My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

configuration_store.cpp 90KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V63"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #if ADD_PORT_ARG
  45. #define PORTARG_SOLO const int8_t port
  46. #define PORTARG_AFTER ,const int8_t port
  47. #define PORTVAR_SOLO port
  48. #else
  49. #define PORTARG_SOLO
  50. #define PORTARG_AFTER
  51. #define PORTVAR_SOLO
  52. #endif
  53. #include "endstops.h"
  54. #include "planner.h"
  55. #include "stepper.h"
  56. #include "temperature.h"
  57. #include "../lcd/ultralcd.h"
  58. #include "../core/language.h"
  59. #include "../libs/vector_3.h"
  60. #include "../gcode/gcode.h"
  61. #include "../Marlin.h"
  62. #if ENABLED(EEPROM_SETTINGS) || ENABLED(SD_FIRMWARE_UPDATE)
  63. #include "../HAL/shared/persistent_store_api.h"
  64. #endif
  65. #if HAS_LEVELING
  66. #include "../feature/bedlevel/bedlevel.h"
  67. #endif
  68. #if HAS_SERVOS
  69. #include "servo.h"
  70. #endif
  71. #if HAS_SERVOS && HAS_SERVO_ANGLES
  72. #define EEPROM_NUM_SERVOS NUM_SERVOS
  73. #else
  74. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  75. #endif
  76. #if HAS_BED_PROBE
  77. #include "../module/probe.h"
  78. #endif
  79. #include "../feature/fwretract.h"
  80. #if ENABLED(POWER_LOSS_RECOVERY)
  81. #include "../feature/power_loss_recovery.h"
  82. #endif
  83. #include "../feature/pause.h"
  84. #if EXTRUDERS > 1
  85. #include "tool_change.h"
  86. void M217_report(const bool eeprom);
  87. #endif
  88. #if HAS_TRINAMIC
  89. #include "stepper_indirection.h"
  90. #include "../feature/tmc_util.h"
  91. #define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.settings.axis_steps_per_mm[_AXIS(A)])
  92. #endif
  93. #pragma pack(push, 1) // No padding between variables
  94. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t;
  95. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t;
  96. typedef struct { int16_t X, Y, Z; } tmc_sgt_t;
  97. // Limit an index to an array size
  98. #define ALIM(I,ARR) MIN(I, COUNT(ARR) - 1)
  99. /**
  100. * Current EEPROM Layout
  101. *
  102. * Keep this data structure up to date so
  103. * EEPROM size is known at compile time!
  104. */
  105. typedef struct SettingsDataStruct {
  106. char version[4]; // Vnn\0
  107. uint16_t crc; // Data Checksum
  108. //
  109. // DISTINCT_E_FACTORS
  110. //
  111. uint8_t esteppers; // XYZE_N - XYZ
  112. planner_settings_t planner_settings;
  113. float planner_max_jerk[XYZE], // M205 XYZE planner.max_jerk[XYZE]
  114. planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  115. float home_offset[XYZ]; // M206 XYZ / M665 TPZ
  116. #if HAS_HOTEND_OFFSET
  117. float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
  118. #endif
  119. //
  120. // ENABLE_LEVELING_FADE_HEIGHT
  121. //
  122. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  123. //
  124. // MESH_BED_LEVELING
  125. //
  126. float mbl_z_offset; // mbl.z_offset
  127. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  128. #if ENABLED(MESH_BED_LEVELING)
  129. float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
  130. #else
  131. float mbl_z_values[3][3];
  132. #endif
  133. //
  134. // HAS_BED_PROBE
  135. //
  136. float zprobe_zoffset;
  137. //
  138. // ABL_PLANAR
  139. //
  140. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  141. //
  142. // AUTO_BED_LEVELING_BILINEAR
  143. //
  144. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  145. int bilinear_grid_spacing[2],
  146. bilinear_start[2]; // G29 L F
  147. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  148. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
  149. #else
  150. float z_values[3][3];
  151. #endif
  152. //
  153. // AUTO_BED_LEVELING_UBL
  154. //
  155. bool planner_leveling_active; // M420 S planner.leveling_active
  156. int8_t ubl_storage_slot; // ubl.storage_slot
  157. //
  158. // SERVO_ANGLES
  159. //
  160. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  161. //
  162. // DELTA / [XYZ]_DUAL_ENDSTOPS
  163. //
  164. #if ENABLED(DELTA)
  165. float delta_height, // M666 H
  166. delta_endstop_adj[ABC], // M666 XYZ
  167. delta_radius, // M665 R
  168. delta_diagonal_rod, // M665 L
  169. delta_segments_per_second, // M665 S
  170. delta_calibration_radius, // M665 B
  171. delta_tower_angle_trim[ABC]; // M665 XYZ
  172. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  173. float x2_endstop_adj, // M666 X
  174. y2_endstop_adj, // M666 Y
  175. z2_endstop_adj, // M666 Z (S2)
  176. z3_endstop_adj; // M666 Z (S3)
  177. #endif
  178. //
  179. // ULTIPANEL
  180. //
  181. int16_t ui_preheat_hotend_temp[2], // M145 S0 H
  182. ui_preheat_bed_temp[2]; // M145 S0 B
  183. uint8_t ui_preheat_fan_speed[2]; // M145 S0 F
  184. //
  185. // PIDTEMP
  186. //
  187. PIDC_t hotendPID[HOTENDS]; // M301 En PIDC / M303 En U
  188. int16_t lpq_len; // M301 L
  189. //
  190. // PIDTEMPBED
  191. //
  192. PID_t bedPID; // M304 PID / M303 E-1 U
  193. //
  194. // HAS_LCD_CONTRAST
  195. //
  196. int16_t lcd_contrast; // M250 C
  197. //
  198. // POWER_LOSS_RECOVERY
  199. //
  200. bool recovery_enabled; // M413 S
  201. //
  202. // FWRETRACT
  203. //
  204. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  205. bool autoretract_enabled; // M209 S
  206. //
  207. // !NO_VOLUMETRIC
  208. //
  209. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  210. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  211. //
  212. // HAS_TRINAMIC
  213. //
  214. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  215. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  216. tmc_sgt_t tmc_sgt; // M914 X Y Z
  217. //
  218. // LIN_ADVANCE
  219. //
  220. float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K
  221. //
  222. // HAS_MOTOR_CURRENT_PWM
  223. //
  224. uint32_t motor_current_setting[3]; // M907 X Z E
  225. //
  226. // CNC_COORDINATE_SYSTEMS
  227. //
  228. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
  229. //
  230. // SKEW_CORRECTION
  231. //
  232. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  233. //
  234. // ADVANCED_PAUSE_FEATURE
  235. //
  236. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  237. //
  238. // Tool-change settings
  239. //
  240. #if EXTRUDERS > 1
  241. toolchange_settings_t toolchange_settings; // M217 S P R
  242. #endif
  243. } SettingsData;
  244. MarlinSettings settings;
  245. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  246. /**
  247. * Post-process after Retrieve or Reset
  248. */
  249. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  250. float new_z_fade_height;
  251. #endif
  252. void MarlinSettings::postprocess() {
  253. const float oldpos[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] };
  254. // steps per s2 needs to be updated to agree with units per s2
  255. planner.reset_acceleration_rates();
  256. // Make sure delta kinematics are updated before refreshing the
  257. // planner position so the stepper counts will be set correctly.
  258. #if ENABLED(DELTA)
  259. recalc_delta_settings();
  260. #endif
  261. #if ENABLED(PIDTEMP)
  262. thermalManager.updatePID();
  263. #endif
  264. #if DISABLED(NO_VOLUMETRICS)
  265. planner.calculate_volumetric_multipliers();
  266. #else
  267. for (uint8_t i = COUNT(planner.e_factor); i--;)
  268. planner.refresh_e_factor(i);
  269. #endif
  270. // Software endstops depend on home_offset
  271. LOOP_XYZ(i) {
  272. update_workspace_offset((AxisEnum)i);
  273. update_software_endstops((AxisEnum)i);
  274. }
  275. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  276. set_z_fade_height(new_z_fade_height, false); // false = no report
  277. #endif
  278. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  279. refresh_bed_level();
  280. #endif
  281. #if HAS_MOTOR_CURRENT_PWM
  282. stepper.refresh_motor_power();
  283. #endif
  284. #if ENABLED(FWRETRACT)
  285. fwretract.refresh_autoretract();
  286. #endif
  287. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  288. planner.recalculate_max_e_jerk();
  289. #endif
  290. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  291. // and init stepper.count[], planner.position[] with current_position
  292. planner.refresh_positioning();
  293. // Various factors can change the current position
  294. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  295. report_current_position();
  296. }
  297. #if ENABLED(SD_FIRMWARE_UPDATE)
  298. #if ENABLED(EEPROM_SETTINGS)
  299. static_assert(
  300. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  301. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  302. );
  303. #endif
  304. bool MarlinSettings::sd_update_status() {
  305. uint8_t val;
  306. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  307. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  308. }
  309. bool MarlinSettings::set_sd_update_status(const bool enable) {
  310. if (enable != sd_update_status())
  311. persistentStore.write_data(
  312. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  313. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  314. );
  315. return true;
  316. }
  317. #endif // SD_FIRMWARE_UPDATE
  318. #if ENABLED(EEPROM_CHITCHAT)
  319. #define CHITCHAT_ECHO(V) SERIAL_ECHO(V)
  320. #define CHITCHAT_ECHOLNPGM(STR) SERIAL_ECHOLNPGM(STR)
  321. #define CHITCHAT_ECHOPAIR(STR,V) SERIAL_ECHOPAIR(STR,V)
  322. #define CHITCHAT_ECHOLNPAIR(STR,V) SERIAL_ECHOLNPAIR(STR,V)
  323. #define CHITCHAT_ECHO_START_P(port) SERIAL_ECHO_START_P(port)
  324. #define CHITCHAT_ERROR_START_P(port) SERIAL_ERROR_START_P(port)
  325. #define CHITCHAT_ERROR_MSG_P(port, STR) SERIAL_ERROR_MSG_P(port, STR)
  326. #define CHITCHAT_ECHO_P(port, VAL) SERIAL_ECHO_P(port, VAL)
  327. #define CHITCHAT_ECHOPGM_P(port, STR) SERIAL_ECHOPGM_P(port, STR)
  328. #define CHITCHAT_ECHOLNPGM_P(port, STR) SERIAL_ECHOLNPGM_P(port, STR)
  329. #define CHITCHAT_ECHOPAIR_P(port, STR, VAL) SERIAL_ECHOPAIR_P(port, STR, VAL)
  330. #define CHITCHAT_ECHOLNPAIR_P(port, STR, VAL) SERIAL_ECHOLNPAIR_P(port, STR, VAL)
  331. #define CHITCHAT_EOL() SERIAL_EOL()
  332. #else
  333. #define CHITCHAT_ECHO(V) NOOP
  334. #define CHITCHAT_ECHOLNPGM(STR) NOOP
  335. #define CHITCHAT_ECHOPAIR(STR,V) NOOP
  336. #define CHITCHAT_ECHOLNPAIR(STR,V) NOOP
  337. #define CHITCHAT_ECHO_START_P(port) NOOP
  338. #define CHITCHAT_ERROR_START_P(port) NOOP
  339. #define CHITCHAT_ERROR_MSG_P(port, STR) NOOP
  340. #define CHITCHAT_ECHO_P(port, VAL) NOOP
  341. #define CHITCHAT_ECHOPGM_P(port, STR) NOOP
  342. #define CHITCHAT_ECHOLNPGM_P(port, STR) NOOP
  343. #define CHITCHAT_ECHOPAIR_P(port, STR, VAL) NOOP
  344. #define CHITCHAT_ECHOLNPAIR_P(port, STR, VAL) NOOP
  345. #define CHITCHAT_EOL() NOOP
  346. #endif
  347. #if ENABLED(EEPROM_SETTINGS)
  348. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET; persistentStore.access_start()
  349. #define EEPROM_FINISH() persistentStore.access_finish()
  350. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  351. #define EEPROM_WRITE(VAR) persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  352. #define EEPROM_READ(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating)
  353. #define EEPROM_READ_ALWAYS(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  354. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG_P(port, ERR); eeprom_error = true; } }while(0)
  355. #if ENABLED(DEBUG_EEPROM_READWRITE)
  356. #define _FIELD_TEST(FIELD) \
  357. EEPROM_ASSERT( \
  358. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  359. "Field " STRINGIFY(FIELD) " mismatch." \
  360. )
  361. #else
  362. #define _FIELD_TEST(FIELD) NOOP
  363. #endif
  364. const char version[4] = EEPROM_VERSION;
  365. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  366. bool MarlinSettings::size_error(const uint16_t size PORTARG_AFTER) {
  367. if (size != datasize()) {
  368. CHITCHAT_ERROR_MSG_P(port, "EEPROM datasize error.");
  369. return true;
  370. }
  371. return false;
  372. }
  373. /**
  374. * M500 - Store Configuration
  375. */
  376. bool MarlinSettings::save(PORTARG_SOLO) {
  377. float dummy = 0;
  378. char ver[4] = "ERR";
  379. uint16_t working_crc = 0;
  380. EEPROM_START();
  381. eeprom_error = false;
  382. #if ENABLED(FLASH_EEPROM_EMULATION)
  383. EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
  384. #else
  385. EEPROM_WRITE(ver); // invalidate data first
  386. #endif
  387. EEPROM_SKIP(working_crc); // Skip the checksum slot
  388. working_crc = 0; // clear before first "real data"
  389. _FIELD_TEST(esteppers);
  390. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  391. EEPROM_WRITE(esteppers);
  392. //
  393. // Planner Motion
  394. //
  395. {
  396. EEPROM_WRITE(planner.settings);
  397. #if HAS_CLASSIC_JERK
  398. EEPROM_WRITE(planner.max_jerk);
  399. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  400. dummy = float(DEFAULT_EJERK);
  401. EEPROM_WRITE(dummy);
  402. #endif
  403. #else
  404. const float planner_max_jerk[XYZE] = { float(DEFAULT_EJERK) };
  405. EEPROM_WRITE(planner_max_jerk);
  406. #endif
  407. #if ENABLED(JUNCTION_DEVIATION)
  408. EEPROM_WRITE(planner.junction_deviation_mm);
  409. #else
  410. dummy = 0.02f;
  411. EEPROM_WRITE(dummy);
  412. #endif
  413. }
  414. //
  415. // Home Offset
  416. //
  417. {
  418. _FIELD_TEST(home_offset);
  419. #if HAS_SCARA_OFFSET
  420. EEPROM_WRITE(scara_home_offset);
  421. #else
  422. #if !HAS_HOME_OFFSET
  423. const float home_offset[XYZ] = { 0 };
  424. #endif
  425. EEPROM_WRITE(home_offset);
  426. #endif
  427. #if HAS_HOTEND_OFFSET
  428. // Skip hotend 0 which must be 0
  429. for (uint8_t e = 1; e < HOTENDS; e++)
  430. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  431. #endif
  432. }
  433. //
  434. // Global Leveling
  435. //
  436. {
  437. const float zfh = (
  438. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  439. planner.z_fade_height
  440. #else
  441. 10.0
  442. #endif
  443. );
  444. EEPROM_WRITE(zfh);
  445. }
  446. //
  447. // Mesh Bed Leveling
  448. //
  449. {
  450. #if ENABLED(MESH_BED_LEVELING)
  451. // Compile time test that sizeof(mbl.z_values) is as expected
  452. static_assert(
  453. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  454. "MBL Z array is the wrong size."
  455. );
  456. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  457. EEPROM_WRITE(mbl.z_offset);
  458. EEPROM_WRITE(mesh_num_x);
  459. EEPROM_WRITE(mesh_num_y);
  460. EEPROM_WRITE(mbl.z_values);
  461. #else // For disabled MBL write a default mesh
  462. dummy = 0;
  463. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  464. EEPROM_WRITE(dummy); // z_offset
  465. EEPROM_WRITE(mesh_num_x);
  466. EEPROM_WRITE(mesh_num_y);
  467. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  468. #endif
  469. }
  470. //
  471. // Probe Z Offset
  472. //
  473. {
  474. _FIELD_TEST(zprobe_zoffset);
  475. #if !HAS_BED_PROBE
  476. const float zprobe_zoffset = 0;
  477. #endif
  478. EEPROM_WRITE(zprobe_zoffset);
  479. }
  480. //
  481. // Planar Bed Leveling matrix
  482. //
  483. {
  484. #if ABL_PLANAR
  485. EEPROM_WRITE(planner.bed_level_matrix);
  486. #else
  487. dummy = 0;
  488. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  489. #endif
  490. }
  491. //
  492. // Bilinear Auto Bed Leveling
  493. //
  494. {
  495. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  496. // Compile time test that sizeof(z_values) is as expected
  497. static_assert(
  498. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  499. "Bilinear Z array is the wrong size."
  500. );
  501. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  502. EEPROM_WRITE(grid_max_x); // 1 byte
  503. EEPROM_WRITE(grid_max_y); // 1 byte
  504. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  505. EEPROM_WRITE(bilinear_start); // 2 ints
  506. EEPROM_WRITE(z_values); // 9-256 floats
  507. #else
  508. // For disabled Bilinear Grid write an empty 3x3 grid
  509. const uint8_t grid_max_x = 3, grid_max_y = 3;
  510. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  511. dummy = 0;
  512. EEPROM_WRITE(grid_max_x);
  513. EEPROM_WRITE(grid_max_y);
  514. EEPROM_WRITE(bilinear_grid_spacing);
  515. EEPROM_WRITE(bilinear_start);
  516. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  517. #endif
  518. }
  519. //
  520. // Unified Bed Leveling
  521. //
  522. {
  523. _FIELD_TEST(planner_leveling_active);
  524. #if ENABLED(AUTO_BED_LEVELING_UBL)
  525. EEPROM_WRITE(planner.leveling_active);
  526. EEPROM_WRITE(ubl.storage_slot);
  527. #else
  528. const bool ubl_active = false;
  529. const int8_t storage_slot = -1;
  530. EEPROM_WRITE(ubl_active);
  531. EEPROM_WRITE(storage_slot);
  532. #endif // AUTO_BED_LEVELING_UBL
  533. }
  534. //
  535. // Servo Angles
  536. //
  537. {
  538. _FIELD_TEST(servo_angles);
  539. #if !HAS_SERVO_ANGLES
  540. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  541. #endif
  542. EEPROM_WRITE(servo_angles);
  543. }
  544. //
  545. // DELTA Geometry or Dual Endstops offsets
  546. //
  547. {
  548. #if ENABLED(DELTA)
  549. _FIELD_TEST(delta_height);
  550. EEPROM_WRITE(delta_height); // 1 float
  551. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  552. EEPROM_WRITE(delta_radius); // 1 float
  553. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  554. EEPROM_WRITE(delta_segments_per_second); // 1 float
  555. EEPROM_WRITE(delta_calibration_radius); // 1 float
  556. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  557. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  558. _FIELD_TEST(x2_endstop_adj);
  559. // Write dual endstops in X, Y, Z order. Unused = 0.0
  560. dummy = 0;
  561. #if ENABLED(X_DUAL_ENDSTOPS)
  562. EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
  563. #else
  564. EEPROM_WRITE(dummy);
  565. #endif
  566. #if ENABLED(Y_DUAL_ENDSTOPS)
  567. EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
  568. #else
  569. EEPROM_WRITE(dummy);
  570. #endif
  571. #if Z_MULTI_ENDSTOPS
  572. EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
  573. #else
  574. EEPROM_WRITE(dummy);
  575. #endif
  576. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  577. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  578. #else
  579. EEPROM_WRITE(dummy);
  580. #endif
  581. #endif
  582. }
  583. //
  584. // LCD Preheat settings
  585. //
  586. {
  587. _FIELD_TEST(ui_preheat_hotend_temp);
  588. #if HAS_LCD_MENU
  589. const int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  590. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  591. const uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  592. #else
  593. constexpr int16_t ui_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  594. ui_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
  595. constexpr uint8_t ui_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  596. #endif
  597. EEPROM_WRITE(ui_preheat_hotend_temp);
  598. EEPROM_WRITE(ui_preheat_bed_temp);
  599. EEPROM_WRITE(ui_preheat_fan_speed);
  600. }
  601. //
  602. // PIDTEMP
  603. //
  604. {
  605. _FIELD_TEST(hotendPID);
  606. HOTEND_LOOP() {
  607. PIDC_t pidc = {
  608. PID_PARAM(Kp, e), PID_PARAM(Ki, e), PID_PARAM(Kd, e), PID_PARAM(Kc, e)
  609. };
  610. EEPROM_WRITE(pidc);
  611. }
  612. _FIELD_TEST(lpq_len);
  613. #if ENABLED(PID_EXTRUSION_SCALING)
  614. EEPROM_WRITE(thermalManager.lpq_len);
  615. #else
  616. const int16_t lpq_len = 20;
  617. EEPROM_WRITE(lpq_len);
  618. #endif
  619. }
  620. //
  621. // PIDTEMPBED
  622. //
  623. {
  624. _FIELD_TEST(bedPID);
  625. #if DISABLED(PIDTEMPBED)
  626. const PID_t bed_pid = { DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE };
  627. EEPROM_WRITE(bed_pid);
  628. #else
  629. EEPROM_WRITE(thermalManager.bed_pid);
  630. #endif
  631. }
  632. //
  633. // LCD Contrast
  634. //
  635. {
  636. _FIELD_TEST(lcd_contrast);
  637. const int16_t lcd_contrast =
  638. #if HAS_LCD_CONTRAST
  639. ui.contrast
  640. #else
  641. 32
  642. #endif
  643. ;
  644. EEPROM_WRITE(lcd_contrast);
  645. }
  646. //
  647. // Power-Loss Recovery
  648. //
  649. {
  650. _FIELD_TEST(recovery_enabled);
  651. const bool recovery_enabled =
  652. #if ENABLED(POWER_LOSS_RECOVERY)
  653. recovery.enabled
  654. #else
  655. true
  656. #endif
  657. ;
  658. EEPROM_WRITE(recovery_enabled);
  659. }
  660. //
  661. // Firmware Retraction
  662. //
  663. {
  664. _FIELD_TEST(fwretract_settings);
  665. #if ENABLED(FWRETRACT)
  666. EEPROM_WRITE(fwretract.settings);
  667. #else
  668. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  669. EEPROM_WRITE(autoretract_defaults);
  670. #endif
  671. #if ENABLED(FWRETRACT) && ENABLED(FWRETRACT_AUTORETRACT)
  672. EEPROM_WRITE(fwretract.autoretract_enabled);
  673. #else
  674. const bool autoretract_enabled = false;
  675. EEPROM_WRITE(autoretract_enabled);
  676. #endif
  677. }
  678. //
  679. // Volumetric & Filament Size
  680. //
  681. {
  682. _FIELD_TEST(parser_volumetric_enabled);
  683. #if DISABLED(NO_VOLUMETRICS)
  684. EEPROM_WRITE(parser.volumetric_enabled);
  685. EEPROM_WRITE(planner.filament_size);
  686. #else
  687. const bool volumetric_enabled = false;
  688. dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
  689. EEPROM_WRITE(volumetric_enabled);
  690. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  691. #endif
  692. }
  693. //
  694. // TMC Configuration
  695. //
  696. {
  697. _FIELD_TEST(tmc_stepper_current);
  698. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  699. #if HAS_TRINAMIC
  700. #if AXIS_IS_TMC(X)
  701. tmc_stepper_current.X = stepperX.getMilliamps();
  702. #endif
  703. #if AXIS_IS_TMC(Y)
  704. tmc_stepper_current.Y = stepperY.getMilliamps();
  705. #endif
  706. #if AXIS_IS_TMC(Z)
  707. tmc_stepper_current.Z = stepperZ.getMilliamps();
  708. #endif
  709. #if AXIS_IS_TMC(X2)
  710. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  711. #endif
  712. #if AXIS_IS_TMC(Y2)
  713. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  714. #endif
  715. #if AXIS_IS_TMC(Z2)
  716. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  717. #endif
  718. #if AXIS_IS_TMC(Z3)
  719. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  720. #endif
  721. #if MAX_EXTRUDERS
  722. #if AXIS_IS_TMC(E0)
  723. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  724. #endif
  725. #if MAX_EXTRUDERS > 1
  726. #if AXIS_IS_TMC(E1)
  727. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  728. #endif
  729. #if MAX_EXTRUDERS > 2
  730. #if AXIS_IS_TMC(E2)
  731. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  732. #endif
  733. #if MAX_EXTRUDERS > 3
  734. #if AXIS_IS_TMC(E3)
  735. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  736. #endif
  737. #if MAX_EXTRUDERS > 4
  738. #if AXIS_IS_TMC(E4)
  739. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  740. #endif
  741. #if MAX_EXTRUDERS > 5
  742. #if AXIS_IS_TMC(E5)
  743. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  744. #endif
  745. #endif // MAX_EXTRUDERS > 5
  746. #endif // MAX_EXTRUDERS > 4
  747. #endif // MAX_EXTRUDERS > 3
  748. #endif // MAX_EXTRUDERS > 2
  749. #endif // MAX_EXTRUDERS > 1
  750. #endif // MAX_EXTRUDERS
  751. #endif
  752. EEPROM_WRITE(tmc_stepper_current);
  753. }
  754. //
  755. // TMC Hybrid Threshold, and placeholder values
  756. //
  757. {
  758. _FIELD_TEST(tmc_hybrid_threshold);
  759. #if ENABLED(HYBRID_THRESHOLD)
  760. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  761. #if AXIS_HAS_STEALTHCHOP(X)
  762. tmc_hybrid_threshold.X = TMC_GET_PWMTHRS(X, X);
  763. #endif
  764. #if AXIS_HAS_STEALTHCHOP(Y)
  765. tmc_hybrid_threshold.Y = TMC_GET_PWMTHRS(Y, Y);
  766. #endif
  767. #if AXIS_HAS_STEALTHCHOP(Z)
  768. tmc_hybrid_threshold.Z = TMC_GET_PWMTHRS(Z, Z);
  769. #endif
  770. #if AXIS_HAS_STEALTHCHOP(X2)
  771. tmc_hybrid_threshold.X2 = TMC_GET_PWMTHRS(X, X2);
  772. #endif
  773. #if AXIS_HAS_STEALTHCHOP(Y2)
  774. tmc_hybrid_threshold.Y2 = TMC_GET_PWMTHRS(Y, Y2);
  775. #endif
  776. #if AXIS_HAS_STEALTHCHOP(Z2)
  777. tmc_hybrid_threshold.Z2 = TMC_GET_PWMTHRS(Z, Z2);
  778. #endif
  779. #if AXIS_HAS_STEALTHCHOP(Z3)
  780. tmc_hybrid_threshold.Z3 = TMC_GET_PWMTHRS(Z, Z3);
  781. #endif
  782. #if MAX_EXTRUDERS
  783. #if AXIS_HAS_STEALTHCHOP(E0)
  784. tmc_hybrid_threshold.E0 = TMC_GET_PWMTHRS(E, E0);
  785. #endif
  786. #if MAX_EXTRUDERS > 1
  787. #if AXIS_HAS_STEALTHCHOP(E1)
  788. tmc_hybrid_threshold.E1 = TMC_GET_PWMTHRS(E, E1);
  789. #endif
  790. #if MAX_EXTRUDERS > 2
  791. #if AXIS_HAS_STEALTHCHOP(E2)
  792. tmc_hybrid_threshold.E2 = TMC_GET_PWMTHRS(E, E2);
  793. #endif
  794. #if MAX_EXTRUDERS > 3
  795. #if AXIS_HAS_STEALTHCHOP(E3)
  796. tmc_hybrid_threshold.E3 = TMC_GET_PWMTHRS(E, E3);
  797. #endif
  798. #if MAX_EXTRUDERS > 4
  799. #if AXIS_HAS_STEALTHCHOP(E4)
  800. tmc_hybrid_threshold.E4 = TMC_GET_PWMTHRS(E, E4);
  801. #endif
  802. #if MAX_EXTRUDERS > 5
  803. #if AXIS_HAS_STEALTHCHOP(E5)
  804. tmc_hybrid_threshold.E5 = TMC_GET_PWMTHRS(E, E5);
  805. #endif
  806. #endif // MAX_EXTRUDERS > 5
  807. #endif // MAX_EXTRUDERS > 4
  808. #endif // MAX_EXTRUDERS > 3
  809. #endif // MAX_EXTRUDERS > 2
  810. #endif // MAX_EXTRUDERS > 1
  811. #endif // MAX_EXTRUDERS
  812. #else
  813. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  814. .X = 100, .Y = 100, .Z = 3,
  815. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3,
  816. .E0 = 30, .E1 = 30, .E2 = 30,
  817. .E3 = 30, .E4 = 30, .E5 = 30
  818. };
  819. #endif
  820. EEPROM_WRITE(tmc_hybrid_threshold);
  821. }
  822. //
  823. // TMC StallGuard threshold
  824. //
  825. {
  826. tmc_sgt_t tmc_sgt = { 0, 0, 0 };
  827. #if USE_SENSORLESS
  828. #if X_SENSORLESS
  829. tmc_sgt.X = stepperX.sgt();
  830. #endif
  831. #if Y_SENSORLESS
  832. tmc_sgt.Y = stepperY.sgt();
  833. #endif
  834. #if Z_SENSORLESS
  835. tmc_sgt.Z = stepperZ.sgt();
  836. #endif
  837. #endif
  838. EEPROM_WRITE(tmc_sgt);
  839. }
  840. //
  841. // Linear Advance
  842. //
  843. {
  844. _FIELD_TEST(planner_extruder_advance_K);
  845. #if ENABLED(LIN_ADVANCE)
  846. EEPROM_WRITE(planner.extruder_advance_K);
  847. #else
  848. dummy = 0;
  849. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  850. #endif
  851. }
  852. //
  853. // Motor Current PWM
  854. //
  855. {
  856. _FIELD_TEST(motor_current_setting);
  857. #if HAS_MOTOR_CURRENT_PWM
  858. EEPROM_WRITE(stepper.motor_current_setting);
  859. #else
  860. const uint32_t dummyui32[XYZ] = { 0 };
  861. EEPROM_WRITE(dummyui32);
  862. #endif
  863. }
  864. //
  865. // CNC Coordinate Systems
  866. //
  867. _FIELD_TEST(coordinate_system);
  868. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  869. EEPROM_WRITE(gcode.coordinate_system);
  870. #else
  871. const float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ] = { { 0 } };
  872. EEPROM_WRITE(coordinate_system);
  873. #endif
  874. //
  875. // Skew correction factors
  876. //
  877. _FIELD_TEST(planner_skew_factor);
  878. EEPROM_WRITE(planner.skew_factor);
  879. //
  880. // Advanced Pause filament load & unload lengths
  881. //
  882. {
  883. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  884. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  885. #endif
  886. _FIELD_TEST(fc_settings);
  887. EEPROM_WRITE(fc_settings);
  888. }
  889. //
  890. // Multiple Extruders
  891. //
  892. #if EXTRUDERS > 1
  893. _FIELD_TEST(toolchange_settings);
  894. EEPROM_WRITE(toolchange_settings);
  895. #endif
  896. //
  897. // Validate CRC and Data Size
  898. //
  899. if (!eeprom_error) {
  900. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  901. final_crc = working_crc;
  902. // Write the EEPROM header
  903. eeprom_index = EEPROM_OFFSET;
  904. EEPROM_WRITE(version);
  905. EEPROM_WRITE(final_crc);
  906. // Report storage size
  907. CHITCHAT_ECHO_START_P(port);
  908. CHITCHAT_ECHOPAIR_P(port, "Settings Stored (", eeprom_size);
  909. CHITCHAT_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)final_crc);
  910. CHITCHAT_ECHOLNPGM_P(port, ")");
  911. eeprom_error |= size_error(eeprom_size);
  912. }
  913. EEPROM_FINISH();
  914. //
  915. // UBL Mesh
  916. //
  917. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  918. if (ubl.storage_slot >= 0)
  919. store_mesh(ubl.storage_slot);
  920. #endif
  921. return !eeprom_error;
  922. }
  923. /**
  924. * M501 - Retrieve Configuration
  925. */
  926. bool MarlinSettings::_load(PORTARG_SOLO) {
  927. uint16_t working_crc = 0;
  928. EEPROM_START();
  929. char stored_ver[4];
  930. EEPROM_READ_ALWAYS(stored_ver);
  931. uint16_t stored_crc;
  932. EEPROM_READ_ALWAYS(stored_crc);
  933. // Version has to match or defaults are used
  934. if (strncmp(version, stored_ver, 3) != 0) {
  935. if (stored_ver[3] != '\0') {
  936. stored_ver[0] = '?';
  937. stored_ver[1] = '\0';
  938. }
  939. CHITCHAT_ECHO_START_P(port);
  940. CHITCHAT_ECHOPGM_P(port, "EEPROM version mismatch ");
  941. CHITCHAT_ECHOPAIR_P(port, "(EEPROM=", stored_ver);
  942. CHITCHAT_ECHOLNPGM_P(port, " Marlin=" EEPROM_VERSION ")");
  943. eeprom_error = true;
  944. }
  945. else {
  946. float dummy = 0;
  947. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  948. _FIELD_TEST(esteppers);
  949. // Number of esteppers may change
  950. uint8_t esteppers;
  951. EEPROM_READ_ALWAYS(esteppers);
  952. //
  953. // Planner Motion
  954. //
  955. {
  956. // Get only the number of E stepper parameters previously stored
  957. // Any steppers added later are set to their defaults
  958. const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
  959. const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
  960. uint32_t tmp1[XYZ + esteppers];
  961. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  962. EEPROM_READ(planner.settings.min_segment_time_us);
  963. float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
  964. EEPROM_READ(tmp2); // axis_steps_per_mm
  965. EEPROM_READ(tmp3); // max_feedrate_mm_s
  966. if (!validating) LOOP_XYZE_N(i) {
  967. const bool in = (i < esteppers + XYZ);
  968. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)];
  969. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)];
  970. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)];
  971. }
  972. EEPROM_READ(planner.settings.acceleration);
  973. EEPROM_READ(planner.settings.retract_acceleration);
  974. EEPROM_READ(planner.settings.travel_acceleration);
  975. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  976. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  977. #if HAS_CLASSIC_JERK
  978. EEPROM_READ(planner.max_jerk);
  979. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  980. EEPROM_READ(dummy);
  981. #endif
  982. #else
  983. for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
  984. #endif
  985. #if ENABLED(JUNCTION_DEVIATION)
  986. EEPROM_READ(planner.junction_deviation_mm);
  987. #else
  988. EEPROM_READ(dummy);
  989. #endif
  990. }
  991. //
  992. // Home Offset (M206 / M665)
  993. //
  994. {
  995. _FIELD_TEST(home_offset);
  996. #if HAS_SCARA_OFFSET
  997. EEPROM_READ(scara_home_offset);
  998. #else
  999. #if !HAS_HOME_OFFSET
  1000. float home_offset[XYZ];
  1001. #endif
  1002. EEPROM_READ(home_offset);
  1003. #endif
  1004. }
  1005. //
  1006. // Hotend Offsets, if any
  1007. //
  1008. {
  1009. #if HAS_HOTEND_OFFSET
  1010. // Skip hotend 0 which must be 0
  1011. for (uint8_t e = 1; e < HOTENDS; e++)
  1012. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  1013. #endif
  1014. }
  1015. //
  1016. // Global Leveling
  1017. //
  1018. {
  1019. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1020. EEPROM_READ(new_z_fade_height);
  1021. #else
  1022. EEPROM_READ(dummy);
  1023. #endif
  1024. }
  1025. //
  1026. // Mesh (Manual) Bed Leveling
  1027. //
  1028. {
  1029. uint8_t mesh_num_x, mesh_num_y;
  1030. EEPROM_READ(dummy);
  1031. EEPROM_READ_ALWAYS(mesh_num_x);
  1032. EEPROM_READ_ALWAYS(mesh_num_y);
  1033. #if ENABLED(MESH_BED_LEVELING)
  1034. if (!validating) mbl.z_offset = dummy;
  1035. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1036. // EEPROM data fits the current mesh
  1037. EEPROM_READ(mbl.z_values);
  1038. }
  1039. else {
  1040. // EEPROM data is stale
  1041. if (!validating) mbl.reset();
  1042. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1043. }
  1044. #else
  1045. // MBL is disabled - skip the stored data
  1046. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1047. #endif // MESH_BED_LEVELING
  1048. }
  1049. //
  1050. // Probe Z Offset
  1051. //
  1052. {
  1053. _FIELD_TEST(zprobe_zoffset);
  1054. #if !HAS_BED_PROBE
  1055. float zprobe_zoffset;
  1056. #endif
  1057. EEPROM_READ(zprobe_zoffset);
  1058. }
  1059. //
  1060. // Planar Bed Leveling matrix
  1061. //
  1062. {
  1063. #if ABL_PLANAR
  1064. EEPROM_READ(planner.bed_level_matrix);
  1065. #else
  1066. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  1067. #endif
  1068. }
  1069. //
  1070. // Bilinear Auto Bed Leveling
  1071. //
  1072. {
  1073. uint8_t grid_max_x, grid_max_y;
  1074. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1075. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1076. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1077. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1078. if (!validating) set_bed_leveling_enabled(false);
  1079. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1080. EEPROM_READ(bilinear_start); // 2 ints
  1081. EEPROM_READ(z_values); // 9 to 256 floats
  1082. }
  1083. else // EEPROM data is stale
  1084. #endif // AUTO_BED_LEVELING_BILINEAR
  1085. {
  1086. // Skip past disabled (or stale) Bilinear Grid data
  1087. int bgs[2], bs[2];
  1088. EEPROM_READ(bgs);
  1089. EEPROM_READ(bs);
  1090. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  1091. }
  1092. }
  1093. //
  1094. // Unified Bed Leveling active state
  1095. //
  1096. {
  1097. _FIELD_TEST(planner_leveling_active);
  1098. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1099. EEPROM_READ(planner.leveling_active);
  1100. EEPROM_READ(ubl.storage_slot);
  1101. #else
  1102. bool planner_leveling_active;
  1103. uint8_t ubl_storage_slot;
  1104. EEPROM_READ(planner_leveling_active);
  1105. EEPROM_READ(ubl_storage_slot);
  1106. #endif
  1107. }
  1108. //
  1109. // SERVO_ANGLES
  1110. //
  1111. {
  1112. _FIELD_TEST(servo_angles);
  1113. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1114. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1115. #else
  1116. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1117. #endif
  1118. EEPROM_READ(servo_angles_arr);
  1119. }
  1120. //
  1121. // DELTA Geometry or Dual Endstops offsets
  1122. //
  1123. {
  1124. #if ENABLED(DELTA)
  1125. _FIELD_TEST(delta_height);
  1126. EEPROM_READ(delta_height); // 1 float
  1127. EEPROM_READ(delta_endstop_adj); // 3 floats
  1128. EEPROM_READ(delta_radius); // 1 float
  1129. EEPROM_READ(delta_diagonal_rod); // 1 float
  1130. EEPROM_READ(delta_segments_per_second); // 1 float
  1131. EEPROM_READ(delta_calibration_radius); // 1 float
  1132. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1133. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1134. _FIELD_TEST(x2_endstop_adj);
  1135. #if ENABLED(X_DUAL_ENDSTOPS)
  1136. EEPROM_READ(endstops.x2_endstop_adj); // 1 float
  1137. #else
  1138. EEPROM_READ(dummy);
  1139. #endif
  1140. #if ENABLED(Y_DUAL_ENDSTOPS)
  1141. EEPROM_READ(endstops.y2_endstop_adj); // 1 float
  1142. #else
  1143. EEPROM_READ(dummy);
  1144. #endif
  1145. #if Z_MULTI_ENDSTOPS
  1146. EEPROM_READ(endstops.z2_endstop_adj); // 1 float
  1147. #else
  1148. EEPROM_READ(dummy);
  1149. #endif
  1150. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  1151. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1152. #else
  1153. EEPROM_READ(dummy);
  1154. #endif
  1155. #endif
  1156. }
  1157. //
  1158. // LCD Preheat settings
  1159. //
  1160. {
  1161. _FIELD_TEST(ui_preheat_hotend_temp);
  1162. #if HAS_LCD_MENU
  1163. int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  1164. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  1165. uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  1166. #else
  1167. int16_t ui_preheat_hotend_temp[2], ui_preheat_bed_temp[2];
  1168. uint8_t ui_preheat_fan_speed[2];
  1169. #endif
  1170. EEPROM_READ(ui_preheat_hotend_temp); // 2 floats
  1171. EEPROM_READ(ui_preheat_bed_temp); // 2 floats
  1172. EEPROM_READ(ui_preheat_fan_speed); // 2 floats
  1173. }
  1174. //
  1175. // Hotend PID
  1176. //
  1177. {
  1178. HOTEND_LOOP() {
  1179. PIDC_t pidc;
  1180. EEPROM_READ(pidc);
  1181. #if ENABLED(PIDTEMP)
  1182. if (!validating && pidc.Kp != DUMMY_PID_VALUE) {
  1183. // No need to scale PID values since EEPROM values are scaled
  1184. PID_PARAM(Kp, e) = pidc.Kp;
  1185. PID_PARAM(Ki, e) = pidc.Ki;
  1186. PID_PARAM(Kd, e) = pidc.Kd;
  1187. #if ENABLED(PID_EXTRUSION_SCALING)
  1188. PID_PARAM(Kc, e) = pidc.Kc;
  1189. #endif
  1190. }
  1191. #endif
  1192. }
  1193. }
  1194. //
  1195. // PID Extrusion Scaling
  1196. //
  1197. {
  1198. _FIELD_TEST(lpq_len);
  1199. #if ENABLED(PID_EXTRUSION_SCALING)
  1200. EEPROM_READ(thermalManager.lpq_len);
  1201. #else
  1202. int16_t lpq_len;
  1203. EEPROM_READ(lpq_len);
  1204. #endif
  1205. }
  1206. //
  1207. // Heated Bed PID
  1208. //
  1209. {
  1210. PID_t pid;
  1211. EEPROM_READ(pid);
  1212. #if ENABLED(PIDTEMPBED)
  1213. if (!validating && pid.Kp != DUMMY_PID_VALUE)
  1214. memcpy(&thermalManager.bed_pid, &pid, sizeof(pid));
  1215. #endif
  1216. }
  1217. //
  1218. // LCD Contrast
  1219. //
  1220. {
  1221. _FIELD_TEST(lcd_contrast);
  1222. int16_t lcd_contrast;
  1223. EEPROM_READ(lcd_contrast);
  1224. #if HAS_LCD_CONTRAST
  1225. ui.set_contrast(lcd_contrast);
  1226. #endif
  1227. }
  1228. //
  1229. // Power-Loss Recovery
  1230. //
  1231. {
  1232. _FIELD_TEST(recovery_enabled);
  1233. #if ENABLED(POWER_LOSS_RECOVERY)
  1234. EEPROM_READ(recovery.enabled);
  1235. #else
  1236. bool recovery_enabled;
  1237. EEPROM_READ(recovery_enabled);
  1238. #endif
  1239. }
  1240. //
  1241. // Firmware Retraction
  1242. //
  1243. {
  1244. _FIELD_TEST(fwretract_settings);
  1245. #if ENABLED(FWRETRACT)
  1246. EEPROM_READ(fwretract.settings);
  1247. #else
  1248. fwretract_settings_t fwretract_settings;
  1249. EEPROM_READ(fwretract_settings);
  1250. #endif
  1251. #if ENABLED(FWRETRACT) && ENABLED(FWRETRACT_AUTORETRACT)
  1252. EEPROM_READ(fwretract.autoretract_enabled);
  1253. #else
  1254. bool autoretract_enabled;
  1255. EEPROM_READ(autoretract_enabled);
  1256. #endif
  1257. }
  1258. //
  1259. // Volumetric & Filament Size
  1260. //
  1261. {
  1262. struct {
  1263. bool volumetric_enabled;
  1264. float filament_size[EXTRUDERS];
  1265. } storage;
  1266. _FIELD_TEST(parser_volumetric_enabled);
  1267. EEPROM_READ(storage);
  1268. #if DISABLED(NO_VOLUMETRICS)
  1269. if (!validating) {
  1270. parser.volumetric_enabled = storage.volumetric_enabled;
  1271. COPY(planner.filament_size, storage.filament_size);
  1272. }
  1273. #endif
  1274. }
  1275. //
  1276. // TMC Stepper Settings
  1277. //
  1278. if (!validating) reset_stepper_drivers();
  1279. // TMC Stepper Current
  1280. {
  1281. _FIELD_TEST(tmc_stepper_current);
  1282. tmc_stepper_current_t currents;
  1283. EEPROM_READ(currents);
  1284. #if HAS_TRINAMIC
  1285. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1286. if (!validating) {
  1287. #if AXIS_IS_TMC(X)
  1288. SET_CURR(X);
  1289. #endif
  1290. #if AXIS_IS_TMC(Y)
  1291. SET_CURR(Y);
  1292. #endif
  1293. #if AXIS_IS_TMC(Z)
  1294. SET_CURR(Z);
  1295. #endif
  1296. #if AXIS_IS_TMC(X2)
  1297. SET_CURR(X2);
  1298. #endif
  1299. #if AXIS_IS_TMC(Y2)
  1300. SET_CURR(Y2);
  1301. #endif
  1302. #if AXIS_IS_TMC(Z2)
  1303. SET_CURR(Z2);
  1304. #endif
  1305. #if AXIS_IS_TMC(Z3)
  1306. SET_CURR(Z3);
  1307. #endif
  1308. #if AXIS_IS_TMC(E0)
  1309. SET_CURR(E0);
  1310. #endif
  1311. #if AXIS_IS_TMC(E1)
  1312. SET_CURR(E1);
  1313. #endif
  1314. #if AXIS_IS_TMC(E2)
  1315. SET_CURR(E2);
  1316. #endif
  1317. #if AXIS_IS_TMC(E3)
  1318. SET_CURR(E3);
  1319. #endif
  1320. #if AXIS_IS_TMC(E4)
  1321. SET_CURR(E4);
  1322. #endif
  1323. #if AXIS_IS_TMC(E5)
  1324. SET_CURR(E5);
  1325. #endif
  1326. }
  1327. #endif
  1328. }
  1329. // TMC Hybrid Threshold
  1330. {
  1331. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1332. _FIELD_TEST(tmc_hybrid_threshold);
  1333. EEPROM_READ(tmc_hybrid_threshold);
  1334. #if ENABLED(HYBRID_THRESHOLD)
  1335. #define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold.Q, planner.settings.axis_steps_per_mm[_AXIS(A)])
  1336. if (!validating) {
  1337. #if AXIS_HAS_STEALTHCHOP(X)
  1338. TMC_SET_PWMTHRS(X, X);
  1339. #endif
  1340. #if AXIS_HAS_STEALTHCHOP(Y)
  1341. TMC_SET_PWMTHRS(Y, Y);
  1342. #endif
  1343. #if AXIS_HAS_STEALTHCHOP(Z)
  1344. TMC_SET_PWMTHRS(Z, Z);
  1345. #endif
  1346. #if AXIS_HAS_STEALTHCHOP(X2)
  1347. TMC_SET_PWMTHRS(X, X2);
  1348. #endif
  1349. #if AXIS_HAS_STEALTHCHOP(Y2)
  1350. TMC_SET_PWMTHRS(Y, Y2);
  1351. #endif
  1352. #if AXIS_HAS_STEALTHCHOP(Z2)
  1353. TMC_SET_PWMTHRS(Z, Z2);
  1354. #endif
  1355. #if AXIS_HAS_STEALTHCHOP(Z3)
  1356. TMC_SET_PWMTHRS(Z, Z3);
  1357. #endif
  1358. #if AXIS_HAS_STEALTHCHOP(E0)
  1359. TMC_SET_PWMTHRS(E, E0);
  1360. #endif
  1361. #if AXIS_HAS_STEALTHCHOP(E1)
  1362. TMC_SET_PWMTHRS(E, E1);
  1363. #endif
  1364. #if AXIS_HAS_STEALTHCHOP(E2)
  1365. TMC_SET_PWMTHRS(E, E2);
  1366. #endif
  1367. #if AXIS_HAS_STEALTHCHOP(E3)
  1368. TMC_SET_PWMTHRS(E, E3);
  1369. #endif
  1370. #if AXIS_HAS_STEALTHCHOP(E4)
  1371. TMC_SET_PWMTHRS(E, E4);
  1372. #endif
  1373. #if AXIS_HAS_STEALTHCHOP(E5)
  1374. TMC_SET_PWMTHRS(E, E5);
  1375. #endif
  1376. }
  1377. #endif
  1378. }
  1379. //
  1380. // TMC StallGuard threshold.
  1381. // X and X2 use the same value
  1382. // Y and Y2 use the same value
  1383. // Z, Z2 and Z3 use the same value
  1384. //
  1385. {
  1386. tmc_sgt_t tmc_sgt;
  1387. _FIELD_TEST(tmc_sgt);
  1388. EEPROM_READ(tmc_sgt);
  1389. #if USE_SENSORLESS
  1390. if (!validating) {
  1391. #ifdef X_STALL_SENSITIVITY
  1392. #if AXIS_HAS_STALLGUARD(X)
  1393. stepperX.sgt(tmc_sgt.X);
  1394. #endif
  1395. #if AXIS_HAS_STALLGUARD(X2)
  1396. stepperX2.sgt(tmc_sgt.X);
  1397. #endif
  1398. #endif
  1399. #ifdef Y_STALL_SENSITIVITY
  1400. #if AXIS_HAS_STALLGUARD(Y)
  1401. stepperY.sgt(tmc_sgt.Y);
  1402. #endif
  1403. #if AXIS_HAS_STALLGUARD(Y2)
  1404. stepperY2.sgt(tmc_sgt.Y);
  1405. #endif
  1406. #endif
  1407. #ifdef Z_STALL_SENSITIVITY
  1408. #if AXIS_HAS_STALLGUARD(Z)
  1409. stepperZ.sgt(tmc_sgt.Z);
  1410. #endif
  1411. #if AXIS_HAS_STALLGUARD(Z2)
  1412. stepperZ2.sgt(tmc_sgt.Z);
  1413. #endif
  1414. #if AXIS_HAS_STALLGUARD(Z3)
  1415. stepperZ3.sgt(tmc_sgt.Z);
  1416. #endif
  1417. #endif
  1418. }
  1419. #endif
  1420. }
  1421. //
  1422. // Linear Advance
  1423. //
  1424. {
  1425. float extruder_advance_K[EXTRUDERS];
  1426. _FIELD_TEST(planner_extruder_advance_K);
  1427. EEPROM_READ(extruder_advance_K);
  1428. #if ENABLED(LIN_ADVANCE)
  1429. if (!validating)
  1430. COPY(planner.extruder_advance_K, extruder_advance_K);
  1431. #endif
  1432. }
  1433. //
  1434. // Motor Current PWM
  1435. //
  1436. {
  1437. uint32_t motor_current_setting[3];
  1438. _FIELD_TEST(motor_current_setting);
  1439. EEPROM_READ(motor_current_setting);
  1440. #if HAS_MOTOR_CURRENT_PWM
  1441. if (!validating)
  1442. COPY(stepper.motor_current_setting, motor_current_setting);
  1443. #endif
  1444. }
  1445. //
  1446. // CNC Coordinate System
  1447. //
  1448. {
  1449. _FIELD_TEST(coordinate_system);
  1450. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1451. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1452. EEPROM_READ(gcode.coordinate_system);
  1453. #else
  1454. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  1455. EEPROM_READ(coordinate_system);
  1456. #endif
  1457. }
  1458. //
  1459. // Skew correction factors
  1460. //
  1461. {
  1462. skew_factor_t skew_factor;
  1463. _FIELD_TEST(planner_skew_factor);
  1464. EEPROM_READ(skew_factor);
  1465. #if ENABLED(SKEW_CORRECTION_GCODE)
  1466. if (!validating) {
  1467. planner.skew_factor.xy = skew_factor.xy;
  1468. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1469. planner.skew_factor.xz = skew_factor.xz;
  1470. planner.skew_factor.yz = skew_factor.yz;
  1471. #endif
  1472. }
  1473. #endif
  1474. }
  1475. //
  1476. // Advanced Pause filament load & unload lengths
  1477. //
  1478. {
  1479. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1480. fil_change_settings_t fc_settings[EXTRUDERS];
  1481. #endif
  1482. _FIELD_TEST(fc_settings);
  1483. EEPROM_READ(fc_settings);
  1484. }
  1485. //
  1486. // Tool-change settings
  1487. //
  1488. #if EXTRUDERS > 1
  1489. _FIELD_TEST(toolchange_settings);
  1490. EEPROM_READ(toolchange_settings);
  1491. #endif
  1492. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1493. if (eeprom_error) {
  1494. CHITCHAT_ECHO_START_P(port);
  1495. CHITCHAT_ECHOPAIR_P(port, "Index: ", int(eeprom_index - (EEPROM_OFFSET)));
  1496. CHITCHAT_ECHOLNPAIR_P(port, " Size: ", datasize());
  1497. }
  1498. else if (working_crc != stored_crc) {
  1499. eeprom_error = true;
  1500. CHITCHAT_ERROR_START_P(port);
  1501. CHITCHAT_ECHOPGM_P(port, "EEPROM CRC mismatch - (stored) ");
  1502. CHITCHAT_ECHO_P(port, stored_crc);
  1503. CHITCHAT_ECHOPGM_P(port, " != ");
  1504. CHITCHAT_ECHO_P(port, working_crc);
  1505. CHITCHAT_ECHOLNPGM_P(port, " (calculated)!");
  1506. }
  1507. else if (!validating) {
  1508. CHITCHAT_ECHO_START_P(port);
  1509. CHITCHAT_ECHO_P(port, version);
  1510. CHITCHAT_ECHOPAIR_P(port, " stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  1511. CHITCHAT_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)working_crc);
  1512. CHITCHAT_ECHOLNPGM_P(port, ")");
  1513. }
  1514. if (!validating && !eeprom_error) postprocess();
  1515. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1516. if (!validating) {
  1517. ubl.report_state();
  1518. if (!ubl.sanity_check()) {
  1519. SERIAL_EOL_P(port);
  1520. #if ENABLED(EEPROM_CHITCHAT)
  1521. ubl.echo_name();
  1522. CHITCHAT_ECHOLNPGM_P(port, " initialized.\n");
  1523. #endif
  1524. }
  1525. else {
  1526. eeprom_error = true;
  1527. #if ENABLED(EEPROM_CHITCHAT)
  1528. CHITCHAT_ECHOPGM_P(port, "?Can't enable ");
  1529. ubl.echo_name();
  1530. CHITCHAT_ECHOLNPGM_P(port, ".");
  1531. #endif
  1532. ubl.reset();
  1533. }
  1534. if (ubl.storage_slot >= 0) {
  1535. load_mesh(ubl.storage_slot);
  1536. CHITCHAT_ECHOPAIR_P(port, "Mesh ", ubl.storage_slot);
  1537. CHITCHAT_ECHOLNPGM_P(port, " loaded from storage.");
  1538. }
  1539. else {
  1540. ubl.reset();
  1541. CHITCHAT_ECHOLNPGM_P(port, "UBL System reset()");
  1542. }
  1543. }
  1544. #endif
  1545. }
  1546. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1547. if (!validating) report(PORTVAR_SOLO);
  1548. #endif
  1549. EEPROM_FINISH();
  1550. return !eeprom_error;
  1551. }
  1552. bool MarlinSettings::validate(PORTARG_SOLO) {
  1553. validating = true;
  1554. const bool success = _load(PORTVAR_SOLO);
  1555. validating = false;
  1556. return success;
  1557. }
  1558. bool MarlinSettings::load(PORTARG_SOLO) {
  1559. if (validate(PORTVAR_SOLO)) return _load(PORTVAR_SOLO);
  1560. reset();
  1561. return true;
  1562. }
  1563. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1564. inline void ubl_invalid_slot(const int s) {
  1565. #if ENABLED(EEPROM_CHITCHAT)
  1566. CHITCHAT_ECHOLNPGM("?Invalid slot.");
  1567. CHITCHAT_ECHO(s);
  1568. CHITCHAT_ECHOLNPGM(" mesh slots available.");
  1569. #else
  1570. UNUSED(s);
  1571. #endif
  1572. }
  1573. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1574. // is a placeholder for the size of the MAT; the MAT will always
  1575. // live at the very end of the eeprom
  1576. uint16_t MarlinSettings::meshes_start_index() {
  1577. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1578. // or down a little bit without disrupting the mesh data
  1579. }
  1580. uint16_t MarlinSettings::calc_num_meshes() {
  1581. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1582. }
  1583. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1584. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1585. }
  1586. void MarlinSettings::store_mesh(const int8_t slot) {
  1587. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1588. const int16_t a = calc_num_meshes();
  1589. if (!WITHIN(slot, 0, a - 1)) {
  1590. ubl_invalid_slot(a);
  1591. CHITCHAT_ECHOPAIR("E2END=", persistentStore.capacity() - 1);
  1592. CHITCHAT_ECHOPAIR(" meshes_end=", meshes_end);
  1593. CHITCHAT_ECHOLNPAIR(" slot=", slot);
  1594. CHITCHAT_EOL();
  1595. return;
  1596. }
  1597. int pos = mesh_slot_offset(slot);
  1598. uint16_t crc = 0;
  1599. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1600. persistentStore.access_start();
  1601. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1602. persistentStore.access_finish();
  1603. if (status) SERIAL_ECHOPGM("?Unable to save mesh data.\n");
  1604. else CHITCHAT_ECHOLNPAIR("Mesh saved in slot ", slot);
  1605. #else
  1606. // Other mesh types
  1607. #endif
  1608. }
  1609. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
  1610. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1611. const int16_t a = settings.calc_num_meshes();
  1612. if (!WITHIN(slot, 0, a - 1)) {
  1613. ubl_invalid_slot(a);
  1614. return;
  1615. }
  1616. int pos = mesh_slot_offset(slot);
  1617. uint16_t crc = 0;
  1618. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1619. persistentStore.access_start();
  1620. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1621. persistentStore.access_finish();
  1622. if (status) SERIAL_ECHOPGM("?Unable to load mesh data.\n");
  1623. else CHITCHAT_ECHOLNPAIR("Mesh loaded from slot ", slot);
  1624. EEPROM_FINISH();
  1625. #else
  1626. // Other mesh types
  1627. #endif
  1628. }
  1629. //void MarlinSettings::delete_mesh() { return; }
  1630. //void MarlinSettings::defrag_meshes() { return; }
  1631. #endif // AUTO_BED_LEVELING_UBL
  1632. #else // !EEPROM_SETTINGS
  1633. bool MarlinSettings::save(PORTARG_SOLO) {
  1634. CHITCHAT_ERROR_MSG_P(port, "EEPROM disabled");
  1635. return false;
  1636. }
  1637. #endif // !EEPROM_SETTINGS
  1638. /**
  1639. * M502 - Reset Configuration
  1640. */
  1641. void MarlinSettings::reset(PORTARG_SOLO) {
  1642. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1643. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1644. LOOP_XYZE_N(i) {
  1645. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&tmp1[ALIM(i, tmp1)]);
  1646. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[ALIM(i, tmp2)]);
  1647. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&tmp3[ALIM(i, tmp3)]);
  1648. }
  1649. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1650. planner.settings.acceleration = DEFAULT_ACCELERATION;
  1651. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1652. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1653. planner.settings.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1654. planner.settings.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1655. #if HAS_CLASSIC_JERK
  1656. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1657. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1658. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1659. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1660. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1661. #endif
  1662. #endif
  1663. #if ENABLED(JUNCTION_DEVIATION)
  1664. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  1665. #endif
  1666. #if HAS_SCARA_OFFSET
  1667. ZERO(scara_home_offset);
  1668. #elif HAS_HOME_OFFSET
  1669. ZERO(home_offset);
  1670. #endif
  1671. #if HAS_HOTEND_OFFSET
  1672. constexpr float tmp4[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z };
  1673. static_assert(
  1674. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1675. "Offsets for the first hotend must be 0.0."
  1676. );
  1677. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1678. #if ENABLED(DUAL_X_CARRIAGE)
  1679. hotend_offset[X_AXIS][1] = MAX(X2_HOME_POS, X2_MAX_POS);
  1680. #endif
  1681. #endif
  1682. #if EXTRUDERS > 1
  1683. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  1684. toolchange_settings.swap_length = TOOLCHANGE_FIL_SWAP_LENGTH;
  1685. toolchange_settings.prime_speed = TOOLCHANGE_FIL_SWAP_PRIME_SPEED;
  1686. toolchange_settings.retract_speed = TOOLCHANGE_FIL_SWAP_RETRACT_SPEED;
  1687. #endif
  1688. #if ENABLED(TOOLCHANGE_PARK)
  1689. toolchange_settings.change_point = TOOLCHANGE_PARK_XY;
  1690. #endif
  1691. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  1692. #endif
  1693. //
  1694. // Global Leveling
  1695. //
  1696. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1697. new_z_fade_height = 0.0;
  1698. #endif
  1699. #if HAS_LEVELING
  1700. reset_bed_level();
  1701. #endif
  1702. #if HAS_BED_PROBE
  1703. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1704. #endif
  1705. //
  1706. // Servo Angles
  1707. //
  1708. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1709. COPY(servo_angles, base_servo_angles);
  1710. #endif
  1711. //
  1712. // Endstop Adjustments
  1713. //
  1714. #if ENABLED(DELTA)
  1715. const float adj[ABC] = DELTA_ENDSTOP_ADJ, dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1716. delta_height = DELTA_HEIGHT;
  1717. COPY(delta_endstop_adj, adj);
  1718. delta_radius = DELTA_RADIUS;
  1719. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1720. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1721. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1722. COPY(delta_tower_angle_trim, dta);
  1723. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1724. #if ENABLED(X_DUAL_ENDSTOPS)
  1725. endstops.x2_endstop_adj = (
  1726. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1727. X_DUAL_ENDSTOPS_ADJUSTMENT
  1728. #else
  1729. 0
  1730. #endif
  1731. );
  1732. #endif
  1733. #if ENABLED(Y_DUAL_ENDSTOPS)
  1734. endstops.y2_endstop_adj = (
  1735. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1736. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1737. #else
  1738. 0
  1739. #endif
  1740. );
  1741. #endif
  1742. #if ENABLED(Z_DUAL_ENDSTOPS)
  1743. endstops.z2_endstop_adj = (
  1744. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1745. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1746. #else
  1747. 0
  1748. #endif
  1749. );
  1750. #elif ENABLED(Z_TRIPLE_ENDSTOPS)
  1751. endstops.z2_endstop_adj = (
  1752. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1753. Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1754. #else
  1755. 0
  1756. #endif
  1757. );
  1758. endstops.z3_endstop_adj = (
  1759. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1760. Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1761. #else
  1762. 0
  1763. #endif
  1764. );
  1765. #endif
  1766. #endif
  1767. //
  1768. // Preheat parameters
  1769. //
  1770. #if HAS_LCD_MENU
  1771. ui.preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1772. ui.preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1773. ui.preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1774. ui.preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1775. ui.preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1776. ui.preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1777. #endif
  1778. //
  1779. // Hotend PID
  1780. //
  1781. #if ENABLED(PIDTEMP)
  1782. HOTEND_LOOP() {
  1783. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  1784. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1785. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1786. #if ENABLED(PID_EXTRUSION_SCALING)
  1787. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1788. #endif
  1789. }
  1790. #endif
  1791. //
  1792. // PID Extrusion Scaling
  1793. //
  1794. #if ENABLED(PID_EXTRUSION_SCALING)
  1795. thermalManager.lpq_len = 20; // Default last-position-queue size
  1796. #endif
  1797. //
  1798. // Heated Bed PID
  1799. //
  1800. #if ENABLED(PIDTEMPBED)
  1801. thermalManager.bed_pid.Kp = DEFAULT_bedKp;
  1802. thermalManager.bed_pid.Ki = scalePID_i(DEFAULT_bedKi);
  1803. thermalManager.bed_pid.Kd = scalePID_d(DEFAULT_bedKd);
  1804. #endif
  1805. //
  1806. // LCD Contrast
  1807. //
  1808. #if HAS_LCD_CONTRAST
  1809. ui.set_contrast(DEFAULT_LCD_CONTRAST);
  1810. #endif
  1811. //
  1812. // Power-Loss Recovery
  1813. //
  1814. #if ENABLED(POWER_LOSS_RECOVERY)
  1815. recovery.enable(true);
  1816. #endif
  1817. //
  1818. // Firmware Retraction
  1819. //
  1820. #if ENABLED(FWRETRACT)
  1821. fwretract.reset();
  1822. #endif
  1823. //
  1824. // Volumetric & Filament Size
  1825. //
  1826. #if DISABLED(NO_VOLUMETRICS)
  1827. parser.volumetric_enabled =
  1828. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1829. true
  1830. #else
  1831. false
  1832. #endif
  1833. ;
  1834. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  1835. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1836. #endif
  1837. endstops.enable_globally(
  1838. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1839. true
  1840. #else
  1841. false
  1842. #endif
  1843. );
  1844. reset_stepper_drivers();
  1845. //
  1846. // Linear Advance
  1847. //
  1848. #if ENABLED(LIN_ADVANCE)
  1849. LOOP_L_N(i, EXTRUDERS) planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  1850. #endif
  1851. //
  1852. // Motor Current PWM
  1853. //
  1854. #if HAS_MOTOR_CURRENT_PWM
  1855. uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1856. for (uint8_t q = 3; q--;)
  1857. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1858. #endif
  1859. //
  1860. // CNC Coordinate System
  1861. //
  1862. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1863. (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1864. #endif
  1865. //
  1866. // Skew Correction
  1867. //
  1868. #if ENABLED(SKEW_CORRECTION_GCODE)
  1869. planner.skew_factor.xy = XY_SKEW_FACTOR;
  1870. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1871. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  1872. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  1873. #endif
  1874. #endif
  1875. //
  1876. // Advanced Pause filament load & unload lengths
  1877. //
  1878. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1879. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  1880. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  1881. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  1882. }
  1883. #endif
  1884. postprocess();
  1885. CHITCHAT_ECHO_START_P(port);
  1886. CHITCHAT_ECHOLNPGM_P(port, "Hardcoded Default Settings Loaded");
  1887. }
  1888. #if DISABLED(DISABLE_M503)
  1889. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START_P(port); }while(0)
  1890. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM_P(port, STR); }while(0)
  1891. #define CONFIG_ECHO_HEADING(STR) do{ if (!forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOLNPGM_P(port, STR); } }while(0)
  1892. #if HAS_TRINAMIC
  1893. void say_M906(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M906"); }
  1894. #if ENABLED(HYBRID_THRESHOLD)
  1895. void say_M913(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M913"); }
  1896. #endif
  1897. #if USE_SENSORLESS
  1898. void say_M914(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M914"); }
  1899. #endif
  1900. #endif
  1901. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1902. void say_M603(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M603 "); }
  1903. #endif
  1904. inline void say_units(
  1905. #if NUM_SERIAL > 1
  1906. const int8_t port,
  1907. #endif
  1908. const bool colon
  1909. ) {
  1910. serialprintPGM_P(port,
  1911. #if ENABLED(INCH_MODE_SUPPORT)
  1912. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  1913. #endif
  1914. PSTR(" (mm)")
  1915. );
  1916. if (colon) SERIAL_ECHOLNPGM_P(port, ":");
  1917. }
  1918. #if NUM_SERIAL > 1
  1919. #define SAY_UNITS_P(PORT, COLON) say_units(PORT, COLON)
  1920. #else
  1921. #define SAY_UNITS_P(PORT, COLON) say_units(COLON)
  1922. #endif
  1923. /**
  1924. * M503 - Report current settings in RAM
  1925. *
  1926. * Unless specifically disabled, M503 is available even without EEPROM
  1927. */
  1928. void MarlinSettings::report(const bool forReplay
  1929. #if NUM_SERIAL > 1
  1930. , const int8_t port/*=-1*/
  1931. #endif
  1932. ) {
  1933. /**
  1934. * Announce current units, in case inches are being displayed
  1935. */
  1936. CONFIG_ECHO_START();
  1937. #if ENABLED(INCH_MODE_SUPPORT)
  1938. SERIAL_ECHOPGM_P(port, " G2");
  1939. SERIAL_CHAR_P(port, parser.linear_unit_factor == 1.0 ? '1' : '0');
  1940. SERIAL_ECHOPGM_P(port, " ;");
  1941. SAY_UNITS_P(port, false);
  1942. #else
  1943. SERIAL_ECHOPGM_P(port, " G21 ; Units in mm");
  1944. SAY_UNITS_P(port, false);
  1945. #endif
  1946. SERIAL_EOL_P(port);
  1947. #if HAS_LCD_MENU
  1948. // Temperature units - for Ultipanel temperature options
  1949. CONFIG_ECHO_START();
  1950. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1951. SERIAL_ECHOPGM_P(port, " M149 ");
  1952. SERIAL_CHAR_P(port, parser.temp_units_code());
  1953. SERIAL_ECHOPGM_P(port, " ; Units in ");
  1954. serialprintPGM_P(port, parser.temp_units_name());
  1955. #else
  1956. SERIAL_ECHOLNPGM_P(port, " M149 C ; Units in Celsius");
  1957. #endif
  1958. #endif
  1959. SERIAL_EOL_P(port);
  1960. #if DISABLED(NO_VOLUMETRICS)
  1961. /**
  1962. * Volumetric extrusion M200
  1963. */
  1964. if (!forReplay) {
  1965. CONFIG_ECHO_START();
  1966. SERIAL_ECHOPGM_P(port, "Filament settings:");
  1967. if (parser.volumetric_enabled)
  1968. SERIAL_EOL_P(port);
  1969. else
  1970. SERIAL_ECHOLNPGM_P(port, " Disabled");
  1971. }
  1972. CONFIG_ECHO_START();
  1973. SERIAL_ECHOPAIR_P(port, " M200 D", LINEAR_UNIT(planner.filament_size[0]));
  1974. SERIAL_EOL_P(port);
  1975. #if EXTRUDERS > 1
  1976. CONFIG_ECHO_START();
  1977. SERIAL_ECHOPAIR_P(port, " M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  1978. SERIAL_EOL_P(port);
  1979. #if EXTRUDERS > 2
  1980. CONFIG_ECHO_START();
  1981. SERIAL_ECHOPAIR_P(port, " M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  1982. SERIAL_EOL_P(port);
  1983. #if EXTRUDERS > 3
  1984. CONFIG_ECHO_START();
  1985. SERIAL_ECHOPAIR_P(port, " M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  1986. SERIAL_EOL_P(port);
  1987. #if EXTRUDERS > 4
  1988. CONFIG_ECHO_START();
  1989. SERIAL_ECHOPAIR_P(port, " M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  1990. SERIAL_EOL_P(port);
  1991. #if EXTRUDERS > 5
  1992. CONFIG_ECHO_START();
  1993. SERIAL_ECHOPAIR_P(port, " M200 T5 D", LINEAR_UNIT(planner.filament_size[5]));
  1994. SERIAL_EOL_P(port);
  1995. #endif // EXTRUDERS > 5
  1996. #endif // EXTRUDERS > 4
  1997. #endif // EXTRUDERS > 3
  1998. #endif // EXTRUDERS > 2
  1999. #endif // EXTRUDERS > 1
  2000. if (!parser.volumetric_enabled)
  2001. CONFIG_ECHO_MSG(" M200 D0");
  2002. #endif // !NO_VOLUMETRICS
  2003. CONFIG_ECHO_HEADING("Steps per unit:");
  2004. CONFIG_ECHO_START();
  2005. SERIAL_ECHOPAIR_P(port, " M92 X", LINEAR_UNIT(planner.settings.axis_steps_per_mm[X_AXIS]));
  2006. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.axis_steps_per_mm[Y_AXIS]));
  2007. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.axis_steps_per_mm[Z_AXIS]));
  2008. #if DISABLED(DISTINCT_E_FACTORS)
  2009. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS]));
  2010. #endif
  2011. SERIAL_EOL_P(port);
  2012. #if ENABLED(DISTINCT_E_FACTORS)
  2013. CONFIG_ECHO_START();
  2014. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  2015. SERIAL_ECHOPAIR_P(port, " M92 T", (int)i);
  2016. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS + i]));
  2017. }
  2018. #endif
  2019. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2020. CONFIG_ECHO_START();
  2021. SERIAL_ECHOPAIR_P(port, " M203 X", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS]));
  2022. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS]));
  2023. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS]));
  2024. #if DISABLED(DISTINCT_E_FACTORS)
  2025. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS]));
  2026. #endif
  2027. SERIAL_EOL_P(port);
  2028. #if ENABLED(DISTINCT_E_FACTORS)
  2029. CONFIG_ECHO_START();
  2030. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  2031. SERIAL_ECHOPAIR_P(port, " M203 T", (int)i);
  2032. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)]));
  2033. }
  2034. #endif
  2035. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2036. CONFIG_ECHO_START();
  2037. SERIAL_ECHOPAIR_P(port, " M201 X", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS]));
  2038. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS]));
  2039. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS]));
  2040. #if DISABLED(DISTINCT_E_FACTORS)
  2041. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS]));
  2042. #endif
  2043. SERIAL_EOL_P(port);
  2044. #if ENABLED(DISTINCT_E_FACTORS)
  2045. CONFIG_ECHO_START();
  2046. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  2047. SERIAL_ECHOPAIR_P(port, " M201 T", (int)i);
  2048. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)]));
  2049. }
  2050. #endif
  2051. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2052. CONFIG_ECHO_START();
  2053. SERIAL_ECHOPAIR_P(port, " M204 P", LINEAR_UNIT(planner.settings.acceleration));
  2054. SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(planner.settings.retract_acceleration));
  2055. SERIAL_ECHOLNPAIR_P(port, " T", LINEAR_UNIT(planner.settings.travel_acceleration));
  2056. if (!forReplay) {
  2057. CONFIG_ECHO_START();
  2058. SERIAL_ECHOPGM_P(port, "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
  2059. #if ENABLED(JUNCTION_DEVIATION)
  2060. SERIAL_ECHOPGM_P(port, " J<junc_dev>");
  2061. #endif
  2062. #if HAS_CLASSIC_JERK
  2063. SERIAL_ECHOPGM_P(port, " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
  2064. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2065. SERIAL_ECHOPGM_P(port, " E<max_e_jerk>");
  2066. #endif
  2067. #endif
  2068. SERIAL_EOL_P(port);
  2069. }
  2070. CONFIG_ECHO_START();
  2071. SERIAL_ECHOPAIR_P(port, " M205 B", LINEAR_UNIT(planner.settings.min_segment_time_us));
  2072. SERIAL_ECHOPAIR_P(port, " S", LINEAR_UNIT(planner.settings.min_feedrate_mm_s));
  2073. SERIAL_ECHOPAIR_P(port, " T", LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s));
  2074. #if ENABLED(JUNCTION_DEVIATION)
  2075. SERIAL_ECHOPAIR_P(port, " J", LINEAR_UNIT(planner.junction_deviation_mm));
  2076. #endif
  2077. #if HAS_CLASSIC_JERK
  2078. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  2079. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  2080. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  2081. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2082. SERIAL_ECHOPAIR_P(port, " E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  2083. #endif
  2084. #endif
  2085. SERIAL_EOL_P(port);
  2086. #if HAS_M206_COMMAND
  2087. CONFIG_ECHO_HEADING("Home offset:");
  2088. CONFIG_ECHO_START();
  2089. SERIAL_ECHOPAIR_P(port, " M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  2090. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  2091. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  2092. #endif
  2093. #if HAS_HOTEND_OFFSET
  2094. CONFIG_ECHO_HEADING("Hotend offsets:");
  2095. CONFIG_ECHO_START();
  2096. for (uint8_t e = 1; e < HOTENDS; e++) {
  2097. SERIAL_ECHOPAIR_P(port, " M218 T", (int)e);
  2098. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  2099. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  2100. SERIAL_ECHOLNPAIR_F_P(port, " Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]), 3);
  2101. }
  2102. #endif
  2103. /**
  2104. * Bed Leveling
  2105. */
  2106. #if HAS_LEVELING
  2107. #if ENABLED(MESH_BED_LEVELING)
  2108. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2109. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2110. if (!forReplay) {
  2111. CONFIG_ECHO_START();
  2112. ubl.echo_name();
  2113. SERIAL_ECHOLNPGM_P(port, ":");
  2114. }
  2115. #elif HAS_ABL
  2116. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2117. #endif
  2118. CONFIG_ECHO_START();
  2119. SERIAL_ECHOPAIR_P(port, " M420 S", planner.leveling_active ? 1 : 0);
  2120. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2121. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.z_fade_height));
  2122. #endif
  2123. SERIAL_EOL_P(port);
  2124. #if ENABLED(MESH_BED_LEVELING)
  2125. if (leveling_is_valid()) {
  2126. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2127. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2128. CONFIG_ECHO_START();
  2129. SERIAL_ECHOPAIR_P(port, " G29 S3 X", (int)px + 1);
  2130. SERIAL_ECHOPAIR_P(port, " Y", (int)py + 1);
  2131. SERIAL_ECHOLNPAIR_F_P(port, " Z", LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2132. }
  2133. }
  2134. }
  2135. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2136. if (!forReplay) {
  2137. SERIAL_EOL_P(port);
  2138. ubl.report_state();
  2139. SERIAL_ECHOLNPAIR_P(port, "\nActive Mesh Slot: ", ubl.storage_slot);
  2140. SERIAL_ECHOPAIR_P(port, "EEPROM can hold ", calc_num_meshes());
  2141. SERIAL_ECHOLNPGM_P(port, " meshes.\n");
  2142. }
  2143. //ubl.report_current_mesh(PORTVAR_SOLO); // This is too verbose for large meshes. A better (more terse)
  2144. // solution needs to be found.
  2145. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2146. if (leveling_is_valid()) {
  2147. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2148. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2149. CONFIG_ECHO_START();
  2150. SERIAL_ECHOPAIR_P(port, " G29 W I", (int)px);
  2151. SERIAL_ECHOPAIR_P(port, " J", (int)py);
  2152. SERIAL_ECHOLNPAIR_F_P(port, " Z", LINEAR_UNIT(z_values[px][py]), 5);
  2153. }
  2154. }
  2155. }
  2156. #endif
  2157. #endif // HAS_LEVELING
  2158. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2159. CONFIG_ECHO_HEADING("Servo Angles:");
  2160. for (uint8_t i = 0; i < NUM_SERVOS; i++) {
  2161. switch (i) {
  2162. #if ENABLED(SWITCHING_EXTRUDER)
  2163. case SWITCHING_EXTRUDER_SERVO_NR:
  2164. #if EXTRUDERS > 3
  2165. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2166. #endif
  2167. #elif ENABLED(SWITCHING_NOZZLE)
  2168. case SWITCHING_NOZZLE_SERVO_NR:
  2169. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  2170. case Z_PROBE_SERVO_NR:
  2171. #endif
  2172. CONFIG_ECHO_START();
  2173. SERIAL_ECHOPAIR_P(port, " M281 P", int(i));
  2174. SERIAL_ECHOPAIR_P(port, " L", servo_angles[i][0]);
  2175. SERIAL_ECHOPAIR_P(port, " U", servo_angles[i][1]);
  2176. SERIAL_EOL_P(port);
  2177. default: break;
  2178. }
  2179. }
  2180. #endif // EDITABLE_SERVO_ANGLES
  2181. #if HAS_SCARA_OFFSET
  2182. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2183. CONFIG_ECHO_START();
  2184. SERIAL_ECHOPAIR_P(port, " M665 S", delta_segments_per_second);
  2185. SERIAL_ECHOPAIR_P(port, " P", scara_home_offset[A_AXIS]);
  2186. SERIAL_ECHOPAIR_P(port, " T", scara_home_offset[B_AXIS]);
  2187. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(scara_home_offset[Z_AXIS]));
  2188. SERIAL_EOL_P(port);
  2189. #elif ENABLED(DELTA)
  2190. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2191. CONFIG_ECHO_START();
  2192. SERIAL_ECHOPAIR_P(port, " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
  2193. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
  2194. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
  2195. CONFIG_ECHO_HEADING("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  2196. CONFIG_ECHO_START();
  2197. SERIAL_ECHOPAIR_P(port, " M665 L", LINEAR_UNIT(delta_diagonal_rod));
  2198. SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(delta_radius));
  2199. SERIAL_ECHOPAIR_P(port, " H", LINEAR_UNIT(delta_height));
  2200. SERIAL_ECHOPAIR_P(port, " S", delta_segments_per_second);
  2201. SERIAL_ECHOPAIR_P(port, " B", LINEAR_UNIT(delta_calibration_radius));
  2202. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  2203. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  2204. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  2205. SERIAL_EOL_P(port);
  2206. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  2207. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2208. CONFIG_ECHO_START();
  2209. SERIAL_ECHOPGM_P(port, " M666");
  2210. #if ENABLED(X_DUAL_ENDSTOPS)
  2211. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(endstops.x2_endstop_adj));
  2212. #endif
  2213. #if ENABLED(Y_DUAL_ENDSTOPS)
  2214. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(endstops.y2_endstop_adj));
  2215. #endif
  2216. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  2217. SERIAL_ECHOLNPAIR_P(port, "S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2218. CONFIG_ECHO_START();
  2219. SERIAL_ECHOPAIR_P(port, " M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2220. #elif ENABLED(Z_DUAL_ENDSTOPS)
  2221. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2222. #endif
  2223. SERIAL_EOL_P(port);
  2224. #endif // [XYZ]_DUAL_ENDSTOPS
  2225. #if HAS_LCD_MENU
  2226. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2227. for (uint8_t i = 0; i < COUNT(ui.preheat_hotend_temp); i++) {
  2228. CONFIG_ECHO_START();
  2229. SERIAL_ECHOPAIR_P(port, " M145 S", (int)i);
  2230. SERIAL_ECHOPAIR_P(port, " H", TEMP_UNIT(ui.preheat_hotend_temp[i]));
  2231. SERIAL_ECHOPAIR_P(port, " B", TEMP_UNIT(ui.preheat_bed_temp[i]));
  2232. SERIAL_ECHOLNPAIR_P(port, " F", int(ui.preheat_fan_speed[i]));
  2233. }
  2234. #endif
  2235. #if HAS_PID_HEATING
  2236. CONFIG_ECHO_HEADING("PID settings:");
  2237. #if ENABLED(PIDTEMP)
  2238. #if HOTENDS > 1
  2239. if (forReplay) {
  2240. HOTEND_LOOP() {
  2241. CONFIG_ECHO_START();
  2242. SERIAL_ECHOPAIR_P(port, " M301 E", e);
  2243. SERIAL_ECHOPAIR_P(port, " P", PID_PARAM(Kp, e));
  2244. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, e)));
  2245. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, e)));
  2246. #if ENABLED(PID_EXTRUSION_SCALING)
  2247. SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, e));
  2248. if (e == 0) SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
  2249. #endif
  2250. SERIAL_EOL_P(port);
  2251. }
  2252. }
  2253. else
  2254. #endif // HOTENDS > 1
  2255. // !forReplay || HOTENDS == 1
  2256. {
  2257. CONFIG_ECHO_START();
  2258. SERIAL_ECHOPAIR_P(port, " M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  2259. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, 0)));
  2260. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, 0)));
  2261. #if ENABLED(PID_EXTRUSION_SCALING)
  2262. SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, 0));
  2263. SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
  2264. #endif
  2265. SERIAL_EOL_P(port);
  2266. }
  2267. #endif // PIDTEMP
  2268. #if ENABLED(PIDTEMPBED)
  2269. CONFIG_ECHO_START();
  2270. SERIAL_ECHOPAIR_P(port, " M304 P", thermalManager.bed_pid.Kp);
  2271. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(thermalManager.bed_pid.Ki));
  2272. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(thermalManager.bed_pid.Kd));
  2273. SERIAL_EOL_P(port);
  2274. #endif
  2275. #endif // PIDTEMP || PIDTEMPBED
  2276. #if HAS_LCD_CONTRAST
  2277. CONFIG_ECHO_HEADING("LCD Contrast:");
  2278. CONFIG_ECHO_START();
  2279. SERIAL_ECHOLNPAIR_P(port, " M250 C", ui.contrast);
  2280. #endif
  2281. #if ENABLED(POWER_LOSS_RECOVERY)
  2282. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2283. CONFIG_ECHO_START();
  2284. SERIAL_ECHOLNPAIR_P(port, " M413 S", int(recovery.enabled));
  2285. #endif
  2286. #if ENABLED(FWRETRACT)
  2287. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2288. CONFIG_ECHO_START();
  2289. SERIAL_ECHOPAIR_P(port, " M207 S", LINEAR_UNIT(fwretract.settings.retract_length));
  2290. SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.settings.swap_retract_length));
  2291. SERIAL_ECHOPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_feedrate_mm_s)));
  2292. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(fwretract.settings.retract_zraise));
  2293. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2294. CONFIG_ECHO_START();
  2295. SERIAL_ECHOPAIR_P(port, " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_length));
  2296. SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_length));
  2297. SERIAL_ECHOLNPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_recover_feedrate_mm_s)));
  2298. #if ENABLED(FWRETRACT_AUTORETRACT)
  2299. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2300. CONFIG_ECHO_START();
  2301. SERIAL_ECHOLNPAIR_P(port, " M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2302. #endif // FWRETRACT_AUTORETRACT
  2303. #endif // FWRETRACT
  2304. /**
  2305. * Probe Offset
  2306. */
  2307. #if HAS_BED_PROBE
  2308. if (!forReplay) {
  2309. CONFIG_ECHO_START();
  2310. SERIAL_ECHOPGM_P(port, "Z-Probe Offset");
  2311. SAY_UNITS_P(port, true);
  2312. }
  2313. CONFIG_ECHO_START();
  2314. SERIAL_ECHOLNPAIR_P(port, " M851 Z", LINEAR_UNIT(zprobe_zoffset));
  2315. #endif
  2316. /**
  2317. * Bed Skew Correction
  2318. */
  2319. #if ENABLED(SKEW_CORRECTION_GCODE)
  2320. CONFIG_ECHO_HEADING("Skew Factor: ");
  2321. CONFIG_ECHO_START();
  2322. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2323. SERIAL_ECHOPAIR_F_P(port, " M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2324. SERIAL_ECHOPAIR_F_P(port, " J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2325. SERIAL_ECHOLNPAIR_F_P(port, " K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2326. #else
  2327. SERIAL_ECHOLNPAIR_F_P(port, " M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2328. #endif
  2329. #endif
  2330. #if HAS_TRINAMIC
  2331. /**
  2332. * TMC stepper driver current
  2333. */
  2334. CONFIG_ECHO_HEADING("Stepper driver current:");
  2335. CONFIG_ECHO_START();
  2336. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2337. say_M906(PORTVAR_SOLO);
  2338. #endif
  2339. #if AXIS_IS_TMC(X)
  2340. SERIAL_ECHOPAIR_P(port, " X", stepperX.getMilliamps());
  2341. #endif
  2342. #if AXIS_IS_TMC(Y)
  2343. SERIAL_ECHOPAIR_P(port, " Y", stepperY.getMilliamps());
  2344. #endif
  2345. #if AXIS_IS_TMC(Z)
  2346. SERIAL_ECHOPAIR_P(port, " Z", stepperZ.getMilliamps());
  2347. #endif
  2348. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2349. SERIAL_EOL_P(port);
  2350. #endif
  2351. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2352. say_M906(PORTVAR_SOLO);
  2353. SERIAL_ECHOPGM_P(port, " I1");
  2354. #endif
  2355. #if AXIS_IS_TMC(X2)
  2356. SERIAL_ECHOPAIR_P(port, " X", stepperX2.getMilliamps());
  2357. #endif
  2358. #if AXIS_IS_TMC(Y2)
  2359. SERIAL_ECHOPAIR_P(port, " Y", stepperY2.getMilliamps());
  2360. #endif
  2361. #if AXIS_IS_TMC(Z2)
  2362. SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.getMilliamps());
  2363. #endif
  2364. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2365. SERIAL_EOL_P(port);
  2366. #endif
  2367. #if AXIS_IS_TMC(Z3)
  2368. say_M906(PORTVAR_SOLO);
  2369. SERIAL_ECHOLNPAIR_P(port, " I2 Z", stepperZ3.getMilliamps());
  2370. #endif
  2371. #if AXIS_IS_TMC(E0)
  2372. say_M906(PORTVAR_SOLO);
  2373. SERIAL_ECHOLNPAIR_P(port, " T0 E", stepperE0.getMilliamps());
  2374. #endif
  2375. #if AXIS_IS_TMC(E1)
  2376. say_M906(PORTVAR_SOLO);
  2377. SERIAL_ECHOLNPAIR_P(port, " T1 E", stepperE1.getMilliamps());
  2378. #endif
  2379. #if AXIS_IS_TMC(E2)
  2380. say_M906(PORTVAR_SOLO);
  2381. SERIAL_ECHOLNPAIR_P(port, " T2 E", stepperE2.getMilliamps());
  2382. #endif
  2383. #if AXIS_IS_TMC(E3)
  2384. say_M906(PORTVAR_SOLO);
  2385. SERIAL_ECHOLNPAIR_P(port, " T3 E", stepperE3.getMilliamps());
  2386. #endif
  2387. #if AXIS_IS_TMC(E4)
  2388. say_M906(PORTVAR_SOLO);
  2389. SERIAL_ECHOLNPAIR_P(port, " T4 E", stepperE4.getMilliamps());
  2390. #endif
  2391. #if AXIS_IS_TMC(E5)
  2392. say_M906(PORTVAR_SOLO);
  2393. SERIAL_ECHOLNPAIR_P(port, " T5 E", stepperE5.getMilliamps());
  2394. #endif
  2395. SERIAL_EOL_P(port);
  2396. /**
  2397. * TMC Hybrid Threshold
  2398. */
  2399. #if ENABLED(HYBRID_THRESHOLD)
  2400. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  2401. CONFIG_ECHO_START();
  2402. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2403. say_M913(PORTVAR_SOLO);
  2404. #endif
  2405. #if AXIS_HAS_STEALTHCHOP(X)
  2406. SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X));
  2407. #endif
  2408. #if AXIS_HAS_STEALTHCHOP(Y)
  2409. SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y));
  2410. #endif
  2411. #if AXIS_HAS_STEALTHCHOP(Z)
  2412. SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z));
  2413. #endif
  2414. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2415. SERIAL_EOL_P(port);
  2416. #endif
  2417. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2418. say_M913(PORTVAR_SOLO);
  2419. SERIAL_ECHOPGM_P(port, " I1");
  2420. #endif
  2421. #if AXIS_HAS_STEALTHCHOP(X2)
  2422. SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X2));
  2423. #endif
  2424. #if AXIS_HAS_STEALTHCHOP(Y2)
  2425. SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y2));
  2426. #endif
  2427. #if AXIS_HAS_STEALTHCHOP(Z2)
  2428. SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z2));
  2429. #endif
  2430. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2431. SERIAL_EOL_P(port);
  2432. #endif
  2433. #if AXIS_HAS_STEALTHCHOP(Z3)
  2434. say_M913(PORTVAR_SOLO);
  2435. SERIAL_ECHOPGM_P(port, " I2");
  2436. SERIAL_ECHOLNPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z3));
  2437. #endif
  2438. #if AXIS_HAS_STEALTHCHOP(E0)
  2439. say_M913(PORTVAR_SOLO);
  2440. SERIAL_ECHOLNPAIR_P(port, " T0 E", TMC_GET_PWMTHRS(E, E0));
  2441. #endif
  2442. #if AXIS_HAS_STEALTHCHOP(E1)
  2443. say_M913(PORTVAR_SOLO);
  2444. SERIAL_ECHOLNPAIR_P(port, " T1 E", TMC_GET_PWMTHRS(E, E1));
  2445. #endif
  2446. #if AXIS_HAS_STEALTHCHOP(E2)
  2447. say_M913(PORTVAR_SOLO);
  2448. SERIAL_ECHOLNPAIR_P(port, " T2 E", TMC_GET_PWMTHRS(E, E2));
  2449. #endif
  2450. #if AXIS_HAS_STEALTHCHOP(E3)
  2451. say_M913(PORTVAR_SOLO);
  2452. SERIAL_ECHOLNPAIR_P(port, " T3 E", TMC_GET_PWMTHRS(E, E3));
  2453. #endif
  2454. #if AXIS_HAS_STEALTHCHOP(E4)
  2455. say_M913(PORTVAR_SOLO);
  2456. SERIAL_ECHOLNPAIR_P(port, " T4 E", TMC_GET_PWMTHRS(E, E4));
  2457. #endif
  2458. #if AXIS_HAS_STEALTHCHOP(E5)
  2459. say_M913(PORTVAR_SOLO);
  2460. SERIAL_ECHOLNPAIR_P(port, " T5 E", TMC_GET_PWMTHRS(E, E5));
  2461. #endif
  2462. SERIAL_EOL_P(port);
  2463. #endif // HYBRID_THRESHOLD
  2464. /**
  2465. * TMC Sensorless homing thresholds
  2466. */
  2467. #if USE_SENSORLESS
  2468. CONFIG_ECHO_HEADING("TMC2130 StallGuard threshold:");
  2469. CONFIG_ECHO_START();
  2470. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2471. say_M914(PORTVAR_SOLO);
  2472. #if X_SENSORLESS
  2473. SERIAL_ECHOPAIR_P(port, " X", stepperX.sgt());
  2474. #endif
  2475. #if Y_SENSORLESS
  2476. SERIAL_ECHOPAIR_P(port, " Y", stepperY.sgt());
  2477. #endif
  2478. #if Z_SENSORLESS
  2479. SERIAL_ECHOPAIR_P(port, " Z", stepperZ.sgt());
  2480. #endif
  2481. SERIAL_EOL_P(port);
  2482. #endif
  2483. #define HAS_X2_SENSORLESS (defined(X_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2))
  2484. #define HAS_Y2_SENSORLESS (defined(Y_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2))
  2485. #define HAS_Z2_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2))
  2486. #define HAS_Z3_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z3))
  2487. #if HAS_X2_SENSORLESS || HAS_Y2_SENSORLESS || HAS_Z2_SENSORLESS
  2488. say_M914(PORTVAR_SOLO);
  2489. SERIAL_ECHOPGM_P(port, " I1");
  2490. #if HAS_X2_SENSORLESS
  2491. SERIAL_ECHOPAIR_P(port, " X", stepperX2.sgt());
  2492. #endif
  2493. #if HAS_Y2_SENSORLESS
  2494. SERIAL_ECHOPAIR_P(port, " Y", stepperY2.sgt());
  2495. #endif
  2496. #if HAS_Z2_SENSORLESS
  2497. SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.sgt());
  2498. #endif
  2499. SERIAL_EOL_P(port);
  2500. #endif
  2501. #if HAS_Z3_SENSORLESS
  2502. say_M914(PORTVAR_SOLO);
  2503. SERIAL_ECHOPGM_P(port, " I2");
  2504. SERIAL_ECHOLNPAIR_P(port, " Z", stepperZ3.sgt());
  2505. #endif
  2506. #endif // USE_SENSORLESS
  2507. #endif // HAS_TRINAMIC
  2508. /**
  2509. * Linear Advance
  2510. */
  2511. #if ENABLED(LIN_ADVANCE)
  2512. CONFIG_ECHO_HEADING("Linear Advance:");
  2513. CONFIG_ECHO_START();
  2514. #if EXTRUDERS < 2
  2515. SERIAL_ECHOLNPAIR_P(port, " M900 K", planner.extruder_advance_K[0]);
  2516. #else
  2517. LOOP_L_N(i, EXTRUDERS) {
  2518. SERIAL_ECHOPAIR_P(port, " M900 T", int(i));
  2519. SERIAL_ECHOLNPAIR_P(port, " K", planner.extruder_advance_K[i]);
  2520. }
  2521. #endif
  2522. #endif
  2523. #if HAS_MOTOR_CURRENT_PWM
  2524. CONFIG_ECHO_HEADING("Stepper motor currents:");
  2525. CONFIG_ECHO_START();
  2526. SERIAL_ECHOPAIR_P(port, " M907 X", stepper.motor_current_setting[0]);
  2527. SERIAL_ECHOPAIR_P(port, " Z", stepper.motor_current_setting[1]);
  2528. SERIAL_ECHOPAIR_P(port, " E", stepper.motor_current_setting[2]);
  2529. SERIAL_EOL_P(port);
  2530. #endif
  2531. /**
  2532. * Advanced Pause filament load & unload lengths
  2533. */
  2534. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2535. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  2536. CONFIG_ECHO_START();
  2537. #if EXTRUDERS == 1
  2538. say_M603(PORTVAR_SOLO);
  2539. SERIAL_ECHOPAIR_P(port, "L", LINEAR_UNIT(fc_settings[0].load_length));
  2540. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[0].unload_length));
  2541. #else
  2542. say_M603(PORTVAR_SOLO);
  2543. SERIAL_ECHOPAIR_P(port, "T0 L", LINEAR_UNIT(fc_settings[0].load_length));
  2544. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[0].unload_length));
  2545. CONFIG_ECHO_START();
  2546. say_M603(PORTVAR_SOLO);
  2547. SERIAL_ECHOPAIR_P(port, "T1 L", LINEAR_UNIT(fc_settings[1].load_length));
  2548. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[1].unload_length));
  2549. #if EXTRUDERS > 2
  2550. CONFIG_ECHO_START();
  2551. say_M603(PORTVAR_SOLO);
  2552. SERIAL_ECHOPAIR_P(port, "T2 L", LINEAR_UNIT(fc_settings[2].load_length));
  2553. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[2].unload_length));
  2554. #if EXTRUDERS > 3
  2555. CONFIG_ECHO_START();
  2556. say_M603(PORTVAR_SOLO);
  2557. SERIAL_ECHOPAIR_P(port, "T3 L", LINEAR_UNIT(fc_settings[3].load_length));
  2558. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[3].unload_length));
  2559. #if EXTRUDERS > 4
  2560. CONFIG_ECHO_START();
  2561. say_M603(PORTVAR_SOLO);
  2562. SERIAL_ECHOPAIR_P(port, "T4 L", LINEAR_UNIT(fc_settings[4].load_length));
  2563. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[4].unload_length));
  2564. #if EXTRUDERS > 5
  2565. CONFIG_ECHO_START();
  2566. say_M603(PORTVAR_SOLO);
  2567. SERIAL_ECHOPAIR_P(port, "T5 L", LINEAR_UNIT(fc_settings[5].load_length));
  2568. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[5].unload_length));
  2569. #endif // EXTRUDERS > 5
  2570. #endif // EXTRUDERS > 4
  2571. #endif // EXTRUDERS > 3
  2572. #endif // EXTRUDERS > 2
  2573. #endif // EXTRUDERS == 1
  2574. #endif // ADVANCED_PAUSE_FEATURE
  2575. #if EXTRUDERS > 1
  2576. CONFIG_ECHO_HEADING("Tool-changing:");
  2577. CONFIG_ECHO_START();
  2578. M217_report(true);
  2579. #endif
  2580. }
  2581. #endif // !DISABLE_M503
  2582. #pragma pack(pop)