My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 244KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. #if ENABLED(EXPERIMENTAL_I2CBUS)
  70. #include "twibus.h"
  71. #endif
  72. /**
  73. * Look here for descriptions of G-codes:
  74. * - http://linuxcnc.org/handbook/gcode/g-code.html
  75. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  76. *
  77. * Help us document these G-codes online:
  78. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  79. * - http://reprap.org/wiki/G-code
  80. *
  81. * -----------------
  82. * Implemented Codes
  83. * -----------------
  84. *
  85. * "G" Codes
  86. *
  87. * G0 -> G1
  88. * G1 - Coordinated Movement X Y Z E
  89. * G2 - CW ARC
  90. * G3 - CCW ARC
  91. * G4 - Dwell S<seconds> or P<milliseconds>
  92. * G10 - retract filament according to settings of M207
  93. * G11 - retract recover filament according to settings of M208
  94. * G28 - Home one or more axes
  95. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  96. * G30 - Single Z probe, probes bed at current XY location.
  97. * G31 - Dock sled (Z_PROBE_SLED only)
  98. * G32 - Undock sled (Z_PROBE_SLED only)
  99. * G90 - Use Absolute Coordinates
  100. * G91 - Use Relative Coordinates
  101. * G92 - Set current position to coordinates given
  102. *
  103. * "M" Codes
  104. *
  105. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  106. * M1 - Same as M0
  107. * M17 - Enable/Power all stepper motors
  108. * M18 - Disable all stepper motors; same as M84
  109. * M20 - List SD card
  110. * M21 - Init SD card
  111. * M22 - Release SD card
  112. * M23 - Select SD file (M23 filename.g)
  113. * M24 - Start/resume SD print
  114. * M25 - Pause SD print
  115. * M26 - Set SD position in bytes (M26 S12345)
  116. * M27 - Report SD print status
  117. * M28 - Start SD write (M28 filename.g)
  118. * M29 - Stop SD write
  119. * M30 - Delete file from SD (M30 filename.g)
  120. * M31 - Output time since last M109 or SD card start to serial
  121. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  122. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  123. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  124. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  125. * M33 - Get the longname version of a path
  126. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  127. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  128. * M80 - Turn on Power Supply
  129. * M81 - Turn off Power Supply
  130. * M82 - Set E codes absolute (default)
  131. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  132. * M84 - Disable steppers until next move,
  133. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  134. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  135. * M92 - Set axis_steps_per_unit - same syntax as G92
  136. * M104 - Set extruder target temp
  137. * M105 - Read current temp
  138. * M106 - Fan on
  139. * M107 - Fan off
  140. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  141. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  142. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  143. * M110 - Set the current line number
  144. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  145. * M112 - Emergency stop
  146. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. * M114 - Output current position to serial port
  148. * M115 - Capabilities string
  149. * M117 - Display a message on the controller screen
  150. * M119 - Output Endstop status to serial port
  151. * M120 - Enable endstop detection
  152. * M121 - Disable endstop detection
  153. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  154. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  155. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  157. * M140 - Set bed target temp
  158. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  159. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  160. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  161. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  162. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  163. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  164. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  165. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  166. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  167. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  168. * M206 - Set additional homing offset
  169. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  170. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  171. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  172. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  173. * M220 - Set speed factor override percentage: S<factor in percent>
  174. * M221 - Set extrude factor override percentage: S<factor in percent>
  175. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  176. * M240 - Trigger a camera to take a photograph
  177. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  178. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  179. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  180. * M301 - Set PID parameters P I and D
  181. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  182. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  183. * M304 - Set bed PID parameters P I and D
  184. * M380 - Activate solenoid on active extruder
  185. * M381 - Disable all solenoids
  186. * M400 - Finish all moves
  187. * M401 - Lower Z probe if present
  188. * M402 - Raise Z probe if present
  189. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. * M406 - Turn off Filament Sensor extrusion control
  192. * M407 - Display measured filament diameter
  193. * M410 - Quickstop. Abort all the planned moves
  194. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  195. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  196. * M428 - Set the home_offset logically based on the current_position
  197. * M500 - Store parameters in EEPROM
  198. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  199. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  200. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  201. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  202. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  203. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  204. * M666 - Set delta endstop adjustment
  205. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  206. * M907 - Set digital trimpot motor current using axis codes.
  207. * M908 - Control digital trimpot directly.
  208. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  209. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  210. * M350 - Set microstepping mode.
  211. * M351 - Toggle MS1 MS2 pins directly.
  212. *
  213. * ************ SCARA Specific - This can change to suit future G-code regulations
  214. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  215. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  216. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  217. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  218. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  219. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  220. * ************* SCARA End ***************
  221. *
  222. * ************ Custom codes - This can change to suit future G-code regulations
  223. * M100 - Watch Free Memory (For Debugging Only)
  224. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  225. * M928 - Start SD logging (M928 filename.g) - ended by M29
  226. * M999 - Restart after being stopped by error
  227. *
  228. * "T" Codes
  229. *
  230. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  231. *
  232. */
  233. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  234. void gcode_M100();
  235. #endif
  236. #if ENABLED(SDSUPPORT)
  237. CardReader card;
  238. #endif
  239. #if ENABLED(EXPERIMENTAL_I2CBUS)
  240. TWIBus i2c;
  241. #endif
  242. bool Running = true;
  243. uint8_t marlin_debug_flags = DEBUG_NONE;
  244. static float feedrate = 1500.0, saved_feedrate;
  245. float current_position[NUM_AXIS] = { 0.0 };
  246. static float destination[NUM_AXIS] = { 0.0 };
  247. bool axis_known_position[3] = { false };
  248. bool axis_homed[3] = { false };
  249. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  250. static char* current_command, *current_command_args;
  251. static int cmd_queue_index_r = 0;
  252. static int cmd_queue_index_w = 0;
  253. static int commands_in_queue = 0;
  254. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  255. const float homing_feedrate[] = HOMING_FEEDRATE;
  256. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  257. int feedrate_multiplier = 100; //100->1 200->2
  258. int saved_feedrate_multiplier;
  259. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  260. bool volumetric_enabled = false;
  261. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  262. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  263. float home_offset[3] = { 0 };
  264. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  265. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  266. #if FAN_COUNT > 0
  267. int fanSpeeds[FAN_COUNT] = { 0 };
  268. #endif
  269. uint8_t active_extruder = 0;
  270. bool cancel_heatup = false;
  271. const char errormagic[] PROGMEM = "Error:";
  272. const char echomagic[] PROGMEM = "echo:";
  273. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  274. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  275. static int serial_count = 0;
  276. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  277. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  278. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  279. // Inactivity shutdown
  280. millis_t previous_cmd_ms = 0;
  281. static millis_t max_inactive_time = 0;
  282. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000L;
  283. Stopwatch print_job_timer = Stopwatch();
  284. static uint8_t target_extruder;
  285. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  286. int xy_travel_speed = XY_TRAVEL_SPEED;
  287. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  288. #endif
  289. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  290. float z_endstop_adj = 0;
  291. #endif
  292. // Extruder offsets
  293. #if EXTRUDERS > 1
  294. #ifndef EXTRUDER_OFFSET_X
  295. #define EXTRUDER_OFFSET_X { 0 }
  296. #endif
  297. #ifndef EXTRUDER_OFFSET_Y
  298. #define EXTRUDER_OFFSET_Y { 0 }
  299. #endif
  300. float extruder_offset[][EXTRUDERS] = {
  301. EXTRUDER_OFFSET_X,
  302. EXTRUDER_OFFSET_Y
  303. #if ENABLED(DUAL_X_CARRIAGE)
  304. , { 0 } // supports offsets in XYZ plane
  305. #endif
  306. };
  307. #endif
  308. #if HAS_SERVO_ENDSTOPS
  309. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  310. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  311. #endif
  312. #if ENABLED(BARICUDA)
  313. int ValvePressure = 0;
  314. int EtoPPressure = 0;
  315. #endif
  316. #if ENABLED(FWRETRACT)
  317. bool autoretract_enabled = false;
  318. bool retracted[EXTRUDERS] = { false };
  319. bool retracted_swap[EXTRUDERS] = { false };
  320. float retract_length = RETRACT_LENGTH;
  321. float retract_length_swap = RETRACT_LENGTH_SWAP;
  322. float retract_feedrate = RETRACT_FEEDRATE;
  323. float retract_zlift = RETRACT_ZLIFT;
  324. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  325. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  326. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  327. #endif // FWRETRACT
  328. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  329. bool powersupply =
  330. #if ENABLED(PS_DEFAULT_OFF)
  331. false
  332. #else
  333. true
  334. #endif
  335. ;
  336. #endif
  337. #if ENABLED(DELTA)
  338. #define TOWER_1 X_AXIS
  339. #define TOWER_2 Y_AXIS
  340. #define TOWER_3 Z_AXIS
  341. float delta[3] = { 0 };
  342. #define SIN_60 0.8660254037844386
  343. #define COS_60 0.5
  344. float endstop_adj[3] = { 0 };
  345. // these are the default values, can be overriden with M665
  346. float delta_radius = DELTA_RADIUS;
  347. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  348. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  349. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  350. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  351. float delta_tower3_x = 0; // back middle tower
  352. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  353. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  354. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  355. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  356. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  357. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  358. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  359. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  360. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  361. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  362. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  363. int delta_grid_spacing[2] = { 0, 0 };
  364. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  365. #endif
  366. #else
  367. static bool home_all_axis = true;
  368. #endif
  369. #if ENABLED(SCARA)
  370. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  371. static float delta[3] = { 0 };
  372. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  373. #endif
  374. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  375. //Variables for Filament Sensor input
  376. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  377. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  378. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  379. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  380. int filwidth_delay_index1 = 0; //index into ring buffer
  381. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  382. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  383. #endif
  384. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  385. static bool filrunoutEnqueued = false;
  386. #endif
  387. static bool send_ok[BUFSIZE];
  388. #if HAS_SERVOS
  389. Servo servo[NUM_SERVOS];
  390. #endif
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  396. int lpq_len = 20;
  397. #endif
  398. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  399. // States for managing Marlin and host communication
  400. // Marlin sends messages if blocked or busy
  401. enum MarlinBusyState {
  402. NOT_BUSY, // Not in a handler
  403. IN_HANDLER, // Processing a GCode
  404. IN_PROCESS, // Known to be blocking command input (as in G29)
  405. PAUSED_FOR_USER, // Blocking pending any input
  406. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  407. };
  408. static MarlinBusyState busy_state = NOT_BUSY;
  409. static millis_t prev_busy_signal_ms = -1;
  410. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  411. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  412. #else
  413. #define host_keepalive() ;
  414. #define KEEPALIVE_STATE(n) ;
  415. #endif // HOST_KEEPALIVE_FEATURE
  416. /**
  417. * ***************************************************************************
  418. * ******************************** FUNCTIONS ********************************
  419. * ***************************************************************************
  420. */
  421. void get_available_commands();
  422. void process_next_command();
  423. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  424. bool setTargetedHotend(int code);
  425. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  426. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  427. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  428. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  429. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  430. void gcode_M114();
  431. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  432. float extrude_min_temp = EXTRUDE_MINTEMP;
  433. #endif
  434. #if ENABLED(HAS_Z_MIN_PROBE)
  435. extern volatile bool z_probe_is_active;
  436. #endif
  437. #if ENABLED(SDSUPPORT)
  438. #include "SdFatUtil.h"
  439. int freeMemory() { return SdFatUtil::FreeRam(); }
  440. #else
  441. extern "C" {
  442. extern unsigned int __bss_end;
  443. extern unsigned int __heap_start;
  444. extern void* __brkval;
  445. int freeMemory() {
  446. int free_memory;
  447. if ((int)__brkval == 0)
  448. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  449. else
  450. free_memory = ((int)&free_memory) - ((int)__brkval);
  451. return free_memory;
  452. }
  453. }
  454. #endif //!SDSUPPORT
  455. /**
  456. * Inject the next "immediate" command, when possible.
  457. * Return true if any immediate commands remain to inject.
  458. */
  459. static bool drain_queued_commands_P() {
  460. if (queued_commands_P != NULL) {
  461. size_t i = 0;
  462. char c, cmd[30];
  463. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  464. cmd[sizeof(cmd) - 1] = '\0';
  465. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  466. cmd[i] = '\0';
  467. if (enqueue_and_echo_command(cmd)) { // success?
  468. if (c) // newline char?
  469. queued_commands_P += i + 1; // advance to the next command
  470. else
  471. queued_commands_P = NULL; // nul char? no more commands
  472. }
  473. }
  474. return (queued_commands_P != NULL); // return whether any more remain
  475. }
  476. /**
  477. * Record one or many commands to run from program memory.
  478. * Aborts the current queue, if any.
  479. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  480. */
  481. void enqueue_and_echo_commands_P(const char* pgcode) {
  482. queued_commands_P = pgcode;
  483. drain_queued_commands_P(); // first command executed asap (when possible)
  484. }
  485. /**
  486. * Once a new command is in the ring buffer, call this to commit it
  487. */
  488. inline void _commit_command(bool say_ok) {
  489. send_ok[cmd_queue_index_w] = say_ok;
  490. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  491. commands_in_queue++;
  492. }
  493. /**
  494. * Copy a command directly into the main command buffer, from RAM.
  495. * Returns true if successfully adds the command
  496. */
  497. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  498. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  499. strcpy(command_queue[cmd_queue_index_w], cmd);
  500. _commit_command(say_ok);
  501. return true;
  502. }
  503. void enqueue_and_echo_command_now(const char* cmd) {
  504. while (!enqueue_and_echo_command(cmd)) idle();
  505. }
  506. /**
  507. * Enqueue with Serial Echo
  508. */
  509. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  510. if (_enqueuecommand(cmd, say_ok)) {
  511. SERIAL_ECHO_START;
  512. SERIAL_ECHOPGM(MSG_Enqueueing);
  513. SERIAL_ECHO(cmd);
  514. SERIAL_ECHOLNPGM("\"");
  515. return true;
  516. }
  517. return false;
  518. }
  519. void setup_killpin() {
  520. #if HAS_KILL
  521. SET_INPUT(KILL_PIN);
  522. WRITE(KILL_PIN, HIGH);
  523. #endif
  524. }
  525. void setup_filrunoutpin() {
  526. #if HAS_FILRUNOUT
  527. pinMode(FILRUNOUT_PIN, INPUT);
  528. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  529. WRITE(FILRUNOUT_PIN, HIGH);
  530. #endif
  531. #endif
  532. }
  533. // Set home pin
  534. void setup_homepin(void) {
  535. #if HAS_HOME
  536. SET_INPUT(HOME_PIN);
  537. WRITE(HOME_PIN, HIGH);
  538. #endif
  539. }
  540. void setup_photpin() {
  541. #if HAS_PHOTOGRAPH
  542. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  543. #endif
  544. }
  545. void setup_powerhold() {
  546. #if HAS_SUICIDE
  547. OUT_WRITE(SUICIDE_PIN, HIGH);
  548. #endif
  549. #if HAS_POWER_SWITCH
  550. #if ENABLED(PS_DEFAULT_OFF)
  551. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  552. #else
  553. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  554. #endif
  555. #endif
  556. }
  557. void suicide() {
  558. #if HAS_SUICIDE
  559. OUT_WRITE(SUICIDE_PIN, LOW);
  560. #endif
  561. }
  562. void servo_init() {
  563. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  564. servo[0].attach(SERVO0_PIN);
  565. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  566. #endif
  567. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  568. servo[1].attach(SERVO1_PIN);
  569. servo[1].detach();
  570. #endif
  571. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  572. servo[2].attach(SERVO2_PIN);
  573. servo[2].detach();
  574. #endif
  575. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  576. servo[3].attach(SERVO3_PIN);
  577. servo[3].detach();
  578. #endif
  579. #if HAS_SERVO_ENDSTOPS
  580. z_probe_is_active = false;
  581. /**
  582. * Set position of all defined Servo Endstops
  583. *
  584. * ** UNSAFE! - NEEDS UPDATE! **
  585. *
  586. * The servo might be deployed and positioned too low to stow
  587. * when starting up the machine or rebooting the board.
  588. * There's no way to know where the nozzle is positioned until
  589. * homing has been done - no homing with z-probe without init!
  590. *
  591. */
  592. for (int i = 0; i < 3; i++)
  593. if (servo_endstop_id[i] >= 0)
  594. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  595. #endif // HAS_SERVO_ENDSTOPS
  596. }
  597. /**
  598. * Stepper Reset (RigidBoard, et.al.)
  599. */
  600. #if HAS_STEPPER_RESET
  601. void disableStepperDrivers() {
  602. pinMode(STEPPER_RESET_PIN, OUTPUT);
  603. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  604. }
  605. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  606. #endif
  607. /**
  608. * Marlin entry-point: Set up before the program loop
  609. * - Set up the kill pin, filament runout, power hold
  610. * - Start the serial port
  611. * - Print startup messages and diagnostics
  612. * - Get EEPROM or default settings
  613. * - Initialize managers for:
  614. * • temperature
  615. * • planner
  616. * • watchdog
  617. * • stepper
  618. * • photo pin
  619. * • servos
  620. * • LCD controller
  621. * • Digipot I2C
  622. * • Z probe sled
  623. * • status LEDs
  624. */
  625. void setup() {
  626. #ifdef DISABLE_JTAG
  627. // Disable JTAG on AT90USB chips to free up pins for IO
  628. MCUCR = 0x80;
  629. MCUCR = 0x80;
  630. #endif
  631. setup_killpin();
  632. setup_filrunoutpin();
  633. setup_powerhold();
  634. #if HAS_STEPPER_RESET
  635. disableStepperDrivers();
  636. #endif
  637. MYSERIAL.begin(BAUDRATE);
  638. SERIAL_PROTOCOLLNPGM("start");
  639. SERIAL_ECHO_START;
  640. // Check startup - does nothing if bootloader sets MCUSR to 0
  641. byte mcu = MCUSR;
  642. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  643. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  644. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  645. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  646. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  647. MCUSR = 0;
  648. SERIAL_ECHOPGM(MSG_MARLIN);
  649. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  650. #ifdef STRING_DISTRIBUTION_DATE
  651. #ifdef STRING_CONFIG_H_AUTHOR
  652. SERIAL_ECHO_START;
  653. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  654. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  655. SERIAL_ECHOPGM(MSG_AUTHOR);
  656. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  657. SERIAL_ECHOPGM("Compiled: ");
  658. SERIAL_ECHOLNPGM(__DATE__);
  659. #endif // STRING_CONFIG_H_AUTHOR
  660. #endif // STRING_DISTRIBUTION_DATE
  661. SERIAL_ECHO_START;
  662. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  663. SERIAL_ECHO(freeMemory());
  664. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  665. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  666. // Send "ok" after commands by default
  667. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  668. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  669. Config_RetrieveSettings();
  670. lcd_init();
  671. tp_init(); // Initialize temperature loop
  672. plan_init(); // Initialize planner;
  673. #if ENABLED(USE_WATCHDOG)
  674. watchdog_init();
  675. #endif
  676. st_init(); // Initialize stepper, this enables interrupts!
  677. setup_photpin();
  678. servo_init();
  679. #if HAS_CONTROLLERFAN
  680. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  681. #endif
  682. #if HAS_STEPPER_RESET
  683. enableStepperDrivers();
  684. #endif
  685. #if ENABLED(DIGIPOT_I2C)
  686. digipot_i2c_init();
  687. #endif
  688. #if ENABLED(Z_PROBE_SLED)
  689. pinMode(SLED_PIN, OUTPUT);
  690. digitalWrite(SLED_PIN, LOW); // turn it off
  691. #endif // Z_PROBE_SLED
  692. setup_homepin();
  693. #ifdef STAT_LED_RED
  694. pinMode(STAT_LED_RED, OUTPUT);
  695. digitalWrite(STAT_LED_RED, LOW); // turn it off
  696. #endif
  697. #ifdef STAT_LED_BLUE
  698. pinMode(STAT_LED_BLUE, OUTPUT);
  699. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  700. #endif
  701. }
  702. /**
  703. * The main Marlin program loop
  704. *
  705. * - Save or log commands to SD
  706. * - Process available commands (if not saving)
  707. * - Call heater manager
  708. * - Call inactivity manager
  709. * - Call endstop manager
  710. * - Call LCD update
  711. */
  712. void loop() {
  713. if (commands_in_queue < BUFSIZE) get_available_commands();
  714. #if ENABLED(SDSUPPORT)
  715. card.checkautostart(false);
  716. #endif
  717. if (commands_in_queue) {
  718. #if ENABLED(SDSUPPORT)
  719. if (card.saving) {
  720. char* command = command_queue[cmd_queue_index_r];
  721. if (strstr_P(command, PSTR("M29"))) {
  722. // M29 closes the file
  723. card.closefile();
  724. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  725. ok_to_send();
  726. }
  727. else {
  728. // Write the string from the read buffer to SD
  729. card.write_command(command);
  730. if (card.logging)
  731. process_next_command(); // The card is saving because it's logging
  732. else
  733. ok_to_send();
  734. }
  735. }
  736. else
  737. process_next_command();
  738. #else
  739. process_next_command();
  740. #endif // SDSUPPORT
  741. commands_in_queue--;
  742. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  743. }
  744. checkHitEndstops();
  745. idle();
  746. }
  747. void gcode_line_error(const char* err, bool doFlush = true) {
  748. SERIAL_ERROR_START;
  749. serialprintPGM(err);
  750. SERIAL_ERRORLN(gcode_LastN);
  751. //Serial.println(gcode_N);
  752. if (doFlush) FlushSerialRequestResend();
  753. serial_count = 0;
  754. }
  755. inline void get_serial_commands() {
  756. static char serial_line_buffer[MAX_CMD_SIZE];
  757. static boolean serial_comment_mode = false;
  758. // If the command buffer is empty for too long,
  759. // send "wait" to indicate Marlin is still waiting.
  760. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  761. static millis_t last_command_time = 0;
  762. millis_t ms = millis();
  763. if (commands_in_queue == 0 && !MYSERIAL.available() && ms > last_command_time + NO_TIMEOUTS) {
  764. SERIAL_ECHOLNPGM(MSG_WAIT);
  765. last_command_time = ms;
  766. }
  767. #endif
  768. /**
  769. * Loop while serial characters are incoming and the queue is not full
  770. */
  771. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  772. char serial_char = MYSERIAL.read();
  773. /**
  774. * If the character ends the line
  775. */
  776. if (serial_char == '\n' || serial_char == '\r') {
  777. serial_comment_mode = false; // end of line == end of comment
  778. if (!serial_count) continue; // skip empty lines
  779. serial_line_buffer[serial_count] = 0; // terminate string
  780. serial_count = 0; //reset buffer
  781. char* command = serial_line_buffer;
  782. while (*command == ' ') command++; // skip any leading spaces
  783. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  784. char* apos = strchr(command, '*');
  785. if (npos) {
  786. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  787. if (M110) {
  788. char* n2pos = strchr(command + 4, 'N');
  789. if (n2pos) npos = n2pos;
  790. }
  791. gcode_N = strtol(npos + 1, NULL, 10);
  792. if (gcode_N != gcode_LastN + 1 && !M110) {
  793. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  794. return;
  795. }
  796. if (apos) {
  797. byte checksum = 0, count = 0;
  798. while (command[count] != '*') checksum ^= command[count++];
  799. if (strtol(apos + 1, NULL, 10) != checksum) {
  800. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  801. return;
  802. }
  803. // if no errors, continue parsing
  804. }
  805. else {
  806. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  807. return;
  808. }
  809. gcode_LastN = gcode_N;
  810. // if no errors, continue parsing
  811. }
  812. else if (apos) { // No '*' without 'N'
  813. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  814. return;
  815. }
  816. // Movement commands alert when stopped
  817. if (IsStopped()) {
  818. char* gpos = strchr(command, 'G');
  819. if (gpos) {
  820. int codenum = strtol(gpos + 1, NULL, 10);
  821. switch (codenum) {
  822. case 0:
  823. case 1:
  824. case 2:
  825. case 3:
  826. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  827. LCD_MESSAGEPGM(MSG_STOPPED);
  828. break;
  829. }
  830. }
  831. }
  832. // If command was e-stop process now
  833. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  834. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  835. last_command_time = ms;
  836. #endif
  837. // Add the command to the queue
  838. _enqueuecommand(serial_line_buffer, true);
  839. }
  840. else if (serial_count >= MAX_CMD_SIZE - 1) {
  841. // Keep fetching, but ignore normal characters beyond the max length
  842. // The command will be injected when EOL is reached
  843. }
  844. else if (serial_char == '\\') { // Handle escapes
  845. if (MYSERIAL.available() > 0) {
  846. // if we have one more character, copy it over
  847. serial_char = MYSERIAL.read();
  848. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  849. }
  850. // otherwise do nothing
  851. }
  852. else { // it's not a newline, carriage return or escape char
  853. if (serial_char == ';') serial_comment_mode = true;
  854. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  855. }
  856. } // queue has space, serial has data
  857. }
  858. #if ENABLED(SDSUPPORT)
  859. inline void get_sdcard_commands() {
  860. static bool stop_buffering = false,
  861. sd_comment_mode = false;
  862. if (!card.sdprinting) return;
  863. /**
  864. * '#' stops reading from SD to the buffer prematurely, so procedural
  865. * macro calls are possible. If it occurs, stop_buffering is triggered
  866. * and the buffer is run dry; this character _can_ occur in serial com
  867. * due to checksums, however, no checksums are used in SD printing.
  868. */
  869. if (commands_in_queue == 0) stop_buffering = false;
  870. uint16_t sd_count = 0;
  871. bool card_eof = card.eof();
  872. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  873. int16_t n = card.get();
  874. char sd_char = (char)n;
  875. card_eof = card.eof();
  876. if (card_eof || n == -1
  877. || sd_char == '\n' || sd_char == '\r'
  878. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  879. ) {
  880. if (card_eof) {
  881. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  882. print_job_timer.stop();
  883. char time[30];
  884. millis_t t = print_job_timer.duration();
  885. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  886. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  887. SERIAL_ECHO_START;
  888. SERIAL_ECHOLN(time);
  889. lcd_setstatus(time, true);
  890. card.printingHasFinished();
  891. card.checkautostart(true);
  892. }
  893. if (sd_char == '#') stop_buffering = true;
  894. sd_comment_mode = false; //for new command
  895. if (!sd_count) continue; //skip empty lines
  896. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  897. sd_count = 0; //clear buffer
  898. _commit_command(false);
  899. }
  900. else if (sd_count >= MAX_CMD_SIZE - 1) {
  901. /**
  902. * Keep fetching, but ignore normal characters beyond the max length
  903. * The command will be injected when EOL is reached
  904. */
  905. }
  906. else {
  907. if (sd_char == ';') sd_comment_mode = true;
  908. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  909. }
  910. }
  911. }
  912. #endif // SDSUPPORT
  913. /**
  914. * Add to the circular command queue the next command from:
  915. * - The command-injection queue (queued_commands_P)
  916. * - The active serial input (usually USB)
  917. * - The SD card file being actively printed
  918. */
  919. void get_available_commands() {
  920. // if any immediate commands remain, don't get other commands yet
  921. if (drain_queued_commands_P()) return;
  922. get_serial_commands();
  923. #if ENABLED(SDSUPPORT)
  924. get_sdcard_commands();
  925. #endif
  926. }
  927. bool code_has_value() {
  928. int i = 1;
  929. char c = seen_pointer[i];
  930. while (c == ' ') c = seen_pointer[++i];
  931. if (c == '-' || c == '+') c = seen_pointer[++i];
  932. if (c == '.') c = seen_pointer[++i];
  933. return NUMERIC(c);
  934. }
  935. float code_value() {
  936. float ret;
  937. char* e = strchr(seen_pointer, 'E');
  938. if (e) {
  939. *e = 0;
  940. ret = strtod(seen_pointer + 1, NULL);
  941. *e = 'E';
  942. }
  943. else
  944. ret = strtod(seen_pointer + 1, NULL);
  945. return ret;
  946. }
  947. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  948. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  949. bool code_seen(char code) {
  950. seen_pointer = strchr(current_command_args, code);
  951. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  952. }
  953. #define DEFINE_PGM_READ_ANY(type, reader) \
  954. static inline type pgm_read_any(const type *p) \
  955. { return pgm_read_##reader##_near(p); }
  956. DEFINE_PGM_READ_ANY(float, float);
  957. DEFINE_PGM_READ_ANY(signed char, byte);
  958. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  959. static const PROGMEM type array##_P[3] = \
  960. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  961. static inline type array(int axis) \
  962. { return pgm_read_any(&array##_P[axis]); }
  963. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  964. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  965. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  966. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  967. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  968. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  969. #if ENABLED(DUAL_X_CARRIAGE)
  970. #define DXC_FULL_CONTROL_MODE 0
  971. #define DXC_AUTO_PARK_MODE 1
  972. #define DXC_DUPLICATION_MODE 2
  973. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  974. static float x_home_pos(int extruder) {
  975. if (extruder == 0)
  976. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  977. else
  978. /**
  979. * In dual carriage mode the extruder offset provides an override of the
  980. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  981. * This allow soft recalibration of the second extruder offset position
  982. * without firmware reflash (through the M218 command).
  983. */
  984. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  985. }
  986. static int x_home_dir(int extruder) {
  987. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  988. }
  989. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  990. static bool active_extruder_parked = false; // used in mode 1 & 2
  991. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  992. static millis_t delayed_move_time = 0; // used in mode 1
  993. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  994. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  995. bool extruder_duplication_enabled = false; // used in mode 2
  996. #endif //DUAL_X_CARRIAGE
  997. #if ENABLED(DEBUG_LEVELING_FEATURE)
  998. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  999. SERIAL_ECHO(prefix);
  1000. SERIAL_ECHOPAIR(": (", x);
  1001. SERIAL_ECHOPAIR(", ", y);
  1002. SERIAL_ECHOPAIR(", ", z);
  1003. SERIAL_ECHOLNPGM(")");
  1004. }
  1005. void print_xyz(const char* prefix, const float xyz[]) {
  1006. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  1007. }
  1008. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  1009. #endif
  1010. static void set_axis_is_at_home(AxisEnum axis) {
  1011. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1012. if (DEBUGGING(LEVELING)) {
  1013. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1014. SERIAL_ECHOLNPGM(") >>>");
  1015. }
  1016. #endif
  1017. #if ENABLED(DUAL_X_CARRIAGE)
  1018. if (axis == X_AXIS) {
  1019. if (active_extruder != 0) {
  1020. current_position[X_AXIS] = x_home_pos(active_extruder);
  1021. min_pos[X_AXIS] = X2_MIN_POS;
  1022. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1023. return;
  1024. }
  1025. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1026. float xoff = home_offset[X_AXIS];
  1027. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  1028. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  1029. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  1030. return;
  1031. }
  1032. }
  1033. #endif
  1034. #if ENABLED(SCARA)
  1035. if (axis == X_AXIS || axis == Y_AXIS) {
  1036. float homeposition[3];
  1037. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1038. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1039. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1040. /**
  1041. * Works out real Homeposition angles using inverse kinematics,
  1042. * and calculates homing offset using forward kinematics
  1043. */
  1044. calculate_delta(homeposition);
  1045. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1046. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1047. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1048. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1049. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1050. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1051. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1052. calculate_SCARA_forward_Transform(delta);
  1053. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1054. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1055. current_position[axis] = delta[axis];
  1056. /**
  1057. * SCARA home positions are based on configuration since the actual
  1058. * limits are determined by the inverse kinematic transform.
  1059. */
  1060. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1061. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1062. }
  1063. else
  1064. #endif
  1065. {
  1066. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1067. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  1068. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  1069. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1070. if (axis == Z_AXIS) {
  1071. current_position[Z_AXIS] -= zprobe_zoffset;
  1072. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1073. if (DEBUGGING(LEVELING)) {
  1074. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1075. SERIAL_EOL;
  1076. }
  1077. #endif
  1078. }
  1079. #endif
  1080. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1081. if (DEBUGGING(LEVELING)) {
  1082. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1083. DEBUG_POS("", current_position);
  1084. }
  1085. #endif
  1086. }
  1087. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1088. if (DEBUGGING(LEVELING)) {
  1089. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1090. SERIAL_ECHOLNPGM(")");
  1091. }
  1092. #endif
  1093. }
  1094. /**
  1095. * Some planner shorthand inline functions
  1096. */
  1097. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1098. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1099. int hbd = homing_bump_divisor[axis];
  1100. if (hbd < 1) {
  1101. hbd = 10;
  1102. SERIAL_ECHO_START;
  1103. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1104. }
  1105. feedrate = homing_feedrate[axis] / hbd;
  1106. }
  1107. inline void line_to_current_position() {
  1108. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1109. }
  1110. inline void line_to_z(float zPosition) {
  1111. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1112. }
  1113. inline void line_to_destination(float mm_m) {
  1114. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1115. }
  1116. inline void line_to_destination() {
  1117. line_to_destination(feedrate);
  1118. }
  1119. inline void sync_plan_position() {
  1120. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1121. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1122. #endif
  1123. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1124. }
  1125. #if ENABLED(DELTA) || ENABLED(SCARA)
  1126. inline void sync_plan_position_delta() {
  1127. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1128. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  1129. #endif
  1130. calculate_delta(current_position);
  1131. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1132. }
  1133. #endif
  1134. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1135. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1136. static void setup_for_endstop_move() {
  1137. saved_feedrate = feedrate;
  1138. saved_feedrate_multiplier = feedrate_multiplier;
  1139. feedrate_multiplier = 100;
  1140. refresh_cmd_timeout();
  1141. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1142. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1143. #endif
  1144. enable_endstops(true);
  1145. }
  1146. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1147. #if ENABLED(DELTA)
  1148. /**
  1149. * Calculate delta, start a line, and set current_position to destination
  1150. */
  1151. void prepare_move_raw() {
  1152. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1153. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1154. #endif
  1155. refresh_cmd_timeout();
  1156. calculate_delta(destination);
  1157. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1158. set_current_to_destination();
  1159. }
  1160. #endif
  1161. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1162. #if DISABLED(DELTA)
  1163. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1164. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1165. if (DEBUGGING(LEVELING)) DEBUG_POS("BEFORE set_bed_level_equation_lsq", current_position);
  1166. #endif
  1167. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1168. // planeNormal.debug("planeNormal");
  1169. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1170. //bedLevel.debug("bedLevel");
  1171. //plan_bed_level_matrix.debug("bed level before");
  1172. //vector_3 uncorrected_position = plan_get_position();
  1173. //uncorrected_position.debug("position before");
  1174. vector_3 corrected_position = plan_get_position();
  1175. //corrected_position.debug("position after");
  1176. current_position[X_AXIS] = corrected_position.x;
  1177. current_position[Y_AXIS] = corrected_position.y;
  1178. current_position[Z_AXIS] = corrected_position.z;
  1179. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1180. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER set_bed_level_equation_lsq", current_position);
  1181. #endif
  1182. sync_plan_position();
  1183. }
  1184. #endif // !DELTA
  1185. #else // !AUTO_BED_LEVELING_GRID
  1186. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1187. plan_bed_level_matrix.set_to_identity();
  1188. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1189. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1190. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1191. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1192. if (planeNormal.z < 0) {
  1193. planeNormal.x = -planeNormal.x;
  1194. planeNormal.y = -planeNormal.y;
  1195. planeNormal.z = -planeNormal.z;
  1196. }
  1197. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1198. vector_3 corrected_position = plan_get_position();
  1199. current_position[X_AXIS] = corrected_position.x;
  1200. current_position[Y_AXIS] = corrected_position.y;
  1201. current_position[Z_AXIS] = corrected_position.z;
  1202. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1203. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", current_position);
  1204. #endif
  1205. sync_plan_position();
  1206. }
  1207. #endif // !AUTO_BED_LEVELING_GRID
  1208. static void run_z_probe() {
  1209. /**
  1210. * To prevent stepper_inactive_time from running out and
  1211. * EXTRUDER_RUNOUT_PREVENT from extruding
  1212. */
  1213. refresh_cmd_timeout();
  1214. #if ENABLED(DELTA)
  1215. float start_z = current_position[Z_AXIS];
  1216. long start_steps = st_get_position(Z_AXIS);
  1217. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1218. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1219. #endif
  1220. // move down slowly until you find the bed
  1221. feedrate = homing_feedrate[Z_AXIS] / 4;
  1222. destination[Z_AXIS] = -10;
  1223. prepare_move_raw(); // this will also set_current_to_destination
  1224. st_synchronize();
  1225. endstops_hit_on_purpose(); // clear endstop hit flags
  1226. /**
  1227. * We have to let the planner know where we are right now as it
  1228. * is not where we said to go.
  1229. */
  1230. long stop_steps = st_get_position(Z_AXIS);
  1231. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1232. current_position[Z_AXIS] = mm;
  1233. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1234. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1235. #endif
  1236. sync_plan_position_delta();
  1237. #else // !DELTA
  1238. plan_bed_level_matrix.set_to_identity();
  1239. feedrate = homing_feedrate[Z_AXIS];
  1240. // Move down until the Z probe (or endstop?) is triggered
  1241. float zPosition = -(Z_MAX_LENGTH + 10);
  1242. line_to_z(zPosition);
  1243. st_synchronize();
  1244. // Tell the planner where we ended up - Get this from the stepper handler
  1245. zPosition = st_get_axis_position_mm(Z_AXIS);
  1246. plan_set_position(
  1247. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1248. current_position[E_AXIS]
  1249. );
  1250. // move up the retract distance
  1251. zPosition += home_bump_mm(Z_AXIS);
  1252. line_to_z(zPosition);
  1253. st_synchronize();
  1254. endstops_hit_on_purpose(); // clear endstop hit flags
  1255. // move back down slowly to find bed
  1256. set_homing_bump_feedrate(Z_AXIS);
  1257. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1258. line_to_z(zPosition);
  1259. st_synchronize();
  1260. endstops_hit_on_purpose(); // clear endstop hit flags
  1261. // Get the current stepper position after bumping an endstop
  1262. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1263. sync_plan_position();
  1264. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1265. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1266. #endif
  1267. #endif // !DELTA
  1268. }
  1269. /**
  1270. * Plan a move to (X, Y, Z) and set the current_position
  1271. * The final current_position may not be the one that was requested
  1272. */
  1273. static void do_blocking_move_to(float x, float y, float z) {
  1274. float oldFeedRate = feedrate;
  1275. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1276. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1277. #endif
  1278. #if ENABLED(DELTA)
  1279. feedrate = XY_TRAVEL_SPEED;
  1280. destination[X_AXIS] = x;
  1281. destination[Y_AXIS] = y;
  1282. destination[Z_AXIS] = z;
  1283. prepare_move_raw(); // this will also set_current_to_destination
  1284. st_synchronize();
  1285. #else
  1286. feedrate = homing_feedrate[Z_AXIS];
  1287. current_position[Z_AXIS] = z;
  1288. line_to_current_position();
  1289. st_synchronize();
  1290. feedrate = xy_travel_speed;
  1291. current_position[X_AXIS] = x;
  1292. current_position[Y_AXIS] = y;
  1293. line_to_current_position();
  1294. st_synchronize();
  1295. #endif
  1296. feedrate = oldFeedRate;
  1297. }
  1298. inline void do_blocking_move_to_xy(float x, float y) {
  1299. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1300. }
  1301. inline void do_blocking_move_to_x(float x) {
  1302. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1303. }
  1304. inline void do_blocking_move_to_z(float z) {
  1305. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1306. }
  1307. inline void raise_z_after_probing() {
  1308. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1309. }
  1310. static void clean_up_after_endstop_move() {
  1311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1312. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1313. #endif
  1314. endstops_not_homing();
  1315. feedrate = saved_feedrate;
  1316. feedrate_multiplier = saved_feedrate_multiplier;
  1317. refresh_cmd_timeout();
  1318. }
  1319. #if ENABLED(HAS_Z_MIN_PROBE)
  1320. static void deploy_z_probe() {
  1321. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1322. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1323. #endif
  1324. if (z_probe_is_active) return;
  1325. #if HAS_SERVO_ENDSTOPS
  1326. // Engage Z Servo endstop if enabled
  1327. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1328. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1329. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1330. // If endstop is already false, the Z probe is deployed
  1331. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1332. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1333. if (z_probe_endstop)
  1334. #else
  1335. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1336. if (z_min_endstop)
  1337. #endif
  1338. {
  1339. // Move to the start position to initiate deployment
  1340. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1341. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1342. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1343. prepare_move_raw(); // this will also set_current_to_destination
  1344. // Move to engage deployment
  1345. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1346. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1347. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1348. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1349. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1350. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1351. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1352. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1353. prepare_move_raw();
  1354. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1355. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1356. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1357. // Move to trigger deployment
  1358. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1359. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1360. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1361. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1362. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1363. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1364. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1365. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1366. prepare_move_raw();
  1367. #endif
  1368. }
  1369. // Partially Home X,Y for safety
  1370. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1371. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1372. prepare_move_raw(); // this will also set_current_to_destination
  1373. st_synchronize();
  1374. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1375. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1376. if (z_probe_endstop)
  1377. #else
  1378. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1379. if (z_min_endstop)
  1380. #endif
  1381. {
  1382. if (IsRunning()) {
  1383. SERIAL_ERROR_START;
  1384. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1385. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1386. }
  1387. Stop();
  1388. }
  1389. #endif // Z_PROBE_ALLEN_KEY
  1390. #if ENABLED(FIX_MOUNTED_PROBE)
  1391. // Noting to be done. Just set z_probe_is_active
  1392. #endif
  1393. z_probe_is_active = true;
  1394. }
  1395. static void stow_z_probe(bool doRaise = true) {
  1396. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1397. UNUSED(doRaise);
  1398. #endif
  1399. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1400. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1401. #endif
  1402. if (!z_probe_is_active) return;
  1403. #if HAS_SERVO_ENDSTOPS
  1404. // Retract Z Servo endstop if enabled
  1405. if (servo_endstop_id[Z_AXIS] >= 0) {
  1406. #if Z_RAISE_AFTER_PROBING > 0
  1407. if (doRaise) {
  1408. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1409. if (DEBUGGING(LEVELING)) {
  1410. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1411. SERIAL_EOL;
  1412. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1413. SERIAL_EOL;
  1414. }
  1415. #endif
  1416. raise_z_after_probing(); // this also updates current_position
  1417. st_synchronize();
  1418. }
  1419. #endif
  1420. // Change the Z servo angle
  1421. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1422. }
  1423. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1424. // Move up for safety
  1425. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1426. #if Z_RAISE_AFTER_PROBING > 0
  1427. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1428. prepare_move_raw(); // this will also set_current_to_destination
  1429. #endif
  1430. // Move to the start position to initiate retraction
  1431. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1432. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1433. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1434. prepare_move_raw();
  1435. // Move the nozzle down to push the Z probe into retracted position
  1436. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1437. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1438. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1439. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1440. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1441. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1442. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1443. prepare_move_raw();
  1444. // Move up for safety
  1445. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1446. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1447. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1448. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1449. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1450. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1451. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1452. prepare_move_raw();
  1453. // Home XY for safety
  1454. feedrate = homing_feedrate[X_AXIS] / 2;
  1455. destination[X_AXIS] = 0;
  1456. destination[Y_AXIS] = 0;
  1457. prepare_move_raw(); // this will also set_current_to_destination
  1458. st_synchronize();
  1459. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1460. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1461. if (!z_probe_endstop)
  1462. #else
  1463. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1464. if (!z_min_endstop)
  1465. #endif
  1466. {
  1467. if (IsRunning()) {
  1468. SERIAL_ERROR_START;
  1469. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1470. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1471. }
  1472. Stop();
  1473. }
  1474. #endif // Z_PROBE_ALLEN_KEY
  1475. #if ENABLED(FIX_MOUNTED_PROBE)
  1476. // Noting to be done. Just set z_probe_is_active
  1477. #endif
  1478. z_probe_is_active = false;
  1479. }
  1480. #endif // HAS_Z_MIN_PROBE
  1481. enum ProbeAction {
  1482. ProbeStay = 0,
  1483. ProbeDeploy = _BV(0),
  1484. ProbeStow = _BV(1),
  1485. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1486. };
  1487. // Probe bed height at position (x,y), returns the measured z value
  1488. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1490. if (DEBUGGING(LEVELING)) {
  1491. SERIAL_ECHOLNPGM("probe_pt >>>");
  1492. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1493. SERIAL_EOL;
  1494. DEBUG_POS("", current_position);
  1495. }
  1496. #endif
  1497. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1498. if (DEBUGGING(LEVELING)) {
  1499. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1500. SERIAL_EOL;
  1501. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1502. SERIAL_EOL;
  1503. }
  1504. #endif
  1505. // Move Z up to the z_before height, then move the Z probe to the given XY
  1506. do_blocking_move_to_z(z_before); // this also updates current_position
  1507. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1508. if (DEBUGGING(LEVELING)) {
  1509. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1510. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1511. SERIAL_EOL;
  1512. }
  1513. #endif
  1514. // this also updates current_position
  1515. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1516. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1517. if (probe_action & ProbeDeploy) {
  1518. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1519. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1520. #endif
  1521. deploy_z_probe();
  1522. }
  1523. #endif
  1524. run_z_probe();
  1525. float measured_z = current_position[Z_AXIS];
  1526. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1527. if (probe_action & ProbeStow) {
  1528. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1529. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1530. #endif
  1531. stow_z_probe();
  1532. }
  1533. #endif
  1534. if (verbose_level > 2) {
  1535. SERIAL_PROTOCOLPGM("Bed X: ");
  1536. SERIAL_PROTOCOL_F(x, 3);
  1537. SERIAL_PROTOCOLPGM(" Y: ");
  1538. SERIAL_PROTOCOL_F(y, 3);
  1539. SERIAL_PROTOCOLPGM(" Z: ");
  1540. SERIAL_PROTOCOL_F(measured_z, 3);
  1541. SERIAL_EOL;
  1542. }
  1543. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1544. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1545. #endif
  1546. return measured_z;
  1547. }
  1548. #if ENABLED(DELTA)
  1549. /**
  1550. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1551. */
  1552. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1553. if (bed_level[x][y] != 0.0) {
  1554. return; // Don't overwrite good values.
  1555. }
  1556. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1557. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1558. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1559. float median = c; // Median is robust (ignores outliers).
  1560. if (a < b) {
  1561. if (b < c) median = b;
  1562. if (c < a) median = a;
  1563. }
  1564. else { // b <= a
  1565. if (c < b) median = b;
  1566. if (a < c) median = a;
  1567. }
  1568. bed_level[x][y] = median;
  1569. }
  1570. /**
  1571. * Fill in the unprobed points (corners of circular print surface)
  1572. * using linear extrapolation, away from the center.
  1573. */
  1574. static void extrapolate_unprobed_bed_level() {
  1575. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1576. for (int y = 0; y <= half; y++) {
  1577. for (int x = 0; x <= half; x++) {
  1578. if (x + y < 3) continue;
  1579. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1580. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1581. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1582. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1583. }
  1584. }
  1585. }
  1586. /**
  1587. * Print calibration results for plotting or manual frame adjustment.
  1588. */
  1589. static void print_bed_level() {
  1590. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1591. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1592. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1593. SERIAL_PROTOCOLCHAR(' ');
  1594. }
  1595. SERIAL_EOL;
  1596. }
  1597. }
  1598. /**
  1599. * Reset calibration results to zero.
  1600. */
  1601. void reset_bed_level() {
  1602. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1603. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1604. #endif
  1605. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1606. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1607. bed_level[x][y] = 0.0;
  1608. }
  1609. }
  1610. }
  1611. #endif // DELTA
  1612. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1613. void raise_z_for_servo() {
  1614. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1615. /**
  1616. * The zprobe_zoffset is negative any switch below the nozzle, so
  1617. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1618. */
  1619. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1620. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1621. }
  1622. #endif
  1623. #endif // AUTO_BED_LEVELING_FEATURE
  1624. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1625. static void axis_unhomed_error() {
  1626. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1627. SERIAL_ECHO_START;
  1628. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1629. }
  1630. #endif
  1631. #if ENABLED(Z_PROBE_SLED)
  1632. #ifndef SLED_DOCKING_OFFSET
  1633. #define SLED_DOCKING_OFFSET 0
  1634. #endif
  1635. /**
  1636. * Method to dock/undock a sled designed by Charles Bell.
  1637. *
  1638. * dock[in] If true, move to MAX_X and engage the electromagnet
  1639. * offset[in] The additional distance to move to adjust docking location
  1640. */
  1641. static void dock_sled(bool dock, int offset = 0) {
  1642. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1643. if (DEBUGGING(LEVELING)) {
  1644. SERIAL_ECHOPAIR("dock_sled(", dock);
  1645. SERIAL_ECHOLNPGM(")");
  1646. }
  1647. #endif
  1648. if (z_probe_is_active == dock) return;
  1649. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1650. axis_unhomed_error();
  1651. return;
  1652. }
  1653. float oldXpos = current_position[X_AXIS]; // save x position
  1654. if (dock) {
  1655. #if Z_RAISE_AFTER_PROBING > 0
  1656. raise_z_after_probing(); // raise Z
  1657. #endif
  1658. // Dock sled a bit closer to ensure proper capturing
  1659. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1660. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1661. }
  1662. else {
  1663. float z_loc = current_position[Z_AXIS];
  1664. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1665. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1666. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1667. }
  1668. do_blocking_move_to_x(oldXpos); // return to position before docking
  1669. z_probe_is_active = dock;
  1670. }
  1671. #endif // Z_PROBE_SLED
  1672. /**
  1673. * Home an individual axis
  1674. */
  1675. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1676. static void homeaxis(AxisEnum axis) {
  1677. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1678. if (DEBUGGING(LEVELING)) {
  1679. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1680. SERIAL_ECHOLNPGM(")");
  1681. }
  1682. #endif
  1683. #define HOMEAXIS_DO(LETTER) \
  1684. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1685. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1686. int axis_home_dir =
  1687. #if ENABLED(DUAL_X_CARRIAGE)
  1688. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1689. #endif
  1690. home_dir(axis);
  1691. // Set the axis position as setup for the move
  1692. current_position[axis] = 0;
  1693. sync_plan_position();
  1694. #if ENABLED(Z_PROBE_SLED)
  1695. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1696. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1697. #define _Z_DEPLOY (dock_sled(false))
  1698. #define _Z_STOW (dock_sled(true))
  1699. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1700. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1701. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1702. #define _Z_DEPLOY (deploy_z_probe())
  1703. #define _Z_STOW (stow_z_probe())
  1704. #elif HAS_SERVO_ENDSTOPS
  1705. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1706. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1707. #endif
  1708. if (axis == Z_AXIS) {
  1709. // If there's a Z probe that needs deployment...
  1710. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1711. // ...and homing Z towards the bed? Deploy it.
  1712. if (axis_home_dir < 0) _Z_DEPLOY;
  1713. #endif
  1714. }
  1715. #if HAS_SERVO_ENDSTOPS
  1716. // Engage an X or Y Servo endstop if enabled
  1717. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1718. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1719. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1720. }
  1721. #endif
  1722. // Set a flag for Z motor locking
  1723. #if ENABLED(Z_DUAL_ENDSTOPS)
  1724. if (axis == Z_AXIS) In_Homing_Process(true);
  1725. #endif
  1726. // Move towards the endstop until an endstop is triggered
  1727. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1728. feedrate = homing_feedrate[axis];
  1729. line_to_destination();
  1730. st_synchronize();
  1731. // Set the axis position as setup for the move
  1732. current_position[axis] = 0;
  1733. sync_plan_position();
  1734. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1735. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1736. #endif
  1737. enable_endstops(false); // Disable endstops while moving away
  1738. // Move away from the endstop by the axis HOME_BUMP_MM
  1739. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1740. line_to_destination();
  1741. st_synchronize();
  1742. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1743. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1744. #endif
  1745. enable_endstops(true); // Enable endstops for next homing move
  1746. // Slow down the feedrate for the next move
  1747. set_homing_bump_feedrate(axis);
  1748. // Move slowly towards the endstop until triggered
  1749. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1750. line_to_destination();
  1751. st_synchronize();
  1752. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1753. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1754. #endif
  1755. #if ENABLED(Z_DUAL_ENDSTOPS)
  1756. if (axis == Z_AXIS) {
  1757. float adj = fabs(z_endstop_adj);
  1758. bool lockZ1;
  1759. if (axis_home_dir > 0) {
  1760. adj = -adj;
  1761. lockZ1 = (z_endstop_adj > 0);
  1762. }
  1763. else
  1764. lockZ1 = (z_endstop_adj < 0);
  1765. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1766. sync_plan_position();
  1767. // Move to the adjusted endstop height
  1768. feedrate = homing_feedrate[axis];
  1769. destination[Z_AXIS] = adj;
  1770. line_to_destination();
  1771. st_synchronize();
  1772. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1773. In_Homing_Process(false);
  1774. } // Z_AXIS
  1775. #endif
  1776. #if ENABLED(DELTA)
  1777. // retrace by the amount specified in endstop_adj
  1778. if (endstop_adj[axis] * axis_home_dir < 0) {
  1779. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1780. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1781. #endif
  1782. enable_endstops(false); // Disable endstops while moving away
  1783. sync_plan_position();
  1784. destination[axis] = endstop_adj[axis];
  1785. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1786. if (DEBUGGING(LEVELING)) {
  1787. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1788. DEBUG_POS("", destination);
  1789. }
  1790. #endif
  1791. line_to_destination();
  1792. st_synchronize();
  1793. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1794. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1795. #endif
  1796. enable_endstops(true); // Enable endstops for next homing move
  1797. }
  1798. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1799. else {
  1800. if (DEBUGGING(LEVELING)) {
  1801. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1802. SERIAL_EOL;
  1803. }
  1804. }
  1805. #endif
  1806. #endif
  1807. // Set the axis position to its home position (plus home offsets)
  1808. set_axis_is_at_home(axis);
  1809. sync_plan_position();
  1810. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1811. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1812. #endif
  1813. destination[axis] = current_position[axis];
  1814. feedrate = 0.0;
  1815. endstops_hit_on_purpose(); // clear endstop hit flags
  1816. axis_known_position[axis] = true;
  1817. axis_homed[axis] = true;
  1818. // Put away the Z probe
  1819. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1820. if (axis == Z_AXIS && axis_home_dir < 0) {
  1821. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1822. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1823. #endif
  1824. _Z_STOW;
  1825. }
  1826. #endif
  1827. // Retract Servo endstop if enabled
  1828. #if HAS_SERVO_ENDSTOPS
  1829. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1830. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1831. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1832. #endif
  1833. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1834. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1835. }
  1836. #endif
  1837. }
  1838. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1839. if (DEBUGGING(LEVELING)) {
  1840. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1841. SERIAL_ECHOLNPGM(")");
  1842. }
  1843. #endif
  1844. }
  1845. #if ENABLED(FWRETRACT)
  1846. void retract(bool retracting, bool swapping = false) {
  1847. if (retracting == retracted[active_extruder]) return;
  1848. float oldFeedrate = feedrate;
  1849. set_destination_to_current();
  1850. if (retracting) {
  1851. feedrate = retract_feedrate * 60;
  1852. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1853. plan_set_e_position(current_position[E_AXIS]);
  1854. prepare_move();
  1855. if (retract_zlift > 0.01) {
  1856. current_position[Z_AXIS] -= retract_zlift;
  1857. #if ENABLED(DELTA)
  1858. sync_plan_position_delta();
  1859. #else
  1860. sync_plan_position();
  1861. #endif
  1862. prepare_move();
  1863. }
  1864. }
  1865. else {
  1866. if (retract_zlift > 0.01) {
  1867. current_position[Z_AXIS] += retract_zlift;
  1868. #if ENABLED(DELTA)
  1869. sync_plan_position_delta();
  1870. #else
  1871. sync_plan_position();
  1872. #endif
  1873. //prepare_move();
  1874. }
  1875. feedrate = retract_recover_feedrate * 60;
  1876. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1877. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1878. plan_set_e_position(current_position[E_AXIS]);
  1879. prepare_move();
  1880. }
  1881. feedrate = oldFeedrate;
  1882. retracted[active_extruder] = retracting;
  1883. } // retract()
  1884. #endif // FWRETRACT
  1885. /**
  1886. * ***************************************************************************
  1887. * ***************************** G-CODE HANDLING *****************************
  1888. * ***************************************************************************
  1889. */
  1890. /**
  1891. * Set XYZE destination and feedrate from the current GCode command
  1892. *
  1893. * - Set destination from included axis codes
  1894. * - Set to current for missing axis codes
  1895. * - Set the feedrate, if included
  1896. */
  1897. void gcode_get_destination() {
  1898. for (int i = 0; i < NUM_AXIS; i++) {
  1899. if (code_seen(axis_codes[i]))
  1900. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1901. else
  1902. destination[i] = current_position[i];
  1903. }
  1904. if (code_seen('F')) {
  1905. float next_feedrate = code_value();
  1906. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1907. }
  1908. }
  1909. void unknown_command_error() {
  1910. SERIAL_ECHO_START;
  1911. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1912. SERIAL_ECHO(current_command);
  1913. SERIAL_ECHOPGM("\"\n");
  1914. }
  1915. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1916. /**
  1917. * Output a "busy" message at regular intervals
  1918. * while the machine is not accepting commands.
  1919. */
  1920. void host_keepalive() {
  1921. millis_t ms = millis();
  1922. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1923. if (ms - prev_busy_signal_ms < 1000UL * host_keepalive_interval) return;
  1924. switch (busy_state) {
  1925. case IN_HANDLER:
  1926. case IN_PROCESS:
  1927. SERIAL_ECHO_START;
  1928. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1929. break;
  1930. case PAUSED_FOR_USER:
  1931. SERIAL_ECHO_START;
  1932. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1933. break;
  1934. case PAUSED_FOR_INPUT:
  1935. SERIAL_ECHO_START;
  1936. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1937. break;
  1938. default:
  1939. break;
  1940. }
  1941. }
  1942. prev_busy_signal_ms = ms;
  1943. }
  1944. #endif //HOST_KEEPALIVE_FEATURE
  1945. /**
  1946. * G0, G1: Coordinated movement of X Y Z E axes
  1947. */
  1948. inline void gcode_G0_G1() {
  1949. if (IsRunning()) {
  1950. gcode_get_destination(); // For X Y Z E F
  1951. #if ENABLED(FWRETRACT)
  1952. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1953. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1954. // Is this move an attempt to retract or recover?
  1955. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1956. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1957. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1958. retract(!retracted[active_extruder]);
  1959. return;
  1960. }
  1961. }
  1962. #endif //FWRETRACT
  1963. prepare_move();
  1964. }
  1965. }
  1966. /**
  1967. * G2: Clockwise Arc
  1968. * G3: Counterclockwise Arc
  1969. */
  1970. inline void gcode_G2_G3(bool clockwise) {
  1971. if (IsRunning()) {
  1972. #if ENABLED(SF_ARC_FIX)
  1973. bool relative_mode_backup = relative_mode;
  1974. relative_mode = true;
  1975. #endif
  1976. gcode_get_destination();
  1977. #if ENABLED(SF_ARC_FIX)
  1978. relative_mode = relative_mode_backup;
  1979. #endif
  1980. // Center of arc as offset from current_position
  1981. float arc_offset[2] = {
  1982. code_seen('I') ? code_value() : 0,
  1983. code_seen('J') ? code_value() : 0
  1984. };
  1985. // Send an arc to the planner
  1986. plan_arc(destination, arc_offset, clockwise);
  1987. refresh_cmd_timeout();
  1988. }
  1989. }
  1990. /**
  1991. * G4: Dwell S<seconds> or P<milliseconds>
  1992. */
  1993. inline void gcode_G4() {
  1994. millis_t codenum = 0;
  1995. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1996. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1997. st_synchronize();
  1998. refresh_cmd_timeout();
  1999. codenum += previous_cmd_ms; // keep track of when we started waiting
  2000. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2001. while (millis() < codenum) idle();
  2002. }
  2003. #if ENABLED(FWRETRACT)
  2004. /**
  2005. * G10 - Retract filament according to settings of M207
  2006. * G11 - Recover filament according to settings of M208
  2007. */
  2008. inline void gcode_G10_G11(bool doRetract=false) {
  2009. #if EXTRUDERS > 1
  2010. if (doRetract) {
  2011. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2012. }
  2013. #endif
  2014. retract(doRetract
  2015. #if EXTRUDERS > 1
  2016. , retracted_swap[active_extruder]
  2017. #endif
  2018. );
  2019. }
  2020. #endif //FWRETRACT
  2021. /**
  2022. * G28: Home all axes according to settings
  2023. *
  2024. * Parameters
  2025. *
  2026. * None Home to all axes with no parameters.
  2027. * With QUICK_HOME enabled XY will home together, then Z.
  2028. *
  2029. * Cartesian parameters
  2030. *
  2031. * X Home to the X endstop
  2032. * Y Home to the Y endstop
  2033. * Z Home to the Z endstop
  2034. *
  2035. */
  2036. inline void gcode_G28() {
  2037. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2038. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2039. #endif
  2040. // Wait for planner moves to finish!
  2041. st_synchronize();
  2042. // For auto bed leveling, clear the level matrix
  2043. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2044. plan_bed_level_matrix.set_to_identity();
  2045. #if ENABLED(DELTA)
  2046. reset_bed_level();
  2047. #endif
  2048. #endif
  2049. /**
  2050. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2051. * on again when homing all axis
  2052. */
  2053. #if ENABLED(MESH_BED_LEVELING)
  2054. uint8_t mbl_was_active = mbl.active;
  2055. mbl.active = 0;
  2056. #endif
  2057. setup_for_endstop_move();
  2058. /**
  2059. * Directly after a reset this is all 0. Later we get a hint if we have
  2060. * to raise z or not.
  2061. */
  2062. set_destination_to_current();
  2063. feedrate = 0.0;
  2064. #if ENABLED(DELTA)
  2065. /**
  2066. * A delta can only safely home all axis at the same time
  2067. * all axis have to home at the same time
  2068. */
  2069. // Pretend the current position is 0,0,0
  2070. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2071. sync_plan_position();
  2072. // Move all carriages up together until the first endstop is hit.
  2073. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2074. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2075. line_to_destination();
  2076. st_synchronize();
  2077. endstops_hit_on_purpose(); // clear endstop hit flags
  2078. // Destination reached
  2079. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2080. // take care of back off and rehome now we are all at the top
  2081. HOMEAXIS(X);
  2082. HOMEAXIS(Y);
  2083. HOMEAXIS(Z);
  2084. sync_plan_position_delta();
  2085. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2086. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2087. #endif
  2088. #else // NOT DELTA
  2089. bool homeX = code_seen(axis_codes[X_AXIS]),
  2090. homeY = code_seen(axis_codes[Y_AXIS]),
  2091. homeZ = code_seen(axis_codes[Z_AXIS]);
  2092. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2093. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2094. if (home_all_axis || homeZ) {
  2095. HOMEAXIS(Z);
  2096. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2097. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2098. #endif
  2099. }
  2100. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2101. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2102. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2103. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2104. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2106. if (DEBUGGING(LEVELING)) {
  2107. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2108. SERIAL_EOL;
  2109. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2110. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2111. }
  2112. #endif
  2113. line_to_destination();
  2114. st_synchronize();
  2115. /**
  2116. * Update the current Z position even if it currently not real from
  2117. * Z-home otherwise each call to line_to_destination() will want to
  2118. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2119. */
  2120. current_position[Z_AXIS] = destination[Z_AXIS];
  2121. }
  2122. #endif
  2123. #if ENABLED(QUICK_HOME)
  2124. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2125. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2126. #if ENABLED(DUAL_X_CARRIAGE)
  2127. int x_axis_home_dir = x_home_dir(active_extruder);
  2128. extruder_duplication_enabled = false;
  2129. #else
  2130. int x_axis_home_dir = home_dir(X_AXIS);
  2131. #endif
  2132. sync_plan_position();
  2133. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2134. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2135. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2136. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2137. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2138. line_to_destination();
  2139. st_synchronize();
  2140. set_axis_is_at_home(X_AXIS);
  2141. set_axis_is_at_home(Y_AXIS);
  2142. sync_plan_position();
  2143. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2144. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2145. #endif
  2146. destination[X_AXIS] = current_position[X_AXIS];
  2147. destination[Y_AXIS] = current_position[Y_AXIS];
  2148. line_to_destination();
  2149. feedrate = 0.0;
  2150. st_synchronize();
  2151. endstops_hit_on_purpose(); // clear endstop hit flags
  2152. current_position[X_AXIS] = destination[X_AXIS];
  2153. current_position[Y_AXIS] = destination[Y_AXIS];
  2154. #if DISABLED(SCARA)
  2155. current_position[Z_AXIS] = destination[Z_AXIS];
  2156. #endif
  2157. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2158. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2159. #endif
  2160. }
  2161. #endif // QUICK_HOME
  2162. #if ENABLED(HOME_Y_BEFORE_X)
  2163. // Home Y
  2164. if (home_all_axis || homeY) HOMEAXIS(Y);
  2165. #endif
  2166. // Home X
  2167. if (home_all_axis || homeX) {
  2168. #if ENABLED(DUAL_X_CARRIAGE)
  2169. int tmp_extruder = active_extruder;
  2170. extruder_duplication_enabled = false;
  2171. active_extruder = !active_extruder;
  2172. HOMEAXIS(X);
  2173. inactive_extruder_x_pos = current_position[X_AXIS];
  2174. active_extruder = tmp_extruder;
  2175. HOMEAXIS(X);
  2176. // reset state used by the different modes
  2177. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2178. delayed_move_time = 0;
  2179. active_extruder_parked = true;
  2180. #else
  2181. HOMEAXIS(X);
  2182. #endif
  2183. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2184. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2185. #endif
  2186. }
  2187. #if DISABLED(HOME_Y_BEFORE_X)
  2188. // Home Y
  2189. if (home_all_axis || homeY) {
  2190. HOMEAXIS(Y);
  2191. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2192. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2193. #endif
  2194. }
  2195. #endif
  2196. // Home Z last if homing towards the bed
  2197. #if Z_HOME_DIR < 0
  2198. if (home_all_axis || homeZ) {
  2199. #if ENABLED(Z_SAFE_HOMING)
  2200. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2201. if (DEBUGGING(LEVELING)) {
  2202. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2203. }
  2204. #endif
  2205. if (home_all_axis) {
  2206. /**
  2207. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2208. * No need to move Z any more as this height should already be safe
  2209. * enough to reach Z_SAFE_HOMING XY positions.
  2210. * Just make sure the planner is in sync.
  2211. */
  2212. sync_plan_position();
  2213. /**
  2214. * Set the Z probe (or just the nozzle) destination to the safe
  2215. * homing point
  2216. */
  2217. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2218. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2219. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2220. feedrate = XY_TRAVEL_SPEED;
  2221. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2222. if (DEBUGGING(LEVELING)) {
  2223. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2224. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2225. }
  2226. #endif
  2227. // Move in the XY plane
  2228. line_to_destination();
  2229. st_synchronize();
  2230. /**
  2231. * Update the current positions for XY, Z is still at least at
  2232. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2233. */
  2234. current_position[X_AXIS] = destination[X_AXIS];
  2235. current_position[Y_AXIS] = destination[Y_AXIS];
  2236. // Home the Z axis
  2237. HOMEAXIS(Z);
  2238. }
  2239. else if (homeZ) { // Don't need to Home Z twice
  2240. // Let's see if X and Y are homed
  2241. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2242. /**
  2243. * Make sure the Z probe is within the physical limits
  2244. * NOTE: This doesn't necessarily ensure the Z probe is also
  2245. * within the bed!
  2246. */
  2247. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2248. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2249. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2250. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2251. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2252. // Home the Z axis
  2253. HOMEAXIS(Z);
  2254. }
  2255. else {
  2256. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2257. SERIAL_ECHO_START;
  2258. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2259. }
  2260. }
  2261. else {
  2262. axis_unhomed_error();
  2263. }
  2264. } // !home_all_axes && homeZ
  2265. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2266. if (DEBUGGING(LEVELING)) {
  2267. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2268. }
  2269. #endif
  2270. #else // !Z_SAFE_HOMING
  2271. HOMEAXIS(Z);
  2272. #endif // !Z_SAFE_HOMING
  2273. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2274. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2275. #endif
  2276. } // home_all_axis || homeZ
  2277. #endif // Z_HOME_DIR < 0
  2278. sync_plan_position();
  2279. #endif // else DELTA
  2280. #if ENABLED(SCARA)
  2281. sync_plan_position_delta();
  2282. #endif
  2283. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2284. enable_endstops(false);
  2285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2286. if (DEBUGGING(LEVELING)) {
  2287. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2288. }
  2289. #endif
  2290. #endif
  2291. // For mesh leveling move back to Z=0
  2292. #if ENABLED(MESH_BED_LEVELING)
  2293. if (mbl_was_active && home_all_axis) {
  2294. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2295. sync_plan_position();
  2296. mbl.active = 1;
  2297. current_position[Z_AXIS] = 0.0;
  2298. set_destination_to_current();
  2299. feedrate = homing_feedrate[Z_AXIS];
  2300. line_to_destination();
  2301. st_synchronize();
  2302. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2303. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2304. #endif
  2305. }
  2306. #endif
  2307. feedrate = saved_feedrate;
  2308. feedrate_multiplier = saved_feedrate_multiplier;
  2309. refresh_cmd_timeout();
  2310. endstops_hit_on_purpose(); // clear endstop hit flags
  2311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2312. if (DEBUGGING(LEVELING)) {
  2313. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2314. }
  2315. #endif
  2316. gcode_M114(); // Send end position to RepetierHost
  2317. }
  2318. #if ENABLED(MESH_BED_LEVELING)
  2319. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2320. /**
  2321. * G29: Mesh-based Z probe, probes a grid and produces a
  2322. * mesh to compensate for variable bed height
  2323. *
  2324. * Parameters With MESH_BED_LEVELING:
  2325. *
  2326. * S0 Produce a mesh report
  2327. * S1 Start probing mesh points
  2328. * S2 Probe the next mesh point
  2329. * S3 Xn Yn Zn.nn Manually modify a single point
  2330. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2331. *
  2332. * The S0 report the points as below
  2333. *
  2334. * +----> X-axis 1-n
  2335. * |
  2336. * |
  2337. * v Y-axis 1-n
  2338. *
  2339. */
  2340. inline void gcode_G29() {
  2341. static int probe_point = -1;
  2342. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2343. if (state < 0 || state > 4) {
  2344. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2345. return;
  2346. }
  2347. int ix, iy;
  2348. float z;
  2349. switch (state) {
  2350. case MeshReport:
  2351. if (mbl.active) {
  2352. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2353. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2354. SERIAL_PROTOCOLCHAR(',');
  2355. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2356. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2357. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2358. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2359. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2360. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2361. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2362. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2363. SERIAL_PROTOCOLPGM(" ");
  2364. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2365. }
  2366. SERIAL_EOL;
  2367. }
  2368. }
  2369. else
  2370. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2371. break;
  2372. case MeshStart:
  2373. mbl.reset();
  2374. probe_point = 0;
  2375. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2376. break;
  2377. case MeshNext:
  2378. if (probe_point < 0) {
  2379. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2380. return;
  2381. }
  2382. if (probe_point == 0) {
  2383. // Set Z to a positive value before recording the first Z.
  2384. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z + home_offset[Z_AXIS];
  2385. sync_plan_position();
  2386. }
  2387. else {
  2388. // For others, save the Z of the previous point, then raise Z again.
  2389. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2390. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2391. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2392. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2393. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z + home_offset[Z_AXIS];
  2394. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2395. st_synchronize();
  2396. }
  2397. // Is there another point to sample? Move there.
  2398. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2399. ix = probe_point % (MESH_NUM_X_POINTS);
  2400. iy = probe_point / (MESH_NUM_X_POINTS);
  2401. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2402. current_position[X_AXIS] = mbl.get_x(ix) + home_offset[X_AXIS];
  2403. current_position[Y_AXIS] = mbl.get_y(iy) + home_offset[Y_AXIS];
  2404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2405. st_synchronize();
  2406. probe_point++;
  2407. }
  2408. else {
  2409. // After recording the last point, activate the mbl and home
  2410. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2411. probe_point = -1;
  2412. mbl.active = 1;
  2413. enqueue_and_echo_commands_P(PSTR("G28"));
  2414. }
  2415. break;
  2416. case MeshSet:
  2417. if (code_seen('X')) {
  2418. ix = code_value_long() - 1;
  2419. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2420. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2421. return;
  2422. }
  2423. }
  2424. else {
  2425. SERIAL_PROTOCOLPGM("X not entered.\n");
  2426. return;
  2427. }
  2428. if (code_seen('Y')) {
  2429. iy = code_value_long() - 1;
  2430. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2431. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2432. return;
  2433. }
  2434. }
  2435. else {
  2436. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2437. return;
  2438. }
  2439. if (code_seen('Z')) {
  2440. z = code_value();
  2441. }
  2442. else {
  2443. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2444. return;
  2445. }
  2446. mbl.z_values[iy][ix] = z;
  2447. break;
  2448. case MeshSetZOffset:
  2449. if (code_seen('Z')) {
  2450. z = code_value();
  2451. }
  2452. else {
  2453. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2454. return;
  2455. }
  2456. mbl.z_offset = z;
  2457. } // switch(state)
  2458. }
  2459. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2460. void out_of_range_error(const char* p_edge) {
  2461. SERIAL_PROTOCOLPGM("?Probe ");
  2462. serialprintPGM(p_edge);
  2463. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2464. }
  2465. /**
  2466. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2467. * Will fail if the printer has not been homed with G28.
  2468. *
  2469. * Enhanced G29 Auto Bed Leveling Probe Routine
  2470. *
  2471. * Parameters With AUTO_BED_LEVELING_GRID:
  2472. *
  2473. * P Set the size of the grid that will be probed (P x P points).
  2474. * Not supported by non-linear delta printer bed leveling.
  2475. * Example: "G29 P4"
  2476. *
  2477. * S Set the XY travel speed between probe points (in mm/min)
  2478. *
  2479. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2480. * or clean the rotation Matrix. Useful to check the topology
  2481. * after a first run of G29.
  2482. *
  2483. * V Set the verbose level (0-4). Example: "G29 V3"
  2484. *
  2485. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2486. * This is useful for manual bed leveling and finding flaws in the bed (to
  2487. * assist with part placement).
  2488. * Not supported by non-linear delta printer bed leveling.
  2489. *
  2490. * F Set the Front limit of the probing grid
  2491. * B Set the Back limit of the probing grid
  2492. * L Set the Left limit of the probing grid
  2493. * R Set the Right limit of the probing grid
  2494. *
  2495. * Global Parameters:
  2496. *
  2497. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2498. * Include "E" to engage/disengage the Z probe for each sample.
  2499. * There's no extra effect if you have a fixed Z probe.
  2500. * Usage: "G29 E" or "G29 e"
  2501. *
  2502. */
  2503. inline void gcode_G29() {
  2504. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2505. if (DEBUGGING(LEVELING)) {
  2506. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2507. DEBUG_POS("", current_position);
  2508. }
  2509. #endif
  2510. // Don't allow auto-leveling without homing first
  2511. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2512. axis_unhomed_error();
  2513. return;
  2514. }
  2515. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2516. if (verbose_level < 0 || verbose_level > 4) {
  2517. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2518. return;
  2519. }
  2520. bool dryrun = code_seen('D'),
  2521. deploy_probe_for_each_reading = code_seen('E');
  2522. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2523. #if DISABLED(DELTA)
  2524. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2525. #endif
  2526. if (verbose_level > 0) {
  2527. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2528. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2529. }
  2530. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2531. #if DISABLED(DELTA)
  2532. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2533. if (auto_bed_leveling_grid_points < 2) {
  2534. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2535. return;
  2536. }
  2537. #endif
  2538. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2539. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2540. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2541. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2542. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2543. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2544. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2545. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2546. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2547. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2548. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2549. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2550. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2551. if (left_out || right_out || front_out || back_out) {
  2552. if (left_out) {
  2553. out_of_range_error(PSTR("(L)eft"));
  2554. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2555. }
  2556. if (right_out) {
  2557. out_of_range_error(PSTR("(R)ight"));
  2558. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2559. }
  2560. if (front_out) {
  2561. out_of_range_error(PSTR("(F)ront"));
  2562. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2563. }
  2564. if (back_out) {
  2565. out_of_range_error(PSTR("(B)ack"));
  2566. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2567. }
  2568. return;
  2569. }
  2570. #endif // AUTO_BED_LEVELING_GRID
  2571. if (!dryrun) {
  2572. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2573. plan_bed_level_matrix.set_to_identity();
  2574. #if ENABLED(DELTA)
  2575. reset_bed_level();
  2576. #else //!DELTA
  2577. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2578. if (DEBUGGING(LEVELING)) DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2579. #endif
  2580. //vector_3 corrected_position = plan_get_position();
  2581. //corrected_position.debug("position before G29");
  2582. vector_3 uncorrected_position = plan_get_position();
  2583. //uncorrected_position.debug("position during G29");
  2584. current_position[X_AXIS] = uncorrected_position.x;
  2585. current_position[Y_AXIS] = uncorrected_position.y;
  2586. current_position[Z_AXIS] = uncorrected_position.z;
  2587. sync_plan_position();
  2588. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2589. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", current_position);
  2590. #endif
  2591. #endif // !DELTA
  2592. }
  2593. #if ENABLED(Z_PROBE_SLED)
  2594. dock_sled(false); // engage (un-dock) the Z probe
  2595. #elif ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2596. deploy_z_probe();
  2597. #endif
  2598. st_synchronize();
  2599. setup_for_endstop_move();
  2600. feedrate = homing_feedrate[Z_AXIS];
  2601. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2602. // probe at the points of a lattice grid
  2603. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2604. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2605. #if ENABLED(DELTA)
  2606. delta_grid_spacing[0] = xGridSpacing;
  2607. delta_grid_spacing[1] = yGridSpacing;
  2608. float z_offset = zprobe_zoffset;
  2609. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2610. #else // !DELTA
  2611. /**
  2612. * solve the plane equation ax + by + d = z
  2613. * A is the matrix with rows [x y 1] for all the probed points
  2614. * B is the vector of the Z positions
  2615. * the normal vector to the plane is formed by the coefficients of the
  2616. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2617. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2618. */
  2619. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2620. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2621. eqnBVector[abl2], // "B" vector of Z points
  2622. mean = 0.0;
  2623. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2624. #endif // !DELTA
  2625. int probePointCounter = 0;
  2626. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2627. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2628. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2629. int xStart, xStop, xInc;
  2630. if (zig) {
  2631. xStart = 0;
  2632. xStop = auto_bed_leveling_grid_points;
  2633. xInc = 1;
  2634. }
  2635. else {
  2636. xStart = auto_bed_leveling_grid_points - 1;
  2637. xStop = -1;
  2638. xInc = -1;
  2639. }
  2640. zig = !zig;
  2641. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2642. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2643. // raise extruder
  2644. float measured_z,
  2645. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2646. if (probePointCounter) {
  2647. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2648. if (DEBUGGING(LEVELING)) {
  2649. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2650. SERIAL_EOL;
  2651. }
  2652. #endif
  2653. }
  2654. else {
  2655. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2656. if (DEBUGGING(LEVELING)) {
  2657. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2658. SERIAL_EOL;
  2659. }
  2660. #endif
  2661. }
  2662. #if ENABLED(DELTA)
  2663. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2664. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2665. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2666. #endif //DELTA
  2667. ProbeAction act;
  2668. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2669. act = ProbeDeployAndStow;
  2670. else if (yCount == 0 && xCount == xStart)
  2671. act = ProbeDeploy;
  2672. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2673. act = ProbeStow;
  2674. else
  2675. act = ProbeStay;
  2676. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2677. #if DISABLED(DELTA)
  2678. mean += measured_z;
  2679. eqnBVector[probePointCounter] = measured_z;
  2680. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2681. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2682. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2683. indexIntoAB[xCount][yCount] = probePointCounter;
  2684. #else
  2685. bed_level[xCount][yCount] = measured_z + z_offset;
  2686. #endif
  2687. probePointCounter++;
  2688. idle();
  2689. } //xProbe
  2690. } //yProbe
  2691. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2692. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2693. #endif
  2694. clean_up_after_endstop_move();
  2695. #if ENABLED(DELTA)
  2696. if (!dryrun) extrapolate_unprobed_bed_level();
  2697. print_bed_level();
  2698. #else // !DELTA
  2699. // solve lsq problem
  2700. double plane_equation_coefficients[3];
  2701. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2702. mean /= abl2;
  2703. if (verbose_level) {
  2704. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2705. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2706. SERIAL_PROTOCOLPGM(" b: ");
  2707. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2708. SERIAL_PROTOCOLPGM(" d: ");
  2709. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2710. SERIAL_EOL;
  2711. if (verbose_level > 2) {
  2712. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2713. SERIAL_PROTOCOL_F(mean, 8);
  2714. SERIAL_EOL;
  2715. }
  2716. }
  2717. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2718. // Show the Topography map if enabled
  2719. if (do_topography_map) {
  2720. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2721. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2722. SERIAL_PROTOCOLPGM(" | |\n");
  2723. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2724. SERIAL_PROTOCOLPGM(" E | | I\n");
  2725. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2726. SERIAL_PROTOCOLPGM(" T | | H\n");
  2727. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2728. SERIAL_PROTOCOLPGM(" | |\n");
  2729. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2730. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2731. float min_diff = 999;
  2732. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2733. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2734. int ind = indexIntoAB[xx][yy];
  2735. float diff = eqnBVector[ind] - mean;
  2736. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2737. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2738. z_tmp = 0;
  2739. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2740. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2741. if (diff >= 0.0)
  2742. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2743. else
  2744. SERIAL_PROTOCOLCHAR(' ');
  2745. SERIAL_PROTOCOL_F(diff, 5);
  2746. } // xx
  2747. SERIAL_EOL;
  2748. } // yy
  2749. SERIAL_EOL;
  2750. if (verbose_level > 3) {
  2751. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2752. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2753. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2754. int ind = indexIntoAB[xx][yy];
  2755. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2756. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2757. z_tmp = 0;
  2758. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2759. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2760. if (diff >= 0.0)
  2761. SERIAL_PROTOCOLPGM(" +");
  2762. // Include + for column alignment
  2763. else
  2764. SERIAL_PROTOCOLCHAR(' ');
  2765. SERIAL_PROTOCOL_F(diff, 5);
  2766. } // xx
  2767. SERIAL_EOL;
  2768. } // yy
  2769. SERIAL_EOL;
  2770. }
  2771. } //do_topography_map
  2772. #endif //!DELTA
  2773. #else // !AUTO_BED_LEVELING_GRID
  2774. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2775. if (DEBUGGING(LEVELING)) {
  2776. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2777. }
  2778. #endif
  2779. // Actions for each probe
  2780. ProbeAction p1, p2, p3;
  2781. if (deploy_probe_for_each_reading)
  2782. p1 = p2 = p3 = ProbeDeployAndStow;
  2783. else
  2784. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2785. // Probe at 3 arbitrary points
  2786. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2787. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2788. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  2789. p1, verbose_level),
  2790. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2791. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2792. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2793. p2, verbose_level),
  2794. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2795. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2796. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2797. p3, verbose_level);
  2798. clean_up_after_endstop_move();
  2799. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2800. #endif // !AUTO_BED_LEVELING_GRID
  2801. #if ENABLED(DELTA)
  2802. // Allen Key Probe for Delta
  2803. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2804. stow_z_probe();
  2805. #elif Z_RAISE_AFTER_PROBING > 0
  2806. raise_z_after_probing(); // ???
  2807. #endif
  2808. #else // !DELTA
  2809. if (verbose_level > 0)
  2810. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2811. if (!dryrun) {
  2812. /**
  2813. * Correct the Z height difference from Z probe position and nozzle tip position.
  2814. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2815. * from the nozzle. When the bed is uneven, this height must be corrected.
  2816. */
  2817. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2818. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2819. z_tmp = current_position[Z_AXIS],
  2820. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2821. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2822. if (DEBUGGING(LEVELING)) {
  2823. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2824. SERIAL_EOL;
  2825. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2826. SERIAL_EOL;
  2827. }
  2828. #endif
  2829. // Apply the correction sending the Z probe offset
  2830. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2831. /*
  2832. * Get the current Z position and send it to the planner.
  2833. *
  2834. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2835. * (most recent plan_set_position/sync_plan_position)
  2836. *
  2837. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2838. * (set by default, M851, EEPROM, or Menu)
  2839. *
  2840. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2841. * after the last probe
  2842. *
  2843. * >> Should home_offset[Z_AXIS] be included?
  2844. *
  2845. *
  2846. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2847. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2848. * not actually "homing" Z... then perhaps it should not be included
  2849. * here. The purpose of home_offset[] is to adjust for inaccurate
  2850. * endstops, not for reasonably accurate probes. If it were added
  2851. * here, it could be seen as a compensating factor for the Z probe.
  2852. */
  2853. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2854. if (DEBUGGING(LEVELING)) {
  2855. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2856. SERIAL_EOL;
  2857. }
  2858. #endif
  2859. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2860. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2861. + Z_RAISE_AFTER_PROBING
  2862. #endif
  2863. ;
  2864. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2865. sync_plan_position();
  2866. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2867. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2868. #endif
  2869. }
  2870. // Sled assembly for Cartesian bots
  2871. #if ENABLED(Z_PROBE_SLED)
  2872. dock_sled(true); // dock the sled
  2873. #elif Z_RAISE_AFTER_PROBING > 0
  2874. // Raise Z axis for non-delta and non servo based probes
  2875. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2876. raise_z_after_probing();
  2877. #endif
  2878. #endif
  2879. #endif // !DELTA
  2880. #ifdef Z_PROBE_END_SCRIPT
  2881. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2882. if (DEBUGGING(LEVELING)) {
  2883. SERIAL_ECHO("Z Probe End Script: ");
  2884. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2885. }
  2886. #endif
  2887. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2888. #if ENABLED(HAS_Z_MIN_PROBE)
  2889. z_probe_is_active = false;
  2890. #endif
  2891. st_synchronize();
  2892. #endif
  2893. KEEPALIVE_STATE(IN_HANDLER);
  2894. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2895. if (DEBUGGING(LEVELING)) {
  2896. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2897. }
  2898. #endif
  2899. gcode_M114(); // Send end position to RepetierHost
  2900. }
  2901. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2902. /**
  2903. * G30: Do a single Z probe at the current XY
  2904. */
  2905. inline void gcode_G30() {
  2906. #if HAS_SERVO_ENDSTOPS
  2907. raise_z_for_servo();
  2908. #endif
  2909. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2910. st_synchronize();
  2911. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2912. setup_for_endstop_move(); // Too late. Must be done before deploying.
  2913. feedrate = homing_feedrate[Z_AXIS];
  2914. run_z_probe();
  2915. SERIAL_PROTOCOLPGM("Bed X: ");
  2916. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2917. SERIAL_PROTOCOLPGM(" Y: ");
  2918. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2919. SERIAL_PROTOCOLPGM(" Z: ");
  2920. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2921. SERIAL_EOL;
  2922. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  2923. #if HAS_SERVO_ENDSTOPS
  2924. raise_z_for_servo();
  2925. #endif
  2926. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2927. gcode_M114(); // Send end position to RepetierHost
  2928. }
  2929. #endif //!Z_PROBE_SLED
  2930. #endif //AUTO_BED_LEVELING_FEATURE
  2931. /**
  2932. * G92: Set current position to given X Y Z E
  2933. */
  2934. inline void gcode_G92() {
  2935. if (!code_seen(axis_codes[E_AXIS]))
  2936. st_synchronize();
  2937. bool didXYZ = false;
  2938. for (int i = 0; i < NUM_AXIS; i++) {
  2939. if (code_seen(axis_codes[i])) {
  2940. float v = current_position[i] = code_value();
  2941. if (i == E_AXIS)
  2942. plan_set_e_position(v);
  2943. else
  2944. didXYZ = true;
  2945. }
  2946. }
  2947. if (didXYZ) {
  2948. #if ENABLED(DELTA) || ENABLED(SCARA)
  2949. sync_plan_position_delta();
  2950. #else
  2951. sync_plan_position();
  2952. #endif
  2953. }
  2954. }
  2955. #if ENABLED(ULTIPANEL)
  2956. /**
  2957. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2958. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2959. */
  2960. inline void gcode_M0_M1() {
  2961. char* args = current_command_args;
  2962. uint8_t test_value = 12;
  2963. SERIAL_ECHOPAIR("TEST", test_value);
  2964. millis_t codenum = 0;
  2965. bool hasP = false, hasS = false;
  2966. if (code_seen('P')) {
  2967. codenum = code_value_short(); // milliseconds to wait
  2968. hasP = codenum > 0;
  2969. }
  2970. if (code_seen('S')) {
  2971. codenum = code_value() * 1000; // seconds to wait
  2972. hasS = codenum > 0;
  2973. }
  2974. if (!hasP && !hasS && *args != '\0')
  2975. lcd_setstatus(args, true);
  2976. else {
  2977. LCD_MESSAGEPGM(MSG_USERWAIT);
  2978. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2979. dontExpireStatus();
  2980. #endif
  2981. }
  2982. lcd_ignore_click();
  2983. st_synchronize();
  2984. refresh_cmd_timeout();
  2985. if (codenum > 0) {
  2986. codenum += previous_cmd_ms; // wait until this time for a click
  2987. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2988. while (millis() < codenum && !lcd_clicked()) idle();
  2989. KEEPALIVE_STATE(IN_HANDLER);
  2990. lcd_ignore_click(false);
  2991. }
  2992. else {
  2993. if (!lcd_detected()) return;
  2994. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2995. while (!lcd_clicked()) idle();
  2996. KEEPALIVE_STATE(IN_HANDLER);
  2997. }
  2998. if (IS_SD_PRINTING)
  2999. LCD_MESSAGEPGM(MSG_RESUMING);
  3000. else
  3001. LCD_MESSAGEPGM(WELCOME_MSG);
  3002. }
  3003. #endif // ULTIPANEL
  3004. /**
  3005. * M17: Enable power on all stepper motors
  3006. */
  3007. inline void gcode_M17() {
  3008. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3009. enable_all_steppers();
  3010. }
  3011. #if ENABLED(SDSUPPORT)
  3012. /**
  3013. * M20: List SD card to serial output
  3014. */
  3015. inline void gcode_M20() {
  3016. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3017. card.ls();
  3018. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3019. }
  3020. /**
  3021. * M21: Init SD Card
  3022. */
  3023. inline void gcode_M21() {
  3024. card.initsd();
  3025. }
  3026. /**
  3027. * M22: Release SD Card
  3028. */
  3029. inline void gcode_M22() {
  3030. card.release();
  3031. }
  3032. /**
  3033. * M23: Open a file
  3034. */
  3035. inline void gcode_M23() {
  3036. card.openFile(current_command_args, true);
  3037. }
  3038. /**
  3039. * M24: Start SD Print
  3040. */
  3041. inline void gcode_M24() {
  3042. card.startFileprint();
  3043. print_job_timer.start();
  3044. }
  3045. /**
  3046. * M25: Pause SD Print
  3047. */
  3048. inline void gcode_M25() {
  3049. card.pauseSDPrint();
  3050. }
  3051. /**
  3052. * M26: Set SD Card file index
  3053. */
  3054. inline void gcode_M26() {
  3055. if (card.cardOK && code_seen('S'))
  3056. card.setIndex(code_value_short());
  3057. }
  3058. /**
  3059. * M27: Get SD Card status
  3060. */
  3061. inline void gcode_M27() {
  3062. card.getStatus();
  3063. }
  3064. /**
  3065. * M28: Start SD Write
  3066. */
  3067. inline void gcode_M28() {
  3068. card.openFile(current_command_args, false);
  3069. }
  3070. /**
  3071. * M29: Stop SD Write
  3072. * Processed in write to file routine above
  3073. */
  3074. inline void gcode_M29() {
  3075. // card.saving = false;
  3076. }
  3077. /**
  3078. * M30 <filename>: Delete SD Card file
  3079. */
  3080. inline void gcode_M30() {
  3081. if (card.cardOK) {
  3082. card.closefile();
  3083. card.removeFile(current_command_args);
  3084. }
  3085. }
  3086. #endif //SDSUPPORT
  3087. /**
  3088. * M31: Get the time since the start of SD Print (or last M109)
  3089. */
  3090. inline void gcode_M31() {
  3091. millis_t t = print_job_timer.duration();
  3092. int min = t / 60, sec = t % 60;
  3093. char time[30];
  3094. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3095. SERIAL_ECHO_START;
  3096. SERIAL_ECHOLN(time);
  3097. lcd_setstatus(time);
  3098. autotempShutdown();
  3099. }
  3100. #if ENABLED(SDSUPPORT)
  3101. /**
  3102. * M32: Select file and start SD Print
  3103. */
  3104. inline void gcode_M32() {
  3105. if (card.sdprinting)
  3106. st_synchronize();
  3107. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3108. if (!namestartpos)
  3109. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3110. else
  3111. namestartpos++; //to skip the '!'
  3112. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3113. if (card.cardOK) {
  3114. card.openFile(namestartpos, true, call_procedure);
  3115. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3116. card.setIndex(code_value_short());
  3117. card.startFileprint();
  3118. // Procedure calls count as normal print time.
  3119. if (!call_procedure) print_job_timer.start();
  3120. }
  3121. }
  3122. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3123. /**
  3124. * M33: Get the long full path of a file or folder
  3125. *
  3126. * Parameters:
  3127. * <dospath> Case-insensitive DOS-style path to a file or folder
  3128. *
  3129. * Example:
  3130. * M33 miscel~1/armchair/armcha~1.gco
  3131. *
  3132. * Output:
  3133. * /Miscellaneous/Armchair/Armchair.gcode
  3134. */
  3135. inline void gcode_M33() {
  3136. card.printLongPath(current_command_args);
  3137. }
  3138. #endif
  3139. /**
  3140. * M928: Start SD Write
  3141. */
  3142. inline void gcode_M928() {
  3143. card.openLogFile(current_command_args);
  3144. }
  3145. #endif // SDSUPPORT
  3146. /**
  3147. * M42: Change pin status via GCode
  3148. *
  3149. * P<pin> Pin number (LED if omitted)
  3150. * S<byte> Pin status from 0 - 255
  3151. */
  3152. inline void gcode_M42() {
  3153. if (code_seen('S')) {
  3154. int pin_status = code_value_short();
  3155. if (pin_status < 0 || pin_status > 255) return;
  3156. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3157. if (pin_number < 0) return;
  3158. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3159. if (pin_number == sensitive_pins[i]) return;
  3160. pinMode(pin_number, OUTPUT);
  3161. digitalWrite(pin_number, pin_status);
  3162. analogWrite(pin_number, pin_status);
  3163. #if FAN_COUNT > 0
  3164. switch (pin_number) {
  3165. #if HAS_FAN0
  3166. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3167. #endif
  3168. #if HAS_FAN1
  3169. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3170. #endif
  3171. #if HAS_FAN2
  3172. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3173. #endif
  3174. }
  3175. #endif
  3176. } // code_seen('S')
  3177. }
  3178. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3179. /**
  3180. * This is redundant since the SanityCheck.h already checks for a valid
  3181. * Z_MIN_PROBE_PIN, but here for clarity.
  3182. */
  3183. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3184. #if !HAS_Z_PROBE
  3185. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3186. #endif
  3187. #elif !HAS_Z_MIN
  3188. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3189. #endif
  3190. /**
  3191. * M48: Z probe repeatability measurement function.
  3192. *
  3193. * Usage:
  3194. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3195. * P = Number of sampled points (4-50, default 10)
  3196. * X = Sample X position
  3197. * Y = Sample Y position
  3198. * V = Verbose level (0-4, default=1)
  3199. * E = Engage Z probe for each reading
  3200. * L = Number of legs of movement before probe
  3201. * S = Schizoid (Or Star if you prefer)
  3202. *
  3203. * This function assumes the bed has been homed. Specifically, that a G28 command
  3204. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3205. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3206. * regenerated.
  3207. */
  3208. inline void gcode_M48() {
  3209. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3210. axis_unhomed_error();
  3211. return;
  3212. }
  3213. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3214. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3215. if (code_seen('V')) {
  3216. verbose_level = code_value_short();
  3217. if (verbose_level < 0 || verbose_level > 4) {
  3218. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3219. return;
  3220. }
  3221. }
  3222. if (verbose_level > 0)
  3223. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3224. if (code_seen('P')) {
  3225. n_samples = code_value_short();
  3226. if (n_samples < 4 || n_samples > 50) {
  3227. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3228. return;
  3229. }
  3230. }
  3231. float X_current = current_position[X_AXIS],
  3232. Y_current = current_position[Y_AXIS],
  3233. Z_current = current_position[Z_AXIS],
  3234. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3235. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3236. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3237. bool deploy_probe_for_each_reading = code_seen('E');
  3238. if (code_seen('X')) {
  3239. X_probe_location = code_value();
  3240. #if DISABLED(DELTA)
  3241. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3242. out_of_range_error(PSTR("X"));
  3243. return;
  3244. }
  3245. #endif
  3246. }
  3247. if (code_seen('Y')) {
  3248. Y_probe_location = code_value();
  3249. #if DISABLED(DELTA)
  3250. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3251. out_of_range_error(PSTR("Y"));
  3252. return;
  3253. }
  3254. #endif
  3255. }
  3256. #if ENABLED(DELTA)
  3257. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3258. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3259. return;
  3260. }
  3261. #endif
  3262. bool seen_L = code_seen('L');
  3263. if (seen_L) {
  3264. n_legs = code_value_short();
  3265. if (n_legs < 0 || n_legs > 15) {
  3266. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3267. return;
  3268. }
  3269. if (n_legs == 1) n_legs = 2;
  3270. }
  3271. if (code_seen('S')) {
  3272. schizoid_flag++;
  3273. if (!seen_L) n_legs = 7;
  3274. }
  3275. /**
  3276. * Now get everything to the specified probe point So we can safely do a
  3277. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3278. * we don't want to use that as a starting point for each probe.
  3279. */
  3280. if (verbose_level > 2)
  3281. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3282. #if ENABLED(DELTA)
  3283. // we don't do bed level correction in M48 because we want the raw data when we probe
  3284. reset_bed_level();
  3285. #else
  3286. // we don't do bed level correction in M48 because we want the raw data when we probe
  3287. plan_bed_level_matrix.set_to_identity();
  3288. #endif
  3289. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3290. do_blocking_move_to_z(Z_start_location);
  3291. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3292. /**
  3293. * OK, do the initial probe to get us close to the bed.
  3294. * Then retrace the right amount and use that in subsequent probes
  3295. */
  3296. setup_for_endstop_move();
  3297. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3298. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3299. verbose_level);
  3300. raise_z_after_probing();
  3301. for (uint8_t n = 0; n < n_samples; n++) {
  3302. randomSeed(millis());
  3303. delay(500);
  3304. if (n_legs) {
  3305. float radius, angle = random(0.0, 360.0);
  3306. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3307. radius = random(
  3308. #if ENABLED(DELTA)
  3309. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3310. #else
  3311. 5, X_MAX_LENGTH / 8
  3312. #endif
  3313. );
  3314. if (verbose_level > 3) {
  3315. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3316. SERIAL_ECHOPAIR(" angle: ", angle);
  3317. delay(100);
  3318. if (dir > 0)
  3319. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3320. else
  3321. SERIAL_ECHO(" Direction: Clockwise \n");
  3322. delay(100);
  3323. }
  3324. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3325. double delta_angle;
  3326. if (schizoid_flag)
  3327. // The points of a 5 point star are 72 degrees apart. We need to
  3328. // skip a point and go to the next one on the star.
  3329. delta_angle = dir * 2.0 * 72.0;
  3330. else
  3331. // If we do this line, we are just trying to move further
  3332. // around the circle.
  3333. delta_angle = dir * (float) random(25, 45);
  3334. angle += delta_angle;
  3335. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3336. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3337. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3338. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3339. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
  3340. Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
  3341. #if DISABLED(DELTA)
  3342. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3343. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3344. #else
  3345. // If we have gone out too far, we can do a simple fix and scale the numbers
  3346. // back in closer to the origin.
  3347. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3348. X_current /= 1.25;
  3349. Y_current /= 1.25;
  3350. if (verbose_level > 3) {
  3351. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3352. SERIAL_ECHOPAIR(", ", Y_current);
  3353. SERIAL_EOL;
  3354. delay(50);
  3355. }
  3356. }
  3357. #endif
  3358. if (verbose_level > 3) {
  3359. SERIAL_PROTOCOL("Going to:");
  3360. SERIAL_ECHOPAIR("x: ", X_current);
  3361. SERIAL_ECHOPAIR("y: ", Y_current);
  3362. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3363. SERIAL_EOL;
  3364. delay(55);
  3365. }
  3366. do_blocking_move_to_xy(X_current, Y_current);
  3367. } // n_legs loop
  3368. } // n_legs
  3369. /**
  3370. * We don't really have to do this move, but if we don't we can see a
  3371. * funny shift in the Z Height because the user might not have the
  3372. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3373. * height. This gets us back to the probe location at the same height that
  3374. * we have been running around the circle at.
  3375. */
  3376. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3377. if (deploy_probe_for_each_reading)
  3378. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3379. else {
  3380. if (n == n_samples - 1)
  3381. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3382. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3383. }
  3384. /**
  3385. * Get the current mean for the data points we have so far
  3386. */
  3387. sum = 0.0;
  3388. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3389. mean = sum / (n + 1);
  3390. /**
  3391. * Now, use that mean to calculate the standard deviation for the
  3392. * data points we have so far
  3393. */
  3394. sum = 0.0;
  3395. for (uint8_t j = 0; j <= n; j++) {
  3396. float ss = sample_set[j] - mean;
  3397. sum += ss * ss;
  3398. }
  3399. sigma = sqrt(sum / (n + 1));
  3400. if (verbose_level > 1) {
  3401. SERIAL_PROTOCOL(n + 1);
  3402. SERIAL_PROTOCOLPGM(" of ");
  3403. SERIAL_PROTOCOL((int)n_samples);
  3404. SERIAL_PROTOCOLPGM(" z: ");
  3405. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3406. delay(50);
  3407. if (verbose_level > 2) {
  3408. SERIAL_PROTOCOLPGM(" mean: ");
  3409. SERIAL_PROTOCOL_F(mean, 6);
  3410. SERIAL_PROTOCOLPGM(" sigma: ");
  3411. SERIAL_PROTOCOL_F(sigma, 6);
  3412. }
  3413. }
  3414. if (verbose_level > 0) SERIAL_EOL;
  3415. delay(50);
  3416. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3417. } // End of probe loop code
  3418. // raise_z_after_probing();
  3419. if (verbose_level > 0) {
  3420. SERIAL_PROTOCOLPGM("Mean: ");
  3421. SERIAL_PROTOCOL_F(mean, 6);
  3422. SERIAL_EOL;
  3423. delay(25);
  3424. }
  3425. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3426. SERIAL_PROTOCOL_F(sigma, 6);
  3427. SERIAL_EOL; SERIAL_EOL;
  3428. delay(25);
  3429. clean_up_after_endstop_move();
  3430. gcode_M114(); // Send end position to RepetierHost
  3431. }
  3432. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3433. /**
  3434. * M75: Start print timer
  3435. */
  3436. inline void gcode_M75() {
  3437. print_job_timer.start();
  3438. }
  3439. /**
  3440. * M76: Pause print timer
  3441. */
  3442. inline void gcode_M76() {
  3443. print_job_timer.pause();
  3444. }
  3445. /**
  3446. * M77: Stop print timer
  3447. */
  3448. inline void gcode_M77() {
  3449. print_job_timer.stop();
  3450. }
  3451. /**
  3452. * M104: Set hot end temperature
  3453. */
  3454. inline void gcode_M104() {
  3455. if (setTargetedHotend(104)) return;
  3456. if (DEBUGGING(DRYRUN)) return;
  3457. if (code_seen('S')) {
  3458. float temp = code_value();
  3459. setTargetHotend(temp, target_extruder);
  3460. #if ENABLED(DUAL_X_CARRIAGE)
  3461. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3462. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3463. #endif
  3464. /**
  3465. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3466. * stand by mode, for instance in a dual extruder setup, without affecting
  3467. * the running print timer.
  3468. */
  3469. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3470. print_job_timer.stop();
  3471. LCD_MESSAGEPGM(WELCOME_MSG);
  3472. }
  3473. /**
  3474. * We do not check if the timer is already running because this check will
  3475. * be done for us inside the Stopwatch::start() method thus a running timer
  3476. * will not restart.
  3477. */
  3478. else print_job_timer.start();
  3479. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3480. }
  3481. }
  3482. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3483. void print_heaterstates() {
  3484. #if HAS_TEMP_HOTEND
  3485. SERIAL_PROTOCOLPGM(" T:");
  3486. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3487. SERIAL_PROTOCOLPGM(" /");
  3488. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3489. #endif
  3490. #if HAS_TEMP_BED
  3491. SERIAL_PROTOCOLPGM(" B:");
  3492. SERIAL_PROTOCOL_F(degBed(), 1);
  3493. SERIAL_PROTOCOLPGM(" /");
  3494. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3495. #endif
  3496. #if EXTRUDERS > 1
  3497. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3498. SERIAL_PROTOCOLPGM(" T");
  3499. SERIAL_PROTOCOL(e);
  3500. SERIAL_PROTOCOLCHAR(':');
  3501. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3502. SERIAL_PROTOCOLPGM(" /");
  3503. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3504. }
  3505. #endif
  3506. #if HAS_TEMP_BED
  3507. SERIAL_PROTOCOLPGM(" B@:");
  3508. #ifdef BED_WATTS
  3509. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3510. SERIAL_PROTOCOLCHAR('W');
  3511. #else
  3512. SERIAL_PROTOCOL(getHeaterPower(-1));
  3513. #endif
  3514. #endif
  3515. SERIAL_PROTOCOLPGM(" @:");
  3516. #ifdef EXTRUDER_WATTS
  3517. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3518. SERIAL_PROTOCOLCHAR('W');
  3519. #else
  3520. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3521. #endif
  3522. #if EXTRUDERS > 1
  3523. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3524. SERIAL_PROTOCOLPGM(" @");
  3525. SERIAL_PROTOCOL(e);
  3526. SERIAL_PROTOCOLCHAR(':');
  3527. #ifdef EXTRUDER_WATTS
  3528. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3529. SERIAL_PROTOCOLCHAR('W');
  3530. #else
  3531. SERIAL_PROTOCOL(getHeaterPower(e));
  3532. #endif
  3533. }
  3534. #endif
  3535. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3536. #if HAS_TEMP_BED
  3537. SERIAL_PROTOCOLPGM(" ADC B:");
  3538. SERIAL_PROTOCOL_F(degBed(), 1);
  3539. SERIAL_PROTOCOLPGM("C->");
  3540. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3541. #endif
  3542. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3543. SERIAL_PROTOCOLPGM(" T");
  3544. SERIAL_PROTOCOL(cur_extruder);
  3545. SERIAL_PROTOCOLCHAR(':');
  3546. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3547. SERIAL_PROTOCOLPGM("C->");
  3548. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3549. }
  3550. #endif
  3551. }
  3552. #endif
  3553. /**
  3554. * M105: Read hot end and bed temperature
  3555. */
  3556. inline void gcode_M105() {
  3557. if (setTargetedHotend(105)) return;
  3558. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3559. SERIAL_PROTOCOLPGM(MSG_OK);
  3560. print_heaterstates();
  3561. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3562. SERIAL_ERROR_START;
  3563. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3564. #endif
  3565. SERIAL_EOL;
  3566. }
  3567. #if FAN_COUNT > 0
  3568. /**
  3569. * M106: Set Fan Speed
  3570. *
  3571. * S<int> Speed between 0-255
  3572. * P<index> Fan index, if more than one fan
  3573. */
  3574. inline void gcode_M106() {
  3575. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3576. p = code_seen('P') ? code_value_short() : 0;
  3577. NOMORE(s, 255);
  3578. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3579. }
  3580. /**
  3581. * M107: Fan Off
  3582. */
  3583. inline void gcode_M107() {
  3584. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3585. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3586. }
  3587. #endif // FAN_COUNT > 0
  3588. /**
  3589. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3590. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3591. */
  3592. inline void gcode_M109() {
  3593. bool no_wait_for_cooling = true;
  3594. if (setTargetedHotend(109)) return;
  3595. if (DEBUGGING(DRYRUN)) return;
  3596. no_wait_for_cooling = code_seen('S');
  3597. if (no_wait_for_cooling || code_seen('R')) {
  3598. float temp = code_value();
  3599. setTargetHotend(temp, target_extruder);
  3600. #if ENABLED(DUAL_X_CARRIAGE)
  3601. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3602. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3603. #endif
  3604. /**
  3605. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3606. * stand by mode, for instance in a dual extruder setup, without affecting
  3607. * the running print timer.
  3608. */
  3609. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3610. print_job_timer.stop();
  3611. LCD_MESSAGEPGM(WELCOME_MSG);
  3612. }
  3613. /**
  3614. * We do not check if the timer is already running because this check will
  3615. * be done for us inside the Stopwatch::start() method thus a running timer
  3616. * will not restart.
  3617. */
  3618. else print_job_timer.start();
  3619. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3620. }
  3621. #if ENABLED(AUTOTEMP)
  3622. autotemp_enabled = code_seen('F');
  3623. if (autotemp_enabled) autotemp_factor = code_value();
  3624. if (code_seen('S')) autotemp_min = code_value();
  3625. if (code_seen('B')) autotemp_max = code_value();
  3626. #endif
  3627. // Exit if the temperature is above target and not waiting for cooling
  3628. if (no_wait_for_cooling && !isHeatingHotend(target_extruder)) return;
  3629. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3630. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3631. if (degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP)/2) return;
  3632. #ifdef TEMP_RESIDENCY_TIME
  3633. long residency_start_ms = -1;
  3634. // Loop until the temperature has stabilized
  3635. #define TEMP_CONDITIONS (residency_start_ms == -1 || now < residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)
  3636. #else
  3637. // Loop until the temperature is very close target
  3638. #define TEMP_CONDITIONS (isHeatingHotend(target_extruder))
  3639. #endif //TEMP_RESIDENCY_TIME
  3640. cancel_heatup = false;
  3641. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3642. while (!cancel_heatup && TEMP_CONDITIONS) {
  3643. now = millis();
  3644. if (now > next_temp_ms) { //Print temp & remaining time every 1s while waiting
  3645. next_temp_ms = now + 1000UL;
  3646. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3647. print_heaterstates();
  3648. #endif
  3649. #ifdef TEMP_RESIDENCY_TIME
  3650. SERIAL_PROTOCOLPGM(" W:");
  3651. if (residency_start_ms != -1) {
  3652. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3653. SERIAL_PROTOCOLLN(rem);
  3654. }
  3655. else {
  3656. SERIAL_PROTOCOLLNPGM("?");
  3657. }
  3658. #else
  3659. SERIAL_EOL;
  3660. #endif
  3661. }
  3662. idle();
  3663. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3664. #ifdef TEMP_RESIDENCY_TIME
  3665. float temp_diff = labs(degHotend(target_extruder) - degTargetHotend(target_extruder));
  3666. if (residency_start_ms == -1) {
  3667. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3668. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  3669. }
  3670. else if (temp_diff > TEMP_HYSTERESIS) {
  3671. // Restart the timer whenever the temperature falls outside the hysteresis.
  3672. residency_start_ms = millis();
  3673. }
  3674. #endif //TEMP_RESIDENCY_TIME
  3675. } // while(!cancel_heatup && TEMP_CONDITIONS)
  3676. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3677. }
  3678. #if HAS_TEMP_BED
  3679. /**
  3680. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3681. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3682. */
  3683. inline void gcode_M190() {
  3684. if (DEBUGGING(DRYRUN)) return;
  3685. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3686. bool no_wait_for_cooling = code_seen('S');
  3687. if (no_wait_for_cooling || code_seen('R'))
  3688. setTargetBed(code_value());
  3689. // Exit if the temperature is above target and not waiting for cooling
  3690. if (no_wait_for_cooling && !isHeatingBed()) return;
  3691. cancel_heatup = false;
  3692. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3693. while (!cancel_heatup && isHeatingBed()) {
  3694. millis_t now = millis();
  3695. if (now > next_temp_ms) { //Print Temp Reading every 1 second while heating up.
  3696. next_temp_ms = now + 1000UL;
  3697. print_heaterstates();
  3698. SERIAL_EOL;
  3699. }
  3700. idle();
  3701. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3702. }
  3703. LCD_MESSAGEPGM(MSG_BED_DONE);
  3704. }
  3705. #endif // HAS_TEMP_BED
  3706. /**
  3707. * M110: Set Current Line Number
  3708. */
  3709. inline void gcode_M110() {
  3710. if (code_seen('N')) gcode_N = code_value_long();
  3711. }
  3712. /**
  3713. * M111: Set the debug level
  3714. */
  3715. inline void gcode_M111() {
  3716. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3717. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3718. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3719. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3720. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3721. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3722. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3723. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3724. #endif
  3725. const static char* const debug_strings[] PROGMEM = {
  3726. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3727. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3728. str_debug_32
  3729. #endif
  3730. };
  3731. SERIAL_ECHO_START;
  3732. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3733. if (marlin_debug_flags) {
  3734. uint8_t comma = 0;
  3735. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3736. if (TEST(marlin_debug_flags, i)) {
  3737. if (comma++) SERIAL_CHAR(',');
  3738. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3739. }
  3740. }
  3741. }
  3742. else {
  3743. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3744. }
  3745. SERIAL_EOL;
  3746. }
  3747. /**
  3748. * M112: Emergency Stop
  3749. */
  3750. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3751. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  3752. /**
  3753. * M113: Get or set Host Keepalive interval (0 to disable)
  3754. *
  3755. * S<seconds> Optional. Set the keepalive interval.
  3756. */
  3757. inline void gcode_M113() {
  3758. if (code_seen('S')) {
  3759. host_keepalive_interval = (uint8_t)code_value_short();
  3760. NOMORE(host_keepalive_interval, 60);
  3761. }
  3762. else {
  3763. SERIAL_ECHO_START;
  3764. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3765. SERIAL_EOL;
  3766. }
  3767. }
  3768. #endif
  3769. #if ENABLED(BARICUDA)
  3770. #if HAS_HEATER_1
  3771. /**
  3772. * M126: Heater 1 valve open
  3773. */
  3774. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3775. /**
  3776. * M127: Heater 1 valve close
  3777. */
  3778. inline void gcode_M127() { ValvePressure = 0; }
  3779. #endif
  3780. #if HAS_HEATER_2
  3781. /**
  3782. * M128: Heater 2 valve open
  3783. */
  3784. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3785. /**
  3786. * M129: Heater 2 valve close
  3787. */
  3788. inline void gcode_M129() { EtoPPressure = 0; }
  3789. #endif
  3790. #endif //BARICUDA
  3791. /**
  3792. * M140: Set bed temperature
  3793. */
  3794. inline void gcode_M140() {
  3795. if (DEBUGGING(DRYRUN)) return;
  3796. if (code_seen('S')) setTargetBed(code_value());
  3797. }
  3798. #if ENABLED(ULTIPANEL)
  3799. /**
  3800. * M145: Set the heatup state for a material in the LCD menu
  3801. * S<material> (0=PLA, 1=ABS)
  3802. * H<hotend temp>
  3803. * B<bed temp>
  3804. * F<fan speed>
  3805. */
  3806. inline void gcode_M145() {
  3807. int8_t material = code_seen('S') ? code_value_short() : 0;
  3808. if (material < 0 || material > 1) {
  3809. SERIAL_ERROR_START;
  3810. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3811. }
  3812. else {
  3813. int v;
  3814. switch (material) {
  3815. case 0:
  3816. if (code_seen('H')) {
  3817. v = code_value_short();
  3818. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3819. }
  3820. if (code_seen('F')) {
  3821. v = code_value_short();
  3822. plaPreheatFanSpeed = constrain(v, 0, 255);
  3823. }
  3824. #if TEMP_SENSOR_BED != 0
  3825. if (code_seen('B')) {
  3826. v = code_value_short();
  3827. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3828. }
  3829. #endif
  3830. break;
  3831. case 1:
  3832. if (code_seen('H')) {
  3833. v = code_value_short();
  3834. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3835. }
  3836. if (code_seen('F')) {
  3837. v = code_value_short();
  3838. absPreheatFanSpeed = constrain(v, 0, 255);
  3839. }
  3840. #if TEMP_SENSOR_BED != 0
  3841. if (code_seen('B')) {
  3842. v = code_value_short();
  3843. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3844. }
  3845. #endif
  3846. break;
  3847. }
  3848. }
  3849. }
  3850. #endif
  3851. #if HAS_POWER_SWITCH
  3852. /**
  3853. * M80: Turn on Power Supply
  3854. */
  3855. inline void gcode_M80() {
  3856. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3857. /**
  3858. * If you have a switch on suicide pin, this is useful
  3859. * if you want to start another print with suicide feature after
  3860. * a print without suicide...
  3861. */
  3862. #if HAS_SUICIDE
  3863. OUT_WRITE(SUICIDE_PIN, HIGH);
  3864. #endif
  3865. #if ENABLED(ULTIPANEL)
  3866. powersupply = true;
  3867. LCD_MESSAGEPGM(WELCOME_MSG);
  3868. lcd_update();
  3869. #endif
  3870. }
  3871. #endif // HAS_POWER_SWITCH
  3872. /**
  3873. * M81: Turn off Power, including Power Supply, if there is one.
  3874. *
  3875. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3876. */
  3877. inline void gcode_M81() {
  3878. disable_all_heaters();
  3879. finishAndDisableSteppers();
  3880. #if FAN_COUNT > 0
  3881. #if FAN_COUNT > 1
  3882. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3883. #else
  3884. fanSpeeds[0] = 0;
  3885. #endif
  3886. #endif
  3887. delay(1000); // Wait 1 second before switching off
  3888. #if HAS_SUICIDE
  3889. st_synchronize();
  3890. suicide();
  3891. #elif HAS_POWER_SWITCH
  3892. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3893. #endif
  3894. #if ENABLED(ULTIPANEL)
  3895. #if HAS_POWER_SWITCH
  3896. powersupply = false;
  3897. #endif
  3898. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3899. lcd_update();
  3900. #endif
  3901. }
  3902. /**
  3903. * M82: Set E codes absolute (default)
  3904. */
  3905. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3906. /**
  3907. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3908. */
  3909. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3910. /**
  3911. * M18, M84: Disable all stepper motors
  3912. */
  3913. inline void gcode_M18_M84() {
  3914. if (code_seen('S')) {
  3915. stepper_inactive_time = code_value() * 1000;
  3916. }
  3917. else {
  3918. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3919. if (all_axis) {
  3920. finishAndDisableSteppers();
  3921. }
  3922. else {
  3923. st_synchronize();
  3924. if (code_seen('X')) disable_x();
  3925. if (code_seen('Y')) disable_y();
  3926. if (code_seen('Z')) disable_z();
  3927. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3928. if (code_seen('E')) {
  3929. disable_e0();
  3930. disable_e1();
  3931. disable_e2();
  3932. disable_e3();
  3933. }
  3934. #endif
  3935. }
  3936. }
  3937. }
  3938. /**
  3939. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3940. */
  3941. inline void gcode_M85() {
  3942. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3943. }
  3944. /**
  3945. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3946. * (Follows the same syntax as G92)
  3947. */
  3948. inline void gcode_M92() {
  3949. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3950. if (code_seen(axis_codes[i])) {
  3951. if (i == E_AXIS) {
  3952. float value = code_value();
  3953. if (value < 20.0) {
  3954. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3955. max_e_jerk *= factor;
  3956. max_feedrate[i] *= factor;
  3957. axis_steps_per_sqr_second[i] *= factor;
  3958. }
  3959. axis_steps_per_unit[i] = value;
  3960. }
  3961. else {
  3962. axis_steps_per_unit[i] = code_value();
  3963. }
  3964. }
  3965. }
  3966. }
  3967. /**
  3968. * M114: Output current position to serial port
  3969. */
  3970. inline void gcode_M114() {
  3971. SERIAL_PROTOCOLPGM("X:");
  3972. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3973. SERIAL_PROTOCOLPGM(" Y:");
  3974. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3975. SERIAL_PROTOCOLPGM(" Z:");
  3976. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3977. SERIAL_PROTOCOLPGM(" E:");
  3978. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3979. CRITICAL_SECTION_START;
  3980. extern volatile long count_position[NUM_AXIS];
  3981. long xpos = count_position[X_AXIS],
  3982. ypos = count_position[Y_AXIS],
  3983. zpos = count_position[Z_AXIS];
  3984. CRITICAL_SECTION_END;
  3985. #if ENABLED(COREXY) || ENABLED(COREXZ)
  3986. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  3987. #else
  3988. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3989. #endif
  3990. SERIAL_PROTOCOL(xpos);
  3991. #if ENABLED(COREXY)
  3992. SERIAL_PROTOCOLPGM(" B:");
  3993. #else
  3994. SERIAL_PROTOCOLPGM(" Y:");
  3995. #endif
  3996. SERIAL_PROTOCOL(ypos);
  3997. #if ENABLED(COREXZ)
  3998. SERIAL_PROTOCOLPGM(" C:");
  3999. #else
  4000. SERIAL_PROTOCOLPGM(" Z:");
  4001. #endif
  4002. SERIAL_PROTOCOL(zpos);
  4003. SERIAL_EOL;
  4004. #if ENABLED(SCARA)
  4005. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4006. SERIAL_PROTOCOL(delta[X_AXIS]);
  4007. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4008. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4009. SERIAL_EOL;
  4010. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4011. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4012. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4013. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4014. SERIAL_EOL;
  4015. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4016. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  4017. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4018. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  4019. SERIAL_EOL; SERIAL_EOL;
  4020. #endif
  4021. }
  4022. /**
  4023. * M115: Capabilities string
  4024. */
  4025. inline void gcode_M115() {
  4026. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4027. }
  4028. /**
  4029. * M117: Set LCD Status Message
  4030. */
  4031. inline void gcode_M117() {
  4032. lcd_setstatus(current_command_args);
  4033. }
  4034. /**
  4035. * M119: Output endstop states to serial output
  4036. */
  4037. inline void gcode_M119() {
  4038. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  4039. #if HAS_X_MIN
  4040. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  4041. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4042. #endif
  4043. #if HAS_X_MAX
  4044. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  4045. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4046. #endif
  4047. #if HAS_Y_MIN
  4048. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  4049. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4050. #endif
  4051. #if HAS_Y_MAX
  4052. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  4053. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4054. #endif
  4055. #if HAS_Z_MIN
  4056. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  4057. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4058. #endif
  4059. #if HAS_Z_MAX
  4060. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  4061. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4062. #endif
  4063. #if HAS_Z2_MAX
  4064. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  4065. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4066. #endif
  4067. #if HAS_Z_PROBE
  4068. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  4069. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4070. #endif
  4071. }
  4072. /**
  4073. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4074. */
  4075. inline void gcode_M120() { enable_endstops_globally(true); }
  4076. /**
  4077. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4078. */
  4079. inline void gcode_M121() { enable_endstops_globally(false); }
  4080. #if ENABLED(BLINKM)
  4081. /**
  4082. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4083. */
  4084. inline void gcode_M150() {
  4085. SendColors(
  4086. code_seen('R') ? (byte)code_value_short() : 0,
  4087. code_seen('U') ? (byte)code_value_short() : 0,
  4088. code_seen('B') ? (byte)code_value_short() : 0
  4089. );
  4090. }
  4091. #endif // BLINKM
  4092. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4093. /**
  4094. * M155: Send data to a I2C slave device
  4095. *
  4096. * This is a PoC, the formating and arguments for the GCODE will
  4097. * change to be more compatible, the current proposal is:
  4098. *
  4099. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4100. *
  4101. * M155 B<byte-1 value in base 10>
  4102. * M155 B<byte-2 value in base 10>
  4103. * M155 B<byte-3 value in base 10>
  4104. *
  4105. * M155 S1 ; Send the buffered data and reset the buffer
  4106. * M155 R1 ; Reset the buffer without sending data
  4107. *
  4108. */
  4109. inline void gcode_M155() {
  4110. // Set the target address
  4111. if (code_seen('A'))
  4112. i2c.address((uint8_t) code_value_short());
  4113. // Add a new byte to the buffer
  4114. else if (code_seen('B'))
  4115. i2c.addbyte((int) code_value_short());
  4116. // Flush the buffer to the bus
  4117. else if (code_seen('S')) i2c.send();
  4118. // Reset and rewind the buffer
  4119. else if (code_seen('R')) i2c.reset();
  4120. }
  4121. /**
  4122. * M156: Request X bytes from I2C slave device
  4123. *
  4124. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4125. */
  4126. inline void gcode_M156() {
  4127. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4128. int bytes = code_seen('B') ? code_value_short() : 0;
  4129. if (addr && bytes) {
  4130. i2c.address(addr);
  4131. i2c.reqbytes(bytes);
  4132. }
  4133. }
  4134. #endif //EXPERIMENTAL_I2CBUS
  4135. /**
  4136. * M200: Set filament diameter and set E axis units to cubic millimeters
  4137. *
  4138. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4139. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4140. */
  4141. inline void gcode_M200() {
  4142. if (setTargetedHotend(200)) return;
  4143. if (code_seen('D')) {
  4144. float diameter = code_value();
  4145. // setting any extruder filament size disables volumetric on the assumption that
  4146. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4147. // for all extruders
  4148. volumetric_enabled = (diameter != 0.0);
  4149. if (volumetric_enabled) {
  4150. filament_size[target_extruder] = diameter;
  4151. // make sure all extruders have some sane value for the filament size
  4152. for (int i = 0; i < EXTRUDERS; i++)
  4153. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4154. }
  4155. }
  4156. else {
  4157. //reserved for setting filament diameter via UFID or filament measuring device
  4158. return;
  4159. }
  4160. calculate_volumetric_multipliers();
  4161. }
  4162. /**
  4163. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4164. */
  4165. inline void gcode_M201() {
  4166. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4167. if (code_seen(axis_codes[i])) {
  4168. max_acceleration_units_per_sq_second[i] = code_value();
  4169. }
  4170. }
  4171. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4172. reset_acceleration_rates();
  4173. }
  4174. #if 0 // Not used for Sprinter/grbl gen6
  4175. inline void gcode_M202() {
  4176. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4177. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4178. }
  4179. }
  4180. #endif
  4181. /**
  4182. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4183. */
  4184. inline void gcode_M203() {
  4185. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4186. if (code_seen(axis_codes[i])) {
  4187. max_feedrate[i] = code_value();
  4188. }
  4189. }
  4190. }
  4191. /**
  4192. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4193. *
  4194. * P = Printing moves
  4195. * R = Retract only (no X, Y, Z) moves
  4196. * T = Travel (non printing) moves
  4197. *
  4198. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4199. */
  4200. inline void gcode_M204() {
  4201. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4202. travel_acceleration = acceleration = code_value();
  4203. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4204. SERIAL_EOL;
  4205. }
  4206. if (code_seen('P')) {
  4207. acceleration = code_value();
  4208. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4209. SERIAL_EOL;
  4210. }
  4211. if (code_seen('R')) {
  4212. retract_acceleration = code_value();
  4213. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4214. SERIAL_EOL;
  4215. }
  4216. if (code_seen('T')) {
  4217. travel_acceleration = code_value();
  4218. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4219. SERIAL_EOL;
  4220. }
  4221. }
  4222. /**
  4223. * M205: Set Advanced Settings
  4224. *
  4225. * S = Min Feed Rate (mm/s)
  4226. * T = Min Travel Feed Rate (mm/s)
  4227. * B = Min Segment Time (µs)
  4228. * X = Max XY Jerk (mm/s/s)
  4229. * Z = Max Z Jerk (mm/s/s)
  4230. * E = Max E Jerk (mm/s/s)
  4231. */
  4232. inline void gcode_M205() {
  4233. if (code_seen('S')) minimumfeedrate = code_value();
  4234. if (code_seen('T')) mintravelfeedrate = code_value();
  4235. if (code_seen('B')) minsegmenttime = code_value();
  4236. if (code_seen('X')) max_xy_jerk = code_value();
  4237. if (code_seen('Z')) max_z_jerk = code_value();
  4238. if (code_seen('E')) max_e_jerk = code_value();
  4239. }
  4240. static void set_home_offset(AxisEnum axis, float v) {
  4241. min_pos[axis] = base_min_pos(axis) + v;
  4242. max_pos[axis] = base_max_pos(axis) + v;
  4243. current_position[axis] += v - home_offset[axis];
  4244. home_offset[axis] = v;
  4245. }
  4246. /**
  4247. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4248. */
  4249. inline void gcode_M206() {
  4250. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4251. if (code_seen(axis_codes[i]))
  4252. set_home_offset((AxisEnum)i, code_value());
  4253. #if ENABLED(SCARA)
  4254. if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta
  4255. if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi
  4256. #endif
  4257. sync_plan_position();
  4258. }
  4259. #if ENABLED(DELTA)
  4260. /**
  4261. * M665: Set delta configurations
  4262. *
  4263. * L = diagonal rod
  4264. * R = delta radius
  4265. * S = segments per second
  4266. * A = Alpha (Tower 1) diagonal rod trim
  4267. * B = Beta (Tower 2) diagonal rod trim
  4268. * C = Gamma (Tower 3) diagonal rod trim
  4269. */
  4270. inline void gcode_M665() {
  4271. if (code_seen('L')) delta_diagonal_rod = code_value();
  4272. if (code_seen('R')) delta_radius = code_value();
  4273. if (code_seen('S')) delta_segments_per_second = code_value();
  4274. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4275. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4276. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4277. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4278. }
  4279. /**
  4280. * M666: Set delta endstop adjustment
  4281. */
  4282. inline void gcode_M666() {
  4283. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4284. if (DEBUGGING(LEVELING)) {
  4285. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4286. }
  4287. #endif
  4288. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4289. if (code_seen(axis_codes[i])) {
  4290. endstop_adj[i] = code_value();
  4291. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4292. if (DEBUGGING(LEVELING)) {
  4293. SERIAL_ECHOPGM("endstop_adj[");
  4294. SERIAL_ECHO(axis_codes[i]);
  4295. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4296. SERIAL_EOL;
  4297. }
  4298. #endif
  4299. }
  4300. }
  4301. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4302. if (DEBUGGING(LEVELING)) {
  4303. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4304. }
  4305. #endif
  4306. }
  4307. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4308. /**
  4309. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4310. */
  4311. inline void gcode_M666() {
  4312. if (code_seen('Z')) z_endstop_adj = code_value();
  4313. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4314. SERIAL_EOL;
  4315. }
  4316. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4317. #if ENABLED(FWRETRACT)
  4318. /**
  4319. * M207: Set firmware retraction values
  4320. *
  4321. * S[+mm] retract_length
  4322. * W[+mm] retract_length_swap (multi-extruder)
  4323. * F[mm/min] retract_feedrate
  4324. * Z[mm] retract_zlift
  4325. */
  4326. inline void gcode_M207() {
  4327. if (code_seen('S')) retract_length = code_value();
  4328. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4329. if (code_seen('Z')) retract_zlift = code_value();
  4330. #if EXTRUDERS > 1
  4331. if (code_seen('W')) retract_length_swap = code_value();
  4332. #endif
  4333. }
  4334. /**
  4335. * M208: Set firmware un-retraction values
  4336. *
  4337. * S[+mm] retract_recover_length (in addition to M207 S*)
  4338. * W[+mm] retract_recover_length_swap (multi-extruder)
  4339. * F[mm/min] retract_recover_feedrate
  4340. */
  4341. inline void gcode_M208() {
  4342. if (code_seen('S')) retract_recover_length = code_value();
  4343. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4344. #if EXTRUDERS > 1
  4345. if (code_seen('W')) retract_recover_length_swap = code_value();
  4346. #endif
  4347. }
  4348. /**
  4349. * M209: Enable automatic retract (M209 S1)
  4350. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4351. */
  4352. inline void gcode_M209() {
  4353. if (code_seen('S')) {
  4354. int t = code_value_short();
  4355. switch (t) {
  4356. case 0:
  4357. autoretract_enabled = false;
  4358. break;
  4359. case 1:
  4360. autoretract_enabled = true;
  4361. break;
  4362. default:
  4363. unknown_command_error();
  4364. return;
  4365. }
  4366. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4367. }
  4368. }
  4369. #endif // FWRETRACT
  4370. #if EXTRUDERS > 1
  4371. /**
  4372. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4373. */
  4374. inline void gcode_M218() {
  4375. if (setTargetedHotend(218)) return;
  4376. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4377. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4378. #if ENABLED(DUAL_X_CARRIAGE)
  4379. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4380. #endif
  4381. SERIAL_ECHO_START;
  4382. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4383. for (int e = 0; e < EXTRUDERS; e++) {
  4384. SERIAL_CHAR(' ');
  4385. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4386. SERIAL_CHAR(',');
  4387. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4388. #if ENABLED(DUAL_X_CARRIAGE)
  4389. SERIAL_CHAR(',');
  4390. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4391. #endif
  4392. }
  4393. SERIAL_EOL;
  4394. }
  4395. #endif // EXTRUDERS > 1
  4396. /**
  4397. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4398. */
  4399. inline void gcode_M220() {
  4400. if (code_seen('S')) feedrate_multiplier = code_value();
  4401. }
  4402. /**
  4403. * M221: Set extrusion percentage (M221 T0 S95)
  4404. */
  4405. inline void gcode_M221() {
  4406. if (code_seen('S')) {
  4407. int sval = code_value();
  4408. if (setTargetedHotend(221)) return;
  4409. extruder_multiplier[target_extruder] = sval;
  4410. }
  4411. }
  4412. /**
  4413. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4414. */
  4415. inline void gcode_M226() {
  4416. if (code_seen('P')) {
  4417. int pin_number = code_value();
  4418. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4419. if (pin_state >= -1 && pin_state <= 1) {
  4420. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4421. if (sensitive_pins[i] == pin_number) {
  4422. pin_number = -1;
  4423. break;
  4424. }
  4425. }
  4426. if (pin_number > -1) {
  4427. int target = LOW;
  4428. st_synchronize();
  4429. pinMode(pin_number, INPUT);
  4430. switch (pin_state) {
  4431. case 1:
  4432. target = HIGH;
  4433. break;
  4434. case 0:
  4435. target = LOW;
  4436. break;
  4437. case -1:
  4438. target = !digitalRead(pin_number);
  4439. break;
  4440. }
  4441. while (digitalRead(pin_number) != target) idle();
  4442. } // pin_number > -1
  4443. } // pin_state -1 0 1
  4444. } // code_seen('P')
  4445. }
  4446. #if HAS_SERVOS
  4447. /**
  4448. * M280: Get or set servo position. P<index> S<angle>
  4449. */
  4450. inline void gcode_M280() {
  4451. int servo_index = code_seen('P') ? code_value_short() : -1;
  4452. int servo_position = 0;
  4453. if (code_seen('S')) {
  4454. servo_position = code_value_short();
  4455. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4456. servo[servo_index].move(servo_position);
  4457. else {
  4458. SERIAL_ERROR_START;
  4459. SERIAL_ERROR("Servo ");
  4460. SERIAL_ERROR(servo_index);
  4461. SERIAL_ERRORLN(" out of range");
  4462. }
  4463. }
  4464. else if (servo_index >= 0) {
  4465. SERIAL_ECHO_START;
  4466. SERIAL_ECHO(" Servo ");
  4467. SERIAL_ECHO(servo_index);
  4468. SERIAL_ECHO(": ");
  4469. SERIAL_ECHOLN(servo[servo_index].read());
  4470. }
  4471. }
  4472. #endif // HAS_SERVOS
  4473. #if HAS_BUZZER
  4474. /**
  4475. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4476. */
  4477. inline void gcode_M300() {
  4478. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4479. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4480. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4481. buzz(beepP, beepS);
  4482. }
  4483. #endif // HAS_BUZZER
  4484. #if ENABLED(PIDTEMP)
  4485. /**
  4486. * M301: Set PID parameters P I D (and optionally C, L)
  4487. *
  4488. * P[float] Kp term
  4489. * I[float] Ki term (unscaled)
  4490. * D[float] Kd term (unscaled)
  4491. *
  4492. * With PID_ADD_EXTRUSION_RATE:
  4493. *
  4494. * C[float] Kc term
  4495. * L[float] LPQ length
  4496. */
  4497. inline void gcode_M301() {
  4498. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4499. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4500. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4501. if (e < EXTRUDERS) { // catch bad input value
  4502. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4503. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4504. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4505. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4506. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4507. if (code_seen('L')) lpq_len = code_value();
  4508. NOMORE(lpq_len, LPQ_MAX_LEN);
  4509. #endif
  4510. updatePID();
  4511. SERIAL_ECHO_START;
  4512. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4513. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4514. SERIAL_ECHO(e);
  4515. #endif // PID_PARAMS_PER_EXTRUDER
  4516. SERIAL_ECHO(" p:");
  4517. SERIAL_ECHO(PID_PARAM(Kp, e));
  4518. SERIAL_ECHO(" i:");
  4519. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4520. SERIAL_ECHO(" d:");
  4521. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4522. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4523. SERIAL_ECHO(" c:");
  4524. //Kc does not have scaling applied above, or in resetting defaults
  4525. SERIAL_ECHO(PID_PARAM(Kc, e));
  4526. #endif
  4527. SERIAL_EOL;
  4528. }
  4529. else {
  4530. SERIAL_ERROR_START;
  4531. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4532. }
  4533. }
  4534. #endif // PIDTEMP
  4535. #if ENABLED(PIDTEMPBED)
  4536. inline void gcode_M304() {
  4537. if (code_seen('P')) bedKp = code_value();
  4538. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4539. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4540. updatePID();
  4541. SERIAL_ECHO_START;
  4542. SERIAL_ECHO(" p:");
  4543. SERIAL_ECHO(bedKp);
  4544. SERIAL_ECHO(" i:");
  4545. SERIAL_ECHO(unscalePID_i(bedKi));
  4546. SERIAL_ECHO(" d:");
  4547. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4548. }
  4549. #endif // PIDTEMPBED
  4550. #if defined(CHDK) || HAS_PHOTOGRAPH
  4551. /**
  4552. * M240: Trigger a camera by emulating a Canon RC-1
  4553. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4554. */
  4555. inline void gcode_M240() {
  4556. #ifdef CHDK
  4557. OUT_WRITE(CHDK, HIGH);
  4558. chdkHigh = millis();
  4559. chdkActive = true;
  4560. #elif HAS_PHOTOGRAPH
  4561. const uint8_t NUM_PULSES = 16;
  4562. const float PULSE_LENGTH = 0.01524;
  4563. for (int i = 0; i < NUM_PULSES; i++) {
  4564. WRITE(PHOTOGRAPH_PIN, HIGH);
  4565. _delay_ms(PULSE_LENGTH);
  4566. WRITE(PHOTOGRAPH_PIN, LOW);
  4567. _delay_ms(PULSE_LENGTH);
  4568. }
  4569. delay(7.33);
  4570. for (int i = 0; i < NUM_PULSES; i++) {
  4571. WRITE(PHOTOGRAPH_PIN, HIGH);
  4572. _delay_ms(PULSE_LENGTH);
  4573. WRITE(PHOTOGRAPH_PIN, LOW);
  4574. _delay_ms(PULSE_LENGTH);
  4575. }
  4576. #endif // !CHDK && HAS_PHOTOGRAPH
  4577. }
  4578. #endif // CHDK || PHOTOGRAPH_PIN
  4579. #if ENABLED(HAS_LCD_CONTRAST)
  4580. /**
  4581. * M250: Read and optionally set the LCD contrast
  4582. */
  4583. inline void gcode_M250() {
  4584. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4585. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4586. SERIAL_PROTOCOL(lcd_contrast);
  4587. SERIAL_EOL;
  4588. }
  4589. #endif // HAS_LCD_CONTRAST
  4590. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4591. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4592. /**
  4593. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4594. */
  4595. inline void gcode_M302() {
  4596. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4597. }
  4598. #endif // PREVENT_DANGEROUS_EXTRUDE
  4599. /**
  4600. * M303: PID relay autotune
  4601. *
  4602. * S<temperature> sets the target temperature. (default 150C)
  4603. * E<extruder> (-1 for the bed) (default 0)
  4604. * C<cycles>
  4605. * U<bool> with a non-zero value will apply the result to current settings
  4606. */
  4607. inline void gcode_M303() {
  4608. int e = code_seen('E') ? code_value_short() : 0;
  4609. int c = code_seen('C') ? code_value_short() : 5;
  4610. bool u = code_seen('U') && code_value_short() != 0;
  4611. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4612. if (e >= 0 && e < EXTRUDERS)
  4613. target_extruder = e;
  4614. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4615. PID_autotune(temp, e, c, u);
  4616. KEEPALIVE_STATE(IN_HANDLER);
  4617. }
  4618. #if ENABLED(SCARA)
  4619. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4620. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4621. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4622. if (IsRunning()) {
  4623. //gcode_get_destination(); // For X Y Z E F
  4624. delta[X_AXIS] = delta_x;
  4625. delta[Y_AXIS] = delta_y;
  4626. calculate_SCARA_forward_Transform(delta);
  4627. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4628. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4629. prepare_move();
  4630. //ok_to_send();
  4631. return true;
  4632. }
  4633. return false;
  4634. }
  4635. /**
  4636. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4637. */
  4638. inline bool gcode_M360() {
  4639. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4640. return SCARA_move_to_cal(0, 120);
  4641. }
  4642. /**
  4643. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4644. */
  4645. inline bool gcode_M361() {
  4646. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4647. return SCARA_move_to_cal(90, 130);
  4648. }
  4649. /**
  4650. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4651. */
  4652. inline bool gcode_M362() {
  4653. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4654. return SCARA_move_to_cal(60, 180);
  4655. }
  4656. /**
  4657. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4658. */
  4659. inline bool gcode_M363() {
  4660. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4661. return SCARA_move_to_cal(50, 90);
  4662. }
  4663. /**
  4664. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4665. */
  4666. inline bool gcode_M364() {
  4667. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4668. return SCARA_move_to_cal(45, 135);
  4669. }
  4670. /**
  4671. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4672. */
  4673. inline void gcode_M365() {
  4674. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4675. if (code_seen(axis_codes[i])) {
  4676. axis_scaling[i] = code_value();
  4677. }
  4678. }
  4679. }
  4680. #endif // SCARA
  4681. #if ENABLED(EXT_SOLENOID)
  4682. void enable_solenoid(uint8_t num) {
  4683. switch (num) {
  4684. case 0:
  4685. OUT_WRITE(SOL0_PIN, HIGH);
  4686. break;
  4687. #if HAS_SOLENOID_1
  4688. case 1:
  4689. OUT_WRITE(SOL1_PIN, HIGH);
  4690. break;
  4691. #endif
  4692. #if HAS_SOLENOID_2
  4693. case 2:
  4694. OUT_WRITE(SOL2_PIN, HIGH);
  4695. break;
  4696. #endif
  4697. #if HAS_SOLENOID_3
  4698. case 3:
  4699. OUT_WRITE(SOL3_PIN, HIGH);
  4700. break;
  4701. #endif
  4702. default:
  4703. SERIAL_ECHO_START;
  4704. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4705. break;
  4706. }
  4707. }
  4708. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4709. void disable_all_solenoids() {
  4710. OUT_WRITE(SOL0_PIN, LOW);
  4711. OUT_WRITE(SOL1_PIN, LOW);
  4712. OUT_WRITE(SOL2_PIN, LOW);
  4713. OUT_WRITE(SOL3_PIN, LOW);
  4714. }
  4715. /**
  4716. * M380: Enable solenoid on the active extruder
  4717. */
  4718. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4719. /**
  4720. * M381: Disable all solenoids
  4721. */
  4722. inline void gcode_M381() { disable_all_solenoids(); }
  4723. #endif // EXT_SOLENOID
  4724. /**
  4725. * M400: Finish all moves
  4726. */
  4727. inline void gcode_M400() { st_synchronize(); }
  4728. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4729. /**
  4730. * M401: Engage Z Servo endstop if available
  4731. */
  4732. inline void gcode_M401() {
  4733. #if HAS_SERVO_ENDSTOPS
  4734. raise_z_for_servo();
  4735. #endif
  4736. deploy_z_probe();
  4737. }
  4738. /**
  4739. * M402: Retract Z Servo endstop if enabled
  4740. */
  4741. inline void gcode_M402() {
  4742. #if HAS_SERVO_ENDSTOPS
  4743. raise_z_for_servo();
  4744. #endif
  4745. stow_z_probe(false);
  4746. }
  4747. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4748. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4749. /**
  4750. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4751. */
  4752. inline void gcode_M404() {
  4753. if (code_seen('W')) {
  4754. filament_width_nominal = code_value();
  4755. }
  4756. else {
  4757. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4758. SERIAL_PROTOCOLLN(filament_width_nominal);
  4759. }
  4760. }
  4761. /**
  4762. * M405: Turn on filament sensor for control
  4763. */
  4764. inline void gcode_M405() {
  4765. if (code_seen('D')) meas_delay_cm = code_value();
  4766. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4767. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4768. int temp_ratio = widthFil_to_size_ratio();
  4769. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4770. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4771. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4772. }
  4773. filament_sensor = true;
  4774. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4775. //SERIAL_PROTOCOL(filament_width_meas);
  4776. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4777. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4778. }
  4779. /**
  4780. * M406: Turn off filament sensor for control
  4781. */
  4782. inline void gcode_M406() { filament_sensor = false; }
  4783. /**
  4784. * M407: Get measured filament diameter on serial output
  4785. */
  4786. inline void gcode_M407() {
  4787. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4788. SERIAL_PROTOCOLLN(filament_width_meas);
  4789. }
  4790. #endif // FILAMENT_WIDTH_SENSOR
  4791. /**
  4792. * M410: Quickstop - Abort all planned moves
  4793. *
  4794. * This will stop the carriages mid-move, so most likely they
  4795. * will be out of sync with the stepper position after this.
  4796. */
  4797. inline void gcode_M410() { quickStop(); }
  4798. #if ENABLED(MESH_BED_LEVELING)
  4799. /**
  4800. * M420: Enable/Disable Mesh Bed Leveling
  4801. */
  4802. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4803. /**
  4804. * M421: Set a single Mesh Bed Leveling Z coordinate
  4805. */
  4806. inline void gcode_M421() {
  4807. float x = 0, y = 0, z = 0;
  4808. bool err = false, hasX, hasY, hasZ;
  4809. if ((hasX = code_seen('X'))) x = code_value();
  4810. if ((hasY = code_seen('Y'))) y = code_value();
  4811. if ((hasZ = code_seen('Z'))) z = code_value();
  4812. if (!hasX || !hasY || !hasZ) {
  4813. SERIAL_ERROR_START;
  4814. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4815. err = true;
  4816. }
  4817. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4818. SERIAL_ERROR_START;
  4819. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4820. err = true;
  4821. }
  4822. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4823. }
  4824. #endif
  4825. /**
  4826. * M428: Set home_offset based on the distance between the
  4827. * current_position and the nearest "reference point."
  4828. * If an axis is past center its endstop position
  4829. * is the reference-point. Otherwise it uses 0. This allows
  4830. * the Z offset to be set near the bed when using a max endstop.
  4831. *
  4832. * M428 can't be used more than 2cm away from 0 or an endstop.
  4833. *
  4834. * Use M206 to set these values directly.
  4835. */
  4836. inline void gcode_M428() {
  4837. bool err = false;
  4838. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4839. if (axis_homed[i]) {
  4840. float base = (current_position[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4841. diff = current_position[i] - base;
  4842. if (diff > -20 && diff < 20) {
  4843. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  4844. }
  4845. else {
  4846. SERIAL_ERROR_START;
  4847. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4848. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4849. #if HAS_BUZZER
  4850. buzz(200, 40);
  4851. #endif
  4852. err = true;
  4853. break;
  4854. }
  4855. }
  4856. }
  4857. if (!err) {
  4858. sync_plan_position();
  4859. LCD_ALERTMESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  4860. #if HAS_BUZZER
  4861. buzz(200, 659);
  4862. buzz(200, 698);
  4863. #endif
  4864. }
  4865. }
  4866. /**
  4867. * M500: Store settings in EEPROM
  4868. */
  4869. inline void gcode_M500() {
  4870. Config_StoreSettings();
  4871. }
  4872. /**
  4873. * M501: Read settings from EEPROM
  4874. */
  4875. inline void gcode_M501() {
  4876. Config_RetrieveSettings();
  4877. }
  4878. /**
  4879. * M502: Revert to default settings
  4880. */
  4881. inline void gcode_M502() {
  4882. Config_ResetDefault();
  4883. }
  4884. /**
  4885. * M503: print settings currently in memory
  4886. */
  4887. inline void gcode_M503() {
  4888. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4889. }
  4890. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4891. /**
  4892. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4893. */
  4894. inline void gcode_M540() {
  4895. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4896. }
  4897. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4898. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4899. inline void gcode_SET_Z_PROBE_OFFSET() {
  4900. SERIAL_ECHO_START;
  4901. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4902. SERIAL_CHAR(' ');
  4903. if (code_seen('Z')) {
  4904. float value = code_value();
  4905. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4906. zprobe_zoffset = value;
  4907. SERIAL_ECHO(zprobe_zoffset);
  4908. }
  4909. else {
  4910. SERIAL_ECHOPGM(MSG_Z_MIN);
  4911. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4912. SERIAL_ECHOPGM(MSG_Z_MAX);
  4913. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4914. }
  4915. }
  4916. else {
  4917. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4918. }
  4919. SERIAL_EOL;
  4920. }
  4921. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4922. #if ENABLED(FILAMENTCHANGEENABLE)
  4923. /**
  4924. * M600: Pause for filament change
  4925. *
  4926. * E[distance] - Retract the filament this far (negative value)
  4927. * Z[distance] - Move the Z axis by this distance
  4928. * X[position] - Move to this X position, with Y
  4929. * Y[position] - Move to this Y position, with X
  4930. * L[distance] - Retract distance for removal (manual reload)
  4931. *
  4932. * Default values are used for omitted arguments.
  4933. *
  4934. */
  4935. inline void gcode_M600() {
  4936. if (degHotend(active_extruder) < extrude_min_temp) {
  4937. SERIAL_ERROR_START;
  4938. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4939. return;
  4940. }
  4941. float lastpos[NUM_AXIS];
  4942. #if ENABLED(DELTA)
  4943. float fr60 = feedrate / 60;
  4944. #endif
  4945. for (int i = 0; i < NUM_AXIS; i++)
  4946. lastpos[i] = destination[i] = current_position[i];
  4947. #if ENABLED(DELTA)
  4948. #define RUNPLAN calculate_delta(destination); \
  4949. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4950. #else
  4951. #define RUNPLAN line_to_destination();
  4952. #endif
  4953. //retract by E
  4954. if (code_seen('E')) destination[E_AXIS] += code_value();
  4955. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4956. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4957. #endif
  4958. RUNPLAN;
  4959. //lift Z
  4960. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4961. #ifdef FILAMENTCHANGE_ZADD
  4962. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4963. #endif
  4964. RUNPLAN;
  4965. //move xy
  4966. if (code_seen('X')) destination[X_AXIS] = code_value();
  4967. #ifdef FILAMENTCHANGE_XPOS
  4968. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4969. #endif
  4970. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4971. #ifdef FILAMENTCHANGE_YPOS
  4972. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4973. #endif
  4974. RUNPLAN;
  4975. if (code_seen('L')) destination[E_AXIS] += code_value();
  4976. #ifdef FILAMENTCHANGE_FINALRETRACT
  4977. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4978. #endif
  4979. RUNPLAN;
  4980. //finish moves
  4981. st_synchronize();
  4982. //disable extruder steppers so filament can be removed
  4983. disable_e0();
  4984. disable_e1();
  4985. disable_e2();
  4986. disable_e3();
  4987. delay(100);
  4988. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4989. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4990. millis_t next_tick = 0;
  4991. #endif
  4992. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4993. while (!lcd_clicked()) {
  4994. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4995. millis_t ms = millis();
  4996. if (ms >= next_tick) {
  4997. lcd_quick_feedback();
  4998. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4999. }
  5000. idle(true);
  5001. #else
  5002. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5003. destination[E_AXIS] = current_position[E_AXIS];
  5004. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5005. st_synchronize();
  5006. #endif
  5007. } // while(!lcd_clicked)
  5008. KEEPALIVE_STATE(IN_HANDLER);
  5009. lcd_quick_feedback(); // click sound feedback
  5010. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5011. current_position[E_AXIS] = 0;
  5012. st_synchronize();
  5013. #endif
  5014. //return to normal
  5015. if (code_seen('L')) destination[E_AXIS] -= code_value();
  5016. #ifdef FILAMENTCHANGE_FINALRETRACT
  5017. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5018. #endif
  5019. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5020. plan_set_e_position(current_position[E_AXIS]);
  5021. RUNPLAN; //should do nothing
  5022. lcd_reset_alert_level();
  5023. #if ENABLED(DELTA)
  5024. // Move XYZ to starting position, then E
  5025. calculate_delta(lastpos);
  5026. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5027. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5028. #else
  5029. // Move XY to starting position, then Z, then E
  5030. destination[X_AXIS] = lastpos[X_AXIS];
  5031. destination[Y_AXIS] = lastpos[Y_AXIS];
  5032. line_to_destination();
  5033. destination[Z_AXIS] = lastpos[Z_AXIS];
  5034. line_to_destination();
  5035. destination[E_AXIS] = lastpos[E_AXIS];
  5036. line_to_destination();
  5037. #endif
  5038. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5039. filrunoutEnqueued = false;
  5040. #endif
  5041. }
  5042. #endif // FILAMENTCHANGEENABLE
  5043. #if ENABLED(DUAL_X_CARRIAGE)
  5044. /**
  5045. * M605: Set dual x-carriage movement mode
  5046. *
  5047. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5048. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5049. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5050. * millimeters x-offset and an optional differential hotend temperature of
  5051. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5052. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5053. *
  5054. * Note: the X axis should be homed after changing dual x-carriage mode.
  5055. */
  5056. inline void gcode_M605() {
  5057. st_synchronize();
  5058. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5059. switch (dual_x_carriage_mode) {
  5060. case DXC_DUPLICATION_MODE:
  5061. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5062. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5063. SERIAL_ECHO_START;
  5064. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5065. SERIAL_CHAR(' ');
  5066. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5067. SERIAL_CHAR(',');
  5068. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5069. SERIAL_CHAR(' ');
  5070. SERIAL_ECHO(duplicate_extruder_x_offset);
  5071. SERIAL_CHAR(',');
  5072. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5073. break;
  5074. case DXC_FULL_CONTROL_MODE:
  5075. case DXC_AUTO_PARK_MODE:
  5076. break;
  5077. default:
  5078. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5079. break;
  5080. }
  5081. active_extruder_parked = false;
  5082. extruder_duplication_enabled = false;
  5083. delayed_move_time = 0;
  5084. }
  5085. #endif // DUAL_X_CARRIAGE
  5086. /**
  5087. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5088. */
  5089. inline void gcode_M907() {
  5090. #if HAS_DIGIPOTSS
  5091. for (int i = 0; i < NUM_AXIS; i++)
  5092. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  5093. if (code_seen('B')) digipot_current(4, code_value());
  5094. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  5095. #endif
  5096. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5097. if (code_seen('X')) digipot_current(0, code_value());
  5098. #endif
  5099. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5100. if (code_seen('Z')) digipot_current(1, code_value());
  5101. #endif
  5102. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5103. if (code_seen('E')) digipot_current(2, code_value());
  5104. #endif
  5105. #if ENABLED(DIGIPOT_I2C)
  5106. // this one uses actual amps in floating point
  5107. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5108. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5109. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5110. #endif
  5111. #if ENABLED(DAC_STEPPER_CURRENT)
  5112. if (code_seen('S')) {
  5113. float dac_percent = code_value();
  5114. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5115. }
  5116. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5117. #endif
  5118. }
  5119. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5120. /**
  5121. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5122. */
  5123. inline void gcode_M908() {
  5124. #if HAS_DIGIPOTSS
  5125. digitalPotWrite(
  5126. code_seen('P') ? code_value() : 0,
  5127. code_seen('S') ? code_value() : 0
  5128. );
  5129. #endif
  5130. #ifdef DAC_STEPPER_CURRENT
  5131. dac_current_raw(
  5132. code_seen('P') ? code_value_long() : -1,
  5133. code_seen('S') ? code_value_short() : 0
  5134. );
  5135. #endif
  5136. }
  5137. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5138. inline void gcode_M909() { dac_print_values(); }
  5139. inline void gcode_M910() { dac_commit_eeprom(); }
  5140. #endif
  5141. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5142. #if HAS_MICROSTEPS
  5143. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5144. inline void gcode_M350() {
  5145. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5146. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5147. if (code_seen('B')) microstep_mode(4, code_value());
  5148. microstep_readings();
  5149. }
  5150. /**
  5151. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5152. * S# determines MS1 or MS2, X# sets the pin high/low.
  5153. */
  5154. inline void gcode_M351() {
  5155. if (code_seen('S')) switch (code_value_short()) {
  5156. case 1:
  5157. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5158. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5159. break;
  5160. case 2:
  5161. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5162. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5163. break;
  5164. }
  5165. microstep_readings();
  5166. }
  5167. #endif // HAS_MICROSTEPS
  5168. /**
  5169. * M999: Restart after being stopped
  5170. */
  5171. inline void gcode_M999() {
  5172. Running = true;
  5173. lcd_reset_alert_level();
  5174. // gcode_LastN = Stopped_gcode_LastN;
  5175. FlushSerialRequestResend();
  5176. }
  5177. /**
  5178. * T0-T3: Switch tool, usually switching extruders
  5179. *
  5180. * F[mm/min] Set the movement feedrate
  5181. */
  5182. inline void gcode_T(uint8_t tmp_extruder) {
  5183. if (tmp_extruder >= EXTRUDERS) {
  5184. SERIAL_ECHO_START;
  5185. SERIAL_CHAR('T');
  5186. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5187. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5188. }
  5189. else {
  5190. target_extruder = tmp_extruder;
  5191. #if EXTRUDERS > 1
  5192. bool make_move = false;
  5193. #endif
  5194. if (code_seen('F')) {
  5195. #if EXTRUDERS > 1
  5196. make_move = true;
  5197. #endif
  5198. float next_feedrate = code_value();
  5199. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5200. }
  5201. #if EXTRUDERS > 1
  5202. if (tmp_extruder != active_extruder) {
  5203. // Save current position to return to after applying extruder offset
  5204. set_destination_to_current();
  5205. #if ENABLED(DUAL_X_CARRIAGE)
  5206. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5207. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5208. // Park old head: 1) raise 2) move to park position 3) lower
  5209. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5210. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5211. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5212. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5213. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5214. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5215. st_synchronize();
  5216. }
  5217. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5218. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5219. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5220. active_extruder = tmp_extruder;
  5221. // This function resets the max/min values - the current position may be overwritten below.
  5222. set_axis_is_at_home(X_AXIS);
  5223. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5224. current_position[X_AXIS] = inactive_extruder_x_pos;
  5225. inactive_extruder_x_pos = destination[X_AXIS];
  5226. }
  5227. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5228. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5229. if (active_extruder == 0 || active_extruder_parked)
  5230. current_position[X_AXIS] = inactive_extruder_x_pos;
  5231. else
  5232. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5233. inactive_extruder_x_pos = destination[X_AXIS];
  5234. extruder_duplication_enabled = false;
  5235. }
  5236. else {
  5237. // record raised toolhead position for use by unpark
  5238. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5239. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5240. active_extruder_parked = true;
  5241. delayed_move_time = 0;
  5242. }
  5243. #else // !DUAL_X_CARRIAGE
  5244. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5245. // Offset extruder, make sure to apply the bed level rotation matrix
  5246. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5247. extruder_offset[Y_AXIS][tmp_extruder],
  5248. extruder_offset[Z_AXIS][tmp_extruder]),
  5249. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5250. extruder_offset[Y_AXIS][active_extruder],
  5251. extruder_offset[Z_AXIS][active_extruder]),
  5252. offset_vec = tmp_offset_vec - act_offset_vec;
  5253. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5254. current_position[X_AXIS] += offset_vec.x;
  5255. current_position[Y_AXIS] += offset_vec.y;
  5256. current_position[Z_AXIS] += offset_vec.z;
  5257. #else // !AUTO_BED_LEVELING_FEATURE
  5258. // Offset extruder (only by XY)
  5259. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5260. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5261. #endif // !AUTO_BED_LEVELING_FEATURE
  5262. // Set the new active extruder and position
  5263. active_extruder = tmp_extruder;
  5264. #endif // !DUAL_X_CARRIAGE
  5265. #if ENABLED(DELTA)
  5266. sync_plan_position_delta();
  5267. #else
  5268. sync_plan_position();
  5269. #endif
  5270. // Move to the old position if 'F' was in the parameters
  5271. if (make_move && IsRunning()) prepare_move();
  5272. }
  5273. #if ENABLED(EXT_SOLENOID)
  5274. st_synchronize();
  5275. disable_all_solenoids();
  5276. enable_solenoid_on_active_extruder();
  5277. #endif // EXT_SOLENOID
  5278. #endif // EXTRUDERS > 1
  5279. SERIAL_ECHO_START;
  5280. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5281. SERIAL_PROTOCOLLN((int)active_extruder);
  5282. }
  5283. }
  5284. /**
  5285. * Process a single command and dispatch it to its handler
  5286. * This is called from the main loop()
  5287. */
  5288. void process_next_command() {
  5289. current_command = command_queue[cmd_queue_index_r];
  5290. if (DEBUGGING(ECHO)) {
  5291. SERIAL_ECHO_START;
  5292. SERIAL_ECHOLN(current_command);
  5293. }
  5294. // Sanitize the current command:
  5295. // - Skip leading spaces
  5296. // - Bypass N[-0-9][0-9]*[ ]*
  5297. // - Overwrite * with nul to mark the end
  5298. while (*current_command == ' ') ++current_command;
  5299. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5300. current_command += 2; // skip N[-0-9]
  5301. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5302. while (*current_command == ' ') ++current_command; // skip [ ]*
  5303. }
  5304. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5305. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5306. char *cmd_ptr = current_command;
  5307. // Get the command code, which must be G, M, or T
  5308. char command_code = *cmd_ptr++;
  5309. // Skip spaces to get the numeric part
  5310. while (*cmd_ptr == ' ') cmd_ptr++;
  5311. uint16_t codenum = 0; // define ahead of goto
  5312. // Bail early if there's no code
  5313. bool code_is_good = NUMERIC(*cmd_ptr);
  5314. if (!code_is_good) goto ExitUnknownCommand;
  5315. // Get and skip the code number
  5316. do {
  5317. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5318. cmd_ptr++;
  5319. } while (NUMERIC(*cmd_ptr));
  5320. // Skip all spaces to get to the first argument, or nul
  5321. while (*cmd_ptr == ' ') cmd_ptr++;
  5322. // The command's arguments (if any) start here, for sure!
  5323. current_command_args = cmd_ptr;
  5324. KEEPALIVE_STATE(IN_HANDLER);
  5325. // Handle a known G, M, or T
  5326. switch (command_code) {
  5327. case 'G': switch (codenum) {
  5328. // G0, G1
  5329. case 0:
  5330. case 1:
  5331. gcode_G0_G1();
  5332. break;
  5333. // G2, G3
  5334. #if DISABLED(SCARA)
  5335. case 2: // G2 - CW ARC
  5336. case 3: // G3 - CCW ARC
  5337. gcode_G2_G3(codenum == 2);
  5338. break;
  5339. #endif
  5340. // G4 Dwell
  5341. case 4:
  5342. gcode_G4();
  5343. break;
  5344. #if ENABLED(FWRETRACT)
  5345. case 10: // G10: retract
  5346. case 11: // G11: retract_recover
  5347. gcode_G10_G11(codenum == 10);
  5348. break;
  5349. #endif //FWRETRACT
  5350. case 28: // G28: Home all axes, one at a time
  5351. gcode_G28();
  5352. break;
  5353. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5354. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5355. gcode_G29();
  5356. break;
  5357. #endif
  5358. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5359. #if DISABLED(Z_PROBE_SLED)
  5360. case 30: // G30 Single Z probe
  5361. gcode_G30();
  5362. break;
  5363. #else // Z_PROBE_SLED
  5364. case 31: // G31: dock the sled
  5365. case 32: // G32: undock the sled
  5366. dock_sled(codenum == 31);
  5367. break;
  5368. #endif // Z_PROBE_SLED
  5369. #endif // AUTO_BED_LEVELING_FEATURE
  5370. case 90: // G90
  5371. relative_mode = false;
  5372. break;
  5373. case 91: // G91
  5374. relative_mode = true;
  5375. break;
  5376. case 92: // G92
  5377. gcode_G92();
  5378. break;
  5379. }
  5380. break;
  5381. case 'M': switch (codenum) {
  5382. #if ENABLED(ULTIPANEL)
  5383. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5384. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5385. gcode_M0_M1();
  5386. break;
  5387. #endif // ULTIPANEL
  5388. case 17:
  5389. gcode_M17();
  5390. break;
  5391. #if ENABLED(SDSUPPORT)
  5392. case 20: // M20 - list SD card
  5393. gcode_M20(); break;
  5394. case 21: // M21 - init SD card
  5395. gcode_M21(); break;
  5396. case 22: //M22 - release SD card
  5397. gcode_M22(); break;
  5398. case 23: //M23 - Select file
  5399. gcode_M23(); break;
  5400. case 24: //M24 - Start SD print
  5401. gcode_M24(); break;
  5402. case 25: //M25 - Pause SD print
  5403. gcode_M25(); break;
  5404. case 26: //M26 - Set SD index
  5405. gcode_M26(); break;
  5406. case 27: //M27 - Get SD status
  5407. gcode_M27(); break;
  5408. case 28: //M28 - Start SD write
  5409. gcode_M28(); break;
  5410. case 29: //M29 - Stop SD write
  5411. gcode_M29(); break;
  5412. case 30: //M30 <filename> Delete File
  5413. gcode_M30(); break;
  5414. case 32: //M32 - Select file and start SD print
  5415. gcode_M32(); break;
  5416. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5417. case 33: //M33 - Get the long full path to a file or folder
  5418. gcode_M33(); break;
  5419. #endif // LONG_FILENAME_HOST_SUPPORT
  5420. case 928: //M928 - Start SD write
  5421. gcode_M928(); break;
  5422. #endif //SDSUPPORT
  5423. case 31: //M31 take time since the start of the SD print or an M109 command
  5424. gcode_M31();
  5425. break;
  5426. case 42: //M42 -Change pin status via gcode
  5427. gcode_M42();
  5428. break;
  5429. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5430. case 48: // M48 Z probe repeatability
  5431. gcode_M48();
  5432. break;
  5433. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5434. case 75: // Start print timer
  5435. gcode_M75();
  5436. break;
  5437. case 76: // Pause print timer
  5438. gcode_M76();
  5439. break;
  5440. case 77: // Stop print timer
  5441. gcode_M77();
  5442. break;
  5443. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5444. case 100:
  5445. gcode_M100();
  5446. break;
  5447. #endif
  5448. case 104: // M104
  5449. gcode_M104();
  5450. break;
  5451. case 110: // M110: Set Current Line Number
  5452. gcode_M110();
  5453. break;
  5454. case 111: // M111: Set debug level
  5455. gcode_M111();
  5456. break;
  5457. case 112: // M112: Emergency Stop
  5458. gcode_M112();
  5459. break;
  5460. case 140: // M140: Set bed temp
  5461. gcode_M140();
  5462. break;
  5463. case 105: // M105: Read current temperature
  5464. gcode_M105();
  5465. KEEPALIVE_STATE(NOT_BUSY);
  5466. return; // "ok" already printed
  5467. case 109: // M109: Wait for temperature
  5468. gcode_M109();
  5469. break;
  5470. #if HAS_TEMP_BED
  5471. case 190: // M190: Wait for bed heater to reach target
  5472. gcode_M190();
  5473. break;
  5474. #endif // HAS_TEMP_BED
  5475. #if FAN_COUNT > 0
  5476. case 106: // M106: Fan On
  5477. gcode_M106();
  5478. break;
  5479. case 107: // M107: Fan Off
  5480. gcode_M107();
  5481. break;
  5482. #endif // FAN_COUNT > 0
  5483. #if ENABLED(BARICUDA)
  5484. // PWM for HEATER_1_PIN
  5485. #if HAS_HEATER_1
  5486. case 126: // M126: valve open
  5487. gcode_M126();
  5488. break;
  5489. case 127: // M127: valve closed
  5490. gcode_M127();
  5491. break;
  5492. #endif // HAS_HEATER_1
  5493. // PWM for HEATER_2_PIN
  5494. #if HAS_HEATER_2
  5495. case 128: // M128: valve open
  5496. gcode_M128();
  5497. break;
  5498. case 129: // M129: valve closed
  5499. gcode_M129();
  5500. break;
  5501. #endif // HAS_HEATER_2
  5502. #endif // BARICUDA
  5503. #if HAS_POWER_SWITCH
  5504. case 80: // M80: Turn on Power Supply
  5505. gcode_M80();
  5506. break;
  5507. #endif // HAS_POWER_SWITCH
  5508. case 81: // M81: Turn off Power, including Power Supply, if possible
  5509. gcode_M81();
  5510. break;
  5511. case 82:
  5512. gcode_M82();
  5513. break;
  5514. case 83:
  5515. gcode_M83();
  5516. break;
  5517. case 18: // (for compatibility)
  5518. case 84: // M84
  5519. gcode_M18_M84();
  5520. break;
  5521. case 85: // M85
  5522. gcode_M85();
  5523. break;
  5524. case 92: // M92: Set the steps-per-unit for one or more axes
  5525. gcode_M92();
  5526. break;
  5527. case 115: // M115: Report capabilities
  5528. gcode_M115();
  5529. break;
  5530. case 117: // M117: Set LCD message text, if possible
  5531. gcode_M117();
  5532. break;
  5533. case 114: // M114: Report current position
  5534. gcode_M114();
  5535. break;
  5536. case 120: // M120: Enable endstops
  5537. gcode_M120();
  5538. break;
  5539. case 121: // M121: Disable endstops
  5540. gcode_M121();
  5541. break;
  5542. case 119: // M119: Report endstop states
  5543. gcode_M119();
  5544. break;
  5545. #if ENABLED(ULTIPANEL)
  5546. case 145: // M145: Set material heatup parameters
  5547. gcode_M145();
  5548. break;
  5549. #endif
  5550. #if ENABLED(BLINKM)
  5551. case 150: // M150
  5552. gcode_M150();
  5553. break;
  5554. #endif //BLINKM
  5555. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5556. case 155:
  5557. gcode_M155();
  5558. break;
  5559. case 156:
  5560. gcode_M156();
  5561. break;
  5562. #endif //EXPERIMENTAL_I2CBUS
  5563. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5564. gcode_M200();
  5565. break;
  5566. case 201: // M201
  5567. gcode_M201();
  5568. break;
  5569. #if 0 // Not used for Sprinter/grbl gen6
  5570. case 202: // M202
  5571. gcode_M202();
  5572. break;
  5573. #endif
  5574. case 203: // M203 max feedrate mm/sec
  5575. gcode_M203();
  5576. break;
  5577. case 204: // M204 acclereration S normal moves T filmanent only moves
  5578. gcode_M204();
  5579. break;
  5580. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5581. gcode_M205();
  5582. break;
  5583. case 206: // M206 additional homing offset
  5584. gcode_M206();
  5585. break;
  5586. #if ENABLED(DELTA)
  5587. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5588. gcode_M665();
  5589. break;
  5590. #endif
  5591. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5592. case 666: // M666 set delta / dual endstop adjustment
  5593. gcode_M666();
  5594. break;
  5595. #endif
  5596. #if ENABLED(FWRETRACT)
  5597. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5598. gcode_M207();
  5599. break;
  5600. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5601. gcode_M208();
  5602. break;
  5603. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5604. gcode_M209();
  5605. break;
  5606. #endif // FWRETRACT
  5607. #if EXTRUDERS > 1
  5608. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5609. gcode_M218();
  5610. break;
  5611. #endif
  5612. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5613. gcode_M220();
  5614. break;
  5615. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5616. gcode_M221();
  5617. break;
  5618. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5619. gcode_M226();
  5620. break;
  5621. #if HAS_SERVOS
  5622. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5623. gcode_M280();
  5624. break;
  5625. #endif // HAS_SERVOS
  5626. #if HAS_BUZZER
  5627. case 300: // M300 - Play beep tone
  5628. gcode_M300();
  5629. break;
  5630. #endif // HAS_BUZZER
  5631. #if ENABLED(PIDTEMP)
  5632. case 301: // M301
  5633. gcode_M301();
  5634. break;
  5635. #endif // PIDTEMP
  5636. #if ENABLED(PIDTEMPBED)
  5637. case 304: // M304
  5638. gcode_M304();
  5639. break;
  5640. #endif // PIDTEMPBED
  5641. #if defined(CHDK) || HAS_PHOTOGRAPH
  5642. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5643. gcode_M240();
  5644. break;
  5645. #endif // CHDK || PHOTOGRAPH_PIN
  5646. #if ENABLED(HAS_LCD_CONTRAST)
  5647. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5648. gcode_M250();
  5649. break;
  5650. #endif // HAS_LCD_CONTRAST
  5651. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5652. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5653. gcode_M302();
  5654. break;
  5655. #endif // PREVENT_DANGEROUS_EXTRUDE
  5656. case 303: // M303 PID autotune
  5657. gcode_M303();
  5658. break;
  5659. #if ENABLED(SCARA)
  5660. case 360: // M360 SCARA Theta pos1
  5661. if (gcode_M360()) return;
  5662. break;
  5663. case 361: // M361 SCARA Theta pos2
  5664. if (gcode_M361()) return;
  5665. break;
  5666. case 362: // M362 SCARA Psi pos1
  5667. if (gcode_M362()) return;
  5668. break;
  5669. case 363: // M363 SCARA Psi pos2
  5670. if (gcode_M363()) return;
  5671. break;
  5672. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5673. if (gcode_M364()) return;
  5674. break;
  5675. case 365: // M365 Set SCARA scaling for X Y Z
  5676. gcode_M365();
  5677. break;
  5678. #endif // SCARA
  5679. case 400: // M400 finish all moves
  5680. gcode_M400();
  5681. break;
  5682. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5683. case 401:
  5684. gcode_M401();
  5685. break;
  5686. case 402:
  5687. gcode_M402();
  5688. break;
  5689. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5690. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5691. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5692. gcode_M404();
  5693. break;
  5694. case 405: //M405 Turn on filament sensor for control
  5695. gcode_M405();
  5696. break;
  5697. case 406: //M406 Turn off filament sensor for control
  5698. gcode_M406();
  5699. break;
  5700. case 407: //M407 Display measured filament diameter
  5701. gcode_M407();
  5702. break;
  5703. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5704. case 410: // M410 quickstop - Abort all the planned moves.
  5705. gcode_M410();
  5706. break;
  5707. #if ENABLED(MESH_BED_LEVELING)
  5708. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5709. gcode_M420();
  5710. break;
  5711. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5712. gcode_M421();
  5713. break;
  5714. #endif
  5715. case 428: // M428 Apply current_position to home_offset
  5716. gcode_M428();
  5717. break;
  5718. case 500: // M500 Store settings in EEPROM
  5719. gcode_M500();
  5720. break;
  5721. case 501: // M501 Read settings from EEPROM
  5722. gcode_M501();
  5723. break;
  5724. case 502: // M502 Revert to default settings
  5725. gcode_M502();
  5726. break;
  5727. case 503: // M503 print settings currently in memory
  5728. gcode_M503();
  5729. break;
  5730. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5731. case 540:
  5732. gcode_M540();
  5733. break;
  5734. #endif
  5735. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5736. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5737. gcode_SET_Z_PROBE_OFFSET();
  5738. break;
  5739. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5740. #if ENABLED(FILAMENTCHANGEENABLE)
  5741. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5742. gcode_M600();
  5743. break;
  5744. #endif // FILAMENTCHANGEENABLE
  5745. #if ENABLED(DUAL_X_CARRIAGE)
  5746. case 605:
  5747. gcode_M605();
  5748. break;
  5749. #endif // DUAL_X_CARRIAGE
  5750. case 907: // M907 Set digital trimpot motor current using axis codes.
  5751. gcode_M907();
  5752. break;
  5753. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5754. case 908: // M908 Control digital trimpot directly.
  5755. gcode_M908();
  5756. break;
  5757. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5758. case 909: // M909 Print digipot/DAC current value
  5759. gcode_M909();
  5760. break;
  5761. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5762. gcode_M910();
  5763. break;
  5764. #endif
  5765. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5766. #if HAS_MICROSTEPS
  5767. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5768. gcode_M350();
  5769. break;
  5770. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5771. gcode_M351();
  5772. break;
  5773. #endif // HAS_MICROSTEPS
  5774. case 999: // M999: Restart after being Stopped
  5775. gcode_M999();
  5776. break;
  5777. }
  5778. break;
  5779. case 'T':
  5780. gcode_T(codenum);
  5781. break;
  5782. default: code_is_good = false;
  5783. }
  5784. KEEPALIVE_STATE(NOT_BUSY);
  5785. ExitUnknownCommand:
  5786. // Still unknown command? Throw an error
  5787. if (!code_is_good) unknown_command_error();
  5788. ok_to_send();
  5789. }
  5790. void FlushSerialRequestResend() {
  5791. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5792. MYSERIAL.flush();
  5793. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5794. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5795. ok_to_send();
  5796. }
  5797. void ok_to_send() {
  5798. refresh_cmd_timeout();
  5799. if (!send_ok[cmd_queue_index_r]) return;
  5800. SERIAL_PROTOCOLPGM(MSG_OK);
  5801. #if ENABLED(ADVANCED_OK)
  5802. char* p = command_queue[cmd_queue_index_r];
  5803. if (*p == 'N') {
  5804. SERIAL_PROTOCOL(' ');
  5805. SERIAL_ECHO(*p++);
  5806. while (NUMERIC_SIGNED(*p))
  5807. SERIAL_ECHO(*p++);
  5808. }
  5809. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5810. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5811. #endif
  5812. SERIAL_EOL;
  5813. }
  5814. void clamp_to_software_endstops(float target[3]) {
  5815. if (min_software_endstops) {
  5816. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5817. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5818. float negative_z_offset = 0;
  5819. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5820. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5821. if (home_offset[Z_AXIS] < 0) {
  5822. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5823. if (DEBUGGING(LEVELING)) {
  5824. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5825. SERIAL_EOL;
  5826. }
  5827. #endif
  5828. negative_z_offset += home_offset[Z_AXIS];
  5829. }
  5830. #endif
  5831. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5832. }
  5833. if (max_software_endstops) {
  5834. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5835. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5836. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5837. }
  5838. }
  5839. #if ENABLED(DELTA)
  5840. void recalc_delta_settings(float radius, float diagonal_rod) {
  5841. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5842. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5843. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5844. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5845. delta_tower3_x = 0.0; // back middle tower
  5846. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5847. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5848. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5849. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5850. }
  5851. void calculate_delta(float cartesian[3]) {
  5852. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5853. - sq(delta_tower1_x - cartesian[X_AXIS])
  5854. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5855. ) + cartesian[Z_AXIS];
  5856. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5857. - sq(delta_tower2_x - cartesian[X_AXIS])
  5858. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5859. ) + cartesian[Z_AXIS];
  5860. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5861. - sq(delta_tower3_x - cartesian[X_AXIS])
  5862. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5863. ) + cartesian[Z_AXIS];
  5864. /**
  5865. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5866. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5867. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5868. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5869. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5870. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5871. */
  5872. }
  5873. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5874. // Adjust print surface height by linear interpolation over the bed_level array.
  5875. void adjust_delta(float cartesian[3]) {
  5876. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5877. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5878. float h1 = 0.001 - half, h2 = half - 0.001,
  5879. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5880. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5881. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5882. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5883. z1 = bed_level[floor_x + half][floor_y + half],
  5884. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5885. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5886. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5887. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5888. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5889. offset = (1 - ratio_x) * left + ratio_x * right;
  5890. delta[X_AXIS] += offset;
  5891. delta[Y_AXIS] += offset;
  5892. delta[Z_AXIS] += offset;
  5893. /**
  5894. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5895. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5896. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5897. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5898. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5899. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5900. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5901. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5902. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5903. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5904. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5905. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5906. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5907. */
  5908. }
  5909. #endif // AUTO_BED_LEVELING_FEATURE
  5910. #endif // DELTA
  5911. #if ENABLED(MESH_BED_LEVELING)
  5912. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5913. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5914. if (!mbl.active) {
  5915. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5916. set_current_to_destination();
  5917. return;
  5918. }
  5919. int pix = mbl.select_x_index(current_position[X_AXIS] - home_offset[X_AXIS]);
  5920. int piy = mbl.select_y_index(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  5921. int ix = mbl.select_x_index(x - home_offset[X_AXIS]);
  5922. int iy = mbl.select_y_index(y - home_offset[Y_AXIS]);
  5923. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5924. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5925. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5926. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5927. if (pix == ix && piy == iy) {
  5928. // Start and end on same mesh square
  5929. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5930. set_current_to_destination();
  5931. return;
  5932. }
  5933. float nx, ny, nz, ne, normalized_dist;
  5934. if (ix > pix && TEST(x_splits, ix)) {
  5935. nx = mbl.get_x(ix) + home_offset[X_AXIS];
  5936. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5937. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5938. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5939. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5940. CBI(x_splits, ix);
  5941. }
  5942. else if (ix < pix && TEST(x_splits, pix)) {
  5943. nx = mbl.get_x(pix) + home_offset[X_AXIS];
  5944. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5945. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5946. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5947. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5948. CBI(x_splits, pix);
  5949. }
  5950. else if (iy > piy && TEST(y_splits, iy)) {
  5951. ny = mbl.get_y(iy) + home_offset[Y_AXIS];
  5952. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5953. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5954. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5955. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5956. CBI(y_splits, iy);
  5957. }
  5958. else if (iy < piy && TEST(y_splits, piy)) {
  5959. ny = mbl.get_y(piy) + home_offset[Y_AXIS];
  5960. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5961. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5962. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5963. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5964. CBI(y_splits, piy);
  5965. }
  5966. else {
  5967. // Already split on a border
  5968. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5969. set_current_to_destination();
  5970. return;
  5971. }
  5972. // Do the split and look for more borders
  5973. destination[X_AXIS] = nx;
  5974. destination[Y_AXIS] = ny;
  5975. destination[Z_AXIS] = nz;
  5976. destination[E_AXIS] = ne;
  5977. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  5978. destination[X_AXIS] = x;
  5979. destination[Y_AXIS] = y;
  5980. destination[Z_AXIS] = z;
  5981. destination[E_AXIS] = e;
  5982. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5983. }
  5984. #endif // MESH_BED_LEVELING
  5985. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5986. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  5987. if (DEBUGGING(DRYRUN)) return;
  5988. float de = dest_e - curr_e;
  5989. if (de) {
  5990. if (degHotend(active_extruder) < extrude_min_temp) {
  5991. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5992. SERIAL_ECHO_START;
  5993. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5994. }
  5995. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5996. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5997. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5998. SERIAL_ECHO_START;
  5999. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6000. }
  6001. #endif
  6002. }
  6003. }
  6004. #endif // PREVENT_DANGEROUS_EXTRUDE
  6005. #if ENABLED(DELTA) || ENABLED(SCARA)
  6006. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  6007. float difference[NUM_AXIS];
  6008. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6009. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6010. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6011. if (cartesian_mm < 0.000001) return false;
  6012. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  6013. int steps = max(1, int(delta_segments_per_second * seconds));
  6014. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6015. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6016. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6017. for (int s = 1; s <= steps; s++) {
  6018. float fraction = float(s) / float(steps);
  6019. for (int8_t i = 0; i < NUM_AXIS; i++)
  6020. target[i] = current_position[i] + difference[i] * fraction;
  6021. calculate_delta(target);
  6022. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6023. adjust_delta(target);
  6024. #endif
  6025. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  6026. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  6027. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  6028. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  6029. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6030. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6031. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  6032. }
  6033. return true;
  6034. }
  6035. #endif // DELTA || SCARA
  6036. #if ENABLED(SCARA)
  6037. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6038. #endif
  6039. #if ENABLED(DUAL_X_CARRIAGE)
  6040. inline bool prepare_move_dual_x_carriage() {
  6041. if (active_extruder_parked) {
  6042. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6043. // move duplicate extruder into correct duplication position.
  6044. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6045. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6046. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  6047. sync_plan_position();
  6048. st_synchronize();
  6049. extruder_duplication_enabled = true;
  6050. active_extruder_parked = false;
  6051. }
  6052. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6053. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6054. // This is a travel move (with no extrusion)
  6055. // Skip it, but keep track of the current position
  6056. // (so it can be used as the start of the next non-travel move)
  6057. if (delayed_move_time != 0xFFFFFFFFUL) {
  6058. set_current_to_destination();
  6059. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6060. delayed_move_time = millis();
  6061. return false;
  6062. }
  6063. }
  6064. delayed_move_time = 0;
  6065. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6066. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6067. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  6068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6069. active_extruder_parked = false;
  6070. }
  6071. }
  6072. return true;
  6073. }
  6074. #endif // DUAL_X_CARRIAGE
  6075. #if DISABLED(DELTA) && DISABLED(SCARA)
  6076. inline bool prepare_move_cartesian() {
  6077. // Do not use feedrate_multiplier for E or Z only moves
  6078. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6079. line_to_destination();
  6080. }
  6081. else {
  6082. #if ENABLED(MESH_BED_LEVELING)
  6083. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6084. return false;
  6085. #else
  6086. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6087. #endif
  6088. }
  6089. return true;
  6090. }
  6091. #endif // !DELTA && !SCARA
  6092. /**
  6093. * Prepare a single move and get ready for the next one
  6094. *
  6095. * (This may call plan_buffer_line several times to put
  6096. * smaller moves into the planner for DELTA or SCARA.)
  6097. */
  6098. void prepare_move() {
  6099. clamp_to_software_endstops(destination);
  6100. refresh_cmd_timeout();
  6101. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6102. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6103. #endif
  6104. #if ENABLED(SCARA)
  6105. if (!prepare_move_scara(destination)) return;
  6106. #elif ENABLED(DELTA)
  6107. if (!prepare_move_delta(destination)) return;
  6108. #endif
  6109. #if ENABLED(DUAL_X_CARRIAGE)
  6110. if (!prepare_move_dual_x_carriage()) return;
  6111. #endif
  6112. #if DISABLED(DELTA) && DISABLED(SCARA)
  6113. if (!prepare_move_cartesian()) return;
  6114. #endif
  6115. set_current_to_destination();
  6116. }
  6117. /**
  6118. * Plan an arc in 2 dimensions
  6119. *
  6120. * The arc is approximated by generating many small linear segments.
  6121. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6122. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6123. * larger segments will tend to be more efficient. Your slicer should have
  6124. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6125. */
  6126. void plan_arc(
  6127. float target[NUM_AXIS], // Destination position
  6128. float* offset, // Center of rotation relative to current_position
  6129. uint8_t clockwise // Clockwise?
  6130. ) {
  6131. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6132. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  6133. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  6134. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6135. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6136. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  6137. r_axis1 = -offset[Y_AXIS],
  6138. rt_axis0 = target[X_AXIS] - center_axis0,
  6139. rt_axis1 = target[Y_AXIS] - center_axis1;
  6140. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6141. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  6142. if (angular_travel < 0) angular_travel += RADIANS(360);
  6143. if (clockwise) angular_travel -= RADIANS(360);
  6144. // Make a circle if the angular rotation is 0
  6145. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  6146. angular_travel += RADIANS(360);
  6147. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6148. if (mm_of_travel < 0.001) return;
  6149. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6150. if (segments == 0) segments = 1;
  6151. float theta_per_segment = angular_travel / segments;
  6152. float linear_per_segment = linear_travel / segments;
  6153. float extruder_per_segment = extruder_travel / segments;
  6154. /**
  6155. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6156. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6157. * r_T = [cos(phi) -sin(phi);
  6158. * sin(phi) cos(phi] * r ;
  6159. *
  6160. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6161. * defined from the circle center to the initial position. Each line segment is formed by successive
  6162. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6163. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6164. * all double numbers are single precision on the Arduino. (True double precision will not have
  6165. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6166. * tool precision in some cases. Therefore, arc path correction is implemented.
  6167. *
  6168. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6169. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6170. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6171. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6172. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6173. * issue for CNC machines with the single precision Arduino calculations.
  6174. *
  6175. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6176. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6177. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6178. * This is important when there are successive arc motions.
  6179. */
  6180. // Vector rotation matrix values
  6181. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6182. float sin_T = theta_per_segment;
  6183. float arc_target[NUM_AXIS];
  6184. float sin_Ti;
  6185. float cos_Ti;
  6186. float r_axisi;
  6187. uint16_t i;
  6188. int8_t count = 0;
  6189. // Initialize the linear axis
  6190. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6191. // Initialize the extruder axis
  6192. arc_target[E_AXIS] = current_position[E_AXIS];
  6193. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6194. for (i = 1; i < segments; i++) { // Increment (segments-1)
  6195. if (count < N_ARC_CORRECTION) {
  6196. // Apply vector rotation matrix to previous r_axis0 / 1
  6197. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  6198. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  6199. r_axis1 = r_axisi;
  6200. count++;
  6201. }
  6202. else {
  6203. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6204. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6205. cos_Ti = cos(i * theta_per_segment);
  6206. sin_Ti = sin(i * theta_per_segment);
  6207. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6208. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6209. count = 0;
  6210. }
  6211. // Update arc_target location
  6212. arc_target[X_AXIS] = center_axis0 + r_axis0;
  6213. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  6214. arc_target[Z_AXIS] += linear_per_segment;
  6215. arc_target[E_AXIS] += extruder_per_segment;
  6216. clamp_to_software_endstops(arc_target);
  6217. #if ENABLED(DELTA) || ENABLED(SCARA)
  6218. calculate_delta(arc_target);
  6219. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6220. adjust_delta(arc_target);
  6221. #endif
  6222. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6223. #else
  6224. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6225. #endif
  6226. }
  6227. // Ensure last segment arrives at target location.
  6228. #if ENABLED(DELTA) || ENABLED(SCARA)
  6229. calculate_delta(target);
  6230. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6231. adjust_delta(target);
  6232. #endif
  6233. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6234. #else
  6235. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6236. #endif
  6237. // As far as the parser is concerned, the position is now == target. In reality the
  6238. // motion control system might still be processing the action and the real tool position
  6239. // in any intermediate location.
  6240. set_current_to_destination();
  6241. }
  6242. #if HAS_CONTROLLERFAN
  6243. void controllerFan() {
  6244. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6245. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6246. millis_t ms = millis();
  6247. if (ms >= nextMotorCheck) {
  6248. nextMotorCheck = ms + 2500; // Not a time critical function, so only check every 2.5s
  6249. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6250. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6251. #if EXTRUDERS > 1
  6252. || E1_ENABLE_READ == E_ENABLE_ON
  6253. #if HAS_X2_ENABLE
  6254. || X2_ENABLE_READ == X_ENABLE_ON
  6255. #endif
  6256. #if EXTRUDERS > 2
  6257. || E2_ENABLE_READ == E_ENABLE_ON
  6258. #if EXTRUDERS > 3
  6259. || E3_ENABLE_READ == E_ENABLE_ON
  6260. #endif
  6261. #endif
  6262. #endif
  6263. ) {
  6264. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6265. }
  6266. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6267. uint8_t speed = (lastMotorOn == 0 || ms >= lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL) ? 0 : CONTROLLERFAN_SPEED;
  6268. // allows digital or PWM fan output to be used (see M42 handling)
  6269. digitalWrite(CONTROLLERFAN_PIN, speed);
  6270. analogWrite(CONTROLLERFAN_PIN, speed);
  6271. }
  6272. }
  6273. #endif // HAS_CONTROLLERFAN
  6274. #if ENABLED(SCARA)
  6275. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6276. // Perform forward kinematics, and place results in delta[3]
  6277. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6278. float x_sin, x_cos, y_sin, y_cos;
  6279. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6280. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6281. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6282. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6283. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6284. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6285. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6286. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6287. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6288. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6289. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6290. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6291. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6292. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6293. }
  6294. void calculate_delta(float cartesian[3]) {
  6295. //reverse kinematics.
  6296. // Perform reversed kinematics, and place results in delta[3]
  6297. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6298. float SCARA_pos[2];
  6299. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6300. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6301. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6302. #if (Linkage_1 == Linkage_2)
  6303. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6304. #else
  6305. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6306. #endif
  6307. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6308. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6309. SCARA_K2 = Linkage_2 * SCARA_S2;
  6310. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6311. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6312. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6313. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6314. delta[Z_AXIS] = cartesian[Z_AXIS];
  6315. /**
  6316. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6317. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6318. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6319. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6320. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6321. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6322. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6323. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6324. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6325. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6326. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6327. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6328. SERIAL_EOL;
  6329. */
  6330. }
  6331. #endif // SCARA
  6332. #if ENABLED(TEMP_STAT_LEDS)
  6333. static bool red_led = false;
  6334. static millis_t next_status_led_update_ms = 0;
  6335. void handle_status_leds(void) {
  6336. float max_temp = 0.0;
  6337. if (millis() > next_status_led_update_ms) {
  6338. next_status_led_update_ms += 500; // Update every 0.5s
  6339. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6340. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6341. #if HAS_TEMP_BED
  6342. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6343. #endif
  6344. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6345. if (new_led != red_led) {
  6346. red_led = new_led;
  6347. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6348. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6349. }
  6350. }
  6351. }
  6352. #endif
  6353. void enable_all_steppers() {
  6354. enable_x();
  6355. enable_y();
  6356. enable_z();
  6357. enable_e0();
  6358. enable_e1();
  6359. enable_e2();
  6360. enable_e3();
  6361. }
  6362. void disable_all_steppers() {
  6363. disable_x();
  6364. disable_y();
  6365. disable_z();
  6366. disable_e0();
  6367. disable_e1();
  6368. disable_e2();
  6369. disable_e3();
  6370. }
  6371. /**
  6372. * Standard idle routine keeps the machine alive
  6373. */
  6374. void idle(
  6375. #if ENABLED(FILAMENTCHANGEENABLE)
  6376. bool no_stepper_sleep/*=false*/
  6377. #endif
  6378. ) {
  6379. manage_heater();
  6380. manage_inactivity(
  6381. #if ENABLED(FILAMENTCHANGEENABLE)
  6382. no_stepper_sleep
  6383. #endif
  6384. );
  6385. host_keepalive();
  6386. lcd_update();
  6387. }
  6388. /**
  6389. * Manage several activities:
  6390. * - Check for Filament Runout
  6391. * - Keep the command buffer full
  6392. * - Check for maximum inactive time between commands
  6393. * - Check for maximum inactive time between stepper commands
  6394. * - Check if pin CHDK needs to go LOW
  6395. * - Check for KILL button held down
  6396. * - Check for HOME button held down
  6397. * - Check if cooling fan needs to be switched on
  6398. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6399. */
  6400. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6401. #if HAS_FILRUNOUT
  6402. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6403. filrunout();
  6404. #endif
  6405. if (commands_in_queue < BUFSIZE) get_available_commands();
  6406. millis_t ms = millis();
  6407. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  6408. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  6409. && !ignore_stepper_queue && !blocks_queued()) {
  6410. #if ENABLED(DISABLE_INACTIVE_X)
  6411. disable_x();
  6412. #endif
  6413. #if ENABLED(DISABLE_INACTIVE_Y)
  6414. disable_y();
  6415. #endif
  6416. #if ENABLED(DISABLE_INACTIVE_Z)
  6417. disable_z();
  6418. #endif
  6419. #if ENABLED(DISABLE_INACTIVE_E)
  6420. disable_e0();
  6421. disable_e1();
  6422. disable_e2();
  6423. disable_e3();
  6424. #endif
  6425. }
  6426. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6427. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  6428. chdkActive = false;
  6429. WRITE(CHDK, LOW);
  6430. }
  6431. #endif
  6432. #if HAS_KILL
  6433. // Check if the kill button was pressed and wait just in case it was an accidental
  6434. // key kill key press
  6435. // -------------------------------------------------------------------------------
  6436. static int killCount = 0; // make the inactivity button a bit less responsive
  6437. const int KILL_DELAY = 750;
  6438. if (!READ(KILL_PIN))
  6439. killCount++;
  6440. else if (killCount > 0)
  6441. killCount--;
  6442. // Exceeded threshold and we can confirm that it was not accidental
  6443. // KILL the machine
  6444. // ----------------------------------------------------------------
  6445. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6446. #endif
  6447. #if HAS_HOME
  6448. // Check to see if we have to home, use poor man's debouncer
  6449. // ---------------------------------------------------------
  6450. static int homeDebounceCount = 0; // poor man's debouncing count
  6451. const int HOME_DEBOUNCE_DELAY = 2500;
  6452. if (!READ(HOME_PIN)) {
  6453. if (!homeDebounceCount) {
  6454. enqueue_and_echo_commands_P(PSTR("G28"));
  6455. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6456. }
  6457. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6458. homeDebounceCount++;
  6459. else
  6460. homeDebounceCount = 0;
  6461. }
  6462. #endif
  6463. #if HAS_CONTROLLERFAN
  6464. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6465. #endif
  6466. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6467. if (ms > previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000)
  6468. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6469. bool oldstatus;
  6470. switch (active_extruder) {
  6471. case 0:
  6472. oldstatus = E0_ENABLE_READ;
  6473. enable_e0();
  6474. break;
  6475. #if EXTRUDERS > 1
  6476. case 1:
  6477. oldstatus = E1_ENABLE_READ;
  6478. enable_e1();
  6479. break;
  6480. #if EXTRUDERS > 2
  6481. case 2:
  6482. oldstatus = E2_ENABLE_READ;
  6483. enable_e2();
  6484. break;
  6485. #if EXTRUDERS > 3
  6486. case 3:
  6487. oldstatus = E3_ENABLE_READ;
  6488. enable_e3();
  6489. break;
  6490. #endif
  6491. #endif
  6492. #endif
  6493. }
  6494. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6495. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6496. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6497. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6498. current_position[E_AXIS] = oldepos;
  6499. destination[E_AXIS] = oldedes;
  6500. plan_set_e_position(oldepos);
  6501. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6502. st_synchronize();
  6503. switch (active_extruder) {
  6504. case 0:
  6505. E0_ENABLE_WRITE(oldstatus);
  6506. break;
  6507. #if EXTRUDERS > 1
  6508. case 1:
  6509. E1_ENABLE_WRITE(oldstatus);
  6510. break;
  6511. #if EXTRUDERS > 2
  6512. case 2:
  6513. E2_ENABLE_WRITE(oldstatus);
  6514. break;
  6515. #if EXTRUDERS > 3
  6516. case 3:
  6517. E3_ENABLE_WRITE(oldstatus);
  6518. break;
  6519. #endif
  6520. #endif
  6521. #endif
  6522. }
  6523. }
  6524. #endif
  6525. #if ENABLED(DUAL_X_CARRIAGE)
  6526. // handle delayed move timeout
  6527. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  6528. // travel moves have been received so enact them
  6529. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6530. set_destination_to_current();
  6531. prepare_move();
  6532. }
  6533. #endif
  6534. #if ENABLED(TEMP_STAT_LEDS)
  6535. handle_status_leds();
  6536. #endif
  6537. check_axes_activity();
  6538. }
  6539. void kill(const char* lcd_msg) {
  6540. #if ENABLED(ULTRA_LCD)
  6541. lcd_setalertstatuspgm(lcd_msg);
  6542. #else
  6543. UNUSED(lcd_msg);
  6544. #endif
  6545. cli(); // Stop interrupts
  6546. disable_all_heaters();
  6547. disable_all_steppers();
  6548. #if HAS_POWER_SWITCH
  6549. pinMode(PS_ON_PIN, INPUT);
  6550. #endif
  6551. SERIAL_ERROR_START;
  6552. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6553. // FMC small patch to update the LCD before ending
  6554. sei(); // enable interrupts
  6555. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6556. cli(); // disable interrupts
  6557. suicide();
  6558. while (1) {
  6559. #if ENABLED(USE_WATCHDOG)
  6560. watchdog_reset();
  6561. #endif
  6562. } // Wait for reset
  6563. }
  6564. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6565. void filrunout() {
  6566. if (!filrunoutEnqueued) {
  6567. filrunoutEnqueued = true;
  6568. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6569. st_synchronize();
  6570. }
  6571. }
  6572. #endif // FILAMENT_RUNOUT_SENSOR
  6573. #if ENABLED(FAST_PWM_FAN)
  6574. void setPwmFrequency(uint8_t pin, int val) {
  6575. val &= 0x07;
  6576. switch (digitalPinToTimer(pin)) {
  6577. #if defined(TCCR0A)
  6578. case TIMER0A:
  6579. case TIMER0B:
  6580. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6581. // TCCR0B |= val;
  6582. break;
  6583. #endif
  6584. #if defined(TCCR1A)
  6585. case TIMER1A:
  6586. case TIMER1B:
  6587. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6588. // TCCR1B |= val;
  6589. break;
  6590. #endif
  6591. #if defined(TCCR2)
  6592. case TIMER2:
  6593. case TIMER2:
  6594. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6595. TCCR2 |= val;
  6596. break;
  6597. #endif
  6598. #if defined(TCCR2A)
  6599. case TIMER2A:
  6600. case TIMER2B:
  6601. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6602. TCCR2B |= val;
  6603. break;
  6604. #endif
  6605. #if defined(TCCR3A)
  6606. case TIMER3A:
  6607. case TIMER3B:
  6608. case TIMER3C:
  6609. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6610. TCCR3B |= val;
  6611. break;
  6612. #endif
  6613. #if defined(TCCR4A)
  6614. case TIMER4A:
  6615. case TIMER4B:
  6616. case TIMER4C:
  6617. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6618. TCCR4B |= val;
  6619. break;
  6620. #endif
  6621. #if defined(TCCR5A)
  6622. case TIMER5A:
  6623. case TIMER5B:
  6624. case TIMER5C:
  6625. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6626. TCCR5B |= val;
  6627. break;
  6628. #endif
  6629. }
  6630. }
  6631. #endif // FAST_PWM_FAN
  6632. void Stop() {
  6633. disable_all_heaters();
  6634. if (IsRunning()) {
  6635. Running = false;
  6636. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6637. SERIAL_ERROR_START;
  6638. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6639. LCD_MESSAGEPGM(MSG_STOPPED);
  6640. }
  6641. }
  6642. /**
  6643. * Set target_extruder from the T parameter or the active_extruder
  6644. *
  6645. * Returns TRUE if the target is invalid
  6646. */
  6647. bool setTargetedHotend(int code) {
  6648. target_extruder = active_extruder;
  6649. if (code_seen('T')) {
  6650. target_extruder = code_value_short();
  6651. if (target_extruder >= EXTRUDERS) {
  6652. SERIAL_ECHO_START;
  6653. SERIAL_CHAR('M');
  6654. SERIAL_ECHO(code);
  6655. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6656. SERIAL_ECHOLN((int)target_extruder);
  6657. return true;
  6658. }
  6659. }
  6660. return false;
  6661. }
  6662. float calculate_volumetric_multiplier(float diameter) {
  6663. if (!volumetric_enabled || diameter == 0) return 1.0;
  6664. float d2 = diameter * 0.5;
  6665. return 1.0 / (M_PI * d2 * d2);
  6666. }
  6667. void calculate_volumetric_multipliers() {
  6668. for (int i = 0; i < EXTRUDERS; i++)
  6669. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6670. }