My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 119KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef ACCURATE_BED_LEVELING
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to cordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homeing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores paramters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from eeprom)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M666 - set delta endstop adjustemnt
  149. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  150. // M907 - Set digital trimpot motor current using axis codes.
  151. // M908 - Control digital trimpot directly.
  152. // M350 - Set microstepping mode.
  153. // M351 - Toggle MS1 MS2 pins directly.
  154. // M928 - Start SD logging (M928 filename.g) - ended by M29
  155. // M999 - Restart after being stopped by error
  156. //Stepper Movement Variables
  157. //===========================================================================
  158. //=============================imported variables============================
  159. //===========================================================================
  160. //===========================================================================
  161. //=============================public variables=============================
  162. //===========================================================================
  163. #ifdef SDSUPPORT
  164. CardReader card;
  165. #endif
  166. float homing_feedrate[] = HOMING_FEEDRATE;
  167. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  168. int feedmultiply=100; //100->1 200->2
  169. int saved_feedmultiply;
  170. int extrudemultiply=100; //100->1 200->2
  171. float volumetric_multiplier[EXTRUDERS] = {1.0
  172. #if EXTRUDERS > 1
  173. , 1.0
  174. #if EXTRUDERS > 2
  175. , 1.0
  176. #endif
  177. #endif
  178. };
  179. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  180. float add_homeing[3]={0,0,0};
  181. #ifdef DELTA
  182. float endstop_adj[3]={0,0,0};
  183. #endif
  184. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  185. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  186. bool axis_known_position[3] = {false, false, false};
  187. float zprobe_zoffset;
  188. // Extruder offset
  189. #if EXTRUDERS > 1
  190. #ifndef DUAL_X_CARRIAGE
  191. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  192. #else
  193. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  194. #endif
  195. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  196. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  197. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  198. #endif
  199. };
  200. #endif
  201. uint8_t active_extruder = 0;
  202. int fanSpeed=0;
  203. #ifdef SERVO_ENDSTOPS
  204. int servo_endstops[] = SERVO_ENDSTOPS;
  205. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  206. #endif
  207. #ifdef BARICUDA
  208. int ValvePressure=0;
  209. int EtoPPressure=0;
  210. #endif
  211. #ifdef FWRETRACT
  212. bool autoretract_enabled=true;
  213. bool retracted=false;
  214. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  215. float retract_recover_length=0, retract_recover_feedrate=8*60;
  216. #endif
  217. #ifdef ULTIPANEL
  218. #ifdef PS_DEFAULT_OFF
  219. bool powersupply = false;
  220. #else
  221. bool powersupply = true;
  222. #endif
  223. #endif
  224. #ifdef DELTA
  225. float delta[3] = {0.0, 0.0, 0.0};
  226. #endif
  227. //===========================================================================
  228. //=============================private variables=============================
  229. //===========================================================================
  230. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  231. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  232. static float offset[3] = {0.0, 0.0, 0.0};
  233. static bool home_all_axis = true;
  234. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  235. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  236. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  237. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  238. static bool fromsd[BUFSIZE];
  239. static int bufindr = 0;
  240. static int bufindw = 0;
  241. static int buflen = 0;
  242. //static int i = 0;
  243. static char serial_char;
  244. static int serial_count = 0;
  245. static boolean comment_mode = false;
  246. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  247. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  248. //static float tt = 0;
  249. //static float bt = 0;
  250. //Inactivity shutdown variables
  251. static unsigned long previous_millis_cmd = 0;
  252. static unsigned long max_inactive_time = 0;
  253. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  254. unsigned long starttime=0;
  255. unsigned long stoptime=0;
  256. static uint8_t tmp_extruder;
  257. bool Stopped=false;
  258. #if NUM_SERVOS > 0
  259. Servo servos[NUM_SERVOS];
  260. #endif
  261. bool CooldownNoWait = true;
  262. bool target_direction;
  263. //===========================================================================
  264. //=============================ROUTINES=============================
  265. //===========================================================================
  266. void get_arc_coordinates();
  267. bool setTargetedHotend(int code);
  268. void serial_echopair_P(const char *s_P, float v)
  269. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  270. void serial_echopair_P(const char *s_P, double v)
  271. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  272. void serial_echopair_P(const char *s_P, unsigned long v)
  273. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  274. extern "C"{
  275. extern unsigned int __bss_end;
  276. extern unsigned int __heap_start;
  277. extern void *__brkval;
  278. int freeMemory() {
  279. int free_memory;
  280. if((int)__brkval == 0)
  281. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  282. else
  283. free_memory = ((int)&free_memory) - ((int)__brkval);
  284. return free_memory;
  285. }
  286. }
  287. //adds an command to the main command buffer
  288. //thats really done in a non-safe way.
  289. //needs overworking someday
  290. void enquecommand(const char *cmd)
  291. {
  292. if(buflen < BUFSIZE)
  293. {
  294. //this is dangerous if a mixing of serial and this happsens
  295. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  296. SERIAL_ECHO_START;
  297. SERIAL_ECHOPGM("enqueing \"");
  298. SERIAL_ECHO(cmdbuffer[bufindw]);
  299. SERIAL_ECHOLNPGM("\"");
  300. bufindw= (bufindw + 1)%BUFSIZE;
  301. buflen += 1;
  302. }
  303. }
  304. void enquecommand_P(const char *cmd)
  305. {
  306. if(buflen < BUFSIZE)
  307. {
  308. //this is dangerous if a mixing of serial and this happsens
  309. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  310. SERIAL_ECHO_START;
  311. SERIAL_ECHOPGM("enqueing \"");
  312. SERIAL_ECHO(cmdbuffer[bufindw]);
  313. SERIAL_ECHOLNPGM("\"");
  314. bufindw= (bufindw + 1)%BUFSIZE;
  315. buflen += 1;
  316. }
  317. }
  318. void setup_killpin()
  319. {
  320. #if defined(KILL_PIN) && KILL_PIN > -1
  321. pinMode(KILL_PIN,INPUT);
  322. WRITE(KILL_PIN,HIGH);
  323. #endif
  324. }
  325. void setup_photpin()
  326. {
  327. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  328. SET_OUTPUT(PHOTOGRAPH_PIN);
  329. WRITE(PHOTOGRAPH_PIN, LOW);
  330. #endif
  331. }
  332. void setup_powerhold()
  333. {
  334. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  335. SET_OUTPUT(SUICIDE_PIN);
  336. WRITE(SUICIDE_PIN, HIGH);
  337. #endif
  338. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  339. SET_OUTPUT(PS_ON_PIN);
  340. #if defined(PS_DEFAULT_OFF)
  341. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  342. #else
  343. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  344. #endif
  345. #endif
  346. }
  347. void suicide()
  348. {
  349. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  350. SET_OUTPUT(SUICIDE_PIN);
  351. WRITE(SUICIDE_PIN, LOW);
  352. #endif
  353. }
  354. void servo_init()
  355. {
  356. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  357. servos[0].attach(SERVO0_PIN);
  358. #endif
  359. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  360. servos[1].attach(SERVO1_PIN);
  361. #endif
  362. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  363. servos[2].attach(SERVO2_PIN);
  364. #endif
  365. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  366. servos[3].attach(SERVO3_PIN);
  367. #endif
  368. #if (NUM_SERVOS >= 5)
  369. #error "TODO: enter initalisation code for more servos"
  370. #endif
  371. // Set position of Servo Endstops that are defined
  372. #ifdef SERVO_ENDSTOPS
  373. for(int8_t i = 0; i < 3; i++)
  374. {
  375. if(servo_endstops[i] > -1) {
  376. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  377. }
  378. }
  379. #endif
  380. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  381. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  382. servos[servo_endstops[Z_AXIS]].detach();
  383. #endif
  384. }
  385. void setup()
  386. {
  387. setup_killpin();
  388. setup_powerhold();
  389. MYSERIAL.begin(BAUDRATE);
  390. SERIAL_PROTOCOLLNPGM("start");
  391. SERIAL_ECHO_START;
  392. // Check startup - does nothing if bootloader sets MCUSR to 0
  393. byte mcu = MCUSR;
  394. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  395. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  396. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  397. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  398. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  399. MCUSR=0;
  400. SERIAL_ECHOPGM(MSG_MARLIN);
  401. SERIAL_ECHOLNPGM(VERSION_STRING);
  402. #ifdef STRING_VERSION_CONFIG_H
  403. #ifdef STRING_CONFIG_H_AUTHOR
  404. SERIAL_ECHO_START;
  405. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  406. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  407. SERIAL_ECHOPGM(MSG_AUTHOR);
  408. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  409. SERIAL_ECHOPGM("Compiled: ");
  410. SERIAL_ECHOLNPGM(__DATE__);
  411. #endif
  412. #endif
  413. SERIAL_ECHO_START;
  414. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  415. SERIAL_ECHO(freeMemory());
  416. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  417. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  418. for(int8_t i = 0; i < BUFSIZE; i++)
  419. {
  420. fromsd[i] = false;
  421. }
  422. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  423. Config_RetrieveSettings();
  424. tp_init(); // Initialize temperature loop
  425. plan_init(); // Initialize planner;
  426. watchdog_init();
  427. st_init(); // Initialize stepper, this enables interrupts!
  428. setup_photpin();
  429. servo_init();
  430. lcd_init();
  431. _delay_ms(1000); // wait 1sec to display the splash screen
  432. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  433. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  434. #endif
  435. }
  436. void loop()
  437. {
  438. if(buflen < (BUFSIZE-1))
  439. get_command();
  440. #ifdef SDSUPPORT
  441. card.checkautostart(false);
  442. #endif
  443. if(buflen)
  444. {
  445. #ifdef SDSUPPORT
  446. if(card.saving)
  447. {
  448. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  449. {
  450. card.write_command(cmdbuffer[bufindr]);
  451. if(card.logging)
  452. {
  453. process_commands();
  454. }
  455. else
  456. {
  457. SERIAL_PROTOCOLLNPGM(MSG_OK);
  458. }
  459. }
  460. else
  461. {
  462. card.closefile();
  463. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  464. }
  465. }
  466. else
  467. {
  468. process_commands();
  469. }
  470. #else
  471. process_commands();
  472. #endif //SDSUPPORT
  473. buflen = (buflen-1);
  474. bufindr = (bufindr + 1)%BUFSIZE;
  475. }
  476. //check heater every n milliseconds
  477. manage_heater();
  478. manage_inactivity();
  479. checkHitEndstops();
  480. lcd_update();
  481. }
  482. void get_command()
  483. {
  484. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  485. serial_char = MYSERIAL.read();
  486. if(serial_char == '\n' ||
  487. serial_char == '\r' ||
  488. (serial_char == ':' && comment_mode == false) ||
  489. serial_count >= (MAX_CMD_SIZE - 1) )
  490. {
  491. if(!serial_count) { //if empty line
  492. comment_mode = false; //for new command
  493. return;
  494. }
  495. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  496. if(!comment_mode){
  497. comment_mode = false; //for new command
  498. fromsd[bufindw] = false;
  499. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  500. {
  501. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  502. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  503. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  504. SERIAL_ERROR_START;
  505. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  506. SERIAL_ERRORLN(gcode_LastN);
  507. //Serial.println(gcode_N);
  508. FlushSerialRequestResend();
  509. serial_count = 0;
  510. return;
  511. }
  512. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  513. {
  514. byte checksum = 0;
  515. byte count = 0;
  516. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  517. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  518. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  519. SERIAL_ERROR_START;
  520. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  521. SERIAL_ERRORLN(gcode_LastN);
  522. FlushSerialRequestResend();
  523. serial_count = 0;
  524. return;
  525. }
  526. //if no errors, continue parsing
  527. }
  528. else
  529. {
  530. SERIAL_ERROR_START;
  531. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  532. SERIAL_ERRORLN(gcode_LastN);
  533. FlushSerialRequestResend();
  534. serial_count = 0;
  535. return;
  536. }
  537. gcode_LastN = gcode_N;
  538. //if no errors, continue parsing
  539. }
  540. else // if we don't receive 'N' but still see '*'
  541. {
  542. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  543. {
  544. SERIAL_ERROR_START;
  545. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  546. SERIAL_ERRORLN(gcode_LastN);
  547. serial_count = 0;
  548. return;
  549. }
  550. }
  551. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  552. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  553. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  554. case 0:
  555. case 1:
  556. case 2:
  557. case 3:
  558. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  559. #ifdef SDSUPPORT
  560. if(card.saving)
  561. break;
  562. #endif //SDSUPPORT
  563. SERIAL_PROTOCOLLNPGM(MSG_OK);
  564. }
  565. else {
  566. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  567. LCD_MESSAGEPGM(MSG_STOPPED);
  568. }
  569. break;
  570. default:
  571. break;
  572. }
  573. }
  574. bufindw = (bufindw + 1)%BUFSIZE;
  575. buflen += 1;
  576. }
  577. serial_count = 0; //clear buffer
  578. }
  579. else
  580. {
  581. if(serial_char == ';') comment_mode = true;
  582. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  583. }
  584. }
  585. #ifdef SDSUPPORT
  586. if(!card.sdprinting || serial_count!=0){
  587. return;
  588. }
  589. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  590. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  591. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  592. static bool stop_buffering=false;
  593. if(buflen==0) stop_buffering=false;
  594. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  595. int16_t n=card.get();
  596. serial_char = (char)n;
  597. if(serial_char == '\n' ||
  598. serial_char == '\r' ||
  599. (serial_char == '#' && comment_mode == false) ||
  600. (serial_char == ':' && comment_mode == false) ||
  601. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  602. {
  603. if(card.eof()){
  604. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  605. stoptime=millis();
  606. char time[30];
  607. unsigned long t=(stoptime-starttime)/1000;
  608. int hours, minutes;
  609. minutes=(t/60)%60;
  610. hours=t/60/60;
  611. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  612. SERIAL_ECHO_START;
  613. SERIAL_ECHOLN(time);
  614. lcd_setstatus(time);
  615. card.printingHasFinished();
  616. card.checkautostart(true);
  617. }
  618. if(serial_char=='#')
  619. stop_buffering=true;
  620. if(!serial_count)
  621. {
  622. comment_mode = false; //for new command
  623. return; //if empty line
  624. }
  625. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  626. // if(!comment_mode){
  627. fromsd[bufindw] = true;
  628. buflen += 1;
  629. bufindw = (bufindw + 1)%BUFSIZE;
  630. // }
  631. comment_mode = false; //for new command
  632. serial_count = 0; //clear buffer
  633. }
  634. else
  635. {
  636. if(serial_char == ';') comment_mode = true;
  637. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  638. }
  639. }
  640. #endif //SDSUPPORT
  641. }
  642. float code_value()
  643. {
  644. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  645. }
  646. long code_value_long()
  647. {
  648. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  649. }
  650. bool code_seen(char code)
  651. {
  652. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  653. return (strchr_pointer != NULL); //Return True if a character was found
  654. }
  655. #define DEFINE_PGM_READ_ANY(type, reader) \
  656. static inline type pgm_read_any(const type *p) \
  657. { return pgm_read_##reader##_near(p); }
  658. DEFINE_PGM_READ_ANY(float, float);
  659. DEFINE_PGM_READ_ANY(signed char, byte);
  660. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  661. static const PROGMEM type array##_P[3] = \
  662. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  663. static inline type array(int axis) \
  664. { return pgm_read_any(&array##_P[axis]); }
  665. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  666. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  667. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  668. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  669. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  670. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  671. #ifdef DUAL_X_CARRIAGE
  672. #if EXTRUDERS == 1 || defined(COREXY) \
  673. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  674. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  675. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  676. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  677. #endif
  678. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  679. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  680. #endif
  681. #define DXC_FULL_CONTROL_MODE 0
  682. #define DXC_AUTO_PARK_MODE 1
  683. #define DXC_DUPLICATION_MODE 2
  684. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  685. static float x_home_pos(int extruder) {
  686. if (extruder == 0)
  687. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  688. else
  689. // In dual carriage mode the extruder offset provides an override of the
  690. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  691. // This allow soft recalibration of the second extruder offset position without firmware reflash
  692. // (through the M218 command).
  693. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  694. }
  695. static int x_home_dir(int extruder) {
  696. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  697. }
  698. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  699. static bool active_extruder_parked = false; // used in mode 1 & 2
  700. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  701. static unsigned long delayed_move_time = 0; // used in mode 1
  702. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  703. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  704. bool extruder_duplication_enabled = false; // used in mode 2
  705. #endif //DUAL_X_CARRIAGE
  706. static void axis_is_at_home(int axis) {
  707. #ifdef DUAL_X_CARRIAGE
  708. if (axis == X_AXIS) {
  709. if (active_extruder != 0) {
  710. current_position[X_AXIS] = x_home_pos(active_extruder);
  711. min_pos[X_AXIS] = X2_MIN_POS;
  712. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  713. return;
  714. }
  715. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  716. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  717. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  718. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  719. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  720. return;
  721. }
  722. }
  723. #endif
  724. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  725. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  726. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  727. }
  728. #ifdef ENABLE_AUTO_BED_LEVELING
  729. #ifdef ACCURATE_BED_LEVELING
  730. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  731. {
  732. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  733. planeNormal.debug("planeNormal");
  734. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  735. //bedLevel.debug("bedLevel");
  736. //plan_bed_level_matrix.debug("bed level before");
  737. //vector_3 uncorrected_position = plan_get_position_mm();
  738. //uncorrected_position.debug("position before");
  739. vector_3 corrected_position = plan_get_position();
  740. // corrected_position.debug("position after");
  741. current_position[X_AXIS] = corrected_position.x;
  742. current_position[Y_AXIS] = corrected_position.y;
  743. current_position[Z_AXIS] = corrected_position.z;
  744. // but the bed at 0 so we don't go below it.
  745. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  746. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  747. }
  748. #else
  749. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  750. plan_bed_level_matrix.set_to_identity();
  751. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  752. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  753. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  754. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  755. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  756. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  757. //planeNormal.debug("planeNormal");
  758. //yPositive.debug("yPositive");
  759. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  760. //bedLevel.debug("bedLevel");
  761. //plan_bed_level_matrix.debug("bed level before");
  762. //vector_3 uncorrected_position = plan_get_position_mm();
  763. //uncorrected_position.debug("position before");
  764. // and set our bed level equation to do the right thing
  765. //plan_bed_level_matrix.debug("bed level after");
  766. vector_3 corrected_position = plan_get_position();
  767. //corrected_position.debug("position after");
  768. current_position[X_AXIS] = corrected_position.x;
  769. current_position[Y_AXIS] = corrected_position.y;
  770. current_position[Z_AXIS] = corrected_position.z;
  771. // but the bed at 0 so we don't go below it.
  772. current_position[Z_AXIS] = zprobe_zoffset;
  773. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  774. }
  775. #endif // ACCURATE_BED_LEVELING
  776. static void run_z_probe() {
  777. plan_bed_level_matrix.set_to_identity();
  778. feedrate = homing_feedrate[Z_AXIS];
  779. // move down until you find the bed
  780. float zPosition = -10;
  781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  782. st_synchronize();
  783. // we have to let the planner know where we are right now as it is not where we said to go.
  784. zPosition = st_get_position_mm(Z_AXIS);
  785. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  786. // move up the retract distance
  787. zPosition += home_retract_mm(Z_AXIS);
  788. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  789. st_synchronize();
  790. // move back down slowly to find bed
  791. feedrate = homing_feedrate[Z_AXIS]/4;
  792. zPosition -= home_retract_mm(Z_AXIS) * 2;
  793. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  794. st_synchronize();
  795. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  796. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  797. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  798. }
  799. static void do_blocking_move_to(float x, float y, float z) {
  800. float oldFeedRate = feedrate;
  801. feedrate = XY_TRAVEL_SPEED;
  802. current_position[X_AXIS] = x;
  803. current_position[Y_AXIS] = y;
  804. current_position[Z_AXIS] = z;
  805. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  806. st_synchronize();
  807. feedrate = oldFeedRate;
  808. }
  809. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  810. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  811. }
  812. static void setup_for_endstop_move() {
  813. saved_feedrate = feedrate;
  814. saved_feedmultiply = feedmultiply;
  815. feedmultiply = 100;
  816. previous_millis_cmd = millis();
  817. enable_endstops(true);
  818. }
  819. static void clean_up_after_endstop_move() {
  820. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  821. enable_endstops(false);
  822. #endif
  823. feedrate = saved_feedrate;
  824. feedmultiply = saved_feedmultiply;
  825. previous_millis_cmd = millis();
  826. }
  827. static void engage_z_probe() {
  828. // Engage Z Servo endstop if enabled
  829. #ifdef SERVO_ENDSTOPS
  830. if (servo_endstops[Z_AXIS] > -1) {
  831. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  832. servos[servo_endstops[Z_AXIS]].attach(0);
  833. #endif
  834. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  835. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  836. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  837. servos[servo_endstops[Z_AXIS]].detach();
  838. #endif
  839. }
  840. #endif
  841. }
  842. static void retract_z_probe() {
  843. // Retract Z Servo endstop if enabled
  844. #ifdef SERVO_ENDSTOPS
  845. if (servo_endstops[Z_AXIS] > -1) {
  846. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  847. servos[servo_endstops[Z_AXIS]].attach(0);
  848. #endif
  849. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  850. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  851. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  852. servos[servo_endstops[Z_AXIS]].detach();
  853. #endif
  854. }
  855. #endif
  856. }
  857. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  858. static void homeaxis(int axis) {
  859. #define HOMEAXIS_DO(LETTER) \
  860. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  861. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  862. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  863. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  864. 0) {
  865. int axis_home_dir = home_dir(axis);
  866. #ifdef DUAL_X_CARRIAGE
  867. if (axis == X_AXIS)
  868. axis_home_dir = x_home_dir(active_extruder);
  869. #endif
  870. current_position[axis] = 0;
  871. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  872. // Engage Servo endstop if enabled
  873. #ifdef SERVO_ENDSTOPS
  874. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  875. if (axis==Z_AXIS) {
  876. engage_z_probe();
  877. }
  878. else
  879. #endif
  880. if (servo_endstops[axis] > -1) {
  881. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  882. }
  883. #endif
  884. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  885. feedrate = homing_feedrate[axis];
  886. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  887. st_synchronize();
  888. current_position[axis] = 0;
  889. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  890. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  891. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  892. st_synchronize();
  893. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  894. #ifdef DELTA
  895. feedrate = homing_feedrate[axis]/10;
  896. #else
  897. feedrate = homing_feedrate[axis]/2 ;
  898. #endif
  899. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  900. st_synchronize();
  901. #ifdef DELTA
  902. // retrace by the amount specified in endstop_adj
  903. if (endstop_adj[axis] * axis_home_dir < 0) {
  904. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  905. destination[axis] = endstop_adj[axis];
  906. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  907. st_synchronize();
  908. }
  909. #endif
  910. axis_is_at_home(axis);
  911. destination[axis] = current_position[axis];
  912. feedrate = 0.0;
  913. endstops_hit_on_purpose();
  914. axis_known_position[axis] = true;
  915. // Retract Servo endstop if enabled
  916. #ifdef SERVO_ENDSTOPS
  917. if (servo_endstops[axis] > -1) {
  918. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  919. }
  920. #endif
  921. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  922. if (axis==Z_AXIS) retract_z_probe();
  923. #endif
  924. }
  925. }
  926. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  927. void process_commands()
  928. {
  929. unsigned long codenum; //throw away variable
  930. char *starpos = NULL;
  931. #ifdef ENABLE_AUTO_BED_LEVELING
  932. float x_tmp, y_tmp, z_tmp, real_z;
  933. #endif
  934. if(code_seen('G'))
  935. {
  936. switch((int)code_value())
  937. {
  938. case 0: // G0 -> G1
  939. case 1: // G1
  940. if(Stopped == false) {
  941. get_coordinates(); // For X Y Z E F
  942. prepare_move();
  943. //ClearToSend();
  944. return;
  945. }
  946. //break;
  947. case 2: // G2 - CW ARC
  948. if(Stopped == false) {
  949. get_arc_coordinates();
  950. prepare_arc_move(true);
  951. return;
  952. }
  953. case 3: // G3 - CCW ARC
  954. if(Stopped == false) {
  955. get_arc_coordinates();
  956. prepare_arc_move(false);
  957. return;
  958. }
  959. case 4: // G4 dwell
  960. LCD_MESSAGEPGM(MSG_DWELL);
  961. codenum = 0;
  962. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  963. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  964. st_synchronize();
  965. codenum += millis(); // keep track of when we started waiting
  966. previous_millis_cmd = millis();
  967. while(millis() < codenum ){
  968. manage_heater();
  969. manage_inactivity();
  970. lcd_update();
  971. }
  972. break;
  973. #ifdef FWRETRACT
  974. case 10: // G10 retract
  975. if(!retracted)
  976. {
  977. destination[X_AXIS]=current_position[X_AXIS];
  978. destination[Y_AXIS]=current_position[Y_AXIS];
  979. destination[Z_AXIS]=current_position[Z_AXIS];
  980. current_position[Z_AXIS]+=-retract_zlift;
  981. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  982. feedrate=retract_feedrate;
  983. retracted=true;
  984. prepare_move();
  985. }
  986. break;
  987. case 11: // G11 retract_recover
  988. if(retracted)
  989. {
  990. destination[X_AXIS]=current_position[X_AXIS];
  991. destination[Y_AXIS]=current_position[Y_AXIS];
  992. destination[Z_AXIS]=current_position[Z_AXIS];
  993. current_position[Z_AXIS]+=retract_zlift;
  994. destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
  995. feedrate=retract_recover_feedrate;
  996. retracted=false;
  997. prepare_move();
  998. }
  999. break;
  1000. #endif //FWRETRACT
  1001. case 28: //G28 Home all Axis one at a time
  1002. #ifdef ENABLE_AUTO_BED_LEVELING
  1003. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1004. #endif //ENABLE_AUTO_BED_LEVELING
  1005. saved_feedrate = feedrate;
  1006. saved_feedmultiply = feedmultiply;
  1007. feedmultiply = 100;
  1008. previous_millis_cmd = millis();
  1009. enable_endstops(true);
  1010. for(int8_t i=0; i < NUM_AXIS; i++) {
  1011. destination[i] = current_position[i];
  1012. }
  1013. feedrate = 0.0;
  1014. #ifdef DELTA
  1015. // A delta can only safely home all axis at the same time
  1016. // all axis have to home at the same time
  1017. // Move all carriages up together until the first endstop is hit.
  1018. current_position[X_AXIS] = 0;
  1019. current_position[Y_AXIS] = 0;
  1020. current_position[Z_AXIS] = 0;
  1021. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1022. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1023. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1024. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1025. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1026. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1027. st_synchronize();
  1028. endstops_hit_on_purpose();
  1029. current_position[X_AXIS] = destination[X_AXIS];
  1030. current_position[Y_AXIS] = destination[Y_AXIS];
  1031. current_position[Z_AXIS] = destination[Z_AXIS];
  1032. // take care of back off and rehome now we are all at the top
  1033. HOMEAXIS(X);
  1034. HOMEAXIS(Y);
  1035. HOMEAXIS(Z);
  1036. calculate_delta(current_position);
  1037. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1038. #else // NOT DELTA
  1039. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1040. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1041. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1042. HOMEAXIS(Z);
  1043. }
  1044. #endif
  1045. #ifdef QUICK_HOME
  1046. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1047. {
  1048. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1049. #ifndef DUAL_X_CARRIAGE
  1050. int x_axis_home_dir = home_dir(X_AXIS);
  1051. #else
  1052. int x_axis_home_dir = x_home_dir(active_extruder);
  1053. extruder_duplication_enabled = false;
  1054. #endif
  1055. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1056. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1057. feedrate = homing_feedrate[X_AXIS];
  1058. if(homing_feedrate[Y_AXIS]<feedrate)
  1059. feedrate =homing_feedrate[Y_AXIS];
  1060. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1061. st_synchronize();
  1062. axis_is_at_home(X_AXIS);
  1063. axis_is_at_home(Y_AXIS);
  1064. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1065. destination[X_AXIS] = current_position[X_AXIS];
  1066. destination[Y_AXIS] = current_position[Y_AXIS];
  1067. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1068. feedrate = 0.0;
  1069. st_synchronize();
  1070. endstops_hit_on_purpose();
  1071. current_position[X_AXIS] = destination[X_AXIS];
  1072. current_position[Y_AXIS] = destination[Y_AXIS];
  1073. current_position[Z_AXIS] = destination[Z_AXIS];
  1074. }
  1075. #endif
  1076. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1077. {
  1078. #ifdef DUAL_X_CARRIAGE
  1079. int tmp_extruder = active_extruder;
  1080. extruder_duplication_enabled = false;
  1081. active_extruder = !active_extruder;
  1082. HOMEAXIS(X);
  1083. inactive_extruder_x_pos = current_position[X_AXIS];
  1084. active_extruder = tmp_extruder;
  1085. HOMEAXIS(X);
  1086. // reset state used by the different modes
  1087. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1088. delayed_move_time = 0;
  1089. active_extruder_parked = true;
  1090. #else
  1091. HOMEAXIS(X);
  1092. #endif
  1093. }
  1094. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1095. HOMEAXIS(Y);
  1096. }
  1097. if(code_seen(axis_codes[X_AXIS]))
  1098. {
  1099. if(code_value_long() != 0) {
  1100. current_position[X_AXIS]=code_value()+add_homeing[0];
  1101. }
  1102. }
  1103. if(code_seen(axis_codes[Y_AXIS])) {
  1104. if(code_value_long() != 0) {
  1105. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1106. }
  1107. }
  1108. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1109. #ifndef Z_SAFE_HOMING
  1110. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1111. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1112. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1113. feedrate = max_feedrate[Z_AXIS];
  1114. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1115. st_synchronize();
  1116. #endif
  1117. HOMEAXIS(Z);
  1118. }
  1119. #else // Z Safe mode activated.
  1120. if(home_all_axis) {
  1121. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1122. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1123. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1124. feedrate = XY_TRAVEL_SPEED;
  1125. current_position[Z_AXIS] = 0;
  1126. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1127. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1128. st_synchronize();
  1129. current_position[X_AXIS] = destination[X_AXIS];
  1130. current_position[Y_AXIS] = destination[Y_AXIS];
  1131. HOMEAXIS(Z);
  1132. }
  1133. // Let's see if X and Y are homed and probe is inside bed area.
  1134. if(code_seen(axis_codes[Z_AXIS])) {
  1135. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1136. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1137. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1138. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1139. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1140. current_position[Z_AXIS] = 0;
  1141. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1142. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1143. feedrate = max_feedrate[Z_AXIS];
  1144. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1145. st_synchronize();
  1146. HOMEAXIS(Z);
  1147. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1148. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1149. SERIAL_ECHO_START;
  1150. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1151. } else {
  1152. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1153. SERIAL_ECHO_START;
  1154. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1155. }
  1156. }
  1157. #endif
  1158. #endif
  1159. if(code_seen(axis_codes[Z_AXIS])) {
  1160. if(code_value_long() != 0) {
  1161. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1162. }
  1163. }
  1164. #ifdef ENABLE_AUTO_BED_LEVELING
  1165. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1166. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1167. }
  1168. #endif
  1169. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1170. #endif // else DELTA
  1171. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1172. enable_endstops(false);
  1173. #endif
  1174. feedrate = saved_feedrate;
  1175. feedmultiply = saved_feedmultiply;
  1176. previous_millis_cmd = millis();
  1177. endstops_hit_on_purpose();
  1178. break;
  1179. #ifdef ENABLE_AUTO_BED_LEVELING
  1180. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1181. {
  1182. #if Z_MIN_PIN == -1
  1183. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1184. #endif
  1185. st_synchronize();
  1186. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1187. //vector_3 corrected_position = plan_get_position_mm();
  1188. //corrected_position.debug("position before G29");
  1189. plan_bed_level_matrix.set_to_identity();
  1190. vector_3 uncorrected_position = plan_get_position();
  1191. //uncorrected_position.debug("position durring G29");
  1192. current_position[X_AXIS] = uncorrected_position.x;
  1193. current_position[Y_AXIS] = uncorrected_position.y;
  1194. current_position[Z_AXIS] = uncorrected_position.z;
  1195. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1196. setup_for_endstop_move();
  1197. feedrate = homing_feedrate[Z_AXIS];
  1198. #ifdef ACCURATE_BED_LEVELING
  1199. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1200. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1201. // solve the plane equation ax + by + d = z
  1202. // A is the matrix with rows [x y 1] for all the probed points
  1203. // B is the vector of the Z positions
  1204. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1205. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1206. // "A" matrix of the linear system of equations
  1207. double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
  1208. // "B" vector of Z points
  1209. double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
  1210. int probePointCounter = 0;
  1211. bool zig = true;
  1212. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1213. {
  1214. int xProbe, xInc;
  1215. if (zig)
  1216. {
  1217. xProbe = LEFT_PROBE_BED_POSITION;
  1218. //xEnd = RIGHT_PROBE_BED_POSITION;
  1219. xInc = xGridSpacing;
  1220. zig = false;
  1221. } else // zag
  1222. {
  1223. xProbe = RIGHT_PROBE_BED_POSITION;
  1224. //xEnd = LEFT_PROBE_BED_POSITION;
  1225. xInc = -xGridSpacing;
  1226. zig = true;
  1227. }
  1228. for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++)
  1229. {
  1230. if (probePointCounter == 0)
  1231. {
  1232. // raise before probing
  1233. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1234. } else
  1235. {
  1236. // raise extruder
  1237. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1238. }
  1239. do_blocking_move_to(xProbe - X_PROBE_OFFSET_FROM_EXTRUDER, yProbe - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1240. engage_z_probe(); // Engage Z Servo endstop if available
  1241. run_z_probe();
  1242. eqnBVector[probePointCounter] = current_position[Z_AXIS];
  1243. retract_z_probe();
  1244. SERIAL_PROTOCOLPGM("Bed x: ");
  1245. SERIAL_PROTOCOL(xProbe);
  1246. SERIAL_PROTOCOLPGM(" y: ");
  1247. SERIAL_PROTOCOL(yProbe);
  1248. SERIAL_PROTOCOLPGM(" z: ");
  1249. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1250. SERIAL_PROTOCOLPGM("\n");
  1251. eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
  1252. eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
  1253. eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
  1254. probePointCounter++;
  1255. xProbe += xInc;
  1256. }
  1257. }
  1258. clean_up_after_endstop_move();
  1259. // solve lsq problem
  1260. double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
  1261. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1262. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1263. SERIAL_PROTOCOLPGM(" b: ");
  1264. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1265. SERIAL_PROTOCOLPGM(" d: ");
  1266. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1267. set_bed_level_equation_lsq(plane_equation_coefficients);
  1268. free(plane_equation_coefficients);
  1269. #else // ACCURATE_BED_LEVELING not defined
  1270. // prob 1
  1271. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1272. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1273. engage_z_probe(); // Engage Z Servo endstop if available
  1274. run_z_probe();
  1275. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1276. retract_z_probe();
  1277. SERIAL_PROTOCOLPGM("Bed x: ");
  1278. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1279. SERIAL_PROTOCOLPGM(" y: ");
  1280. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1281. SERIAL_PROTOCOLPGM(" z: ");
  1282. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1283. SERIAL_PROTOCOLPGM("\n");
  1284. // prob 2
  1285. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1286. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1287. engage_z_probe(); // Engage Z Servo endstop if available
  1288. run_z_probe();
  1289. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1290. retract_z_probe();
  1291. SERIAL_PROTOCOLPGM("Bed x: ");
  1292. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1293. SERIAL_PROTOCOLPGM(" y: ");
  1294. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1295. SERIAL_PROTOCOLPGM(" z: ");
  1296. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1297. SERIAL_PROTOCOLPGM("\n");
  1298. // prob 3
  1299. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1300. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1301. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1302. engage_z_probe(); // Engage Z Servo endstop if available
  1303. run_z_probe();
  1304. float z_at_xRight_yFront = current_position[Z_AXIS];
  1305. retract_z_probe(); // Retract Z Servo endstop if available
  1306. SERIAL_PROTOCOLPGM("Bed x: ");
  1307. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1308. SERIAL_PROTOCOLPGM(" y: ");
  1309. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1310. SERIAL_PROTOCOLPGM(" z: ");
  1311. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1312. SERIAL_PROTOCOLPGM("\n");
  1313. clean_up_after_endstop_move();
  1314. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1315. #endif // ACCURATE_BED_LEVELING
  1316. st_synchronize();
  1317. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1318. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1319. // When the bed is uneven, this height must be corrected.
  1320. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1321. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1322. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1323. z_tmp = current_position[Z_AXIS];
  1324. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1325. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1326. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1327. }
  1328. break;
  1329. case 30: // G30 Single Z Probe
  1330. {
  1331. engage_z_probe(); // Engage Z Servo endstop if available
  1332. st_synchronize();
  1333. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1334. setup_for_endstop_move();
  1335. feedrate = homing_feedrate[Z_AXIS];
  1336. run_z_probe();
  1337. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1338. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1339. SERIAL_PROTOCOLPGM(" Y: ");
  1340. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1341. SERIAL_PROTOCOLPGM(" Z: ");
  1342. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1343. SERIAL_PROTOCOLPGM("\n");
  1344. clean_up_after_endstop_move();
  1345. retract_z_probe(); // Retract Z Servo endstop if available
  1346. }
  1347. break;
  1348. #endif // ENABLE_AUTO_BED_LEVELING
  1349. case 90: // G90
  1350. relative_mode = false;
  1351. break;
  1352. case 91: // G91
  1353. relative_mode = true;
  1354. break;
  1355. case 92: // G92
  1356. if(!code_seen(axis_codes[E_AXIS]))
  1357. st_synchronize();
  1358. for(int8_t i=0; i < NUM_AXIS; i++) {
  1359. if(code_seen(axis_codes[i])) {
  1360. if(i == E_AXIS) {
  1361. current_position[i] = code_value();
  1362. plan_set_e_position(current_position[E_AXIS]);
  1363. }
  1364. else {
  1365. current_position[i] = code_value()+add_homeing[i];
  1366. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1367. }
  1368. }
  1369. }
  1370. break;
  1371. }
  1372. }
  1373. else if(code_seen('M'))
  1374. {
  1375. switch( (int)code_value() )
  1376. {
  1377. #ifdef ULTIPANEL
  1378. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1379. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1380. {
  1381. LCD_MESSAGEPGM(MSG_USERWAIT);
  1382. codenum = 0;
  1383. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1384. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1385. st_synchronize();
  1386. previous_millis_cmd = millis();
  1387. if (codenum > 0){
  1388. codenum += millis(); // keep track of when we started waiting
  1389. while(millis() < codenum && !lcd_clicked()){
  1390. manage_heater();
  1391. manage_inactivity();
  1392. lcd_update();
  1393. }
  1394. }else{
  1395. while(!lcd_clicked()){
  1396. manage_heater();
  1397. manage_inactivity();
  1398. lcd_update();
  1399. }
  1400. }
  1401. LCD_MESSAGEPGM(MSG_RESUMING);
  1402. }
  1403. break;
  1404. #endif
  1405. case 17:
  1406. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1407. enable_x();
  1408. enable_y();
  1409. enable_z();
  1410. enable_e0();
  1411. enable_e1();
  1412. enable_e2();
  1413. break;
  1414. #ifdef SDSUPPORT
  1415. case 20: // M20 - list SD card
  1416. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1417. card.ls();
  1418. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1419. break;
  1420. case 21: // M21 - init SD card
  1421. card.initsd();
  1422. break;
  1423. case 22: //M22 - release SD card
  1424. card.release();
  1425. break;
  1426. case 23: //M23 - Select file
  1427. starpos = (strchr(strchr_pointer + 4,'*'));
  1428. if(starpos!=NULL)
  1429. *(starpos-1)='\0';
  1430. card.openFile(strchr_pointer + 4,true);
  1431. break;
  1432. case 24: //M24 - Start SD print
  1433. card.startFileprint();
  1434. starttime=millis();
  1435. break;
  1436. case 25: //M25 - Pause SD print
  1437. card.pauseSDPrint();
  1438. break;
  1439. case 26: //M26 - Set SD index
  1440. if(card.cardOK && code_seen('S')) {
  1441. card.setIndex(code_value_long());
  1442. }
  1443. break;
  1444. case 27: //M27 - Get SD status
  1445. card.getStatus();
  1446. break;
  1447. case 28: //M28 - Start SD write
  1448. starpos = (strchr(strchr_pointer + 4,'*'));
  1449. if(starpos != NULL){
  1450. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1451. strchr_pointer = strchr(npos,' ') + 1;
  1452. *(starpos-1) = '\0';
  1453. }
  1454. card.openFile(strchr_pointer+4,false);
  1455. break;
  1456. case 29: //M29 - Stop SD write
  1457. //processed in write to file routine above
  1458. //card,saving = false;
  1459. break;
  1460. case 30: //M30 <filename> Delete File
  1461. if (card.cardOK){
  1462. card.closefile();
  1463. starpos = (strchr(strchr_pointer + 4,'*'));
  1464. if(starpos != NULL){
  1465. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1466. strchr_pointer = strchr(npos,' ') + 1;
  1467. *(starpos-1) = '\0';
  1468. }
  1469. card.removeFile(strchr_pointer + 4);
  1470. }
  1471. break;
  1472. case 32: //M32 - Select file and start SD print
  1473. {
  1474. if(card.sdprinting) {
  1475. st_synchronize();
  1476. }
  1477. starpos = (strchr(strchr_pointer + 4,'*'));
  1478. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1479. if(namestartpos==NULL)
  1480. {
  1481. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1482. }
  1483. else
  1484. namestartpos++; //to skip the '!'
  1485. if(starpos!=NULL)
  1486. *(starpos-1)='\0';
  1487. bool call_procedure=(code_seen('P'));
  1488. if(strchr_pointer>namestartpos)
  1489. call_procedure=false; //false alert, 'P' found within filename
  1490. if( card.cardOK )
  1491. {
  1492. card.openFile(namestartpos,true,!call_procedure);
  1493. if(code_seen('S'))
  1494. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1495. card.setIndex(code_value_long());
  1496. card.startFileprint();
  1497. if(!call_procedure)
  1498. starttime=millis(); //procedure calls count as normal print time.
  1499. }
  1500. } break;
  1501. case 928: //M928 - Start SD write
  1502. starpos = (strchr(strchr_pointer + 5,'*'));
  1503. if(starpos != NULL){
  1504. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1505. strchr_pointer = strchr(npos,' ') + 1;
  1506. *(starpos-1) = '\0';
  1507. }
  1508. card.openLogFile(strchr_pointer+5);
  1509. break;
  1510. #endif //SDSUPPORT
  1511. case 31: //M31 take time since the start of the SD print or an M109 command
  1512. {
  1513. stoptime=millis();
  1514. char time[30];
  1515. unsigned long t=(stoptime-starttime)/1000;
  1516. int sec,min;
  1517. min=t/60;
  1518. sec=t%60;
  1519. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1520. SERIAL_ECHO_START;
  1521. SERIAL_ECHOLN(time);
  1522. lcd_setstatus(time);
  1523. autotempShutdown();
  1524. }
  1525. break;
  1526. case 42: //M42 -Change pin status via gcode
  1527. if (code_seen('S'))
  1528. {
  1529. int pin_status = code_value();
  1530. int pin_number = LED_PIN;
  1531. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1532. pin_number = code_value();
  1533. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1534. {
  1535. if (sensitive_pins[i] == pin_number)
  1536. {
  1537. pin_number = -1;
  1538. break;
  1539. }
  1540. }
  1541. #if defined(FAN_PIN) && FAN_PIN > -1
  1542. if (pin_number == FAN_PIN)
  1543. fanSpeed = pin_status;
  1544. #endif
  1545. if (pin_number > -1)
  1546. {
  1547. pinMode(pin_number, OUTPUT);
  1548. digitalWrite(pin_number, pin_status);
  1549. analogWrite(pin_number, pin_status);
  1550. }
  1551. }
  1552. break;
  1553. case 104: // M104
  1554. if(setTargetedHotend(104)){
  1555. break;
  1556. }
  1557. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1558. #ifdef DUAL_X_CARRIAGE
  1559. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1560. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1561. #endif
  1562. setWatch();
  1563. break;
  1564. case 140: // M140 set bed temp
  1565. if (code_seen('S')) setTargetBed(code_value());
  1566. break;
  1567. case 105 : // M105
  1568. if(setTargetedHotend(105)){
  1569. break;
  1570. }
  1571. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1572. SERIAL_PROTOCOLPGM("ok T:");
  1573. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1574. SERIAL_PROTOCOLPGM(" /");
  1575. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1576. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1577. SERIAL_PROTOCOLPGM(" B:");
  1578. SERIAL_PROTOCOL_F(degBed(),1);
  1579. SERIAL_PROTOCOLPGM(" /");
  1580. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1581. #endif //TEMP_BED_PIN
  1582. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1583. SERIAL_PROTOCOLPGM(" T");
  1584. SERIAL_PROTOCOL(cur_extruder);
  1585. SERIAL_PROTOCOLPGM(":");
  1586. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1587. SERIAL_PROTOCOLPGM(" /");
  1588. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1589. }
  1590. #else
  1591. SERIAL_ERROR_START;
  1592. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1593. #endif
  1594. SERIAL_PROTOCOLPGM(" @:");
  1595. #ifdef EXTRUDER_WATTS
  1596. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1597. SERIAL_PROTOCOLPGM("W");
  1598. #else
  1599. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1600. #endif
  1601. SERIAL_PROTOCOLPGM(" B@:");
  1602. #ifdef BED_WATTS
  1603. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1604. SERIAL_PROTOCOLPGM("W");
  1605. #else
  1606. SERIAL_PROTOCOL(getHeaterPower(-1));
  1607. #endif
  1608. #ifdef SHOW_TEMP_ADC_VALUES
  1609. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1610. SERIAL_PROTOCOLPGM(" ADC B:");
  1611. SERIAL_PROTOCOL_F(degBed(),1);
  1612. SERIAL_PROTOCOLPGM("C->");
  1613. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1614. #endif
  1615. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1616. SERIAL_PROTOCOLPGM(" T");
  1617. SERIAL_PROTOCOL(cur_extruder);
  1618. SERIAL_PROTOCOLPGM(":");
  1619. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1620. SERIAL_PROTOCOLPGM("C->");
  1621. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1622. }
  1623. #endif
  1624. SERIAL_PROTOCOLLN("");
  1625. return;
  1626. break;
  1627. case 109:
  1628. {// M109 - Wait for extruder heater to reach target.
  1629. if(setTargetedHotend(109)){
  1630. break;
  1631. }
  1632. LCD_MESSAGEPGM(MSG_HEATING);
  1633. #ifdef AUTOTEMP
  1634. autotemp_enabled=false;
  1635. #endif
  1636. if (code_seen('S')) {
  1637. setTargetHotend(code_value(), tmp_extruder);
  1638. #ifdef DUAL_X_CARRIAGE
  1639. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1640. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1641. #endif
  1642. CooldownNoWait = true;
  1643. } else if (code_seen('R')) {
  1644. setTargetHotend(code_value(), tmp_extruder);
  1645. #ifdef DUAL_X_CARRIAGE
  1646. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1647. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1648. #endif
  1649. CooldownNoWait = false;
  1650. }
  1651. #ifdef AUTOTEMP
  1652. if (code_seen('S')) autotemp_min=code_value();
  1653. if (code_seen('B')) autotemp_max=code_value();
  1654. if (code_seen('F'))
  1655. {
  1656. autotemp_factor=code_value();
  1657. autotemp_enabled=true;
  1658. }
  1659. #endif
  1660. setWatch();
  1661. codenum = millis();
  1662. /* See if we are heating up or cooling down */
  1663. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1664. #ifdef TEMP_RESIDENCY_TIME
  1665. long residencyStart;
  1666. residencyStart = -1;
  1667. /* continue to loop until we have reached the target temp
  1668. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1669. while((residencyStart == -1) ||
  1670. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1671. #else
  1672. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1673. #endif //TEMP_RESIDENCY_TIME
  1674. if( (millis() - codenum) > 1000UL )
  1675. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1676. SERIAL_PROTOCOLPGM("T:");
  1677. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1678. SERIAL_PROTOCOLPGM(" E:");
  1679. SERIAL_PROTOCOL((int)tmp_extruder);
  1680. #ifdef TEMP_RESIDENCY_TIME
  1681. SERIAL_PROTOCOLPGM(" W:");
  1682. if(residencyStart > -1)
  1683. {
  1684. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1685. SERIAL_PROTOCOLLN( codenum );
  1686. }
  1687. else
  1688. {
  1689. SERIAL_PROTOCOLLN( "?" );
  1690. }
  1691. #else
  1692. SERIAL_PROTOCOLLN("");
  1693. #endif
  1694. codenum = millis();
  1695. }
  1696. manage_heater();
  1697. manage_inactivity();
  1698. lcd_update();
  1699. #ifdef TEMP_RESIDENCY_TIME
  1700. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1701. or when current temp falls outside the hysteresis after target temp was reached */
  1702. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1703. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1704. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1705. {
  1706. residencyStart = millis();
  1707. }
  1708. #endif //TEMP_RESIDENCY_TIME
  1709. }
  1710. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1711. starttime=millis();
  1712. previous_millis_cmd = millis();
  1713. }
  1714. break;
  1715. case 190: // M190 - Wait for bed heater to reach target.
  1716. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1717. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1718. if (code_seen('S')) {
  1719. setTargetBed(code_value());
  1720. CooldownNoWait = true;
  1721. } else if (code_seen('R')) {
  1722. setTargetBed(code_value());
  1723. CooldownNoWait = false;
  1724. }
  1725. codenum = millis();
  1726. target_direction = isHeatingBed(); // true if heating, false if cooling
  1727. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1728. {
  1729. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1730. {
  1731. float tt=degHotend(active_extruder);
  1732. SERIAL_PROTOCOLPGM("T:");
  1733. SERIAL_PROTOCOL(tt);
  1734. SERIAL_PROTOCOLPGM(" E:");
  1735. SERIAL_PROTOCOL((int)active_extruder);
  1736. SERIAL_PROTOCOLPGM(" B:");
  1737. SERIAL_PROTOCOL_F(degBed(),1);
  1738. SERIAL_PROTOCOLLN("");
  1739. codenum = millis();
  1740. }
  1741. manage_heater();
  1742. manage_inactivity();
  1743. lcd_update();
  1744. }
  1745. LCD_MESSAGEPGM(MSG_BED_DONE);
  1746. previous_millis_cmd = millis();
  1747. #endif
  1748. break;
  1749. #if defined(FAN_PIN) && FAN_PIN > -1
  1750. case 106: //M106 Fan On
  1751. if (code_seen('S')){
  1752. fanSpeed=constrain(code_value(),0,255);
  1753. }
  1754. else {
  1755. fanSpeed=255;
  1756. }
  1757. break;
  1758. case 107: //M107 Fan Off
  1759. fanSpeed = 0;
  1760. break;
  1761. #endif //FAN_PIN
  1762. #ifdef BARICUDA
  1763. // PWM for HEATER_1_PIN
  1764. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1765. case 126: //M126 valve open
  1766. if (code_seen('S')){
  1767. ValvePressure=constrain(code_value(),0,255);
  1768. }
  1769. else {
  1770. ValvePressure=255;
  1771. }
  1772. break;
  1773. case 127: //M127 valve closed
  1774. ValvePressure = 0;
  1775. break;
  1776. #endif //HEATER_1_PIN
  1777. // PWM for HEATER_2_PIN
  1778. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1779. case 128: //M128 valve open
  1780. if (code_seen('S')){
  1781. EtoPPressure=constrain(code_value(),0,255);
  1782. }
  1783. else {
  1784. EtoPPressure=255;
  1785. }
  1786. break;
  1787. case 129: //M129 valve closed
  1788. EtoPPressure = 0;
  1789. break;
  1790. #endif //HEATER_2_PIN
  1791. #endif
  1792. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1793. case 80: // M80 - Turn on Power Supply
  1794. SET_OUTPUT(PS_ON_PIN); //GND
  1795. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1796. // If you have a switch on suicide pin, this is useful
  1797. // if you want to start another print with suicide feature after
  1798. // a print without suicide...
  1799. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1800. SET_OUTPUT(SUICIDE_PIN);
  1801. WRITE(SUICIDE_PIN, HIGH);
  1802. #endif
  1803. #ifdef ULTIPANEL
  1804. powersupply = true;
  1805. LCD_MESSAGEPGM(WELCOME_MSG);
  1806. lcd_update();
  1807. #endif
  1808. break;
  1809. #endif
  1810. case 81: // M81 - Turn off Power Supply
  1811. disable_heater();
  1812. st_synchronize();
  1813. disable_e0();
  1814. disable_e1();
  1815. disable_e2();
  1816. finishAndDisableSteppers();
  1817. fanSpeed = 0;
  1818. delay(1000); // Wait a little before to switch off
  1819. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1820. st_synchronize();
  1821. suicide();
  1822. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1823. SET_OUTPUT(PS_ON_PIN);
  1824. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1825. #endif
  1826. #ifdef ULTIPANEL
  1827. powersupply = false;
  1828. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1829. lcd_update();
  1830. #endif
  1831. break;
  1832. case 82:
  1833. axis_relative_modes[3] = false;
  1834. break;
  1835. case 83:
  1836. axis_relative_modes[3] = true;
  1837. break;
  1838. case 18: //compatibility
  1839. case 84: // M84
  1840. if(code_seen('S')){
  1841. stepper_inactive_time = code_value() * 1000;
  1842. }
  1843. else
  1844. {
  1845. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1846. if(all_axis)
  1847. {
  1848. st_synchronize();
  1849. disable_e0();
  1850. disable_e1();
  1851. disable_e2();
  1852. finishAndDisableSteppers();
  1853. }
  1854. else
  1855. {
  1856. st_synchronize();
  1857. if(code_seen('X')) disable_x();
  1858. if(code_seen('Y')) disable_y();
  1859. if(code_seen('Z')) disable_z();
  1860. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1861. if(code_seen('E')) {
  1862. disable_e0();
  1863. disable_e1();
  1864. disable_e2();
  1865. }
  1866. #endif
  1867. }
  1868. }
  1869. break;
  1870. case 85: // M85
  1871. code_seen('S');
  1872. max_inactive_time = code_value() * 1000;
  1873. break;
  1874. case 92: // M92
  1875. for(int8_t i=0; i < NUM_AXIS; i++)
  1876. {
  1877. if(code_seen(axis_codes[i]))
  1878. {
  1879. if(i == 3) { // E
  1880. float value = code_value();
  1881. if(value < 20.0) {
  1882. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1883. max_e_jerk *= factor;
  1884. max_feedrate[i] *= factor;
  1885. axis_steps_per_sqr_second[i] *= factor;
  1886. }
  1887. axis_steps_per_unit[i] = value;
  1888. }
  1889. else {
  1890. axis_steps_per_unit[i] = code_value();
  1891. }
  1892. }
  1893. }
  1894. break;
  1895. case 115: // M115
  1896. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1897. break;
  1898. case 117: // M117 display message
  1899. starpos = (strchr(strchr_pointer + 5,'*'));
  1900. if(starpos!=NULL)
  1901. *(starpos-1)='\0';
  1902. lcd_setstatus(strchr_pointer + 5);
  1903. break;
  1904. case 114: // M114
  1905. SERIAL_PROTOCOLPGM("X:");
  1906. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1907. SERIAL_PROTOCOLPGM("Y:");
  1908. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1909. SERIAL_PROTOCOLPGM("Z:");
  1910. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1911. SERIAL_PROTOCOLPGM("E:");
  1912. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1913. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1914. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1915. SERIAL_PROTOCOLPGM("Y:");
  1916. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1917. SERIAL_PROTOCOLPGM("Z:");
  1918. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1919. SERIAL_PROTOCOLLN("");
  1920. break;
  1921. case 120: // M120
  1922. enable_endstops(false) ;
  1923. break;
  1924. case 121: // M121
  1925. enable_endstops(true) ;
  1926. break;
  1927. case 119: // M119
  1928. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1929. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1930. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1931. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1932. #endif
  1933. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1934. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1935. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1936. #endif
  1937. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1938. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1939. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1940. #endif
  1941. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1942. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1943. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1944. #endif
  1945. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1946. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1947. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1948. #endif
  1949. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1950. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1951. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1952. #endif
  1953. break;
  1954. //TODO: update for all axis, use for loop
  1955. #ifdef BLINKM
  1956. case 150: // M150
  1957. {
  1958. byte red;
  1959. byte grn;
  1960. byte blu;
  1961. if(code_seen('R')) red = code_value();
  1962. if(code_seen('U')) grn = code_value();
  1963. if(code_seen('B')) blu = code_value();
  1964. SendColors(red,grn,blu);
  1965. }
  1966. break;
  1967. #endif //BLINKM
  1968. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  1969. {
  1970. float area = .0;
  1971. float radius = .0;
  1972. if(code_seen('D')) {
  1973. radius = (float)code_value() * .5;
  1974. if(radius == 0) {
  1975. area = 1;
  1976. } else {
  1977. area = M_PI * pow(radius, 2);
  1978. }
  1979. } else {
  1980. //reserved for setting filament diameter via UFID or filament measuring device
  1981. break;
  1982. }
  1983. tmp_extruder = active_extruder;
  1984. if(code_seen('T')) {
  1985. tmp_extruder = code_value();
  1986. if(tmp_extruder >= EXTRUDERS) {
  1987. SERIAL_ECHO_START;
  1988. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  1989. }
  1990. SERIAL_ECHOLN(tmp_extruder);
  1991. break;
  1992. }
  1993. volumetric_multiplier[tmp_extruder] = 1 / area;
  1994. }
  1995. break;
  1996. case 201: // M201
  1997. for(int8_t i=0; i < NUM_AXIS; i++)
  1998. {
  1999. if(code_seen(axis_codes[i]))
  2000. {
  2001. max_acceleration_units_per_sq_second[i] = code_value();
  2002. }
  2003. }
  2004. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2005. reset_acceleration_rates();
  2006. break;
  2007. #if 0 // Not used for Sprinter/grbl gen6
  2008. case 202: // M202
  2009. for(int8_t i=0; i < NUM_AXIS; i++) {
  2010. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2011. }
  2012. break;
  2013. #endif
  2014. case 203: // M203 max feedrate mm/sec
  2015. for(int8_t i=0; i < NUM_AXIS; i++) {
  2016. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2017. }
  2018. break;
  2019. case 204: // M204 acclereration S normal moves T filmanent only moves
  2020. {
  2021. if(code_seen('S')) acceleration = code_value() ;
  2022. if(code_seen('T')) retract_acceleration = code_value() ;
  2023. }
  2024. break;
  2025. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2026. {
  2027. if(code_seen('S')) minimumfeedrate = code_value();
  2028. if(code_seen('T')) mintravelfeedrate = code_value();
  2029. if(code_seen('B')) minsegmenttime = code_value() ;
  2030. if(code_seen('X')) max_xy_jerk = code_value() ;
  2031. if(code_seen('Z')) max_z_jerk = code_value() ;
  2032. if(code_seen('E')) max_e_jerk = code_value() ;
  2033. }
  2034. break;
  2035. case 206: // M206 additional homeing offset
  2036. for(int8_t i=0; i < 3; i++)
  2037. {
  2038. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2039. }
  2040. break;
  2041. #ifdef DELTA
  2042. case 666: // M666 set delta endstop adjustemnt
  2043. for(int8_t i=0; i < 3; i++)
  2044. {
  2045. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2046. }
  2047. break;
  2048. #endif
  2049. #ifdef FWRETRACT
  2050. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2051. {
  2052. if(code_seen('S'))
  2053. {
  2054. retract_length = code_value() ;
  2055. }
  2056. if(code_seen('F'))
  2057. {
  2058. retract_feedrate = code_value() ;
  2059. }
  2060. if(code_seen('Z'))
  2061. {
  2062. retract_zlift = code_value() ;
  2063. }
  2064. }break;
  2065. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2066. {
  2067. if(code_seen('S'))
  2068. {
  2069. retract_recover_length = code_value() ;
  2070. }
  2071. if(code_seen('F'))
  2072. {
  2073. retract_recover_feedrate = code_value() ;
  2074. }
  2075. }break;
  2076. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2077. {
  2078. if(code_seen('S'))
  2079. {
  2080. int t= code_value() ;
  2081. switch(t)
  2082. {
  2083. case 0: autoretract_enabled=false;retracted=false;break;
  2084. case 1: autoretract_enabled=true;retracted=false;break;
  2085. default:
  2086. SERIAL_ECHO_START;
  2087. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2088. SERIAL_ECHO(cmdbuffer[bufindr]);
  2089. SERIAL_ECHOLNPGM("\"");
  2090. }
  2091. }
  2092. }break;
  2093. #endif // FWRETRACT
  2094. #if EXTRUDERS > 1
  2095. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2096. {
  2097. if(setTargetedHotend(218)){
  2098. break;
  2099. }
  2100. if(code_seen('X'))
  2101. {
  2102. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2103. }
  2104. if(code_seen('Y'))
  2105. {
  2106. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2107. }
  2108. #ifdef DUAL_X_CARRIAGE
  2109. if(code_seen('Z'))
  2110. {
  2111. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2112. }
  2113. #endif
  2114. SERIAL_ECHO_START;
  2115. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2116. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2117. {
  2118. SERIAL_ECHO(" ");
  2119. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2120. SERIAL_ECHO(",");
  2121. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2122. #ifdef DUAL_X_CARRIAGE
  2123. SERIAL_ECHO(",");
  2124. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2125. #endif
  2126. }
  2127. SERIAL_ECHOLN("");
  2128. }break;
  2129. #endif
  2130. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2131. {
  2132. if(code_seen('S'))
  2133. {
  2134. feedmultiply = code_value() ;
  2135. }
  2136. }
  2137. break;
  2138. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2139. {
  2140. if(code_seen('S'))
  2141. {
  2142. extrudemultiply = code_value() ;
  2143. }
  2144. }
  2145. break;
  2146. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2147. {
  2148. if(code_seen('P')){
  2149. int pin_number = code_value(); // pin number
  2150. int pin_state = -1; // required pin state - default is inverted
  2151. if(code_seen('S')) pin_state = code_value(); // required pin state
  2152. if(pin_state >= -1 && pin_state <= 1){
  2153. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2154. {
  2155. if (sensitive_pins[i] == pin_number)
  2156. {
  2157. pin_number = -1;
  2158. break;
  2159. }
  2160. }
  2161. if (pin_number > -1)
  2162. {
  2163. st_synchronize();
  2164. pinMode(pin_number, INPUT);
  2165. int target;
  2166. switch(pin_state){
  2167. case 1:
  2168. target = HIGH;
  2169. break;
  2170. case 0:
  2171. target = LOW;
  2172. break;
  2173. case -1:
  2174. target = !digitalRead(pin_number);
  2175. break;
  2176. }
  2177. while(digitalRead(pin_number) != target){
  2178. manage_heater();
  2179. manage_inactivity();
  2180. lcd_update();
  2181. }
  2182. }
  2183. }
  2184. }
  2185. }
  2186. break;
  2187. #if NUM_SERVOS > 0
  2188. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2189. {
  2190. int servo_index = -1;
  2191. int servo_position = 0;
  2192. if (code_seen('P'))
  2193. servo_index = code_value();
  2194. if (code_seen('S')) {
  2195. servo_position = code_value();
  2196. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2197. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2198. servos[servo_index].attach(0);
  2199. #endif
  2200. servos[servo_index].write(servo_position);
  2201. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2202. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2203. servos[servo_index].detach();
  2204. #endif
  2205. }
  2206. else {
  2207. SERIAL_ECHO_START;
  2208. SERIAL_ECHO("Servo ");
  2209. SERIAL_ECHO(servo_index);
  2210. SERIAL_ECHOLN(" out of range");
  2211. }
  2212. }
  2213. else if (servo_index >= 0) {
  2214. SERIAL_PROTOCOL(MSG_OK);
  2215. SERIAL_PROTOCOL(" Servo ");
  2216. SERIAL_PROTOCOL(servo_index);
  2217. SERIAL_PROTOCOL(": ");
  2218. SERIAL_PROTOCOL(servos[servo_index].read());
  2219. SERIAL_PROTOCOLLN("");
  2220. }
  2221. }
  2222. break;
  2223. #endif // NUM_SERVOS > 0
  2224. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  2225. case 300: // M300
  2226. {
  2227. int beepS = code_seen('S') ? code_value() : 110;
  2228. int beepP = code_seen('P') ? code_value() : 1000;
  2229. if (beepS > 0)
  2230. {
  2231. #if BEEPER > 0
  2232. tone(BEEPER, beepS);
  2233. delay(beepP);
  2234. noTone(BEEPER);
  2235. #elif defined(ULTRALCD)
  2236. lcd_buzz(beepS, beepP);
  2237. #endif
  2238. }
  2239. else
  2240. {
  2241. delay(beepP);
  2242. }
  2243. }
  2244. break;
  2245. #endif // M300
  2246. #ifdef PIDTEMP
  2247. case 301: // M301
  2248. {
  2249. if(code_seen('P')) Kp = code_value();
  2250. if(code_seen('I')) Ki = scalePID_i(code_value());
  2251. if(code_seen('D')) Kd = scalePID_d(code_value());
  2252. #ifdef PID_ADD_EXTRUSION_RATE
  2253. if(code_seen('C')) Kc = code_value();
  2254. #endif
  2255. updatePID();
  2256. SERIAL_PROTOCOL(MSG_OK);
  2257. SERIAL_PROTOCOL(" p:");
  2258. SERIAL_PROTOCOL(Kp);
  2259. SERIAL_PROTOCOL(" i:");
  2260. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2261. SERIAL_PROTOCOL(" d:");
  2262. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2263. #ifdef PID_ADD_EXTRUSION_RATE
  2264. SERIAL_PROTOCOL(" c:");
  2265. //Kc does not have scaling applied above, or in resetting defaults
  2266. SERIAL_PROTOCOL(Kc);
  2267. #endif
  2268. SERIAL_PROTOCOLLN("");
  2269. }
  2270. break;
  2271. #endif //PIDTEMP
  2272. #ifdef PIDTEMPBED
  2273. case 304: // M304
  2274. {
  2275. if(code_seen('P')) bedKp = code_value();
  2276. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2277. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2278. updatePID();
  2279. SERIAL_PROTOCOL(MSG_OK);
  2280. SERIAL_PROTOCOL(" p:");
  2281. SERIAL_PROTOCOL(bedKp);
  2282. SERIAL_PROTOCOL(" i:");
  2283. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2284. SERIAL_PROTOCOL(" d:");
  2285. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2286. SERIAL_PROTOCOLLN("");
  2287. }
  2288. break;
  2289. #endif //PIDTEMP
  2290. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2291. {
  2292. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2293. const uint8_t NUM_PULSES=16;
  2294. const float PULSE_LENGTH=0.01524;
  2295. for(int i=0; i < NUM_PULSES; i++) {
  2296. WRITE(PHOTOGRAPH_PIN, HIGH);
  2297. _delay_ms(PULSE_LENGTH);
  2298. WRITE(PHOTOGRAPH_PIN, LOW);
  2299. _delay_ms(PULSE_LENGTH);
  2300. }
  2301. delay(7.33);
  2302. for(int i=0; i < NUM_PULSES; i++) {
  2303. WRITE(PHOTOGRAPH_PIN, HIGH);
  2304. _delay_ms(PULSE_LENGTH);
  2305. WRITE(PHOTOGRAPH_PIN, LOW);
  2306. _delay_ms(PULSE_LENGTH);
  2307. }
  2308. #endif
  2309. }
  2310. break;
  2311. #ifdef DOGLCD
  2312. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2313. {
  2314. if (code_seen('C')) {
  2315. lcd_setcontrast( ((int)code_value())&63 );
  2316. }
  2317. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2318. SERIAL_PROTOCOL(lcd_contrast);
  2319. SERIAL_PROTOCOLLN("");
  2320. }
  2321. break;
  2322. #endif
  2323. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2324. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2325. {
  2326. float temp = .0;
  2327. if (code_seen('S')) temp=code_value();
  2328. set_extrude_min_temp(temp);
  2329. }
  2330. break;
  2331. #endif
  2332. case 303: // M303 PID autotune
  2333. {
  2334. float temp = 150.0;
  2335. int e=0;
  2336. int c=5;
  2337. if (code_seen('E')) e=code_value();
  2338. if (e<0)
  2339. temp=70;
  2340. if (code_seen('S')) temp=code_value();
  2341. if (code_seen('C')) c=code_value();
  2342. PID_autotune(temp, e, c);
  2343. }
  2344. break;
  2345. case 400: // M400 finish all moves
  2346. {
  2347. st_synchronize();
  2348. }
  2349. break;
  2350. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2351. case 401:
  2352. {
  2353. engage_z_probe(); // Engage Z Servo endstop if available
  2354. }
  2355. break;
  2356. case 402:
  2357. {
  2358. retract_z_probe(); // Retract Z Servo endstop if enabled
  2359. }
  2360. break;
  2361. #endif
  2362. case 500: // M500 Store settings in EEPROM
  2363. {
  2364. Config_StoreSettings();
  2365. }
  2366. break;
  2367. case 501: // M501 Read settings from EEPROM
  2368. {
  2369. Config_RetrieveSettings();
  2370. }
  2371. break;
  2372. case 502: // M502 Revert to default settings
  2373. {
  2374. Config_ResetDefault();
  2375. }
  2376. break;
  2377. case 503: // M503 print settings currently in memory
  2378. {
  2379. Config_PrintSettings();
  2380. }
  2381. break;
  2382. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2383. case 540:
  2384. {
  2385. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2386. }
  2387. break;
  2388. #endif
  2389. #ifdef FILAMENTCHANGEENABLE
  2390. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2391. {
  2392. float target[4];
  2393. float lastpos[4];
  2394. target[X_AXIS]=current_position[X_AXIS];
  2395. target[Y_AXIS]=current_position[Y_AXIS];
  2396. target[Z_AXIS]=current_position[Z_AXIS];
  2397. target[E_AXIS]=current_position[E_AXIS];
  2398. lastpos[X_AXIS]=current_position[X_AXIS];
  2399. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2400. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2401. lastpos[E_AXIS]=current_position[E_AXIS];
  2402. //retract by E
  2403. if(code_seen('E'))
  2404. {
  2405. target[E_AXIS]+= code_value();
  2406. }
  2407. else
  2408. {
  2409. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2410. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2411. #endif
  2412. }
  2413. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2414. //lift Z
  2415. if(code_seen('Z'))
  2416. {
  2417. target[Z_AXIS]+= code_value();
  2418. }
  2419. else
  2420. {
  2421. #ifdef FILAMENTCHANGE_ZADD
  2422. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2423. #endif
  2424. }
  2425. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2426. //move xy
  2427. if(code_seen('X'))
  2428. {
  2429. target[X_AXIS]+= code_value();
  2430. }
  2431. else
  2432. {
  2433. #ifdef FILAMENTCHANGE_XPOS
  2434. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2435. #endif
  2436. }
  2437. if(code_seen('Y'))
  2438. {
  2439. target[Y_AXIS]= code_value();
  2440. }
  2441. else
  2442. {
  2443. #ifdef FILAMENTCHANGE_YPOS
  2444. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2445. #endif
  2446. }
  2447. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2448. if(code_seen('L'))
  2449. {
  2450. target[E_AXIS]+= code_value();
  2451. }
  2452. else
  2453. {
  2454. #ifdef FILAMENTCHANGE_FINALRETRACT
  2455. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2456. #endif
  2457. }
  2458. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2459. //finish moves
  2460. st_synchronize();
  2461. //disable extruder steppers so filament can be removed
  2462. disable_e0();
  2463. disable_e1();
  2464. disable_e2();
  2465. delay(100);
  2466. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2467. uint8_t cnt=0;
  2468. while(!lcd_clicked()){
  2469. cnt++;
  2470. manage_heater();
  2471. manage_inactivity();
  2472. lcd_update();
  2473. if(cnt==0)
  2474. {
  2475. #if BEEPER > 0
  2476. SET_OUTPUT(BEEPER);
  2477. WRITE(BEEPER,HIGH);
  2478. delay(3);
  2479. WRITE(BEEPER,LOW);
  2480. delay(3);
  2481. #else
  2482. lcd_buzz(1000/6,100);
  2483. #endif
  2484. }
  2485. }
  2486. //return to normal
  2487. if(code_seen('L'))
  2488. {
  2489. target[E_AXIS]+= -code_value();
  2490. }
  2491. else
  2492. {
  2493. #ifdef FILAMENTCHANGE_FINALRETRACT
  2494. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2495. #endif
  2496. }
  2497. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2498. plan_set_e_position(current_position[E_AXIS]);
  2499. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2500. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2501. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2502. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2503. }
  2504. break;
  2505. #endif //FILAMENTCHANGEENABLE
  2506. #ifdef DUAL_X_CARRIAGE
  2507. case 605: // Set dual x-carriage movement mode:
  2508. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2509. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2510. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2511. // millimeters x-offset and an optional differential hotend temperature of
  2512. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2513. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2514. //
  2515. // Note: the X axis should be homed after changing dual x-carriage mode.
  2516. {
  2517. st_synchronize();
  2518. if (code_seen('S'))
  2519. dual_x_carriage_mode = code_value();
  2520. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2521. {
  2522. if (code_seen('X'))
  2523. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2524. if (code_seen('R'))
  2525. duplicate_extruder_temp_offset = code_value();
  2526. SERIAL_ECHO_START;
  2527. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2528. SERIAL_ECHO(" ");
  2529. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2530. SERIAL_ECHO(",");
  2531. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2532. SERIAL_ECHO(" ");
  2533. SERIAL_ECHO(duplicate_extruder_x_offset);
  2534. SERIAL_ECHO(",");
  2535. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2536. }
  2537. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2538. {
  2539. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2540. }
  2541. active_extruder_parked = false;
  2542. extruder_duplication_enabled = false;
  2543. delayed_move_time = 0;
  2544. }
  2545. break;
  2546. #endif //DUAL_X_CARRIAGE
  2547. case 907: // M907 Set digital trimpot motor current using axis codes.
  2548. {
  2549. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2550. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2551. if(code_seen('B')) digipot_current(4,code_value());
  2552. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2553. #endif
  2554. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2555. if(code_seen('X')) digipot_current(0, code_value());
  2556. #endif
  2557. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2558. if(code_seen('Z')) digipot_current(1, code_value());
  2559. #endif
  2560. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2561. if(code_seen('E')) digipot_current(2, code_value());
  2562. #endif
  2563. }
  2564. break;
  2565. case 908: // M908 Control digital trimpot directly.
  2566. {
  2567. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2568. uint8_t channel,current;
  2569. if(code_seen('P')) channel=code_value();
  2570. if(code_seen('S')) current=code_value();
  2571. digitalPotWrite(channel, current);
  2572. #endif
  2573. }
  2574. break;
  2575. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2576. {
  2577. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2578. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2579. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2580. if(code_seen('B')) microstep_mode(4,code_value());
  2581. microstep_readings();
  2582. #endif
  2583. }
  2584. break;
  2585. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2586. {
  2587. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2588. if(code_seen('S')) switch((int)code_value())
  2589. {
  2590. case 1:
  2591. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2592. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2593. break;
  2594. case 2:
  2595. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2596. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2597. break;
  2598. }
  2599. microstep_readings();
  2600. #endif
  2601. }
  2602. break;
  2603. case 999: // M999: Restart after being stopped
  2604. Stopped = false;
  2605. lcd_reset_alert_level();
  2606. gcode_LastN = Stopped_gcode_LastN;
  2607. FlushSerialRequestResend();
  2608. break;
  2609. }
  2610. }
  2611. else if(code_seen('T'))
  2612. {
  2613. tmp_extruder = code_value();
  2614. if(tmp_extruder >= EXTRUDERS) {
  2615. SERIAL_ECHO_START;
  2616. SERIAL_ECHO("T");
  2617. SERIAL_ECHO(tmp_extruder);
  2618. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2619. }
  2620. else {
  2621. boolean make_move = false;
  2622. if(code_seen('F')) {
  2623. make_move = true;
  2624. next_feedrate = code_value();
  2625. if(next_feedrate > 0.0) {
  2626. feedrate = next_feedrate;
  2627. }
  2628. }
  2629. #if EXTRUDERS > 1
  2630. if(tmp_extruder != active_extruder) {
  2631. // Save current position to return to after applying extruder offset
  2632. memcpy(destination, current_position, sizeof(destination));
  2633. #ifdef DUAL_X_CARRIAGE
  2634. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2635. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2636. {
  2637. // Park old head: 1) raise 2) move to park position 3) lower
  2638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2639. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2640. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2641. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2642. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2643. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2644. st_synchronize();
  2645. }
  2646. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2647. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2648. extruder_offset[Y_AXIS][active_extruder] +
  2649. extruder_offset[Y_AXIS][tmp_extruder];
  2650. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2651. extruder_offset[Z_AXIS][active_extruder] +
  2652. extruder_offset[Z_AXIS][tmp_extruder];
  2653. active_extruder = tmp_extruder;
  2654. // This function resets the max/min values - the current position may be overwritten below.
  2655. axis_is_at_home(X_AXIS);
  2656. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2657. {
  2658. current_position[X_AXIS] = inactive_extruder_x_pos;
  2659. inactive_extruder_x_pos = destination[X_AXIS];
  2660. }
  2661. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2662. {
  2663. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2664. if (active_extruder == 0 || active_extruder_parked)
  2665. current_position[X_AXIS] = inactive_extruder_x_pos;
  2666. else
  2667. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2668. inactive_extruder_x_pos = destination[X_AXIS];
  2669. extruder_duplication_enabled = false;
  2670. }
  2671. else
  2672. {
  2673. // record raised toolhead position for use by unpark
  2674. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2675. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2676. active_extruder_parked = true;
  2677. delayed_move_time = 0;
  2678. }
  2679. #else
  2680. // Offset extruder (only by XY)
  2681. int i;
  2682. for(i = 0; i < 2; i++) {
  2683. current_position[i] = current_position[i] -
  2684. extruder_offset[i][active_extruder] +
  2685. extruder_offset[i][tmp_extruder];
  2686. }
  2687. // Set the new active extruder and position
  2688. active_extruder = tmp_extruder;
  2689. #endif //else DUAL_X_CARRIAGE
  2690. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2691. // Move to the old position if 'F' was in the parameters
  2692. if(make_move && Stopped == false) {
  2693. prepare_move();
  2694. }
  2695. }
  2696. #endif
  2697. SERIAL_ECHO_START;
  2698. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2699. SERIAL_PROTOCOLLN((int)active_extruder);
  2700. }
  2701. }
  2702. else
  2703. {
  2704. SERIAL_ECHO_START;
  2705. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2706. SERIAL_ECHO(cmdbuffer[bufindr]);
  2707. SERIAL_ECHOLNPGM("\"");
  2708. }
  2709. ClearToSend();
  2710. }
  2711. void FlushSerialRequestResend()
  2712. {
  2713. //char cmdbuffer[bufindr][100]="Resend:";
  2714. MYSERIAL.flush();
  2715. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2716. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2717. ClearToSend();
  2718. }
  2719. void ClearToSend()
  2720. {
  2721. previous_millis_cmd = millis();
  2722. #ifdef SDSUPPORT
  2723. if(fromsd[bufindr])
  2724. return;
  2725. #endif //SDSUPPORT
  2726. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2727. }
  2728. void get_coordinates()
  2729. {
  2730. bool seen[4]={false,false,false,false};
  2731. for(int8_t i=0; i < NUM_AXIS; i++) {
  2732. if(code_seen(axis_codes[i]))
  2733. {
  2734. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2735. seen[i]=true;
  2736. }
  2737. else destination[i] = current_position[i]; //Are these else lines really needed?
  2738. }
  2739. if(code_seen('F')) {
  2740. next_feedrate = code_value();
  2741. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2742. }
  2743. #ifdef FWRETRACT
  2744. if(autoretract_enabled)
  2745. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2746. {
  2747. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2748. if(echange<-MIN_RETRACT) //retract
  2749. {
  2750. if(!retracted)
  2751. {
  2752. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2753. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2754. float correctede=-echange-retract_length;
  2755. //to generate the additional steps, not the destination is changed, but inversely the current position
  2756. current_position[E_AXIS]+=-correctede;
  2757. feedrate=retract_feedrate;
  2758. retracted=true;
  2759. }
  2760. }
  2761. else
  2762. if(echange>MIN_RETRACT) //retract_recover
  2763. {
  2764. if(retracted)
  2765. {
  2766. //current_position[Z_AXIS]+=-retract_zlift;
  2767. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2768. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2769. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2770. feedrate=retract_recover_feedrate;
  2771. retracted=false;
  2772. }
  2773. }
  2774. }
  2775. #endif //FWRETRACT
  2776. }
  2777. void get_arc_coordinates()
  2778. {
  2779. #ifdef SF_ARC_FIX
  2780. bool relative_mode_backup = relative_mode;
  2781. relative_mode = true;
  2782. #endif
  2783. get_coordinates();
  2784. #ifdef SF_ARC_FIX
  2785. relative_mode=relative_mode_backup;
  2786. #endif
  2787. if(code_seen('I')) {
  2788. offset[0] = code_value();
  2789. }
  2790. else {
  2791. offset[0] = 0.0;
  2792. }
  2793. if(code_seen('J')) {
  2794. offset[1] = code_value();
  2795. }
  2796. else {
  2797. offset[1] = 0.0;
  2798. }
  2799. }
  2800. void clamp_to_software_endstops(float target[3])
  2801. {
  2802. if (min_software_endstops) {
  2803. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2804. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2805. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2806. }
  2807. if (max_software_endstops) {
  2808. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2809. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2810. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2811. }
  2812. }
  2813. #ifdef DELTA
  2814. void calculate_delta(float cartesian[3])
  2815. {
  2816. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2817. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2818. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2819. ) + cartesian[Z_AXIS];
  2820. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2821. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2822. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2823. ) + cartesian[Z_AXIS];
  2824. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2825. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2826. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2827. ) + cartesian[Z_AXIS];
  2828. /*
  2829. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2830. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2831. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2832. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2833. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2834. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2835. */
  2836. }
  2837. #endif
  2838. void prepare_move()
  2839. {
  2840. clamp_to_software_endstops(destination);
  2841. previous_millis_cmd = millis();
  2842. #ifdef DELTA
  2843. float difference[NUM_AXIS];
  2844. for (int8_t i=0; i < NUM_AXIS; i++) {
  2845. difference[i] = destination[i] - current_position[i];
  2846. }
  2847. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2848. sq(difference[Y_AXIS]) +
  2849. sq(difference[Z_AXIS]));
  2850. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2851. if (cartesian_mm < 0.000001) { return; }
  2852. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2853. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2854. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2855. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2856. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2857. for (int s = 1; s <= steps; s++) {
  2858. float fraction = float(s) / float(steps);
  2859. for(int8_t i=0; i < NUM_AXIS; i++) {
  2860. destination[i] = current_position[i] + difference[i] * fraction;
  2861. }
  2862. calculate_delta(destination);
  2863. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2864. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2865. active_extruder);
  2866. }
  2867. #else
  2868. #ifdef DUAL_X_CARRIAGE
  2869. if (active_extruder_parked)
  2870. {
  2871. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2872. {
  2873. // move duplicate extruder into correct duplication position.
  2874. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2875. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2876. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2877. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2878. st_synchronize();
  2879. extruder_duplication_enabled = true;
  2880. active_extruder_parked = false;
  2881. }
  2882. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2883. {
  2884. if (current_position[E_AXIS] == destination[E_AXIS])
  2885. {
  2886. // this is a travel move - skit it but keep track of current position (so that it can later
  2887. // be used as start of first non-travel move)
  2888. if (delayed_move_time != 0xFFFFFFFFUL)
  2889. {
  2890. memcpy(current_position, destination, sizeof(current_position));
  2891. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2892. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2893. delayed_move_time = millis();
  2894. return;
  2895. }
  2896. }
  2897. delayed_move_time = 0;
  2898. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2899. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2900. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2901. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2902. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2903. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2904. active_extruder_parked = false;
  2905. }
  2906. }
  2907. #endif //DUAL_X_CARRIAGE
  2908. // Do not use feedmultiply for E or Z only moves
  2909. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2910. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2911. }
  2912. else {
  2913. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2914. }
  2915. #endif //else DELTA
  2916. for(int8_t i=0; i < NUM_AXIS; i++) {
  2917. current_position[i] = destination[i];
  2918. }
  2919. }
  2920. void prepare_arc_move(char isclockwise) {
  2921. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2922. // Trace the arc
  2923. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2924. // As far as the parser is concerned, the position is now == target. In reality the
  2925. // motion control system might still be processing the action and the real tool position
  2926. // in any intermediate location.
  2927. for(int8_t i=0; i < NUM_AXIS; i++) {
  2928. current_position[i] = destination[i];
  2929. }
  2930. previous_millis_cmd = millis();
  2931. }
  2932. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2933. #if defined(FAN_PIN)
  2934. #if CONTROLLERFAN_PIN == FAN_PIN
  2935. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2936. #endif
  2937. #endif
  2938. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2939. unsigned long lastMotorCheck = 0;
  2940. void controllerFan()
  2941. {
  2942. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2943. {
  2944. lastMotorCheck = millis();
  2945. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2946. #if EXTRUDERS > 2
  2947. || !READ(E2_ENABLE_PIN)
  2948. #endif
  2949. #if EXTRUDER > 1
  2950. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2951. || !READ(X2_ENABLE_PIN)
  2952. #endif
  2953. || !READ(E1_ENABLE_PIN)
  2954. #endif
  2955. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2956. {
  2957. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2958. }
  2959. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2960. {
  2961. digitalWrite(CONTROLLERFAN_PIN, 0);
  2962. analogWrite(CONTROLLERFAN_PIN, 0);
  2963. }
  2964. else
  2965. {
  2966. // allows digital or PWM fan output to be used (see M42 handling)
  2967. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2968. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2969. }
  2970. }
  2971. }
  2972. #endif
  2973. #ifdef TEMP_STAT_LEDS
  2974. static bool blue_led = false;
  2975. static bool red_led = false;
  2976. static uint32_t stat_update = 0;
  2977. void handle_status_leds(void) {
  2978. float max_temp = 0.0;
  2979. if(millis() > stat_update) {
  2980. stat_update += 500; // Update every 0.5s
  2981. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2982. max_temp = max(max_temp, degHotend(cur_extruder));
  2983. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2984. }
  2985. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2986. max_temp = max(max_temp, degTargetBed());
  2987. max_temp = max(max_temp, degBed());
  2988. #endif
  2989. if((max_temp > 55.0) && (red_led == false)) {
  2990. digitalWrite(STAT_LED_RED, 1);
  2991. digitalWrite(STAT_LED_BLUE, 0);
  2992. red_led = true;
  2993. blue_led = false;
  2994. }
  2995. if((max_temp < 54.0) && (blue_led == false)) {
  2996. digitalWrite(STAT_LED_RED, 0);
  2997. digitalWrite(STAT_LED_BLUE, 1);
  2998. red_led = false;
  2999. blue_led = true;
  3000. }
  3001. }
  3002. }
  3003. #endif
  3004. void manage_inactivity()
  3005. {
  3006. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3007. if(max_inactive_time)
  3008. kill();
  3009. if(stepper_inactive_time) {
  3010. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3011. {
  3012. if(blocks_queued() == false) {
  3013. disable_x();
  3014. disable_y();
  3015. disable_z();
  3016. disable_e0();
  3017. disable_e1();
  3018. disable_e2();
  3019. }
  3020. }
  3021. }
  3022. #if defined(KILL_PIN) && KILL_PIN > -1
  3023. if( 0 == READ(KILL_PIN) )
  3024. kill();
  3025. #endif
  3026. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3027. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3028. #endif
  3029. #ifdef EXTRUDER_RUNOUT_PREVENT
  3030. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3031. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3032. {
  3033. bool oldstatus=READ(E0_ENABLE_PIN);
  3034. enable_e0();
  3035. float oldepos=current_position[E_AXIS];
  3036. float oldedes=destination[E_AXIS];
  3037. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3038. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3039. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3040. current_position[E_AXIS]=oldepos;
  3041. destination[E_AXIS]=oldedes;
  3042. plan_set_e_position(oldepos);
  3043. previous_millis_cmd=millis();
  3044. st_synchronize();
  3045. WRITE(E0_ENABLE_PIN,oldstatus);
  3046. }
  3047. #endif
  3048. #if defined(DUAL_X_CARRIAGE)
  3049. // handle delayed move timeout
  3050. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3051. {
  3052. // travel moves have been received so enact them
  3053. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3054. memcpy(destination,current_position,sizeof(destination));
  3055. prepare_move();
  3056. }
  3057. #endif
  3058. #ifdef TEMP_STAT_LEDS
  3059. handle_status_leds();
  3060. #endif
  3061. check_axes_activity();
  3062. }
  3063. void kill()
  3064. {
  3065. cli(); // Stop interrupts
  3066. disable_heater();
  3067. disable_x();
  3068. disable_y();
  3069. disable_z();
  3070. disable_e0();
  3071. disable_e1();
  3072. disable_e2();
  3073. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3074. pinMode(PS_ON_PIN,INPUT);
  3075. #endif
  3076. SERIAL_ERROR_START;
  3077. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3078. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3079. suicide();
  3080. while(1) { /* Intentionally left empty */ } // Wait for reset
  3081. }
  3082. void Stop()
  3083. {
  3084. disable_heater();
  3085. if(Stopped == false) {
  3086. Stopped = true;
  3087. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3088. SERIAL_ERROR_START;
  3089. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3090. LCD_MESSAGEPGM(MSG_STOPPED);
  3091. }
  3092. }
  3093. bool IsStopped() { return Stopped; };
  3094. #ifdef FAST_PWM_FAN
  3095. void setPwmFrequency(uint8_t pin, int val)
  3096. {
  3097. val &= 0x07;
  3098. switch(digitalPinToTimer(pin))
  3099. {
  3100. #if defined(TCCR0A)
  3101. case TIMER0A:
  3102. case TIMER0B:
  3103. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3104. // TCCR0B |= val;
  3105. break;
  3106. #endif
  3107. #if defined(TCCR1A)
  3108. case TIMER1A:
  3109. case TIMER1B:
  3110. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3111. // TCCR1B |= val;
  3112. break;
  3113. #endif
  3114. #if defined(TCCR2)
  3115. case TIMER2:
  3116. case TIMER2:
  3117. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3118. TCCR2 |= val;
  3119. break;
  3120. #endif
  3121. #if defined(TCCR2A)
  3122. case TIMER2A:
  3123. case TIMER2B:
  3124. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3125. TCCR2B |= val;
  3126. break;
  3127. #endif
  3128. #if defined(TCCR3A)
  3129. case TIMER3A:
  3130. case TIMER3B:
  3131. case TIMER3C:
  3132. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3133. TCCR3B |= val;
  3134. break;
  3135. #endif
  3136. #if defined(TCCR4A)
  3137. case TIMER4A:
  3138. case TIMER4B:
  3139. case TIMER4C:
  3140. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3141. TCCR4B |= val;
  3142. break;
  3143. #endif
  3144. #if defined(TCCR5A)
  3145. case TIMER5A:
  3146. case TIMER5B:
  3147. case TIMER5C:
  3148. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3149. TCCR5B |= val;
  3150. break;
  3151. #endif
  3152. }
  3153. }
  3154. #endif //FAST_PWM_FAN
  3155. bool setTargetedHotend(int code){
  3156. tmp_extruder = active_extruder;
  3157. if(code_seen('T')) {
  3158. tmp_extruder = code_value();
  3159. if(tmp_extruder >= EXTRUDERS) {
  3160. SERIAL_ECHO_START;
  3161. switch(code){
  3162. case 104:
  3163. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3164. break;
  3165. case 105:
  3166. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3167. break;
  3168. case 109:
  3169. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3170. break;
  3171. case 218:
  3172. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3173. break;
  3174. }
  3175. SERIAL_ECHOLN(tmp_extruder);
  3176. return true;
  3177. }
  3178. }
  3179. return false;
  3180. }