1399. if (c < b) median = b;
  1400. if (a < c) median = a;
  1401. }
  1402. bed_level[x][y] = median;
  1403. }
  1404. // Fill in the unprobed points (corners of circular print surface)
  1405. // using linear extrapolation, away from the center.
  1406. static void extrapolate_unprobed_bed_level() {
  1407. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1408. for (int y = 0; y <= half; y++) {
  1409. for (int x = 0; x <= half; x++) {
  1410. if (x + y < 3) continue;
  1411. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1412. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1413. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1414. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1415. }
  1416. }
  1417. }
  1418. // Print calibration results for plotting or manual frame adjustment.
  1419. static void print_bed_level() {
  1420. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1421. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1422. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1423. SERIAL_PROTOCOLCHAR(' ');
  1424. }
  1425. SERIAL_EOL;
  1426. }
  1427. }
  1428. // Reset calibration results to zero.
  1429. void reset_bed_level() {
  1430. #ifdef DEBUG_LEVELING
  1431. SERIAL_ECHOLNPGM("reset_bed_level");
  1432. #endif
  1433. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1434. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1435. bed_level[x][y] = 0.0;
  1436. }
  1437. }
  1438. }
  1439. #endif // DELTA
  1440. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1441. void raise_z_for_servo() {
  1442. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1443. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset : zpos;
  1444. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1445. }
  1446. #endif
  1447. #endif // AUTO_BED_LEVELING_FEATURE
  1448. #if ENABLED(Z_PROBE_SLED)
  1449. #ifndef SLED_DOCKING_OFFSET
  1450. #define SLED_DOCKING_OFFSET 0
  1451. #endif
  1452. /**
  1453. * Method to dock/undock a sled designed by Charles Bell.
  1454. *
  1455. * dock[in] If true, move to MAX_X and engage the electromagnet
  1456. * offset[in] The additional distance to move to adjust docking location
  1457. */
  1458. static void dock_sled(bool dock, int offset=0) {
  1459. #ifdef DEBUG_LEVELING
  1460. SERIAL_ECHOPAIR("dock_sled", dock);
  1461. SERIAL_EOL;
  1462. #endif
  1463. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1464. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1465. SERIAL_ECHO_START;
  1466. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1467. return;
  1468. }
  1469. float oldXpos = current_position[X_AXIS]; // save x position
  1470. if (dock) {
  1471. #if Z_RAISE_AFTER_PROBING > 0
  1472. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // raise Z
  1473. #endif
  1474. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); // Dock sled a bit closer to ensure proper capturing
  1475. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1476. } else {
  1477. float z_loc = current_position[Z_AXIS];
  1478. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1479. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1480. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1481. }
  1482. do_blocking_move_to_x(oldXpos); // return to position before docking
  1483. }
  1484. #endif // Z_PROBE_SLED
  1485. /**
  1486. * Home an individual axis
  1487. */
  1488. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1489. static void homeaxis(AxisEnum axis) {
  1490. #ifdef DEBUG_LEVELING
  1491. SERIAL_ECHOPAIR(">>> homeaxis(", (unsigned long)axis);
  1492. SERIAL_CHAR(')');
  1493. SERIAL_EOL;
  1494. #endif
  1495. #define HOMEAXIS_DO(LETTER) \
  1496. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1497. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1498. int axis_home_dir =
  1499. #if ENABLED(DUAL_X_CARRIAGE)
  1500. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1501. #endif
  1502. home_dir(axis);
  1503. // Set the axis position as setup for the move
  1504. current_position[axis] = 0;
  1505. sync_plan_position();
  1506. #if ENABLED(Z_PROBE_SLED)
  1507. // Get Probe
  1508. if (axis == Z_AXIS) {
  1509. if (axis_home_dir < 0) dock_sled(false);
  1510. }
  1511. #endif
  1512. #if SERVO_LEVELING && DISABLED(Z_PROBE_SLED)
  1513. // Deploy a Z probe if there is one, and homing towards the bed
  1514. if (axis == Z_AXIS) {
  1515. if (axis_home_dir < 0) deploy_z_probe();
  1516. }
  1517. #endif
  1518. #if HAS_SERVO_ENDSTOPS
  1519. // Engage Servo endstop if enabled
  1520. if (axis != Z_AXIS && servo_endstop_id[axis] >= 0)
  1521. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1522. #endif
  1523. // Set a flag for Z motor locking
  1524. #if ENABLED(Z_DUAL_ENDSTOPS)
  1525. if (axis == Z_AXIS) In_Homing_Process(true);
  1526. #endif
  1527. // Move towards the endstop until an endstop is triggered
  1528. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1529. feedrate = homing_feedrate[axis];
  1530. line_to_destination();
  1531. st_synchronize();
  1532. // Set the axis position as setup for the move
  1533. current_position[axis] = 0;
  1534. sync_plan_position();
  1535. #ifdef DEBUG_LEVELING
  1536. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1537. #endif
  1538. enable_endstops(false); // Disable endstops while moving away
  1539. // Move away from the endstop by the axis HOME_BUMP_MM
  1540. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1541. line_to_destination();
  1542. st_synchronize();
  1543. #ifdef DEBUG_LEVELING
  1544. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1545. #endif
  1546. enable_endstops(true); // Enable endstops for next homing move
  1547. // Slow down the feedrate for the next move
  1548. set_homing_bump_feedrate(axis);
  1549. // Move slowly towards the endstop until triggered
  1550. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1551. line_to_destination();
  1552. st_synchronize();
  1553. #ifdef DEBUG_LEVELING
  1554. print_xyz("> TRIGGER ENDSTOP > current_position", current_position);
  1555. #endif
  1556. #if ENABLED(Z_DUAL_ENDSTOPS)
  1557. if (axis == Z_AXIS) {
  1558. float adj = fabs(z_endstop_adj);
  1559. bool lockZ1;
  1560. if (axis_home_dir > 0) {
  1561. adj = -adj;
  1562. lockZ1 = (z_endstop_adj > 0);
  1563. }
  1564. else
  1565. lockZ1 = (z_endstop_adj < 0);
  1566. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1567. sync_plan_position();
  1568. // Move to the adjusted endstop height
  1569. feedrate = homing_feedrate[axis];
  1570. destination[Z_AXIS] = adj;
  1571. line_to_destination();
  1572. st_synchronize();
  1573. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1574. In_Homing_Process(false);
  1575. } // Z_AXIS
  1576. #endif
  1577. #if ENABLED(DELTA)
  1578. // retrace by the amount specified in endstop_adj
  1579. if (endstop_adj[axis] * axis_home_dir < 0) {
  1580. #ifdef DEBUG_LEVELING
  1581. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1582. #endif
  1583. enable_endstops(false); // Disable endstops while moving away
  1584. sync_plan_position();
  1585. destination[axis] = endstop_adj[axis];
  1586. #ifdef DEBUG_LEVELING
  1587. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1588. print_xyz(" > destination", destination);
  1589. #endif
  1590. line_to_destination();
  1591. st_synchronize();
  1592. #ifdef DEBUG_LEVELING
  1593. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1594. #endif
  1595. enable_endstops(true); // Enable endstops for next homing move
  1596. }
  1597. #ifdef DEBUG_LEVELING
  1598. else {
  1599. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1600. SERIAL_EOL;
  1601. }
  1602. #endif
  1603. #endif
  1604. // Set the axis position to its home position (plus home offsets)
  1605. set_axis_is_at_home(axis);
  1606. sync_plan_position();
  1607. #ifdef DEBUG_LEVELING
  1608. print_xyz("> AFTER set_axis_is_at_home > current_position", current_position);
  1609. #endif
  1610. destination[axis] = current_position[axis];
  1611. feedrate = 0.0;
  1612. endstops_hit_on_purpose(); // clear endstop hit flags
  1613. axis_known_position[axis] = true;
  1614. #if ENABLED(Z_PROBE_SLED)
  1615. // bring Z probe back
  1616. if (axis == Z_AXIS) {
  1617. if (axis_home_dir < 0) dock_sled(true);
  1618. }
  1619. #endif
  1620. #if SERVO_LEVELING && DISABLED(Z_PROBE_SLED)
  1621. // Deploy a Z probe if there is one, and homing towards the bed
  1622. if (axis == Z_AXIS) {
  1623. if (axis_home_dir < 0) {
  1624. #ifdef DEBUG_LEVELING
  1625. SERIAL_ECHOLNPGM("> SERVO_LEVELING > stow_z_probe");
  1626. #endif
  1627. stow_z_probe();
  1628. }
  1629. }
  1630. else
  1631. #endif
  1632. {
  1633. #if HAS_SERVO_ENDSTOPS
  1634. // Retract Servo endstop if enabled
  1635. if (servo_endstop_id[axis] >= 0) {
  1636. #ifdef DEBUG_LEVELING
  1637. SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1638. #endif
  1639. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1640. }
  1641. #endif
  1642. }
  1643. }
  1644. #ifdef DEBUG_LEVELING
  1645. SERIAL_ECHOPAIR("<<< homeaxis(", (unsigned long)axis);
  1646. SERIAL_CHAR(')');
  1647. SERIAL_EOL;
  1648. #endif
  1649. }
  1650. #if ENABLED(FWRETRACT)
  1651. void retract(bool retracting, bool swapping=false) {
  1652. if (retracting == retracted[active_extruder]) return;
  1653. float oldFeedrate = feedrate;
  1654. set_destination_to_current();
  1655. if (retracting) {
  1656. feedrate = retract_feedrate * 60;
  1657. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1658. plan_set_e_position(current_position[E_AXIS]);
  1659. prepare_move();
  1660. if (retract_zlift > 0.01) {
  1661. current_position[Z_AXIS] -= retract_zlift;
  1662. #if ENABLED(DELTA)
  1663. sync_plan_position_delta();
  1664. #else
  1665. sync_plan_position();
  1666. #endif
  1667. prepare_move();
  1668. }
  1669. }
  1670. else {
  1671. if (retract_zlift > 0.01) {
  1672. current_position[Z_AXIS] += retract_zlift;
  1673. #if ENABLED(DELTA)
  1674. sync_plan_position_delta();
  1675. #else
  1676. sync_plan_position();
  1677. #endif
  1678. //prepare_move();
  1679. }
  1680. feedrate = retract_recover_feedrate * 60;
  1681. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1682. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1683. plan_set_e_position(current_position[E_AXIS]);
  1684. prepare_move();
  1685. }
  1686. feedrate = oldFeedrate;
  1687. retracted[active_extruder] = retracting;
  1688. } // retract()
  1689. #endif // FWRETRACT
  1690. /**
  1691. *
  1692. * G-Code Handler functions
  1693. *
  1694. */
  1695. /**
  1696. * Set XYZE destination and feedrate from the current GCode command
  1697. *
  1698. * - Set destination from included axis codes
  1699. * - Set to current for missing axis codes
  1700. * - Set the feedrate, if included
  1701. */
  1702. void gcode_get_destination() {
  1703. for (int i = 0; i < NUM_AXIS; i++) {
  1704. if (code_seen(axis_codes[i]))
  1705. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1706. else
  1707. destination[i] = current_position[i];
  1708. }
  1709. if (code_seen('F')) {
  1710. float next_feedrate = code_value();
  1711. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1712. }
  1713. }
  1714. void unknown_command_error() {
  1715. SERIAL_ECHO_START;
  1716. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1717. SERIAL_ECHO(current_command);
  1718. SERIAL_ECHOPGM("\"\n");
  1719. }
  1720. /**
  1721. * G0, G1: Coordinated movement of X Y Z E axes
  1722. */
  1723. inline void gcode_G0_G1() {
  1724. if (IsRunning()) {
  1725. gcode_get_destination(); // For X Y Z E F
  1726. #if ENABLED(FWRETRACT)
  1727. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1728. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1729. // Is this move an attempt to retract or recover?
  1730. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1731. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1732. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1733. retract(!retracted[active_extruder]);
  1734. return;
  1735. }
  1736. }
  1737. #endif //FWRETRACT
  1738. prepare_move();
  1739. }
  1740. }
  1741. /**
  1742. * G2: Clockwise Arc
  1743. * G3: Counterclockwise Arc
  1744. */
  1745. inline void gcode_G2_G3(bool clockwise) {
  1746. if (IsRunning()) {
  1747. #if ENABLED(SF_ARC_FIX)
  1748. bool relative_mode_backup = relative_mode;
  1749. relative_mode = true;
  1750. #endif
  1751. gcode_get_destination();
  1752. #if ENABLED(SF_ARC_FIX)
  1753. relative_mode = relative_mode_backup;
  1754. #endif
  1755. // Center of arc as offset from current_position
  1756. float arc_offset[2] = {
  1757. code_seen('I') ? code_value() : 0,
  1758. code_seen('J') ? code_value() : 0
  1759. };
  1760. // Send an arc to the planner
  1761. plan_arc(destination, arc_offset, clockwise);
  1762. refresh_cmd_timeout();
  1763. }
  1764. }
  1765. /**
  1766. * G4: Dwell S<seconds> or P<milliseconds>
  1767. */
  1768. inline void gcode_G4() {
  1769. millis_t codenum = 0;
  1770. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1771. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1772. st_synchronize();
  1773. refresh_cmd_timeout();
  1774. codenum += previous_cmd_ms; // keep track of when we started waiting
  1775. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1776. while (millis() < codenum) idle();
  1777. }
  1778. #if ENABLED(FWRETRACT)
  1779. /**
  1780. * G10 - Retract filament according to settings of M207
  1781. * G11 - Recover filament according to settings of M208
  1782. */
  1783. inline void gcode_G10_G11(bool doRetract=false) {
  1784. #if EXTRUDERS > 1
  1785. if (doRetract) {
  1786. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1787. }
  1788. #endif
  1789. retract(doRetract
  1790. #if EXTRUDERS > 1
  1791. , retracted_swap[active_extruder]
  1792. #endif
  1793. );
  1794. }
  1795. #endif //FWRETRACT
  1796. /**
  1797. * G28: Home all axes according to settings
  1798. *
  1799. * Parameters
  1800. *
  1801. * None Home to all axes with no parameters.
  1802. * With QUICK_HOME enabled XY will home together, then Z.
  1803. *
  1804. * Cartesian parameters
  1805. *
  1806. * X Home to the X endstop
  1807. * Y Home to the Y endstop
  1808. * Z Home to the Z endstop
  1809. *
  1810. */
  1811. inline void gcode_G28() {
  1812. #ifdef DEBUG_LEVELING
  1813. SERIAL_ECHOLNPGM("gcode_G28 >>>");
  1814. #endif
  1815. // Wait for planner moves to finish!
  1816. st_synchronize();
  1817. // For auto bed leveling, clear the level matrix
  1818. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1819. plan_bed_level_matrix.set_to_identity();
  1820. #if ENABLED(DELTA)
  1821. reset_bed_level();
  1822. #endif
  1823. #endif
  1824. // For manual bed leveling deactivate the matrix temporarily
  1825. #if ENABLED(MESH_BED_LEVELING)
  1826. uint8_t mbl_was_active = mbl.active;
  1827. mbl.active = 0;
  1828. #endif
  1829. setup_for_endstop_move();
  1830. set_destination_to_current();
  1831. feedrate = 0.0;
  1832. #if ENABLED(DELTA)
  1833. // A delta can only safely home all axis at the same time
  1834. // all axis have to home at the same time
  1835. // Pretend the current position is 0,0,0
  1836. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1837. sync_plan_position();
  1838. // Move all carriages up together until the first endstop is hit.
  1839. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1840. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1841. line_to_destination();
  1842. st_synchronize();
  1843. endstops_hit_on_purpose(); // clear endstop hit flags
  1844. // Destination reached
  1845. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1846. // take care of back off and rehome now we are all at the top
  1847. HOMEAXIS(X);
  1848. HOMEAXIS(Y);
  1849. HOMEAXIS(Z);
  1850. sync_plan_position_delta();
  1851. #ifdef DEBUG_LEVELING
  1852. print_xyz("(DELTA) > current_position", current_position);
  1853. #endif
  1854. #else // NOT DELTA
  1855. bool homeX = code_seen(axis_codes[X_AXIS]),
  1856. homeY = code_seen(axis_codes[Y_AXIS]),
  1857. homeZ = code_seen(axis_codes[Z_AXIS]);
  1858. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1859. if (home_all_axis || homeZ) {
  1860. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1861. HOMEAXIS(Z);
  1862. #ifdef DEBUG_LEVELING
  1863. print_xyz("> HOMEAXIS(Z) > current_position", current_position);
  1864. #endif
  1865. #elif DISABLED(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1866. // Raise Z before homing any other axes
  1867. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1868. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1869. #ifdef DEBUG_LEVELING
  1870. SERIAL_ECHOPAIR("Raise Z (before homing) by ", (float)Z_RAISE_BEFORE_HOMING);
  1871. SERIAL_EOL;
  1872. print_xyz("> (home_all_axis || homeZ) > destination", destination);
  1873. #endif
  1874. feedrate = max_feedrate[Z_AXIS] * 60;
  1875. line_to_destination();
  1876. st_synchronize();
  1877. #endif
  1878. } // home_all_axis || homeZ
  1879. #if ENABLED(QUICK_HOME)
  1880. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1881. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1882. #if ENABLED(DUAL_X_CARRIAGE)
  1883. int x_axis_home_dir = x_home_dir(active_extruder);
  1884. extruder_duplication_enabled = false;
  1885. #else
  1886. int x_axis_home_dir = home_dir(X_AXIS);
  1887. #endif
  1888. sync_plan_position();
  1889. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1890. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1891. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1892. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1893. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1894. line_to_destination();
  1895. st_synchronize();
  1896. set_axis_is_at_home(X_AXIS);
  1897. set_axis_is_at_home(Y_AXIS);
  1898. sync_plan_position();
  1899. #ifdef DEBUG_LEVELING
  1900. print_xyz("> QUICK_HOME > current_position 1", current_position);
  1901. #endif
  1902. destination[X_AXIS] = current_position[X_AXIS];
  1903. destination[Y_AXIS] = current_position[Y_AXIS];
  1904. line_to_destination();
  1905. feedrate = 0.0;
  1906. st_synchronize();
  1907. endstops_hit_on_purpose(); // clear endstop hit flags
  1908. current_position[X_AXIS] = destination[X_AXIS];
  1909. current_position[Y_AXIS] = destination[Y_AXIS];
  1910. #if DISABLED(SCARA)
  1911. current_position[Z_AXIS] = destination[Z_AXIS];
  1912. #endif
  1913. #ifdef DEBUG_LEVELING
  1914. print_xyz("> QUICK_HOME > current_position 2", current_position);
  1915. #endif
  1916. }
  1917. #endif // QUICK_HOME
  1918. #if ENABLED(HOME_Y_BEFORE_X)
  1919. // Home Y
  1920. if (home_all_axis || homeY) HOMEAXIS(Y);
  1921. #endif
  1922. // Home X
  1923. if (home_all_axis || homeX) {
  1924. #if ENABLED(DUAL_X_CARRIAGE)
  1925. int tmp_extruder = active_extruder;
  1926. extruder_duplication_enabled = false;
  1927. active_extruder = !active_extruder;
  1928. HOMEAXIS(X);
  1929. inactive_extruder_x_pos = current_position[X_AXIS];
  1930. active_extruder = tmp_extruder;
  1931. HOMEAXIS(X);
  1932. // reset state used by the different modes
  1933. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1934. delayed_move_time = 0;
  1935. active_extruder_parked = true;
  1936. #else
  1937. HOMEAXIS(X);
  1938. #endif
  1939. #ifdef DEBUG_LEVELING
  1940. print_xyz("> homeX", current_position);
  1941. #endif
  1942. }
  1943. #if DISABLED(HOME_Y_BEFORE_X)
  1944. // Home Y
  1945. if (home_all_axis || homeY) {
  1946. HOMEAXIS(Y);
  1947. #ifdef DEBUG_LEVELING
  1948. print_xyz("> homeY", current_position);
  1949. #endif
  1950. }
  1951. #endif
  1952. // Home Z last if homing towards the bed
  1953. #if Z_HOME_DIR < 0
  1954. if (home_all_axis || homeZ) {
  1955. #if ENABLED(Z_SAFE_HOMING)
  1956. #ifdef DEBUG_LEVELING
  1957. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  1958. #endif
  1959. if (home_all_axis) {
  1960. current_position[Z_AXIS] = 0;
  1961. sync_plan_position();
  1962. //
  1963. // Set the Z probe (or just the nozzle) destination to the safe homing point
  1964. //
  1965. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1966. // then this may not work as expected.
  1967. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1968. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1969. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1970. feedrate = XY_TRAVEL_SPEED;
  1971. #ifdef DEBUG_LEVELING
  1972. SERIAL_ECHOPAIR("Raise Z (before homing) by ", (float)Z_RAISE_BEFORE_HOMING);
  1973. SERIAL_EOL;
  1974. print_xyz("> home_all_axis > current_position", current_position);
  1975. print_xyz("> home_all_axis > destination", destination);
  1976. #endif
  1977. // This could potentially move X, Y, Z all together
  1978. line_to_destination();
  1979. st_synchronize();
  1980. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1981. current_position[X_AXIS] = destination[X_AXIS];
  1982. current_position[Y_AXIS] = destination[Y_AXIS];
  1983. // Home the Z axis
  1984. HOMEAXIS(Z);
  1985. }
  1986. else if (homeZ) { // Don't need to Home Z twice
  1987. // Let's see if X and Y are homed
  1988. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1989. // Make sure the Z probe is within the physical limits
  1990. // NOTE: This doesn't necessarily ensure the Z probe is also within the bed!
  1991. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1992. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1993. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1994. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1995. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1996. // Set the plan current position to X, Y, 0
  1997. current_position[Z_AXIS] = 0;
  1998. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1999. // Set Z destination away from bed and raise the axis
  2000. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  2001. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  2002. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2003. #ifdef DEBUG_LEVELING
  2004. SERIAL_ECHOPAIR("Raise Z (before homing) by ", (float)Z_RAISE_BEFORE_HOMING);
  2005. SERIAL_EOL;
  2006. print_xyz("> homeZ > current_position", current_position);
  2007. print_xyz("> homeZ > destination", destination);
  2008. #endif
  2009. line_to_destination();
  2010. st_synchronize();
  2011. // Home the Z axis
  2012. HOMEAXIS(Z);
  2013. }
  2014. else {
  2015. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2016. SERIAL_ECHO_START;
  2017. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2018. }
  2019. }
  2020. else {
  2021. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2022. SERIAL_ECHO_START;
  2023. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2024. }
  2025. } // !home_all_axes && homeZ
  2026. #ifdef DEBUG_LEVELING
  2027. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2028. #endif
  2029. #else // !Z_SAFE_HOMING
  2030. HOMEAXIS(Z);
  2031. #endif // !Z_SAFE_HOMING
  2032. #ifdef DEBUG_LEVELING
  2033. print_xyz("> (home_all_axis || homeZ) > final", current_position);
  2034. #endif
  2035. } // home_all_axis || homeZ
  2036. #endif // Z_HOME_DIR < 0
  2037. sync_plan_position();
  2038. #endif // else DELTA
  2039. #if ENABLED(SCARA)
  2040. sync_plan_position_delta();
  2041. #endif
  2042. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2043. #ifdef DEBUG_LEVELING
  2044. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2045. #endif
  2046. enable_endstops(false);
  2047. #endif
  2048. // For manual leveling move back to 0,0
  2049. #if ENABLED(MESH_BED_LEVELING)
  2050. if (mbl_was_active) {
  2051. current_position[X_AXIS] = mbl.get_x(0);
  2052. current_position[Y_AXIS] = mbl.get_y(0);
  2053. set_destination_to_current();
  2054. feedrate = homing_feedrate[X_AXIS];
  2055. line_to_destination();
  2056. st_synchronize();
  2057. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2058. sync_plan_position();
  2059. mbl.active = 1;
  2060. #ifdef DEBUG_LEVELING
  2061. print_xyz("mbl_was_active > current_position", current_position);
  2062. #endif
  2063. }
  2064. #endif
  2065. feedrate = saved_feedrate;
  2066. feedrate_multiplier = saved_feedrate_multiplier;
  2067. refresh_cmd_timeout();
  2068. endstops_hit_on_purpose(); // clear endstop hit flags
  2069. #ifdef DEBUG_LEVELING
  2070. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2071. #endif
  2072. }
  2073. #if ENABLED(MESH_BED_LEVELING)
  2074. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  2075. /**
  2076. * G29: Mesh-based Z probe, probes a grid and produces a
  2077. * mesh to compensate for variable bed height
  2078. *
  2079. * Parameters With MESH_BED_LEVELING:
  2080. *
  2081. * S0 Produce a mesh report
  2082. * S1 Start probing mesh points
  2083. * S2 Probe the next mesh point
  2084. * S3 Xn Yn Zn.nn Manually modify a single point
  2085. *
  2086. * The S0 report the points as below
  2087. *
  2088. * +----> X-axis
  2089. * |
  2090. * |
  2091. * v Y-axis
  2092. *
  2093. */
  2094. inline void gcode_G29() {
  2095. static int probe_point = -1;
  2096. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2097. if (state < 0 || state > 3) {
  2098. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  2099. return;
  2100. }
  2101. int ix, iy;
  2102. float z;
  2103. switch(state) {
  2104. case MeshReport:
  2105. if (mbl.active) {
  2106. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2107. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2108. SERIAL_PROTOCOLCHAR(',');
  2109. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2110. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2111. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2112. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2113. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2114. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2115. SERIAL_PROTOCOLPGM(" ");
  2116. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2117. }
  2118. SERIAL_EOL;
  2119. }
  2120. }
  2121. else
  2122. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2123. break;
  2124. case MeshStart:
  2125. mbl.reset();
  2126. probe_point = 0;
  2127. enqueuecommands_P(PSTR("G28\nG29 S2"));
  2128. break;
  2129. case MeshNext:
  2130. if (probe_point < 0) {
  2131. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2132. return;
  2133. }
  2134. if (probe_point == 0) {
  2135. // Set Z to a positive value before recording the first Z.
  2136. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2137. sync_plan_position();
  2138. }
  2139. else {
  2140. // For others, save the Z of the previous point, then raise Z again.
  2141. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  2142. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  2143. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2144. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2145. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2146. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  2147. st_synchronize();
  2148. }
  2149. // Is there another point to sample? Move there.
  2150. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  2151. ix = probe_point % MESH_NUM_X_POINTS;
  2152. iy = probe_point / MESH_NUM_X_POINTS;
  2153. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2154. current_position[X_AXIS] = mbl.get_x(ix);
  2155. current_position[Y_AXIS] = mbl.get_y(iy);
  2156. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  2157. st_synchronize();
  2158. probe_point++;
  2159. }
  2160. else {
  2161. // After recording the last point, activate the mbl and home
  2162. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2163. probe_point = -1;
  2164. mbl.active = 1;
  2165. enqueuecommands_P(PSTR("G28"));
  2166. }
  2167. break;
  2168. case MeshSet:
  2169. if (code_seen('X')) {
  2170. ix = code_value_long()-1;
  2171. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2172. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2173. return;
  2174. }
  2175. } else {
  2176. SERIAL_PROTOCOLPGM("X not entered.\n");
  2177. return;
  2178. }
  2179. if (code_seen('Y')) {
  2180. iy = code_value_long()-1;
  2181. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2182. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2183. return;
  2184. }
  2185. } else {
  2186. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2187. return;
  2188. }
  2189. if (code_seen('Z')) {
  2190. z = code_value();
  2191. } else {
  2192. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2193. return;
  2194. }
  2195. mbl.z_values[iy][ix] = z;
  2196. } // switch(state)
  2197. }
  2198. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2199. void out_of_range_error(const char *p_edge) {
  2200. SERIAL_PROTOCOLPGM("?Probe ");
  2201. serialprintPGM(p_edge);
  2202. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2203. }
  2204. /**
  2205. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2206. * Will fail if the printer has not been homed with G28.
  2207. *
  2208. * Enhanced G29 Auto Bed Leveling Probe Routine
  2209. *
  2210. * Parameters With AUTO_BED_LEVELING_GRID:
  2211. *
  2212. * P Set the size of the grid that will be probed (P x P points).
  2213. * Not supported by non-linear delta printer bed leveling.
  2214. * Example: "G29 P4"
  2215. *
  2216. * S Set the XY travel speed between probe points (in mm/min)
  2217. *
  2218. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2219. * or clean the rotation Matrix. Useful to check the topology
  2220. * after a first run of G29.
  2221. *
  2222. * V Set the verbose level (0-4). Example: "G29 V3"
  2223. *
  2224. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2225. * This is useful for manual bed leveling and finding flaws in the bed (to
  2226. * assist with part placement).
  2227. * Not supported by non-linear delta printer bed leveling.
  2228. *
  2229. * F Set the Front limit of the probing grid
  2230. * B Set the Back limit of the probing grid
  2231. * L Set the Left limit of the probing grid
  2232. * R Set the Right limit of the probing grid
  2233. *
  2234. * Global Parameters:
  2235. *
  2236. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2237. * Include "E" to engage/disengage the Z probe for each sample.
  2238. * There's no extra effect if you have a fixed Z probe.
  2239. * Usage: "G29 E" or "G29 e"
  2240. *
  2241. */
  2242. inline void gcode_G29() {
  2243. #ifdef DEBUG_LEVELING
  2244. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2245. #endif
  2246. // Don't allow auto-leveling without homing first
  2247. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2248. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2249. SERIAL_ECHO_START;
  2250. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2251. return;
  2252. }
  2253. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2254. if (verbose_level < 0 || verbose_level > 4) {
  2255. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2256. return;
  2257. }
  2258. bool dryrun = code_seen('D'),
  2259. deploy_probe_for_each_reading = code_seen('E');
  2260. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2261. #if DISABLED(DELTA)
  2262. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2263. #endif
  2264. if (verbose_level > 0) {
  2265. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2266. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2267. }
  2268. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2269. #if DISABLED(DELTA)
  2270. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2271. if (auto_bed_leveling_grid_points < 2) {
  2272. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2273. return;
  2274. }
  2275. #endif
  2276. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2277. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2278. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2279. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2280. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2281. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2282. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2283. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2284. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2285. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2286. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2287. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2288. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2289. if (left_out || right_out || front_out || back_out) {
  2290. if (left_out) {
  2291. out_of_range_error(PSTR("(L)eft"));
  2292. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2293. }
  2294. if (right_out) {
  2295. out_of_range_error(PSTR("(R)ight"));
  2296. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2297. }
  2298. if (front_out) {
  2299. out_of_range_error(PSTR("(F)ront"));
  2300. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2301. }
  2302. if (back_out) {
  2303. out_of_range_error(PSTR("(B)ack"));
  2304. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2305. }
  2306. return;
  2307. }
  2308. #endif // AUTO_BED_LEVELING_GRID
  2309. #if ENABLED(Z_PROBE_SLED)
  2310. dock_sled(false); // engage (un-dock) the Z probe
  2311. #elif ENABLED(Z_PROBE_ALLEN_KEY) //|| SERVO_LEVELING
  2312. deploy_z_probe();
  2313. #endif
  2314. st_synchronize();
  2315. if (!dryrun) {
  2316. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2317. plan_bed_level_matrix.set_to_identity();
  2318. #if ENABLED(DELTA)
  2319. reset_bed_level();
  2320. #else //!DELTA
  2321. //vector_3 corrected_position = plan_get_position_mm();
  2322. //corrected_position.debug("position before G29");
  2323. vector_3 uncorrected_position = plan_get_position();
  2324. //uncorrected_position.debug("position during G29");
  2325. current_position[X_AXIS] = uncorrected_position.x;
  2326. current_position[Y_AXIS] = uncorrected_position.y;
  2327. current_position[Z_AXIS] = uncorrected_position.z;
  2328. sync_plan_position();
  2329. #endif // !DELTA
  2330. }
  2331. setup_for_endstop_move();
  2332. feedrate = homing_feedrate[Z_AXIS];
  2333. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2334. // probe at the points of a lattice grid
  2335. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2336. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2337. #if ENABLED(DELTA)
  2338. delta_grid_spacing[0] = xGridSpacing;
  2339. delta_grid_spacing[1] = yGridSpacing;
  2340. float z_offset = zprobe_zoffset;
  2341. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2342. #else // !DELTA
  2343. // solve the plane equation ax + by + d = z
  2344. // A is the matrix with rows [x y 1] for all the probed points
  2345. // B is the vector of the Z positions
  2346. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2347. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2348. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2349. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2350. eqnBVector[abl2], // "B" vector of Z points
  2351. mean = 0.0;
  2352. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2353. #endif // !DELTA
  2354. int probePointCounter = 0;
  2355. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2356. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2357. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2358. int xStart, xStop, xInc;
  2359. if (zig) {
  2360. xStart = 0;
  2361. xStop = auto_bed_leveling_grid_points;
  2362. xInc = 1;
  2363. }
  2364. else {
  2365. xStart = auto_bed_leveling_grid_points - 1;
  2366. xStop = -1;
  2367. xInc = -1;
  2368. }
  2369. zig = !zig;
  2370. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2371. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2372. // raise extruder
  2373. float measured_z,
  2374. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2375. if (probePointCounter) {
  2376. #ifdef DEBUG_LEVELING
  2377. SERIAL_ECHOPAIR("z_before = (between) ", (float)(Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2378. SERIAL_EOL;
  2379. #endif
  2380. }
  2381. else {
  2382. #ifdef DEBUG_LEVELING
  2383. SERIAL_ECHOPAIR("z_before = (before) ", (float)Z_RAISE_BEFORE_PROBING);
  2384. SERIAL_EOL;
  2385. #endif
  2386. }
  2387. #if ENABLED(DELTA)
  2388. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2389. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2390. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2391. #endif //DELTA
  2392. ProbeAction act;
  2393. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2394. act = ProbeDeployAndStow;
  2395. else if (yCount == 0 && xCount == xStart)
  2396. act = ProbeDeploy;
  2397. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2398. act = ProbeStow;
  2399. else
  2400. act = ProbeStay;
  2401. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2402. #if DISABLED(DELTA)
  2403. mean += measured_z;
  2404. eqnBVector[probePointCounter] = measured_z;
  2405. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2406. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2407. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2408. indexIntoAB[xCount][yCount] = probePointCounter;
  2409. #else
  2410. bed_level[xCount][yCount] = measured_z + z_offset;
  2411. #endif
  2412. probePointCounter++;
  2413. idle();
  2414. } //xProbe
  2415. } //yProbe
  2416. #ifdef DEBUG_LEVELING
  2417. print_xyz("> probing complete > current_position", current_position);
  2418. #endif
  2419. clean_up_after_endstop_move();
  2420. #if ENABLED(DELTA)
  2421. if (!dryrun) extrapolate_unprobed_bed_level();
  2422. print_bed_level();
  2423. #else // !DELTA
  2424. // solve lsq problem
  2425. double plane_equation_coefficients[3];
  2426. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2427. mean /= abl2;
  2428. if (verbose_level) {
  2429. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2430. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2431. SERIAL_PROTOCOLPGM(" b: ");
  2432. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2433. SERIAL_PROTOCOLPGM(" d: ");
  2434. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2435. SERIAL_EOL;
  2436. if (verbose_level > 2) {
  2437. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2438. SERIAL_PROTOCOL_F(mean, 8);
  2439. SERIAL_EOL;
  2440. }
  2441. }
  2442. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2443. // Show the Topography map if enabled
  2444. if (do_topography_map) {
  2445. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2446. SERIAL_PROTOCOLPGM("+-----------+\n");
  2447. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2448. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2449. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2450. SERIAL_PROTOCOLPGM("+-----------+\n");
  2451. float min_diff = 999;
  2452. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2453. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2454. int ind = indexIntoAB[xx][yy];
  2455. float diff = eqnBVector[ind] - mean;
  2456. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2457. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2458. z_tmp = 0;
  2459. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2460. if (eqnBVector[ind] - z_tmp < min_diff)
  2461. min_diff = eqnBVector[ind] - z_tmp;
  2462. if (diff >= 0.0)
  2463. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2464. else
  2465. SERIAL_PROTOCOLCHAR(' ');
  2466. SERIAL_PROTOCOL_F(diff, 5);
  2467. } // xx
  2468. SERIAL_EOL;
  2469. } // yy
  2470. SERIAL_EOL;
  2471. if (verbose_level > 3) {
  2472. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2473. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2474. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2475. int ind = indexIntoAB[xx][yy];
  2476. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2477. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2478. z_tmp = 0;
  2479. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2480. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2481. if (diff >= 0.0)
  2482. SERIAL_PROTOCOLPGM(" +");
  2483. // Include + for column alignment
  2484. else
  2485. SERIAL_PROTOCOLCHAR(' ');
  2486. SERIAL_PROTOCOL_F(diff, 5);
  2487. } // xx
  2488. SERIAL_EOL;
  2489. } // yy
  2490. SERIAL_EOL;
  2491. }
  2492. } //do_topography_map
  2493. #endif //!DELTA
  2494. #else // !AUTO_BED_LEVELING_GRID
  2495. #ifdef DEBUG_LEVELING
  2496. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2497. #endif
  2498. // Actions for each probe
  2499. ProbeAction p1, p2, p3;
  2500. if (deploy_probe_for_each_reading)
  2501. p1 = p2 = p3 = ProbeDeployAndStow;
  2502. else
  2503. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2504. // Probe at 3 arbitrary points
  2505. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2506. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2507. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2508. clean_up_after_endstop_move();
  2509. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2510. #endif // !AUTO_BED_LEVELING_GRID
  2511. #if DISABLED(DELTA)
  2512. if (verbose_level > 0)
  2513. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2514. if (!dryrun) {
  2515. // Correct the Z height difference from Z probe position and nozzle tip position.
  2516. // The Z height on homing is measured by Z probe, but the Z probe is quite far from the nozzle.
  2517. // When the bed is uneven, this height must be corrected.
  2518. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2519. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2520. z_tmp = current_position[Z_AXIS],
  2521. real_z = st_get_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2522. #ifdef DEBUG_LEVELING
  2523. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2524. SERIAL_EOL;
  2525. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2526. SERIAL_EOL;
  2527. #endif
  2528. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the Z probe offset
  2529. // Get the current Z position and send it to the planner.
  2530. //
  2531. // >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z (most recent plan_set_position/sync_plan_position)
  2532. //
  2533. // >> zprobe_zoffset : Z distance from nozzle to Z probe (set by default, M851, EEPROM, or Menu)
  2534. //
  2535. // >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted after the last probe
  2536. //
  2537. // >> Should home_offset[Z_AXIS] be included?
  2538. //
  2539. // Discussion: home_offset[Z_AXIS] was applied in G28 to set the starting Z.
  2540. // If Z is not tweaked in G29 -and- the Z probe in G29 is not actually "homing" Z...
  2541. // then perhaps it should not be included here. The purpose of home_offset[] is to
  2542. // adjust for inaccurate endstops, not for reasonably accurate probes. If it were
  2543. // added here, it could be seen as a compensating factor for the Z probe.
  2544. //
  2545. #ifdef DEBUG_LEVELING
  2546. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2547. SERIAL_EOL;
  2548. #endif
  2549. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2550. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2551. + Z_RAISE_AFTER_PROBING
  2552. #endif
  2553. ;
  2554. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2555. sync_plan_position();
  2556. #ifdef DEBUG_LEVELING
  2557. print_xyz("> corrected Z in G29", current_position);
  2558. #endif
  2559. }
  2560. #endif // !DELTA
  2561. #if ENABLED(Z_PROBE_SLED)
  2562. dock_sled(true); // dock the Z probe
  2563. #elif ENABLED(Z_PROBE_ALLEN_KEY) //|| SERVO_LEVELING
  2564. stow_z_probe();
  2565. #endif
  2566. #ifdef Z_PROBE_END_SCRIPT
  2567. #ifdef DEBUG_LEVELING
  2568. SERIAL_ECHO("Z Probe End Script: ");
  2569. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2570. #endif
  2571. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2572. st_synchronize();
  2573. #endif
  2574. #ifdef DEBUG_LEVELING
  2575. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2576. #endif
  2577. }
  2578. #if DISABLED(Z_PROBE_SLED)
  2579. /**
  2580. * G30: Do a single Z probe at the current XY
  2581. */
  2582. inline void gcode_G30() {
  2583. #if HAS_SERVO_ENDSTOPS
  2584. raise_z_for_servo();
  2585. #endif
  2586. deploy_z_probe(); // Engage Z Servo endstop if available
  2587. st_synchronize();
  2588. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2589. setup_for_endstop_move();
  2590. feedrate = homing_feedrate[Z_AXIS];
  2591. run_z_probe();
  2592. SERIAL_PROTOCOLPGM("Bed X: ");
  2593. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2594. SERIAL_PROTOCOLPGM(" Y: ");
  2595. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2596. SERIAL_PROTOCOLPGM(" Z: ");
  2597. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2598. SERIAL_EOL;
  2599. clean_up_after_endstop_move();
  2600. #if HAS_SERVO_ENDSTOPS
  2601. raise_z_for_servo();
  2602. #endif
  2603. stow_z_probe(false); // Retract Z Servo endstop if available
  2604. }
  2605. #endif //!Z_PROBE_SLED
  2606. #endif //AUTO_BED_LEVELING_FEATURE
  2607. /**
  2608. * G92: Set current position to given X Y Z E
  2609. */
  2610. inline void gcode_G92() {
  2611. if (!code_seen(axis_codes[E_AXIS]))
  2612. st_synchronize();
  2613. bool didXYZ = false;
  2614. for (int i = 0; i < NUM_AXIS; i++) {
  2615. if (code_seen(axis_codes[i])) {
  2616. float v = current_position[i] = code_value();
  2617. if (i == E_AXIS)
  2618. plan_set_e_position(v);
  2619. else
  2620. didXYZ = true;
  2621. }
  2622. }
  2623. if (didXYZ) {
  2624. #if ENABLED(DELTA) || ENABLED(SCARA)
  2625. sync_plan_position_delta();
  2626. #else
  2627. sync_plan_position();
  2628. #endif
  2629. }
  2630. }
  2631. #if ENABLED(ULTIPANEL)
  2632. /**
  2633. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2634. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2635. */
  2636. inline void gcode_M0_M1() {
  2637. char *args = current_command_args;
  2638. millis_t codenum = 0;
  2639. bool hasP = false, hasS = false;
  2640. if (code_seen('P')) {
  2641. codenum = code_value_short(); // milliseconds to wait
  2642. hasP = codenum > 0;
  2643. }
  2644. if (code_seen('S')) {
  2645. codenum = code_value() * 1000; // seconds to wait
  2646. hasS = codenum > 0;
  2647. }
  2648. if (!hasP && !hasS && *args != '\0')
  2649. lcd_setstatus(args, true);
  2650. else {
  2651. LCD_MESSAGEPGM(MSG_USERWAIT);
  2652. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2653. dontExpireStatus();
  2654. #endif
  2655. }
  2656. lcd_ignore_click();
  2657. st_synchronize();
  2658. refresh_cmd_timeout();
  2659. if (codenum > 0) {
  2660. codenum += previous_cmd_ms; // wait until this time for a click
  2661. while (millis() < codenum && !lcd_clicked()) idle();
  2662. lcd_ignore_click(false);
  2663. }
  2664. else {
  2665. if (!lcd_detected()) return;
  2666. while (!lcd_clicked()) idle();
  2667. }
  2668. if (IS_SD_PRINTING)
  2669. LCD_MESSAGEPGM(MSG_RESUMING);
  2670. else
  2671. LCD_MESSAGEPGM(WELCOME_MSG);
  2672. }
  2673. #endif // ULTIPANEL
  2674. /**
  2675. * M17: Enable power on all stepper motors
  2676. */
  2677. inline void gcode_M17() {
  2678. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2679. enable_all_steppers();
  2680. }
  2681. #if ENABLED(SDSUPPORT)
  2682. /**
  2683. * M20: List SD card to serial output
  2684. */
  2685. inline void gcode_M20() {
  2686. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2687. card.ls();
  2688. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2689. }
  2690. /**
  2691. * M21: Init SD Card
  2692. */
  2693. inline void gcode_M21() {
  2694. card.initsd();
  2695. }
  2696. /**
  2697. * M22: Release SD Card
  2698. */
  2699. inline void gcode_M22() {
  2700. card.release();
  2701. }
  2702. /**
  2703. * M23: Select a file
  2704. */
  2705. inline void gcode_M23() {
  2706. card.openFile(current_command_args, true);
  2707. }
  2708. /**
  2709. * M24: Start SD Print
  2710. */
  2711. inline void gcode_M24() {
  2712. card.startFileprint();
  2713. print_job_start_ms = millis();
  2714. }
  2715. /**
  2716. * M25: Pause SD Print
  2717. */
  2718. inline void gcode_M25() {
  2719. card.pauseSDPrint();
  2720. }
  2721. /**
  2722. * M26: Set SD Card file index
  2723. */
  2724. inline void gcode_M26() {
  2725. if (card.cardOK && code_seen('S'))
  2726. card.setIndex(code_value_short());
  2727. }
  2728. /**
  2729. * M27: Get SD Card status
  2730. */
  2731. inline void gcode_M27() {
  2732. card.getStatus();
  2733. }
  2734. /**
  2735. * M28: Start SD Write
  2736. */
  2737. inline void gcode_M28() {
  2738. card.openFile(current_command_args, false);
  2739. }
  2740. /**
  2741. * M29: Stop SD Write
  2742. * Processed in write to file routine above
  2743. */
  2744. inline void gcode_M29() {
  2745. // card.saving = false;
  2746. }
  2747. /**
  2748. * M30 <filename>: Delete SD Card file
  2749. */
  2750. inline void gcode_M30() {
  2751. if (card.cardOK) {
  2752. card.closefile();
  2753. card.removeFile(current_command_args);
  2754. }
  2755. }
  2756. #endif
  2757. /**
  2758. * M31: Get the time since the start of SD Print (or last M109)
  2759. */
  2760. inline void gcode_M31() {
  2761. print_job_stop_ms = millis();
  2762. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2763. int min = t / 60, sec = t % 60;
  2764. char time[30];
  2765. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2766. SERIAL_ECHO_START;
  2767. SERIAL_ECHOLN(time);
  2768. lcd_setstatus(time);
  2769. autotempShutdown();
  2770. }
  2771. #if ENABLED(SDSUPPORT)
  2772. /**
  2773. * M32: Select file and start SD Print
  2774. */
  2775. inline void gcode_M32() {
  2776. if (card.sdprinting)
  2777. st_synchronize();
  2778. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2779. if (!namestartpos)
  2780. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2781. else
  2782. namestartpos++; //to skip the '!'
  2783. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2784. if (card.cardOK) {
  2785. card.openFile(namestartpos, true, !call_procedure);
  2786. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2787. card.setIndex(code_value_short());
  2788. card.startFileprint();
  2789. if (!call_procedure)
  2790. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2791. }
  2792. }
  2793. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  2794. /**
  2795. * M33: Get the long full path of a file or folder
  2796. *
  2797. * Parameters:
  2798. * <dospath> Case-insensitive DOS-style path to a file or folder
  2799. *
  2800. * Example:
  2801. * M33 miscel~1/armchair/armcha~1.gco
  2802. *
  2803. * Output:
  2804. * /Miscellaneous/Armchair/Armchair.gcode
  2805. */
  2806. inline void gcode_M33() {
  2807. card.printLongPath(current_command_args);
  2808. }
  2809. #endif
  2810. /**
  2811. * M928: Start SD Write
  2812. */
  2813. inline void gcode_M928() {
  2814. card.openLogFile(current_command_args);
  2815. }
  2816. #endif // SDSUPPORT
  2817. /**
  2818. * M42: Change pin status via GCode
  2819. */
  2820. inline void gcode_M42() {
  2821. if (code_seen('S')) {
  2822. int pin_status = code_value_short(),
  2823. pin_number = LED_PIN;
  2824. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2825. pin_number = code_value_short();
  2826. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  2827. if (sensitive_pins[i] == pin_number) {
  2828. pin_number = -1;
  2829. break;
  2830. }
  2831. }
  2832. #if HAS_FAN
  2833. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2834. #endif
  2835. if (pin_number > -1) {
  2836. pinMode(pin_number, OUTPUT);
  2837. digitalWrite(pin_number, pin_status);
  2838. analogWrite(pin_number, pin_status);
  2839. }
  2840. } // code_seen('S')
  2841. }
  2842. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  2843. // This is redundant since the SanityCheck.h already checks for a valid Z_MIN_PROBE_PIN, but here for clarity.
  2844. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  2845. #if !HAS_Z_PROBE
  2846. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  2847. #endif
  2848. #elif !HAS_Z_MIN
  2849. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  2850. #endif
  2851. /**
  2852. * M48: Z probe repeatability measurement function.
  2853. *
  2854. * Usage:
  2855. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2856. * P = Number of sampled points (4-50, default 10)
  2857. * X = Sample X position
  2858. * Y = Sample Y position
  2859. * V = Verbose level (0-4, default=1)
  2860. * E = Engage Z probe for each reading
  2861. * L = Number of legs of movement before probe
  2862. *
  2863. * This function assumes the bed has been homed. Specifically, that a G28 command
  2864. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  2865. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2866. * regenerated.
  2867. */
  2868. inline void gcode_M48() {
  2869. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2870. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2871. if (code_seen('V')) {
  2872. verbose_level = code_value_short();
  2873. if (verbose_level < 0 || verbose_level > 4 ) {
  2874. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2875. return;
  2876. }
  2877. }
  2878. if (verbose_level > 0)
  2879. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2880. if (code_seen('P')) {
  2881. n_samples = code_value_short();
  2882. if (n_samples < 4 || n_samples > 50) {
  2883. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2884. return;
  2885. }
  2886. }
  2887. double X_current = st_get_position_mm(X_AXIS),
  2888. Y_current = st_get_position_mm(Y_AXIS),
  2889. Z_current = st_get_position_mm(Z_AXIS),
  2890. E_current = st_get_position_mm(E_AXIS),
  2891. X_probe_location = X_current, Y_probe_location = Y_current,
  2892. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2893. bool deploy_probe_for_each_reading = code_seen('E');
  2894. if (code_seen('X')) {
  2895. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2896. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2897. out_of_range_error(PSTR("X"));
  2898. return;
  2899. }
  2900. }
  2901. if (code_seen('Y')) {
  2902. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2903. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2904. out_of_range_error(PSTR("Y"));
  2905. return;
  2906. }
  2907. }
  2908. if (code_seen('L')) {
  2909. n_legs = code_value_short();
  2910. if (n_legs == 1) n_legs = 2;
  2911. if (n_legs < 0 || n_legs > 15) {
  2912. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2913. return;
  2914. }
  2915. }
  2916. //
  2917. // Do all the preliminary setup work. First raise the Z probe.
  2918. //
  2919. st_synchronize();
  2920. plan_bed_level_matrix.set_to_identity();
  2921. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2922. st_synchronize();
  2923. //
  2924. // Now get everything to the specified probe point So we can safely do a probe to
  2925. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2926. // use that as a starting point for each probe.
  2927. //
  2928. if (verbose_level > 2)
  2929. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2930. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2931. E_current,
  2932. homing_feedrate[X_AXIS]/60,
  2933. active_extruder);
  2934. st_synchronize();
  2935. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2936. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2937. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2938. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2939. //
  2940. // OK, do the initial probe to get us close to the bed.
  2941. // Then retrace the right amount and use that in subsequent probes
  2942. //
  2943. deploy_z_probe();
  2944. setup_for_endstop_move();
  2945. run_z_probe();
  2946. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2947. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2948. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2949. E_current,
  2950. homing_feedrate[X_AXIS]/60,
  2951. active_extruder);
  2952. st_synchronize();
  2953. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2954. if (deploy_probe_for_each_reading) stow_z_probe();
  2955. for (uint8_t n=0; n < n_samples; n++) {
  2956. // Make sure we are at the probe location
  2957. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2958. if (n_legs) {
  2959. millis_t ms = millis();
  2960. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2961. theta = RADIANS(ms % 360L);
  2962. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2963. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2964. //SERIAL_ECHOPAIR(" theta: ",theta);
  2965. //SERIAL_ECHOPAIR(" direction: ",dir);
  2966. //SERIAL_EOL;
  2967. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2968. ms = millis();
  2969. theta += RADIANS(dir * (ms % 20L));
  2970. radius += (ms % 10L) - 5L;
  2971. if (radius < 0.0) radius = -radius;
  2972. X_current = X_probe_location + cos(theta) * radius;
  2973. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2974. Y_current = Y_probe_location + sin(theta) * radius;
  2975. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2976. if (verbose_level > 3) {
  2977. SERIAL_ECHOPAIR("x: ", X_current);
  2978. SERIAL_ECHOPAIR("y: ", Y_current);
  2979. SERIAL_EOL;
  2980. }
  2981. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2982. } // n_legs loop
  2983. // Go back to the probe location
  2984. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2985. } // n_legs
  2986. if (deploy_probe_for_each_reading) {
  2987. deploy_z_probe();
  2988. delay(1000);
  2989. }
  2990. setup_for_endstop_move();
  2991. run_z_probe();
  2992. sample_set[n] = current_position[Z_AXIS];
  2993. //
  2994. // Get the current mean for the data points we have so far
  2995. //
  2996. sum = 0.0;
  2997. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2998. mean = sum / (n + 1);
  2999. //
  3000. // Now, use that mean to calculate the standard deviation for the
  3001. // data points we have so far
  3002. //
  3003. sum = 0.0;
  3004. for (uint8_t j = 0; j <= n; j++) {
  3005. float ss = sample_set[j] - mean;
  3006. sum += ss * ss;
  3007. }
  3008. sigma = sqrt(sum / (n + 1));
  3009. if (verbose_level > 1) {
  3010. SERIAL_PROTOCOL(n+1);
  3011. SERIAL_PROTOCOLPGM(" of ");
  3012. SERIAL_PROTOCOL((int)n_samples);
  3013. SERIAL_PROTOCOLPGM(" z: ");
  3014. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3015. if (verbose_level > 2) {
  3016. SERIAL_PROTOCOLPGM(" mean: ");
  3017. SERIAL_PROTOCOL_F(mean,6);
  3018. SERIAL_PROTOCOLPGM(" sigma: ");
  3019. SERIAL_PROTOCOL_F(sigma,6);
  3020. }
  3021. }
  3022. if (verbose_level > 0) SERIAL_EOL;
  3023. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3024. st_synchronize();
  3025. // Stow between
  3026. if (deploy_probe_for_each_reading) {
  3027. stow_z_probe();
  3028. delay(1000);
  3029. }
  3030. }
  3031. // Stow after
  3032. if (!deploy_probe_for_each_reading) {
  3033. stow_z_probe();
  3034. delay(1000);
  3035. }
  3036. clean_up_after_endstop_move();
  3037. if (verbose_level > 0) {
  3038. SERIAL_PROTOCOLPGM("Mean: ");
  3039. SERIAL_PROTOCOL_F(mean, 6);
  3040. SERIAL_EOL;
  3041. }
  3042. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3043. SERIAL_PROTOCOL_F(sigma, 6);
  3044. SERIAL_EOL; SERIAL_EOL;
  3045. }
  3046. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3047. /**
  3048. * M104: Set hot end temperature
  3049. */
  3050. inline void gcode_M104() {
  3051. if (setTargetedHotend(104)) return;
  3052. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3053. if (code_seen('S')) {
  3054. float temp = code_value();
  3055. setTargetHotend(temp, target_extruder);
  3056. #if ENABLED(DUAL_X_CARRIAGE)
  3057. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3058. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3059. #endif
  3060. }
  3061. }
  3062. /**
  3063. * M105: Read hot end and bed temperature
  3064. */
  3065. inline void gcode_M105() {
  3066. if (setTargetedHotend(105)) return;
  3067. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3068. SERIAL_PROTOCOLPGM(MSG_OK);
  3069. #if HAS_TEMP_0 || ENABLED(HEATER_0_USES_MAX6675)
  3070. SERIAL_PROTOCOLPGM(" T:");
  3071. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3072. SERIAL_PROTOCOLPGM(" /");
  3073. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3074. #endif
  3075. #if HAS_TEMP_BED
  3076. SERIAL_PROTOCOLPGM(" B:");
  3077. SERIAL_PROTOCOL_F(degBed(), 1);
  3078. SERIAL_PROTOCOLPGM(" /");
  3079. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3080. #endif
  3081. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3082. SERIAL_PROTOCOLPGM(" T");
  3083. SERIAL_PROTOCOL(e);
  3084. SERIAL_PROTOCOLCHAR(':');
  3085. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3086. SERIAL_PROTOCOLPGM(" /");
  3087. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3088. }
  3089. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  3090. SERIAL_ERROR_START;
  3091. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3092. #endif
  3093. SERIAL_PROTOCOLPGM(" @:");
  3094. #ifdef EXTRUDER_WATTS
  3095. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  3096. SERIAL_PROTOCOLCHAR('W');
  3097. #else
  3098. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3099. #endif
  3100. SERIAL_PROTOCOLPGM(" B@:");
  3101. #ifdef BED_WATTS
  3102. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3103. SERIAL_PROTOCOLCHAR('W');
  3104. #else
  3105. SERIAL_PROTOCOL(getHeaterPower(-1));
  3106. #endif
  3107. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3108. #if HAS_TEMP_BED
  3109. SERIAL_PROTOCOLPGM(" ADC B:");
  3110. SERIAL_PROTOCOL_F(degBed(),1);
  3111. SERIAL_PROTOCOLPGM("C->");
  3112. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  3113. #endif
  3114. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3115. SERIAL_PROTOCOLPGM(" T");
  3116. SERIAL_PROTOCOL(cur_extruder);
  3117. SERIAL_PROTOCOLCHAR(':');
  3118. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3119. SERIAL_PROTOCOLPGM("C->");
  3120. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  3121. }
  3122. #endif
  3123. SERIAL_EOL;
  3124. }
  3125. #if HAS_FAN
  3126. /**
  3127. * M106: Set Fan Speed
  3128. */
  3129. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  3130. /**
  3131. * M107: Fan Off
  3132. */
  3133. inline void gcode_M107() { fanSpeed = 0; }
  3134. #endif // HAS_FAN
  3135. /**
  3136. * M109: Wait for extruder(s) to reach temperature
  3137. */
  3138. inline void gcode_M109() {
  3139. if (setTargetedHotend(109)) return;
  3140. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3141. LCD_MESSAGEPGM(MSG_HEATING);
  3142. no_wait_for_cooling = code_seen('S');
  3143. if (no_wait_for_cooling || code_seen('R')) {
  3144. float temp = code_value();
  3145. setTargetHotend(temp, target_extruder);
  3146. #if ENABLED(DUAL_X_CARRIAGE)
  3147. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3148. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3149. #endif
  3150. }
  3151. #if ENABLED(AUTOTEMP)
  3152. autotemp_enabled = code_seen('F');
  3153. if (autotemp_enabled) autotemp_factor = code_value();
  3154. if (code_seen('S')) autotemp_min = code_value();
  3155. if (code_seen('B')) autotemp_max = code_value();
  3156. #endif
  3157. millis_t temp_ms = millis();
  3158. /* See if we are heating up or cooling down */
  3159. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  3160. cancel_heatup = false;
  3161. #ifdef TEMP_RESIDENCY_TIME
  3162. long residency_start_ms = -1;
  3163. /* continue to loop until we have reached the target temp
  3164. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  3165. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  3166. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  3167. #else
  3168. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  3169. #endif //TEMP_RESIDENCY_TIME
  3170. { // while loop
  3171. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  3172. SERIAL_PROTOCOLPGM("T:");
  3173. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  3174. SERIAL_PROTOCOLPGM(" E:");
  3175. SERIAL_PROTOCOL((int)target_extruder);
  3176. #ifdef TEMP_RESIDENCY_TIME
  3177. SERIAL_PROTOCOLPGM(" W:");
  3178. if (residency_start_ms > -1) {
  3179. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  3180. SERIAL_PROTOCOLLN(temp_ms);
  3181. }
  3182. else {
  3183. SERIAL_PROTOCOLLNPGM("?");
  3184. }
  3185. #else
  3186. SERIAL_EOL;
  3187. #endif
  3188. temp_ms = millis();
  3189. }
  3190. idle();
  3191. #ifdef TEMP_RESIDENCY_TIME
  3192. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3193. // or when current temp falls outside the hysteresis after target temp was reached
  3194. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  3195. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  3196. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  3197. {
  3198. residency_start_ms = millis();
  3199. }
  3200. #endif //TEMP_RESIDENCY_TIME
  3201. }
  3202. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3203. refresh_cmd_timeout();
  3204. print_job_start_ms = previous_cmd_ms;
  3205. }
  3206. #if HAS_TEMP_BED
  3207. /**
  3208. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3209. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3210. */
  3211. inline void gcode_M190() {
  3212. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3213. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3214. no_wait_for_cooling = code_seen('S');
  3215. if (no_wait_for_cooling || code_seen('R'))
  3216. setTargetBed(code_value());
  3217. millis_t temp_ms = millis();
  3218. cancel_heatup = false;
  3219. target_direction = isHeatingBed(); // true if heating, false if cooling
  3220. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  3221. millis_t ms = millis();
  3222. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  3223. temp_ms = ms;
  3224. float tt = degHotend(active_extruder);
  3225. SERIAL_PROTOCOLPGM("T:");
  3226. SERIAL_PROTOCOL(tt);
  3227. SERIAL_PROTOCOLPGM(" E:");
  3228. SERIAL_PROTOCOL((int)active_extruder);
  3229. SERIAL_PROTOCOLPGM(" B:");
  3230. SERIAL_PROTOCOL_F(degBed(), 1);
  3231. SERIAL_EOL;
  3232. }
  3233. idle();
  3234. }
  3235. LCD_MESSAGEPGM(MSG_BED_DONE);
  3236. refresh_cmd_timeout();
  3237. }
  3238. #endif // HAS_TEMP_BED
  3239. /**
  3240. * M111: Set the debug level
  3241. */
  3242. inline void gcode_M111() {
  3243. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_COMMUNICATION;
  3244. if (marlin_debug_flags & DEBUG_ECHO) {
  3245. SERIAL_ECHO_START;
  3246. SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  3247. }
  3248. // FOR MOMENT NOT ACTIVE
  3249. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3250. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3251. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3252. SERIAL_ECHO_START;
  3253. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3254. disable_all_heaters();
  3255. }
  3256. }
  3257. /**
  3258. * M112: Emergency Stop
  3259. */
  3260. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3261. #if ENABLED(BARICUDA)
  3262. #if HAS_HEATER_1
  3263. /**
  3264. * M126: Heater 1 valve open
  3265. */
  3266. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3267. /**
  3268. * M127: Heater 1 valve close
  3269. */
  3270. inline void gcode_M127() { ValvePressure = 0; }
  3271. #endif
  3272. #if HAS_HEATER_2
  3273. /**
  3274. * M128: Heater 2 valve open
  3275. */
  3276. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3277. /**
  3278. * M129: Heater 2 valve close
  3279. */
  3280. inline void gcode_M129() { EtoPPressure = 0; }
  3281. #endif
  3282. #endif //BARICUDA
  3283. /**
  3284. * M140: Set bed temperature
  3285. */
  3286. inline void gcode_M140() {
  3287. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3288. if (code_seen('S')) setTargetBed(code_value());
  3289. }
  3290. #if ENABLED(ULTIPANEL)
  3291. /**
  3292. * M145: Set the heatup state for a material in the LCD menu
  3293. * S<material> (0=PLA, 1=ABS)
  3294. * H<hotend temp>
  3295. * B<bed temp>
  3296. * F<fan speed>
  3297. */
  3298. inline void gcode_M145() {
  3299. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3300. if (material < 0 || material > 1) {
  3301. SERIAL_ERROR_START;
  3302. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3303. }
  3304. else {
  3305. int v;
  3306. switch (material) {
  3307. case 0:
  3308. if (code_seen('H')) {
  3309. v = code_value_short();
  3310. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3311. }
  3312. if (code_seen('F')) {
  3313. v = code_value_short();
  3314. plaPreheatFanSpeed = constrain(v, 0, 255);
  3315. }
  3316. #if TEMP_SENSOR_BED != 0
  3317. if (code_seen('B')) {
  3318. v = code_value_short();
  3319. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3320. }
  3321. #endif
  3322. break;
  3323. case 1:
  3324. if (code_seen('H')) {
  3325. v = code_value_short();
  3326. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3327. }
  3328. if (code_seen('F')) {
  3329. v = code_value_short();
  3330. absPreheatFanSpeed = constrain(v, 0, 255);
  3331. }
  3332. #if TEMP_SENSOR_BED != 0
  3333. if (code_seen('B')) {
  3334. v = code_value_short();
  3335. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3336. }
  3337. #endif
  3338. break;
  3339. }
  3340. }
  3341. }
  3342. #endif
  3343. #if HAS_POWER_SWITCH
  3344. /**
  3345. * M80: Turn on Power Supply
  3346. */
  3347. inline void gcode_M80() {
  3348. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3349. // If you have a switch on suicide pin, this is useful
  3350. // if you want to start another print with suicide feature after
  3351. // a print without suicide...
  3352. #if HAS_SUICIDE
  3353. OUT_WRITE(SUICIDE_PIN, HIGH);
  3354. #endif
  3355. #if ENABLED(ULTIPANEL)
  3356. powersupply = true;
  3357. LCD_MESSAGEPGM(WELCOME_MSG);
  3358. lcd_update();
  3359. #endif
  3360. }
  3361. #endif // HAS_POWER_SWITCH
  3362. /**
  3363. * M81: Turn off Power, including Power Supply, if there is one.
  3364. *
  3365. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3366. */
  3367. inline void gcode_M81() {
  3368. disable_all_heaters();
  3369. finishAndDisableSteppers();
  3370. fanSpeed = 0;
  3371. delay(1000); // Wait 1 second before switching off
  3372. #if HAS_SUICIDE
  3373. st_synchronize();
  3374. suicide();
  3375. #elif HAS_POWER_SWITCH
  3376. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3377. #endif
  3378. #if ENABLED(ULTIPANEL)
  3379. #if HAS_POWER_SWITCH
  3380. powersupply = false;
  3381. #endif
  3382. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3383. lcd_update();
  3384. #endif
  3385. }
  3386. /**
  3387. * M82: Set E codes absolute (default)
  3388. */
  3389. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3390. /**
  3391. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3392. */
  3393. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3394. /**
  3395. * M18, M84: Disable all stepper motors
  3396. */
  3397. inline void gcode_M18_M84() {
  3398. if (code_seen('S')) {
  3399. stepper_inactive_time = code_value() * 1000;
  3400. }
  3401. else {
  3402. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3403. if (all_axis) {
  3404. finishAndDisableSteppers();
  3405. }
  3406. else {
  3407. st_synchronize();
  3408. if (code_seen('X')) disable_x();
  3409. if (code_seen('Y')) disable_y();
  3410. if (code_seen('Z')) disable_z();
  3411. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3412. if (code_seen('E')) {
  3413. disable_e0();
  3414. disable_e1();
  3415. disable_e2();
  3416. disable_e3();
  3417. }
  3418. #endif
  3419. }
  3420. }
  3421. }
  3422. /**
  3423. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3424. */
  3425. inline void gcode_M85() {
  3426. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3427. }
  3428. /**
  3429. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3430. * (Follows the same syntax as G92)
  3431. */
  3432. inline void gcode_M92() {
  3433. for(int8_t i=0; i < NUM_AXIS; i++) {
  3434. if (code_seen(axis_codes[i])) {
  3435. if (i == E_AXIS) {
  3436. float value = code_value();
  3437. if (value < 20.0) {
  3438. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3439. max_e_jerk *= factor;
  3440. max_feedrate[i] *= factor;
  3441. axis_steps_per_sqr_second[i] *= factor;
  3442. }
  3443. axis_steps_per_unit[i] = value;
  3444. }
  3445. else {
  3446. axis_steps_per_unit[i] = code_value();
  3447. }
  3448. }
  3449. }
  3450. }
  3451. /**
  3452. * M114: Output current position to serial port
  3453. */
  3454. inline void gcode_M114() {
  3455. SERIAL_PROTOCOLPGM("X:");
  3456. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3457. SERIAL_PROTOCOLPGM(" Y:");
  3458. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3459. SERIAL_PROTOCOLPGM(" Z:");
  3460. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3461. SERIAL_PROTOCOLPGM(" E:");
  3462. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3463. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3464. SERIAL_PROTOCOL(st_get_position_mm(X_AXIS));
  3465. SERIAL_PROTOCOLPGM(" Y:");
  3466. SERIAL_PROTOCOL(st_get_position_mm(Y_AXIS));
  3467. SERIAL_PROTOCOLPGM(" Z:");
  3468. SERIAL_PROTOCOL(st_get_position_mm(Z_AXIS));
  3469. SERIAL_EOL;
  3470. #if ENABLED(SCARA)
  3471. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3472. SERIAL_PROTOCOL(delta[X_AXIS]);
  3473. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3474. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3475. SERIAL_EOL;
  3476. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3477. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3478. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3479. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3480. SERIAL_EOL;
  3481. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3482. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3483. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3484. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3485. SERIAL_EOL; SERIAL_EOL;
  3486. #endif
  3487. }
  3488. /**
  3489. * M115: Capabilities string
  3490. */
  3491. inline void gcode_M115() {
  3492. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3493. }
  3494. /**
  3495. * M117: Set LCD Status Message
  3496. */
  3497. inline void gcode_M117() {
  3498. lcd_setstatus(current_command_args);
  3499. }
  3500. /**
  3501. * M119: Output endstop states to serial output
  3502. */
  3503. inline void gcode_M119() {
  3504. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3505. #if HAS_X_MIN
  3506. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3507. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3508. #endif
  3509. #if HAS_X_MAX
  3510. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3511. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3512. #endif
  3513. #if HAS_Y_MIN
  3514. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3515. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3516. #endif
  3517. #if HAS_Y_MAX
  3518. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3519. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3520. #endif
  3521. #if HAS_Z_MIN
  3522. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3523. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3524. #endif
  3525. #if HAS_Z_MAX
  3526. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3527. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3528. #endif
  3529. #if HAS_Z2_MAX
  3530. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3531. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3532. #endif
  3533. #if HAS_Z_PROBE
  3534. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3535. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3536. #endif
  3537. }
  3538. /**
  3539. * M120: Enable endstops
  3540. */
  3541. inline void gcode_M120() { enable_endstops(true); }
  3542. /**
  3543. * M121: Disable endstops
  3544. */
  3545. inline void gcode_M121() { enable_endstops(false); }
  3546. #if ENABLED(BLINKM)
  3547. /**
  3548. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3549. */
  3550. inline void gcode_M150() {
  3551. SendColors(
  3552. code_seen('R') ? (byte)code_value_short() : 0,
  3553. code_seen('U') ? (byte)code_value_short() : 0,
  3554. code_seen('B') ? (byte)code_value_short() : 0
  3555. );
  3556. }
  3557. #endif // BLINKM
  3558. /**
  3559. * M200: Set filament diameter and set E axis units to cubic millimeters
  3560. *
  3561. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3562. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3563. */
  3564. inline void gcode_M200() {
  3565. if (setTargetedHotend(200)) return;
  3566. if (code_seen('D')) {
  3567. float diameter = code_value();
  3568. // setting any extruder filament size disables volumetric on the assumption that
  3569. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3570. // for all extruders
  3571. volumetric_enabled = (diameter != 0.0);
  3572. if (volumetric_enabled) {
  3573. filament_size[target_extruder] = diameter;
  3574. // make sure all extruders have some sane value for the filament size
  3575. for (int i=0; i<EXTRUDERS; i++)
  3576. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3577. }
  3578. }
  3579. else {
  3580. //reserved for setting filament diameter via UFID or filament measuring device
  3581. return;
  3582. }
  3583. calculate_volumetric_multipliers();
  3584. }
  3585. /**
  3586. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3587. */
  3588. inline void gcode_M201() {
  3589. for (int8_t i=0; i < NUM_AXIS; i++) {
  3590. if (code_seen(axis_codes[i])) {
  3591. max_acceleration_units_per_sq_second[i] = code_value();
  3592. }
  3593. }
  3594. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3595. reset_acceleration_rates();
  3596. }
  3597. #if 0 // Not used for Sprinter/grbl gen6
  3598. inline void gcode_M202() {
  3599. for(int8_t i=0; i < NUM_AXIS; i++) {
  3600. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3601. }
  3602. }
  3603. #endif
  3604. /**
  3605. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3606. */
  3607. inline void gcode_M203() {
  3608. for (int8_t i=0; i < NUM_AXIS; i++) {
  3609. if (code_seen(axis_codes[i])) {
  3610. max_feedrate[i] = code_value();
  3611. }
  3612. }
  3613. }
  3614. /**
  3615. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3616. *
  3617. * P = Printing moves
  3618. * R = Retract only (no X, Y, Z) moves
  3619. * T = Travel (non printing) moves
  3620. *
  3621. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3622. */
  3623. inline void gcode_M204() {
  3624. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3625. travel_acceleration = acceleration = code_value();
  3626. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  3627. SERIAL_EOL;
  3628. }
  3629. if (code_seen('P')) {
  3630. acceleration = code_value();
  3631. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3632. SERIAL_EOL;
  3633. }
  3634. if (code_seen('R')) {
  3635. retract_acceleration = code_value();
  3636. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3637. SERIAL_EOL;
  3638. }
  3639. if (code_seen('T')) {
  3640. travel_acceleration = code_value();
  3641. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3642. SERIAL_EOL;
  3643. }
  3644. }
  3645. /**
  3646. * M205: Set Advanced Settings
  3647. *
  3648. * S = Min Feed Rate (mm/s)
  3649. * T = Min Travel Feed Rate (mm/s)
  3650. * B = Min Segment Time (µs)
  3651. * X = Max XY Jerk (mm/s/s)
  3652. * Z = Max Z Jerk (mm/s/s)
  3653. * E = Max E Jerk (mm/s/s)
  3654. */
  3655. inline void gcode_M205() {
  3656. if (code_seen('S')) minimumfeedrate = code_value();
  3657. if (code_seen('T')) mintravelfeedrate = code_value();
  3658. if (code_seen('B')) minsegmenttime = code_value();
  3659. if (code_seen('X')) max_xy_jerk = code_value();
  3660. if (code_seen('Z')) max_z_jerk = code_value();
  3661. if (code_seen('E')) max_e_jerk = code_value();
  3662. }
  3663. /**
  3664. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3665. */
  3666. inline void gcode_M206() {
  3667. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3668. if (code_seen(axis_codes[i])) {
  3669. home_offset[i] = code_value();
  3670. }
  3671. }
  3672. #if ENABLED(SCARA)
  3673. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3674. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3675. #endif
  3676. }
  3677. #if ENABLED(DELTA)
  3678. /**
  3679. * M665: Set delta configurations
  3680. *
  3681. * L = diagonal rod
  3682. * R = delta radius
  3683. * S = segments per second
  3684. */
  3685. inline void gcode_M665() {
  3686. if (code_seen('L')) delta_diagonal_rod = code_value();
  3687. if (code_seen('R')) delta_radius = code_value();
  3688. if (code_seen('S')) delta_segments_per_second = code_value();
  3689. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3690. }
  3691. /**
  3692. * M666: Set delta endstop adjustment
  3693. */
  3694. inline void gcode_M666() {
  3695. #ifdef DEBUG_LEVELING
  3696. SERIAL_ECHOLNPGM(">>> gcode_M666");
  3697. #endif
  3698. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3699. if (code_seen(axis_codes[i])) {
  3700. endstop_adj[i] = code_value();
  3701. #ifdef DEBUG_LEVELING
  3702. SERIAL_ECHOPGM("endstop_adj[");
  3703. SERIAL_ECHO(axis_codes[i]);
  3704. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  3705. SERIAL_EOL;
  3706. #endif
  3707. }
  3708. }
  3709. #ifdef DEBUG_LEVELING
  3710. SERIAL_ECHOLNPGM("<<< gcode_M666");
  3711. #endif
  3712. }
  3713. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  3714. /**
  3715. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3716. */
  3717. inline void gcode_M666() {
  3718. if (code_seen('Z')) z_endstop_adj = code_value();
  3719. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3720. SERIAL_EOL;
  3721. }
  3722. #endif // !DELTA && Z_DUAL_ENDSTOPS
  3723. #if ENABLED(FWRETRACT)
  3724. /**
  3725. * M207: Set firmware retraction values
  3726. *
  3727. * S[+mm] retract_length
  3728. * W[+mm] retract_length_swap (multi-extruder)
  3729. * F[mm/min] retract_feedrate
  3730. * Z[mm] retract_zlift
  3731. */
  3732. inline void gcode_M207() {
  3733. if (code_seen('S')) retract_length = code_value();
  3734. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3735. if (code_seen('Z')) retract_zlift = code_value();
  3736. #if EXTRUDERS > 1
  3737. if (code_seen('W')) retract_length_swap = code_value();
  3738. #endif
  3739. }
  3740. /**
  3741. * M208: Set firmware un-retraction values
  3742. *
  3743. * S[+mm] retract_recover_length (in addition to M207 S*)
  3744. * W[+mm] retract_recover_length_swap (multi-extruder)
  3745. * F[mm/min] retract_recover_feedrate
  3746. */
  3747. inline void gcode_M208() {
  3748. if (code_seen('S')) retract_recover_length = code_value();
  3749. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3750. #if EXTRUDERS > 1
  3751. if (code_seen('W')) retract_recover_length_swap = code_value();
  3752. #endif
  3753. }
  3754. /**
  3755. * M209: Enable automatic retract (M209 S1)
  3756. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3757. */
  3758. inline void gcode_M209() {
  3759. if (code_seen('S')) {
  3760. int t = code_value_short();
  3761. switch(t) {
  3762. case 0:
  3763. autoretract_enabled = false;
  3764. break;
  3765. case 1:
  3766. autoretract_enabled = true;
  3767. break;
  3768. default:
  3769. unknown_command_error();
  3770. return;
  3771. }
  3772. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3773. }
  3774. }
  3775. #endif // FWRETRACT
  3776. #if EXTRUDERS > 1
  3777. /**
  3778. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3779. */
  3780. inline void gcode_M218() {
  3781. if (setTargetedHotend(218)) return;
  3782. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3783. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3784. #if ENABLED(DUAL_X_CARRIAGE)
  3785. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3786. #endif
  3787. SERIAL_ECHO_START;
  3788. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3789. for (int e = 0; e < EXTRUDERS; e++) {
  3790. SERIAL_CHAR(' ');
  3791. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3792. SERIAL_CHAR(',');
  3793. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3794. #if ENABLED(DUAL_X_CARRIAGE)
  3795. SERIAL_CHAR(',');
  3796. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3797. #endif
  3798. }
  3799. SERIAL_EOL;
  3800. }
  3801. #endif // EXTRUDERS > 1
  3802. /**
  3803. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3804. */
  3805. inline void gcode_M220() {
  3806. if (code_seen('S')) feedrate_multiplier = code_value();
  3807. }
  3808. /**
  3809. * M221: Set extrusion percentage (M221 T0 S95)
  3810. */
  3811. inline void gcode_M221() {
  3812. if (code_seen('S')) {
  3813. int sval = code_value();
  3814. if (code_seen('T')) {
  3815. if (setTargetedHotend(221)) return;
  3816. extruder_multiplier[target_extruder] = sval;
  3817. }
  3818. else {
  3819. extruder_multiplier[active_extruder] = sval;
  3820. }
  3821. }
  3822. }
  3823. /**
  3824. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3825. */
  3826. inline void gcode_M226() {
  3827. if (code_seen('P')) {
  3828. int pin_number = code_value();
  3829. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3830. if (pin_state >= -1 && pin_state <= 1) {
  3831. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  3832. if (sensitive_pins[i] == pin_number) {
  3833. pin_number = -1;
  3834. break;
  3835. }
  3836. }
  3837. if (pin_number > -1) {
  3838. int target = LOW;
  3839. st_synchronize();
  3840. pinMode(pin_number, INPUT);
  3841. switch(pin_state){
  3842. case 1:
  3843. target = HIGH;
  3844. break;
  3845. case 0:
  3846. target = LOW;
  3847. break;
  3848. case -1:
  3849. target = !digitalRead(pin_number);
  3850. break;
  3851. }
  3852. while (digitalRead(pin_number) != target) idle();
  3853. } // pin_number > -1
  3854. } // pin_state -1 0 1
  3855. } // code_seen('P')
  3856. }
  3857. #if HAS_SERVOS
  3858. /**
  3859. * M280: Get or set servo position. P<index> S<angle>
  3860. */
  3861. inline void gcode_M280() {
  3862. int servo_index = code_seen('P') ? code_value_short() : -1;
  3863. int servo_position = 0;
  3864. if (code_seen('S')) {
  3865. servo_position = code_value_short();
  3866. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  3867. servo[servo_index].move(servo_position);
  3868. else {
  3869. SERIAL_ECHO_START;
  3870. SERIAL_ECHO("Servo ");
  3871. SERIAL_ECHO(servo_index);
  3872. SERIAL_ECHOLN(" out of range");
  3873. }
  3874. }
  3875. else if (servo_index >= 0) {
  3876. SERIAL_PROTOCOL(MSG_OK);
  3877. SERIAL_PROTOCOL(" Servo ");
  3878. SERIAL_PROTOCOL(servo_index);
  3879. SERIAL_PROTOCOL(": ");
  3880. SERIAL_PROTOCOL(servo[servo_index].read());
  3881. SERIAL_EOL;
  3882. }
  3883. }
  3884. #endif // HAS_SERVOS
  3885. #if HAS_BUZZER
  3886. /**
  3887. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3888. */
  3889. inline void gcode_M300() {
  3890. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3891. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3892. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3893. buzz(beepP, beepS);
  3894. }
  3895. #endif // HAS_BUZZER
  3896. #if ENABLED(PIDTEMP)
  3897. /**
  3898. * M301: Set PID parameters P I D (and optionally C)
  3899. */
  3900. inline void gcode_M301() {
  3901. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3902. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3903. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3904. if (e < EXTRUDERS) { // catch bad input value
  3905. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3906. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3907. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3908. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  3909. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3910. #endif
  3911. updatePID();
  3912. SERIAL_PROTOCOL(MSG_OK);
  3913. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  3914. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3915. SERIAL_PROTOCOL(e);
  3916. #endif // PID_PARAMS_PER_EXTRUDER
  3917. SERIAL_PROTOCOL(" p:");
  3918. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3919. SERIAL_PROTOCOL(" i:");
  3920. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3921. SERIAL_PROTOCOL(" d:");
  3922. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3923. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  3924. SERIAL_PROTOCOL(" c:");
  3925. //Kc does not have scaling applied above, or in resetting defaults
  3926. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3927. #endif
  3928. SERIAL_EOL;
  3929. }
  3930. else {
  3931. SERIAL_ECHO_START;
  3932. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3933. }
  3934. }
  3935. #endif // PIDTEMP
  3936. #if ENABLED(PIDTEMPBED)
  3937. inline void gcode_M304() {
  3938. if (code_seen('P')) bedKp = code_value();
  3939. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3940. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3941. updatePID();
  3942. SERIAL_PROTOCOL(MSG_OK);
  3943. SERIAL_PROTOCOL(" p:");
  3944. SERIAL_PROTOCOL(bedKp);
  3945. SERIAL_PROTOCOL(" i:");
  3946. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3947. SERIAL_PROTOCOL(" d:");
  3948. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3949. SERIAL_EOL;
  3950. }
  3951. #endif // PIDTEMPBED
  3952. #if defined(CHDK) || HAS_PHOTOGRAPH
  3953. /**
  3954. * M240: Trigger a camera by emulating a Canon RC-1
  3955. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3956. */
  3957. inline void gcode_M240() {
  3958. #ifdef CHDK
  3959. OUT_WRITE(CHDK, HIGH);
  3960. chdkHigh = millis();
  3961. chdkActive = true;
  3962. #elif HAS_PHOTOGRAPH
  3963. const uint8_t NUM_PULSES = 16;
  3964. const float PULSE_LENGTH = 0.01524;
  3965. for (int i = 0; i < NUM_PULSES; i++) {
  3966. WRITE(PHOTOGRAPH_PIN, HIGH);
  3967. _delay_ms(PULSE_LENGTH);
  3968. WRITE(PHOTOGRAPH_PIN, LOW);
  3969. _delay_ms(PULSE_LENGTH);
  3970. }
  3971. delay(7.33);
  3972. for (int i = 0; i < NUM_PULSES; i++) {
  3973. WRITE(PHOTOGRAPH_PIN, HIGH);
  3974. _delay_ms(PULSE_LENGTH);
  3975. WRITE(PHOTOGRAPH_PIN, LOW);
  3976. _delay_ms(PULSE_LENGTH);
  3977. }
  3978. #endif // !CHDK && HAS_PHOTOGRAPH
  3979. }
  3980. #endif // CHDK || PHOTOGRAPH_PIN
  3981. #if ENABLED(HAS_LCD_CONTRAST)
  3982. /**
  3983. * M250: Read and optionally set the LCD contrast
  3984. */
  3985. inline void gcode_M250() {
  3986. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3987. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3988. SERIAL_PROTOCOL(lcd_contrast);
  3989. SERIAL_EOL;
  3990. }
  3991. #endif // HAS_LCD_CONTRAST
  3992. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  3993. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3994. /**
  3995. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3996. */
  3997. inline void gcode_M302() {
  3998. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3999. }
  4000. #endif // PREVENT_DANGEROUS_EXTRUDE
  4001. /**
  4002. * M303: PID relay autotune
  4003. * S<temperature> sets the target temperature. (default target temperature = 150C)
  4004. * E<extruder> (-1 for the bed)
  4005. * C<cycles>
  4006. */
  4007. inline void gcode_M303() {
  4008. int e = code_seen('E') ? code_value_short() : 0;
  4009. int c = code_seen('C') ? code_value_short() : 5;
  4010. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4011. PID_autotune(temp, e, c);
  4012. }
  4013. #if ENABLED(SCARA)
  4014. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4015. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4016. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4017. if (IsRunning()) {
  4018. //gcode_get_destination(); // For X Y Z E F
  4019. delta[X_AXIS] = delta_x;
  4020. delta[Y_AXIS] = delta_y;
  4021. calculate_SCARA_forward_Transform(delta);
  4022. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  4023. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  4024. prepare_move();
  4025. //ok_to_send();
  4026. return true;
  4027. }
  4028. return false;
  4029. }
  4030. /**
  4031. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4032. */
  4033. inline bool gcode_M360() {
  4034. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4035. return SCARA_move_to_cal(0, 120);
  4036. }
  4037. /**
  4038. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4039. */
  4040. inline bool gcode_M361() {
  4041. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4042. return SCARA_move_to_cal(90, 130);
  4043. }
  4044. /**
  4045. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4046. */
  4047. inline bool gcode_M362() {
  4048. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4049. return SCARA_move_to_cal(60, 180);
  4050. }
  4051. /**
  4052. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4053. */
  4054. inline bool gcode_M363() {
  4055. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4056. return SCARA_move_to_cal(50, 90);
  4057. }
  4058. /**
  4059. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4060. */
  4061. inline bool gcode_M364() {
  4062. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4063. return SCARA_move_to_cal(45, 135);
  4064. }
  4065. /**
  4066. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4067. */
  4068. inline void gcode_M365() {
  4069. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4070. if (code_seen(axis_codes[i])) {
  4071. axis_scaling[i] = code_value();
  4072. }
  4073. }
  4074. }
  4075. #endif // SCARA
  4076. #if ENABLED(EXT_SOLENOID)
  4077. void enable_solenoid(uint8_t num) {
  4078. switch(num) {
  4079. case 0:
  4080. OUT_WRITE(SOL0_PIN, HIGH);
  4081. break;
  4082. #if HAS_SOLENOID_1
  4083. case 1:
  4084. OUT_WRITE(SOL1_PIN, HIGH);
  4085. break;
  4086. #endif
  4087. #if HAS_SOLENOID_2
  4088. case 2:
  4089. OUT_WRITE(SOL2_PIN, HIGH);
  4090. break;
  4091. #endif
  4092. #if HAS_SOLENOID_3
  4093. case 3:
  4094. OUT_WRITE(SOL3_PIN, HIGH);
  4095. break;
  4096. #endif
  4097. default:
  4098. SERIAL_ECHO_START;
  4099. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4100. break;
  4101. }
  4102. }
  4103. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4104. void disable_all_solenoids() {
  4105. OUT_WRITE(SOL0_PIN, LOW);
  4106. OUT_WRITE(SOL1_PIN, LOW);
  4107. OUT_WRITE(SOL2_PIN, LOW);
  4108. OUT_WRITE(SOL3_PIN, LOW);
  4109. }
  4110. /**
  4111. * M380: Enable solenoid on the active extruder
  4112. */
  4113. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4114. /**
  4115. * M381: Disable all solenoids
  4116. */
  4117. inline void gcode_M381() { disable_all_solenoids(); }
  4118. #endif // EXT_SOLENOID
  4119. /**
  4120. * M400: Finish all moves
  4121. */
  4122. inline void gcode_M400() { st_synchronize(); }
  4123. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4124. /**
  4125. * M401: Engage Z Servo endstop if available
  4126. */
  4127. inline void gcode_M401() {
  4128. #if HAS_SERVO_ENDSTOPS
  4129. raise_z_for_servo();
  4130. #endif
  4131. deploy_z_probe();
  4132. }
  4133. /**
  4134. * M402: Retract Z Servo endstop if enabled
  4135. */
  4136. inline void gcode_M402() {
  4137. #if HAS_SERVO_ENDSTOPS
  4138. raise_z_for_servo();
  4139. #endif
  4140. stow_z_probe(false);
  4141. }
  4142. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4143. #if ENABLED(FILAMENT_SENSOR)
  4144. /**
  4145. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4146. */
  4147. inline void gcode_M404() {
  4148. #if HAS_FILWIDTH
  4149. if (code_seen('W')) {
  4150. filament_width_nominal = code_value();
  4151. }
  4152. else {
  4153. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4154. SERIAL_PROTOCOLLN(filament_width_nominal);
  4155. }
  4156. #endif
  4157. }
  4158. /**
  4159. * M405: Turn on filament sensor for control
  4160. */
  4161. inline void gcode_M405() {
  4162. if (code_seen('D')) meas_delay_cm = code_value();
  4163. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4164. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  4165. int temp_ratio = widthFil_to_size_ratio();
  4166. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  4167. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  4168. delay_index1 = delay_index2 = 0;
  4169. }
  4170. filament_sensor = true;
  4171. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4172. //SERIAL_PROTOCOL(filament_width_meas);
  4173. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4174. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4175. }
  4176. /**
  4177. * M406: Turn off filament sensor for control
  4178. */
  4179. inline void gcode_M406() { filament_sensor = false; }
  4180. /**
  4181. * M407: Get measured filament diameter on serial output
  4182. */
  4183. inline void gcode_M407() {
  4184. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4185. SERIAL_PROTOCOLLN(filament_width_meas);
  4186. }
  4187. #endif // FILAMENT_SENSOR
  4188. /**
  4189. * M410: Quickstop - Abort all planned moves
  4190. *
  4191. * This will stop the carriages mid-move, so most likely they
  4192. * will be out of sync with the stepper position after this.
  4193. */
  4194. inline void gcode_M410() { quickStop(); }
  4195. #if ENABLED(MESH_BED_LEVELING)
  4196. /**
  4197. * M420: Enable/Disable Mesh Bed Leveling
  4198. */
  4199. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4200. /**
  4201. * M421: Set a single Mesh Bed Leveling Z coordinate
  4202. */
  4203. inline void gcode_M421() {
  4204. float x, y, z;
  4205. bool err = false, hasX, hasY, hasZ;
  4206. if ((hasX = code_seen('X'))) x = code_value();
  4207. if ((hasY = code_seen('Y'))) y = code_value();
  4208. if ((hasZ = code_seen('Z'))) z = code_value();
  4209. if (!hasX || !hasY || !hasZ) {
  4210. SERIAL_ERROR_START;
  4211. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4212. err = true;
  4213. }
  4214. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4215. SERIAL_ERROR_START;
  4216. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4217. err = true;
  4218. }
  4219. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4220. }
  4221. #endif
  4222. /**
  4223. * M428: Set home_offset based on the distance between the
  4224. * current_position and the nearest "reference point."
  4225. * If an axis is past center its endstop position
  4226. * is the reference-point. Otherwise it uses 0. This allows
  4227. * the Z offset to be set near the bed when using a max endstop.
  4228. *
  4229. * M428 can't be used more than 2cm away from 0 or an endstop.
  4230. *
  4231. * Use M206 to set these values directly.
  4232. */
  4233. inline void gcode_M428() {
  4234. bool err = false;
  4235. float new_offs[3], new_pos[3];
  4236. memcpy(new_pos, current_position, sizeof(new_pos));
  4237. memcpy(new_offs, home_offset, sizeof(new_offs));
  4238. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4239. if (axis_known_position[i]) {
  4240. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4241. diff = new_pos[i] - base;
  4242. if (diff > -20 && diff < 20) {
  4243. new_offs[i] -= diff;
  4244. new_pos[i] = base;
  4245. }
  4246. else {
  4247. SERIAL_ERROR_START;
  4248. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4249. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4250. #if HAS_BUZZER
  4251. enqueuecommands_P(PSTR("M300 S40 P200"));
  4252. #endif
  4253. err = true;
  4254. break;
  4255. }
  4256. }
  4257. }
  4258. if (!err) {
  4259. memcpy(current_position, new_pos, sizeof(new_pos));
  4260. memcpy(home_offset, new_offs, sizeof(new_offs));
  4261. sync_plan_position();
  4262. LCD_ALERTMESSAGEPGM("Offset applied.");
  4263. #if HAS_BUZZER
  4264. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4265. #endif
  4266. }
  4267. }
  4268. /**
  4269. * M500: Store settings in EEPROM
  4270. */
  4271. inline void gcode_M500() {
  4272. Config_StoreSettings();
  4273. }
  4274. /**
  4275. * M501: Read settings from EEPROM
  4276. */
  4277. inline void gcode_M501() {
  4278. Config_RetrieveSettings();
  4279. }
  4280. /**
  4281. * M502: Revert to default settings
  4282. */
  4283. inline void gcode_M502() {
  4284. Config_ResetDefault();
  4285. }
  4286. /**
  4287. * M503: print settings currently in memory
  4288. */
  4289. inline void gcode_M503() {
  4290. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4291. }
  4292. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4293. /**
  4294. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4295. */
  4296. inline void gcode_M540() {
  4297. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4298. }
  4299. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4300. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4301. inline void gcode_SET_Z_PROBE_OFFSET() {
  4302. SERIAL_ECHO_START;
  4303. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4304. SERIAL_CHAR(' ');
  4305. if (code_seen('Z')) {
  4306. float value = code_value();
  4307. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4308. zprobe_zoffset = value;
  4309. SERIAL_ECHOPGM(MSG_OK);
  4310. }
  4311. else {
  4312. SERIAL_ECHOPGM(MSG_Z_MIN);
  4313. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4314. SERIAL_ECHOPGM(MSG_Z_MAX);
  4315. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4316. }
  4317. }
  4318. else {
  4319. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4320. }
  4321. SERIAL_EOL;
  4322. }
  4323. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4324. #if ENABLED(FILAMENTCHANGEENABLE)
  4325. /**
  4326. * M600: Pause for filament change
  4327. *
  4328. * E[distance] - Retract the filament this far (negative value)
  4329. * Z[distance] - Move the Z axis by this distance
  4330. * X[position] - Move to this X position, with Y
  4331. * Y[position] - Move to this Y position, with X
  4332. * L[distance] - Retract distance for removal (manual reload)
  4333. *
  4334. * Default values are used for omitted arguments.
  4335. *
  4336. */
  4337. inline void gcode_M600() {
  4338. if (degHotend(active_extruder) < extrude_min_temp) {
  4339. SERIAL_ERROR_START;
  4340. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4341. return;
  4342. }
  4343. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4344. for (int i=0; i<NUM_AXIS; i++)
  4345. lastpos[i] = destination[i] = current_position[i];
  4346. #if ENABLED(DELTA)
  4347. #define RUNPLAN calculate_delta(destination); \
  4348. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4349. #else
  4350. #define RUNPLAN line_to_destination();
  4351. #endif
  4352. //retract by E
  4353. if (code_seen('E')) destination[E_AXIS] += code_value();
  4354. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4355. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4356. #endif
  4357. RUNPLAN;
  4358. //lift Z
  4359. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4360. #ifdef FILAMENTCHANGE_ZADD
  4361. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4362. #endif
  4363. RUNPLAN;
  4364. //move xy
  4365. if (code_seen('X')) destination[X_AXIS] = code_value();
  4366. #ifdef FILAMENTCHANGE_XPOS
  4367. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4368. #endif
  4369. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4370. #ifdef FILAMENTCHANGE_YPOS
  4371. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4372. #endif
  4373. RUNPLAN;
  4374. if (code_seen('L')) destination[E_AXIS] += code_value();
  4375. #ifdef FILAMENTCHANGE_FINALRETRACT
  4376. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4377. #endif
  4378. RUNPLAN;
  4379. //finish moves
  4380. st_synchronize();
  4381. //disable extruder steppers so filament can be removed
  4382. disable_e0();
  4383. disable_e1();
  4384. disable_e2();
  4385. disable_e3();
  4386. delay(100);
  4387. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4388. millis_t next_tick = 0;
  4389. while (!lcd_clicked()) {
  4390. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4391. millis_t ms = millis();
  4392. if (ms >= next_tick) {
  4393. lcd_quick_feedback();
  4394. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4395. }
  4396. manage_heater();
  4397. manage_inactivity(true);
  4398. lcd_update();
  4399. #else
  4400. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4401. destination[E_AXIS] = current_position[E_AXIS];
  4402. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4403. st_synchronize();
  4404. #endif
  4405. } // while(!lcd_clicked)
  4406. lcd_quick_feedback(); // click sound feedback
  4407. #if ENABLED(AUTO_FILAMENT_CHANGE)
  4408. current_position[E_AXIS] = 0;
  4409. st_synchronize();
  4410. #endif
  4411. //return to normal
  4412. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4413. #ifdef FILAMENTCHANGE_FINALRETRACT
  4414. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4415. #endif
  4416. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4417. plan_set_e_position(current_position[E_AXIS]);
  4418. RUNPLAN; //should do nothing
  4419. lcd_reset_alert_level();
  4420. #if ENABLED(DELTA)
  4421. // Move XYZ to starting position, then E
  4422. calculate_delta(lastpos);
  4423. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4424. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4425. #else
  4426. // Move XY to starting position, then Z, then E
  4427. destination[X_AXIS] = lastpos[X_AXIS];
  4428. destination[Y_AXIS] = lastpos[Y_AXIS];
  4429. line_to_destination();
  4430. destination[Z_AXIS] = lastpos[Z_AXIS];
  4431. line_to_destination();
  4432. destination[E_AXIS] = lastpos[E_AXIS];
  4433. line_to_destination();
  4434. #endif
  4435. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4436. filrunoutEnqueued = false;
  4437. #endif
  4438. }
  4439. #endif // FILAMENTCHANGEENABLE
  4440. #if ENABLED(DUAL_X_CARRIAGE)
  4441. /**
  4442. * M605: Set dual x-carriage movement mode
  4443. *
  4444. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4445. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4446. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4447. * millimeters x-offset and an optional differential hotend temperature of
  4448. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4449. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4450. *
  4451. * Note: the X axis should be homed after changing dual x-carriage mode.
  4452. */
  4453. inline void gcode_M605() {
  4454. st_synchronize();
  4455. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4456. switch(dual_x_carriage_mode) {
  4457. case DXC_DUPLICATION_MODE:
  4458. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4459. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4460. SERIAL_ECHO_START;
  4461. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4462. SERIAL_CHAR(' ');
  4463. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4464. SERIAL_CHAR(',');
  4465. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4466. SERIAL_CHAR(' ');
  4467. SERIAL_ECHO(duplicate_extruder_x_offset);
  4468. SERIAL_CHAR(',');
  4469. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4470. break;
  4471. case DXC_FULL_CONTROL_MODE:
  4472. case DXC_AUTO_PARK_MODE:
  4473. break;
  4474. default:
  4475. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4476. break;
  4477. }
  4478. active_extruder_parked = false;
  4479. extruder_duplication_enabled = false;
  4480. delayed_move_time = 0;
  4481. }
  4482. #endif // DUAL_X_CARRIAGE
  4483. /**
  4484. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4485. */
  4486. inline void gcode_M907() {
  4487. #if HAS_DIGIPOTSS
  4488. for (int i=0;i<NUM_AXIS;i++)
  4489. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4490. if (code_seen('B')) digipot_current(4, code_value());
  4491. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4492. #endif
  4493. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4494. if (code_seen('X')) digipot_current(0, code_value());
  4495. #endif
  4496. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4497. if (code_seen('Z')) digipot_current(1, code_value());
  4498. #endif
  4499. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4500. if (code_seen('E')) digipot_current(2, code_value());
  4501. #endif
  4502. #if ENABLED(DIGIPOT_I2C)
  4503. // this one uses actual amps in floating point
  4504. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4505. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4506. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4507. #endif
  4508. }
  4509. #if HAS_DIGIPOTSS
  4510. /**
  4511. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4512. */
  4513. inline void gcode_M908() {
  4514. digitalPotWrite(
  4515. code_seen('P') ? code_value() : 0,
  4516. code_seen('S') ? code_value() : 0
  4517. );
  4518. }
  4519. #endif // HAS_DIGIPOTSS
  4520. #if HAS_MICROSTEPS
  4521. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4522. inline void gcode_M350() {
  4523. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4524. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4525. if(code_seen('B')) microstep_mode(4,code_value());
  4526. microstep_readings();
  4527. }
  4528. /**
  4529. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4530. * S# determines MS1 or MS2, X# sets the pin high/low.
  4531. */
  4532. inline void gcode_M351() {
  4533. if (code_seen('S')) switch(code_value_short()) {
  4534. case 1:
  4535. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4536. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4537. break;
  4538. case 2:
  4539. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4540. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4541. break;
  4542. }
  4543. microstep_readings();
  4544. }
  4545. #endif // HAS_MICROSTEPS
  4546. /**
  4547. * M999: Restart after being stopped
  4548. */
  4549. inline void gcode_M999() {
  4550. Running = true;
  4551. lcd_reset_alert_level();
  4552. // gcode_LastN = Stopped_gcode_LastN;
  4553. FlushSerialRequestResend();
  4554. }
  4555. /**
  4556. * T0-T3: Switch tool, usually switching extruders
  4557. *
  4558. * F[mm/min] Set the movement feedrate
  4559. */
  4560. inline void gcode_T(uint8_t tmp_extruder) {
  4561. if (tmp_extruder >= EXTRUDERS) {
  4562. SERIAL_ECHO_START;
  4563. SERIAL_CHAR('T');
  4564. SERIAL_PROTOCOL_F(tmp_extruder,DEC);
  4565. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4566. }
  4567. else {
  4568. target_extruder = tmp_extruder;
  4569. #if EXTRUDERS > 1
  4570. bool make_move = false;
  4571. #endif
  4572. if (code_seen('F')) {
  4573. #if EXTRUDERS > 1
  4574. make_move = true;
  4575. #endif
  4576. float next_feedrate = code_value();
  4577. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4578. }
  4579. #if EXTRUDERS > 1
  4580. if (tmp_extruder != active_extruder) {
  4581. // Save current position to return to after applying extruder offset
  4582. set_destination_to_current();
  4583. #if ENABLED(DUAL_X_CARRIAGE)
  4584. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4585. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4586. // Park old head: 1) raise 2) move to park position 3) lower
  4587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4588. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4589. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4590. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4591. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4592. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4593. st_synchronize();
  4594. }
  4595. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4596. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4597. extruder_offset[Y_AXIS][active_extruder] +
  4598. extruder_offset[Y_AXIS][tmp_extruder];
  4599. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4600. extruder_offset[Z_AXIS][active_extruder] +
  4601. extruder_offset[Z_AXIS][tmp_extruder];
  4602. active_extruder = tmp_extruder;
  4603. // This function resets the max/min values - the current position may be overwritten below.
  4604. set_axis_is_at_home(X_AXIS);
  4605. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4606. current_position[X_AXIS] = inactive_extruder_x_pos;
  4607. inactive_extruder_x_pos = destination[X_AXIS];
  4608. }
  4609. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4610. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4611. if (active_extruder == 0 || active_extruder_parked)
  4612. current_position[X_AXIS] = inactive_extruder_x_pos;
  4613. else
  4614. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4615. inactive_extruder_x_pos = destination[X_AXIS];
  4616. extruder_duplication_enabled = false;
  4617. }
  4618. else {
  4619. // record raised toolhead position for use by unpark
  4620. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4621. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4622. active_extruder_parked = true;
  4623. delayed_move_time = 0;
  4624. }
  4625. #else // !DUAL_X_CARRIAGE
  4626. // Offset extruder (only by XY)
  4627. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4628. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4629. // Set the new active extruder and position
  4630. active_extruder = tmp_extruder;
  4631. #endif // !DUAL_X_CARRIAGE
  4632. #if ENABLED(DELTA)
  4633. sync_plan_position_delta();
  4634. #else
  4635. sync_plan_position();
  4636. #endif
  4637. // Move to the old position if 'F' was in the parameters
  4638. if (make_move && IsRunning()) prepare_move();
  4639. }
  4640. #if ENABLED(EXT_SOLENOID)
  4641. st_synchronize();
  4642. disable_all_solenoids();
  4643. enable_solenoid_on_active_extruder();
  4644. #endif // EXT_SOLENOID
  4645. #endif // EXTRUDERS > 1
  4646. SERIAL_ECHO_START;
  4647. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4648. SERIAL_PROTOCOLLN((int)active_extruder);
  4649. }
  4650. }
  4651. /**
  4652. * Process a single command and dispatch it to its handler
  4653. * This is called from the main loop()
  4654. */
  4655. void process_next_command() {
  4656. current_command = command_queue[cmd_queue_index_r];
  4657. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4658. SERIAL_ECHO_START;
  4659. SERIAL_ECHOLN(current_command);
  4660. }
  4661. // Sanitize the current command:
  4662. // - Skip leading spaces
  4663. // - Bypass N[0-9][0-9]*[ ]*
  4664. // - Overwrite * with nul to mark the end
  4665. while (*current_command == ' ') ++current_command;
  4666. if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
  4667. current_command += 2; // skip N[-0-9]
  4668. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  4669. while (*current_command == ' ') ++current_command; // skip [ ]*
  4670. }
  4671. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4672. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  4673. // Get the command code, which must be G, M, or T
  4674. char command_code = *current_command;
  4675. // The code must have a numeric value
  4676. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4677. int codenum; // define ahead of goto
  4678. // Bail early if there's no code
  4679. if (!code_is_good) goto ExitUnknownCommand;
  4680. // Args pointer optimizes code_seen, especially those taking XYZEF
  4681. // This wastes a little cpu on commands that expect no arguments.
  4682. current_command_args = current_command;
  4683. while (*current_command_args && *current_command_args != ' ') ++current_command_args;
  4684. while (*current_command_args == ' ') ++current_command_args;
  4685. // Interpret the code int
  4686. seen_pointer = current_command;
  4687. codenum = code_value_short();
  4688. // Handle a known G, M, or T
  4689. switch(command_code) {
  4690. case 'G': switch (codenum) {
  4691. // G0, G1
  4692. case 0:
  4693. case 1:
  4694. gcode_G0_G1();
  4695. break;
  4696. // G2, G3
  4697. #if DISABLED(SCARA)
  4698. case 2: // G2 - CW ARC
  4699. case 3: // G3 - CCW ARC
  4700. gcode_G2_G3(codenum == 2);
  4701. break;
  4702. #endif
  4703. // G4 Dwell
  4704. case 4:
  4705. gcode_G4();
  4706. break;
  4707. #if ENABLED(FWRETRACT)
  4708. case 10: // G10: retract
  4709. case 11: // G11: retract_recover
  4710. gcode_G10_G11(codenum == 10);
  4711. break;
  4712. #endif //FWRETRACT
  4713. case 28: // G28: Home all axes, one at a time
  4714. gcode_G28();
  4715. break;
  4716. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  4717. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  4718. gcode_G29();
  4719. break;
  4720. #endif
  4721. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  4722. #if DISABLED(Z_PROBE_SLED)
  4723. case 30: // G30 Single Z probe
  4724. gcode_G30();
  4725. break;
  4726. #else // Z_PROBE_SLED
  4727. case 31: // G31: dock the sled
  4728. case 32: // G32: undock the sled
  4729. dock_sled(codenum == 31);
  4730. break;
  4731. #endif // Z_PROBE_SLED
  4732. #endif // AUTO_BED_LEVELING_FEATURE
  4733. case 90: // G90
  4734. relative_mode = false;
  4735. break;
  4736. case 91: // G91
  4737. relative_mode = true;
  4738. break;
  4739. case 92: // G92
  4740. gcode_G92();
  4741. break;
  4742. }
  4743. break;
  4744. case 'M': switch (codenum) {
  4745. #if ENABLED(ULTIPANEL)
  4746. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4747. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4748. gcode_M0_M1();
  4749. break;
  4750. #endif // ULTIPANEL
  4751. case 17:
  4752. gcode_M17();
  4753. break;
  4754. #if ENABLED(SDSUPPORT)
  4755. case 20: // M20 - list SD card
  4756. gcode_M20(); break;
  4757. case 21: // M21 - init SD card
  4758. gcode_M21(); break;
  4759. case 22: //M22 - release SD card
  4760. gcode_M22(); break;
  4761. case 23: //M23 - Select file
  4762. gcode_M23(); break;
  4763. case 24: //M24 - Start SD print
  4764. gcode_M24(); break;
  4765. case 25: //M25 - Pause SD print
  4766. gcode_M25(); break;
  4767. case 26: //M26 - Set SD index
  4768. gcode_M26(); break;
  4769. case 27: //M27 - Get SD status
  4770. gcode_M27(); break;
  4771. case 28: //M28 - Start SD write
  4772. gcode_M28(); break;
  4773. case 29: //M29 - Stop SD write
  4774. gcode_M29(); break;
  4775. case 30: //M30 <filename> Delete File
  4776. gcode_M30(); break;
  4777. case 32: //M32 - Select file and start SD print
  4778. gcode_M32(); break;
  4779. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4780. case 33: //M33 - Get the long full path to a file or folder
  4781. gcode_M33(); break;
  4782. #endif // LONG_FILENAME_HOST_SUPPORT
  4783. case 928: //M928 - Start SD write
  4784. gcode_M928(); break;
  4785. #endif //SDSUPPORT
  4786. case 31: //M31 take time since the start of the SD print or an M109 command
  4787. gcode_M31();
  4788. break;
  4789. case 42: //M42 -Change pin status via gcode
  4790. gcode_M42();
  4791. break;
  4792. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4793. case 48: // M48 Z probe repeatability
  4794. gcode_M48();
  4795. break;
  4796. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  4797. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  4798. case 100:
  4799. gcode_M100();
  4800. break;
  4801. #endif
  4802. case 104: // M104
  4803. gcode_M104();
  4804. break;
  4805. case 111: // M111: Set debug level
  4806. gcode_M111();
  4807. break;
  4808. case 112: // M112: Emergency Stop
  4809. gcode_M112();
  4810. break;
  4811. case 140: // M140: Set bed temp
  4812. gcode_M140();
  4813. break;
  4814. case 105: // M105: Read current temperature
  4815. gcode_M105();
  4816. return; // "ok" already printed
  4817. case 109: // M109: Wait for temperature
  4818. gcode_M109();
  4819. break;
  4820. #if HAS_TEMP_BED
  4821. case 190: // M190: Wait for bed heater to reach target
  4822. gcode_M190();
  4823. break;
  4824. #endif // HAS_TEMP_BED
  4825. #if HAS_FAN
  4826. case 106: // M106: Fan On
  4827. gcode_M106();
  4828. break;
  4829. case 107: // M107: Fan Off
  4830. gcode_M107();
  4831. break;
  4832. #endif // HAS_FAN
  4833. #if ENABLED(BARICUDA)
  4834. // PWM for HEATER_1_PIN
  4835. #if HAS_HEATER_1
  4836. case 126: // M126: valve open
  4837. gcode_M126();
  4838. break;
  4839. case 127: // M127: valve closed
  4840. gcode_M127();
  4841. break;
  4842. #endif // HAS_HEATER_1
  4843. // PWM for HEATER_2_PIN
  4844. #if HAS_HEATER_2
  4845. case 128: // M128: valve open
  4846. gcode_M128();
  4847. break;
  4848. case 129: // M129: valve closed
  4849. gcode_M129();
  4850. break;
  4851. #endif // HAS_HEATER_2
  4852. #endif // BARICUDA
  4853. #if HAS_POWER_SWITCH
  4854. case 80: // M80: Turn on Power Supply
  4855. gcode_M80();
  4856. break;
  4857. #endif // HAS_POWER_SWITCH
  4858. case 81: // M81: Turn off Power, including Power Supply, if possible
  4859. gcode_M81();
  4860. break;
  4861. case 82:
  4862. gcode_M82();
  4863. break;
  4864. case 83:
  4865. gcode_M83();
  4866. break;
  4867. case 18: // (for compatibility)
  4868. case 84: // M84
  4869. gcode_M18_M84();
  4870. break;
  4871. case 85: // M85
  4872. gcode_M85();
  4873. break;
  4874. case 92: // M92: Set the steps-per-unit for one or more axes
  4875. gcode_M92();
  4876. break;
  4877. case 115: // M115: Report capabilities
  4878. gcode_M115();
  4879. break;
  4880. case 117: // M117: Set LCD message text, if possible
  4881. gcode_M117();
  4882. break;
  4883. case 114: // M114: Report current position
  4884. gcode_M114();
  4885. break;
  4886. case 120: // M120: Enable endstops
  4887. gcode_M120();
  4888. break;
  4889. case 121: // M121: Disable endstops
  4890. gcode_M121();
  4891. break;
  4892. case 119: // M119: Report endstop states
  4893. gcode_M119();
  4894. break;
  4895. #if ENABLED(ULTIPANEL)
  4896. case 145: // M145: Set material heatup parameters
  4897. gcode_M145();
  4898. break;
  4899. #endif
  4900. #if ENABLED(BLINKM)
  4901. case 150: // M150
  4902. gcode_M150();
  4903. break;
  4904. #endif //BLINKM
  4905. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4906. gcode_M200();
  4907. break;
  4908. case 201: // M201
  4909. gcode_M201();
  4910. break;
  4911. #if 0 // Not used for Sprinter/grbl gen6
  4912. case 202: // M202
  4913. gcode_M202();
  4914. break;
  4915. #endif
  4916. case 203: // M203 max feedrate mm/sec
  4917. gcode_M203();
  4918. break;
  4919. case 204: // M204 acclereration S normal moves T filmanent only moves
  4920. gcode_M204();
  4921. break;
  4922. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4923. gcode_M205();
  4924. break;
  4925. case 206: // M206 additional homing offset
  4926. gcode_M206();
  4927. break;
  4928. #if ENABLED(DELTA)
  4929. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4930. gcode_M665();
  4931. break;
  4932. #endif
  4933. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  4934. case 666: // M666 set delta / dual endstop adjustment
  4935. gcode_M666();
  4936. break;
  4937. #endif
  4938. #if ENABLED(FWRETRACT)
  4939. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4940. gcode_M207();
  4941. break;
  4942. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4943. gcode_M208();
  4944. break;
  4945. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4946. gcode_M209();
  4947. break;
  4948. #endif // FWRETRACT
  4949. #if EXTRUDERS > 1
  4950. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4951. gcode_M218();
  4952. break;
  4953. #endif
  4954. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4955. gcode_M220();
  4956. break;
  4957. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4958. gcode_M221();
  4959. break;
  4960. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4961. gcode_M226();
  4962. break;
  4963. #if HAS_SERVOS
  4964. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4965. gcode_M280();
  4966. break;
  4967. #endif // HAS_SERVOS
  4968. #if HAS_BUZZER
  4969. case 300: // M300 - Play beep tone
  4970. gcode_M300();
  4971. break;
  4972. #endif // HAS_BUZZER
  4973. #if ENABLED(PIDTEMP)
  4974. case 301: // M301
  4975. gcode_M301();
  4976. break;
  4977. #endif // PIDTEMP
  4978. #if ENABLED(PIDTEMPBED)
  4979. case 304: // M304
  4980. gcode_M304();
  4981. break;
  4982. #endif // PIDTEMPBED
  4983. #if defined(CHDK) || HAS_PHOTOGRAPH
  4984. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4985. gcode_M240();
  4986. break;
  4987. #endif // CHDK || PHOTOGRAPH_PIN
  4988. #if ENABLED(HAS_LCD_CONTRAST)
  4989. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4990. gcode_M250();
  4991. break;
  4992. #endif // HAS_LCD_CONTRAST
  4993. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4994. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4995. gcode_M302();
  4996. break;
  4997. #endif // PREVENT_DANGEROUS_EXTRUDE
  4998. case 303: // M303 PID autotune
  4999. gcode_M303();
  5000. break;
  5001. #if ENABLED(SCARA)
  5002. case 360: // M360 SCARA Theta pos1
  5003. if (gcode_M360()) return;
  5004. break;
  5005. case 361: // M361 SCARA Theta pos2
  5006. if (gcode_M361()) return;
  5007. break;
  5008. case 362: // M362 SCARA Psi pos1
  5009. if (gcode_M362()) return;
  5010. break;
  5011. case 363: // M363 SCARA Psi pos2
  5012. if (gcode_M363()) return;
  5013. break;
  5014. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5015. if (gcode_M364()) return;
  5016. break;
  5017. case 365: // M365 Set SCARA scaling for X Y Z
  5018. gcode_M365();
  5019. break;
  5020. #endif // SCARA
  5021. case 400: // M400 finish all moves
  5022. gcode_M400();
  5023. break;
  5024. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5025. case 401:
  5026. gcode_M401();
  5027. break;
  5028. case 402:
  5029. gcode_M402();
  5030. break;
  5031. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5032. #if ENABLED(FILAMENT_SENSOR)
  5033. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5034. gcode_M404();
  5035. break;
  5036. case 405: //M405 Turn on filament sensor for control
  5037. gcode_M405();
  5038. break;
  5039. case 406: //M406 Turn off filament sensor for control
  5040. gcode_M406();
  5041. break;
  5042. case 407: //M407 Display measured filament diameter
  5043. gcode_M407();
  5044. break;
  5045. #endif // FILAMENT_SENSOR
  5046. case 410: // M410 quickstop - Abort all the planned moves.
  5047. gcode_M410();
  5048. break;
  5049. #if ENABLED(MESH_BED_LEVELING)
  5050. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5051. gcode_M420();
  5052. break;
  5053. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5054. gcode_M421();
  5055. break;
  5056. #endif
  5057. case 428: // M428 Apply current_position to home_offset
  5058. gcode_M428();
  5059. break;
  5060. case 500: // M500 Store settings in EEPROM
  5061. gcode_M500();
  5062. break;
  5063. case 501: // M501 Read settings from EEPROM
  5064. gcode_M501();
  5065. break;
  5066. case 502: // M502 Revert to default settings
  5067. gcode_M502();
  5068. break;
  5069. case 503: // M503 print settings currently in memory
  5070. gcode_M503();
  5071. break;
  5072. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5073. case 540:
  5074. gcode_M540();
  5075. break;
  5076. #endif
  5077. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5078. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5079. gcode_SET_Z_PROBE_OFFSET();
  5080. break;
  5081. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5082. #if ENABLED(FILAMENTCHANGEENABLE)
  5083. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5084. gcode_M600();
  5085. break;
  5086. #endif // FILAMENTCHANGEENABLE
  5087. #if ENABLED(DUAL_X_CARRIAGE)
  5088. case 605:
  5089. gcode_M605();
  5090. break;
  5091. #endif // DUAL_X_CARRIAGE
  5092. case 907: // M907 Set digital trimpot motor current using axis codes.
  5093. gcode_M907();
  5094. break;
  5095. #if HAS_DIGIPOTSS
  5096. case 908: // M908 Control digital trimpot directly.
  5097. gcode_M908();
  5098. break;
  5099. #endif // HAS_DIGIPOTSS
  5100. #if HAS_MICROSTEPS
  5101. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5102. gcode_M350();
  5103. break;
  5104. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5105. gcode_M351();
  5106. break;
  5107. #endif // HAS_MICROSTEPS
  5108. case 999: // M999: Restart after being Stopped
  5109. gcode_M999();
  5110. break;
  5111. }
  5112. break;
  5113. case 'T':
  5114. gcode_T(codenum);
  5115. break;
  5116. default: code_is_good = false;
  5117. }
  5118. ExitUnknownCommand:
  5119. // Still unknown command? Throw an error
  5120. if (!code_is_good) unknown_command_error();
  5121. ok_to_send();
  5122. }
  5123. void FlushSerialRequestResend() {
  5124. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5125. MYSERIAL.flush();
  5126. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5127. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5128. ok_to_send();
  5129. }
  5130. void ok_to_send() {
  5131. refresh_cmd_timeout();
  5132. #if ENABLED(SDSUPPORT)
  5133. if (fromsd[cmd_queue_index_r]) return;
  5134. #endif
  5135. SERIAL_PROTOCOLPGM(MSG_OK);
  5136. #if ENABLED(ADVANCED_OK)
  5137. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  5138. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5139. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5140. #endif
  5141. SERIAL_EOL;
  5142. }
  5143. void clamp_to_software_endstops(float target[3]) {
  5144. if (min_software_endstops) {
  5145. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5146. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5147. float negative_z_offset = 0;
  5148. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5149. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5150. if (home_offset[Z_AXIS] < 0) {
  5151. #ifdef DEBUG_LEVELING
  5152. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5153. SERIAL_EOL;
  5154. #endif
  5155. negative_z_offset += home_offset[Z_AXIS];
  5156. }
  5157. #endif
  5158. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5159. }
  5160. if (max_software_endstops) {
  5161. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5162. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5163. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5164. }
  5165. }
  5166. #if ENABLED(DELTA)
  5167. void recalc_delta_settings(float radius, float diagonal_rod) {
  5168. delta_tower1_x = -SIN_60 * radius; // front left tower
  5169. delta_tower1_y = -COS_60 * radius;
  5170. delta_tower2_x = SIN_60 * radius; // front right tower
  5171. delta_tower2_y = -COS_60 * radius;
  5172. delta_tower3_x = 0.0; // back middle tower
  5173. delta_tower3_y = radius;
  5174. delta_diagonal_rod_2 = sq(diagonal_rod);
  5175. }
  5176. void calculate_delta(float cartesian[3]) {
  5177. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  5178. - sq(delta_tower1_x-cartesian[X_AXIS])
  5179. - sq(delta_tower1_y-cartesian[Y_AXIS])
  5180. ) + cartesian[Z_AXIS];
  5181. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  5182. - sq(delta_tower2_x-cartesian[X_AXIS])
  5183. - sq(delta_tower2_y-cartesian[Y_AXIS])
  5184. ) + cartesian[Z_AXIS];
  5185. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  5186. - sq(delta_tower3_x-cartesian[X_AXIS])
  5187. - sq(delta_tower3_y-cartesian[Y_AXIS])
  5188. ) + cartesian[Z_AXIS];
  5189. /*
  5190. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5191. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5192. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5193. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5194. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5195. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5196. */
  5197. }
  5198. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5199. // Adjust print surface height by linear interpolation over the bed_level array.
  5200. void adjust_delta(float cartesian[3]) {
  5201. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5202. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5203. float h1 = 0.001 - half, h2 = half - 0.001,
  5204. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5205. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5206. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5207. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5208. z1 = bed_level[floor_x + half][floor_y + half],
  5209. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5210. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5211. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5212. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5213. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5214. offset = (1 - ratio_x) * left + ratio_x * right;
  5215. delta[X_AXIS] += offset;
  5216. delta[Y_AXIS] += offset;
  5217. delta[Z_AXIS] += offset;
  5218. /*
  5219. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5220. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5221. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5222. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5223. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5224. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5225. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5226. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5227. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5228. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5229. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5230. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5231. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5232. */
  5233. }
  5234. #endif // AUTO_BED_LEVELING_FEATURE
  5235. #endif // DELTA
  5236. #if ENABLED(MESH_BED_LEVELING)
  5237. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5238. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  5239. {
  5240. if (!mbl.active) {
  5241. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5242. set_current_to_destination();
  5243. return;
  5244. }
  5245. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5246. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5247. int ix = mbl.select_x_index(x);
  5248. int iy = mbl.select_y_index(y);
  5249. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5250. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5251. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5252. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5253. if (pix == ix && piy == iy) {
  5254. // Start and end on same mesh square
  5255. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5256. set_current_to_destination();
  5257. return;
  5258. }
  5259. float nx, ny, ne, normalized_dist;
  5260. if (ix > pix && (x_splits) & BIT(ix)) {
  5261. nx = mbl.get_x(ix);
  5262. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5263. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5264. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5265. x_splits ^= BIT(ix);
  5266. } else if (ix < pix && (x_splits) & BIT(pix)) {
  5267. nx = mbl.get_x(pix);
  5268. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5269. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5270. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5271. x_splits ^= BIT(pix);
  5272. } else if (iy > piy && (y_splits) & BIT(iy)) {
  5273. ny = mbl.get_y(iy);
  5274. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5275. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5276. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5277. y_splits ^= BIT(iy);
  5278. } else if (iy < piy && (y_splits) & BIT(piy)) {
  5279. ny = mbl.get_y(piy);
  5280. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5281. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5282. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5283. y_splits ^= BIT(piy);
  5284. } else {
  5285. // Already split on a border
  5286. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5287. set_current_to_destination();
  5288. return;
  5289. }
  5290. // Do the split and look for more borders
  5291. destination[X_AXIS] = nx;
  5292. destination[Y_AXIS] = ny;
  5293. destination[E_AXIS] = ne;
  5294. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5295. destination[X_AXIS] = x;
  5296. destination[Y_AXIS] = y;
  5297. destination[E_AXIS] = e;
  5298. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5299. }
  5300. #endif // MESH_BED_LEVELING
  5301. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5302. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5303. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5304. float de = dest_e - curr_e;
  5305. if (de) {
  5306. if (degHotend(active_extruder) < extrude_min_temp) {
  5307. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5308. SERIAL_ECHO_START;
  5309. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5310. }
  5311. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5312. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5313. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5314. SERIAL_ECHO_START;
  5315. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5316. }
  5317. #endif
  5318. }
  5319. }
  5320. #endif // PREVENT_DANGEROUS_EXTRUDE
  5321. #if ENABLED(DELTA) || ENABLED(SCARA)
  5322. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5323. float difference[NUM_AXIS];
  5324. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5325. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5326. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5327. if (cartesian_mm < 0.000001) return false;
  5328. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5329. int steps = max(1, int(delta_segments_per_second * seconds));
  5330. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5331. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5332. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5333. for (int s = 1; s <= steps; s++) {
  5334. float fraction = float(s) / float(steps);
  5335. for (int8_t i = 0; i < NUM_AXIS; i++)
  5336. target[i] = current_position[i] + difference[i] * fraction;
  5337. calculate_delta(target);
  5338. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5339. adjust_delta(target);
  5340. #endif
  5341. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5342. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5343. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5344. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5345. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5346. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5347. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5348. }
  5349. return true;
  5350. }
  5351. #endif // DELTA || SCARA
  5352. #if ENABLED(SCARA)
  5353. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5354. #endif
  5355. #if ENABLED(DUAL_X_CARRIAGE)
  5356. inline bool prepare_move_dual_x_carriage() {
  5357. if (active_extruder_parked) {
  5358. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5359. // move duplicate extruder into correct duplication position.
  5360. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5361. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5362. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5363. sync_plan_position();
  5364. st_synchronize();
  5365. extruder_duplication_enabled = true;
  5366. active_extruder_parked = false;
  5367. }
  5368. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5369. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5370. // This is a travel move (with no extrusion)
  5371. // Skip it, but keep track of the current position
  5372. // (so it can be used as the start of the next non-travel move)
  5373. if (delayed_move_time != 0xFFFFFFFFUL) {
  5374. set_current_to_destination();
  5375. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5376. delayed_move_time = millis();
  5377. return false;
  5378. }
  5379. }
  5380. delayed_move_time = 0;
  5381. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5382. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5383. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5384. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5385. active_extruder_parked = false;
  5386. }
  5387. }
  5388. return true;
  5389. }
  5390. #endif // DUAL_X_CARRIAGE
  5391. #if DISABLED(DELTA) && DISABLED(SCARA)
  5392. inline bool prepare_move_cartesian() {
  5393. // Do not use feedrate_multiplier for E or Z only moves
  5394. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5395. line_to_destination();
  5396. }
  5397. else {
  5398. #if ENABLED(MESH_BED_LEVELING)
  5399. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5400. return false;
  5401. #else
  5402. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5403. #endif
  5404. }
  5405. return true;
  5406. }
  5407. #endif // !DELTA && !SCARA
  5408. /**
  5409. * Prepare a single move and get ready for the next one
  5410. *
  5411. * (This may call plan_buffer_line several times to put
  5412. * smaller moves into the planner for DELTA or SCARA.)
  5413. */
  5414. void prepare_move() {
  5415. clamp_to_software_endstops(destination);
  5416. refresh_cmd_timeout();
  5417. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5418. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5419. #endif
  5420. #if ENABLED(SCARA)
  5421. if (!prepare_move_scara(destination)) return;
  5422. #elif ENABLED(DELTA)
  5423. if (!prepare_move_delta(destination)) return;
  5424. #endif
  5425. #if ENABLED(DUAL_X_CARRIAGE)
  5426. if (!prepare_move_dual_x_carriage()) return;
  5427. #endif
  5428. #if DISABLED(DELTA) && DISABLED(SCARA)
  5429. if (!prepare_move_cartesian()) return;
  5430. #endif
  5431. set_current_to_destination();
  5432. }
  5433. /**
  5434. * Plan an arc in 2 dimensions
  5435. *
  5436. * The arc is approximated by generating many small linear segments.
  5437. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  5438. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  5439. * larger segments will tend to be more efficient. Your slicer should have
  5440. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  5441. */
  5442. void plan_arc(
  5443. float target[NUM_AXIS], // Destination position
  5444. float *offset, // Center of rotation relative to current_position
  5445. uint8_t clockwise // Clockwise?
  5446. ) {
  5447. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  5448. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  5449. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  5450. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  5451. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  5452. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  5453. r_axis1 = -offset[Y_AXIS],
  5454. rt_axis0 = target[X_AXIS] - center_axis0,
  5455. rt_axis1 = target[Y_AXIS] - center_axis1;
  5456. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  5457. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  5458. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  5459. if (clockwise) { angular_travel -= RADIANS(360); }
  5460. // Make a circle if the angular rotation is 0
  5461. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  5462. angular_travel += RADIANS(360);
  5463. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  5464. if (mm_of_travel < 0.001) { return; }
  5465. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  5466. if (segments == 0) segments = 1;
  5467. float theta_per_segment = angular_travel/segments;
  5468. float linear_per_segment = linear_travel/segments;
  5469. float extruder_per_segment = extruder_travel/segments;
  5470. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  5471. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  5472. r_T = [cos(phi) -sin(phi);
  5473. sin(phi) cos(phi] * r ;
  5474. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  5475. defined from the circle center to the initial position. Each line segment is formed by successive
  5476. vector rotations. This requires only two cos() and sin() computations to form the rotation
  5477. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  5478. all double numbers are single precision on the Arduino. (True double precision will not have
  5479. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  5480. tool precision in some cases. Therefore, arc path correction is implemented.
  5481. Small angle approximation may be used to reduce computation overhead further. This approximation
  5482. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  5483. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  5484. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  5485. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  5486. issue for CNC machines with the single precision Arduino calculations.
  5487. This approximation also allows plan_arc to immediately insert a line segment into the planner
  5488. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  5489. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  5490. This is important when there are successive arc motions.
  5491. */
  5492. // Vector rotation matrix values
  5493. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  5494. float sin_T = theta_per_segment;
  5495. float arc_target[NUM_AXIS];
  5496. float sin_Ti;
  5497. float cos_Ti;
  5498. float r_axisi;
  5499. uint16_t i;
  5500. int8_t count = 0;
  5501. // Initialize the linear axis
  5502. arc_target[Z_AXIS] = current_position[Z_AXIS];
  5503. // Initialize the extruder axis
  5504. arc_target[E_AXIS] = current_position[E_AXIS];
  5505. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  5506. for (i = 1; i < segments; i++) { // Increment (segments-1)
  5507. if (count < N_ARC_CORRECTION) {
  5508. // Apply vector rotation matrix to previous r_axis0 / 1
  5509. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  5510. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  5511. r_axis1 = r_axisi;
  5512. count++;
  5513. }
  5514. else {
  5515. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  5516. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  5517. cos_Ti = cos(i*theta_per_segment);
  5518. sin_Ti = sin(i*theta_per_segment);
  5519. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  5520. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  5521. count = 0;
  5522. }
  5523. // Update arc_target location
  5524. arc_target[X_AXIS] = center_axis0 + r_axis0;
  5525. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  5526. arc_target[Z_AXIS] += linear_per_segment;
  5527. arc_target[E_AXIS] += extruder_per_segment;
  5528. clamp_to_software_endstops(arc_target);
  5529. #if ENABLED(DELTA) || ENABLED(SCARA)
  5530. calculate_delta(arc_target);
  5531. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5532. adjust_delta(arc_target);
  5533. #endif
  5534. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5535. #else
  5536. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5537. #endif
  5538. }
  5539. // Ensure last segment arrives at target location.
  5540. #if ENABLED(DELTA) || ENABLED(SCARA)
  5541. calculate_delta(target);
  5542. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5543. adjust_delta(target);
  5544. #endif
  5545. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5546. #else
  5547. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5548. #endif
  5549. // As far as the parser is concerned, the position is now == target. In reality the
  5550. // motion control system might still be processing the action and the real tool position
  5551. // in any intermediate location.
  5552. set_current_to_destination();
  5553. }
  5554. #if HAS_CONTROLLERFAN
  5555. void controllerFan() {
  5556. static millis_t lastMotor = 0; // Last time a motor was turned on
  5557. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5558. millis_t ms = millis();
  5559. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5560. lastMotorCheck = ms;
  5561. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5562. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5563. #if EXTRUDERS > 1
  5564. || E1_ENABLE_READ == E_ENABLE_ON
  5565. #if HAS_X2_ENABLE
  5566. || X2_ENABLE_READ == X_ENABLE_ON
  5567. #endif
  5568. #if EXTRUDERS > 2
  5569. || E2_ENABLE_READ == E_ENABLE_ON
  5570. #if EXTRUDERS > 3
  5571. || E3_ENABLE_READ == E_ENABLE_ON
  5572. #endif
  5573. #endif
  5574. #endif
  5575. ) {
  5576. lastMotor = ms; //... set time to NOW so the fan will turn on
  5577. }
  5578. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5579. // allows digital or PWM fan output to be used (see M42 handling)
  5580. digitalWrite(CONTROLLERFAN_PIN, speed);
  5581. analogWrite(CONTROLLERFAN_PIN, speed);
  5582. }
  5583. }
  5584. #endif // HAS_CONTROLLERFAN
  5585. #if ENABLED(SCARA)
  5586. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5587. // Perform forward kinematics, and place results in delta[3]
  5588. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5589. float x_sin, x_cos, y_sin, y_cos;
  5590. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5591. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5592. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5593. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5594. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5595. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5596. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5597. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5598. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5599. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5600. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5601. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5602. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5603. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5604. }
  5605. void calculate_delta(float cartesian[3]){
  5606. //reverse kinematics.
  5607. // Perform reversed kinematics, and place results in delta[3]
  5608. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5609. float SCARA_pos[2];
  5610. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5611. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5612. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5613. #if (Linkage_1 == Linkage_2)
  5614. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5615. #else
  5616. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5617. #endif
  5618. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5619. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5620. SCARA_K2 = Linkage_2 * SCARA_S2;
  5621. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5622. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5623. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5624. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5625. delta[Z_AXIS] = cartesian[Z_AXIS];
  5626. /*
  5627. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5628. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5629. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5630. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5631. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5632. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5633. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5634. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5635. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5636. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5637. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5638. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5639. SERIAL_EOL;
  5640. */
  5641. }
  5642. #endif // SCARA
  5643. #if ENABLED(TEMP_STAT_LEDS)
  5644. static bool red_led = false;
  5645. static millis_t next_status_led_update_ms = 0;
  5646. void handle_status_leds(void) {
  5647. float max_temp = 0.0;
  5648. if (millis() > next_status_led_update_ms) {
  5649. next_status_led_update_ms += 500; // Update every 0.5s
  5650. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5651. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5652. #if HAS_TEMP_BED
  5653. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5654. #endif
  5655. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5656. if (new_led != red_led) {
  5657. red_led = new_led;
  5658. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5659. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5660. }
  5661. }
  5662. }
  5663. #endif
  5664. void enable_all_steppers() {
  5665. enable_x();
  5666. enable_y();
  5667. enable_z();
  5668. enable_e0();
  5669. enable_e1();
  5670. enable_e2();
  5671. enable_e3();
  5672. }
  5673. void disable_all_steppers() {
  5674. disable_x();
  5675. disable_y();
  5676. disable_z();
  5677. disable_e0();
  5678. disable_e1();
  5679. disable_e2();
  5680. disable_e3();
  5681. }
  5682. /**
  5683. * Standard idle routine keeps the machine alive
  5684. */
  5685. void idle() {
  5686. manage_heater();
  5687. manage_inactivity();
  5688. lcd_update();
  5689. }
  5690. /**
  5691. * Manage several activities:
  5692. * - Check for Filament Runout
  5693. * - Keep the command buffer full
  5694. * - Check for maximum inactive time between commands
  5695. * - Check for maximum inactive time between stepper commands
  5696. * - Check if pin CHDK needs to go LOW
  5697. * - Check for KILL button held down
  5698. * - Check for HOME button held down
  5699. * - Check if cooling fan needs to be switched on
  5700. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5701. */
  5702. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5703. #if HAS_FILRUNOUT
  5704. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5705. filrunout();
  5706. #endif
  5707. if (commands_in_queue < BUFSIZE - 1) get_command();
  5708. millis_t ms = millis();
  5709. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5710. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5711. && !ignore_stepper_queue && !blocks_queued()) {
  5712. #if DISABLE_X == true
  5713. disable_x();
  5714. #endif
  5715. #if DISABLE_Y == true
  5716. disable_y();
  5717. #endif
  5718. #if DISABLE_Z == true
  5719. disable_z();
  5720. #endif
  5721. #if DISABLE_E == true
  5722. disable_e0();
  5723. disable_e1();
  5724. disable_e2();
  5725. disable_e3();
  5726. #endif
  5727. }
  5728. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5729. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5730. chdkActive = false;
  5731. WRITE(CHDK, LOW);
  5732. }
  5733. #endif
  5734. #if HAS_KILL
  5735. // Check if the kill button was pressed and wait just in case it was an accidental
  5736. // key kill key press
  5737. // -------------------------------------------------------------------------------
  5738. static int killCount = 0; // make the inactivity button a bit less responsive
  5739. const int KILL_DELAY = 750;
  5740. if (!READ(KILL_PIN))
  5741. killCount++;
  5742. else if (killCount > 0)
  5743. killCount--;
  5744. // Exceeded threshold and we can confirm that it was not accidental
  5745. // KILL the machine
  5746. // ----------------------------------------------------------------
  5747. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5748. #endif
  5749. #if HAS_HOME
  5750. // Check to see if we have to home, use poor man's debouncer
  5751. // ---------------------------------------------------------
  5752. static int homeDebounceCount = 0; // poor man's debouncing count
  5753. const int HOME_DEBOUNCE_DELAY = 750;
  5754. if (!READ(HOME_PIN)) {
  5755. if (!homeDebounceCount) {
  5756. enqueuecommands_P(PSTR("G28"));
  5757. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5758. }
  5759. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5760. homeDebounceCount++;
  5761. else
  5762. homeDebounceCount = 0;
  5763. }
  5764. #endif
  5765. #if HAS_CONTROLLERFAN
  5766. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5767. #endif
  5768. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  5769. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5770. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5771. bool oldstatus;
  5772. switch(active_extruder) {
  5773. case 0:
  5774. oldstatus = E0_ENABLE_READ;
  5775. enable_e0();
  5776. break;
  5777. #if EXTRUDERS > 1
  5778. case 1:
  5779. oldstatus = E1_ENABLE_READ;
  5780. enable_e1();
  5781. break;
  5782. #if EXTRUDERS > 2
  5783. case 2:
  5784. oldstatus = E2_ENABLE_READ;
  5785. enable_e2();
  5786. break;
  5787. #if EXTRUDERS > 3
  5788. case 3:
  5789. oldstatus = E3_ENABLE_READ;
  5790. enable_e3();
  5791. break;
  5792. #endif
  5793. #endif
  5794. #endif
  5795. }
  5796. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5797. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5798. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5799. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5800. current_position[E_AXIS] = oldepos;
  5801. destination[E_AXIS] = oldedes;
  5802. plan_set_e_position(oldepos);
  5803. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5804. st_synchronize();
  5805. switch(active_extruder) {
  5806. case 0:
  5807. E0_ENABLE_WRITE(oldstatus);
  5808. break;
  5809. #if EXTRUDERS > 1
  5810. case 1:
  5811. E1_ENABLE_WRITE(oldstatus);
  5812. break;
  5813. #if EXTRUDERS > 2
  5814. case 2:
  5815. E2_ENABLE_WRITE(oldstatus);
  5816. break;
  5817. #if EXTRUDERS > 3
  5818. case 3:
  5819. E3_ENABLE_WRITE(oldstatus);
  5820. break;
  5821. #endif
  5822. #endif
  5823. #endif
  5824. }
  5825. }
  5826. #endif
  5827. #if ENABLED(DUAL_X_CARRIAGE)
  5828. // handle delayed move timeout
  5829. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5830. // travel moves have been received so enact them
  5831. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5832. set_destination_to_current();
  5833. prepare_move();
  5834. }
  5835. #endif
  5836. #if ENABLED(TEMP_STAT_LEDS)
  5837. handle_status_leds();
  5838. #endif
  5839. check_axes_activity();
  5840. }
  5841. void kill(const char *lcd_msg) {
  5842. #if ENABLED(ULTRA_LCD)
  5843. lcd_setalertstatuspgm(lcd_msg);
  5844. #endif
  5845. cli(); // Stop interrupts
  5846. disable_all_heaters();
  5847. disable_all_steppers();
  5848. #if HAS_POWER_SWITCH
  5849. pinMode(PS_ON_PIN, INPUT);
  5850. #endif
  5851. SERIAL_ERROR_START;
  5852. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5853. // FMC small patch to update the LCD before ending
  5854. sei(); // enable interrupts
  5855. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5856. cli(); // disable interrupts
  5857. suicide();
  5858. while(1) { /* Intentionally left empty */ } // Wait for reset
  5859. }
  5860. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5861. void filrunout() {
  5862. if (!filrunoutEnqueued) {
  5863. filrunoutEnqueued = true;
  5864. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5865. st_synchronize();
  5866. }
  5867. }
  5868. #endif // FILAMENT_RUNOUT_SENSOR
  5869. #if ENABLED(FAST_PWM_FAN)
  5870. void setPwmFrequency(uint8_t pin, int val) {
  5871. val &= 0x07;
  5872. switch (digitalPinToTimer(pin)) {
  5873. #if defined(TCCR0A)
  5874. case TIMER0A:
  5875. case TIMER0B:
  5876. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5877. // TCCR0B |= val;
  5878. break;
  5879. #endif
  5880. #if defined(TCCR1A)
  5881. case TIMER1A:
  5882. case TIMER1B:
  5883. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5884. // TCCR1B |= val;
  5885. break;
  5886. #endif
  5887. #if defined(TCCR2)
  5888. case TIMER2:
  5889. case TIMER2:
  5890. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5891. TCCR2 |= val;
  5892. break;
  5893. #endif
  5894. #if defined(TCCR2A)
  5895. case TIMER2A:
  5896. case TIMER2B:
  5897. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5898. TCCR2B |= val;
  5899. break;
  5900. #endif
  5901. #if defined(TCCR3A)
  5902. case TIMER3A:
  5903. case TIMER3B:
  5904. case TIMER3C:
  5905. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5906. TCCR3B |= val;
  5907. break;
  5908. #endif
  5909. #if defined(TCCR4A)
  5910. case TIMER4A:
  5911. case TIMER4B:
  5912. case TIMER4C:
  5913. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5914. TCCR4B |= val;
  5915. break;
  5916. #endif
  5917. #if defined(TCCR5A)
  5918. case TIMER5A:
  5919. case TIMER5B:
  5920. case TIMER5C:
  5921. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5922. TCCR5B |= val;
  5923. break;
  5924. #endif
  5925. }
  5926. }
  5927. #endif // FAST_PWM_FAN
  5928. void Stop() {
  5929. disable_all_heaters();
  5930. if (IsRunning()) {
  5931. Running = false;
  5932. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5933. SERIAL_ERROR_START;
  5934. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5935. LCD_MESSAGEPGM(MSG_STOPPED);
  5936. }
  5937. }
  5938. /**
  5939. * Set target_extruder from the T parameter or the active_extruder
  5940. *
  5941. * Returns TRUE if the target is invalid
  5942. */
  5943. bool setTargetedHotend(int code) {
  5944. target_extruder = active_extruder;
  5945. if (code_seen('T')) {
  5946. target_extruder = code_value_short();
  5947. if (target_extruder >= EXTRUDERS) {
  5948. SERIAL_ECHO_START;
  5949. SERIAL_CHAR('M');
  5950. SERIAL_ECHO(code);
  5951. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  5952. SERIAL_ECHOLN(target_extruder);
  5953. return true;
  5954. }
  5955. }
  5956. return false;
  5957. }
  5958. float calculate_volumetric_multiplier(float diameter) {
  5959. if (!volumetric_enabled || diameter == 0) return 1.0;
  5960. float d2 = diameter * 0.5;
  5961. return 1.0 / (M_PI * d2 * d2);
  5962. }
  5963. void calculate_volumetric_multipliers() {
  5964. for (int i=0; i<EXTRUDERS; i++)
  5965. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5966. }