My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.cpp 56KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.cpp
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. *
  30. * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
  31. *
  32. *
  33. * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  34. *
  35. * s == speed, a == acceleration, t == time, d == distance
  36. *
  37. * Basic definitions:
  38. * Speed[s_, a_, t_] := s + (a*t)
  39. * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  40. *
  41. * Distance to reach a specific speed with a constant acceleration:
  42. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  43. * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  44. *
  45. * Speed after a given distance of travel with constant acceleration:
  46. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  47. * m -> Sqrt[2 a d + s^2]
  48. *
  49. * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  50. *
  51. * When to start braking (di) to reach a specified destination speed (s2) after accelerating
  52. * from initial speed s1 without ever stopping at a plateau:
  53. * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  54. * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  55. *
  56. * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  57. *
  58. */
  59. #include "planner.h"
  60. #include "stepper.h"
  61. #include "motion.h"
  62. #include "../module/temperature.h"
  63. #include "../lcd/ultralcd.h"
  64. #include "../core/language.h"
  65. #include "../gcode/parser.h"
  66. #include "../Marlin.h"
  67. #if HAS_LEVELING
  68. #include "../feature/bedlevel/bedlevel.h"
  69. #endif
  70. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  71. #include "../feature/filwidth.h"
  72. #endif
  73. #if ENABLED(BARICUDA)
  74. #include "../feature/baricuda.h"
  75. #endif
  76. #if ENABLED(MIXING_EXTRUDER)
  77. #include "../feature/mixing.h"
  78. #endif
  79. Planner planner;
  80. // public:
  81. /**
  82. * A ring buffer of moves described in steps
  83. */
  84. block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
  85. volatile uint8_t Planner::block_buffer_head = 0, // Index of the next block to be pushed
  86. Planner::block_buffer_tail = 0;
  87. float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
  88. Planner::axis_steps_per_mm[XYZE_N],
  89. Planner::steps_to_mm[XYZE_N];
  90. #if ENABLED(DISTINCT_E_FACTORS)
  91. uint8_t Planner::last_extruder = 0; // Respond to extruder change
  92. #endif
  93. int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
  94. // Initialized by settings.load()
  95. float Planner::filament_size[EXTRUDERS], // As a baseline for the multiplier, filament diameter
  96. Planner::volumetric_multiplier[EXTRUDERS]; // May be auto-adjusted by a filament width sensor
  97. uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
  98. Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
  99. millis_t Planner::min_segment_time;
  100. // Initialized by settings.load()
  101. float Planner::min_feedrate_mm_s,
  102. Planner::acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  103. Planner::retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  104. Planner::travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  105. Planner::max_jerk[XYZE], // The largest speed change requiring no acceleration
  106. Planner::min_travel_feedrate_mm_s;
  107. #if OLDSCHOOL_ABL
  108. bool Planner::abl_enabled = false; // Flag that auto bed leveling is enabled
  109. #if ABL_PLANAR
  110. matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
  111. #endif
  112. #endif
  113. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  114. float Planner::z_fade_height, // Initialized by settings.load()
  115. Planner::inverse_z_fade_height;
  116. #endif
  117. #if ENABLED(AUTOTEMP)
  118. float Planner::autotemp_max = 250,
  119. Planner::autotemp_min = 210,
  120. Planner::autotemp_factor = 0.1;
  121. bool Planner::autotemp_enabled = false;
  122. #endif
  123. // private:
  124. long Planner::position[NUM_AXIS] = { 0 };
  125. uint32_t Planner::cutoff_long;
  126. float Planner::previous_speed[NUM_AXIS],
  127. Planner::previous_nominal_speed;
  128. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  129. uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
  130. #endif
  131. #ifdef XY_FREQUENCY_LIMIT
  132. // Old direction bits. Used for speed calculations
  133. unsigned char Planner::old_direction_bits = 0;
  134. // Segment times (in µs). Used for speed calculations
  135. long Planner::axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
  136. #endif
  137. #if ENABLED(LIN_ADVANCE)
  138. float Planner::extruder_advance_k, // Initialized by settings.load()
  139. Planner::advance_ed_ratio, // Initialized by settings.load()
  140. Planner::position_float[NUM_AXIS] = { 0 };
  141. #endif
  142. #if ENABLED(ULTRA_LCD)
  143. volatile uint32_t Planner::block_buffer_runtime_us = 0;
  144. #endif
  145. /**
  146. * Class and Instance Methods
  147. */
  148. Planner::Planner() { init(); }
  149. void Planner::init() {
  150. block_buffer_head = block_buffer_tail = 0;
  151. ZERO(position);
  152. #if ENABLED(LIN_ADVANCE)
  153. ZERO(position_float);
  154. #endif
  155. ZERO(previous_speed);
  156. previous_nominal_speed = 0.0;
  157. #if ABL_PLANAR
  158. bed_level_matrix.set_to_identity();
  159. #endif
  160. }
  161. #define MINIMAL_STEP_RATE 120
  162. /**
  163. * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
  164. * by the provided factors.
  165. */
  166. void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
  167. uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
  168. final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
  169. // Limit minimal step rate (Otherwise the timer will overflow.)
  170. NOLESS(initial_rate, MINIMAL_STEP_RATE);
  171. NOLESS(final_rate, MINIMAL_STEP_RATE);
  172. int32_t accel = block->acceleration_steps_per_s2,
  173. accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
  174. decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
  175. plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  176. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  177. // have to use intersection_distance() to calculate when to abort accel and start braking
  178. // in order to reach the final_rate exactly at the end of this block.
  179. if (plateau_steps < 0) {
  180. accelerate_steps = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
  181. NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off
  182. accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  183. plateau_steps = 0;
  184. }
  185. // block->accelerate_until = accelerate_steps;
  186. // block->decelerate_after = accelerate_steps+plateau_steps;
  187. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  188. if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy.
  189. block->accelerate_until = accelerate_steps;
  190. block->decelerate_after = accelerate_steps + plateau_steps;
  191. block->initial_rate = initial_rate;
  192. block->final_rate = final_rate;
  193. }
  194. CRITICAL_SECTION_END;
  195. }
  196. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  197. // This method will calculate the junction jerk as the euclidean distance between the nominal
  198. // velocities of the respective blocks.
  199. //inline float junction_jerk(block_t *before, block_t *after) {
  200. // return SQRT(
  201. // POW((before->speed_x-after->speed_x), 2)+POW((before->speed_y-after->speed_y), 2));
  202. //}
  203. // The kernel called by recalculate() when scanning the plan from last to first entry.
  204. void Planner::reverse_pass_kernel(block_t* const current, const block_t *next) {
  205. if (!current || !next) return;
  206. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  207. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  208. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  209. float max_entry_speed = current->max_entry_speed;
  210. if (current->entry_speed != max_entry_speed) {
  211. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  212. // for max allowable speed if block is decelerating and nominal length is false.
  213. current->entry_speed = (TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) || max_entry_speed <= next->entry_speed)
  214. ? max_entry_speed
  215. : min(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
  216. SBI(current->flag, BLOCK_BIT_RECALCULATE);
  217. }
  218. }
  219. /**
  220. * recalculate() needs to go over the current plan twice.
  221. * Once in reverse and once forward. This implements the reverse pass.
  222. */
  223. void Planner::reverse_pass() {
  224. if (movesplanned() > 3) {
  225. block_t* block[3] = { NULL, NULL, NULL };
  226. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  227. // Is a critical section REALLY needed for a single byte change?
  228. //CRITICAL_SECTION_START;
  229. uint8_t tail = block_buffer_tail;
  230. //CRITICAL_SECTION_END
  231. uint8_t b = BLOCK_MOD(block_buffer_head - 3);
  232. while (b != tail) {
  233. if (block[0] && TEST(block[0]->flag, BLOCK_BIT_START_FROM_FULL_HALT)) break;
  234. b = prev_block_index(b);
  235. block[2] = block[1];
  236. block[1] = block[0];
  237. block[0] = &block_buffer[b];
  238. reverse_pass_kernel(block[1], block[2]);
  239. }
  240. }
  241. }
  242. // The kernel called by recalculate() when scanning the plan from first to last entry.
  243. void Planner::forward_pass_kernel(const block_t* previous, block_t* const current) {
  244. if (!previous) return;
  245. // If the previous block is an acceleration block, but it is not long enough to complete the
  246. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  247. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  248. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  249. if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH)) {
  250. if (previous->entry_speed < current->entry_speed) {
  251. float entry_speed = min(current->entry_speed,
  252. max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
  253. // Check for junction speed change
  254. if (current->entry_speed != entry_speed) {
  255. current->entry_speed = entry_speed;
  256. SBI(current->flag, BLOCK_BIT_RECALCULATE);
  257. }
  258. }
  259. }
  260. }
  261. /**
  262. * recalculate() needs to go over the current plan twice.
  263. * Once in reverse and once forward. This implements the forward pass.
  264. */
  265. void Planner::forward_pass() {
  266. block_t* block[3] = { NULL, NULL, NULL };
  267. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  268. block[0] = block[1];
  269. block[1] = block[2];
  270. block[2] = &block_buffer[b];
  271. forward_pass_kernel(block[0], block[1]);
  272. }
  273. forward_pass_kernel(block[1], block[2]);
  274. }
  275. /**
  276. * Recalculate the trapezoid speed profiles for all blocks in the plan
  277. * according to the entry_factor for each junction. Must be called by
  278. * recalculate() after updating the blocks.
  279. */
  280. void Planner::recalculate_trapezoids() {
  281. int8_t block_index = block_buffer_tail;
  282. block_t *current, *next = NULL;
  283. while (block_index != block_buffer_head) {
  284. current = next;
  285. next = &block_buffer[block_index];
  286. if (current) {
  287. // Recalculate if current block entry or exit junction speed has changed.
  288. if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
  289. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  290. float nom = current->nominal_speed;
  291. calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
  292. CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed
  293. }
  294. }
  295. block_index = next_block_index(block_index);
  296. }
  297. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  298. if (next) {
  299. float nom = next->nominal_speed;
  300. calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
  301. CBI(next->flag, BLOCK_BIT_RECALCULATE);
  302. }
  303. }
  304. /*
  305. * Recalculate the motion plan according to the following algorithm:
  306. *
  307. * 1. Go over every block in reverse order...
  308. *
  309. * Calculate a junction speed reduction (block_t.entry_factor) so:
  310. *
  311. * a. The junction jerk is within the set limit, and
  312. *
  313. * b. No speed reduction within one block requires faster
  314. * deceleration than the one, true constant acceleration.
  315. *
  316. * 2. Go over every block in chronological order...
  317. *
  318. * Dial down junction speed reduction values if:
  319. * a. The speed increase within one block would require faster
  320. * acceleration than the one, true constant acceleration.
  321. *
  322. * After that, all blocks will have an entry_factor allowing all speed changes to
  323. * be performed using only the one, true constant acceleration, and where no junction
  324. * jerk is jerkier than the set limit, Jerky. Finally it will:
  325. *
  326. * 3. Recalculate "trapezoids" for all blocks.
  327. */
  328. void Planner::recalculate() {
  329. reverse_pass();
  330. forward_pass();
  331. recalculate_trapezoids();
  332. }
  333. #if ENABLED(AUTOTEMP)
  334. void Planner::getHighESpeed() {
  335. static float oldt = 0;
  336. if (!autotemp_enabled) return;
  337. if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
  338. float high = 0.0;
  339. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  340. block_t* block = &block_buffer[b];
  341. if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
  342. float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
  343. NOLESS(high, se);
  344. }
  345. }
  346. float t = autotemp_min + high * autotemp_factor;
  347. t = constrain(t, autotemp_min, autotemp_max);
  348. if (t < oldt) t = t * (1 - (AUTOTEMP_OLDWEIGHT)) + oldt * (AUTOTEMP_OLDWEIGHT);
  349. oldt = t;
  350. thermalManager.setTargetHotend(t, 0);
  351. }
  352. #endif // AUTOTEMP
  353. /**
  354. * Maintain fans, paste extruder pressure,
  355. */
  356. void Planner::check_axes_activity() {
  357. unsigned char axis_active[NUM_AXIS] = { 0 },
  358. tail_fan_speed[FAN_COUNT];
  359. #if FAN_COUNT > 0
  360. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
  361. #endif
  362. #if ENABLED(BARICUDA)
  363. #if HAS_HEATER_1
  364. uint8_t tail_valve_pressure = baricuda_valve_pressure;
  365. #endif
  366. #if HAS_HEATER_2
  367. uint8_t tail_e_to_p_pressure = baricuda_e_to_p_pressure;
  368. #endif
  369. #endif
  370. if (blocks_queued()) {
  371. #if FAN_COUNT > 0
  372. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
  373. #endif
  374. block_t* block;
  375. #if ENABLED(BARICUDA)
  376. block = &block_buffer[block_buffer_tail];
  377. #if HAS_HEATER_1
  378. tail_valve_pressure = block->valve_pressure;
  379. #endif
  380. #if HAS_HEATER_2
  381. tail_e_to_p_pressure = block->e_to_p_pressure;
  382. #endif
  383. #endif
  384. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  385. block = &block_buffer[b];
  386. LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
  387. }
  388. }
  389. #if ENABLED(DISABLE_X)
  390. if (!axis_active[X_AXIS]) disable_X();
  391. #endif
  392. #if ENABLED(DISABLE_Y)
  393. if (!axis_active[Y_AXIS]) disable_Y();
  394. #endif
  395. #if ENABLED(DISABLE_Z)
  396. if (!axis_active[Z_AXIS]) disable_Z();
  397. #endif
  398. #if ENABLED(DISABLE_E)
  399. if (!axis_active[E_AXIS]) disable_e_steppers();
  400. #endif
  401. #if FAN_COUNT > 0
  402. #ifdef FAN_MIN_PWM
  403. #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
  404. #else
  405. #define CALC_FAN_SPEED(f) tail_fan_speed[f]
  406. #endif
  407. #ifdef FAN_KICKSTART_TIME
  408. static millis_t fan_kick_end[FAN_COUNT] = { 0 };
  409. #define KICKSTART_FAN(f) \
  410. if (tail_fan_speed[f]) { \
  411. millis_t ms = millis(); \
  412. if (fan_kick_end[f] == 0) { \
  413. fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
  414. tail_fan_speed[f] = 255; \
  415. } else if (PENDING(ms, fan_kick_end[f])) \
  416. tail_fan_speed[f] = 255; \
  417. } else fan_kick_end[f] = 0
  418. #if HAS_FAN0
  419. KICKSTART_FAN(0);
  420. #endif
  421. #if HAS_FAN1
  422. KICKSTART_FAN(1);
  423. #endif
  424. #if HAS_FAN2
  425. KICKSTART_FAN(2);
  426. #endif
  427. #endif // FAN_KICKSTART_TIME
  428. #if ENABLED(FAN_SOFT_PWM)
  429. #if HAS_FAN0
  430. thermalManager.soft_pwm_amount_fan[0] = CALC_FAN_SPEED(0);
  431. #endif
  432. #if HAS_FAN1
  433. thermalManager.soft_pwm_amount_fan[1] = CALC_FAN_SPEED(1);
  434. #endif
  435. #if HAS_FAN2
  436. thermalManager.soft_pwm_amount_fan[2] = CALC_FAN_SPEED(2);
  437. #endif
  438. #else
  439. #if HAS_FAN0
  440. analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
  441. #endif
  442. #if HAS_FAN1
  443. analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
  444. #endif
  445. #if HAS_FAN2
  446. analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
  447. #endif
  448. #endif
  449. #endif // FAN_COUNT > 0
  450. #if ENABLED(AUTOTEMP)
  451. getHighESpeed();
  452. #endif
  453. #if ENABLED(BARICUDA)
  454. #if HAS_HEATER_1
  455. analogWrite(HEATER_1_PIN, tail_valve_pressure);
  456. #endif
  457. #if HAS_HEATER_2
  458. analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
  459. #endif
  460. #endif
  461. }
  462. inline float calculate_volumetric_multiplier(const float &diameter) {
  463. if (!parser.volumetric_enabled || diameter == 0) return 1.0;
  464. return 1.0 / CIRCLE_AREA(diameter * 0.5);
  465. }
  466. void Planner::calculate_volumetric_multipliers() {
  467. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  468. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  469. }
  470. #if PLANNER_LEVELING
  471. /**
  472. * lx, ly, lz - logical (cartesian, not delta) positions in mm
  473. */
  474. void Planner::apply_leveling(float &lx, float &ly, float &lz) {
  475. #if ENABLED(AUTO_BED_LEVELING_UBL)
  476. if (!ubl.state.active) return;
  477. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  478. // if z_fade_height enabled (nonzero) and raw_z above it, no leveling required
  479. if (planner.z_fade_height && planner.z_fade_height <= RAW_Z_POSITION(lz)) return;
  480. lz += ubl.get_z_correction(lx, ly) * ubl.fade_scaling_factor_for_z(lz);
  481. #else // no fade
  482. lz += ubl.get_z_correction(lx, ly);
  483. #endif // FADE
  484. #endif // UBL
  485. #if OLDSCHOOL_ABL
  486. if (!abl_enabled) return;
  487. #endif
  488. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) && DISABLED(AUTO_BED_LEVELING_UBL)
  489. static float z_fade_factor = 1.0, last_raw_lz = -999.0;
  490. if (z_fade_height) {
  491. const float raw_lz = RAW_Z_POSITION(lz);
  492. if (raw_lz >= z_fade_height) return;
  493. if (last_raw_lz != raw_lz) {
  494. last_raw_lz = raw_lz;
  495. z_fade_factor = 1.0 - raw_lz * inverse_z_fade_height;
  496. }
  497. }
  498. else
  499. z_fade_factor = 1.0;
  500. #endif
  501. #if ENABLED(MESH_BED_LEVELING)
  502. if (mbl.active())
  503. lz += mbl.get_z(RAW_X_POSITION(lx), RAW_Y_POSITION(ly)
  504. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  505. , z_fade_factor
  506. #endif
  507. );
  508. #elif ABL_PLANAR
  509. float dx = RAW_X_POSITION(lx) - (X_TILT_FULCRUM),
  510. dy = RAW_Y_POSITION(ly) - (Y_TILT_FULCRUM),
  511. dz = RAW_Z_POSITION(lz);
  512. apply_rotation_xyz(bed_level_matrix, dx, dy, dz);
  513. lx = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
  514. ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
  515. lz = LOGICAL_Z_POSITION(dz);
  516. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  517. float tmp[XYZ] = { lx, ly, 0 };
  518. lz += bilinear_z_offset(tmp)
  519. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  520. * z_fade_factor
  521. #endif
  522. ;
  523. #endif
  524. }
  525. void Planner::unapply_leveling(float logical[XYZ]) {
  526. #if ENABLED(AUTO_BED_LEVELING_UBL)
  527. if (ubl.state.active) {
  528. const float z_physical = RAW_Z_POSITION(logical[Z_AXIS]),
  529. z_correct = ubl.get_z_correction(logical[X_AXIS], logical[Y_AXIS]),
  530. z_virtual = z_physical - z_correct;
  531. float z_logical = LOGICAL_Z_POSITION(z_virtual);
  532. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  533. // for P=physical_z, L=logical_z, M=mesh_z, H=fade_height,
  534. // Given P=L+M(1-L/H) (faded mesh correction formula for L<H)
  535. // then L=P-M(1-L/H)
  536. // so L=P-M+ML/H
  537. // so L-ML/H=P-M
  538. // so L(1-M/H)=P-M
  539. // so L=(P-M)/(1-M/H) for L<H
  540. if (planner.z_fade_height) {
  541. if (z_logical >= planner.z_fade_height)
  542. z_logical = LOGICAL_Z_POSITION(z_physical);
  543. else
  544. z_logical /= 1.0 - z_correct * planner.inverse_z_fade_height;
  545. }
  546. #endif // ENABLE_LEVELING_FADE_HEIGHT
  547. logical[Z_AXIS] = z_logical;
  548. }
  549. return; // don't fall thru to other ENABLE_LEVELING_FADE_HEIGHT logic
  550. #endif
  551. #if OLDSCHOOL_ABL
  552. if (!abl_enabled) return;
  553. #endif
  554. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  555. if (z_fade_height && RAW_Z_POSITION(logical[Z_AXIS]) >= z_fade_height) return;
  556. #endif
  557. #if ENABLED(MESH_BED_LEVELING)
  558. if (mbl.active()) {
  559. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  560. const float c = mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]), 1.0);
  561. logical[Z_AXIS] = (z_fade_height * (RAW_Z_POSITION(logical[Z_AXIS]) - c)) / (z_fade_height - c);
  562. #else
  563. logical[Z_AXIS] -= mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]));
  564. #endif
  565. }
  566. #elif ABL_PLANAR
  567. matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
  568. float dx = RAW_X_POSITION(logical[X_AXIS]) - (X_TILT_FULCRUM),
  569. dy = RAW_Y_POSITION(logical[Y_AXIS]) - (Y_TILT_FULCRUM),
  570. dz = RAW_Z_POSITION(logical[Z_AXIS]);
  571. apply_rotation_xyz(inverse, dx, dy, dz);
  572. logical[X_AXIS] = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
  573. logical[Y_AXIS] = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
  574. logical[Z_AXIS] = LOGICAL_Z_POSITION(dz);
  575. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  576. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  577. const float c = bilinear_z_offset(logical);
  578. logical[Z_AXIS] = (z_fade_height * (RAW_Z_POSITION(logical[Z_AXIS]) - c)) / (z_fade_height - c);
  579. #else
  580. logical[Z_AXIS] -= bilinear_z_offset(logical);
  581. #endif
  582. #endif
  583. }
  584. #endif // PLANNER_LEVELING
  585. /**
  586. * Planner::_buffer_line
  587. *
  588. * Add a new linear movement to the buffer.
  589. *
  590. * Leveling and kinematics should be applied ahead of calling this.
  591. *
  592. * a,b,c,e - target positions in mm or degrees
  593. * fr_mm_s - (target) speed of the move
  594. * extruder - target extruder
  595. */
  596. void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) {
  597. // The target position of the tool in absolute steps
  598. // Calculate target position in absolute steps
  599. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  600. const long target[XYZE] = {
  601. LROUND(a * axis_steps_per_mm[X_AXIS]),
  602. LROUND(b * axis_steps_per_mm[Y_AXIS]),
  603. LROUND(c * axis_steps_per_mm[Z_AXIS]),
  604. LROUND(e * axis_steps_per_mm[E_AXIS_N])
  605. };
  606. // When changing extruders recalculate steps corresponding to the E position
  607. #if ENABLED(DISTINCT_E_FACTORS)
  608. if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
  609. position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
  610. last_extruder = extruder;
  611. }
  612. #endif
  613. #if ENABLED(LIN_ADVANCE)
  614. const float mm_D_float = SQRT(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS]));
  615. #endif
  616. const long da = target[X_AXIS] - position[X_AXIS],
  617. db = target[Y_AXIS] - position[Y_AXIS],
  618. dc = target[Z_AXIS] - position[Z_AXIS];
  619. /*
  620. SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s);
  621. SERIAL_CHAR(' ');
  622. #if IS_KINEMATIC
  623. SERIAL_ECHOPAIR("A:", a);
  624. SERIAL_ECHOPAIR(" (", da);
  625. SERIAL_ECHOPAIR(") B:", b);
  626. #else
  627. SERIAL_ECHOPAIR("X:", a);
  628. SERIAL_ECHOPAIR(" (", da);
  629. SERIAL_ECHOPAIR(") Y:", b);
  630. #endif
  631. SERIAL_ECHOPAIR(" (", db);
  632. #if ENABLED(DELTA)
  633. SERIAL_ECHOPAIR(") C:", c);
  634. #else
  635. SERIAL_ECHOPAIR(") Z:", c);
  636. #endif
  637. SERIAL_ECHOPAIR(" (", dc);
  638. SERIAL_CHAR(')');
  639. SERIAL_EOL();
  640. //*/
  641. // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
  642. if (DEBUGGING(DRYRUN)) {
  643. position[E_AXIS] = target[E_AXIS];
  644. #if ENABLED(LIN_ADVANCE)
  645. position_float[E_AXIS] = e;
  646. #endif
  647. }
  648. long de = target[E_AXIS] - position[E_AXIS];
  649. #if ENABLED(LIN_ADVANCE)
  650. float de_float = e - position_float[E_AXIS];
  651. #endif
  652. #if ENABLED(PREVENT_COLD_EXTRUSION)
  653. if (de) {
  654. if (thermalManager.tooColdToExtrude(extruder)) {
  655. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  656. de = 0; // no difference
  657. #if ENABLED(LIN_ADVANCE)
  658. position_float[E_AXIS] = e;
  659. de_float = 0;
  660. #endif
  661. SERIAL_ECHO_START();
  662. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  663. }
  664. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  665. if (labs(de) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
  666. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  667. de = 0; // no difference
  668. #if ENABLED(LIN_ADVANCE)
  669. position_float[E_AXIS] = e;
  670. de_float = 0;
  671. #endif
  672. SERIAL_ECHO_START();
  673. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  674. }
  675. #endif
  676. }
  677. #endif
  678. // Compute direction bit-mask for this block
  679. uint8_t dm = 0;
  680. #if CORE_IS_XY
  681. if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
  682. if (db < 0) SBI(dm, Y_HEAD); // ...and Y
  683. if (dc < 0) SBI(dm, Z_AXIS);
  684. if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
  685. if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
  686. #elif CORE_IS_XZ
  687. if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
  688. if (db < 0) SBI(dm, Y_AXIS);
  689. if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
  690. if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
  691. if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
  692. #elif CORE_IS_YZ
  693. if (da < 0) SBI(dm, X_AXIS);
  694. if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
  695. if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
  696. if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
  697. if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
  698. #else
  699. if (da < 0) SBI(dm, X_AXIS);
  700. if (db < 0) SBI(dm, Y_AXIS);
  701. if (dc < 0) SBI(dm, Z_AXIS);
  702. #endif
  703. if (de < 0) SBI(dm, E_AXIS);
  704. const float esteps_float = de * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01;
  705. const int32_t esteps = abs(esteps_float) + 0.5;
  706. // Calculate the buffer head after we push this byte
  707. const uint8_t next_buffer_head = next_block_index(block_buffer_head);
  708. // If the buffer is full: good! That means we are well ahead of the robot.
  709. // Rest here until there is room in the buffer.
  710. while (block_buffer_tail == next_buffer_head) idle();
  711. // Prepare to set up new block
  712. block_t* block = &block_buffer[block_buffer_head];
  713. // Clear all flags, including the "busy" bit
  714. block->flag = 0;
  715. // Set direction bits
  716. block->direction_bits = dm;
  717. // Number of steps for each axis
  718. // See http://www.corexy.com/theory.html
  719. #if CORE_IS_XY
  720. block->steps[A_AXIS] = labs(da + db);
  721. block->steps[B_AXIS] = labs(da - db);
  722. block->steps[Z_AXIS] = labs(dc);
  723. #elif CORE_IS_XZ
  724. block->steps[A_AXIS] = labs(da + dc);
  725. block->steps[Y_AXIS] = labs(db);
  726. block->steps[C_AXIS] = labs(da - dc);
  727. #elif CORE_IS_YZ
  728. block->steps[X_AXIS] = labs(da);
  729. block->steps[B_AXIS] = labs(db + dc);
  730. block->steps[C_AXIS] = labs(db - dc);
  731. #else
  732. // default non-h-bot planning
  733. block->steps[X_AXIS] = labs(da);
  734. block->steps[Y_AXIS] = labs(db);
  735. block->steps[Z_AXIS] = labs(dc);
  736. #endif
  737. block->steps[E_AXIS] = esteps;
  738. block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], esteps);
  739. // Bail if this is a zero-length block
  740. if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
  741. // For a mixing extruder, get a magnified step_event_count for each
  742. #if ENABLED(MIXING_EXTRUDER)
  743. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  744. block->mix_event_count[i] = mixing_factor[i] * block->step_event_count;
  745. #endif
  746. #if FAN_COUNT > 0
  747. for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
  748. #endif
  749. #if ENABLED(BARICUDA)
  750. block->valve_pressure = baricuda_valve_pressure;
  751. block->e_to_p_pressure = baricuda_e_to_p_pressure;
  752. #endif
  753. block->active_extruder = extruder;
  754. //enable active axes
  755. #if CORE_IS_XY
  756. if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
  757. enable_X();
  758. enable_Y();
  759. }
  760. #if DISABLED(Z_LATE_ENABLE)
  761. if (block->steps[Z_AXIS]) enable_Z();
  762. #endif
  763. #elif CORE_IS_XZ
  764. if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
  765. enable_X();
  766. enable_Z();
  767. }
  768. if (block->steps[Y_AXIS]) enable_Y();
  769. #elif CORE_IS_YZ
  770. if (block->steps[B_AXIS] || block->steps[C_AXIS]) {
  771. enable_Y();
  772. enable_Z();
  773. }
  774. if (block->steps[X_AXIS]) enable_X();
  775. #else
  776. if (block->steps[X_AXIS]) enable_X();
  777. if (block->steps[Y_AXIS]) enable_Y();
  778. #if DISABLED(Z_LATE_ENABLE)
  779. if (block->steps[Z_AXIS]) enable_Z();
  780. #endif
  781. #endif
  782. // Enable extruder(s)
  783. if (esteps) {
  784. #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
  785. #define DISABLE_IDLE_E(N) if (!g_uc_extruder_last_move[N]) disable_E##N();
  786. for (uint8_t i = 0; i < EXTRUDERS; i++)
  787. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  788. switch(extruder) {
  789. case 0:
  790. enable_E0();
  791. g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
  792. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  793. if (extruder_duplication_enabled) {
  794. enable_E1();
  795. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  796. }
  797. #endif
  798. #if EXTRUDERS > 1
  799. DISABLE_IDLE_E(1);
  800. #if EXTRUDERS > 2
  801. DISABLE_IDLE_E(2);
  802. #if EXTRUDERS > 3
  803. DISABLE_IDLE_E(3);
  804. #if EXTRUDERS > 4
  805. DISABLE_IDLE_E(4);
  806. #endif // EXTRUDERS > 4
  807. #endif // EXTRUDERS > 3
  808. #endif // EXTRUDERS > 2
  809. #endif // EXTRUDERS > 1
  810. break;
  811. #if EXTRUDERS > 1
  812. case 1:
  813. enable_E1();
  814. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  815. DISABLE_IDLE_E(0);
  816. #if EXTRUDERS > 2
  817. DISABLE_IDLE_E(2);
  818. #if EXTRUDERS > 3
  819. DISABLE_IDLE_E(3);
  820. #if EXTRUDERS > 4
  821. DISABLE_IDLE_E(4);
  822. #endif // EXTRUDERS > 4
  823. #endif // EXTRUDERS > 3
  824. #endif // EXTRUDERS > 2
  825. break;
  826. #if EXTRUDERS > 2
  827. case 2:
  828. enable_E2();
  829. g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
  830. DISABLE_IDLE_E(0);
  831. DISABLE_IDLE_E(1);
  832. #if EXTRUDERS > 3
  833. DISABLE_IDLE_E(3);
  834. #if EXTRUDERS > 4
  835. DISABLE_IDLE_E(4);
  836. #endif
  837. #endif
  838. break;
  839. #if EXTRUDERS > 3
  840. case 3:
  841. enable_E3();
  842. g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
  843. DISABLE_IDLE_E(0);
  844. DISABLE_IDLE_E(1);
  845. DISABLE_IDLE_E(2);
  846. #if EXTRUDERS > 4
  847. DISABLE_IDLE_E(4);
  848. #endif
  849. break;
  850. #if EXTRUDERS > 4
  851. case 4:
  852. enable_E4();
  853. g_uc_extruder_last_move[4] = (BLOCK_BUFFER_SIZE) * 2;
  854. DISABLE_IDLE_E(0);
  855. DISABLE_IDLE_E(1);
  856. DISABLE_IDLE_E(2);
  857. DISABLE_IDLE_E(3);
  858. break;
  859. #endif // EXTRUDERS > 4
  860. #endif // EXTRUDERS > 3
  861. #endif // EXTRUDERS > 2
  862. #endif // EXTRUDERS > 1
  863. }
  864. #else
  865. enable_E0();
  866. enable_E1();
  867. enable_E2();
  868. enable_E3();
  869. enable_E4();
  870. #endif
  871. }
  872. if (esteps)
  873. NOLESS(fr_mm_s, min_feedrate_mm_s);
  874. else
  875. NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
  876. /**
  877. * This part of the code calculates the total length of the movement.
  878. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  879. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  880. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  881. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  882. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  883. */
  884. #if IS_CORE
  885. float delta_mm[Z_HEAD + 1];
  886. #if CORE_IS_XY
  887. delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
  888. delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
  889. delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
  890. delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS];
  891. delta_mm[B_AXIS] = CORESIGN(da - db) * steps_to_mm[B_AXIS];
  892. #elif CORE_IS_XZ
  893. delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
  894. delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
  895. delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
  896. delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS];
  897. delta_mm[C_AXIS] = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
  898. #elif CORE_IS_YZ
  899. delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
  900. delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
  901. delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
  902. delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS];
  903. delta_mm[C_AXIS] = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
  904. #endif
  905. #else
  906. float delta_mm[XYZE];
  907. delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
  908. delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
  909. delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
  910. #endif
  911. delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS_N];
  912. if (block->steps[X_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Y_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Z_AXIS] < MIN_STEPS_PER_SEGMENT) {
  913. block->millimeters = FABS(delta_mm[E_AXIS]);
  914. }
  915. else {
  916. block->millimeters = SQRT(
  917. #if CORE_IS_XY
  918. sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
  919. #elif CORE_IS_XZ
  920. sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
  921. #elif CORE_IS_YZ
  922. sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
  923. #else
  924. sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
  925. #endif
  926. );
  927. }
  928. float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
  929. // Calculate moves/second for this move. No divide by zero due to previous checks.
  930. float inverse_mm_s = fr_mm_s * inverse_millimeters;
  931. const uint8_t moves_queued = movesplanned();
  932. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  933. #if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT)
  934. // Segment time im micro seconds
  935. unsigned long segment_time = LROUND(1000000.0 / inverse_mm_s);
  936. #endif
  937. #if ENABLED(SLOWDOWN)
  938. if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
  939. if (segment_time < min_segment_time) {
  940. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  941. inverse_mm_s = 1000000.0 / (segment_time + LROUND(2 * (min_segment_time - segment_time) / moves_queued));
  942. #if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD)
  943. segment_time = LROUND(1000000.0 / inverse_mm_s);
  944. #endif
  945. }
  946. }
  947. #endif
  948. #if ENABLED(ULTRA_LCD)
  949. CRITICAL_SECTION_START
  950. block_buffer_runtime_us += segment_time;
  951. CRITICAL_SECTION_END
  952. #endif
  953. block->nominal_speed = block->millimeters * inverse_mm_s; // (mm/sec) Always > 0
  954. block->nominal_rate = CEIL(block->step_event_count * inverse_mm_s); // (step/sec) Always > 0
  955. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  956. static float filwidth_e_count = 0, filwidth_delay_dist = 0;
  957. //FMM update ring buffer used for delay with filament measurements
  958. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
  959. const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
  960. // increment counters with next move in e axis
  961. filwidth_e_count += delta_mm[E_AXIS];
  962. filwidth_delay_dist += delta_mm[E_AXIS];
  963. // Only get new measurements on forward E movement
  964. if (filwidth_e_count > 0.0001) {
  965. // Loop the delay distance counter (modulus by the mm length)
  966. while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
  967. // Convert into an index into the measurement array
  968. filwidth_delay_index[0] = int8_t(filwidth_delay_dist * 0.1);
  969. // If the index has changed (must have gone forward)...
  970. if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
  971. filwidth_e_count = 0; // Reset the E movement counter
  972. const uint8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
  973. do {
  974. filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
  975. measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
  976. } while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill?
  977. }
  978. }
  979. }
  980. #endif
  981. // Calculate and limit speed in mm/sec for each axis
  982. float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
  983. LOOP_XYZE(i) {
  984. const float cs = FABS(current_speed[i] = delta_mm[i] * inverse_mm_s);
  985. #if ENABLED(DISTINCT_E_FACTORS)
  986. if (i == E_AXIS) i += extruder;
  987. #endif
  988. if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs);
  989. }
  990. // Max segment time in µs.
  991. #ifdef XY_FREQUENCY_LIMIT
  992. // Check and limit the xy direction change frequency
  993. const unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  994. old_direction_bits = block->direction_bits;
  995. segment_time = LROUND((float)segment_time / speed_factor);
  996. long xs0 = axis_segment_time[X_AXIS][0],
  997. xs1 = axis_segment_time[X_AXIS][1],
  998. xs2 = axis_segment_time[X_AXIS][2],
  999. ys0 = axis_segment_time[Y_AXIS][0],
  1000. ys1 = axis_segment_time[Y_AXIS][1],
  1001. ys2 = axis_segment_time[Y_AXIS][2];
  1002. if (TEST(direction_change, X_AXIS)) {
  1003. xs2 = axis_segment_time[X_AXIS][2] = xs1;
  1004. xs1 = axis_segment_time[X_AXIS][1] = xs0;
  1005. xs0 = 0;
  1006. }
  1007. xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
  1008. if (TEST(direction_change, Y_AXIS)) {
  1009. ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
  1010. ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
  1011. ys0 = 0;
  1012. }
  1013. ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
  1014. const long max_x_segment_time = MAX3(xs0, xs1, xs2),
  1015. max_y_segment_time = MAX3(ys0, ys1, ys2),
  1016. min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
  1017. if (min_xy_segment_time < MAX_FREQ_TIME) {
  1018. const float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME);
  1019. NOMORE(speed_factor, low_sf);
  1020. }
  1021. #endif // XY_FREQUENCY_LIMIT
  1022. // Correct the speed
  1023. if (speed_factor < 1.0) {
  1024. LOOP_XYZE(i) current_speed[i] *= speed_factor;
  1025. block->nominal_speed *= speed_factor;
  1026. block->nominal_rate *= speed_factor;
  1027. }
  1028. // Compute and limit the acceleration rate for the trapezoid generator.
  1029. const float steps_per_mm = block->step_event_count * inverse_millimeters;
  1030. uint32_t accel;
  1031. if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) {
  1032. // convert to: acceleration steps/sec^2
  1033. accel = CEIL(retract_acceleration * steps_per_mm);
  1034. }
  1035. else {
  1036. #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
  1037. if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
  1038. const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \
  1039. if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \
  1040. } \
  1041. }while(0)
  1042. #define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
  1043. if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
  1044. const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \
  1045. if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \
  1046. } \
  1047. }while(0)
  1048. // Start with print or travel acceleration
  1049. accel = CEIL((esteps ? acceleration : travel_acceleration) * steps_per_mm);
  1050. #if ENABLED(DISTINCT_E_FACTORS)
  1051. #define ACCEL_IDX extruder
  1052. #else
  1053. #define ACCEL_IDX 0
  1054. #endif
  1055. // Limit acceleration per axis
  1056. if (block->step_event_count <= cutoff_long) {
  1057. LIMIT_ACCEL_LONG(X_AXIS, 0);
  1058. LIMIT_ACCEL_LONG(Y_AXIS, 0);
  1059. LIMIT_ACCEL_LONG(Z_AXIS, 0);
  1060. LIMIT_ACCEL_LONG(E_AXIS, ACCEL_IDX);
  1061. }
  1062. else {
  1063. LIMIT_ACCEL_FLOAT(X_AXIS, 0);
  1064. LIMIT_ACCEL_FLOAT(Y_AXIS, 0);
  1065. LIMIT_ACCEL_FLOAT(Z_AXIS, 0);
  1066. LIMIT_ACCEL_FLOAT(E_AXIS, ACCEL_IDX);
  1067. }
  1068. }
  1069. block->acceleration_steps_per_s2 = accel;
  1070. block->acceleration = accel / steps_per_mm;
  1071. block->acceleration_rate = (long)(accel * 16777216.0 / (HAL_STEPPER_TIMER_RATE)); // 16777216 = <<24
  1072. // Initial limit on the segment entry velocity
  1073. float vmax_junction;
  1074. #if 0 // Use old jerk for now
  1075. float junction_deviation = 0.1;
  1076. // Compute path unit vector
  1077. double unit_vec[XYZ] = {
  1078. delta_mm[X_AXIS] * inverse_millimeters,
  1079. delta_mm[Y_AXIS] * inverse_millimeters,
  1080. delta_mm[Z_AXIS] * inverse_millimeters
  1081. };
  1082. /*
  1083. Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  1084. Let a circle be tangent to both previous and current path line segments, where the junction
  1085. deviation is defined as the distance from the junction to the closest edge of the circle,
  1086. collinear with the circle center.
  1087. The circular segment joining the two paths represents the path of centripetal acceleration.
  1088. Solve for max velocity based on max acceleration about the radius of the circle, defined
  1089. indirectly by junction deviation.
  1090. This may be also viewed as path width or max_jerk in the previous grbl version. This approach
  1091. does not actually deviate from path, but used as a robust way to compute cornering speeds, as
  1092. it takes into account the nonlinearities of both the junction angle and junction velocity.
  1093. */
  1094. vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  1095. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  1096. if (block_buffer_head != block_buffer_tail && previous_nominal_speed > 0.0) {
  1097. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  1098. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  1099. float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  1100. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  1101. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  1102. // Skip and use default max junction speed for 0 degree acute junction.
  1103. if (cos_theta < 0.95) {
  1104. vmax_junction = min(previous_nominal_speed, block->nominal_speed);
  1105. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  1106. if (cos_theta > -0.95) {
  1107. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  1108. float sin_theta_d2 = SQRT(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
  1109. NOMORE(vmax_junction, SQRT(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
  1110. }
  1111. }
  1112. }
  1113. #endif
  1114. /**
  1115. * Adapted from Průša MKS firmware
  1116. * https://github.com/prusa3d/Prusa-Firmware
  1117. *
  1118. * Start with a safe speed (from which the machine may halt to stop immediately).
  1119. */
  1120. // Exit speed limited by a jerk to full halt of a previous last segment
  1121. static float previous_safe_speed;
  1122. float safe_speed = block->nominal_speed;
  1123. uint8_t limited = 0;
  1124. LOOP_XYZE(i) {
  1125. const float jerk = FABS(current_speed[i]), maxj = max_jerk[i];
  1126. if (jerk > maxj) {
  1127. if (limited) {
  1128. const float mjerk = maxj * block->nominal_speed;
  1129. if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk;
  1130. }
  1131. else {
  1132. ++limited;
  1133. safe_speed = maxj;
  1134. }
  1135. }
  1136. }
  1137. if (moves_queued > 1 && previous_nominal_speed > 0.0001) {
  1138. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1139. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1140. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1141. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1142. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1143. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1144. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1145. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1146. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1147. float v_factor = 1.f;
  1148. limited = 0;
  1149. // Now limit the jerk in all axes.
  1150. LOOP_XYZE(axis) {
  1151. // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
  1152. float v_exit = previous_speed[axis], v_entry = current_speed[axis];
  1153. if (prev_speed_larger) v_exit *= smaller_speed_factor;
  1154. if (limited) {
  1155. v_exit *= v_factor;
  1156. v_entry *= v_factor;
  1157. }
  1158. // Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
  1159. const float jerk = (v_exit > v_entry)
  1160. ? // coasting axis reversal
  1161. ( (v_entry > 0.f || v_exit < 0.f) ? (v_exit - v_entry) : max(v_exit, -v_entry) )
  1162. : // v_exit <= v_entry coasting axis reversal
  1163. ( (v_entry < 0.f || v_exit > 0.f) ? (v_entry - v_exit) : max(-v_exit, v_entry) );
  1164. if (jerk > max_jerk[axis]) {
  1165. v_factor *= max_jerk[axis] / jerk;
  1166. ++limited;
  1167. }
  1168. }
  1169. if (limited) vmax_junction *= v_factor;
  1170. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1171. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1172. const float vmax_junction_threshold = vmax_junction * 0.99f;
  1173. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1174. // Not coasting. The machine will stop and start the movements anyway,
  1175. // better to start the segment from start.
  1176. SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
  1177. vmax_junction = safe_speed;
  1178. }
  1179. }
  1180. else {
  1181. SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
  1182. vmax_junction = safe_speed;
  1183. }
  1184. // Max entry speed of this block equals the max exit speed of the previous block.
  1185. block->max_entry_speed = vmax_junction;
  1186. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  1187. const float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  1188. block->entry_speed = min(vmax_junction, v_allowable);
  1189. // Initialize planner efficiency flags
  1190. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1191. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1192. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1193. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1194. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1195. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1196. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1197. block->flag |= BLOCK_FLAG_RECALCULATE | (block->nominal_speed <= v_allowable ? BLOCK_FLAG_NOMINAL_LENGTH : 0);
  1198. // Update previous path unit_vector and nominal speed
  1199. COPY(previous_speed, current_speed);
  1200. previous_nominal_speed = block->nominal_speed;
  1201. previous_safe_speed = safe_speed;
  1202. #if ENABLED(LIN_ADVANCE)
  1203. //
  1204. // Use LIN_ADVANCE for blocks if all these are true:
  1205. //
  1206. // esteps : We have E steps todo (a printing move)
  1207. //
  1208. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1209. //
  1210. // extruder_advance_k : There is an advance factor set.
  1211. //
  1212. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1213. // In that case, the retract and move will be executed together.
  1214. // This leads to too many advance steps due to a huge e_acceleration.
  1215. // The math is good, but we must avoid retract moves with advance!
  1216. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1217. //
  1218. block->use_advance_lead = esteps
  1219. && (block->steps[X_AXIS] || block->steps[Y_AXIS])
  1220. && extruder_advance_k
  1221. && (uint32_t)esteps != block->step_event_count
  1222. && de_float > 0.0;
  1223. if (block->use_advance_lead)
  1224. block->abs_adv_steps_multiplier8 = LROUND(
  1225. extruder_advance_k
  1226. * (UNEAR_ZERO(advance_ed_ratio) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1227. * (block->nominal_speed / (float)block->nominal_rate)
  1228. * axis_steps_per_mm[E_AXIS_N] * 256.0
  1229. );
  1230. #endif // LIN_ADVANCE
  1231. calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
  1232. // Move buffer head
  1233. block_buffer_head = next_buffer_head;
  1234. // Update the position (only when a move was queued)
  1235. COPY(position, target);
  1236. #if ENABLED(LIN_ADVANCE)
  1237. position_float[X_AXIS] = a;
  1238. position_float[Y_AXIS] = b;
  1239. position_float[Z_AXIS] = c;
  1240. position_float[E_AXIS] = e;
  1241. #endif
  1242. recalculate();
  1243. stepper.wake_up();
  1244. } // buffer_line()
  1245. /**
  1246. * Directly set the planner XYZ position (and stepper positions)
  1247. * converting mm (or angles for SCARA) into steps.
  1248. *
  1249. * On CORE machines stepper ABC will be translated from the given XYZ.
  1250. */
  1251. void Planner::_set_position_mm(const float &a, const float &b, const float &c, const float &e) {
  1252. #if ENABLED(DISTINCT_E_FACTORS)
  1253. #define _EINDEX (E_AXIS + active_extruder)
  1254. last_extruder = active_extruder;
  1255. #else
  1256. #define _EINDEX E_AXIS
  1257. #endif
  1258. long na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
  1259. nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
  1260. nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
  1261. ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
  1262. #if ENABLED(LIN_ADVANCE)
  1263. position_float[X_AXIS] = a;
  1264. position_float[Y_AXIS] = b;
  1265. position_float[Z_AXIS] = c;
  1266. position_float[E_AXIS] = e;
  1267. #endif
  1268. stepper.set_position(na, nb, nc, ne);
  1269. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1270. ZERO(previous_speed);
  1271. }
  1272. void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
  1273. #if PLANNER_LEVELING
  1274. float lpos[XYZ] = { position[X_AXIS], position[Y_AXIS], position[Z_AXIS] };
  1275. apply_leveling(lpos);
  1276. #else
  1277. const float * const lpos = position;
  1278. #endif
  1279. #if IS_KINEMATIC
  1280. inverse_kinematics(lpos);
  1281. _set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], position[E_AXIS]);
  1282. #else
  1283. _set_position_mm(lpos[X_AXIS], lpos[Y_AXIS], lpos[Z_AXIS], position[E_AXIS]);
  1284. #endif
  1285. }
  1286. /**
  1287. * Sync from the stepper positions. (e.g., after an interrupted move)
  1288. */
  1289. void Planner::sync_from_steppers() {
  1290. LOOP_XYZE(i) {
  1291. position[i] = stepper.position((AxisEnum)i);
  1292. #if ENABLED(LIN_ADVANCE)
  1293. position_float[i] = position[i] * steps_to_mm[i
  1294. #if ENABLED(DISTINCT_E_FACTORS)
  1295. + (i == E_AXIS ? active_extruder : 0)
  1296. #endif
  1297. ];
  1298. #endif
  1299. }
  1300. }
  1301. /**
  1302. * Setters for planner position (also setting stepper position).
  1303. */
  1304. void Planner::set_position_mm(const AxisEnum axis, const float &v) {
  1305. #if ENABLED(DISTINCT_E_FACTORS)
  1306. const uint8_t axis_index = axis + (axis == E_AXIS ? active_extruder : 0);
  1307. last_extruder = active_extruder;
  1308. #else
  1309. const uint8_t axis_index = axis;
  1310. #endif
  1311. position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
  1312. #if ENABLED(LIN_ADVANCE)
  1313. position_float[axis] = v;
  1314. #endif
  1315. stepper.set_position(axis, v);
  1316. previous_speed[axis] = 0.0;
  1317. }
  1318. // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
  1319. void Planner::reset_acceleration_rates() {
  1320. #if ENABLED(DISTINCT_E_FACTORS)
  1321. #define HIGHEST_CONDITION (i < E_AXIS || i == E_AXIS + active_extruder)
  1322. #else
  1323. #define HIGHEST_CONDITION true
  1324. #endif
  1325. uint32_t highest_rate = 1;
  1326. LOOP_XYZE_N(i) {
  1327. max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
  1328. if (HIGHEST_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
  1329. }
  1330. cutoff_long = 4294967295UL / highest_rate;
  1331. }
  1332. // Recalculate position, steps_to_mm if axis_steps_per_mm changes!
  1333. void Planner::refresh_positioning() {
  1334. LOOP_XYZE_N(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i];
  1335. set_position_mm_kinematic(current_position);
  1336. reset_acceleration_rates();
  1337. }
  1338. #if ENABLED(AUTOTEMP)
  1339. void Planner::autotemp_M104_M109() {
  1340. autotemp_enabled = parser.seen('F');
  1341. if (autotemp_enabled) autotemp_factor = parser.value_celsius_diff();
  1342. if (parser.seen('S')) autotemp_min = parser.value_celsius();
  1343. if (parser.seen('B')) autotemp_max = parser.value_celsius();
  1344. }
  1345. #endif