My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 261KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - retract filament according to settings of M207
  97. * G11 - retract recover filament according to settings of M208
  98. * G20 - Set input units to inches
  99. * G21 - Set input units to millimeters
  100. * G28 - Home one or more axes
  101. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  102. * G30 - Single Z probe, probes bed at current XY location.
  103. * G31 - Dock sled (Z_PROBE_SLED only)
  104. * G32 - Undock sled (Z_PROBE_SLED only)
  105. * G90 - Use Absolute Coordinates
  106. * G91 - Use Relative Coordinates
  107. * G92 - Set current position to coordinates given
  108. *
  109. * "M" Codes
  110. *
  111. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  112. * M1 - Same as M0
  113. * M17 - Enable/Power all stepper motors
  114. * M18 - Disable all stepper motors; same as M84
  115. * M20 - List SD card
  116. * M21 - Init SD card
  117. * M22 - Release SD card
  118. * M23 - Select SD file (M23 filename.g)
  119. * M24 - Start/resume SD print
  120. * M25 - Pause SD print
  121. * M26 - Set SD position in bytes (M26 S12345)
  122. * M27 - Report SD print status
  123. * M28 - Start SD write (M28 filename.g)
  124. * M29 - Stop SD write
  125. * M30 - Delete file from SD (M30 filename.g)
  126. * M31 - Output time since last M109 or SD card start to serial
  127. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  128. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  129. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  130. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  131. * M33 - Get the longname version of a path
  132. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  133. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  134. * M75 - Start the print job timer
  135. * M76 - Pause the print job timer
  136. * M77 - Stop the print job timer
  137. * M78 - Show statistical information about the print jobs
  138. * M80 - Turn on Power Supply
  139. * M81 - Turn off Power Supply
  140. * M82 - Set E codes absolute (default)
  141. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  142. * M84 - Disable steppers until next move,
  143. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  144. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  145. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  146. * M104 - Set extruder target temp
  147. * M105 - Read current temp
  148. * M106 - Fan on
  149. * M107 - Fan off
  150. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  151. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  152. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  153. * M110 - Set the current line number
  154. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  155. * M112 - Emergency stop
  156. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  157. * M114 - Output current position to serial port
  158. * M115 - Capabilities string
  159. * M117 - Display a message on the controller screen
  160. * M119 - Output Endstop status to serial port
  161. * M120 - Enable endstop detection
  162. * M121 - Disable endstop detection
  163. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  164. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  165. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  166. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  167. * M140 - Set bed target temp
  168. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  169. * M149 - Set temperature units
  170. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  171. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  172. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  173. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  174. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  175. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  176. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  177. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  178. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  179. * M206 - Set additional homing offset
  180. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  181. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  182. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  183. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  184. * M220 - Set speed factor override percentage: S<factor in percent>
  185. * M221 - Set extrude factor override percentage: S<factor in percent>
  186. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  187. * M240 - Trigger a camera to take a photograph
  188. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  189. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  190. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  191. * M301 - Set PID parameters P I and D
  192. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  193. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  194. * M304 - Set bed PID parameters P I and D
  195. * M380 - Activate solenoid on active extruder
  196. * M381 - Disable all solenoids
  197. * M400 - Finish all moves
  198. * M401 - Lower Z probe if present
  199. * M402 - Raise Z probe if present
  200. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  201. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  202. * M406 - Turn off Filament Sensor extrusion control
  203. * M407 - Display measured filament diameter
  204. * M410 - Quickstop. Abort all the planned moves
  205. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  206. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  207. * M428 - Set the home_offset logically based on the current_position
  208. * M500 - Store parameters in EEPROM
  209. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  210. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  211. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  212. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  213. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  214. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  215. * M666 - Set delta endstop adjustment
  216. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  217. * M851 - Set Z probe's Z offset (mm). Set to a negative value for probes that trigger below the nozzle.
  218. * M907 - Set digital trimpot motor current using axis codes.
  219. * M908 - Control digital trimpot directly.
  220. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  221. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  222. * M350 - Set microstepping mode.
  223. * M351 - Toggle MS1 MS2 pins directly.
  224. *
  225. * ************ SCARA Specific - This can change to suit future G-code regulations
  226. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  227. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  228. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  229. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  230. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  231. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  232. * ************* SCARA End ***************
  233. *
  234. * ************ Custom codes - This can change to suit future G-code regulations
  235. * M100 - Watch Free Memory (For Debugging Only)
  236. * M928 - Start SD logging (M928 filename.g) - ended by M29
  237. * M999 - Restart after being stopped by error
  238. *
  239. * "T" Codes
  240. *
  241. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  242. *
  243. */
  244. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  245. void gcode_M100();
  246. #endif
  247. #if ENABLED(SDSUPPORT)
  248. CardReader card;
  249. #endif
  250. #if ENABLED(EXPERIMENTAL_I2CBUS)
  251. TWIBus i2c;
  252. #endif
  253. bool Running = true;
  254. uint8_t marlin_debug_flags = DEBUG_NONE;
  255. static float feedrate = 1500.0, saved_feedrate;
  256. float current_position[NUM_AXIS] = { 0.0 };
  257. static float destination[NUM_AXIS] = { 0.0 };
  258. bool axis_known_position[3] = { false };
  259. bool axis_homed[3] = { false };
  260. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  261. static char* current_command, *current_command_args;
  262. static int cmd_queue_index_r = 0;
  263. static int cmd_queue_index_w = 0;
  264. static int commands_in_queue = 0;
  265. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  266. #if ENABLED(INCH_MODE_SUPPORT)
  267. float linear_unit_factor = 1.0;
  268. float volumetric_unit_factor = 1.0;
  269. #endif
  270. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  271. TempUnit input_temp_units = TEMPUNIT_C;
  272. #endif
  273. const float homing_feedrate[] = HOMING_FEEDRATE;
  274. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  275. int feedrate_multiplier = 100; //100->1 200->2
  276. int saved_feedrate_multiplier;
  277. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  278. bool volumetric_enabled = false;
  279. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  280. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  281. // The distance that XYZ has been offset by G92. Reset by G28.
  282. float position_shift[3] = { 0 };
  283. // This offset is added to the configured home position.
  284. // Set by M206, M428, or menu item. Saved to EEPROM.
  285. float home_offset[3] = { 0 };
  286. // Software Endstops. Default to configured limits.
  287. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  288. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  289. #if FAN_COUNT > 0
  290. int fanSpeeds[FAN_COUNT] = { 0 };
  291. #endif
  292. // The active extruder (tool). Set with T<extruder> command.
  293. uint8_t active_extruder = 0;
  294. // Relative Mode. Enable with G91, disable with G90.
  295. static bool relative_mode = false;
  296. bool cancel_heatup = false;
  297. const char errormagic[] PROGMEM = "Error:";
  298. const char echomagic[] PROGMEM = "echo:";
  299. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  300. static int serial_count = 0;
  301. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  302. static char* seen_pointer;
  303. // Next Immediate GCode Command pointer. NULL if none.
  304. const char* queued_commands_P = NULL;
  305. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  306. // Inactivity shutdown
  307. millis_t previous_cmd_ms = 0;
  308. static millis_t max_inactive_time = 0;
  309. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  310. // Print Job Timer
  311. #if ENABLED(PRINTCOUNTER)
  312. PrintCounter print_job_timer = PrintCounter();
  313. #else
  314. Stopwatch print_job_timer = Stopwatch();
  315. #endif
  316. // Buzzer
  317. #if HAS_BUZZER
  318. #if ENABLED(SPEAKER)
  319. Speaker buzzer;
  320. #else
  321. Buzzer buzzer;
  322. #endif
  323. #endif
  324. static uint8_t target_extruder;
  325. #if HAS_BED_PROBE
  326. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  327. #endif
  328. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  329. int xy_probe_speed = XY_PROBE_SPEED;
  330. bool bed_leveling_in_progress = false;
  331. #define XY_PROBE_FEEDRATE xy_probe_speed
  332. #elif defined(XY_PROBE_SPEED)
  333. #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
  334. #else
  335. #define XY_PROBE_FEEDRATE (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]) * 60)
  336. #endif
  337. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  338. float z_endstop_adj = 0;
  339. #endif
  340. // Extruder offsets
  341. #if HOTENDS > 1
  342. #ifndef HOTEND_OFFSET_X
  343. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  344. #endif
  345. #ifndef HOTEND_OFFSET_Y
  346. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  347. #endif
  348. float hotend_offset[][HOTENDS] = {
  349. HOTEND_OFFSET_X,
  350. HOTEND_OFFSET_Y
  351. #if ENABLED(DUAL_X_CARRIAGE)
  352. , { 0 } // Z offsets for each extruder
  353. #endif
  354. };
  355. #endif
  356. #if HAS_Z_SERVO_ENDSTOP
  357. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  358. #endif
  359. #if ENABLED(BARICUDA)
  360. int baricuda_valve_pressure = 0;
  361. int baricuda_e_to_p_pressure = 0;
  362. #endif
  363. #if ENABLED(FWRETRACT)
  364. bool autoretract_enabled = false;
  365. bool retracted[EXTRUDERS] = { false };
  366. bool retracted_swap[EXTRUDERS] = { false };
  367. float retract_length = RETRACT_LENGTH;
  368. float retract_length_swap = RETRACT_LENGTH_SWAP;
  369. float retract_feedrate = RETRACT_FEEDRATE;
  370. float retract_zlift = RETRACT_ZLIFT;
  371. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  372. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  373. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  374. #endif // FWRETRACT
  375. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  376. bool powersupply =
  377. #if ENABLED(PS_DEFAULT_OFF)
  378. false
  379. #else
  380. true
  381. #endif
  382. ;
  383. #endif
  384. #if ENABLED(DELTA)
  385. #define TOWER_1 X_AXIS
  386. #define TOWER_2 Y_AXIS
  387. #define TOWER_3 Z_AXIS
  388. float delta[3] = { 0 };
  389. #define SIN_60 0.8660254037844386
  390. #define COS_60 0.5
  391. float endstop_adj[3] = { 0 };
  392. // these are the default values, can be overriden with M665
  393. float delta_radius = DELTA_RADIUS;
  394. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  395. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  396. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  397. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  398. float delta_tower3_x = 0; // back middle tower
  399. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  400. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  401. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  402. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  403. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  404. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  405. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  406. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  407. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  408. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  409. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  410. int delta_grid_spacing[2] = { 0, 0 };
  411. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  412. #endif
  413. #else
  414. static bool home_all_axis = true;
  415. #endif
  416. #if ENABLED(SCARA)
  417. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  418. static float delta[3] = { 0 };
  419. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  420. #endif
  421. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  422. //Variables for Filament Sensor input
  423. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  424. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  425. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  426. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  427. int filwidth_delay_index1 = 0; //index into ring buffer
  428. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  429. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  430. #endif
  431. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  432. static bool filament_ran_out = false;
  433. #endif
  434. static bool send_ok[BUFSIZE];
  435. #if HAS_SERVOS
  436. Servo servo[NUM_SERVOS];
  437. #define MOVE_SERVO(I, P) servo[I].move(P)
  438. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  439. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  440. #endif
  441. #ifdef CHDK
  442. millis_t chdkHigh = 0;
  443. boolean chdkActive = false;
  444. #endif
  445. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  446. int lpq_len = 20;
  447. #endif
  448. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  449. // States for managing Marlin and host communication
  450. // Marlin sends messages if blocked or busy
  451. enum MarlinBusyState {
  452. NOT_BUSY, // Not in a handler
  453. IN_HANDLER, // Processing a GCode
  454. IN_PROCESS, // Known to be blocking command input (as in G29)
  455. PAUSED_FOR_USER, // Blocking pending any input
  456. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  457. };
  458. static MarlinBusyState busy_state = NOT_BUSY;
  459. static millis_t next_busy_signal_ms = 0;
  460. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  461. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  462. #else
  463. #define host_keepalive() ;
  464. #define KEEPALIVE_STATE(n) ;
  465. #endif // HOST_KEEPALIVE_FEATURE
  466. /**
  467. * ***************************************************************************
  468. * ******************************** FUNCTIONS ********************************
  469. * ***************************************************************************
  470. */
  471. void stop();
  472. void get_available_commands();
  473. void process_next_command();
  474. void prepare_move_to_destination();
  475. #if ENABLED(ARC_SUPPORT)
  476. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  477. #endif
  478. #if ENABLED(BEZIER_CURVE_SUPPORT)
  479. void plan_cubic_move(const float offset[4]);
  480. #endif
  481. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  482. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  483. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  484. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  485. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  486. static void report_current_position();
  487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  488. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  489. SERIAL_ECHO(prefix);
  490. SERIAL_ECHOPAIR(": (", x);
  491. SERIAL_ECHOPAIR(", ", y);
  492. SERIAL_ECHOPAIR(", ", z);
  493. SERIAL_ECHOLNPGM(")");
  494. }
  495. void print_xyz(const char* prefix, const float xyz[]) {
  496. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  497. }
  498. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  499. void print_xyz(const char* prefix, const vector_3 &xyz) {
  500. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  501. }
  502. #endif
  503. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  504. #endif
  505. #if ENABLED(DELTA) || ENABLED(SCARA)
  506. inline void sync_plan_position_delta() {
  507. #if ENABLED(DEBUG_LEVELING_FEATURE)
  508. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  509. #endif
  510. calculate_delta(current_position);
  511. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  512. }
  513. #endif
  514. #if ENABLED(SDSUPPORT)
  515. #include "SdFatUtil.h"
  516. int freeMemory() { return SdFatUtil::FreeRam(); }
  517. #else
  518. extern "C" {
  519. extern unsigned int __bss_end;
  520. extern unsigned int __heap_start;
  521. extern void* __brkval;
  522. int freeMemory() {
  523. int free_memory;
  524. if ((int)__brkval == 0)
  525. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  526. else
  527. free_memory = ((int)&free_memory) - ((int)__brkval);
  528. return free_memory;
  529. }
  530. }
  531. #endif //!SDSUPPORT
  532. #if ENABLED(DIGIPOT_I2C)
  533. extern void digipot_i2c_set_current(int channel, float current);
  534. extern void digipot_i2c_init();
  535. #endif
  536. /**
  537. * Inject the next "immediate" command, when possible.
  538. * Return true if any immediate commands remain to inject.
  539. */
  540. static bool drain_queued_commands_P() {
  541. if (queued_commands_P != NULL) {
  542. size_t i = 0;
  543. char c, cmd[30];
  544. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  545. cmd[sizeof(cmd) - 1] = '\0';
  546. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  547. cmd[i] = '\0';
  548. if (enqueue_and_echo_command(cmd)) { // success?
  549. if (c) // newline char?
  550. queued_commands_P += i + 1; // advance to the next command
  551. else
  552. queued_commands_P = NULL; // nul char? no more commands
  553. }
  554. }
  555. return (queued_commands_P != NULL); // return whether any more remain
  556. }
  557. /**
  558. * Record one or many commands to run from program memory.
  559. * Aborts the current queue, if any.
  560. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  561. */
  562. void enqueue_and_echo_commands_P(const char* pgcode) {
  563. queued_commands_P = pgcode;
  564. drain_queued_commands_P(); // first command executed asap (when possible)
  565. }
  566. void clear_command_queue() {
  567. cmd_queue_index_r = cmd_queue_index_w;
  568. commands_in_queue = 0;
  569. }
  570. /**
  571. * Once a new command is in the ring buffer, call this to commit it
  572. */
  573. inline void _commit_command(bool say_ok) {
  574. send_ok[cmd_queue_index_w] = say_ok;
  575. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  576. commands_in_queue++;
  577. }
  578. /**
  579. * Copy a command directly into the main command buffer, from RAM.
  580. * Returns true if successfully adds the command
  581. */
  582. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  583. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  584. strcpy(command_queue[cmd_queue_index_w], cmd);
  585. _commit_command(say_ok);
  586. return true;
  587. }
  588. void enqueue_and_echo_command_now(const char* cmd) {
  589. while (!enqueue_and_echo_command(cmd)) idle();
  590. }
  591. /**
  592. * Enqueue with Serial Echo
  593. */
  594. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  595. if (_enqueuecommand(cmd, say_ok)) {
  596. SERIAL_ECHO_START;
  597. SERIAL_ECHOPGM(MSG_Enqueueing);
  598. SERIAL_ECHO(cmd);
  599. SERIAL_ECHOLNPGM("\"");
  600. return true;
  601. }
  602. return false;
  603. }
  604. void setup_killpin() {
  605. #if HAS_KILL
  606. SET_INPUT(KILL_PIN);
  607. WRITE(KILL_PIN, HIGH);
  608. #endif
  609. }
  610. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  611. void setup_filrunoutpin() {
  612. pinMode(FIL_RUNOUT_PIN, INPUT);
  613. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  614. WRITE(FIL_RUNOUT_PIN, HIGH);
  615. #endif
  616. }
  617. #endif
  618. // Set home pin
  619. void setup_homepin(void) {
  620. #if HAS_HOME
  621. SET_INPUT(HOME_PIN);
  622. WRITE(HOME_PIN, HIGH);
  623. #endif
  624. }
  625. void setup_photpin() {
  626. #if HAS_PHOTOGRAPH
  627. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  628. #endif
  629. }
  630. void setup_powerhold() {
  631. #if HAS_SUICIDE
  632. OUT_WRITE(SUICIDE_PIN, HIGH);
  633. #endif
  634. #if HAS_POWER_SWITCH
  635. #if ENABLED(PS_DEFAULT_OFF)
  636. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  637. #else
  638. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  639. #endif
  640. #endif
  641. }
  642. void suicide() {
  643. #if HAS_SUICIDE
  644. OUT_WRITE(SUICIDE_PIN, LOW);
  645. #endif
  646. }
  647. void servo_init() {
  648. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  649. servo[0].attach(SERVO0_PIN);
  650. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  651. #endif
  652. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  653. servo[1].attach(SERVO1_PIN);
  654. servo[1].detach();
  655. #endif
  656. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  657. servo[2].attach(SERVO2_PIN);
  658. servo[2].detach();
  659. #endif
  660. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  661. servo[3].attach(SERVO3_PIN);
  662. servo[3].detach();
  663. #endif
  664. #if HAS_Z_SERVO_ENDSTOP
  665. /**
  666. * Set position of Z Servo Endstop
  667. *
  668. * The servo might be deployed and positioned too low to stow
  669. * when starting up the machine or rebooting the board.
  670. * There's no way to know where the nozzle is positioned until
  671. * homing has been done - no homing with z-probe without init!
  672. *
  673. */
  674. STOW_Z_SERVO();
  675. #endif
  676. #if HAS_BED_PROBE
  677. endstops.enable_z_probe(false);
  678. #endif
  679. }
  680. /**
  681. * Stepper Reset (RigidBoard, et.al.)
  682. */
  683. #if HAS_STEPPER_RESET
  684. void disableStepperDrivers() {
  685. pinMode(STEPPER_RESET_PIN, OUTPUT);
  686. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  687. }
  688. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  689. #endif
  690. /**
  691. * Marlin entry-point: Set up before the program loop
  692. * - Set up the kill pin, filament runout, power hold
  693. * - Start the serial port
  694. * - Print startup messages and diagnostics
  695. * - Get EEPROM or default settings
  696. * - Initialize managers for:
  697. * • temperature
  698. * • planner
  699. * • watchdog
  700. * • stepper
  701. * • photo pin
  702. * • servos
  703. * • LCD controller
  704. * • Digipot I2C
  705. * • Z probe sled
  706. * • status LEDs
  707. */
  708. void setup() {
  709. #ifdef DISABLE_JTAG
  710. // Disable JTAG on AT90USB chips to free up pins for IO
  711. MCUCR = 0x80;
  712. MCUCR = 0x80;
  713. #endif
  714. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  715. setup_filrunoutpin();
  716. #endif
  717. setup_killpin();
  718. setup_powerhold();
  719. #if HAS_STEPPER_RESET
  720. disableStepperDrivers();
  721. #endif
  722. MYSERIAL.begin(BAUDRATE);
  723. SERIAL_PROTOCOLLNPGM("start");
  724. SERIAL_ECHO_START;
  725. // Check startup - does nothing if bootloader sets MCUSR to 0
  726. byte mcu = MCUSR;
  727. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  728. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  729. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  730. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  731. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  732. MCUSR = 0;
  733. SERIAL_ECHOPGM(MSG_MARLIN);
  734. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  735. #ifdef STRING_DISTRIBUTION_DATE
  736. #ifdef STRING_CONFIG_H_AUTHOR
  737. SERIAL_ECHO_START;
  738. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  739. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  740. SERIAL_ECHOPGM(MSG_AUTHOR);
  741. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  742. SERIAL_ECHOPGM("Compiled: ");
  743. SERIAL_ECHOLNPGM(__DATE__);
  744. #endif // STRING_CONFIG_H_AUTHOR
  745. #endif // STRING_DISTRIBUTION_DATE
  746. SERIAL_ECHO_START;
  747. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  748. SERIAL_ECHO(freeMemory());
  749. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  750. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  751. // Send "ok" after commands by default
  752. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  753. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  754. Config_RetrieveSettings();
  755. // Initialize current position based on home_offset
  756. memcpy(current_position, home_offset, sizeof(home_offset));
  757. #if ENABLED(DELTA) || ENABLED(SCARA)
  758. // Vital to init kinematic equivalent for X0 Y0 Z0
  759. sync_plan_position_delta();
  760. #endif
  761. thermalManager.init(); // Initialize temperature loop
  762. #if ENABLED(USE_WATCHDOG)
  763. watchdog_init();
  764. #endif
  765. stepper.init(); // Initialize stepper, this enables interrupts!
  766. setup_photpin();
  767. servo_init();
  768. #if HAS_CONTROLLERFAN
  769. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  770. #endif
  771. #if HAS_STEPPER_RESET
  772. enableStepperDrivers();
  773. #endif
  774. #if ENABLED(DIGIPOT_I2C)
  775. digipot_i2c_init();
  776. #endif
  777. #if ENABLED(DAC_STEPPER_CURRENT)
  778. dac_init();
  779. #endif
  780. #if ENABLED(Z_PROBE_SLED)
  781. pinMode(SLED_PIN, OUTPUT);
  782. digitalWrite(SLED_PIN, LOW); // turn it off
  783. #endif // Z_PROBE_SLED
  784. setup_homepin();
  785. #ifdef STAT_LED_RED
  786. pinMode(STAT_LED_RED, OUTPUT);
  787. digitalWrite(STAT_LED_RED, LOW); // turn it off
  788. #endif
  789. #ifdef STAT_LED_BLUE
  790. pinMode(STAT_LED_BLUE, OUTPUT);
  791. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  792. #endif
  793. lcd_init();
  794. #if ENABLED(SHOW_BOOTSCREEN)
  795. #if ENABLED(DOGLCD)
  796. delay(1000);
  797. #elif ENABLED(ULTRA_LCD)
  798. bootscreen();
  799. lcd_init();
  800. #endif
  801. #endif
  802. }
  803. /**
  804. * The main Marlin program loop
  805. *
  806. * - Save or log commands to SD
  807. * - Process available commands (if not saving)
  808. * - Call heater manager
  809. * - Call inactivity manager
  810. * - Call endstop manager
  811. * - Call LCD update
  812. */
  813. void loop() {
  814. if (commands_in_queue < BUFSIZE) get_available_commands();
  815. #if ENABLED(SDSUPPORT)
  816. card.checkautostart(false);
  817. #endif
  818. if (commands_in_queue) {
  819. #if ENABLED(SDSUPPORT)
  820. if (card.saving) {
  821. char* command = command_queue[cmd_queue_index_r];
  822. if (strstr_P(command, PSTR("M29"))) {
  823. // M29 closes the file
  824. card.closefile();
  825. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  826. ok_to_send();
  827. }
  828. else {
  829. // Write the string from the read buffer to SD
  830. card.write_command(command);
  831. if (card.logging)
  832. process_next_command(); // The card is saving because it's logging
  833. else
  834. ok_to_send();
  835. }
  836. }
  837. else
  838. process_next_command();
  839. #else
  840. process_next_command();
  841. #endif // SDSUPPORT
  842. commands_in_queue--;
  843. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  844. }
  845. endstops.report_state();
  846. idle();
  847. }
  848. void gcode_line_error(const char* err, bool doFlush = true) {
  849. SERIAL_ERROR_START;
  850. serialprintPGM(err);
  851. SERIAL_ERRORLN(gcode_LastN);
  852. //Serial.println(gcode_N);
  853. if (doFlush) FlushSerialRequestResend();
  854. serial_count = 0;
  855. }
  856. inline void get_serial_commands() {
  857. static char serial_line_buffer[MAX_CMD_SIZE];
  858. static boolean serial_comment_mode = false;
  859. // If the command buffer is empty for too long,
  860. // send "wait" to indicate Marlin is still waiting.
  861. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  862. static millis_t last_command_time = 0;
  863. millis_t ms = millis();
  864. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  865. SERIAL_ECHOLNPGM(MSG_WAIT);
  866. last_command_time = ms;
  867. }
  868. #endif
  869. /**
  870. * Loop while serial characters are incoming and the queue is not full
  871. */
  872. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  873. char serial_char = MYSERIAL.read();
  874. /**
  875. * If the character ends the line
  876. */
  877. if (serial_char == '\n' || serial_char == '\r') {
  878. serial_comment_mode = false; // end of line == end of comment
  879. if (!serial_count) continue; // skip empty lines
  880. serial_line_buffer[serial_count] = 0; // terminate string
  881. serial_count = 0; //reset buffer
  882. char* command = serial_line_buffer;
  883. while (*command == ' ') command++; // skip any leading spaces
  884. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  885. char* apos = strchr(command, '*');
  886. if (npos) {
  887. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  888. if (M110) {
  889. char* n2pos = strchr(command + 4, 'N');
  890. if (n2pos) npos = n2pos;
  891. }
  892. gcode_N = strtol(npos + 1, NULL, 10);
  893. if (gcode_N != gcode_LastN + 1 && !M110) {
  894. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  895. return;
  896. }
  897. if (apos) {
  898. byte checksum = 0, count = 0;
  899. while (command[count] != '*') checksum ^= command[count++];
  900. if (strtol(apos + 1, NULL, 10) != checksum) {
  901. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  902. return;
  903. }
  904. // if no errors, continue parsing
  905. }
  906. else {
  907. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  908. return;
  909. }
  910. gcode_LastN = gcode_N;
  911. // if no errors, continue parsing
  912. }
  913. else if (apos) { // No '*' without 'N'
  914. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  915. return;
  916. }
  917. // Movement commands alert when stopped
  918. if (IsStopped()) {
  919. char* gpos = strchr(command, 'G');
  920. if (gpos) {
  921. int codenum = strtol(gpos + 1, NULL, 10);
  922. switch (codenum) {
  923. case 0:
  924. case 1:
  925. case 2:
  926. case 3:
  927. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  928. LCD_MESSAGEPGM(MSG_STOPPED);
  929. break;
  930. }
  931. }
  932. }
  933. // If command was e-stop process now
  934. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  935. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  936. last_command_time = ms;
  937. #endif
  938. // Add the command to the queue
  939. _enqueuecommand(serial_line_buffer, true);
  940. }
  941. else if (serial_count >= MAX_CMD_SIZE - 1) {
  942. // Keep fetching, but ignore normal characters beyond the max length
  943. // The command will be injected when EOL is reached
  944. }
  945. else if (serial_char == '\\') { // Handle escapes
  946. if (MYSERIAL.available() > 0) {
  947. // if we have one more character, copy it over
  948. serial_char = MYSERIAL.read();
  949. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  950. }
  951. // otherwise do nothing
  952. }
  953. else { // it's not a newline, carriage return or escape char
  954. if (serial_char == ';') serial_comment_mode = true;
  955. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  956. }
  957. } // queue has space, serial has data
  958. }
  959. #if ENABLED(SDSUPPORT)
  960. inline void get_sdcard_commands() {
  961. static bool stop_buffering = false,
  962. sd_comment_mode = false;
  963. if (!card.sdprinting) return;
  964. /**
  965. * '#' stops reading from SD to the buffer prematurely, so procedural
  966. * macro calls are possible. If it occurs, stop_buffering is triggered
  967. * and the buffer is run dry; this character _can_ occur in serial com
  968. * due to checksums, however, no checksums are used in SD printing.
  969. */
  970. if (commands_in_queue == 0) stop_buffering = false;
  971. uint16_t sd_count = 0;
  972. bool card_eof = card.eof();
  973. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  974. int16_t n = card.get();
  975. char sd_char = (char)n;
  976. card_eof = card.eof();
  977. if (card_eof || n == -1
  978. || sd_char == '\n' || sd_char == '\r'
  979. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  980. ) {
  981. if (card_eof) {
  982. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  983. print_job_timer.stop();
  984. char time[30];
  985. millis_t t = print_job_timer.duration();
  986. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  987. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  988. SERIAL_ECHO_START;
  989. SERIAL_ECHOLN(time);
  990. lcd_setstatus(time, true);
  991. card.printingHasFinished();
  992. card.checkautostart(true);
  993. }
  994. else if (n == -1) {
  995. SERIAL_ERROR_START;
  996. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  997. }
  998. if (sd_char == '#') stop_buffering = true;
  999. sd_comment_mode = false; //for new command
  1000. if (!sd_count) continue; //skip empty lines
  1001. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1002. sd_count = 0; //clear buffer
  1003. _commit_command(false);
  1004. }
  1005. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1006. /**
  1007. * Keep fetching, but ignore normal characters beyond the max length
  1008. * The command will be injected when EOL is reached
  1009. */
  1010. }
  1011. else {
  1012. if (sd_char == ';') sd_comment_mode = true;
  1013. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1014. }
  1015. }
  1016. }
  1017. #endif // SDSUPPORT
  1018. /**
  1019. * Add to the circular command queue the next command from:
  1020. * - The command-injection queue (queued_commands_P)
  1021. * - The active serial input (usually USB)
  1022. * - The SD card file being actively printed
  1023. */
  1024. void get_available_commands() {
  1025. // if any immediate commands remain, don't get other commands yet
  1026. if (drain_queued_commands_P()) return;
  1027. get_serial_commands();
  1028. #if ENABLED(SDSUPPORT)
  1029. get_sdcard_commands();
  1030. #endif
  1031. }
  1032. inline bool code_has_value() {
  1033. int i = 1;
  1034. char c = seen_pointer[i];
  1035. while (c == ' ') c = seen_pointer[++i];
  1036. if (c == '-' || c == '+') c = seen_pointer[++i];
  1037. if (c == '.') c = seen_pointer[++i];
  1038. return NUMERIC(c);
  1039. }
  1040. inline float code_value_float() {
  1041. float ret;
  1042. char* e = strchr(seen_pointer, 'E');
  1043. if (e) {
  1044. *e = 0;
  1045. ret = strtod(seen_pointer + 1, NULL);
  1046. *e = 'E';
  1047. }
  1048. else
  1049. ret = strtod(seen_pointer + 1, NULL);
  1050. return ret;
  1051. }
  1052. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1053. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1054. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1055. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1056. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1057. inline bool code_value_bool() { return code_value_byte() > 0; }
  1058. #if ENABLED(INCH_MODE_SUPPORT)
  1059. inline void set_input_linear_units(LinearUnit units) {
  1060. switch (units) {
  1061. case LINEARUNIT_INCH:
  1062. linear_unit_factor = 25.4;
  1063. break;
  1064. case LINEARUNIT_MM:
  1065. default:
  1066. linear_unit_factor = 1.0;
  1067. break;
  1068. }
  1069. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1070. }
  1071. inline float axis_unit_factor(int axis) {
  1072. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1073. }
  1074. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1075. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1076. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1077. #else
  1078. inline float code_value_linear_units() { return code_value_float(); }
  1079. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1080. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1081. #endif
  1082. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1083. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1084. float code_value_temp_abs() {
  1085. switch (input_temp_units) {
  1086. case TEMPUNIT_C:
  1087. return code_value_float();
  1088. case TEMPUNIT_F:
  1089. return (code_value_float() - 32) / 1.8;
  1090. case TEMPUNIT_K:
  1091. return code_value_float() - 272.15;
  1092. default:
  1093. return code_value_float();
  1094. }
  1095. }
  1096. float code_value_temp_diff() {
  1097. switch (input_temp_units) {
  1098. case TEMPUNIT_C:
  1099. case TEMPUNIT_K:
  1100. return code_value_float();
  1101. case TEMPUNIT_F:
  1102. return code_value_float() / 1.8;
  1103. default:
  1104. return code_value_float();
  1105. }
  1106. }
  1107. #else
  1108. float code_value_temp_abs() { return code_value_float(); }
  1109. float code_value_temp_diff() { return code_value_float(); }
  1110. #endif
  1111. inline millis_t code_value_millis() { return code_value_ulong(); }
  1112. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1113. bool code_seen(char code) {
  1114. seen_pointer = strchr(current_command_args, code);
  1115. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1116. }
  1117. /**
  1118. * Set target_extruder from the T parameter or the active_extruder
  1119. *
  1120. * Returns TRUE if the target is invalid
  1121. */
  1122. bool get_target_extruder_from_command(int code) {
  1123. if (code_seen('T')) {
  1124. uint8_t t = code_value_byte();
  1125. if (t >= EXTRUDERS) {
  1126. SERIAL_ECHO_START;
  1127. SERIAL_CHAR('M');
  1128. SERIAL_ECHO(code);
  1129. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1130. SERIAL_EOL;
  1131. return true;
  1132. }
  1133. target_extruder = t;
  1134. }
  1135. else
  1136. target_extruder = active_extruder;
  1137. return false;
  1138. }
  1139. #define DEFINE_PGM_READ_ANY(type, reader) \
  1140. static inline type pgm_read_any(const type *p) \
  1141. { return pgm_read_##reader##_near(p); }
  1142. DEFINE_PGM_READ_ANY(float, float);
  1143. DEFINE_PGM_READ_ANY(signed char, byte);
  1144. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1145. static const PROGMEM type array##_P[3] = \
  1146. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1147. static inline type array(int axis) \
  1148. { return pgm_read_any(&array##_P[axis]); }
  1149. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1150. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1151. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1152. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1153. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1154. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1155. #if ENABLED(DUAL_X_CARRIAGE)
  1156. #define DXC_FULL_CONTROL_MODE 0
  1157. #define DXC_AUTO_PARK_MODE 1
  1158. #define DXC_DUPLICATION_MODE 2
  1159. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1160. static float x_home_pos(int extruder) {
  1161. if (extruder == 0)
  1162. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1163. else
  1164. /**
  1165. * In dual carriage mode the extruder offset provides an override of the
  1166. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1167. * This allow soft recalibration of the second extruder offset position
  1168. * without firmware reflash (through the M218 command).
  1169. */
  1170. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1171. }
  1172. static int x_home_dir(int extruder) {
  1173. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1174. }
  1175. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1176. static bool active_extruder_parked = false; // used in mode 1 & 2
  1177. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1178. static millis_t delayed_move_time = 0; // used in mode 1
  1179. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1180. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1181. bool extruder_duplication_enabled = false; // used in mode 2
  1182. #endif //DUAL_X_CARRIAGE
  1183. /**
  1184. * Software endstops can be used to monitor the open end of
  1185. * an axis that has a hardware endstop on the other end. Or
  1186. * they can prevent axes from moving past endstops and grinding.
  1187. *
  1188. * To keep doing their job as the coordinate system changes,
  1189. * the software endstop positions must be refreshed to remain
  1190. * at the same positions relative to the machine.
  1191. */
  1192. static void update_software_endstops(AxisEnum axis) {
  1193. float offs = home_offset[axis] + position_shift[axis];
  1194. #if ENABLED(DUAL_X_CARRIAGE)
  1195. if (axis == X_AXIS) {
  1196. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1197. if (active_extruder != 0) {
  1198. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1199. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1200. return;
  1201. }
  1202. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1203. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1204. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1205. return;
  1206. }
  1207. }
  1208. else
  1209. #endif
  1210. {
  1211. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1212. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1213. }
  1214. }
  1215. /**
  1216. * Change the home offset for an axis, update the current
  1217. * position and the software endstops to retain the same
  1218. * relative distance to the new home.
  1219. *
  1220. * Since this changes the current_position, code should
  1221. * call sync_plan_position soon after this.
  1222. */
  1223. static void set_home_offset(AxisEnum axis, float v) {
  1224. current_position[axis] += v - home_offset[axis];
  1225. home_offset[axis] = v;
  1226. update_software_endstops(axis);
  1227. }
  1228. static void set_axis_is_at_home(AxisEnum axis) {
  1229. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1230. if (DEBUGGING(LEVELING)) {
  1231. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1232. SERIAL_ECHOLNPGM(") >>>");
  1233. }
  1234. #endif
  1235. position_shift[axis] = 0;
  1236. #if ENABLED(DUAL_X_CARRIAGE)
  1237. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1238. if (active_extruder != 0)
  1239. current_position[X_AXIS] = x_home_pos(active_extruder);
  1240. else
  1241. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1242. update_software_endstops(X_AXIS);
  1243. return;
  1244. }
  1245. #endif
  1246. #if ENABLED(SCARA)
  1247. if (axis == X_AXIS || axis == Y_AXIS) {
  1248. float homeposition[3];
  1249. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1250. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1251. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1252. /**
  1253. * Works out real Homeposition angles using inverse kinematics,
  1254. * and calculates homing offset using forward kinematics
  1255. */
  1256. calculate_delta(homeposition);
  1257. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1258. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1259. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1260. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1261. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1262. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1263. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1264. calculate_SCARA_forward_Transform(delta);
  1265. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1266. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1267. current_position[axis] = delta[axis];
  1268. /**
  1269. * SCARA home positions are based on configuration since the actual
  1270. * limits are determined by the inverse kinematic transform.
  1271. */
  1272. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1273. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1274. }
  1275. else
  1276. #endif
  1277. {
  1278. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1279. update_software_endstops(axis);
  1280. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1281. if (axis == Z_AXIS) {
  1282. current_position[Z_AXIS] -= zprobe_zoffset;
  1283. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1284. if (DEBUGGING(LEVELING)) {
  1285. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1286. SERIAL_EOL;
  1287. }
  1288. #endif
  1289. }
  1290. #endif
  1291. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1292. if (DEBUGGING(LEVELING)) {
  1293. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1294. DEBUG_POS("", current_position);
  1295. }
  1296. #endif
  1297. }
  1298. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1299. if (DEBUGGING(LEVELING)) {
  1300. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1301. SERIAL_ECHOLNPGM(")");
  1302. }
  1303. #endif
  1304. }
  1305. /**
  1306. * Some planner shorthand inline functions
  1307. */
  1308. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1309. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1310. int hbd = homing_bump_divisor[axis];
  1311. if (hbd < 1) {
  1312. hbd = 10;
  1313. SERIAL_ECHO_START;
  1314. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1315. }
  1316. feedrate = homing_feedrate[axis] / hbd;
  1317. }
  1318. //
  1319. // line_to_current_position
  1320. // Move the planner to the current position from wherever it last moved
  1321. // (or from wherever it has been told it is located).
  1322. //
  1323. inline void line_to_current_position() {
  1324. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1325. }
  1326. inline void line_to_z(float zPosition) {
  1327. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1328. }
  1329. //
  1330. // line_to_destination
  1331. // Move the planner, not necessarily synced with current_position
  1332. //
  1333. inline void line_to_destination(float mm_m) {
  1334. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1335. }
  1336. inline void line_to_destination() {
  1337. line_to_destination(feedrate);
  1338. }
  1339. /**
  1340. * sync_plan_position
  1341. * Set planner / stepper positions to the cartesian current_position.
  1342. * The stepper code translates these coordinates into step units.
  1343. * Allows translation between steps and units (mm) for cartesian & core robots
  1344. */
  1345. inline void sync_plan_position() {
  1346. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1347. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1348. #endif
  1349. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1350. }
  1351. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1352. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1353. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1354. //
  1355. // Prepare to do endstop or probe moves
  1356. // with custom feedrates.
  1357. //
  1358. // - Save current feedrates
  1359. // - Reset the rate multiplier
  1360. // - Enable the endstops
  1361. // - Reset the command timeout
  1362. //
  1363. // clean_up_after_endstop_move() restores
  1364. // feedrates, sets endstops back to global state.
  1365. //
  1366. static void setup_for_endstop_move() {
  1367. saved_feedrate = feedrate;
  1368. saved_feedrate_multiplier = feedrate_multiplier;
  1369. feedrate_multiplier = 100;
  1370. refresh_cmd_timeout();
  1371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1372. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
  1373. #endif
  1374. endstops.enable();
  1375. }
  1376. #if HAS_BED_PROBE
  1377. static void clean_up_after_endstop_move() {
  1378. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1379. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > endstops.not_homing()");
  1380. #endif
  1381. endstops.not_homing();
  1382. feedrate = saved_feedrate;
  1383. feedrate_multiplier = saved_feedrate_multiplier;
  1384. refresh_cmd_timeout();
  1385. }
  1386. #if ENABLED(DELTA)
  1387. /**
  1388. * Calculate delta, start a line, and set current_position to destination
  1389. */
  1390. void prepare_move_to_destination_raw() {
  1391. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1392. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1393. #endif
  1394. refresh_cmd_timeout();
  1395. calculate_delta(destination);
  1396. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1397. set_current_to_destination();
  1398. }
  1399. #endif
  1400. /**
  1401. * Plan a move to (X, Y, Z) and set the current_position
  1402. * The final current_position may not be the one that was requested
  1403. */
  1404. static void do_blocking_move_to(float x, float y, float z) {
  1405. float old_feedrate = feedrate;
  1406. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1407. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1408. #endif
  1409. #if ENABLED(DELTA)
  1410. feedrate = XY_PROBE_FEEDRATE;
  1411. destination[X_AXIS] = x;
  1412. destination[Y_AXIS] = y;
  1413. destination[Z_AXIS] = z;
  1414. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1415. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1416. else
  1417. prepare_move_to_destination(); // this will also set_current_to_destination
  1418. #else
  1419. feedrate = homing_feedrate[Z_AXIS];
  1420. current_position[Z_AXIS] = z;
  1421. line_to_current_position();
  1422. stepper.synchronize();
  1423. feedrate = XY_PROBE_FEEDRATE;
  1424. current_position[X_AXIS] = x;
  1425. current_position[Y_AXIS] = y;
  1426. line_to_current_position();
  1427. #endif
  1428. stepper.synchronize();
  1429. feedrate = old_feedrate;
  1430. }
  1431. inline void do_blocking_move_to_x(float x) {
  1432. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1433. }
  1434. inline void do_blocking_move_to_z(float z) {
  1435. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1436. }
  1437. inline void raise_z_after_probing() {
  1438. #if Z_RAISE_AFTER_PROBING > 0
  1439. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1440. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("raise_z_after_probing()");
  1441. #endif
  1442. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1443. #endif
  1444. }
  1445. #endif //HAS_BED_PROBE
  1446. #if HAS_Z_SERVO_ENDSTOP
  1447. /**
  1448. * Raise Z to a minimum height to make room for a servo to move
  1449. *
  1450. * zprobe_zoffset: Negative of the Z height where the probe engages
  1451. * z_dest: The before / after probing raise distance
  1452. *
  1453. * The zprobe_zoffset is negative for a switch below the nozzle, so
  1454. * multiply by Z_HOME_DIR (-1) to move enough away from the bed.
  1455. */
  1456. void raise_z_for_servo(float z_dest) {
  1457. z_dest += home_offset[Z_AXIS];
  1458. if ((Z_HOME_DIR) < 0 && zprobe_zoffset < 0)
  1459. z_dest -= zprobe_zoffset;
  1460. if (z_dest > current_position[Z_AXIS])
  1461. do_blocking_move_to_z(z_dest); // also updates current_position
  1462. }
  1463. #endif
  1464. #if ENABLED(Z_PROBE_SLED)
  1465. #ifndef SLED_DOCKING_OFFSET
  1466. #define SLED_DOCKING_OFFSET 0
  1467. #endif
  1468. /**
  1469. * Method to dock/undock a sled designed by Charles Bell.
  1470. *
  1471. * dock[in] If true, move to MAX_X and engage the electromagnet
  1472. * offset[in] The additional distance to move to adjust docking location
  1473. */
  1474. static void dock_sled(bool dock, int offset = 0) {
  1475. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1476. if (DEBUGGING(LEVELING)) {
  1477. SERIAL_ECHOPAIR("dock_sled(", dock);
  1478. SERIAL_ECHOLNPGM(")");
  1479. }
  1480. #endif
  1481. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  1482. axis_unhomed_error(true);
  1483. return;
  1484. }
  1485. if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
  1486. float oldXpos = current_position[X_AXIS]; // save x position
  1487. if (dock) {
  1488. raise_z_after_probing(); // raise Z
  1489. // Dock sled a bit closer to ensure proper capturing
  1490. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1491. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1492. }
  1493. else {
  1494. float z_loc = current_position[Z_AXIS];
  1495. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1496. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1497. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1498. }
  1499. do_blocking_move_to_x(oldXpos); // return to position before docking
  1500. }
  1501. #endif // Z_PROBE_SLED
  1502. #if HAS_BED_PROBE
  1503. static void deploy_z_probe() {
  1504. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1505. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1506. #endif
  1507. if (endstops.z_probe_enabled) return;
  1508. #if ENABLED(Z_PROBE_SLED)
  1509. dock_sled(false);
  1510. #elif HAS_Z_SERVO_ENDSTOP
  1511. // Make room for Z Servo
  1512. raise_z_for_servo(Z_RAISE_BEFORE_PROBING);
  1513. // Engage Z Servo endstop if enabled
  1514. DEPLOY_Z_SERVO();
  1515. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1516. float old_feedrate = feedrate;
  1517. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1518. // If endstop is already false, the Z probe is deployed
  1519. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1520. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1521. if (z_probe_endstop)
  1522. #else
  1523. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1524. if (z_min_endstop)
  1525. #endif
  1526. {
  1527. // Move to the start position to initiate deployment
  1528. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1529. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1530. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1531. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1532. // Move to engage deployment
  1533. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1534. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1535. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1536. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1537. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1538. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1539. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1540. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1541. prepare_move_to_destination_raw();
  1542. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1543. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1544. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1545. // Move to trigger deployment
  1546. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1547. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1548. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1549. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1550. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1551. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1552. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1553. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1554. prepare_move_to_destination_raw();
  1555. #endif
  1556. }
  1557. // Partially Home X,Y for safety
  1558. destination[X_AXIS] *= 0.75;
  1559. destination[Y_AXIS] *= 0.75;
  1560. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1561. feedrate = old_feedrate;
  1562. stepper.synchronize();
  1563. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1564. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1565. if (z_probe_endstop)
  1566. #else
  1567. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1568. if (z_min_endstop)
  1569. #endif
  1570. {
  1571. if (IsRunning()) {
  1572. SERIAL_ERROR_START;
  1573. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1574. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1575. }
  1576. stop();
  1577. }
  1578. #elif ENABLED(FIX_MOUNTED_PROBE)
  1579. // Nothing to be done. Just enable_z_probe below...
  1580. #endif
  1581. endstops.enable_z_probe();
  1582. }
  1583. static void stow_z_probe() {
  1584. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1585. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1586. #endif
  1587. if (!endstops.z_probe_enabled) return;
  1588. #if ENABLED(Z_PROBE_SLED)
  1589. dock_sled(true);
  1590. #elif HAS_Z_SERVO_ENDSTOP
  1591. // Make room for the servo
  1592. raise_z_for_servo(Z_RAISE_AFTER_PROBING);
  1593. // Change the Z servo angle
  1594. STOW_Z_SERVO();
  1595. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1596. float old_feedrate = feedrate;
  1597. // Move up for safety
  1598. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1599. #if Z_RAISE_AFTER_PROBING > 0
  1600. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1601. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1602. #endif
  1603. // Move to the start position to initiate retraction
  1604. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1605. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1606. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1607. prepare_move_to_destination_raw();
  1608. // Move the nozzle down to push the Z probe into retracted position
  1609. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1610. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1611. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1612. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1613. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1614. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1615. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1616. prepare_move_to_destination_raw();
  1617. // Move up for safety
  1618. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1619. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1620. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1621. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1622. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1623. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1624. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1625. prepare_move_to_destination_raw();
  1626. // Home XY for safety
  1627. feedrate = homing_feedrate[X_AXIS] / 2;
  1628. destination[X_AXIS] = 0;
  1629. destination[Y_AXIS] = 0;
  1630. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1631. feedrate = old_feedrate;
  1632. stepper.synchronize();
  1633. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1634. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1635. if (!z_probe_endstop)
  1636. #else
  1637. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1638. if (!z_min_endstop)
  1639. #endif
  1640. {
  1641. if (IsRunning()) {
  1642. SERIAL_ERROR_START;
  1643. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1644. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1645. }
  1646. stop();
  1647. }
  1648. #elif ENABLED(FIX_MOUNTED_PROBE)
  1649. // Nothing to do here. Just clear endstops.z_probe_enabled
  1650. #endif
  1651. endstops.enable_z_probe(false);
  1652. }
  1653. // Do a single Z probe and return with current_position[Z_AXIS]
  1654. // at the height where the probe triggered.
  1655. static void run_z_probe() {
  1656. float old_feedrate = feedrate;
  1657. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1658. refresh_cmd_timeout();
  1659. #if ENABLED(DELTA)
  1660. float start_z = current_position[Z_AXIS];
  1661. long start_steps = stepper.position(Z_AXIS);
  1662. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1663. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1664. #endif
  1665. // move down slowly until you find the bed
  1666. feedrate = homing_feedrate[Z_AXIS] / 4;
  1667. destination[Z_AXIS] = -10;
  1668. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1669. stepper.synchronize();
  1670. endstops.hit_on_purpose(); // clear endstop hit flags
  1671. /**
  1672. * We have to let the planner know where we are right now as it
  1673. * is not where we said to go.
  1674. */
  1675. long stop_steps = stepper.position(Z_AXIS);
  1676. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1677. current_position[Z_AXIS] = mm;
  1678. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1679. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1680. #endif
  1681. sync_plan_position_delta();
  1682. #else // !DELTA
  1683. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1684. planner.bed_level_matrix.set_to_identity();
  1685. #endif
  1686. feedrate = homing_feedrate[Z_AXIS];
  1687. // Move down until the Z probe (or endstop?) is triggered
  1688. float zPosition = -(Z_MAX_LENGTH + 10);
  1689. line_to_z(zPosition);
  1690. stepper.synchronize();
  1691. // Tell the planner where we ended up - Get this from the stepper handler
  1692. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1693. planner.set_position_mm(
  1694. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1695. current_position[E_AXIS]
  1696. );
  1697. // move up the retract distance
  1698. zPosition += home_bump_mm(Z_AXIS);
  1699. line_to_z(zPosition);
  1700. stepper.synchronize();
  1701. endstops.hit_on_purpose(); // clear endstop hit flags
  1702. // move back down slowly to find bed
  1703. set_homing_bump_feedrate(Z_AXIS);
  1704. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1705. line_to_z(zPosition);
  1706. stepper.synchronize();
  1707. endstops.hit_on_purpose(); // clear endstop hit flags
  1708. // Get the current stepper position after bumping an endstop
  1709. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1710. sync_plan_position();
  1711. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1712. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1713. #endif
  1714. #endif // !DELTA
  1715. feedrate = old_feedrate;
  1716. }
  1717. #endif // HAS_BED_PROBE
  1718. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1719. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1720. #if DISABLED(DELTA)
  1721. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1722. //planner.bed_level_matrix.debug("bed level before");
  1723. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1724. planner.bed_level_matrix.set_to_identity();
  1725. if (DEBUGGING(LEVELING)) {
  1726. vector_3 uncorrected_position = planner.adjusted_position();
  1727. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1728. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1729. }
  1730. #endif
  1731. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1732. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1733. vector_3 corrected_position = planner.adjusted_position();
  1734. current_position[X_AXIS] = corrected_position.x;
  1735. current_position[Y_AXIS] = corrected_position.y;
  1736. current_position[Z_AXIS] = corrected_position.z;
  1737. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1738. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1739. #endif
  1740. sync_plan_position();
  1741. }
  1742. #endif // !DELTA
  1743. #else // !AUTO_BED_LEVELING_GRID
  1744. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1745. planner.bed_level_matrix.set_to_identity();
  1746. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1747. if (DEBUGGING(LEVELING)) {
  1748. vector_3 uncorrected_position = planner.adjusted_position();
  1749. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1750. }
  1751. #endif
  1752. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1753. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1754. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1755. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1756. if (planeNormal.z < 0) {
  1757. planeNormal.x = -planeNormal.x;
  1758. planeNormal.y = -planeNormal.y;
  1759. planeNormal.z = -planeNormal.z;
  1760. }
  1761. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1762. vector_3 corrected_position = planner.adjusted_position();
  1763. current_position[X_AXIS] = corrected_position.x;
  1764. current_position[Y_AXIS] = corrected_position.y;
  1765. current_position[Z_AXIS] = corrected_position.z;
  1766. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1767. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1768. #endif
  1769. sync_plan_position();
  1770. }
  1771. #endif // !AUTO_BED_LEVELING_GRID
  1772. inline void do_blocking_move_to_xy(float x, float y) {
  1773. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1774. }
  1775. enum ProbeAction {
  1776. ProbeStay = 0,
  1777. ProbeDeploy = _BV(0),
  1778. ProbeStow = _BV(1),
  1779. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1780. };
  1781. // Probe bed height at position (x,y), returns the measured z value
  1782. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1783. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1784. if (DEBUGGING(LEVELING)) {
  1785. SERIAL_ECHOLNPGM("probe_pt >>>");
  1786. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1787. SERIAL_EOL;
  1788. DEBUG_POS("", current_position);
  1789. }
  1790. #endif
  1791. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1792. if (DEBUGGING(LEVELING)) {
  1793. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1794. SERIAL_EOL;
  1795. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1796. SERIAL_EOL;
  1797. }
  1798. #endif
  1799. // Move Z up to the z_before height, then move the Z probe to the given XY
  1800. do_blocking_move_to_z(z_before); // this also updates current_position
  1801. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1802. if (DEBUGGING(LEVELING)) {
  1803. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1804. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1805. SERIAL_EOL;
  1806. }
  1807. #endif
  1808. // this also updates current_position
  1809. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1810. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1811. if (probe_action & ProbeDeploy) {
  1812. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1813. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1814. #endif
  1815. deploy_z_probe();
  1816. }
  1817. #endif
  1818. run_z_probe();
  1819. float measured_z = current_position[Z_AXIS];
  1820. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1821. if (probe_action & ProbeStow) {
  1822. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1823. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1824. #endif
  1825. stow_z_probe();
  1826. }
  1827. #endif
  1828. if (verbose_level > 2) {
  1829. SERIAL_PROTOCOLPGM("Bed X: ");
  1830. SERIAL_PROTOCOL_F(x, 3);
  1831. SERIAL_PROTOCOLPGM(" Y: ");
  1832. SERIAL_PROTOCOL_F(y, 3);
  1833. SERIAL_PROTOCOLPGM(" Z: ");
  1834. SERIAL_PROTOCOL_F(measured_z, 3);
  1835. SERIAL_EOL;
  1836. }
  1837. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1838. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1839. #endif
  1840. return measured_z;
  1841. }
  1842. #if ENABLED(DELTA)
  1843. /**
  1844. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1845. */
  1846. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1847. if (bed_level[x][y] != 0.0) {
  1848. return; // Don't overwrite good values.
  1849. }
  1850. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1851. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1852. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1853. float median = c; // Median is robust (ignores outliers).
  1854. if (a < b) {
  1855. if (b < c) median = b;
  1856. if (c < a) median = a;
  1857. }
  1858. else { // b <= a
  1859. if (c < b) median = b;
  1860. if (a < c) median = a;
  1861. }
  1862. bed_level[x][y] = median;
  1863. }
  1864. /**
  1865. * Fill in the unprobed points (corners of circular print surface)
  1866. * using linear extrapolation, away from the center.
  1867. */
  1868. static void extrapolate_unprobed_bed_level() {
  1869. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1870. for (int y = 0; y <= half; y++) {
  1871. for (int x = 0; x <= half; x++) {
  1872. if (x + y < 3) continue;
  1873. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1874. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1875. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1876. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1877. }
  1878. }
  1879. }
  1880. /**
  1881. * Print calibration results for plotting or manual frame adjustment.
  1882. */
  1883. static void print_bed_level() {
  1884. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1885. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1886. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1887. SERIAL_PROTOCOLCHAR(' ');
  1888. }
  1889. SERIAL_EOL;
  1890. }
  1891. }
  1892. /**
  1893. * Reset calibration results to zero.
  1894. */
  1895. void reset_bed_level() {
  1896. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1897. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1898. #endif
  1899. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1900. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1901. bed_level[x][y] = 0.0;
  1902. }
  1903. }
  1904. }
  1905. #endif // DELTA
  1906. #endif // AUTO_BED_LEVELING_FEATURE
  1907. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1908. static void axis_unhomed_error(bool xyz=false) {
  1909. if (xyz) {
  1910. LCD_MESSAGEPGM(MSG_XYZ_UNHOMED);
  1911. SERIAL_ECHO_START;
  1912. SERIAL_ECHOLNPGM(MSG_XYZ_UNHOMED);
  1913. }
  1914. else {
  1915. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1916. SERIAL_ECHO_START;
  1917. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1918. }
  1919. }
  1920. #endif
  1921. /**
  1922. * Home an individual axis
  1923. */
  1924. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1925. static void homeaxis(AxisEnum axis) {
  1926. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1927. if (DEBUGGING(LEVELING)) {
  1928. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1929. SERIAL_ECHOLNPGM(")");
  1930. }
  1931. #endif
  1932. #define HOMEAXIS_DO(LETTER) \
  1933. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1934. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1935. int axis_home_dir =
  1936. #if ENABLED(DUAL_X_CARRIAGE)
  1937. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1938. #endif
  1939. home_dir(axis);
  1940. // Set the axis position as setup for the move
  1941. current_position[axis] = 0;
  1942. sync_plan_position();
  1943. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1944. #if HAS_BED_PROBE
  1945. if (axis == Z_AXIS && axis_home_dir < 0) {
  1946. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1947. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > deploy_z_probe()");
  1948. #endif
  1949. deploy_z_probe();
  1950. }
  1951. #endif
  1952. // Set a flag for Z motor locking
  1953. #if ENABLED(Z_DUAL_ENDSTOPS)
  1954. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1955. #endif
  1956. // Move towards the endstop until an endstop is triggered
  1957. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1958. feedrate = homing_feedrate[axis];
  1959. line_to_destination();
  1960. stepper.synchronize();
  1961. // Set the axis position as setup for the move
  1962. current_position[axis] = 0;
  1963. sync_plan_position();
  1964. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1965. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1966. #endif
  1967. endstops.enable(false); // Disable endstops while moving away
  1968. // Move away from the endstop by the axis HOME_BUMP_MM
  1969. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1970. line_to_destination();
  1971. stepper.synchronize();
  1972. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1973. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1974. #endif
  1975. endstops.enable(true); // Enable endstops for next homing move
  1976. // Slow down the feedrate for the next move
  1977. set_homing_bump_feedrate(axis);
  1978. // Move slowly towards the endstop until triggered
  1979. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1980. line_to_destination();
  1981. stepper.synchronize();
  1982. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1983. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1984. #endif
  1985. #if ENABLED(Z_DUAL_ENDSTOPS)
  1986. if (axis == Z_AXIS) {
  1987. float adj = fabs(z_endstop_adj);
  1988. bool lockZ1;
  1989. if (axis_home_dir > 0) {
  1990. adj = -adj;
  1991. lockZ1 = (z_endstop_adj > 0);
  1992. }
  1993. else
  1994. lockZ1 = (z_endstop_adj < 0);
  1995. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1996. sync_plan_position();
  1997. // Move to the adjusted endstop height
  1998. feedrate = homing_feedrate[axis];
  1999. destination[Z_AXIS] = adj;
  2000. line_to_destination();
  2001. stepper.synchronize();
  2002. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2003. stepper.set_homing_flag(false);
  2004. } // Z_AXIS
  2005. #endif
  2006. #if ENABLED(DELTA)
  2007. // retrace by the amount specified in endstop_adj
  2008. if (endstop_adj[axis] * axis_home_dir < 0) {
  2009. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2010. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  2011. #endif
  2012. endstops.enable(false); // Disable endstops while moving away
  2013. sync_plan_position();
  2014. destination[axis] = endstop_adj[axis];
  2015. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2016. if (DEBUGGING(LEVELING)) {
  2017. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2018. DEBUG_POS("", destination);
  2019. }
  2020. #endif
  2021. line_to_destination();
  2022. stepper.synchronize();
  2023. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2024. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2025. #endif
  2026. endstops.enable(true); // Enable endstops for next homing move
  2027. }
  2028. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2029. else {
  2030. if (DEBUGGING(LEVELING)) {
  2031. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  2032. SERIAL_EOL;
  2033. }
  2034. }
  2035. #endif
  2036. #endif
  2037. // Set the axis position to its home position (plus home offsets)
  2038. set_axis_is_at_home(axis);
  2039. sync_plan_position();
  2040. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2041. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2042. #endif
  2043. destination[axis] = current_position[axis];
  2044. feedrate = 0.0;
  2045. endstops.hit_on_purpose(); // clear endstop hit flags
  2046. axis_known_position[axis] = true;
  2047. axis_homed[axis] = true;
  2048. // Put away the Z probe
  2049. #if HAS_BED_PROBE
  2050. if (axis == Z_AXIS && axis_home_dir < 0) {
  2051. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2052. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > stow_z_probe()");
  2053. #endif
  2054. stow_z_probe();
  2055. }
  2056. #endif
  2057. }
  2058. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2059. if (DEBUGGING(LEVELING)) {
  2060. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2061. SERIAL_ECHOLNPGM(")");
  2062. }
  2063. #endif
  2064. }
  2065. #if ENABLED(FWRETRACT)
  2066. void retract(bool retracting, bool swapping = false) {
  2067. if (retracting == retracted[active_extruder]) return;
  2068. float oldFeedrate = feedrate;
  2069. set_destination_to_current();
  2070. if (retracting) {
  2071. feedrate = retract_feedrate * 60;
  2072. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2073. sync_plan_position_e();
  2074. prepare_move_to_destination();
  2075. if (retract_zlift > 0.01) {
  2076. current_position[Z_AXIS] -= retract_zlift;
  2077. #if ENABLED(DELTA)
  2078. sync_plan_position_delta();
  2079. #else
  2080. sync_plan_position();
  2081. #endif
  2082. prepare_move_to_destination();
  2083. }
  2084. }
  2085. else {
  2086. if (retract_zlift > 0.01) {
  2087. current_position[Z_AXIS] += retract_zlift;
  2088. #if ENABLED(DELTA)
  2089. sync_plan_position_delta();
  2090. #else
  2091. sync_plan_position();
  2092. #endif
  2093. }
  2094. feedrate = retract_recover_feedrate * 60;
  2095. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2096. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2097. sync_plan_position_e();
  2098. prepare_move_to_destination();
  2099. }
  2100. feedrate = oldFeedrate;
  2101. retracted[active_extruder] = retracting;
  2102. } // retract()
  2103. #endif // FWRETRACT
  2104. /**
  2105. * ***************************************************************************
  2106. * ***************************** G-CODE HANDLING *****************************
  2107. * ***************************************************************************
  2108. */
  2109. /**
  2110. * Set XYZE destination and feedrate from the current GCode command
  2111. *
  2112. * - Set destination from included axis codes
  2113. * - Set to current for missing axis codes
  2114. * - Set the feedrate, if included
  2115. */
  2116. void gcode_get_destination() {
  2117. for (int i = 0; i < NUM_AXIS; i++) {
  2118. if (code_seen(axis_codes[i]))
  2119. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2120. else
  2121. destination[i] = current_position[i];
  2122. }
  2123. if (code_seen('F')) {
  2124. float next_feedrate = code_value_linear_units();
  2125. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2126. }
  2127. }
  2128. void unknown_command_error() {
  2129. SERIAL_ECHO_START;
  2130. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2131. SERIAL_ECHO(current_command);
  2132. SERIAL_ECHOPGM("\"\n");
  2133. }
  2134. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2135. /**
  2136. * Output a "busy" message at regular intervals
  2137. * while the machine is not accepting commands.
  2138. */
  2139. void host_keepalive() {
  2140. millis_t ms = millis();
  2141. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2142. if (PENDING(ms, next_busy_signal_ms)) return;
  2143. switch (busy_state) {
  2144. case IN_HANDLER:
  2145. case IN_PROCESS:
  2146. SERIAL_ECHO_START;
  2147. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2148. break;
  2149. case PAUSED_FOR_USER:
  2150. SERIAL_ECHO_START;
  2151. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2152. break;
  2153. case PAUSED_FOR_INPUT:
  2154. SERIAL_ECHO_START;
  2155. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2156. break;
  2157. default:
  2158. break;
  2159. }
  2160. }
  2161. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2162. }
  2163. #endif //HOST_KEEPALIVE_FEATURE
  2164. /**
  2165. * G0, G1: Coordinated movement of X Y Z E axes
  2166. */
  2167. inline void gcode_G0_G1() {
  2168. if (IsRunning()) {
  2169. gcode_get_destination(); // For X Y Z E F
  2170. #if ENABLED(FWRETRACT)
  2171. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2172. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2173. // Is this move an attempt to retract or recover?
  2174. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2175. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2176. sync_plan_position_e(); // AND from the planner
  2177. retract(!retracted[active_extruder]);
  2178. return;
  2179. }
  2180. }
  2181. #endif //FWRETRACT
  2182. prepare_move_to_destination();
  2183. }
  2184. }
  2185. /**
  2186. * G2: Clockwise Arc
  2187. * G3: Counterclockwise Arc
  2188. */
  2189. #if ENABLED(ARC_SUPPORT)
  2190. inline void gcode_G2_G3(bool clockwise) {
  2191. if (IsRunning()) {
  2192. #if ENABLED(SF_ARC_FIX)
  2193. bool relative_mode_backup = relative_mode;
  2194. relative_mode = true;
  2195. #endif
  2196. gcode_get_destination();
  2197. #if ENABLED(SF_ARC_FIX)
  2198. relative_mode = relative_mode_backup;
  2199. #endif
  2200. // Center of arc as offset from current_position
  2201. float arc_offset[2] = {
  2202. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2203. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2204. };
  2205. // Send an arc to the planner
  2206. plan_arc(destination, arc_offset, clockwise);
  2207. refresh_cmd_timeout();
  2208. }
  2209. }
  2210. #endif
  2211. /**
  2212. * G4: Dwell S<seconds> or P<milliseconds>
  2213. */
  2214. inline void gcode_G4() {
  2215. millis_t codenum = 0;
  2216. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2217. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2218. stepper.synchronize();
  2219. refresh_cmd_timeout();
  2220. codenum += previous_cmd_ms; // keep track of when we started waiting
  2221. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2222. while (PENDING(millis(), codenum)) idle();
  2223. }
  2224. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2225. /**
  2226. * Parameters interpreted according to:
  2227. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2228. * However I, J omission is not supported at this point; all
  2229. * parameters can be omitted and default to zero.
  2230. */
  2231. /**
  2232. * G5: Cubic B-spline
  2233. */
  2234. inline void gcode_G5() {
  2235. if (IsRunning()) {
  2236. gcode_get_destination();
  2237. float offset[] = {
  2238. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2239. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2240. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2241. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2242. };
  2243. plan_cubic_move(offset);
  2244. }
  2245. }
  2246. #endif // BEZIER_CURVE_SUPPORT
  2247. #if ENABLED(FWRETRACT)
  2248. /**
  2249. * G10 - Retract filament according to settings of M207
  2250. * G11 - Recover filament according to settings of M208
  2251. */
  2252. inline void gcode_G10_G11(bool doRetract=false) {
  2253. #if EXTRUDERS > 1
  2254. if (doRetract) {
  2255. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2256. }
  2257. #endif
  2258. retract(doRetract
  2259. #if EXTRUDERS > 1
  2260. , retracted_swap[active_extruder]
  2261. #endif
  2262. );
  2263. }
  2264. #endif //FWRETRACT
  2265. #if ENABLED(INCH_MODE_SUPPORT)
  2266. /**
  2267. * G20: Set input mode to inches
  2268. */
  2269. inline void gcode_G20() {
  2270. set_input_linear_units(LINEARUNIT_INCH);
  2271. }
  2272. /**
  2273. * G21: Set input mode to millimeters
  2274. */
  2275. inline void gcode_G21() {
  2276. set_input_linear_units(LINEARUNIT_MM);
  2277. }
  2278. #endif
  2279. /**
  2280. * G28: Home all axes according to settings
  2281. *
  2282. * Parameters
  2283. *
  2284. * None Home to all axes with no parameters.
  2285. * With QUICK_HOME enabled XY will home together, then Z.
  2286. *
  2287. * Cartesian parameters
  2288. *
  2289. * X Home to the X endstop
  2290. * Y Home to the Y endstop
  2291. * Z Home to the Z endstop
  2292. *
  2293. */
  2294. inline void gcode_G28() {
  2295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2296. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2297. #endif
  2298. // Wait for planner moves to finish!
  2299. stepper.synchronize();
  2300. // For auto bed leveling, clear the level matrix
  2301. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2302. planner.bed_level_matrix.set_to_identity();
  2303. #if ENABLED(DELTA)
  2304. reset_bed_level();
  2305. #endif
  2306. #endif
  2307. /**
  2308. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2309. * on again when homing all axis
  2310. */
  2311. #if ENABLED(MESH_BED_LEVELING)
  2312. float pre_home_z = MESH_HOME_SEARCH_Z;
  2313. if (mbl.active()) {
  2314. // Save known Z position if already homed
  2315. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2316. pre_home_z = current_position[Z_AXIS];
  2317. pre_home_z += mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2318. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2319. }
  2320. mbl.set_active(false);
  2321. }
  2322. #endif
  2323. setup_for_endstop_move();
  2324. /**
  2325. * Directly after a reset this is all 0. Later we get a hint if we have
  2326. * to raise z or not.
  2327. */
  2328. set_destination_to_current();
  2329. feedrate = 0.0;
  2330. #if ENABLED(DELTA)
  2331. /**
  2332. * A delta can only safely home all axis at the same time
  2333. * all axis have to home at the same time
  2334. */
  2335. // Pretend the current position is 0,0,0
  2336. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2337. sync_plan_position();
  2338. // Move all carriages up together until the first endstop is hit.
  2339. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2340. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2341. line_to_destination();
  2342. stepper.synchronize();
  2343. endstops.hit_on_purpose(); // clear endstop hit flags
  2344. // Destination reached
  2345. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2346. // take care of back off and rehome now we are all at the top
  2347. HOMEAXIS(X);
  2348. HOMEAXIS(Y);
  2349. HOMEAXIS(Z);
  2350. sync_plan_position_delta();
  2351. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2352. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2353. #endif
  2354. #else // NOT DELTA
  2355. bool homeX = code_seen(axis_codes[X_AXIS]),
  2356. homeY = code_seen(axis_codes[Y_AXIS]),
  2357. homeZ = code_seen(axis_codes[Z_AXIS]);
  2358. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2359. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2360. if (home_all_axis || homeZ) {
  2361. HOMEAXIS(Z);
  2362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2363. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2364. #endif
  2365. }
  2366. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2367. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2368. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2369. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2370. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2372. if (DEBUGGING(LEVELING)) {
  2373. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2374. SERIAL_EOL;
  2375. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2376. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2377. }
  2378. #endif
  2379. line_to_destination();
  2380. stepper.synchronize();
  2381. /**
  2382. * Update the current Z position even if it currently not real from
  2383. * Z-home otherwise each call to line_to_destination() will want to
  2384. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2385. */
  2386. current_position[Z_AXIS] = destination[Z_AXIS];
  2387. }
  2388. #endif
  2389. #if ENABLED(QUICK_HOME)
  2390. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2391. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2392. #if ENABLED(DUAL_X_CARRIAGE)
  2393. int x_axis_home_dir = x_home_dir(active_extruder);
  2394. extruder_duplication_enabled = false;
  2395. #else
  2396. int x_axis_home_dir = home_dir(X_AXIS);
  2397. #endif
  2398. sync_plan_position();
  2399. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2400. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2401. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2402. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2403. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2404. line_to_destination();
  2405. stepper.synchronize();
  2406. set_axis_is_at_home(X_AXIS);
  2407. set_axis_is_at_home(Y_AXIS);
  2408. sync_plan_position();
  2409. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2410. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2411. #endif
  2412. destination[X_AXIS] = current_position[X_AXIS];
  2413. destination[Y_AXIS] = current_position[Y_AXIS];
  2414. line_to_destination();
  2415. feedrate = 0.0;
  2416. stepper.synchronize();
  2417. endstops.hit_on_purpose(); // clear endstop hit flags
  2418. current_position[X_AXIS] = destination[X_AXIS];
  2419. current_position[Y_AXIS] = destination[Y_AXIS];
  2420. #if DISABLED(SCARA)
  2421. current_position[Z_AXIS] = destination[Z_AXIS];
  2422. #endif
  2423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2424. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2425. #endif
  2426. }
  2427. #endif // QUICK_HOME
  2428. #if ENABLED(HOME_Y_BEFORE_X)
  2429. // Home Y
  2430. if (home_all_axis || homeY) HOMEAXIS(Y);
  2431. #endif
  2432. // Home X
  2433. if (home_all_axis || homeX) {
  2434. #if ENABLED(DUAL_X_CARRIAGE)
  2435. int tmp_extruder = active_extruder;
  2436. extruder_duplication_enabled = false;
  2437. active_extruder = !active_extruder;
  2438. HOMEAXIS(X);
  2439. inactive_extruder_x_pos = current_position[X_AXIS];
  2440. active_extruder = tmp_extruder;
  2441. HOMEAXIS(X);
  2442. // reset state used by the different modes
  2443. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2444. delayed_move_time = 0;
  2445. active_extruder_parked = true;
  2446. #else
  2447. HOMEAXIS(X);
  2448. #endif
  2449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2450. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2451. #endif
  2452. }
  2453. #if DISABLED(HOME_Y_BEFORE_X)
  2454. // Home Y
  2455. if (home_all_axis || homeY) {
  2456. HOMEAXIS(Y);
  2457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2458. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2459. #endif
  2460. }
  2461. #endif
  2462. // Home Z last if homing towards the bed
  2463. #if Z_HOME_DIR < 0
  2464. if (home_all_axis || homeZ) {
  2465. #if ENABLED(Z_SAFE_HOMING)
  2466. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2467. if (DEBUGGING(LEVELING)) {
  2468. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2469. }
  2470. #endif
  2471. if (home_all_axis) {
  2472. /**
  2473. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2474. * No need to move Z any more as this height should already be safe
  2475. * enough to reach Z_SAFE_HOMING XY positions.
  2476. * Just make sure the planner is in sync.
  2477. */
  2478. sync_plan_position();
  2479. /**
  2480. * Set the Z probe (or just the nozzle) destination to the safe
  2481. * homing point
  2482. */
  2483. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2484. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2485. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2486. feedrate = XY_PROBE_FEEDRATE;
  2487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2488. if (DEBUGGING(LEVELING)) {
  2489. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2490. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2491. }
  2492. #endif
  2493. // Move in the XY plane
  2494. line_to_destination();
  2495. stepper.synchronize();
  2496. /**
  2497. * Update the current positions for XY, Z is still at least at
  2498. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2499. */
  2500. current_position[X_AXIS] = destination[X_AXIS];
  2501. current_position[Y_AXIS] = destination[Y_AXIS];
  2502. // Home the Z axis
  2503. HOMEAXIS(Z);
  2504. }
  2505. else if (homeZ) { // Don't need to Home Z twice
  2506. // Let's see if X and Y are homed
  2507. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2508. /**
  2509. * Make sure the Z probe is within the physical limits
  2510. * NOTE: This doesn't necessarily ensure the Z probe is also
  2511. * within the bed!
  2512. */
  2513. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2514. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2515. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2516. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2517. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2518. // Home the Z axis
  2519. HOMEAXIS(Z);
  2520. }
  2521. else {
  2522. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2523. SERIAL_ECHO_START;
  2524. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2525. }
  2526. }
  2527. else {
  2528. axis_unhomed_error();
  2529. }
  2530. } // !home_all_axes && homeZ
  2531. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2532. if (DEBUGGING(LEVELING)) {
  2533. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2534. }
  2535. #endif
  2536. #else // !Z_SAFE_HOMING
  2537. HOMEAXIS(Z);
  2538. #endif // !Z_SAFE_HOMING
  2539. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2540. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2541. #endif
  2542. } // home_all_axis || homeZ
  2543. #endif // Z_HOME_DIR < 0
  2544. sync_plan_position();
  2545. #endif // else DELTA
  2546. #if ENABLED(SCARA)
  2547. sync_plan_position_delta();
  2548. #endif
  2549. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2550. endstops.enable(false);
  2551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2552. if (DEBUGGING(LEVELING)) {
  2553. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
  2554. }
  2555. #endif
  2556. #endif
  2557. // Enable mesh leveling again
  2558. #if ENABLED(MESH_BED_LEVELING)
  2559. if (mbl.has_mesh()) {
  2560. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2561. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2562. sync_plan_position();
  2563. mbl.set_active(true);
  2564. #if ENABLED(MESH_G28_REST_ORIGIN)
  2565. current_position[Z_AXIS] = 0.0;
  2566. set_destination_to_current();
  2567. feedrate = homing_feedrate[Z_AXIS];
  2568. line_to_destination();
  2569. stepper.synchronize();
  2570. #else
  2571. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2572. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2573. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2574. #endif
  2575. }
  2576. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2577. current_position[Z_AXIS] = pre_home_z;
  2578. sync_plan_position();
  2579. mbl.set_active(true);
  2580. current_position[Z_AXIS] = pre_home_z -
  2581. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2582. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2583. }
  2584. }
  2585. #endif
  2586. feedrate = saved_feedrate;
  2587. feedrate_multiplier = saved_feedrate_multiplier;
  2588. refresh_cmd_timeout();
  2589. endstops.hit_on_purpose(); // clear endstop hit flags
  2590. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2591. if (DEBUGGING(LEVELING)) {
  2592. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2593. }
  2594. #endif
  2595. report_current_position();
  2596. }
  2597. #if ENABLED(MESH_BED_LEVELING)
  2598. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2599. inline void _mbl_goto_xy(float x, float y) {
  2600. saved_feedrate = feedrate;
  2601. feedrate = homing_feedrate[X_AXIS];
  2602. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2603. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2604. + MIN_Z_HEIGHT_FOR_HOMING
  2605. #endif
  2606. ;
  2607. line_to_current_position();
  2608. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2609. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2610. line_to_current_position();
  2611. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2612. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2613. line_to_current_position();
  2614. #endif
  2615. feedrate = saved_feedrate;
  2616. stepper.synchronize();
  2617. }
  2618. /**
  2619. * G29: Mesh-based Z probe, probes a grid and produces a
  2620. * mesh to compensate for variable bed height
  2621. *
  2622. * Parameters With MESH_BED_LEVELING:
  2623. *
  2624. * S0 Produce a mesh report
  2625. * S1 Start probing mesh points
  2626. * S2 Probe the next mesh point
  2627. * S3 Xn Yn Zn.nn Manually modify a single point
  2628. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2629. * S5 Reset and disable mesh
  2630. *
  2631. * The S0 report the points as below
  2632. *
  2633. * +----> X-axis 1-n
  2634. * |
  2635. * |
  2636. * v Y-axis 1-n
  2637. *
  2638. */
  2639. inline void gcode_G29() {
  2640. static int probe_point = -1;
  2641. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2642. if (state < 0 || state > 5) {
  2643. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2644. return;
  2645. }
  2646. int8_t px, py;
  2647. float z;
  2648. switch (state) {
  2649. case MeshReport:
  2650. if (mbl.has_mesh()) {
  2651. SERIAL_PROTOCOLPGM("State: ");
  2652. if (mbl.active())
  2653. SERIAL_PROTOCOLPGM("On");
  2654. else
  2655. SERIAL_PROTOCOLPGM("Off");
  2656. SERIAL_PROTOCOLPGM("\nNum X,Y: ");
  2657. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2658. SERIAL_PROTOCOLCHAR(',');
  2659. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2660. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2661. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2662. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2663. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2664. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2665. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2666. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2667. SERIAL_PROTOCOLPGM(" ");
  2668. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2669. }
  2670. SERIAL_EOL;
  2671. }
  2672. }
  2673. else
  2674. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2675. break;
  2676. case MeshStart:
  2677. mbl.reset();
  2678. probe_point = 0;
  2679. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2680. break;
  2681. case MeshNext:
  2682. if (probe_point < 0) {
  2683. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2684. return;
  2685. }
  2686. // For each G29 S2...
  2687. if (probe_point == 0) {
  2688. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2689. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2690. sync_plan_position();
  2691. }
  2692. else {
  2693. // For G29 S2 after adjusting Z.
  2694. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2695. }
  2696. // If there's another point to sample, move there with optional lift.
  2697. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2698. mbl.zigzag(probe_point, px, py);
  2699. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2700. probe_point++;
  2701. }
  2702. else {
  2703. // One last "return to the bed" (as originally coded) at completion
  2704. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2705. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2706. + MIN_Z_HEIGHT_FOR_HOMING
  2707. #endif
  2708. ;
  2709. line_to_current_position();
  2710. stepper.synchronize();
  2711. // After recording the last point, activate the mbl and home
  2712. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2713. probe_point = -1;
  2714. mbl.set_has_mesh(true);
  2715. enqueue_and_echo_commands_P(PSTR("G28"));
  2716. }
  2717. break;
  2718. case MeshSet:
  2719. if (code_seen('X')) {
  2720. px = code_value_int() - 1;
  2721. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2722. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2723. return;
  2724. }
  2725. }
  2726. else {
  2727. SERIAL_PROTOCOLPGM("X not entered.\n");
  2728. return;
  2729. }
  2730. if (code_seen('Y')) {
  2731. py = code_value_int() - 1;
  2732. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2733. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2734. return;
  2735. }
  2736. }
  2737. else {
  2738. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2739. return;
  2740. }
  2741. if (code_seen('Z')) {
  2742. z = code_value_axis_units(Z_AXIS);
  2743. }
  2744. else {
  2745. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2746. return;
  2747. }
  2748. mbl.z_values[py][px] = z;
  2749. break;
  2750. case MeshSetZOffset:
  2751. if (code_seen('Z')) {
  2752. z = code_value_axis_units(Z_AXIS);
  2753. }
  2754. else {
  2755. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2756. return;
  2757. }
  2758. mbl.z_offset = z;
  2759. break;
  2760. case MeshReset:
  2761. if (mbl.active()) {
  2762. current_position[Z_AXIS] +=
  2763. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2764. current_position[Y_AXIS] - home_offset[Y_AXIS]) - MESH_HOME_SEARCH_Z;
  2765. mbl.reset();
  2766. sync_plan_position();
  2767. }
  2768. else
  2769. mbl.reset();
  2770. } // switch(state)
  2771. report_current_position();
  2772. }
  2773. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2774. void out_of_range_error(const char* p_edge) {
  2775. SERIAL_PROTOCOLPGM("?Probe ");
  2776. serialprintPGM(p_edge);
  2777. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2778. }
  2779. /**
  2780. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2781. * Will fail if the printer has not been homed with G28.
  2782. *
  2783. * Enhanced G29 Auto Bed Leveling Probe Routine
  2784. *
  2785. * Parameters With AUTO_BED_LEVELING_GRID:
  2786. *
  2787. * P Set the size of the grid that will be probed (P x P points).
  2788. * Not supported by non-linear delta printer bed leveling.
  2789. * Example: "G29 P4"
  2790. *
  2791. * S Set the XY travel speed between probe points (in mm/min)
  2792. *
  2793. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2794. * or clean the rotation Matrix. Useful to check the topology
  2795. * after a first run of G29.
  2796. *
  2797. * V Set the verbose level (0-4). Example: "G29 V3"
  2798. *
  2799. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2800. * This is useful for manual bed leveling and finding flaws in the bed (to
  2801. * assist with part placement).
  2802. * Not supported by non-linear delta printer bed leveling.
  2803. *
  2804. * F Set the Front limit of the probing grid
  2805. * B Set the Back limit of the probing grid
  2806. * L Set the Left limit of the probing grid
  2807. * R Set the Right limit of the probing grid
  2808. *
  2809. * Global Parameters:
  2810. *
  2811. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2812. * Include "E" to engage/disengage the Z probe for each sample.
  2813. * There's no extra effect if you have a fixed Z probe.
  2814. * Usage: "G29 E" or "G29 e"
  2815. *
  2816. */
  2817. inline void gcode_G29() {
  2818. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2819. if (DEBUGGING(LEVELING)) {
  2820. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2821. DEBUG_POS("", current_position);
  2822. }
  2823. #endif
  2824. // Don't allow auto-leveling without homing first
  2825. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  2826. axis_unhomed_error(true);
  2827. return;
  2828. }
  2829. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2830. if (verbose_level < 0 || verbose_level > 4) {
  2831. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2832. return;
  2833. }
  2834. bool dryrun = code_seen('D'),
  2835. deploy_probe_for_each_reading = code_seen('E');
  2836. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2837. #if DISABLED(DELTA)
  2838. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2839. #endif
  2840. if (verbose_level > 0) {
  2841. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2842. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2843. }
  2844. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2845. #if DISABLED(DELTA)
  2846. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2847. if (auto_bed_leveling_grid_points < 2) {
  2848. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2849. return;
  2850. }
  2851. #endif
  2852. xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2853. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2854. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2855. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2856. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2857. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2858. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2859. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2860. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2861. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2862. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2863. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2864. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2865. if (left_out || right_out || front_out || back_out) {
  2866. if (left_out) {
  2867. out_of_range_error(PSTR("(L)eft"));
  2868. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2869. }
  2870. if (right_out) {
  2871. out_of_range_error(PSTR("(R)ight"));
  2872. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2873. }
  2874. if (front_out) {
  2875. out_of_range_error(PSTR("(F)ront"));
  2876. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2877. }
  2878. if (back_out) {
  2879. out_of_range_error(PSTR("(B)ack"));
  2880. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2881. }
  2882. return;
  2883. }
  2884. #endif // AUTO_BED_LEVELING_GRID
  2885. if (!dryrun) {
  2886. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2887. if (DEBUGGING(LEVELING)) {
  2888. vector_3 corrected_position = planner.adjusted_position();
  2889. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2890. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2891. }
  2892. #endif
  2893. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2894. planner.bed_level_matrix.set_to_identity();
  2895. #if ENABLED(DELTA)
  2896. reset_bed_level();
  2897. #else //!DELTA
  2898. //vector_3 corrected_position = planner.adjusted_position();
  2899. //corrected_position.debug("position before G29");
  2900. vector_3 uncorrected_position = planner.adjusted_position();
  2901. //uncorrected_position.debug("position during G29");
  2902. current_position[X_AXIS] = uncorrected_position.x;
  2903. current_position[Y_AXIS] = uncorrected_position.y;
  2904. current_position[Z_AXIS] = uncorrected_position.z;
  2905. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2906. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2907. #endif
  2908. sync_plan_position();
  2909. #endif // !DELTA
  2910. }
  2911. #if HAS_BED_PROBE
  2912. deploy_z_probe();
  2913. #endif
  2914. stepper.synchronize();
  2915. setup_for_endstop_move();
  2916. feedrate = homing_feedrate[Z_AXIS];
  2917. bed_leveling_in_progress = true;
  2918. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2919. // probe at the points of a lattice grid
  2920. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2921. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2922. #if ENABLED(DELTA)
  2923. delta_grid_spacing[0] = xGridSpacing;
  2924. delta_grid_spacing[1] = yGridSpacing;
  2925. float zoffset = zprobe_zoffset;
  2926. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value_axis_units(Z_AXIS);
  2927. #else // !DELTA
  2928. /**
  2929. * solve the plane equation ax + by + d = z
  2930. * A is the matrix with rows [x y 1] for all the probed points
  2931. * B is the vector of the Z positions
  2932. * the normal vector to the plane is formed by the coefficients of the
  2933. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2934. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2935. */
  2936. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2937. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2938. eqnBVector[abl2], // "B" vector of Z points
  2939. mean = 0.0;
  2940. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2941. #endif // !DELTA
  2942. int probePointCounter = 0;
  2943. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2944. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2945. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2946. int xStart, xStop, xInc;
  2947. if (zig) {
  2948. xStart = 0;
  2949. xStop = auto_bed_leveling_grid_points;
  2950. xInc = 1;
  2951. }
  2952. else {
  2953. xStart = auto_bed_leveling_grid_points - 1;
  2954. xStop = -1;
  2955. xInc = -1;
  2956. }
  2957. zig = !zig;
  2958. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2959. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2960. // raise extruder
  2961. float measured_z,
  2962. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2963. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2964. if (DEBUGGING(LEVELING)) {
  2965. SERIAL_ECHOPGM("z_before = (");
  2966. if (probePointCounter)
  2967. SERIAL_ECHOPGM("between) ");
  2968. else
  2969. SERIAL_ECHOPGM("before) ");
  2970. SERIAL_ECHOLN(z_before);
  2971. }
  2972. #endif
  2973. #if ENABLED(DELTA)
  2974. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2975. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2976. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2977. #endif //DELTA
  2978. ProbeAction act;
  2979. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2980. act = ProbeDeployAndStow;
  2981. else if (yCount == 0 && xCount == xStart)
  2982. act = ProbeDeploy;
  2983. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2984. act = ProbeStow;
  2985. else
  2986. act = ProbeStay;
  2987. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2988. #if DISABLED(DELTA)
  2989. mean += measured_z;
  2990. eqnBVector[probePointCounter] = measured_z;
  2991. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2992. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2993. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2994. indexIntoAB[xCount][yCount] = probePointCounter;
  2995. #else
  2996. bed_level[xCount][yCount] = measured_z + zoffset;
  2997. #endif
  2998. probePointCounter++;
  2999. idle();
  3000. } //xProbe
  3001. } //yProbe
  3002. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3003. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3004. #endif
  3005. clean_up_after_endstop_move();
  3006. #if ENABLED(DELTA)
  3007. if (!dryrun) extrapolate_unprobed_bed_level();
  3008. print_bed_level();
  3009. #else // !DELTA
  3010. // solve lsq problem
  3011. double plane_equation_coefficients[3];
  3012. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3013. mean /= abl2;
  3014. if (verbose_level) {
  3015. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3016. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3017. SERIAL_PROTOCOLPGM(" b: ");
  3018. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3019. SERIAL_PROTOCOLPGM(" d: ");
  3020. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3021. SERIAL_EOL;
  3022. if (verbose_level > 2) {
  3023. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3024. SERIAL_PROTOCOL_F(mean, 8);
  3025. SERIAL_EOL;
  3026. }
  3027. }
  3028. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3029. // Show the Topography map if enabled
  3030. if (do_topography_map) {
  3031. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  3032. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  3033. SERIAL_PROTOCOLPGM(" | |\n");
  3034. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  3035. SERIAL_PROTOCOLPGM(" E | | I\n");
  3036. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  3037. SERIAL_PROTOCOLPGM(" T | | H\n");
  3038. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  3039. SERIAL_PROTOCOLPGM(" | |\n");
  3040. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  3041. SERIAL_PROTOCOLPGM(" (0,0)\n");
  3042. float min_diff = 999;
  3043. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3044. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3045. int ind = indexIntoAB[xx][yy];
  3046. float diff = eqnBVector[ind] - mean;
  3047. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3048. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3049. z_tmp = 0;
  3050. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3051. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3052. if (diff >= 0.0)
  3053. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3054. else
  3055. SERIAL_PROTOCOLCHAR(' ');
  3056. SERIAL_PROTOCOL_F(diff, 5);
  3057. } // xx
  3058. SERIAL_EOL;
  3059. } // yy
  3060. SERIAL_EOL;
  3061. if (verbose_level > 3) {
  3062. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  3063. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3064. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3065. int ind = indexIntoAB[xx][yy];
  3066. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3067. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3068. z_tmp = 0;
  3069. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3070. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3071. if (diff >= 0.0)
  3072. SERIAL_PROTOCOLPGM(" +");
  3073. // Include + for column alignment
  3074. else
  3075. SERIAL_PROTOCOLCHAR(' ');
  3076. SERIAL_PROTOCOL_F(diff, 5);
  3077. } // xx
  3078. SERIAL_EOL;
  3079. } // yy
  3080. SERIAL_EOL;
  3081. }
  3082. } //do_topography_map
  3083. #endif //!DELTA
  3084. #else // !AUTO_BED_LEVELING_GRID
  3085. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3086. if (DEBUGGING(LEVELING)) {
  3087. SERIAL_ECHOLNPGM("> 3-point Leveling");
  3088. }
  3089. #endif
  3090. // Actions for each probe
  3091. ProbeAction p1, p2, p3;
  3092. if (deploy_probe_for_each_reading)
  3093. p1 = p2 = p3 = ProbeDeployAndStow;
  3094. else
  3095. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  3096. // Probe at 3 arbitrary points
  3097. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3098. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3099. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  3100. p1, verbose_level),
  3101. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3102. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3103. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  3104. p2, verbose_level),
  3105. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3106. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3107. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  3108. p3, verbose_level);
  3109. clean_up_after_endstop_move();
  3110. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3111. #endif // !AUTO_BED_LEVELING_GRID
  3112. #if DISABLED(DELTA)
  3113. if (verbose_level > 0)
  3114. planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  3115. if (!dryrun) {
  3116. /**
  3117. * Correct the Z height difference from Z probe position and nozzle tip position.
  3118. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3119. * from the nozzle. When the bed is uneven, this height must be corrected.
  3120. */
  3121. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3122. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3123. z_tmp = current_position[Z_AXIS],
  3124. real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3125. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3126. if (DEBUGGING(LEVELING)) {
  3127. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  3128. SERIAL_EOL;
  3129. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  3130. SERIAL_EOL;
  3131. }
  3132. #endif
  3133. // Apply the correction sending the Z probe offset
  3134. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3135. /*
  3136. * Get the current Z position and send it to the planner.
  3137. *
  3138. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  3139. * (most recent planner.set_position_mm/sync_plan_position)
  3140. *
  3141. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  3142. * (set by default, M851, EEPROM, or Menu)
  3143. *
  3144. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  3145. * after the last probe
  3146. *
  3147. * >> Should home_offset[Z_AXIS] be included?
  3148. *
  3149. *
  3150. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  3151. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  3152. * not actually "homing" Z... then perhaps it should not be included
  3153. * here. The purpose of home_offset[] is to adjust for inaccurate
  3154. * endstops, not for reasonably accurate probes. If it were added
  3155. * here, it could be seen as a compensating factor for the Z probe.
  3156. */
  3157. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3158. if (DEBUGGING(LEVELING)) {
  3159. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3160. SERIAL_EOL;
  3161. }
  3162. #endif
  3163. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  3164. #if HAS_Z_SERVO_ENDSTOP || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  3165. + Z_RAISE_AFTER_PROBING
  3166. #endif
  3167. ;
  3168. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  3169. sync_plan_position();
  3170. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3171. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3172. #endif
  3173. }
  3174. #endif // !DELTA
  3175. // Final raise of Z axis after probing.
  3176. raise_z_after_probing();
  3177. // Stow the probe. Servo will raise if needed.
  3178. stow_z_probe();
  3179. #ifdef Z_PROBE_END_SCRIPT
  3180. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3181. if (DEBUGGING(LEVELING)) {
  3182. SERIAL_ECHO("Z Probe End Script: ");
  3183. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3184. }
  3185. #endif
  3186. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3187. stepper.synchronize();
  3188. #endif
  3189. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3190. if (DEBUGGING(LEVELING)) {
  3191. SERIAL_ECHOLNPGM("<<< gcode_G29");
  3192. }
  3193. #endif
  3194. bed_leveling_in_progress = false;
  3195. report_current_position();
  3196. KEEPALIVE_STATE(IN_HANDLER);
  3197. }
  3198. #endif //AUTO_BED_LEVELING_FEATURE
  3199. #if HAS_BED_PROBE
  3200. /**
  3201. * G30: Do a single Z probe at the current XY
  3202. */
  3203. inline void gcode_G30() {
  3204. setup_for_endstop_move();
  3205. deploy_z_probe();
  3206. stepper.synchronize();
  3207. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3208. run_z_probe(); // clears the ABL non-delta matrix only
  3209. SERIAL_PROTOCOLPGM("Bed X: ");
  3210. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3211. SERIAL_PROTOCOLPGM(" Y: ");
  3212. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3213. SERIAL_PROTOCOLPGM(" Z: ");
  3214. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  3215. SERIAL_EOL;
  3216. stow_z_probe();
  3217. clean_up_after_endstop_move();
  3218. report_current_position();
  3219. }
  3220. #endif // HAS_BED_PROBE
  3221. /**
  3222. * G92: Set current position to given X Y Z E
  3223. */
  3224. inline void gcode_G92() {
  3225. bool didE = code_seen(axis_codes[E_AXIS]);
  3226. if (!didE) stepper.synchronize();
  3227. bool didXYZ = false;
  3228. for (int i = 0; i < NUM_AXIS; i++) {
  3229. if (code_seen(axis_codes[i])) {
  3230. float p = current_position[i],
  3231. v = code_value_axis_units(i);
  3232. current_position[i] = v;
  3233. if (i != E_AXIS) {
  3234. position_shift[i] += v - p; // Offset the coordinate space
  3235. update_software_endstops((AxisEnum)i);
  3236. didXYZ = true;
  3237. }
  3238. }
  3239. }
  3240. if (didXYZ) {
  3241. #if ENABLED(DELTA) || ENABLED(SCARA)
  3242. sync_plan_position_delta();
  3243. #else
  3244. sync_plan_position();
  3245. #endif
  3246. }
  3247. else if (didE) {
  3248. sync_plan_position_e();
  3249. }
  3250. }
  3251. #if ENABLED(ULTIPANEL)
  3252. /**
  3253. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3254. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3255. */
  3256. inline void gcode_M0_M1() {
  3257. char* args = current_command_args;
  3258. uint8_t test_value = 12;
  3259. SERIAL_ECHOPAIR("TEST", test_value);
  3260. millis_t codenum = 0;
  3261. bool hasP = false, hasS = false;
  3262. if (code_seen('P')) {
  3263. codenum = code_value_millis(); // milliseconds to wait
  3264. hasP = codenum > 0;
  3265. }
  3266. if (code_seen('S')) {
  3267. codenum = code_value_millis_from_seconds(); // seconds to wait
  3268. hasS = codenum > 0;
  3269. }
  3270. if (!hasP && !hasS && *args != '\0')
  3271. lcd_setstatus(args, true);
  3272. else {
  3273. LCD_MESSAGEPGM(MSG_USERWAIT);
  3274. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3275. dontExpireStatus();
  3276. #endif
  3277. }
  3278. lcd_ignore_click();
  3279. stepper.synchronize();
  3280. refresh_cmd_timeout();
  3281. if (codenum > 0) {
  3282. codenum += previous_cmd_ms; // wait until this time for a click
  3283. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3284. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3285. KEEPALIVE_STATE(IN_HANDLER);
  3286. lcd_ignore_click(false);
  3287. }
  3288. else {
  3289. if (!lcd_detected()) return;
  3290. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3291. while (!lcd_clicked()) idle();
  3292. KEEPALIVE_STATE(IN_HANDLER);
  3293. }
  3294. if (IS_SD_PRINTING)
  3295. LCD_MESSAGEPGM(MSG_RESUMING);
  3296. else
  3297. LCD_MESSAGEPGM(WELCOME_MSG);
  3298. }
  3299. #endif // ULTIPANEL
  3300. /**
  3301. * M17: Enable power on all stepper motors
  3302. */
  3303. inline void gcode_M17() {
  3304. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3305. enable_all_steppers();
  3306. }
  3307. #if ENABLED(SDSUPPORT)
  3308. /**
  3309. * M20: List SD card to serial output
  3310. */
  3311. inline void gcode_M20() {
  3312. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3313. card.ls();
  3314. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3315. }
  3316. /**
  3317. * M21: Init SD Card
  3318. */
  3319. inline void gcode_M21() {
  3320. card.initsd();
  3321. }
  3322. /**
  3323. * M22: Release SD Card
  3324. */
  3325. inline void gcode_M22() {
  3326. card.release();
  3327. }
  3328. /**
  3329. * M23: Open a file
  3330. */
  3331. inline void gcode_M23() {
  3332. card.openFile(current_command_args, true);
  3333. }
  3334. /**
  3335. * M24: Start SD Print
  3336. */
  3337. inline void gcode_M24() {
  3338. card.startFileprint();
  3339. print_job_timer.start();
  3340. }
  3341. /**
  3342. * M25: Pause SD Print
  3343. */
  3344. inline void gcode_M25() {
  3345. card.pauseSDPrint();
  3346. }
  3347. /**
  3348. * M26: Set SD Card file index
  3349. */
  3350. inline void gcode_M26() {
  3351. if (card.cardOK && code_seen('S'))
  3352. card.setIndex(code_value_long());
  3353. }
  3354. /**
  3355. * M27: Get SD Card status
  3356. */
  3357. inline void gcode_M27() {
  3358. card.getStatus();
  3359. }
  3360. /**
  3361. * M28: Start SD Write
  3362. */
  3363. inline void gcode_M28() {
  3364. card.openFile(current_command_args, false);
  3365. }
  3366. /**
  3367. * M29: Stop SD Write
  3368. * Processed in write to file routine above
  3369. */
  3370. inline void gcode_M29() {
  3371. // card.saving = false;
  3372. }
  3373. /**
  3374. * M30 <filename>: Delete SD Card file
  3375. */
  3376. inline void gcode_M30() {
  3377. if (card.cardOK) {
  3378. card.closefile();
  3379. card.removeFile(current_command_args);
  3380. }
  3381. }
  3382. #endif //SDSUPPORT
  3383. /**
  3384. * M31: Get the time since the start of SD Print (or last M109)
  3385. */
  3386. inline void gcode_M31() {
  3387. millis_t t = print_job_timer.duration();
  3388. int min = t / 60, sec = t % 60;
  3389. char time[30];
  3390. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3391. SERIAL_ECHO_START;
  3392. SERIAL_ECHOLN(time);
  3393. lcd_setstatus(time);
  3394. thermalManager.autotempShutdown();
  3395. }
  3396. #if ENABLED(SDSUPPORT)
  3397. /**
  3398. * M32: Select file and start SD Print
  3399. */
  3400. inline void gcode_M32() {
  3401. if (card.sdprinting)
  3402. stepper.synchronize();
  3403. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3404. if (!namestartpos)
  3405. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3406. else
  3407. namestartpos++; //to skip the '!'
  3408. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3409. if (card.cardOK) {
  3410. card.openFile(namestartpos, true, call_procedure);
  3411. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3412. card.setIndex(code_value_long());
  3413. card.startFileprint();
  3414. // Procedure calls count as normal print time.
  3415. if (!call_procedure) print_job_timer.start();
  3416. }
  3417. }
  3418. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3419. /**
  3420. * M33: Get the long full path of a file or folder
  3421. *
  3422. * Parameters:
  3423. * <dospath> Case-insensitive DOS-style path to a file or folder
  3424. *
  3425. * Example:
  3426. * M33 miscel~1/armchair/armcha~1.gco
  3427. *
  3428. * Output:
  3429. * /Miscellaneous/Armchair/Armchair.gcode
  3430. */
  3431. inline void gcode_M33() {
  3432. card.printLongPath(current_command_args);
  3433. }
  3434. #endif
  3435. /**
  3436. * M928: Start SD Write
  3437. */
  3438. inline void gcode_M928() {
  3439. card.openLogFile(current_command_args);
  3440. }
  3441. #endif // SDSUPPORT
  3442. /**
  3443. * M42: Change pin status via GCode
  3444. *
  3445. * P<pin> Pin number (LED if omitted)
  3446. * S<byte> Pin status from 0 - 255
  3447. */
  3448. inline void gcode_M42() {
  3449. if (code_seen('S')) {
  3450. int pin_status = code_value_int();
  3451. if (pin_status < 0 || pin_status > 255) return;
  3452. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3453. if (pin_number < 0) return;
  3454. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3455. if (pin_number == sensitive_pins[i]) return;
  3456. pinMode(pin_number, OUTPUT);
  3457. digitalWrite(pin_number, pin_status);
  3458. analogWrite(pin_number, pin_status);
  3459. #if FAN_COUNT > 0
  3460. switch (pin_number) {
  3461. #if HAS_FAN0
  3462. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3463. #endif
  3464. #if HAS_FAN1
  3465. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3466. #endif
  3467. #if HAS_FAN2
  3468. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3469. #endif
  3470. }
  3471. #endif
  3472. } // code_seen('S')
  3473. }
  3474. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3475. /**
  3476. * M48: Z probe repeatability measurement function.
  3477. *
  3478. * Usage:
  3479. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3480. * P = Number of sampled points (4-50, default 10)
  3481. * X = Sample X position
  3482. * Y = Sample Y position
  3483. * V = Verbose level (0-4, default=1)
  3484. * E = Engage Z probe for each reading
  3485. * L = Number of legs of movement before probe
  3486. * S = Schizoid (Or Star if you prefer)
  3487. *
  3488. * This function assumes the bed has been homed. Specifically, that a G28 command
  3489. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3490. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3491. * regenerated.
  3492. */
  3493. inline void gcode_M48() {
  3494. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3495. axis_unhomed_error(true);
  3496. return;
  3497. }
  3498. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3499. if (verbose_level < 0 || verbose_level > 4) {
  3500. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3501. return;
  3502. }
  3503. if (verbose_level > 0)
  3504. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3505. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3506. if (n_samples < 4 || n_samples > 50) {
  3507. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3508. return;
  3509. }
  3510. float X_current = current_position[X_AXIS],
  3511. Y_current = current_position[Y_AXIS],
  3512. Z_start_location = current_position[Z_AXIS] + Z_RAISE_BEFORE_PROBING;
  3513. bool deploy_probe_for_each_reading = code_seen('E');
  3514. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3515. #if DISABLED(DELTA)
  3516. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3517. out_of_range_error(PSTR("X"));
  3518. return;
  3519. }
  3520. #endif
  3521. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3522. #if DISABLED(DELTA)
  3523. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3524. out_of_range_error(PSTR("Y"));
  3525. return;
  3526. }
  3527. #else
  3528. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3529. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3530. return;
  3531. }
  3532. #endif
  3533. bool seen_L = code_seen('L');
  3534. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3535. if (n_legs < 0 || n_legs > 15) {
  3536. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3537. return;
  3538. }
  3539. if (n_legs == 1) n_legs = 2;
  3540. bool schizoid_flag = code_seen('S');
  3541. if (schizoid_flag && !seen_L) n_legs = 7;
  3542. /**
  3543. * Now get everything to the specified probe point So we can safely do a
  3544. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3545. * we don't want to use that as a starting point for each probe.
  3546. */
  3547. if (verbose_level > 2)
  3548. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3549. #if ENABLED(DELTA)
  3550. // we don't do bed level correction in M48 because we want the raw data when we probe
  3551. reset_bed_level();
  3552. #else
  3553. // we don't do bed level correction in M48 because we want the raw data when we probe
  3554. planner.bed_level_matrix.set_to_identity();
  3555. #endif
  3556. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3557. do_blocking_move_to_z(Z_start_location);
  3558. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3559. /**
  3560. * OK, do the initial probe to get us close to the bed.
  3561. * Then retrace the right amount and use that in subsequent probes
  3562. */
  3563. setup_for_endstop_move();
  3564. // Height before each probe (except the first)
  3565. float z_between = home_offset[Z_AXIS] + (deploy_probe_for_each_reading ? Z_RAISE_BEFORE_PROBING : Z_RAISE_BETWEEN_PROBINGS);
  3566. // Deploy the probe and probe the first point
  3567. probe_pt(X_probe_location, Y_probe_location,
  3568. home_offset[Z_AXIS] + Z_RAISE_BEFORE_PROBING,
  3569. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3570. verbose_level);
  3571. randomSeed(millis());
  3572. double mean, sigma, sample_set[n_samples];
  3573. for (uint8_t n = 0; n < n_samples; n++) {
  3574. if (n_legs) {
  3575. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3576. float angle = random(0.0, 360.0),
  3577. radius = random(
  3578. #if ENABLED(DELTA)
  3579. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3580. #else
  3581. 5, X_MAX_LENGTH / 8
  3582. #endif
  3583. );
  3584. if (verbose_level > 3) {
  3585. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3586. SERIAL_ECHOPAIR(" angle: ", angle);
  3587. delay(100);
  3588. if (dir > 0)
  3589. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3590. else
  3591. SERIAL_ECHO(" Direction: Clockwise \n");
  3592. delay(100);
  3593. }
  3594. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3595. double delta_angle;
  3596. if (schizoid_flag)
  3597. // The points of a 5 point star are 72 degrees apart. We need to
  3598. // skip a point and go to the next one on the star.
  3599. delta_angle = dir * 2.0 * 72.0;
  3600. else
  3601. // If we do this line, we are just trying to move further
  3602. // around the circle.
  3603. delta_angle = dir * (float) random(25, 45);
  3604. angle += delta_angle;
  3605. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3606. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3607. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3608. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3609. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3610. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3611. #if DISABLED(DELTA)
  3612. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3613. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3614. #else
  3615. // If we have gone out too far, we can do a simple fix and scale the numbers
  3616. // back in closer to the origin.
  3617. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3618. X_current /= 1.25;
  3619. Y_current /= 1.25;
  3620. if (verbose_level > 3) {
  3621. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3622. SERIAL_ECHOPAIR(", ", Y_current);
  3623. SERIAL_EOL;
  3624. delay(50);
  3625. }
  3626. }
  3627. #endif
  3628. if (verbose_level > 3) {
  3629. SERIAL_PROTOCOL("Going to:");
  3630. SERIAL_ECHOPAIR("x: ", X_current);
  3631. SERIAL_ECHOPAIR("y: ", Y_current);
  3632. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3633. SERIAL_EOL;
  3634. delay(55);
  3635. }
  3636. do_blocking_move_to_xy(X_current, Y_current);
  3637. } // n_legs loop
  3638. } // n_legs
  3639. // The last probe will differ
  3640. bool last_probe = (n == n_samples - 1);
  3641. // Probe a single point
  3642. sample_set[n] = probe_pt(
  3643. X_probe_location, Y_probe_location,
  3644. z_between,
  3645. deploy_probe_for_each_reading ? ProbeDeployAndStow : last_probe ? ProbeStow : ProbeStay,
  3646. verbose_level
  3647. );
  3648. /**
  3649. * Get the current mean for the data points we have so far
  3650. */
  3651. double sum = 0.0;
  3652. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3653. mean = sum / (n + 1);
  3654. /**
  3655. * Now, use that mean to calculate the standard deviation for the
  3656. * data points we have so far
  3657. */
  3658. sum = 0.0;
  3659. for (uint8_t j = 0; j <= n; j++) {
  3660. float ss = sample_set[j] - mean;
  3661. sum += ss * ss;
  3662. }
  3663. sigma = sqrt(sum / (n + 1));
  3664. if (verbose_level > 0) {
  3665. if (verbose_level > 1) {
  3666. SERIAL_PROTOCOL(n + 1);
  3667. SERIAL_PROTOCOLPGM(" of ");
  3668. SERIAL_PROTOCOL((int)n_samples);
  3669. SERIAL_PROTOCOLPGM(" z: ");
  3670. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3671. delay(50);
  3672. if (verbose_level > 2) {
  3673. SERIAL_PROTOCOLPGM(" mean: ");
  3674. SERIAL_PROTOCOL_F(mean, 6);
  3675. SERIAL_PROTOCOLPGM(" sigma: ");
  3676. SERIAL_PROTOCOL_F(sigma, 6);
  3677. }
  3678. }
  3679. SERIAL_EOL;
  3680. }
  3681. // Raise before the next loop for the legs,
  3682. // or do the final raise after the last probe
  3683. if (n_legs || last_probe) {
  3684. do_blocking_move_to_z(last_probe ? home_offset[Z_AXIS] + Z_RAISE_AFTER_PROBING : z_between);
  3685. if (!last_probe) delay(500);
  3686. }
  3687. } // End of probe loop
  3688. if (verbose_level > 0) {
  3689. SERIAL_PROTOCOLPGM("Mean: ");
  3690. SERIAL_PROTOCOL_F(mean, 6);
  3691. SERIAL_EOL;
  3692. }
  3693. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3694. SERIAL_PROTOCOL_F(sigma, 6);
  3695. SERIAL_EOL; SERIAL_EOL;
  3696. clean_up_after_endstop_move();
  3697. report_current_position();
  3698. }
  3699. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3700. /**
  3701. * M75: Start print timer
  3702. */
  3703. inline void gcode_M75() { print_job_timer.start(); }
  3704. /**
  3705. * M76: Pause print timer
  3706. */
  3707. inline void gcode_M76() { print_job_timer.pause(); }
  3708. /**
  3709. * M77: Stop print timer
  3710. */
  3711. inline void gcode_M77() { print_job_timer.stop(); }
  3712. #if ENABLED(PRINTCOUNTER)
  3713. /*+
  3714. * M78: Show print statistics
  3715. */
  3716. inline void gcode_M78() {
  3717. // "M78 S78" will reset the statistics
  3718. if (code_seen('S') && code_value_int() == 78)
  3719. print_job_timer.initStats();
  3720. else print_job_timer.showStats();
  3721. }
  3722. #endif
  3723. /**
  3724. * M104: Set hot end temperature
  3725. */
  3726. inline void gcode_M104() {
  3727. if (get_target_extruder_from_command(104)) return;
  3728. if (DEBUGGING(DRYRUN)) return;
  3729. #if ENABLED(SINGLENOZZLE)
  3730. if (target_extruder != active_extruder) return;
  3731. #endif
  3732. if (code_seen('S')) {
  3733. float temp = code_value_temp_abs();
  3734. thermalManager.setTargetHotend(temp, target_extruder);
  3735. #if ENABLED(DUAL_X_CARRIAGE)
  3736. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3737. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3738. #endif
  3739. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3740. /**
  3741. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3742. * stand by mode, for instance in a dual extruder setup, without affecting
  3743. * the running print timer.
  3744. */
  3745. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3746. print_job_timer.stop();
  3747. LCD_MESSAGEPGM(WELCOME_MSG);
  3748. }
  3749. /**
  3750. * We do not check if the timer is already running because this check will
  3751. * be done for us inside the Stopwatch::start() method thus a running timer
  3752. * will not restart.
  3753. */
  3754. else print_job_timer.start();
  3755. #endif
  3756. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3757. }
  3758. }
  3759. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3760. void print_heaterstates() {
  3761. #if HAS_TEMP_HOTEND
  3762. SERIAL_PROTOCOLPGM(" T:");
  3763. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3764. SERIAL_PROTOCOLPGM(" /");
  3765. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3766. #endif
  3767. #if HAS_TEMP_BED
  3768. SERIAL_PROTOCOLPGM(" B:");
  3769. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3770. SERIAL_PROTOCOLPGM(" /");
  3771. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3772. #endif
  3773. #if HOTENDS > 1
  3774. for (int8_t e = 0; e < HOTENDS; ++e) {
  3775. SERIAL_PROTOCOLPGM(" T");
  3776. SERIAL_PROTOCOL(e);
  3777. SERIAL_PROTOCOLCHAR(':');
  3778. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3779. SERIAL_PROTOCOLPGM(" /");
  3780. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3781. }
  3782. #endif
  3783. #if HAS_TEMP_BED
  3784. SERIAL_PROTOCOLPGM(" B@:");
  3785. #ifdef BED_WATTS
  3786. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3787. SERIAL_PROTOCOLCHAR('W');
  3788. #else
  3789. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3790. #endif
  3791. #endif
  3792. SERIAL_PROTOCOLPGM(" @:");
  3793. #ifdef EXTRUDER_WATTS
  3794. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3795. SERIAL_PROTOCOLCHAR('W');
  3796. #else
  3797. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3798. #endif
  3799. #if HOTENDS > 1
  3800. for (int8_t e = 0; e < HOTENDS; ++e) {
  3801. SERIAL_PROTOCOLPGM(" @");
  3802. SERIAL_PROTOCOL(e);
  3803. SERIAL_PROTOCOLCHAR(':');
  3804. #ifdef EXTRUDER_WATTS
  3805. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3806. SERIAL_PROTOCOLCHAR('W');
  3807. #else
  3808. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3809. #endif
  3810. }
  3811. #endif
  3812. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3813. #if HAS_TEMP_BED
  3814. SERIAL_PROTOCOLPGM(" ADC B:");
  3815. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3816. SERIAL_PROTOCOLPGM("C->");
  3817. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3818. #endif
  3819. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend) {
  3820. SERIAL_PROTOCOLPGM(" T");
  3821. SERIAL_PROTOCOL(cur_hotend);
  3822. SERIAL_PROTOCOLCHAR(':');
  3823. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_hotend), 1);
  3824. SERIAL_PROTOCOLPGM("C->");
  3825. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_hotend) / OVERSAMPLENR, 0);
  3826. }
  3827. #endif
  3828. }
  3829. #endif
  3830. /**
  3831. * M105: Read hot end and bed temperature
  3832. */
  3833. inline void gcode_M105() {
  3834. if (get_target_extruder_from_command(105)) return;
  3835. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3836. SERIAL_PROTOCOLPGM(MSG_OK);
  3837. print_heaterstates();
  3838. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3839. SERIAL_ERROR_START;
  3840. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3841. #endif
  3842. SERIAL_EOL;
  3843. }
  3844. #if FAN_COUNT > 0
  3845. /**
  3846. * M106: Set Fan Speed
  3847. *
  3848. * S<int> Speed between 0-255
  3849. * P<index> Fan index, if more than one fan
  3850. */
  3851. inline void gcode_M106() {
  3852. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3853. p = code_seen('P') ? code_value_ushort() : 0;
  3854. NOMORE(s, 255);
  3855. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3856. }
  3857. /**
  3858. * M107: Fan Off
  3859. */
  3860. inline void gcode_M107() {
  3861. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3862. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3863. }
  3864. #endif // FAN_COUNT > 0
  3865. /**
  3866. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3867. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3868. */
  3869. inline void gcode_M109() {
  3870. if (get_target_extruder_from_command(109)) return;
  3871. if (DEBUGGING(DRYRUN)) return;
  3872. #if ENABLED(SINGLENOZZLE)
  3873. if (target_extruder != active_extruder) return;
  3874. #endif
  3875. bool no_wait_for_cooling = code_seen('S');
  3876. if (no_wait_for_cooling || code_seen('R')) {
  3877. float temp = code_value_temp_abs();
  3878. thermalManager.setTargetHotend(temp, target_extruder);
  3879. #if ENABLED(DUAL_X_CARRIAGE)
  3880. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3881. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3882. #endif
  3883. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3884. /**
  3885. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3886. * stand by mode, for instance in a dual extruder setup, without affecting
  3887. * the running print timer.
  3888. */
  3889. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3890. print_job_timer.stop();
  3891. LCD_MESSAGEPGM(WELCOME_MSG);
  3892. }
  3893. /**
  3894. * We do not check if the timer is already running because this check will
  3895. * be done for us inside the Stopwatch::start() method thus a running timer
  3896. * will not restart.
  3897. */
  3898. else print_job_timer.start();
  3899. #endif
  3900. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3901. }
  3902. #if ENABLED(AUTOTEMP)
  3903. planner.autotemp_M109();
  3904. #endif
  3905. #if TEMP_RESIDENCY_TIME > 0
  3906. millis_t residency_start_ms = 0;
  3907. // Loop until the temperature has stabilized
  3908. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3909. #else
  3910. // Loop until the temperature is very close target
  3911. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3912. #endif //TEMP_RESIDENCY_TIME > 0
  3913. float theTarget = -1;
  3914. bool wants_to_cool;
  3915. cancel_heatup = false;
  3916. millis_t now, next_temp_ms = 0;
  3917. KEEPALIVE_STATE(NOT_BUSY);
  3918. do {
  3919. // Target temperature might be changed during the loop
  3920. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3921. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3922. theTarget = thermalManager.degTargetHotend(target_extruder);
  3923. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3924. if (no_wait_for_cooling && wants_to_cool) break;
  3925. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3926. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3927. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  3928. }
  3929. now = millis();
  3930. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3931. next_temp_ms = now + 1000UL;
  3932. print_heaterstates();
  3933. #if TEMP_RESIDENCY_TIME > 0
  3934. SERIAL_PROTOCOLPGM(" W:");
  3935. if (residency_start_ms) {
  3936. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3937. SERIAL_PROTOCOLLN(rem);
  3938. }
  3939. else {
  3940. SERIAL_PROTOCOLLNPGM("?");
  3941. }
  3942. #else
  3943. SERIAL_EOL;
  3944. #endif
  3945. }
  3946. idle();
  3947. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3948. #if TEMP_RESIDENCY_TIME > 0
  3949. float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
  3950. if (!residency_start_ms) {
  3951. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3952. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3953. }
  3954. else if (temp_diff > TEMP_HYSTERESIS) {
  3955. // Restart the timer whenever the temperature falls outside the hysteresis.
  3956. residency_start_ms = now;
  3957. }
  3958. #endif //TEMP_RESIDENCY_TIME > 0
  3959. } while (!cancel_heatup && TEMP_CONDITIONS);
  3960. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3961. KEEPALIVE_STATE(IN_HANDLER);
  3962. }
  3963. #if HAS_TEMP_BED
  3964. /**
  3965. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3966. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3967. */
  3968. inline void gcode_M190() {
  3969. if (DEBUGGING(DRYRUN)) return;
  3970. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3971. bool no_wait_for_cooling = code_seen('S');
  3972. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value_temp_abs());
  3973. #if TEMP_BED_RESIDENCY_TIME > 0
  3974. millis_t residency_start_ms = 0;
  3975. // Loop until the temperature has stabilized
  3976. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3977. #else
  3978. // Loop until the temperature is very close target
  3979. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3980. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3981. float theTarget = -1;
  3982. bool wants_to_cool;
  3983. cancel_heatup = false;
  3984. millis_t now, next_temp_ms = 0;
  3985. KEEPALIVE_STATE(NOT_BUSY);
  3986. do {
  3987. // Target temperature might be changed during the loop
  3988. if (theTarget != thermalManager.degTargetBed()) {
  3989. wants_to_cool = thermalManager.isCoolingBed();
  3990. theTarget = thermalManager.degTargetBed();
  3991. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3992. if (no_wait_for_cooling && wants_to_cool) break;
  3993. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3994. // Simply don't wait to cool a bed under 30C
  3995. if (wants_to_cool && theTarget < 30) break;
  3996. }
  3997. now = millis();
  3998. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3999. next_temp_ms = now + 1000UL;
  4000. print_heaterstates();
  4001. #if TEMP_BED_RESIDENCY_TIME > 0
  4002. SERIAL_PROTOCOLPGM(" W:");
  4003. if (residency_start_ms) {
  4004. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4005. SERIAL_PROTOCOLLN(rem);
  4006. }
  4007. else {
  4008. SERIAL_PROTOCOLLNPGM("?");
  4009. }
  4010. #else
  4011. SERIAL_EOL;
  4012. #endif
  4013. }
  4014. idle();
  4015. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4016. #if TEMP_BED_RESIDENCY_TIME > 0
  4017. float temp_diff = fabs(theTarget - thermalManager.degBed());
  4018. if (!residency_start_ms) {
  4019. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4020. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4021. }
  4022. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4023. // Restart the timer whenever the temperature falls outside the hysteresis.
  4024. residency_start_ms = now;
  4025. }
  4026. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4027. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  4028. LCD_MESSAGEPGM(MSG_BED_DONE);
  4029. KEEPALIVE_STATE(IN_HANDLER);
  4030. }
  4031. #endif // HAS_TEMP_BED
  4032. /**
  4033. * M110: Set Current Line Number
  4034. */
  4035. inline void gcode_M110() {
  4036. if (code_seen('N')) gcode_N = code_value_long();
  4037. }
  4038. /**
  4039. * M111: Set the debug level
  4040. */
  4041. inline void gcode_M111() {
  4042. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4043. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4044. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4045. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4046. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4047. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4048. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4049. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4050. #endif
  4051. const static char* const debug_strings[] PROGMEM = {
  4052. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4053. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4054. str_debug_32
  4055. #endif
  4056. };
  4057. SERIAL_ECHO_START;
  4058. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4059. if (marlin_debug_flags) {
  4060. uint8_t comma = 0;
  4061. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4062. if (TEST(marlin_debug_flags, i)) {
  4063. if (comma++) SERIAL_CHAR(',');
  4064. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4065. }
  4066. }
  4067. }
  4068. else {
  4069. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4070. }
  4071. SERIAL_EOL;
  4072. }
  4073. /**
  4074. * M112: Emergency Stop
  4075. */
  4076. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4077. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4078. /**
  4079. * M113: Get or set Host Keepalive interval (0 to disable)
  4080. *
  4081. * S<seconds> Optional. Set the keepalive interval.
  4082. */
  4083. inline void gcode_M113() {
  4084. if (code_seen('S')) {
  4085. host_keepalive_interval = code_value_byte();
  4086. NOMORE(host_keepalive_interval, 60);
  4087. }
  4088. else {
  4089. SERIAL_ECHO_START;
  4090. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4091. SERIAL_EOL;
  4092. }
  4093. }
  4094. #endif
  4095. #if ENABLED(BARICUDA)
  4096. #if HAS_HEATER_1
  4097. /**
  4098. * M126: Heater 1 valve open
  4099. */
  4100. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4101. /**
  4102. * M127: Heater 1 valve close
  4103. */
  4104. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4105. #endif
  4106. #if HAS_HEATER_2
  4107. /**
  4108. * M128: Heater 2 valve open
  4109. */
  4110. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4111. /**
  4112. * M129: Heater 2 valve close
  4113. */
  4114. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4115. #endif
  4116. #endif //BARICUDA
  4117. /**
  4118. * M140: Set bed temperature
  4119. */
  4120. inline void gcode_M140() {
  4121. if (DEBUGGING(DRYRUN)) return;
  4122. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4123. }
  4124. #if ENABLED(ULTIPANEL)
  4125. /**
  4126. * M145: Set the heatup state for a material in the LCD menu
  4127. * S<material> (0=PLA, 1=ABS)
  4128. * H<hotend temp>
  4129. * B<bed temp>
  4130. * F<fan speed>
  4131. */
  4132. inline void gcode_M145() {
  4133. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4134. if (material < 0 || material > 1) {
  4135. SERIAL_ERROR_START;
  4136. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4137. }
  4138. else {
  4139. int v;
  4140. switch (material) {
  4141. case 0:
  4142. if (code_seen('H')) {
  4143. v = code_value_int();
  4144. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4145. }
  4146. if (code_seen('F')) {
  4147. v = code_value_int();
  4148. plaPreheatFanSpeed = constrain(v, 0, 255);
  4149. }
  4150. #if TEMP_SENSOR_BED != 0
  4151. if (code_seen('B')) {
  4152. v = code_value_int();
  4153. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4154. }
  4155. #endif
  4156. break;
  4157. case 1:
  4158. if (code_seen('H')) {
  4159. v = code_value_int();
  4160. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4161. }
  4162. if (code_seen('F')) {
  4163. v = code_value_int();
  4164. absPreheatFanSpeed = constrain(v, 0, 255);
  4165. }
  4166. #if TEMP_SENSOR_BED != 0
  4167. if (code_seen('B')) {
  4168. v = code_value_int();
  4169. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4170. }
  4171. #endif
  4172. break;
  4173. }
  4174. }
  4175. }
  4176. #endif
  4177. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4178. /**
  4179. * M149: Set temperature units
  4180. */
  4181. inline void gcode_M149() {
  4182. if (code_seen('C')) {
  4183. set_input_temp_units(TEMPUNIT_C);
  4184. } else if (code_seen('K')) {
  4185. set_input_temp_units(TEMPUNIT_K);
  4186. } else if (code_seen('F')) {
  4187. set_input_temp_units(TEMPUNIT_F);
  4188. }
  4189. }
  4190. #endif
  4191. #if HAS_POWER_SWITCH
  4192. /**
  4193. * M80: Turn on Power Supply
  4194. */
  4195. inline void gcode_M80() {
  4196. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4197. /**
  4198. * If you have a switch on suicide pin, this is useful
  4199. * if you want to start another print with suicide feature after
  4200. * a print without suicide...
  4201. */
  4202. #if HAS_SUICIDE
  4203. OUT_WRITE(SUICIDE_PIN, HIGH);
  4204. #endif
  4205. #if ENABLED(ULTIPANEL)
  4206. powersupply = true;
  4207. LCD_MESSAGEPGM(WELCOME_MSG);
  4208. lcd_update();
  4209. #endif
  4210. }
  4211. #endif // HAS_POWER_SWITCH
  4212. /**
  4213. * M81: Turn off Power, including Power Supply, if there is one.
  4214. *
  4215. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4216. */
  4217. inline void gcode_M81() {
  4218. thermalManager.disable_all_heaters();
  4219. stepper.finish_and_disable();
  4220. #if FAN_COUNT > 0
  4221. #if FAN_COUNT > 1
  4222. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4223. #else
  4224. fanSpeeds[0] = 0;
  4225. #endif
  4226. #endif
  4227. delay(1000); // Wait 1 second before switching off
  4228. #if HAS_SUICIDE
  4229. stepper.synchronize();
  4230. suicide();
  4231. #elif HAS_POWER_SWITCH
  4232. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4233. #endif
  4234. #if ENABLED(ULTIPANEL)
  4235. #if HAS_POWER_SWITCH
  4236. powersupply = false;
  4237. #endif
  4238. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4239. lcd_update();
  4240. #endif
  4241. }
  4242. /**
  4243. * M82: Set E codes absolute (default)
  4244. */
  4245. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4246. /**
  4247. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4248. */
  4249. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4250. /**
  4251. * M18, M84: Disable all stepper motors
  4252. */
  4253. inline void gcode_M18_M84() {
  4254. if (code_seen('S')) {
  4255. stepper_inactive_time = code_value_millis_from_seconds();
  4256. }
  4257. else {
  4258. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4259. if (all_axis) {
  4260. stepper.finish_and_disable();
  4261. }
  4262. else {
  4263. stepper.synchronize();
  4264. if (code_seen('X')) disable_x();
  4265. if (code_seen('Y')) disable_y();
  4266. if (code_seen('Z')) disable_z();
  4267. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4268. if (code_seen('E')) {
  4269. disable_e0();
  4270. disable_e1();
  4271. disable_e2();
  4272. disable_e3();
  4273. }
  4274. #endif
  4275. }
  4276. }
  4277. }
  4278. /**
  4279. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4280. */
  4281. inline void gcode_M85() {
  4282. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4283. }
  4284. /**
  4285. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4286. * (Follows the same syntax as G92)
  4287. */
  4288. inline void gcode_M92() {
  4289. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4290. if (code_seen(axis_codes[i])) {
  4291. if (i == E_AXIS) {
  4292. float value = code_value_per_axis_unit(i);
  4293. if (value < 20.0) {
  4294. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4295. planner.max_e_jerk *= factor;
  4296. planner.max_feedrate[i] *= factor;
  4297. planner.max_acceleration_steps_per_s2[i] *= factor;
  4298. }
  4299. planner.axis_steps_per_mm[i] = value;
  4300. }
  4301. else {
  4302. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4303. }
  4304. }
  4305. }
  4306. }
  4307. /**
  4308. * Output the current position to serial
  4309. */
  4310. static void report_current_position() {
  4311. SERIAL_PROTOCOLPGM("X:");
  4312. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4313. SERIAL_PROTOCOLPGM(" Y:");
  4314. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4315. SERIAL_PROTOCOLPGM(" Z:");
  4316. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4317. SERIAL_PROTOCOLPGM(" E:");
  4318. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4319. stepper.report_positions();
  4320. #if ENABLED(SCARA)
  4321. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4322. SERIAL_PROTOCOL(delta[X_AXIS]);
  4323. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4324. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4325. SERIAL_EOL;
  4326. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4327. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4328. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4329. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4330. SERIAL_EOL;
  4331. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4332. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4333. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4334. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4335. SERIAL_EOL; SERIAL_EOL;
  4336. #endif
  4337. }
  4338. /**
  4339. * M114: Output current position to serial port
  4340. */
  4341. inline void gcode_M114() { report_current_position(); }
  4342. /**
  4343. * M115: Capabilities string
  4344. */
  4345. inline void gcode_M115() {
  4346. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4347. }
  4348. /**
  4349. * M117: Set LCD Status Message
  4350. */
  4351. inline void gcode_M117() {
  4352. lcd_setstatus(current_command_args);
  4353. }
  4354. /**
  4355. * M119: Output endstop states to serial output
  4356. */
  4357. inline void gcode_M119() { endstops.M119(); }
  4358. /**
  4359. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4360. */
  4361. inline void gcode_M120() { endstops.enable_globally(true); }
  4362. /**
  4363. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4364. */
  4365. inline void gcode_M121() { endstops.enable_globally(false); }
  4366. #if ENABLED(BLINKM)
  4367. /**
  4368. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4369. */
  4370. inline void gcode_M150() {
  4371. SendColors(
  4372. code_seen('R') ? code_value_byte() : 0,
  4373. code_seen('U') ? code_value_byte() : 0,
  4374. code_seen('B') ? code_value_byte() : 0
  4375. );
  4376. }
  4377. #endif // BLINKM
  4378. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4379. /**
  4380. * M155: Send data to a I2C slave device
  4381. *
  4382. * This is a PoC, the formating and arguments for the GCODE will
  4383. * change to be more compatible, the current proposal is:
  4384. *
  4385. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4386. *
  4387. * M155 B<byte-1 value in base 10>
  4388. * M155 B<byte-2 value in base 10>
  4389. * M155 B<byte-3 value in base 10>
  4390. *
  4391. * M155 S1 ; Send the buffered data and reset the buffer
  4392. * M155 R1 ; Reset the buffer without sending data
  4393. *
  4394. */
  4395. inline void gcode_M155() {
  4396. // Set the target address
  4397. if (code_seen('A'))
  4398. i2c.address(code_value_byte());
  4399. // Add a new byte to the buffer
  4400. else if (code_seen('B'))
  4401. i2c.addbyte(code_value_int());
  4402. // Flush the buffer to the bus
  4403. else if (code_seen('S')) i2c.send();
  4404. // Reset and rewind the buffer
  4405. else if (code_seen('R')) i2c.reset();
  4406. }
  4407. /**
  4408. * M156: Request X bytes from I2C slave device
  4409. *
  4410. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4411. */
  4412. inline void gcode_M156() {
  4413. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4414. int bytes = code_seen('B') ? code_value_int() : 1;
  4415. if (addr && bytes > 0 && bytes <= 32) {
  4416. i2c.address(addr);
  4417. i2c.reqbytes(bytes);
  4418. }
  4419. else {
  4420. SERIAL_ERROR_START;
  4421. SERIAL_ERRORLN("Bad i2c request");
  4422. }
  4423. }
  4424. #endif //EXPERIMENTAL_I2CBUS
  4425. /**
  4426. * M200: Set filament diameter and set E axis units to cubic units
  4427. *
  4428. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4429. * D<mm> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4430. */
  4431. inline void gcode_M200() {
  4432. if (get_target_extruder_from_command(200)) return;
  4433. if (code_seen('D')) {
  4434. float diameter = code_value_linear_units();
  4435. // setting any extruder filament size disables volumetric on the assumption that
  4436. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4437. // for all extruders
  4438. volumetric_enabled = (diameter != 0.0);
  4439. if (volumetric_enabled) {
  4440. filament_size[target_extruder] = diameter;
  4441. // make sure all extruders have some sane value for the filament size
  4442. for (int i = 0; i < EXTRUDERS; i++)
  4443. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4444. }
  4445. }
  4446. else {
  4447. //reserved for setting filament diameter via UFID or filament measuring device
  4448. return;
  4449. }
  4450. calculate_volumetric_multipliers();
  4451. }
  4452. /**
  4453. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4454. */
  4455. inline void gcode_M201() {
  4456. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4457. if (code_seen(axis_codes[i])) {
  4458. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4459. }
  4460. }
  4461. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4462. planner.reset_acceleration_rates();
  4463. }
  4464. #if 0 // Not used for Sprinter/grbl gen6
  4465. inline void gcode_M202() {
  4466. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4467. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4468. }
  4469. }
  4470. #endif
  4471. /**
  4472. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4473. */
  4474. inline void gcode_M203() {
  4475. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4476. if (code_seen(axis_codes[i])) {
  4477. planner.max_feedrate[i] = code_value_axis_units(i);
  4478. }
  4479. }
  4480. }
  4481. /**
  4482. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4483. *
  4484. * P = Printing moves
  4485. * R = Retract only (no X, Y, Z) moves
  4486. * T = Travel (non printing) moves
  4487. *
  4488. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4489. */
  4490. inline void gcode_M204() {
  4491. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4492. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4493. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4494. SERIAL_EOL;
  4495. }
  4496. if (code_seen('P')) {
  4497. planner.acceleration = code_value_linear_units();
  4498. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4499. SERIAL_EOL;
  4500. }
  4501. if (code_seen('R')) {
  4502. planner.retract_acceleration = code_value_linear_units();
  4503. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4504. SERIAL_EOL;
  4505. }
  4506. if (code_seen('T')) {
  4507. planner.travel_acceleration = code_value_linear_units();
  4508. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4509. SERIAL_EOL;
  4510. }
  4511. }
  4512. /**
  4513. * M205: Set Advanced Settings
  4514. *
  4515. * S = Min Feed Rate (mm/s)
  4516. * T = Min Travel Feed Rate (mm/s)
  4517. * B = Min Segment Time (µs)
  4518. * X = Max XY Jerk (mm/s/s)
  4519. * Z = Max Z Jerk (mm/s/s)
  4520. * E = Max E Jerk (mm/s/s)
  4521. */
  4522. inline void gcode_M205() {
  4523. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4524. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4525. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4526. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4527. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4528. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4529. }
  4530. /**
  4531. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4532. */
  4533. inline void gcode_M206() {
  4534. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4535. if (code_seen(axis_codes[i]))
  4536. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4537. #if ENABLED(SCARA)
  4538. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4539. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4540. #endif
  4541. sync_plan_position();
  4542. report_current_position();
  4543. }
  4544. #if ENABLED(DELTA)
  4545. /**
  4546. * M665: Set delta configurations
  4547. *
  4548. * L = diagonal rod
  4549. * R = delta radius
  4550. * S = segments per second
  4551. * A = Alpha (Tower 1) diagonal rod trim
  4552. * B = Beta (Tower 2) diagonal rod trim
  4553. * C = Gamma (Tower 3) diagonal rod trim
  4554. */
  4555. inline void gcode_M665() {
  4556. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4557. if (code_seen('R')) delta_radius = code_value_linear_units();
  4558. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4559. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4560. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4561. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4562. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4563. }
  4564. /**
  4565. * M666: Set delta endstop adjustment
  4566. */
  4567. inline void gcode_M666() {
  4568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4569. if (DEBUGGING(LEVELING)) {
  4570. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4571. }
  4572. #endif
  4573. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4574. if (code_seen(axis_codes[i])) {
  4575. endstop_adj[i] = code_value_axis_units(i);
  4576. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4577. if (DEBUGGING(LEVELING)) {
  4578. SERIAL_ECHOPGM("endstop_adj[");
  4579. SERIAL_ECHO(axis_codes[i]);
  4580. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4581. SERIAL_EOL;
  4582. }
  4583. #endif
  4584. }
  4585. }
  4586. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4587. if (DEBUGGING(LEVELING)) {
  4588. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4589. }
  4590. #endif
  4591. }
  4592. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4593. /**
  4594. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4595. */
  4596. inline void gcode_M666() {
  4597. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4598. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4599. SERIAL_EOL;
  4600. }
  4601. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4602. #if ENABLED(FWRETRACT)
  4603. /**
  4604. * M207: Set firmware retraction values
  4605. *
  4606. * S[+mm] retract_length
  4607. * W[+mm] retract_length_swap (multi-extruder)
  4608. * F[mm/min] retract_feedrate
  4609. * Z[mm] retract_zlift
  4610. */
  4611. inline void gcode_M207() {
  4612. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4613. if (code_seen('F')) retract_feedrate = code_value_axis_units(E_AXIS) / 60;
  4614. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4615. #if EXTRUDERS > 1
  4616. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4617. #endif
  4618. }
  4619. /**
  4620. * M208: Set firmware un-retraction values
  4621. *
  4622. * S[+mm] retract_recover_length (in addition to M207 S*)
  4623. * W[+mm] retract_recover_length_swap (multi-extruder)
  4624. * F[mm/min] retract_recover_feedrate
  4625. */
  4626. inline void gcode_M208() {
  4627. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4628. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4629. #if EXTRUDERS > 1
  4630. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4631. #endif
  4632. }
  4633. /**
  4634. * M209: Enable automatic retract (M209 S1)
  4635. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4636. */
  4637. inline void gcode_M209() {
  4638. if (code_seen('S')) {
  4639. int t = code_value_int();
  4640. switch (t) {
  4641. case 0:
  4642. autoretract_enabled = false;
  4643. break;
  4644. case 1:
  4645. autoretract_enabled = true;
  4646. break;
  4647. default:
  4648. unknown_command_error();
  4649. return;
  4650. }
  4651. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4652. }
  4653. }
  4654. #endif // FWRETRACT
  4655. #if HOTENDS > 1
  4656. /**
  4657. * M218 - set hotend offset (in mm)
  4658. *
  4659. * T<tool>
  4660. * X<xoffset>
  4661. * Y<yoffset>
  4662. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4663. */
  4664. inline void gcode_M218() {
  4665. if (get_target_extruder_from_command(218)) return;
  4666. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4667. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4668. #if ENABLED(DUAL_X_CARRIAGE)
  4669. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4670. #endif
  4671. SERIAL_ECHO_START;
  4672. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4673. for (int e = 0; e < HOTENDS; e++) {
  4674. SERIAL_CHAR(' ');
  4675. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4676. SERIAL_CHAR(',');
  4677. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4678. #if ENABLED(DUAL_X_CARRIAGE)
  4679. SERIAL_CHAR(',');
  4680. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4681. #endif
  4682. }
  4683. SERIAL_EOL;
  4684. }
  4685. #endif // HOTENDS > 1
  4686. /**
  4687. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4688. */
  4689. inline void gcode_M220() {
  4690. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4691. }
  4692. /**
  4693. * M221: Set extrusion percentage (M221 T0 S95)
  4694. */
  4695. inline void gcode_M221() {
  4696. if (code_seen('S')) {
  4697. int sval = code_value_int();
  4698. if (get_target_extruder_from_command(221)) return;
  4699. extruder_multiplier[target_extruder] = sval;
  4700. }
  4701. }
  4702. /**
  4703. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4704. */
  4705. inline void gcode_M226() {
  4706. if (code_seen('P')) {
  4707. int pin_number = code_value_int();
  4708. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4709. if (pin_state >= -1 && pin_state <= 1) {
  4710. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4711. if (sensitive_pins[i] == pin_number) {
  4712. pin_number = -1;
  4713. break;
  4714. }
  4715. }
  4716. if (pin_number > -1) {
  4717. int target = LOW;
  4718. stepper.synchronize();
  4719. pinMode(pin_number, INPUT);
  4720. switch (pin_state) {
  4721. case 1:
  4722. target = HIGH;
  4723. break;
  4724. case 0:
  4725. target = LOW;
  4726. break;
  4727. case -1:
  4728. target = !digitalRead(pin_number);
  4729. break;
  4730. }
  4731. while (digitalRead(pin_number) != target) idle();
  4732. } // pin_number > -1
  4733. } // pin_state -1 0 1
  4734. } // code_seen('P')
  4735. }
  4736. #if HAS_SERVOS
  4737. /**
  4738. * M280: Get or set servo position. P<index> S<angle>
  4739. */
  4740. inline void gcode_M280() {
  4741. int servo_index = code_seen('P') ? code_value_int() : -1;
  4742. int servo_position = 0;
  4743. if (code_seen('S')) {
  4744. servo_position = code_value_int();
  4745. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4746. MOVE_SERVO(servo_index, servo_position);
  4747. else {
  4748. SERIAL_ERROR_START;
  4749. SERIAL_ERROR("Servo ");
  4750. SERIAL_ERROR(servo_index);
  4751. SERIAL_ERRORLN(" out of range");
  4752. }
  4753. }
  4754. else if (servo_index >= 0) {
  4755. SERIAL_ECHO_START;
  4756. SERIAL_ECHO(" Servo ");
  4757. SERIAL_ECHO(servo_index);
  4758. SERIAL_ECHO(": ");
  4759. SERIAL_ECHOLN(servo[servo_index].read());
  4760. }
  4761. }
  4762. #endif // HAS_SERVOS
  4763. #if HAS_BUZZER
  4764. /**
  4765. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4766. */
  4767. inline void gcode_M300() {
  4768. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4769. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4770. // Limits the tone duration to 0-5 seconds.
  4771. NOMORE(duration, 5000);
  4772. buzzer.tone(duration, frequency);
  4773. }
  4774. #endif // HAS_BUZZER
  4775. #if ENABLED(PIDTEMP)
  4776. /**
  4777. * M301: Set PID parameters P I D (and optionally C, L)
  4778. *
  4779. * P[float] Kp term
  4780. * I[float] Ki term (unscaled)
  4781. * D[float] Kd term (unscaled)
  4782. *
  4783. * With PID_ADD_EXTRUSION_RATE:
  4784. *
  4785. * C[float] Kc term
  4786. * L[float] LPQ length
  4787. */
  4788. inline void gcode_M301() {
  4789. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4790. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4791. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4792. if (e < HOTENDS) { // catch bad input value
  4793. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4794. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4795. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4796. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4797. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4798. if (code_seen('L')) lpq_len = code_value_float();
  4799. NOMORE(lpq_len, LPQ_MAX_LEN);
  4800. #endif
  4801. thermalManager.updatePID();
  4802. SERIAL_ECHO_START;
  4803. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4804. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4805. SERIAL_ECHO(e);
  4806. #endif // PID_PARAMS_PER_HOTEND
  4807. SERIAL_ECHO(" p:");
  4808. SERIAL_ECHO(PID_PARAM(Kp, e));
  4809. SERIAL_ECHO(" i:");
  4810. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4811. SERIAL_ECHO(" d:");
  4812. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4813. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4814. SERIAL_ECHO(" c:");
  4815. //Kc does not have scaling applied above, or in resetting defaults
  4816. SERIAL_ECHO(PID_PARAM(Kc, e));
  4817. #endif
  4818. SERIAL_EOL;
  4819. }
  4820. else {
  4821. SERIAL_ERROR_START;
  4822. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4823. }
  4824. }
  4825. #endif // PIDTEMP
  4826. #if ENABLED(PIDTEMPBED)
  4827. inline void gcode_M304() {
  4828. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4829. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4830. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4831. thermalManager.updatePID();
  4832. SERIAL_ECHO_START;
  4833. SERIAL_ECHO(" p:");
  4834. SERIAL_ECHO(thermalManager.bedKp);
  4835. SERIAL_ECHO(" i:");
  4836. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4837. SERIAL_ECHO(" d:");
  4838. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4839. }
  4840. #endif // PIDTEMPBED
  4841. #if defined(CHDK) || HAS_PHOTOGRAPH
  4842. /**
  4843. * M240: Trigger a camera by emulating a Canon RC-1
  4844. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4845. */
  4846. inline void gcode_M240() {
  4847. #ifdef CHDK
  4848. OUT_WRITE(CHDK, HIGH);
  4849. chdkHigh = millis();
  4850. chdkActive = true;
  4851. #elif HAS_PHOTOGRAPH
  4852. const uint8_t NUM_PULSES = 16;
  4853. const float PULSE_LENGTH = 0.01524;
  4854. for (int i = 0; i < NUM_PULSES; i++) {
  4855. WRITE(PHOTOGRAPH_PIN, HIGH);
  4856. _delay_ms(PULSE_LENGTH);
  4857. WRITE(PHOTOGRAPH_PIN, LOW);
  4858. _delay_ms(PULSE_LENGTH);
  4859. }
  4860. delay(7.33);
  4861. for (int i = 0; i < NUM_PULSES; i++) {
  4862. WRITE(PHOTOGRAPH_PIN, HIGH);
  4863. _delay_ms(PULSE_LENGTH);
  4864. WRITE(PHOTOGRAPH_PIN, LOW);
  4865. _delay_ms(PULSE_LENGTH);
  4866. }
  4867. #endif // !CHDK && HAS_PHOTOGRAPH
  4868. }
  4869. #endif // CHDK || PHOTOGRAPH_PIN
  4870. #if HAS_LCD_CONTRAST
  4871. /**
  4872. * M250: Read and optionally set the LCD contrast
  4873. */
  4874. inline void gcode_M250() {
  4875. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4876. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4877. SERIAL_PROTOCOL(lcd_contrast);
  4878. SERIAL_EOL;
  4879. }
  4880. #endif // HAS_LCD_CONTRAST
  4881. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4882. /**
  4883. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4884. */
  4885. inline void gcode_M302() {
  4886. thermalManager.extrude_min_temp = code_seen('S') ? code_value_temp_abs() : 0;
  4887. }
  4888. #endif // PREVENT_DANGEROUS_EXTRUDE
  4889. /**
  4890. * M303: PID relay autotune
  4891. *
  4892. * S<temperature> sets the target temperature. (default 150C)
  4893. * E<extruder> (-1 for the bed) (default 0)
  4894. * C<cycles>
  4895. * U<bool> with a non-zero value will apply the result to current settings
  4896. */
  4897. inline void gcode_M303() {
  4898. #if HAS_PID_HEATING
  4899. int e = code_seen('E') ? code_value_int() : 0;
  4900. int c = code_seen('C') ? code_value_int() : 5;
  4901. bool u = code_seen('U') && code_value_bool();
  4902. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4903. if (e >= 0 && e < HOTENDS)
  4904. target_extruder = e;
  4905. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4906. thermalManager.PID_autotune(temp, e, c, u);
  4907. KEEPALIVE_STATE(IN_HANDLER);
  4908. #else
  4909. SERIAL_ERROR_START;
  4910. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4911. #endif
  4912. }
  4913. #if ENABLED(SCARA)
  4914. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4915. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4916. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4917. if (IsRunning()) {
  4918. //gcode_get_destination(); // For X Y Z E F
  4919. delta[X_AXIS] = delta_x;
  4920. delta[Y_AXIS] = delta_y;
  4921. calculate_SCARA_forward_Transform(delta);
  4922. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4923. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4924. prepare_move_to_destination();
  4925. //ok_to_send();
  4926. return true;
  4927. }
  4928. return false;
  4929. }
  4930. /**
  4931. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4932. */
  4933. inline bool gcode_M360() {
  4934. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4935. return SCARA_move_to_cal(0, 120);
  4936. }
  4937. /**
  4938. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4939. */
  4940. inline bool gcode_M361() {
  4941. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4942. return SCARA_move_to_cal(90, 130);
  4943. }
  4944. /**
  4945. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4946. */
  4947. inline bool gcode_M362() {
  4948. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4949. return SCARA_move_to_cal(60, 180);
  4950. }
  4951. /**
  4952. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4953. */
  4954. inline bool gcode_M363() {
  4955. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4956. return SCARA_move_to_cal(50, 90);
  4957. }
  4958. /**
  4959. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4960. */
  4961. inline bool gcode_M364() {
  4962. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4963. return SCARA_move_to_cal(45, 135);
  4964. }
  4965. /**
  4966. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4967. */
  4968. inline void gcode_M365() {
  4969. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4970. if (code_seen(axis_codes[i])) {
  4971. axis_scaling[i] = code_value_float();
  4972. }
  4973. }
  4974. }
  4975. #endif // SCARA
  4976. #if ENABLED(EXT_SOLENOID)
  4977. void enable_solenoid(uint8_t num) {
  4978. switch (num) {
  4979. case 0:
  4980. OUT_WRITE(SOL0_PIN, HIGH);
  4981. break;
  4982. #if HAS_SOLENOID_1
  4983. case 1:
  4984. OUT_WRITE(SOL1_PIN, HIGH);
  4985. break;
  4986. #endif
  4987. #if HAS_SOLENOID_2
  4988. case 2:
  4989. OUT_WRITE(SOL2_PIN, HIGH);
  4990. break;
  4991. #endif
  4992. #if HAS_SOLENOID_3
  4993. case 3:
  4994. OUT_WRITE(SOL3_PIN, HIGH);
  4995. break;
  4996. #endif
  4997. default:
  4998. SERIAL_ECHO_START;
  4999. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5000. break;
  5001. }
  5002. }
  5003. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5004. void disable_all_solenoids() {
  5005. OUT_WRITE(SOL0_PIN, LOW);
  5006. OUT_WRITE(SOL1_PIN, LOW);
  5007. OUT_WRITE(SOL2_PIN, LOW);
  5008. OUT_WRITE(SOL3_PIN, LOW);
  5009. }
  5010. /**
  5011. * M380: Enable solenoid on the active extruder
  5012. */
  5013. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5014. /**
  5015. * M381: Disable all solenoids
  5016. */
  5017. inline void gcode_M381() { disable_all_solenoids(); }
  5018. #endif // EXT_SOLENOID
  5019. /**
  5020. * M400: Finish all moves
  5021. */
  5022. inline void gcode_M400() { stepper.synchronize(); }
  5023. #if HAS_BED_PROBE
  5024. /**
  5025. * M401: Engage Z Servo endstop if available
  5026. */
  5027. inline void gcode_M401() {
  5028. deploy_z_probe();
  5029. }
  5030. /**
  5031. * M402: Retract Z Servo endstop if enabled
  5032. */
  5033. inline void gcode_M402() {
  5034. stow_z_probe();
  5035. }
  5036. #endif // HAS_BED_PROBE
  5037. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5038. /**
  5039. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  5040. */
  5041. inline void gcode_M404() {
  5042. if (code_seen('W')) {
  5043. filament_width_nominal = code_value_linear_units();
  5044. }
  5045. else {
  5046. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5047. SERIAL_PROTOCOLLN(filament_width_nominal);
  5048. }
  5049. }
  5050. /**
  5051. * M405: Turn on filament sensor for control
  5052. */
  5053. inline void gcode_M405() {
  5054. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5055. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5056. if (code_seen('D')) meas_delay_cm = code_value_int();
  5057. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5058. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5059. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5060. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5061. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5062. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5063. }
  5064. filament_sensor = true;
  5065. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5066. //SERIAL_PROTOCOL(filament_width_meas);
  5067. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5068. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5069. }
  5070. /**
  5071. * M406: Turn off filament sensor for control
  5072. */
  5073. inline void gcode_M406() { filament_sensor = false; }
  5074. /**
  5075. * M407: Get measured filament diameter on serial output
  5076. */
  5077. inline void gcode_M407() {
  5078. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5079. SERIAL_PROTOCOLLN(filament_width_meas);
  5080. }
  5081. #endif // FILAMENT_WIDTH_SENSOR
  5082. #if DISABLED(DELTA) && DISABLED(SCARA)
  5083. void set_current_position_from_planner() {
  5084. stepper.synchronize();
  5085. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5086. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5087. current_position[X_AXIS] = pos.x;
  5088. current_position[Y_AXIS] = pos.y;
  5089. current_position[Z_AXIS] = pos.z;
  5090. #else
  5091. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5092. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5093. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5094. #endif
  5095. sync_plan_position(); // ...re-apply to planner position
  5096. }
  5097. #endif
  5098. /**
  5099. * M410: Quickstop - Abort all planned moves
  5100. *
  5101. * This will stop the carriages mid-move, so most likely they
  5102. * will be out of sync with the stepper position after this.
  5103. */
  5104. inline void gcode_M410() {
  5105. stepper.quick_stop();
  5106. #if DISABLED(DELTA) && DISABLED(SCARA)
  5107. set_current_position_from_planner();
  5108. #endif
  5109. }
  5110. #if ENABLED(MESH_BED_LEVELING)
  5111. /**
  5112. * M420: Enable/Disable Mesh Bed Leveling
  5113. */
  5114. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5115. /**
  5116. * M421: Set a single Mesh Bed Leveling Z coordinate
  5117. * Use either 'M421 X<mm> Y<mm> Z<mm>' or 'M421 I<xindex> J<yindex> Z<mm>'
  5118. */
  5119. inline void gcode_M421() {
  5120. int8_t px, py;
  5121. float z = 0;
  5122. bool hasX, hasY, hasZ, hasI, hasJ;
  5123. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5124. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5125. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5126. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5127. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5128. if (hasX && hasY && hasZ) {
  5129. if (px >= 0 && py >= 0)
  5130. mbl.set_z(px, py, z);
  5131. else {
  5132. SERIAL_ERROR_START;
  5133. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5134. }
  5135. }
  5136. else if (hasI && hasJ && hasZ) {
  5137. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5138. mbl.set_z(px, py, z);
  5139. else {
  5140. SERIAL_ERROR_START;
  5141. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5142. }
  5143. }
  5144. else {
  5145. SERIAL_ERROR_START;
  5146. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5147. }
  5148. }
  5149. #endif
  5150. /**
  5151. * M428: Set home_offset based on the distance between the
  5152. * current_position and the nearest "reference point."
  5153. * If an axis is past center its endstop position
  5154. * is the reference-point. Otherwise it uses 0. This allows
  5155. * the Z offset to be set near the bed when using a max endstop.
  5156. *
  5157. * M428 can't be used more than 2cm away from 0 or an endstop.
  5158. *
  5159. * Use M206 to set these values directly.
  5160. */
  5161. inline void gcode_M428() {
  5162. bool err = false;
  5163. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5164. if (axis_homed[i]) {
  5165. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5166. diff = current_position[i] - base;
  5167. if (diff > -20 && diff < 20) {
  5168. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5169. }
  5170. else {
  5171. SERIAL_ERROR_START;
  5172. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5173. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5174. #if HAS_BUZZER
  5175. buzzer.tone(200, 40);
  5176. #endif
  5177. err = true;
  5178. break;
  5179. }
  5180. }
  5181. }
  5182. if (!err) {
  5183. #if ENABLED(DELTA) || ENABLED(SCARA)
  5184. sync_plan_position_delta();
  5185. #else
  5186. sync_plan_position();
  5187. #endif
  5188. report_current_position();
  5189. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5190. #if HAS_BUZZER
  5191. buzzer.tone(200, 659);
  5192. buzzer.tone(200, 698);
  5193. #endif
  5194. }
  5195. }
  5196. /**
  5197. * M500: Store settings in EEPROM
  5198. */
  5199. inline void gcode_M500() {
  5200. Config_StoreSettings();
  5201. }
  5202. /**
  5203. * M501: Read settings from EEPROM
  5204. */
  5205. inline void gcode_M501() {
  5206. Config_RetrieveSettings();
  5207. }
  5208. /**
  5209. * M502: Revert to default settings
  5210. */
  5211. inline void gcode_M502() {
  5212. Config_ResetDefault();
  5213. }
  5214. /**
  5215. * M503: print settings currently in memory
  5216. */
  5217. inline void gcode_M503() {
  5218. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5219. }
  5220. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5221. /**
  5222. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5223. */
  5224. inline void gcode_M540() {
  5225. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5226. }
  5227. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5228. #if HAS_BED_PROBE
  5229. inline void gcode_M851() {
  5230. SERIAL_ECHO_START;
  5231. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5232. SERIAL_CHAR(' ');
  5233. if (code_seen('Z')) {
  5234. float value = code_value_axis_units(Z_AXIS);
  5235. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5236. zprobe_zoffset = value;
  5237. SERIAL_ECHO(zprobe_zoffset);
  5238. }
  5239. else {
  5240. SERIAL_ECHOPGM(MSG_Z_MIN);
  5241. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5242. SERIAL_ECHOPGM(MSG_Z_MAX);
  5243. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5244. }
  5245. }
  5246. else {
  5247. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5248. }
  5249. SERIAL_EOL;
  5250. }
  5251. #endif // HAS_BED_PROBE
  5252. #if ENABLED(FILAMENTCHANGEENABLE)
  5253. /**
  5254. * M600: Pause for filament change
  5255. *
  5256. * E[distance] - Retract the filament this far (negative value)
  5257. * Z[distance] - Move the Z axis by this distance
  5258. * X[position] - Move to this X position, with Y
  5259. * Y[position] - Move to this Y position, with X
  5260. * L[distance] - Retract distance for removal (manual reload)
  5261. *
  5262. * Default values are used for omitted arguments.
  5263. *
  5264. */
  5265. inline void gcode_M600() {
  5266. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5267. SERIAL_ERROR_START;
  5268. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5269. return;
  5270. }
  5271. float lastpos[NUM_AXIS];
  5272. #if ENABLED(DELTA)
  5273. float fr60 = feedrate / 60;
  5274. #endif
  5275. for (int i = 0; i < NUM_AXIS; i++)
  5276. lastpos[i] = destination[i] = current_position[i];
  5277. #if ENABLED(DELTA)
  5278. #define RUNPLAN calculate_delta(destination); \
  5279. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5280. #else
  5281. #define RUNPLAN line_to_destination();
  5282. #endif
  5283. //retract by E
  5284. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5285. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5286. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5287. #endif
  5288. RUNPLAN;
  5289. //lift Z
  5290. if (code_seen('Z')) destination[Z_AXIS] += code_value_axis_units(Z_AXIS);
  5291. #ifdef FILAMENTCHANGE_ZADD
  5292. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5293. #endif
  5294. RUNPLAN;
  5295. //move xy
  5296. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5297. #ifdef FILAMENTCHANGE_XPOS
  5298. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5299. #endif
  5300. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5301. #ifdef FILAMENTCHANGE_YPOS
  5302. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5303. #endif
  5304. RUNPLAN;
  5305. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5306. #ifdef FILAMENTCHANGE_FINALRETRACT
  5307. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5308. #endif
  5309. RUNPLAN;
  5310. //finish moves
  5311. stepper.synchronize();
  5312. //disable extruder steppers so filament can be removed
  5313. disable_e0();
  5314. disable_e1();
  5315. disable_e2();
  5316. disable_e3();
  5317. delay(100);
  5318. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5319. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5320. millis_t next_tick = 0;
  5321. #endif
  5322. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5323. while (!lcd_clicked()) {
  5324. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5325. millis_t ms = millis();
  5326. if (ELAPSED(ms, next_tick)) {
  5327. lcd_quick_feedback();
  5328. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5329. }
  5330. idle(true);
  5331. #else
  5332. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5333. destination[E_AXIS] = current_position[E_AXIS];
  5334. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5335. stepper.synchronize();
  5336. #endif
  5337. } // while(!lcd_clicked)
  5338. KEEPALIVE_STATE(IN_HANDLER);
  5339. lcd_quick_feedback(); // click sound feedback
  5340. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5341. current_position[E_AXIS] = 0;
  5342. stepper.synchronize();
  5343. #endif
  5344. //return to normal
  5345. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5346. #ifdef FILAMENTCHANGE_FINALRETRACT
  5347. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5348. #endif
  5349. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5350. sync_plan_position_e();
  5351. RUNPLAN; //should do nothing
  5352. lcd_reset_alert_level();
  5353. #if ENABLED(DELTA)
  5354. // Move XYZ to starting position, then E
  5355. calculate_delta(lastpos);
  5356. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5357. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5358. #else
  5359. // Move XY to starting position, then Z, then E
  5360. destination[X_AXIS] = lastpos[X_AXIS];
  5361. destination[Y_AXIS] = lastpos[Y_AXIS];
  5362. line_to_destination();
  5363. destination[Z_AXIS] = lastpos[Z_AXIS];
  5364. line_to_destination();
  5365. destination[E_AXIS] = lastpos[E_AXIS];
  5366. line_to_destination();
  5367. #endif
  5368. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5369. filament_ran_out = false;
  5370. #endif
  5371. }
  5372. #endif // FILAMENTCHANGEENABLE
  5373. #if ENABLED(DUAL_X_CARRIAGE)
  5374. /**
  5375. * M605: Set dual x-carriage movement mode
  5376. *
  5377. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5378. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5379. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5380. * millimeters x-offset and an optional differential hotend temperature of
  5381. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5382. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5383. *
  5384. * Note: the X axis should be homed after changing dual x-carriage mode.
  5385. */
  5386. inline void gcode_M605() {
  5387. stepper.synchronize();
  5388. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5389. switch (dual_x_carriage_mode) {
  5390. case DXC_DUPLICATION_MODE:
  5391. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5392. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5393. SERIAL_ECHO_START;
  5394. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5395. SERIAL_CHAR(' ');
  5396. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5397. SERIAL_CHAR(',');
  5398. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5399. SERIAL_CHAR(' ');
  5400. SERIAL_ECHO(duplicate_extruder_x_offset);
  5401. SERIAL_CHAR(',');
  5402. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5403. break;
  5404. case DXC_FULL_CONTROL_MODE:
  5405. case DXC_AUTO_PARK_MODE:
  5406. break;
  5407. default:
  5408. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5409. break;
  5410. }
  5411. active_extruder_parked = false;
  5412. extruder_duplication_enabled = false;
  5413. delayed_move_time = 0;
  5414. }
  5415. #endif // DUAL_X_CARRIAGE
  5416. #if ENABLED(LIN_ADVANCE)
  5417. /**
  5418. * M905: Set advance factor
  5419. */
  5420. inline void gcode_M905() {
  5421. stepper.synchronize();
  5422. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5423. }
  5424. #endif
  5425. /**
  5426. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5427. */
  5428. inline void gcode_M907() {
  5429. #if HAS_DIGIPOTSS
  5430. for (int i = 0; i < NUM_AXIS; i++)
  5431. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5432. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5433. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5434. #endif
  5435. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5436. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5437. #endif
  5438. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5439. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5440. #endif
  5441. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5442. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5443. #endif
  5444. #if ENABLED(DIGIPOT_I2C)
  5445. // this one uses actual amps in floating point
  5446. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5447. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5448. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5449. #endif
  5450. #if ENABLED(DAC_STEPPER_CURRENT)
  5451. if (code_seen('S')) {
  5452. float dac_percent = code_value_float();
  5453. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5454. }
  5455. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5456. #endif
  5457. }
  5458. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5459. /**
  5460. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5461. */
  5462. inline void gcode_M908() {
  5463. #if HAS_DIGIPOTSS
  5464. stepper.digitalPotWrite(
  5465. code_seen('P') ? code_value_int() : 0,
  5466. code_seen('S') ? code_value_int() : 0
  5467. );
  5468. #endif
  5469. #ifdef DAC_STEPPER_CURRENT
  5470. dac_current_raw(
  5471. code_seen('P') ? code_value_byte() : -1,
  5472. code_seen('S') ? code_value_ushort() : 0
  5473. );
  5474. #endif
  5475. }
  5476. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5477. inline void gcode_M909() { dac_print_values(); }
  5478. inline void gcode_M910() { dac_commit_eeprom(); }
  5479. #endif
  5480. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5481. #if HAS_MICROSTEPS
  5482. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5483. inline void gcode_M350() {
  5484. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5485. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5486. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5487. stepper.microstep_readings();
  5488. }
  5489. /**
  5490. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5491. * S# determines MS1 or MS2, X# sets the pin high/low.
  5492. */
  5493. inline void gcode_M351() {
  5494. if (code_seen('S')) switch (code_value_byte()) {
  5495. case 1:
  5496. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5497. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5498. break;
  5499. case 2:
  5500. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5501. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5502. break;
  5503. }
  5504. stepper.microstep_readings();
  5505. }
  5506. #endif // HAS_MICROSTEPS
  5507. /**
  5508. * M999: Restart after being stopped
  5509. *
  5510. * Default behaviour is to flush the serial buffer and request
  5511. * a resend to the host starting on the last N line received.
  5512. *
  5513. * Sending "M999 S1" will resume printing without flushing the
  5514. * existing command buffer.
  5515. *
  5516. */
  5517. inline void gcode_M999() {
  5518. Running = true;
  5519. lcd_reset_alert_level();
  5520. if (code_seen('S') && code_value_bool()) return;
  5521. // gcode_LastN = Stopped_gcode_LastN;
  5522. FlushSerialRequestResend();
  5523. }
  5524. /**
  5525. * T0-T3: Switch tool, usually switching extruders
  5526. *
  5527. * F[mm/min] Set the movement feedrate
  5528. * S1 Don't move the tool in XY after change
  5529. */
  5530. inline void gcode_T(uint8_t tmp_extruder) {
  5531. if (tmp_extruder >= EXTRUDERS) {
  5532. SERIAL_ECHO_START;
  5533. SERIAL_CHAR('T');
  5534. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5535. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5536. return;
  5537. }
  5538. #if HOTENDS > 1
  5539. float stored_feedrate = feedrate;
  5540. if (code_seen('F')) {
  5541. float next_feedrate = code_value_axis_units(X_AXIS);
  5542. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5543. }
  5544. else {
  5545. feedrate =
  5546. #ifdef XY_PROBE_SPEED
  5547. XY_PROBE_SPEED
  5548. #else
  5549. min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]) * 60
  5550. #endif
  5551. ;
  5552. }
  5553. if (tmp_extruder != active_extruder) {
  5554. bool no_move = code_seen('S') && code_value_bool();
  5555. // Save current position to return to after applying extruder offset
  5556. if (!no_move) set_destination_to_current();
  5557. #if ENABLED(DUAL_X_CARRIAGE)
  5558. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5559. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5560. // Park old head: 1) raise 2) move to park position 3) lower
  5561. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5562. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5563. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5564. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5565. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5566. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5567. stepper.synchronize();
  5568. }
  5569. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5570. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5571. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5572. active_extruder = tmp_extruder;
  5573. // This function resets the max/min values - the current position may be overwritten below.
  5574. set_axis_is_at_home(X_AXIS);
  5575. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5576. current_position[X_AXIS] = inactive_extruder_x_pos;
  5577. inactive_extruder_x_pos = destination[X_AXIS];
  5578. }
  5579. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5580. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5581. if (active_extruder_parked)
  5582. current_position[X_AXIS] = inactive_extruder_x_pos;
  5583. else
  5584. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5585. inactive_extruder_x_pos = destination[X_AXIS];
  5586. extruder_duplication_enabled = false;
  5587. }
  5588. else {
  5589. // record raised toolhead position for use by unpark
  5590. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5591. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5592. active_extruder_parked = true;
  5593. delayed_move_time = 0;
  5594. }
  5595. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5596. #else // !DUAL_X_CARRIAGE
  5597. //
  5598. // Set current_position to the position of the new nozzle.
  5599. // Offsets are based on linear distance, so we need to get
  5600. // the resulting position in coordinate space.
  5601. //
  5602. // - With grid or 3-point leveling, offset XYZ by a tilted vector
  5603. // - With mesh leveling, update Z for the new position
  5604. // - Otherwise, just use the raw linear distance
  5605. //
  5606. // Software endstops are altered here too. Consider a case where:
  5607. // E0 at X=0 ... E1 at X=10
  5608. // When we switch to E1 now X=10, but E1 can't move left.
  5609. // To express this we apply the change in XY to the software endstops.
  5610. // E1 can move farther right than E0, so the right limit is extended.
  5611. //
  5612. // Note that we don't adjust the Z software endstops. Why not?
  5613. // Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5614. // because the bed is 1mm lower at the new position. As long as
  5615. // the first nozzle is out of the way, the carriage should be
  5616. // allowed to move 1mm lower. This technically "breaks" the
  5617. // Z software endstop. But this is technically correct (and
  5618. // there is no viable alternative).
  5619. //
  5620. float xydiff[2] = {
  5621. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5622. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5623. };
  5624. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5625. // Offset extruder, make sure to apply the bed level rotation matrix
  5626. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5627. hotend_offset[Y_AXIS][tmp_extruder],
  5628. 0),
  5629. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5630. hotend_offset[Y_AXIS][active_extruder],
  5631. 0),
  5632. offset_vec = tmp_offset_vec - act_offset_vec;
  5633. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5634. if (DEBUGGING(LEVELING)) {
  5635. SERIAL_ECHOLNPGM(">>> gcode_T");
  5636. tmp_offset_vec.debug("tmp_offset_vec");
  5637. act_offset_vec.debug("act_offset_vec");
  5638. offset_vec.debug("offset_vec (BEFORE)");
  5639. DEBUG_POS("BEFORE rotation", current_position);
  5640. }
  5641. #endif
  5642. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5643. // Adjust the current position
  5644. current_position[X_AXIS] += offset_vec.x;
  5645. current_position[Y_AXIS] += offset_vec.y;
  5646. current_position[Z_AXIS] += offset_vec.z;
  5647. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5648. if (DEBUGGING(LEVELING)) {
  5649. offset_vec.debug("offset_vec (AFTER)");
  5650. DEBUG_POS("AFTER rotation", current_position);
  5651. SERIAL_ECHOLNPGM("<<< gcode_T");
  5652. }
  5653. #endif
  5654. #elif ENABLED(MESH_BED_LEVELING)
  5655. if (mbl.active()) {
  5656. float xpos = current_position[X_AXIS] - home_offset[X_AXIS],
  5657. ypos = current_position[Y_AXIS] - home_offset[Y_AXIS];
  5658. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5659. }
  5660. #else // no bed leveling
  5661. // The newly-selected extruder XY is actually at...
  5662. current_position[X_AXIS] += xydiff[X_AXIS];
  5663. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5664. #endif // no bed leveling
  5665. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5666. position_shift[i] += xydiff[i];
  5667. update_software_endstops((AxisEnum)i);
  5668. }
  5669. // Set the new active extruder
  5670. active_extruder = tmp_extruder;
  5671. #endif // !DUAL_X_CARRIAGE
  5672. // Tell the planner the new "current position"
  5673. #if ENABLED(DELTA)
  5674. sync_plan_position_delta();
  5675. #else
  5676. sync_plan_position();
  5677. #endif
  5678. // Move to the "old position" (move the extruder into place)
  5679. if (!no_move && IsRunning()) prepare_move_to_destination();
  5680. } // (tmp_extruder != active_extruder)
  5681. #if ENABLED(EXT_SOLENOID)
  5682. stepper.synchronize();
  5683. disable_all_solenoids();
  5684. enable_solenoid_on_active_extruder();
  5685. #endif // EXT_SOLENOID
  5686. feedrate = stored_feedrate;
  5687. #else // !HOTENDS > 1
  5688. // Set the new active extruder
  5689. active_extruder = tmp_extruder;
  5690. #endif
  5691. SERIAL_ECHO_START;
  5692. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5693. SERIAL_PROTOCOLLN((int)active_extruder);
  5694. }
  5695. /**
  5696. * Process a single command and dispatch it to its handler
  5697. * This is called from the main loop()
  5698. */
  5699. void process_next_command() {
  5700. current_command = command_queue[cmd_queue_index_r];
  5701. if (DEBUGGING(ECHO)) {
  5702. SERIAL_ECHO_START;
  5703. SERIAL_ECHOLN(current_command);
  5704. }
  5705. // Sanitize the current command:
  5706. // - Skip leading spaces
  5707. // - Bypass N[-0-9][0-9]*[ ]*
  5708. // - Overwrite * with nul to mark the end
  5709. while (*current_command == ' ') ++current_command;
  5710. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5711. current_command += 2; // skip N[-0-9]
  5712. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5713. while (*current_command == ' ') ++current_command; // skip [ ]*
  5714. }
  5715. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5716. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5717. char *cmd_ptr = current_command;
  5718. // Get the command code, which must be G, M, or T
  5719. char command_code = *cmd_ptr++;
  5720. // Skip spaces to get the numeric part
  5721. while (*cmd_ptr == ' ') cmd_ptr++;
  5722. uint16_t codenum = 0; // define ahead of goto
  5723. // Bail early if there's no code
  5724. bool code_is_good = NUMERIC(*cmd_ptr);
  5725. if (!code_is_good) goto ExitUnknownCommand;
  5726. // Get and skip the code number
  5727. do {
  5728. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5729. cmd_ptr++;
  5730. } while (NUMERIC(*cmd_ptr));
  5731. // Skip all spaces to get to the first argument, or nul
  5732. while (*cmd_ptr == ' ') cmd_ptr++;
  5733. // The command's arguments (if any) start here, for sure!
  5734. current_command_args = cmd_ptr;
  5735. KEEPALIVE_STATE(IN_HANDLER);
  5736. // Handle a known G, M, or T
  5737. switch (command_code) {
  5738. case 'G': switch (codenum) {
  5739. // G0, G1
  5740. case 0:
  5741. case 1:
  5742. gcode_G0_G1();
  5743. break;
  5744. // G2, G3
  5745. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5746. case 2: // G2 - CW ARC
  5747. case 3: // G3 - CCW ARC
  5748. gcode_G2_G3(codenum == 2);
  5749. break;
  5750. #endif
  5751. // G4 Dwell
  5752. case 4:
  5753. gcode_G4();
  5754. break;
  5755. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5756. // G5
  5757. case 5: // G5 - Cubic B_spline
  5758. gcode_G5();
  5759. break;
  5760. #endif // BEZIER_CURVE_SUPPORT
  5761. #if ENABLED(FWRETRACT)
  5762. case 10: // G10: retract
  5763. case 11: // G11: retract_recover
  5764. gcode_G10_G11(codenum == 10);
  5765. break;
  5766. #endif // FWRETRACT
  5767. #if ENABLED(INCH_MODE_SUPPORT)
  5768. case 20: //G20: Inch Mode
  5769. gcode_G20();
  5770. break;
  5771. case 21: //G21: MM Mode
  5772. gcode_G21();
  5773. break;
  5774. #endif
  5775. case 28: // G28: Home all axes, one at a time
  5776. gcode_G28();
  5777. break;
  5778. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5779. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5780. gcode_G29();
  5781. break;
  5782. #endif
  5783. #if HAS_BED_PROBE
  5784. case 30: // G30 Single Z probe
  5785. gcode_G30();
  5786. break;
  5787. #if ENABLED(Z_PROBE_SLED)
  5788. case 31: // G31: dock the sled
  5789. stow_z_probe();
  5790. break;
  5791. case 32: // G32: undock the sled
  5792. deploy_z_probe();
  5793. break;
  5794. #endif // Z_PROBE_SLED
  5795. #endif // HAS_BED_PROBE
  5796. case 90: // G90
  5797. relative_mode = false;
  5798. break;
  5799. case 91: // G91
  5800. relative_mode = true;
  5801. break;
  5802. case 92: // G92
  5803. gcode_G92();
  5804. break;
  5805. }
  5806. break;
  5807. case 'M': switch (codenum) {
  5808. #if ENABLED(ULTIPANEL)
  5809. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5810. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5811. gcode_M0_M1();
  5812. break;
  5813. #endif // ULTIPANEL
  5814. case 17:
  5815. gcode_M17();
  5816. break;
  5817. #if ENABLED(SDSUPPORT)
  5818. case 20: // M20 - list SD card
  5819. gcode_M20(); break;
  5820. case 21: // M21 - init SD card
  5821. gcode_M21(); break;
  5822. case 22: //M22 - release SD card
  5823. gcode_M22(); break;
  5824. case 23: //M23 - Select file
  5825. gcode_M23(); break;
  5826. case 24: //M24 - Start SD print
  5827. gcode_M24(); break;
  5828. case 25: //M25 - Pause SD print
  5829. gcode_M25(); break;
  5830. case 26: //M26 - Set SD index
  5831. gcode_M26(); break;
  5832. case 27: //M27 - Get SD status
  5833. gcode_M27(); break;
  5834. case 28: //M28 - Start SD write
  5835. gcode_M28(); break;
  5836. case 29: //M29 - Stop SD write
  5837. gcode_M29(); break;
  5838. case 30: //M30 <filename> Delete File
  5839. gcode_M30(); break;
  5840. case 32: //M32 - Select file and start SD print
  5841. gcode_M32(); break;
  5842. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5843. case 33: //M33 - Get the long full path to a file or folder
  5844. gcode_M33(); break;
  5845. #endif // LONG_FILENAME_HOST_SUPPORT
  5846. case 928: //M928 - Start SD write
  5847. gcode_M928(); break;
  5848. #endif //SDSUPPORT
  5849. case 31: //M31 take time since the start of the SD print or an M109 command
  5850. gcode_M31();
  5851. break;
  5852. case 42: //M42 -Change pin status via gcode
  5853. gcode_M42();
  5854. break;
  5855. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5856. case 48: // M48 Z probe repeatability
  5857. gcode_M48();
  5858. break;
  5859. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5860. case 75: // Start print timer
  5861. gcode_M75();
  5862. break;
  5863. case 76: // Pause print timer
  5864. gcode_M76();
  5865. break;
  5866. case 77: // Stop print timer
  5867. gcode_M77();
  5868. break;
  5869. #if ENABLED(PRINTCOUNTER)
  5870. case 78: // Show print statistics
  5871. gcode_M78();
  5872. break;
  5873. #endif
  5874. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5875. case 100:
  5876. gcode_M100();
  5877. break;
  5878. #endif
  5879. case 104: // M104
  5880. gcode_M104();
  5881. break;
  5882. case 110: // M110: Set Current Line Number
  5883. gcode_M110();
  5884. break;
  5885. case 111: // M111: Set debug level
  5886. gcode_M111();
  5887. break;
  5888. case 112: // M112: Emergency Stop
  5889. gcode_M112();
  5890. break;
  5891. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5892. case 113: // M113: Set Host Keepalive interval
  5893. gcode_M113();
  5894. break;
  5895. #endif
  5896. case 140: // M140: Set bed temp
  5897. gcode_M140();
  5898. break;
  5899. case 105: // M105: Read current temperature
  5900. gcode_M105();
  5901. KEEPALIVE_STATE(NOT_BUSY);
  5902. return; // "ok" already printed
  5903. case 109: // M109: Wait for temperature
  5904. gcode_M109();
  5905. break;
  5906. #if HAS_TEMP_BED
  5907. case 190: // M190: Wait for bed heater to reach target
  5908. gcode_M190();
  5909. break;
  5910. #endif // HAS_TEMP_BED
  5911. #if FAN_COUNT > 0
  5912. case 106: // M106: Fan On
  5913. gcode_M106();
  5914. break;
  5915. case 107: // M107: Fan Off
  5916. gcode_M107();
  5917. break;
  5918. #endif // FAN_COUNT > 0
  5919. #if ENABLED(BARICUDA)
  5920. // PWM for HEATER_1_PIN
  5921. #if HAS_HEATER_1
  5922. case 126: // M126: valve open
  5923. gcode_M126();
  5924. break;
  5925. case 127: // M127: valve closed
  5926. gcode_M127();
  5927. break;
  5928. #endif // HAS_HEATER_1
  5929. // PWM for HEATER_2_PIN
  5930. #if HAS_HEATER_2
  5931. case 128: // M128: valve open
  5932. gcode_M128();
  5933. break;
  5934. case 129: // M129: valve closed
  5935. gcode_M129();
  5936. break;
  5937. #endif // HAS_HEATER_2
  5938. #endif // BARICUDA
  5939. #if HAS_POWER_SWITCH
  5940. case 80: // M80: Turn on Power Supply
  5941. gcode_M80();
  5942. break;
  5943. #endif // HAS_POWER_SWITCH
  5944. case 81: // M81: Turn off Power, including Power Supply, if possible
  5945. gcode_M81();
  5946. break;
  5947. case 82:
  5948. gcode_M82();
  5949. break;
  5950. case 83:
  5951. gcode_M83();
  5952. break;
  5953. case 18: // (for compatibility)
  5954. case 84: // M84
  5955. gcode_M18_M84();
  5956. break;
  5957. case 85: // M85
  5958. gcode_M85();
  5959. break;
  5960. case 92: // M92: Set the steps-per-unit for one or more axes
  5961. gcode_M92();
  5962. break;
  5963. case 115: // M115: Report capabilities
  5964. gcode_M115();
  5965. break;
  5966. case 117: // M117: Set LCD message text, if possible
  5967. gcode_M117();
  5968. break;
  5969. case 114: // M114: Report current position
  5970. gcode_M114();
  5971. break;
  5972. case 120: // M120: Enable endstops
  5973. gcode_M120();
  5974. break;
  5975. case 121: // M121: Disable endstops
  5976. gcode_M121();
  5977. break;
  5978. case 119: // M119: Report endstop states
  5979. gcode_M119();
  5980. break;
  5981. #if ENABLED(ULTIPANEL)
  5982. case 145: // M145: Set material heatup parameters
  5983. gcode_M145();
  5984. break;
  5985. #endif
  5986. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5987. case 149:
  5988. gcode_M149();
  5989. break;
  5990. #endif
  5991. #if ENABLED(BLINKM)
  5992. case 150: // M150
  5993. gcode_M150();
  5994. break;
  5995. #endif //BLINKM
  5996. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5997. case 155:
  5998. gcode_M155();
  5999. break;
  6000. case 156:
  6001. gcode_M156();
  6002. break;
  6003. #endif //EXPERIMENTAL_I2CBUS
  6004. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  6005. gcode_M200();
  6006. break;
  6007. case 201: // M201
  6008. gcode_M201();
  6009. break;
  6010. #if 0 // Not used for Sprinter/grbl gen6
  6011. case 202: // M202
  6012. gcode_M202();
  6013. break;
  6014. #endif
  6015. case 203: // M203 max feedrate mm/sec
  6016. gcode_M203();
  6017. break;
  6018. case 204: // M204 acclereration S normal moves T filmanent only moves
  6019. gcode_M204();
  6020. break;
  6021. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6022. gcode_M205();
  6023. break;
  6024. case 206: // M206 additional homing offset
  6025. gcode_M206();
  6026. break;
  6027. #if ENABLED(DELTA)
  6028. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6029. gcode_M665();
  6030. break;
  6031. #endif
  6032. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6033. case 666: // M666 set delta / dual endstop adjustment
  6034. gcode_M666();
  6035. break;
  6036. #endif
  6037. #if ENABLED(FWRETRACT)
  6038. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6039. gcode_M207();
  6040. break;
  6041. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6042. gcode_M208();
  6043. break;
  6044. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6045. gcode_M209();
  6046. break;
  6047. #endif // FWRETRACT
  6048. #if HOTENDS > 1
  6049. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6050. gcode_M218();
  6051. break;
  6052. #endif
  6053. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6054. gcode_M220();
  6055. break;
  6056. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6057. gcode_M221();
  6058. break;
  6059. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6060. gcode_M226();
  6061. break;
  6062. #if HAS_SERVOS
  6063. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6064. gcode_M280();
  6065. break;
  6066. #endif // HAS_SERVOS
  6067. #if HAS_BUZZER
  6068. case 300: // M300 - Play beep tone
  6069. gcode_M300();
  6070. break;
  6071. #endif // HAS_BUZZER
  6072. #if ENABLED(PIDTEMP)
  6073. case 301: // M301
  6074. gcode_M301();
  6075. break;
  6076. #endif // PIDTEMP
  6077. #if ENABLED(PIDTEMPBED)
  6078. case 304: // M304
  6079. gcode_M304();
  6080. break;
  6081. #endif // PIDTEMPBED
  6082. #if defined(CHDK) || HAS_PHOTOGRAPH
  6083. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6084. gcode_M240();
  6085. break;
  6086. #endif // CHDK || PHOTOGRAPH_PIN
  6087. #if HAS_LCD_CONTRAST
  6088. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6089. gcode_M250();
  6090. break;
  6091. #endif // HAS_LCD_CONTRAST
  6092. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6093. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6094. gcode_M302();
  6095. break;
  6096. #endif // PREVENT_DANGEROUS_EXTRUDE
  6097. case 303: // M303 PID autotune
  6098. gcode_M303();
  6099. break;
  6100. #if ENABLED(SCARA)
  6101. case 360: // M360 SCARA Theta pos1
  6102. if (gcode_M360()) return;
  6103. break;
  6104. case 361: // M361 SCARA Theta pos2
  6105. if (gcode_M361()) return;
  6106. break;
  6107. case 362: // M362 SCARA Psi pos1
  6108. if (gcode_M362()) return;
  6109. break;
  6110. case 363: // M363 SCARA Psi pos2
  6111. if (gcode_M363()) return;
  6112. break;
  6113. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6114. if (gcode_M364()) return;
  6115. break;
  6116. case 365: // M365 Set SCARA scaling for X Y Z
  6117. gcode_M365();
  6118. break;
  6119. #endif // SCARA
  6120. case 400: // M400 finish all moves
  6121. gcode_M400();
  6122. break;
  6123. #if HAS_BED_PROBE
  6124. case 401:
  6125. gcode_M401();
  6126. break;
  6127. case 402:
  6128. gcode_M402();
  6129. break;
  6130. #endif // HAS_BED_PROBE
  6131. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6132. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6133. gcode_M404();
  6134. break;
  6135. case 405: //M405 Turn on filament sensor for control
  6136. gcode_M405();
  6137. break;
  6138. case 406: //M406 Turn off filament sensor for control
  6139. gcode_M406();
  6140. break;
  6141. case 407: //M407 Display measured filament diameter
  6142. gcode_M407();
  6143. break;
  6144. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6145. case 410: // M410 quickstop - Abort all the planned moves.
  6146. gcode_M410();
  6147. break;
  6148. #if ENABLED(MESH_BED_LEVELING)
  6149. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6150. gcode_M420();
  6151. break;
  6152. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6153. gcode_M421();
  6154. break;
  6155. #endif
  6156. case 428: // M428 Apply current_position to home_offset
  6157. gcode_M428();
  6158. break;
  6159. case 500: // M500 Store settings in EEPROM
  6160. gcode_M500();
  6161. break;
  6162. case 501: // M501 Read settings from EEPROM
  6163. gcode_M501();
  6164. break;
  6165. case 502: // M502 Revert to default settings
  6166. gcode_M502();
  6167. break;
  6168. case 503: // M503 print settings currently in memory
  6169. gcode_M503();
  6170. break;
  6171. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6172. case 540:
  6173. gcode_M540();
  6174. break;
  6175. #endif
  6176. #if HAS_BED_PROBE
  6177. case 851:
  6178. gcode_M851();
  6179. break;
  6180. #endif // HAS_BED_PROBE
  6181. #if ENABLED(FILAMENTCHANGEENABLE)
  6182. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6183. gcode_M600();
  6184. break;
  6185. #endif // FILAMENTCHANGEENABLE
  6186. #if ENABLED(DUAL_X_CARRIAGE)
  6187. case 605:
  6188. gcode_M605();
  6189. break;
  6190. #endif // DUAL_X_CARRIAGE
  6191. #if ENABLED(LIN_ADVANCE)
  6192. case 905: // M905 Set advance factor.
  6193. gcode_M905();
  6194. break;
  6195. #endif
  6196. case 907: // M907 Set digital trimpot motor current using axis codes.
  6197. gcode_M907();
  6198. break;
  6199. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6200. case 908: // M908 Control digital trimpot directly.
  6201. gcode_M908();
  6202. break;
  6203. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6204. case 909: // M909 Print digipot/DAC current value
  6205. gcode_M909();
  6206. break;
  6207. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6208. gcode_M910();
  6209. break;
  6210. #endif
  6211. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6212. #if HAS_MICROSTEPS
  6213. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6214. gcode_M350();
  6215. break;
  6216. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6217. gcode_M351();
  6218. break;
  6219. #endif // HAS_MICROSTEPS
  6220. case 999: // M999: Restart after being Stopped
  6221. gcode_M999();
  6222. break;
  6223. }
  6224. break;
  6225. case 'T':
  6226. gcode_T(codenum);
  6227. break;
  6228. default: code_is_good = false;
  6229. }
  6230. KEEPALIVE_STATE(NOT_BUSY);
  6231. ExitUnknownCommand:
  6232. // Still unknown command? Throw an error
  6233. if (!code_is_good) unknown_command_error();
  6234. ok_to_send();
  6235. }
  6236. void FlushSerialRequestResend() {
  6237. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6238. MYSERIAL.flush();
  6239. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6240. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6241. ok_to_send();
  6242. }
  6243. void ok_to_send() {
  6244. refresh_cmd_timeout();
  6245. if (!send_ok[cmd_queue_index_r]) return;
  6246. SERIAL_PROTOCOLPGM(MSG_OK);
  6247. #if ENABLED(ADVANCED_OK)
  6248. char* p = command_queue[cmd_queue_index_r];
  6249. if (*p == 'N') {
  6250. SERIAL_PROTOCOL(' ');
  6251. SERIAL_ECHO(*p++);
  6252. while (NUMERIC_SIGNED(*p))
  6253. SERIAL_ECHO(*p++);
  6254. }
  6255. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6256. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6257. #endif
  6258. SERIAL_EOL;
  6259. }
  6260. void clamp_to_software_endstops(float target[3]) {
  6261. if (min_software_endstops) {
  6262. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6263. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6264. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6265. }
  6266. if (max_software_endstops) {
  6267. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6268. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6269. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6270. }
  6271. }
  6272. #if ENABLED(DELTA)
  6273. void recalc_delta_settings(float radius, float diagonal_rod) {
  6274. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6275. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6276. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6277. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6278. delta_tower3_x = 0.0; // back middle tower
  6279. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6280. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6281. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6282. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6283. }
  6284. void calculate_delta(float cartesian[3]) {
  6285. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6286. - sq(delta_tower1_x - cartesian[X_AXIS])
  6287. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6288. ) + cartesian[Z_AXIS];
  6289. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6290. - sq(delta_tower2_x - cartesian[X_AXIS])
  6291. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6292. ) + cartesian[Z_AXIS];
  6293. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6294. - sq(delta_tower3_x - cartesian[X_AXIS])
  6295. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6296. ) + cartesian[Z_AXIS];
  6297. /**
  6298. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6299. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6300. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6301. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6302. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6303. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6304. */
  6305. }
  6306. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6307. // Adjust print surface height by linear interpolation over the bed_level array.
  6308. void adjust_delta(float cartesian[3]) {
  6309. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6310. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6311. float h1 = 0.001 - half, h2 = half - 0.001,
  6312. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6313. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6314. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6315. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6316. z1 = bed_level[floor_x + half][floor_y + half],
  6317. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6318. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6319. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6320. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6321. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6322. offset = (1 - ratio_x) * left + ratio_x * right;
  6323. delta[X_AXIS] += offset;
  6324. delta[Y_AXIS] += offset;
  6325. delta[Z_AXIS] += offset;
  6326. /**
  6327. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6328. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6329. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6330. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6331. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6332. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6333. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6334. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6335. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6336. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6337. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6338. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6339. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6340. */
  6341. }
  6342. #endif // AUTO_BED_LEVELING_FEATURE
  6343. #endif // DELTA
  6344. #if ENABLED(MESH_BED_LEVELING)
  6345. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6346. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6347. if (!mbl.active()) {
  6348. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6349. set_current_to_destination();
  6350. return;
  6351. }
  6352. int pcx = mbl.cell_index_x(current_position[X_AXIS] - home_offset[X_AXIS]);
  6353. int pcy = mbl.cell_index_y(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6354. int cx = mbl.cell_index_x(x - home_offset[X_AXIS]);
  6355. int cy = mbl.cell_index_y(y - home_offset[Y_AXIS]);
  6356. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6357. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6358. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6359. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6360. if (pcx == cx && pcy == cy) {
  6361. // Start and end on same mesh square
  6362. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6363. set_current_to_destination();
  6364. return;
  6365. }
  6366. float nx, ny, nz, ne, normalized_dist;
  6367. if (cx > pcx && TEST(x_splits, cx)) {
  6368. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6369. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6370. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6371. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6372. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6373. CBI(x_splits, cx);
  6374. }
  6375. else if (cx < pcx && TEST(x_splits, pcx)) {
  6376. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6377. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6378. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6379. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6380. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6381. CBI(x_splits, pcx);
  6382. }
  6383. else if (cy > pcy && TEST(y_splits, cy)) {
  6384. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6385. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6386. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6387. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6388. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6389. CBI(y_splits, cy);
  6390. }
  6391. else if (cy < pcy && TEST(y_splits, pcy)) {
  6392. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6393. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6394. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6395. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6396. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6397. CBI(y_splits, pcy);
  6398. }
  6399. else {
  6400. // Already split on a border
  6401. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6402. set_current_to_destination();
  6403. return;
  6404. }
  6405. // Do the split and look for more borders
  6406. destination[X_AXIS] = nx;
  6407. destination[Y_AXIS] = ny;
  6408. destination[Z_AXIS] = nz;
  6409. destination[E_AXIS] = ne;
  6410. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6411. destination[X_AXIS] = x;
  6412. destination[Y_AXIS] = y;
  6413. destination[Z_AXIS] = z;
  6414. destination[E_AXIS] = e;
  6415. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6416. }
  6417. #endif // MESH_BED_LEVELING
  6418. #if ENABLED(DELTA) || ENABLED(SCARA)
  6419. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6420. float difference[NUM_AXIS];
  6421. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6422. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6423. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6424. if (cartesian_mm < 0.000001) return false;
  6425. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6426. float seconds = cartesian_mm / _feedrate;
  6427. int steps = max(1, int(delta_segments_per_second * seconds));
  6428. float inv_steps = 1.0/steps;
  6429. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6430. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6431. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6432. for (int s = 1; s <= steps; s++) {
  6433. float fraction = float(s) * inv_steps;
  6434. for (int8_t i = 0; i < NUM_AXIS; i++)
  6435. target[i] = current_position[i] + difference[i] * fraction;
  6436. calculate_delta(target);
  6437. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6438. if (!bed_leveling_in_progress) adjust_delta(target);
  6439. #endif
  6440. //DEBUG_POS("prepare_delta_move_to", target);
  6441. //DEBUG_POS("prepare_delta_move_to", delta);
  6442. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6443. }
  6444. return true;
  6445. }
  6446. #endif // DELTA || SCARA
  6447. #if ENABLED(SCARA)
  6448. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6449. #endif
  6450. #if ENABLED(DUAL_X_CARRIAGE)
  6451. inline bool prepare_move_dual_x_carriage() {
  6452. if (active_extruder_parked) {
  6453. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6454. // move duplicate extruder into correct duplication position.
  6455. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6456. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6457. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6458. sync_plan_position();
  6459. stepper.synchronize();
  6460. extruder_duplication_enabled = true;
  6461. active_extruder_parked = false;
  6462. }
  6463. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6464. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6465. // This is a travel move (with no extrusion)
  6466. // Skip it, but keep track of the current position
  6467. // (so it can be used as the start of the next non-travel move)
  6468. if (delayed_move_time != 0xFFFFFFFFUL) {
  6469. set_current_to_destination();
  6470. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6471. delayed_move_time = millis();
  6472. return false;
  6473. }
  6474. }
  6475. delayed_move_time = 0;
  6476. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6477. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6478. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]), active_extruder);
  6479. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6480. active_extruder_parked = false;
  6481. }
  6482. }
  6483. return true;
  6484. }
  6485. #endif // DUAL_X_CARRIAGE
  6486. #if DISABLED(DELTA) && DISABLED(SCARA)
  6487. inline bool prepare_cartesian_move_to_destination() {
  6488. // Do not use feedrate_multiplier for E or Z only moves
  6489. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6490. line_to_destination();
  6491. }
  6492. else {
  6493. #if ENABLED(MESH_BED_LEVELING)
  6494. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6495. return false;
  6496. #else
  6497. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6498. #endif
  6499. }
  6500. return true;
  6501. }
  6502. #endif // !DELTA && !SCARA
  6503. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6504. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6505. if (DEBUGGING(DRYRUN)) return;
  6506. float de = dest_e - curr_e;
  6507. if (de) {
  6508. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6509. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6510. SERIAL_ECHO_START;
  6511. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6512. }
  6513. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6514. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6515. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6516. SERIAL_ECHO_START;
  6517. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6518. }
  6519. #endif
  6520. }
  6521. }
  6522. #endif // PREVENT_DANGEROUS_EXTRUDE
  6523. /**
  6524. * Prepare a single move and get ready for the next one
  6525. *
  6526. * (This may call planner.buffer_line several times to put
  6527. * smaller moves into the planner for DELTA or SCARA.)
  6528. */
  6529. void prepare_move_to_destination() {
  6530. clamp_to_software_endstops(destination);
  6531. refresh_cmd_timeout();
  6532. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6533. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6534. #endif
  6535. #if ENABLED(SCARA)
  6536. if (!prepare_scara_move_to(destination)) return;
  6537. #elif ENABLED(DELTA)
  6538. if (!prepare_delta_move_to(destination)) return;
  6539. #else
  6540. #if ENABLED(DUAL_X_CARRIAGE)
  6541. if (!prepare_move_dual_x_carriage()) return;
  6542. #endif
  6543. if (!prepare_cartesian_move_to_destination()) return;
  6544. #endif
  6545. set_current_to_destination();
  6546. }
  6547. #if ENABLED(ARC_SUPPORT)
  6548. /**
  6549. * Plan an arc in 2 dimensions
  6550. *
  6551. * The arc is approximated by generating many small linear segments.
  6552. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6553. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6554. * larger segments will tend to be more efficient. Your slicer should have
  6555. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6556. */
  6557. void plan_arc(
  6558. float target[NUM_AXIS], // Destination position
  6559. float* offset, // Center of rotation relative to current_position
  6560. uint8_t clockwise // Clockwise?
  6561. ) {
  6562. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6563. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6564. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6565. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6566. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6567. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6568. r_Y = -offset[Y_AXIS],
  6569. rt_X = target[X_AXIS] - center_X,
  6570. rt_Y = target[Y_AXIS] - center_Y;
  6571. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6572. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6573. if (angular_travel < 0) angular_travel += RADIANS(360);
  6574. if (clockwise) angular_travel -= RADIANS(360);
  6575. // Make a circle if the angular rotation is 0
  6576. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6577. angular_travel += RADIANS(360);
  6578. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6579. if (mm_of_travel < 0.001) return;
  6580. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6581. if (segments == 0) segments = 1;
  6582. float theta_per_segment = angular_travel / segments;
  6583. float linear_per_segment = linear_travel / segments;
  6584. float extruder_per_segment = extruder_travel / segments;
  6585. /**
  6586. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6587. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6588. * r_T = [cos(phi) -sin(phi);
  6589. * sin(phi) cos(phi] * r ;
  6590. *
  6591. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6592. * defined from the circle center to the initial position. Each line segment is formed by successive
  6593. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6594. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6595. * all double numbers are single precision on the Arduino. (True double precision will not have
  6596. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6597. * tool precision in some cases. Therefore, arc path correction is implemented.
  6598. *
  6599. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6600. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6601. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6602. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6603. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6604. * issue for CNC machines with the single precision Arduino calculations.
  6605. *
  6606. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6607. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6608. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6609. * This is important when there are successive arc motions.
  6610. */
  6611. // Vector rotation matrix values
  6612. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6613. float sin_T = theta_per_segment;
  6614. float arc_target[NUM_AXIS];
  6615. float sin_Ti, cos_Ti, r_new_Y;
  6616. uint16_t i;
  6617. int8_t count = 0;
  6618. // Initialize the linear axis
  6619. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6620. // Initialize the extruder axis
  6621. arc_target[E_AXIS] = current_position[E_AXIS];
  6622. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6623. millis_t next_idle_ms = millis() + 200UL;
  6624. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6625. thermalManager.manage_heater();
  6626. millis_t now = millis();
  6627. if (ELAPSED(now, next_idle_ms)) {
  6628. next_idle_ms = now + 200UL;
  6629. idle();
  6630. }
  6631. if (++count < N_ARC_CORRECTION) {
  6632. // Apply vector rotation matrix to previous r_X / 1
  6633. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6634. r_X = r_X * cos_T - r_Y * sin_T;
  6635. r_Y = r_new_Y;
  6636. }
  6637. else {
  6638. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6639. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6640. // To reduce stuttering, the sin and cos could be computed at different times.
  6641. // For now, compute both at the same time.
  6642. cos_Ti = cos(i * theta_per_segment);
  6643. sin_Ti = sin(i * theta_per_segment);
  6644. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6645. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6646. count = 0;
  6647. }
  6648. // Update arc_target location
  6649. arc_target[X_AXIS] = center_X + r_X;
  6650. arc_target[Y_AXIS] = center_Y + r_Y;
  6651. arc_target[Z_AXIS] += linear_per_segment;
  6652. arc_target[E_AXIS] += extruder_per_segment;
  6653. clamp_to_software_endstops(arc_target);
  6654. #if ENABLED(DELTA) || ENABLED(SCARA)
  6655. calculate_delta(arc_target);
  6656. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6657. adjust_delta(arc_target);
  6658. #endif
  6659. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6660. #else
  6661. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6662. #endif
  6663. }
  6664. // Ensure last segment arrives at target location.
  6665. #if ENABLED(DELTA) || ENABLED(SCARA)
  6666. calculate_delta(target);
  6667. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6668. adjust_delta(target);
  6669. #endif
  6670. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6671. #else
  6672. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6673. #endif
  6674. // As far as the parser is concerned, the position is now == target. In reality the
  6675. // motion control system might still be processing the action and the real tool position
  6676. // in any intermediate location.
  6677. set_current_to_destination();
  6678. }
  6679. #endif
  6680. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6681. void plan_cubic_move(const float offset[4]) {
  6682. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6683. // As far as the parser is concerned, the position is now == target. In reality the
  6684. // motion control system might still be processing the action and the real tool position
  6685. // in any intermediate location.
  6686. set_current_to_destination();
  6687. }
  6688. #endif // BEZIER_CURVE_SUPPORT
  6689. #if HAS_CONTROLLERFAN
  6690. void controllerFan() {
  6691. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6692. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6693. millis_t ms = millis();
  6694. if (ELAPSED(ms, nextMotorCheck)) {
  6695. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6696. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6697. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6698. #if EXTRUDERS > 1
  6699. || E1_ENABLE_READ == E_ENABLE_ON
  6700. #if HAS_X2_ENABLE
  6701. || X2_ENABLE_READ == X_ENABLE_ON
  6702. #endif
  6703. #if EXTRUDERS > 2
  6704. || E2_ENABLE_READ == E_ENABLE_ON
  6705. #if EXTRUDERS > 3
  6706. || E3_ENABLE_READ == E_ENABLE_ON
  6707. #endif
  6708. #endif
  6709. #endif
  6710. ) {
  6711. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6712. }
  6713. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6714. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6715. // allows digital or PWM fan output to be used (see M42 handling)
  6716. digitalWrite(CONTROLLERFAN_PIN, speed);
  6717. analogWrite(CONTROLLERFAN_PIN, speed);
  6718. }
  6719. }
  6720. #endif // HAS_CONTROLLERFAN
  6721. #if ENABLED(SCARA)
  6722. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6723. // Perform forward kinematics, and place results in delta[3]
  6724. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6725. float x_sin, x_cos, y_sin, y_cos;
  6726. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6727. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6728. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6729. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6730. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6731. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6732. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6733. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6734. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6735. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6736. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6737. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6738. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6739. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6740. }
  6741. void calculate_delta(float cartesian[3]) {
  6742. //reverse kinematics.
  6743. // Perform reversed kinematics, and place results in delta[3]
  6744. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6745. float SCARA_pos[2];
  6746. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6747. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6748. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6749. #if (Linkage_1 == Linkage_2)
  6750. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6751. #else
  6752. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6753. #endif
  6754. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6755. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6756. SCARA_K2 = Linkage_2 * SCARA_S2;
  6757. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6758. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6759. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6760. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6761. delta[Z_AXIS] = cartesian[Z_AXIS];
  6762. /**
  6763. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6764. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6765. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6766. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6767. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6768. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6769. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6770. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6771. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6772. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6773. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6774. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6775. SERIAL_EOL;
  6776. */
  6777. }
  6778. #endif // SCARA
  6779. #if ENABLED(TEMP_STAT_LEDS)
  6780. static bool red_led = false;
  6781. static millis_t next_status_led_update_ms = 0;
  6782. void handle_status_leds(void) {
  6783. float max_temp = 0.0;
  6784. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6785. next_status_led_update_ms += 500; // Update every 0.5s
  6786. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend)
  6787. max_temp = max(max(max_temp, thermalManager.degHotend(cur_hotend)), thermalManager.degTargetHotend(cur_hotend));
  6788. #if HAS_TEMP_BED
  6789. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6790. #endif
  6791. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6792. if (new_led != red_led) {
  6793. red_led = new_led;
  6794. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6795. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6796. }
  6797. }
  6798. }
  6799. #endif
  6800. void enable_all_steppers() {
  6801. enable_x();
  6802. enable_y();
  6803. enable_z();
  6804. enable_e0();
  6805. enable_e1();
  6806. enable_e2();
  6807. enable_e3();
  6808. }
  6809. void disable_all_steppers() {
  6810. disable_x();
  6811. disable_y();
  6812. disable_z();
  6813. disable_e0();
  6814. disable_e1();
  6815. disable_e2();
  6816. disable_e3();
  6817. }
  6818. /**
  6819. * Standard idle routine keeps the machine alive
  6820. */
  6821. void idle(
  6822. #if ENABLED(FILAMENTCHANGEENABLE)
  6823. bool no_stepper_sleep/*=false*/
  6824. #endif
  6825. ) {
  6826. lcd_update();
  6827. host_keepalive();
  6828. manage_inactivity(
  6829. #if ENABLED(FILAMENTCHANGEENABLE)
  6830. no_stepper_sleep
  6831. #endif
  6832. );
  6833. thermalManager.manage_heater();
  6834. #if ENABLED(PRINTCOUNTER)
  6835. print_job_timer.tick();
  6836. #endif
  6837. #if HAS_BUZZER
  6838. buzzer.tick();
  6839. #endif
  6840. }
  6841. /**
  6842. * Manage several activities:
  6843. * - Check for Filament Runout
  6844. * - Keep the command buffer full
  6845. * - Check for maximum inactive time between commands
  6846. * - Check for maximum inactive time between stepper commands
  6847. * - Check if pin CHDK needs to go LOW
  6848. * - Check for KILL button held down
  6849. * - Check for HOME button held down
  6850. * - Check if cooling fan needs to be switched on
  6851. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6852. */
  6853. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6854. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6855. if (IS_SD_PRINTING && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6856. handle_filament_runout();
  6857. #endif
  6858. if (commands_in_queue < BUFSIZE) get_available_commands();
  6859. millis_t ms = millis();
  6860. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6861. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6862. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6863. #if ENABLED(DISABLE_INACTIVE_X)
  6864. disable_x();
  6865. #endif
  6866. #if ENABLED(DISABLE_INACTIVE_Y)
  6867. disable_y();
  6868. #endif
  6869. #if ENABLED(DISABLE_INACTIVE_Z)
  6870. disable_z();
  6871. #endif
  6872. #if ENABLED(DISABLE_INACTIVE_E)
  6873. disable_e0();
  6874. disable_e1();
  6875. disable_e2();
  6876. disable_e3();
  6877. #endif
  6878. }
  6879. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6880. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6881. chdkActive = false;
  6882. WRITE(CHDK, LOW);
  6883. }
  6884. #endif
  6885. #if HAS_KILL
  6886. // Check if the kill button was pressed and wait just in case it was an accidental
  6887. // key kill key press
  6888. // -------------------------------------------------------------------------------
  6889. static int killCount = 0; // make the inactivity button a bit less responsive
  6890. const int KILL_DELAY = 750;
  6891. if (!READ(KILL_PIN))
  6892. killCount++;
  6893. else if (killCount > 0)
  6894. killCount--;
  6895. // Exceeded threshold and we can confirm that it was not accidental
  6896. // KILL the machine
  6897. // ----------------------------------------------------------------
  6898. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6899. #endif
  6900. #if HAS_HOME
  6901. // Check to see if we have to home, use poor man's debouncer
  6902. // ---------------------------------------------------------
  6903. static int homeDebounceCount = 0; // poor man's debouncing count
  6904. const int HOME_DEBOUNCE_DELAY = 2500;
  6905. if (!READ(HOME_PIN)) {
  6906. if (!homeDebounceCount) {
  6907. enqueue_and_echo_commands_P(PSTR("G28"));
  6908. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6909. }
  6910. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6911. homeDebounceCount++;
  6912. else
  6913. homeDebounceCount = 0;
  6914. }
  6915. #endif
  6916. #if HAS_CONTROLLERFAN
  6917. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6918. #endif
  6919. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6920. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6921. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6922. bool oldstatus;
  6923. switch (active_extruder) {
  6924. case 0:
  6925. oldstatus = E0_ENABLE_READ;
  6926. enable_e0();
  6927. break;
  6928. #if EXTRUDERS > 1
  6929. case 1:
  6930. oldstatus = E1_ENABLE_READ;
  6931. enable_e1();
  6932. break;
  6933. #if EXTRUDERS > 2
  6934. case 2:
  6935. oldstatus = E2_ENABLE_READ;
  6936. enable_e2();
  6937. break;
  6938. #if EXTRUDERS > 3
  6939. case 3:
  6940. oldstatus = E3_ENABLE_READ;
  6941. enable_e3();
  6942. break;
  6943. #endif
  6944. #endif
  6945. #endif
  6946. }
  6947. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6948. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6949. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  6950. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  6951. current_position[E_AXIS] = oldepos;
  6952. destination[E_AXIS] = oldedes;
  6953. planner.set_e_position_mm(oldepos);
  6954. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6955. stepper.synchronize();
  6956. switch (active_extruder) {
  6957. case 0:
  6958. E0_ENABLE_WRITE(oldstatus);
  6959. break;
  6960. #if EXTRUDERS > 1
  6961. case 1:
  6962. E1_ENABLE_WRITE(oldstatus);
  6963. break;
  6964. #if EXTRUDERS > 2
  6965. case 2:
  6966. E2_ENABLE_WRITE(oldstatus);
  6967. break;
  6968. #if EXTRUDERS > 3
  6969. case 3:
  6970. E3_ENABLE_WRITE(oldstatus);
  6971. break;
  6972. #endif
  6973. #endif
  6974. #endif
  6975. }
  6976. }
  6977. #endif
  6978. #if ENABLED(DUAL_X_CARRIAGE)
  6979. // handle delayed move timeout
  6980. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6981. // travel moves have been received so enact them
  6982. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6983. set_destination_to_current();
  6984. prepare_move_to_destination();
  6985. }
  6986. #endif
  6987. #if ENABLED(TEMP_STAT_LEDS)
  6988. handle_status_leds();
  6989. #endif
  6990. planner.check_axes_activity();
  6991. }
  6992. void kill(const char* lcd_msg) {
  6993. #if ENABLED(ULTRA_LCD)
  6994. lcd_init();
  6995. lcd_setalertstatuspgm(lcd_msg);
  6996. #else
  6997. UNUSED(lcd_msg);
  6998. #endif
  6999. cli(); // Stop interrupts
  7000. thermalManager.disable_all_heaters();
  7001. disable_all_steppers();
  7002. #if HAS_POWER_SWITCH
  7003. pinMode(PS_ON_PIN, INPUT);
  7004. #endif
  7005. SERIAL_ERROR_START;
  7006. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7007. // FMC small patch to update the LCD before ending
  7008. sei(); // enable interrupts
  7009. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  7010. cli(); // disable interrupts
  7011. suicide();
  7012. while (1) {
  7013. #if ENABLED(USE_WATCHDOG)
  7014. watchdog_reset();
  7015. #endif
  7016. } // Wait for reset
  7017. }
  7018. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7019. void handle_filament_runout() {
  7020. if (!filament_ran_out) {
  7021. filament_ran_out = true;
  7022. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7023. stepper.synchronize();
  7024. }
  7025. }
  7026. #endif // FILAMENT_RUNOUT_SENSOR
  7027. #if ENABLED(FAST_PWM_FAN)
  7028. void setPwmFrequency(uint8_t pin, int val) {
  7029. val &= 0x07;
  7030. switch (digitalPinToTimer(pin)) {
  7031. #if defined(TCCR0A)
  7032. case TIMER0A:
  7033. case TIMER0B:
  7034. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7035. // TCCR0B |= val;
  7036. break;
  7037. #endif
  7038. #if defined(TCCR1A)
  7039. case TIMER1A:
  7040. case TIMER1B:
  7041. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7042. // TCCR1B |= val;
  7043. break;
  7044. #endif
  7045. #if defined(TCCR2)
  7046. case TIMER2:
  7047. case TIMER2:
  7048. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7049. TCCR2 |= val;
  7050. break;
  7051. #endif
  7052. #if defined(TCCR2A)
  7053. case TIMER2A:
  7054. case TIMER2B:
  7055. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7056. TCCR2B |= val;
  7057. break;
  7058. #endif
  7059. #if defined(TCCR3A)
  7060. case TIMER3A:
  7061. case TIMER3B:
  7062. case TIMER3C:
  7063. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7064. TCCR3B |= val;
  7065. break;
  7066. #endif
  7067. #if defined(TCCR4A)
  7068. case TIMER4A:
  7069. case TIMER4B:
  7070. case TIMER4C:
  7071. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7072. TCCR4B |= val;
  7073. break;
  7074. #endif
  7075. #if defined(TCCR5A)
  7076. case TIMER5A:
  7077. case TIMER5B:
  7078. case TIMER5C:
  7079. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7080. TCCR5B |= val;
  7081. break;
  7082. #endif
  7083. }
  7084. }
  7085. #endif // FAST_PWM_FAN
  7086. void stop() {
  7087. thermalManager.disable_all_heaters();
  7088. if (IsRunning()) {
  7089. Running = false;
  7090. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7091. SERIAL_ERROR_START;
  7092. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7093. LCD_MESSAGEPGM(MSG_STOPPED);
  7094. }
  7095. }
  7096. float calculate_volumetric_multiplier(float diameter) {
  7097. if (!volumetric_enabled || diameter == 0) return 1.0;
  7098. float d2 = diameter * 0.5;
  7099. return 1.0 / (M_PI * d2 * d2);
  7100. }
  7101. void calculate_volumetric_multipliers() {
  7102. for (int i = 0; i < EXTRUDERS; i++)
  7103. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7104. }