My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

temperature.cpp 49KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625
  1. /*
  2. temperature.cpp - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "Marlin.h"
  17. #include "ultralcd.h"
  18. #include "temperature.h"
  19. #include "watchdog.h"
  20. #include "language.h"
  21. #include "Sd2PinMap.h"
  22. //===========================================================================
  23. //================================== macros =================================
  24. //===========================================================================
  25. #ifdef K1 // Defined in Configuration.h in the PID settings
  26. #define K2 (1.0-K1)
  27. #endif
  28. #if defined(PIDTEMPBED) || defined(PIDTEMP)
  29. #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
  30. #endif
  31. //===========================================================================
  32. //============================= public variables ============================
  33. //===========================================================================
  34. int target_temperature[4] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[4] = { 0 };
  37. float current_temperature[4] = { 0.0 };
  38. int current_temperature_bed_raw = 0;
  39. float current_temperature_bed = 0.0;
  40. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  41. int redundant_temperature_raw = 0;
  42. float redundant_temperature = 0.0;
  43. #endif
  44. #ifdef PIDTEMPBED
  45. float bedKp=DEFAULT_bedKp;
  46. float bedKi=(DEFAULT_bedKi*PID_dT);
  47. float bedKd=(DEFAULT_bedKd/PID_dT);
  48. #endif //PIDTEMPBED
  49. #ifdef FAN_SOFT_PWM
  50. unsigned char fanSpeedSoftPwm;
  51. #endif
  52. unsigned char soft_pwm_bed;
  53. #ifdef BABYSTEPPING
  54. volatile int babystepsTodo[3] = { 0 };
  55. #endif
  56. #ifdef FILAMENT_SENSOR
  57. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  58. #endif
  59. #define HAS_HEATER_THERMAL_PROTECTION (defined(THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0)
  60. #define HAS_BED_THERMAL_PROTECTION (defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0 && TEMP_SENSOR_BED != 0)
  61. #if HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
  62. enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway };
  63. void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
  64. #if HAS_HEATER_THERMAL_PROTECTION
  65. static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset };
  66. static millis_t thermal_runaway_timer[4]; // = {0,0,0,0};
  67. #endif
  68. #if HAS_BED_THERMAL_PROTECTION
  69. static TRState thermal_runaway_bed_state_machine = TRReset;
  70. static millis_t thermal_runaway_bed_timer;
  71. #endif
  72. #endif
  73. //===========================================================================
  74. //============================ private variables ============================
  75. //===========================================================================
  76. static volatile bool temp_meas_ready = false;
  77. #ifdef PIDTEMP
  78. //static cannot be external:
  79. static float temp_iState[EXTRUDERS] = { 0 };
  80. static float temp_dState[EXTRUDERS] = { 0 };
  81. static float pTerm[EXTRUDERS];
  82. static float iTerm[EXTRUDERS];
  83. static float dTerm[EXTRUDERS];
  84. //int output;
  85. static float pid_error[EXTRUDERS];
  86. static float temp_iState_min[EXTRUDERS];
  87. static float temp_iState_max[EXTRUDERS];
  88. static bool pid_reset[EXTRUDERS];
  89. #endif //PIDTEMP
  90. #ifdef PIDTEMPBED
  91. //static cannot be external:
  92. static float temp_iState_bed = { 0 };
  93. static float temp_dState_bed = { 0 };
  94. static float pTerm_bed;
  95. static float iTerm_bed;
  96. static float dTerm_bed;
  97. //int output;
  98. static float pid_error_bed;
  99. static float temp_iState_min_bed;
  100. static float temp_iState_max_bed;
  101. #else //PIDTEMPBED
  102. static millis_t next_bed_check_ms;
  103. #endif //PIDTEMPBED
  104. static unsigned char soft_pwm[EXTRUDERS];
  105. #ifdef FAN_SOFT_PWM
  106. static unsigned char soft_pwm_fan;
  107. #endif
  108. #if HAS_AUTO_FAN
  109. static millis_t next_auto_fan_check_ms;
  110. #endif
  111. #ifdef PIDTEMP
  112. #ifdef PID_PARAMS_PER_EXTRUDER
  113. float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
  114. float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
  115. float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
  116. #ifdef PID_ADD_EXTRUSION_RATE
  117. float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
  118. #endif // PID_ADD_EXTRUSION_RATE
  119. #else //PID_PARAMS_PER_EXTRUDER
  120. float Kp = DEFAULT_Kp;
  121. float Ki = DEFAULT_Ki * PID_dT;
  122. float Kd = DEFAULT_Kd / PID_dT;
  123. #ifdef PID_ADD_EXTRUSION_RATE
  124. float Kc = DEFAULT_Kc;
  125. #endif // PID_ADD_EXTRUSION_RATE
  126. #endif // PID_PARAMS_PER_EXTRUDER
  127. #endif //PIDTEMP
  128. // Init min and max temp with extreme values to prevent false errors during startup
  129. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
  130. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
  131. static int minttemp[EXTRUDERS] = { 0 };
  132. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
  133. //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
  134. #ifdef BED_MAXTEMP
  135. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  136. #endif
  137. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  138. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  139. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  140. #else
  141. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
  142. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
  143. #endif
  144. static float analog2temp(int raw, uint8_t e);
  145. static float analog2tempBed(int raw);
  146. static void updateTemperaturesFromRawValues();
  147. #ifdef WATCH_TEMP_PERIOD
  148. int watch_target_temp[EXTRUDERS] = { 0 };
  149. millis_t watch_heater_next_ms[EXTRUDERS] = { 0 };
  150. #endif
  151. #ifndef SOFT_PWM_SCALE
  152. #define SOFT_PWM_SCALE 0
  153. #endif
  154. #ifdef FILAMENT_SENSOR
  155. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  156. #endif
  157. #ifdef HEATER_0_USES_MAX6675
  158. static int read_max6675();
  159. #endif
  160. //===========================================================================
  161. //================================ Functions ================================
  162. //===========================================================================
  163. void PID_autotune(float temp, int extruder, int ncycles)
  164. {
  165. float input = 0.0;
  166. int cycles = 0;
  167. bool heating = true;
  168. millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
  169. long t_high = 0, t_low = 0;
  170. long bias, d;
  171. float Ku, Tu;
  172. float Kp, Ki, Kd;
  173. float max = 0, min = 10000;
  174. #if HAS_AUTO_FAN
  175. millis_t next_auto_fan_check_ms = temp_ms + 2500;
  176. #endif
  177. if (extruder >= EXTRUDERS
  178. #if !HAS_TEMP_BED
  179. || extruder < 0
  180. #endif
  181. ) {
  182. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  183. return;
  184. }
  185. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  186. disable_all_heaters(); // switch off all heaters.
  187. if (extruder < 0)
  188. soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
  189. else
  190. soft_pwm[extruder] = bias = d = PID_MAX / 2;
  191. // PID Tuning loop
  192. for (;;) {
  193. millis_t ms = millis();
  194. if (temp_meas_ready) { // temp sample ready
  195. updateTemperaturesFromRawValues();
  196. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  197. max = max(max, input);
  198. min = min(min, input);
  199. #if HAS_AUTO_FAN
  200. if (ms > next_auto_fan_check_ms) {
  201. checkExtruderAutoFans();
  202. next_auto_fan_check_ms = ms + 2500;
  203. }
  204. #endif
  205. if (heating == true && input > temp) {
  206. if (ms - t2 > 5000) {
  207. heating = false;
  208. if (extruder < 0)
  209. soft_pwm_bed = (bias - d) >> 1;
  210. else
  211. soft_pwm[extruder] = (bias - d) >> 1;
  212. t1 = ms;
  213. t_high = t1 - t2;
  214. max = temp;
  215. }
  216. }
  217. if (heating == false && input < temp) {
  218. if (ms - t1 > 5000) {
  219. heating = true;
  220. t2 = ms;
  221. t_low = t2 - t1;
  222. if (cycles > 0) {
  223. long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
  224. bias += (d*(t_high - t_low))/(t_low + t_high);
  225. bias = constrain(bias, 20, max_pow - 20);
  226. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  227. SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
  228. SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
  229. SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
  230. SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
  231. if (cycles > 2) {
  232. Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
  233. Tu = ((float)(t_low + t_high) / 1000.0);
  234. SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
  235. SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
  236. Kp = 0.6 * Ku;
  237. Ki = 2 * Kp / Tu;
  238. Kd = Kp * Tu / 8;
  239. SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
  240. SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
  241. SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
  242. SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
  243. /*
  244. Kp = 0.33*Ku;
  245. Ki = Kp/Tu;
  246. Kd = Kp*Tu/3;
  247. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  248. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  249. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  250. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  251. Kp = 0.2*Ku;
  252. Ki = 2*Kp/Tu;
  253. Kd = Kp*Tu/3;
  254. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  255. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  256. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  257. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  258. */
  259. }
  260. }
  261. if (extruder < 0)
  262. soft_pwm_bed = (bias + d) >> 1;
  263. else
  264. soft_pwm[extruder] = (bias + d) >> 1;
  265. cycles++;
  266. min = temp;
  267. }
  268. }
  269. }
  270. if (input > temp + 20) {
  271. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  272. return;
  273. }
  274. // Every 2 seconds...
  275. if (ms > temp_ms + 2000) {
  276. int p;
  277. if (extruder < 0) {
  278. p = soft_pwm_bed;
  279. SERIAL_PROTOCOLPGM(MSG_OK_B);
  280. }
  281. else {
  282. p = soft_pwm[extruder];
  283. SERIAL_PROTOCOLPGM(MSG_OK_T);
  284. }
  285. SERIAL_PROTOCOL(input);
  286. SERIAL_PROTOCOLPGM(MSG_AT);
  287. SERIAL_PROTOCOLLN(p);
  288. temp_ms = ms;
  289. } // every 2 seconds
  290. // Over 2 minutes?
  291. if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
  292. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  293. return;
  294. }
  295. if (cycles > ncycles) {
  296. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  297. const char *estring = extruder < 0 ? "bed" : "";
  298. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kp "); SERIAL_PROTOCOLLN(Kp);
  299. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Ki "); SERIAL_PROTOCOLLN(Ki);
  300. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kd "); SERIAL_PROTOCOLLN(Kd);
  301. return;
  302. }
  303. lcd_update();
  304. }
  305. }
  306. void updatePID() {
  307. #ifdef PIDTEMP
  308. for (int e = 0; e < EXTRUDERS; e++) {
  309. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  310. }
  311. #endif
  312. #ifdef PIDTEMPBED
  313. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  314. #endif
  315. }
  316. int getHeaterPower(int heater) {
  317. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  318. }
  319. #if HAS_AUTO_FAN
  320. void setExtruderAutoFanState(int pin, bool state)
  321. {
  322. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  323. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  324. pinMode(pin, OUTPUT);
  325. digitalWrite(pin, newFanSpeed);
  326. analogWrite(pin, newFanSpeed);
  327. }
  328. void checkExtruderAutoFans()
  329. {
  330. uint8_t fanState = 0;
  331. // which fan pins need to be turned on?
  332. #if HAS_AUTO_FAN_0
  333. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  334. fanState |= 1;
  335. #endif
  336. #if HAS_AUTO_FAN_1
  337. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  338. {
  339. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  340. fanState |= 1;
  341. else
  342. fanState |= 2;
  343. }
  344. #endif
  345. #if HAS_AUTO_FAN_2
  346. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  347. {
  348. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  349. fanState |= 1;
  350. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  351. fanState |= 2;
  352. else
  353. fanState |= 4;
  354. }
  355. #endif
  356. #if HAS_AUTO_FAN_3
  357. if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  358. {
  359. if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  360. fanState |= 1;
  361. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  362. fanState |= 2;
  363. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
  364. fanState |= 4;
  365. else
  366. fanState |= 8;
  367. }
  368. #endif
  369. // update extruder auto fan states
  370. #if HAS_AUTO_FAN_0
  371. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  372. #endif
  373. #if HAS_AUTO_FAN_1
  374. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  375. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  376. #endif
  377. #if HAS_AUTO_FAN_2
  378. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  379. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  380. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  381. #endif
  382. #if HAS_AUTO_FAN_3
  383. if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  384. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
  385. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
  386. setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
  387. #endif
  388. }
  389. #endif // any extruder auto fan pins set
  390. //
  391. // Temperature Error Handlers
  392. //
  393. inline void _temp_error(int e, const char *serial_msg, const char *lcd_msg) {
  394. if (IsRunning()) {
  395. SERIAL_ERROR_START;
  396. if (e >= 0) SERIAL_ERRORLN((int)e);
  397. serialprintPGM(serial_msg);
  398. MYSERIAL.write('\n');
  399. #ifdef ULTRA_LCD
  400. lcd_setalertstatuspgm(lcd_msg);
  401. #endif
  402. }
  403. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  404. Stop();
  405. #endif
  406. }
  407. void max_temp_error(uint8_t e) {
  408. disable_all_heaters();
  409. _temp_error(e, PSTR(MSG_MAXTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MAXTEMP));
  410. }
  411. void min_temp_error(uint8_t e) {
  412. disable_all_heaters();
  413. _temp_error(e, PSTR(MSG_MINTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MINTEMP));
  414. }
  415. void bed_max_temp_error(void) {
  416. #if HAS_HEATER_BED
  417. WRITE_HEATER_BED(0);
  418. #endif
  419. _temp_error(-1, PSTR(MSG_MAXTEMP_BED_OFF), PSTR(MSG_ERR_MAXTEMP_BED));
  420. }
  421. float get_pid_output(int e) {
  422. float pid_output;
  423. #ifdef PIDTEMP
  424. #ifndef PID_OPENLOOP
  425. pid_error[e] = target_temperature[e] - current_temperature[e];
  426. if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
  427. pid_output = BANG_MAX;
  428. pid_reset[e] = true;
  429. }
  430. else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  431. pid_output = 0;
  432. pid_reset[e] = true;
  433. }
  434. else {
  435. if (pid_reset[e]) {
  436. temp_iState[e] = 0.0;
  437. pid_reset[e] = false;
  438. }
  439. pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
  440. temp_iState[e] += pid_error[e];
  441. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  442. iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
  443. dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
  444. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  445. if (pid_output > PID_MAX) {
  446. if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  447. pid_output = PID_MAX;
  448. }
  449. else if (pid_output < 0) {
  450. if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  451. pid_output = 0;
  452. }
  453. }
  454. temp_dState[e] = current_temperature[e];
  455. #else
  456. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  457. #endif //PID_OPENLOOP
  458. #ifdef PID_DEBUG
  459. SERIAL_ECHO_START;
  460. SERIAL_ECHO(MSG_PID_DEBUG);
  461. SERIAL_ECHO(e);
  462. SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
  463. SERIAL_ECHO(current_temperature[e]);
  464. SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
  465. SERIAL_ECHO(pid_output);
  466. SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
  467. SERIAL_ECHO(pTerm[e]);
  468. SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
  469. SERIAL_ECHO(iTerm[e]);
  470. SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
  471. SERIAL_ECHOLN(dTerm[e]);
  472. #endif //PID_DEBUG
  473. #else /* PID off */
  474. pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
  475. #endif
  476. return pid_output;
  477. }
  478. #ifdef PIDTEMPBED
  479. float get_pid_output_bed() {
  480. float pid_output;
  481. #ifndef PID_OPENLOOP
  482. pid_error_bed = target_temperature_bed - current_temperature_bed;
  483. pTerm_bed = bedKp * pid_error_bed;
  484. temp_iState_bed += pid_error_bed;
  485. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  486. iTerm_bed = bedKi * temp_iState_bed;
  487. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  488. temp_dState_bed = current_temperature_bed;
  489. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  490. if (pid_output > MAX_BED_POWER) {
  491. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  492. pid_output = MAX_BED_POWER;
  493. }
  494. else if (pid_output < 0) {
  495. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  496. pid_output = 0;
  497. }
  498. #else
  499. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  500. #endif // PID_OPENLOOP
  501. #ifdef PID_BED_DEBUG
  502. SERIAL_ECHO_START;
  503. SERIAL_ECHO(" PID_BED_DEBUG ");
  504. SERIAL_ECHO(": Input ");
  505. SERIAL_ECHO(current_temperature_bed);
  506. SERIAL_ECHO(" Output ");
  507. SERIAL_ECHO(pid_output);
  508. SERIAL_ECHO(" pTerm ");
  509. SERIAL_ECHO(pTerm_bed);
  510. SERIAL_ECHO(" iTerm ");
  511. SERIAL_ECHO(iTerm_bed);
  512. SERIAL_ECHO(" dTerm ");
  513. SERIAL_ECHOLN(dTerm_bed);
  514. #endif //PID_BED_DEBUG
  515. return pid_output;
  516. }
  517. #endif
  518. /**
  519. * Manage heating activities for extruder hot-ends and a heated bed
  520. * - Acquire updated temperature readings
  521. * - Invoke thermal runaway protection
  522. * - Manage extruder auto-fan
  523. * - Apply filament width to the extrusion rate (may move)
  524. * - Update the heated bed PID output value
  525. */
  526. void manage_heater() {
  527. if (!temp_meas_ready) return;
  528. updateTemperaturesFromRawValues();
  529. #ifdef HEATER_0_USES_MAX6675
  530. float ct = current_temperature[0];
  531. if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
  532. if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
  533. #endif
  534. #if defined(WATCH_TEMP_PERIOD) || !defined(PIDTEMPBED) || HAS_AUTO_FAN
  535. millis_t ms = millis();
  536. #endif
  537. // Loop through all extruders
  538. for (int e = 0; e < EXTRUDERS; e++) {
  539. #if HAS_HEATER_THERMAL_PROTECTION
  540. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
  541. #endif
  542. float pid_output = get_pid_output(e);
  543. // Check if temperature is within the correct range
  544. soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  545. // Check if the temperature is failing to increase
  546. #ifdef WATCH_TEMP_PERIOD
  547. // Is it time to check this extruder's heater?
  548. if (watch_heater_next_ms[e] && ms > watch_heater_next_ms[e]) {
  549. // Has it failed to increase enough?
  550. if (degHotend(e) < watch_target_temp[e]) {
  551. // Stop!
  552. disable_all_heaters();
  553. _temp_error(e, MSG_HEATING_FAILED, MSG_HEATING_FAILED_LCD);
  554. }
  555. else {
  556. // Only check once per M104/M109
  557. watch_heater_next_ms[e] = 0;
  558. }
  559. }
  560. #endif // WATCH_TEMP_PERIOD
  561. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  562. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  563. disable_all_heaters();
  564. _temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
  565. }
  566. #endif
  567. } // Extruders Loop
  568. #if HAS_AUTO_FAN
  569. if (ms > next_auto_fan_check_ms) { // only need to check fan state very infrequently
  570. checkExtruderAutoFans();
  571. next_auto_fan_check_ms = ms + 2500;
  572. }
  573. #endif
  574. // Control the extruder rate based on the width sensor
  575. #ifdef FILAMENT_SENSOR
  576. if (filament_sensor) {
  577. meas_shift_index = delay_index1 - meas_delay_cm;
  578. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  579. // Get the delayed info and add 100 to reconstitute to a percent of
  580. // the nominal filament diameter then square it to get an area
  581. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  582. float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
  583. if (vm < 0.01) vm = 0.01;
  584. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
  585. }
  586. #endif //FILAMENT_SENSOR
  587. #ifndef PIDTEMPBED
  588. if (ms < next_bed_check_ms) return;
  589. next_bed_check_ms = ms + BED_CHECK_INTERVAL;
  590. #endif
  591. #if TEMP_SENSOR_BED != 0
  592. #if HAS_BED_THERMAL_PROTECTION
  593. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
  594. #endif
  595. #ifdef PIDTEMPBED
  596. float pid_output = get_pid_output_bed();
  597. soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
  598. #elif defined(BED_LIMIT_SWITCHING)
  599. // Check if temperature is within the correct band
  600. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  601. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  602. soft_pwm_bed = 0;
  603. else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  604. soft_pwm_bed = MAX_BED_POWER >> 1;
  605. }
  606. else {
  607. soft_pwm_bed = 0;
  608. WRITE_HEATER_BED(LOW);
  609. }
  610. #else // BED_LIMIT_SWITCHING
  611. // Check if temperature is within the correct range
  612. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  613. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  614. }
  615. else {
  616. soft_pwm_bed = 0;
  617. WRITE_HEATER_BED(LOW);
  618. }
  619. #endif
  620. #endif //TEMP_SENSOR_BED != 0
  621. }
  622. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  623. // Derived from RepRap FiveD extruder::getTemperature()
  624. // For hot end temperature measurement.
  625. static float analog2temp(int raw, uint8_t e) {
  626. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  627. if (e > EXTRUDERS)
  628. #else
  629. if (e >= EXTRUDERS)
  630. #endif
  631. {
  632. SERIAL_ERROR_START;
  633. SERIAL_ERROR((int)e);
  634. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  635. kill();
  636. return 0.0;
  637. }
  638. #ifdef HEATER_0_USES_MAX6675
  639. if (e == 0) return 0.25 * raw;
  640. #endif
  641. if (heater_ttbl_map[e] != NULL) {
  642. float celsius = 0;
  643. uint8_t i;
  644. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  645. for (i = 1; i < heater_ttbllen_map[e]; i++) {
  646. if (PGM_RD_W((*tt)[i][0]) > raw) {
  647. celsius = PGM_RD_W((*tt)[i-1][1]) +
  648. (raw - PGM_RD_W((*tt)[i-1][0])) *
  649. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  650. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  651. break;
  652. }
  653. }
  654. // Overflow: Set to last value in the table
  655. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  656. return celsius;
  657. }
  658. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  659. }
  660. // Derived from RepRap FiveD extruder::getTemperature()
  661. // For bed temperature measurement.
  662. static float analog2tempBed(int raw) {
  663. #ifdef BED_USES_THERMISTOR
  664. float celsius = 0;
  665. byte i;
  666. for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
  667. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
  668. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  669. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  670. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  671. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  672. break;
  673. }
  674. }
  675. // Overflow: Set to last value in the table
  676. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  677. return celsius;
  678. #elif defined BED_USES_AD595
  679. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  680. #else
  681. return 0;
  682. #endif
  683. }
  684. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  685. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  686. static void updateTemperaturesFromRawValues() {
  687. #ifdef HEATER_0_USES_MAX6675
  688. current_temperature_raw[0] = read_max6675();
  689. #endif
  690. for(uint8_t e = 0; e < EXTRUDERS; e++) {
  691. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  692. }
  693. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  694. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  695. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  696. #endif
  697. #if HAS_FILAMENT_SENSOR
  698. filament_width_meas = analog2widthFil();
  699. #endif
  700. //Reset the watchdog after we know we have a temperature measurement.
  701. watchdog_reset();
  702. CRITICAL_SECTION_START;
  703. temp_meas_ready = false;
  704. CRITICAL_SECTION_END;
  705. }
  706. #ifdef FILAMENT_SENSOR
  707. // Convert raw Filament Width to millimeters
  708. float analog2widthFil() {
  709. return current_raw_filwidth / 16383.0 * 5.0;
  710. //return current_raw_filwidth;
  711. }
  712. // Convert raw Filament Width to a ratio
  713. int widthFil_to_size_ratio() {
  714. float temp = filament_width_meas;
  715. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  716. else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
  717. return filament_width_nominal / temp * 100;
  718. }
  719. #endif
  720. /**
  721. * Initialize the temperature manager
  722. * The manager is implemented by periodic calls to manage_heater()
  723. */
  724. void tp_init() {
  725. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  726. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  727. MCUCR=BIT(JTD);
  728. MCUCR=BIT(JTD);
  729. #endif
  730. // Finish init of mult extruder arrays
  731. for (int e = 0; e < EXTRUDERS; e++) {
  732. // populate with the first value
  733. maxttemp[e] = maxttemp[0];
  734. #ifdef PIDTEMP
  735. temp_iState_min[e] = 0.0;
  736. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  737. #endif //PIDTEMP
  738. #ifdef PIDTEMPBED
  739. temp_iState_min_bed = 0.0;
  740. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  741. #endif //PIDTEMPBED
  742. }
  743. #if HAS_HEATER_0
  744. SET_OUTPUT(HEATER_0_PIN);
  745. #endif
  746. #if HAS_HEATER_1
  747. SET_OUTPUT(HEATER_1_PIN);
  748. #endif
  749. #if HAS_HEATER_2
  750. SET_OUTPUT(HEATER_2_PIN);
  751. #endif
  752. #if HAS_HEATER_3
  753. SET_OUTPUT(HEATER_3_PIN);
  754. #endif
  755. #if HAS_HEATER_BED
  756. SET_OUTPUT(HEATER_BED_PIN);
  757. #endif
  758. #if HAS_FAN
  759. SET_OUTPUT(FAN_PIN);
  760. #ifdef FAST_PWM_FAN
  761. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  762. #endif
  763. #ifdef FAN_SOFT_PWM
  764. soft_pwm_fan = fanSpeedSoftPwm / 2;
  765. #endif
  766. #endif
  767. #ifdef HEATER_0_USES_MAX6675
  768. #ifndef SDSUPPORT
  769. OUT_WRITE(SCK_PIN, LOW);
  770. OUT_WRITE(MOSI_PIN, HIGH);
  771. OUT_WRITE(MISO_PIN, HIGH);
  772. #else
  773. pinMode(SS_PIN, OUTPUT);
  774. digitalWrite(SS_PIN, HIGH);
  775. #endif
  776. OUT_WRITE(MAX6675_SS,HIGH);
  777. #endif //HEATER_0_USES_MAX6675
  778. #ifdef DIDR2
  779. #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
  780. #else
  781. #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
  782. #endif
  783. // Set analog inputs
  784. ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
  785. DIDR0 = 0;
  786. #ifdef DIDR2
  787. DIDR2 = 0;
  788. #endif
  789. #if HAS_TEMP_0
  790. ANALOG_SELECT(TEMP_0_PIN);
  791. #endif
  792. #if HAS_TEMP_1
  793. ANALOG_SELECT(TEMP_1_PIN);
  794. #endif
  795. #if HAS_TEMP_2
  796. ANALOG_SELECT(TEMP_2_PIN);
  797. #endif
  798. #if HAS_TEMP_3
  799. ANALOG_SELECT(TEMP_3_PIN);
  800. #endif
  801. #if HAS_TEMP_BED
  802. ANALOG_SELECT(TEMP_BED_PIN);
  803. #endif
  804. #if HAS_FILAMENT_SENSOR
  805. ANALOG_SELECT(FILWIDTH_PIN);
  806. #endif
  807. // Use timer0 for temperature measurement
  808. // Interleave temperature interrupt with millies interrupt
  809. OCR0B = 128;
  810. TIMSK0 |= BIT(OCIE0B);
  811. // Wait for temperature measurement to settle
  812. delay(250);
  813. #define TEMP_MIN_ROUTINE(NR) \
  814. minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
  815. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
  816. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  817. minttemp_raw[NR] += OVERSAMPLENR; \
  818. else \
  819. minttemp_raw[NR] -= OVERSAMPLENR; \
  820. }
  821. #define TEMP_MAX_ROUTINE(NR) \
  822. maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
  823. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
  824. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  825. maxttemp_raw[NR] -= OVERSAMPLENR; \
  826. else \
  827. maxttemp_raw[NR] += OVERSAMPLENR; \
  828. }
  829. #ifdef HEATER_0_MINTEMP
  830. TEMP_MIN_ROUTINE(0);
  831. #endif
  832. #ifdef HEATER_0_MAXTEMP
  833. TEMP_MAX_ROUTINE(0);
  834. #endif
  835. #if EXTRUDERS > 1
  836. #ifdef HEATER_1_MINTEMP
  837. TEMP_MIN_ROUTINE(1);
  838. #endif
  839. #ifdef HEATER_1_MAXTEMP
  840. TEMP_MAX_ROUTINE(1);
  841. #endif
  842. #if EXTRUDERS > 2
  843. #ifdef HEATER_2_MINTEMP
  844. TEMP_MIN_ROUTINE(2);
  845. #endif
  846. #ifdef HEATER_2_MAXTEMP
  847. TEMP_MAX_ROUTINE(2);
  848. #endif
  849. #if EXTRUDERS > 3
  850. #ifdef HEATER_3_MINTEMP
  851. TEMP_MIN_ROUTINE(3);
  852. #endif
  853. #ifdef HEATER_3_MAXTEMP
  854. TEMP_MAX_ROUTINE(3);
  855. #endif
  856. #endif // EXTRUDERS > 3
  857. #endif // EXTRUDERS > 2
  858. #endif // EXTRUDERS > 1
  859. #ifdef BED_MINTEMP
  860. /* No bed MINTEMP error implemented?!? */ /*
  861. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  862. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  863. bed_minttemp_raw += OVERSAMPLENR;
  864. #else
  865. bed_minttemp_raw -= OVERSAMPLENR;
  866. #endif
  867. }
  868. */
  869. #endif //BED_MINTEMP
  870. #ifdef BED_MAXTEMP
  871. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  872. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  873. bed_maxttemp_raw -= OVERSAMPLENR;
  874. #else
  875. bed_maxttemp_raw += OVERSAMPLENR;
  876. #endif
  877. }
  878. #endif //BED_MAXTEMP
  879. }
  880. #ifdef WATCH_TEMP_PERIOD
  881. /**
  882. * Start Heating Sanity Check for hotends that are below
  883. * their target temperature by a configurable margin.
  884. * This is called when the temperature is set. (M104, M109)
  885. */
  886. void start_watching_heater(int e) {
  887. millis_t ms = millis() + WATCH_TEMP_PERIOD;
  888. if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) {
  889. watch_target_temp[e] = degHotend(e) + WATCH_TEMP_INCREASE;
  890. watch_heater_next_ms[e] = ms;
  891. }
  892. else
  893. watch_heater_next_ms[e] = 0;
  894. }
  895. #endif
  896. #if HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
  897. void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
  898. static float tr_target_temperature[EXTRUDERS+1] = { 0.0 };
  899. /*
  900. SERIAL_ECHO_START;
  901. SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
  902. if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHOPGM(heater_id);
  903. SERIAL_ECHOPGM(" ; State:");
  904. SERIAL_ECHOPGM(*state);
  905. SERIAL_ECHOPGM(" ; Timer:");
  906. SERIAL_ECHOPGM(*timer);
  907. SERIAL_ECHOPGM(" ; Temperature:");
  908. SERIAL_ECHOPGM(temperature);
  909. SERIAL_ECHOPGM(" ; Target Temp:");
  910. SERIAL_ECHOPGM(target_temperature);
  911. SERIAL_EOL;
  912. */
  913. int heater_index = heater_id >= 0 ? heater_id : EXTRUDERS;
  914. // If the target temperature changes, restart
  915. if (tr_target_temperature[heater_index] != target_temperature)
  916. *state = TRReset;
  917. switch (*state) {
  918. case TRReset:
  919. *timer = 0;
  920. *state = TRInactive;
  921. break;
  922. // Inactive state waits for a target temperature to be set
  923. case TRInactive:
  924. if (target_temperature > 0) {
  925. tr_target_temperature[heater_index] = target_temperature;
  926. *state = TRFirstHeating;
  927. }
  928. break;
  929. // When first heating, wait for the temperature to be reached then go to Stable state
  930. case TRFirstHeating:
  931. if (temperature >= tr_target_temperature[heater_index]) *state = TRStable;
  932. break;
  933. // While the temperature is stable watch for a bad temperature
  934. case TRStable:
  935. // If the temperature is over the target (-hysteresis) restart the timer
  936. if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc)
  937. *timer = millis();
  938. // If the timer goes too long without a reset, trigger shutdown
  939. else if (millis() > *timer + period_seconds * 1000UL)
  940. *state = TRRunaway;
  941. break;
  942. case TRRunaway:
  943. SERIAL_ERROR_START;
  944. SERIAL_ERRORLNPGM(MSG_THERMAL_RUNAWAY_STOP);
  945. if (heater_id < 0) SERIAL_ERRORLNPGM("bed"); else SERIAL_ERRORLN(heater_id);
  946. LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY);
  947. disable_all_heaters();
  948. disable_all_steppers();
  949. for (;;) {
  950. manage_heater();
  951. lcd_update();
  952. }
  953. }
  954. }
  955. #endif // HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
  956. void disable_all_heaters() {
  957. for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
  958. setTargetBed(0);
  959. #define DISABLE_HEATER(NR) { \
  960. target_temperature[NR] = 0; \
  961. soft_pwm[NR] = 0; \
  962. WRITE_HEATER_ ## NR (LOW); \
  963. }
  964. #if HAS_TEMP_0
  965. target_temperature[0] = 0;
  966. soft_pwm[0] = 0;
  967. WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
  968. #endif
  969. #if EXTRUDERS > 1 && HAS_TEMP_1
  970. DISABLE_HEATER(1);
  971. #endif
  972. #if EXTRUDERS > 2 && HAS_TEMP_2
  973. DISABLE_HEATER(2);
  974. #endif
  975. #if EXTRUDERS > 3 && HAS_TEMP_3
  976. DISABLE_HEATER(3);
  977. #endif
  978. #if HAS_TEMP_BED
  979. target_temperature_bed = 0;
  980. soft_pwm_bed = 0;
  981. #if HAS_HEATER_BED
  982. WRITE_HEATER_BED(LOW);
  983. #endif
  984. #endif
  985. }
  986. #ifdef HEATER_0_USES_MAX6675
  987. #define MAX6675_HEAT_INTERVAL 250u
  988. static millis_t next_max6675_ms = 0;
  989. int max6675_temp = 2000;
  990. static int read_max6675() {
  991. millis_t ms = millis();
  992. if (ms < next_max6675_ms)
  993. return max6675_temp;
  994. next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
  995. max6675_temp = 0;
  996. #ifdef PRR
  997. PRR &= ~BIT(PRSPI);
  998. #elif defined(PRR0)
  999. PRR0 &= ~BIT(PRSPI);
  1000. #endif
  1001. SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
  1002. // enable TT_MAX6675
  1003. WRITE(MAX6675_SS, 0);
  1004. // ensure 100ns delay - a bit extra is fine
  1005. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1006. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1007. // read MSB
  1008. SPDR = 0;
  1009. for (;(SPSR & BIT(SPIF)) == 0;);
  1010. max6675_temp = SPDR;
  1011. max6675_temp <<= 8;
  1012. // read LSB
  1013. SPDR = 0;
  1014. for (;(SPSR & BIT(SPIF)) == 0;);
  1015. max6675_temp |= SPDR;
  1016. // disable TT_MAX6675
  1017. WRITE(MAX6675_SS, 1);
  1018. if (max6675_temp & 4) {
  1019. // thermocouple open
  1020. max6675_temp = 4000;
  1021. }
  1022. else {
  1023. max6675_temp = max6675_temp >> 3;
  1024. }
  1025. return max6675_temp;
  1026. }
  1027. #endif //HEATER_0_USES_MAX6675
  1028. /**
  1029. * Stages in the ISR loop
  1030. */
  1031. enum TempState {
  1032. PrepareTemp_0,
  1033. MeasureTemp_0,
  1034. PrepareTemp_BED,
  1035. MeasureTemp_BED,
  1036. PrepareTemp_1,
  1037. MeasureTemp_1,
  1038. PrepareTemp_2,
  1039. MeasureTemp_2,
  1040. PrepareTemp_3,
  1041. MeasureTemp_3,
  1042. Prepare_FILWIDTH,
  1043. Measure_FILWIDTH,
  1044. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  1045. };
  1046. static unsigned long raw_temp_value[4] = { 0 };
  1047. static unsigned long raw_temp_bed_value = 0;
  1048. static void set_current_temp_raw() {
  1049. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1050. current_temperature_raw[0] = raw_temp_value[0];
  1051. #endif
  1052. #if HAS_TEMP_1
  1053. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  1054. redundant_temperature_raw = raw_temp_value[1];
  1055. #else
  1056. current_temperature_raw[1] = raw_temp_value[1];
  1057. #endif
  1058. #if HAS_TEMP_2
  1059. current_temperature_raw[2] = raw_temp_value[2];
  1060. #if HAS_TEMP_3
  1061. current_temperature_raw[3] = raw_temp_value[3];
  1062. #endif
  1063. #endif
  1064. #endif
  1065. current_temperature_bed_raw = raw_temp_bed_value;
  1066. temp_meas_ready = true;
  1067. }
  1068. /**
  1069. * Timer 0 is shared with millies
  1070. * - Manage PWM to all the heaters and fan
  1071. * - Update the raw temperature values
  1072. * - Check new temperature values for MIN/MAX errors
  1073. * - Step the babysteps value for each axis towards 0
  1074. */
  1075. ISR(TIMER0_COMPB_vect) {
  1076. static unsigned char temp_count = 0;
  1077. static TempState temp_state = StartupDelay;
  1078. static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
  1079. // Static members for each heater
  1080. #ifdef SLOW_PWM_HEATERS
  1081. static unsigned char slow_pwm_count = 0;
  1082. #define ISR_STATICS(n) \
  1083. static unsigned char soft_pwm_ ## n; \
  1084. static unsigned char state_heater_ ## n = 0; \
  1085. static unsigned char state_timer_heater_ ## n = 0
  1086. #else
  1087. #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
  1088. #endif
  1089. // Statics per heater
  1090. ISR_STATICS(0);
  1091. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1092. ISR_STATICS(1);
  1093. #if EXTRUDERS > 2
  1094. ISR_STATICS(2);
  1095. #if EXTRUDERS > 3
  1096. ISR_STATICS(3);
  1097. #endif
  1098. #endif
  1099. #endif
  1100. #if HAS_HEATER_BED
  1101. ISR_STATICS(BED);
  1102. #endif
  1103. #if HAS_FILAMENT_SENSOR
  1104. static unsigned long raw_filwidth_value = 0;
  1105. #endif
  1106. #ifndef SLOW_PWM_HEATERS
  1107. /**
  1108. * standard PWM modulation
  1109. */
  1110. if (pwm_count == 0) {
  1111. soft_pwm_0 = soft_pwm[0];
  1112. if (soft_pwm_0 > 0) {
  1113. WRITE_HEATER_0(1);
  1114. }
  1115. else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
  1116. #if EXTRUDERS > 1
  1117. soft_pwm_1 = soft_pwm[1];
  1118. WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
  1119. #if EXTRUDERS > 2
  1120. soft_pwm_2 = soft_pwm[2];
  1121. WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
  1122. #if EXTRUDERS > 3
  1123. soft_pwm_3 = soft_pwm[3];
  1124. WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
  1125. #endif
  1126. #endif
  1127. #endif
  1128. #if HAS_HEATER_BED
  1129. soft_pwm_BED = soft_pwm_bed;
  1130. WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
  1131. #endif
  1132. #ifdef FAN_SOFT_PWM
  1133. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1134. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1135. #endif
  1136. }
  1137. if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
  1138. #if EXTRUDERS > 1
  1139. if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
  1140. #if EXTRUDERS > 2
  1141. if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
  1142. #if EXTRUDERS > 3
  1143. if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
  1144. #endif
  1145. #endif
  1146. #endif
  1147. #if HAS_HEATER_BED
  1148. if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
  1149. #endif
  1150. #ifdef FAN_SOFT_PWM
  1151. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1152. #endif
  1153. pwm_count += BIT(SOFT_PWM_SCALE);
  1154. pwm_count &= 0x7f;
  1155. #else // SLOW_PWM_HEATERS
  1156. /*
  1157. * SLOW PWM HEATERS
  1158. *
  1159. * for heaters drived by relay
  1160. */
  1161. #ifndef MIN_STATE_TIME
  1162. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1163. #endif
  1164. // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
  1165. #define _SLOW_PWM_ROUTINE(NR, src) \
  1166. soft_pwm_ ## NR = src; \
  1167. if (soft_pwm_ ## NR > 0) { \
  1168. if (state_timer_heater_ ## NR == 0) { \
  1169. if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1170. state_heater_ ## NR = 1; \
  1171. WRITE_HEATER_ ## NR(1); \
  1172. } \
  1173. } \
  1174. else { \
  1175. if (state_timer_heater_ ## NR == 0) { \
  1176. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1177. state_heater_ ## NR = 0; \
  1178. WRITE_HEATER_ ## NR(0); \
  1179. } \
  1180. }
  1181. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1182. #define PWM_OFF_ROUTINE(NR) \
  1183. if (soft_pwm_ ## NR < slow_pwm_count) { \
  1184. if (state_timer_heater_ ## NR == 0) { \
  1185. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1186. state_heater_ ## NR = 0; \
  1187. WRITE_HEATER_ ## NR (0); \
  1188. } \
  1189. }
  1190. if (slow_pwm_count == 0) {
  1191. SLOW_PWM_ROUTINE(0); // EXTRUDER 0
  1192. #if EXTRUDERS > 1
  1193. SLOW_PWM_ROUTINE(1); // EXTRUDER 1
  1194. #if EXTRUDERS > 2
  1195. SLOW_PWM_ROUTINE(2); // EXTRUDER 2
  1196. #if EXTRUDERS > 3
  1197. SLOW_PWM_ROUTINE(3); // EXTRUDER 3
  1198. #endif
  1199. #endif
  1200. #endif
  1201. #if HAS_HEATER_BED
  1202. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1203. #endif
  1204. } // slow_pwm_count == 0
  1205. PWM_OFF_ROUTINE(0); // EXTRUDER 0
  1206. #if EXTRUDERS > 1
  1207. PWM_OFF_ROUTINE(1); // EXTRUDER 1
  1208. #if EXTRUDERS > 2
  1209. PWM_OFF_ROUTINE(2); // EXTRUDER 2
  1210. #if EXTRUDERS > 3
  1211. PWM_OFF_ROUTINE(3); // EXTRUDER 3
  1212. #endif
  1213. #endif
  1214. #endif
  1215. #if HAS_HEATER_BED
  1216. PWM_OFF_ROUTINE(BED); // BED
  1217. #endif
  1218. #ifdef FAN_SOFT_PWM
  1219. if (pwm_count == 0) {
  1220. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1221. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1222. }
  1223. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1224. #endif //FAN_SOFT_PWM
  1225. pwm_count += BIT(SOFT_PWM_SCALE);
  1226. pwm_count &= 0x7f;
  1227. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1228. if ((pwm_count % 64) == 0) {
  1229. slow_pwm_count++;
  1230. slow_pwm_count &= 0x7f;
  1231. // EXTRUDER 0
  1232. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1233. #if EXTRUDERS > 1 // EXTRUDER 1
  1234. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1235. #if EXTRUDERS > 2 // EXTRUDER 2
  1236. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1237. #if EXTRUDERS > 3 // EXTRUDER 3
  1238. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1239. #endif
  1240. #endif
  1241. #endif
  1242. #if HAS_HEATER_BED
  1243. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1244. #endif
  1245. } // (pwm_count % 64) == 0
  1246. #endif // SLOW_PWM_HEATERS
  1247. #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
  1248. #ifdef MUX5
  1249. #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1250. #else
  1251. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1252. #endif
  1253. // Prepare or measure a sensor, each one every 12th frame
  1254. switch(temp_state) {
  1255. case PrepareTemp_0:
  1256. #if HAS_TEMP_0
  1257. START_ADC(TEMP_0_PIN);
  1258. #endif
  1259. lcd_buttons_update();
  1260. temp_state = MeasureTemp_0;
  1261. break;
  1262. case MeasureTemp_0:
  1263. #if HAS_TEMP_0
  1264. raw_temp_value[0] += ADC;
  1265. #endif
  1266. temp_state = PrepareTemp_BED;
  1267. break;
  1268. case PrepareTemp_BED:
  1269. #if HAS_TEMP_BED
  1270. START_ADC(TEMP_BED_PIN);
  1271. #endif
  1272. lcd_buttons_update();
  1273. temp_state = MeasureTemp_BED;
  1274. break;
  1275. case MeasureTemp_BED:
  1276. #if HAS_TEMP_BED
  1277. raw_temp_bed_value += ADC;
  1278. #endif
  1279. temp_state = PrepareTemp_1;
  1280. break;
  1281. case PrepareTemp_1:
  1282. #if HAS_TEMP_1
  1283. START_ADC(TEMP_1_PIN);
  1284. #endif
  1285. lcd_buttons_update();
  1286. temp_state = MeasureTemp_1;
  1287. break;
  1288. case MeasureTemp_1:
  1289. #if HAS_TEMP_1
  1290. raw_temp_value[1] += ADC;
  1291. #endif
  1292. temp_state = PrepareTemp_2;
  1293. break;
  1294. case PrepareTemp_2:
  1295. #if HAS_TEMP_2
  1296. START_ADC(TEMP_2_PIN);
  1297. #endif
  1298. lcd_buttons_update();
  1299. temp_state = MeasureTemp_2;
  1300. break;
  1301. case MeasureTemp_2:
  1302. #if HAS_TEMP_2
  1303. raw_temp_value[2] += ADC;
  1304. #endif
  1305. temp_state = PrepareTemp_3;
  1306. break;
  1307. case PrepareTemp_3:
  1308. #if HAS_TEMP_3
  1309. START_ADC(TEMP_3_PIN);
  1310. #endif
  1311. lcd_buttons_update();
  1312. temp_state = MeasureTemp_3;
  1313. break;
  1314. case MeasureTemp_3:
  1315. #if HAS_TEMP_3
  1316. raw_temp_value[3] += ADC;
  1317. #endif
  1318. temp_state = Prepare_FILWIDTH;
  1319. break;
  1320. case Prepare_FILWIDTH:
  1321. #if HAS_FILAMENT_SENSOR
  1322. START_ADC(FILWIDTH_PIN);
  1323. #endif
  1324. lcd_buttons_update();
  1325. temp_state = Measure_FILWIDTH;
  1326. break;
  1327. case Measure_FILWIDTH:
  1328. #if HAS_FILAMENT_SENSOR
  1329. // raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1330. if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1331. raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
  1332. raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
  1333. }
  1334. #endif
  1335. temp_state = PrepareTemp_0;
  1336. temp_count++;
  1337. break;
  1338. case StartupDelay:
  1339. temp_state = PrepareTemp_0;
  1340. break;
  1341. // default:
  1342. // SERIAL_ERROR_START;
  1343. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1344. // break;
  1345. } // switch(temp_state)
  1346. if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1347. // Update the raw values if they've been read. Else we could be updating them during reading.
  1348. if (!temp_meas_ready) set_current_temp_raw();
  1349. // Filament Sensor - can be read any time since IIR filtering is used
  1350. #if HAS_FILAMENT_SENSOR
  1351. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1352. #endif
  1353. temp_count = 0;
  1354. for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
  1355. raw_temp_bed_value = 0;
  1356. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1357. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1358. #define GE0 <=
  1359. #else
  1360. #define GE0 >=
  1361. #endif
  1362. if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
  1363. if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0);
  1364. #endif
  1365. #if HAS_TEMP_1
  1366. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1367. #define GE1 <=
  1368. #else
  1369. #define GE1 >=
  1370. #endif
  1371. if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
  1372. if (minttemp_raw[1] GE1 current_temperature_raw[1]) min_temp_error(1);
  1373. #endif // TEMP_SENSOR_1
  1374. #if HAS_TEMP_2
  1375. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1376. #define GE2 <=
  1377. #else
  1378. #define GE2 >=
  1379. #endif
  1380. if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
  1381. if (minttemp_raw[2] GE2 current_temperature_raw[2]) min_temp_error(2);
  1382. #endif // TEMP_SENSOR_2
  1383. #if HAS_TEMP_3
  1384. #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
  1385. #define GE3 <=
  1386. #else
  1387. #define GE3 >=
  1388. #endif
  1389. if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
  1390. if (minttemp_raw[3] GE3 current_temperature_raw[3]) min_temp_error(3);
  1391. #endif // TEMP_SENSOR_3
  1392. #if HAS_TEMP_BED
  1393. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1394. #define GEBED <=
  1395. #else
  1396. #define GEBED >=
  1397. #endif
  1398. if (current_temperature_bed_raw GEBED bed_maxttemp_raw) {
  1399. target_temperature_bed = 0;
  1400. bed_max_temp_error();
  1401. }
  1402. #endif
  1403. } // temp_count >= OVERSAMPLENR
  1404. #ifdef BABYSTEPPING
  1405. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) {
  1406. int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
  1407. if (curTodo > 0) {
  1408. babystep(axis,/*fwd*/true);
  1409. babystepsTodo[axis]--; //fewer to do next time
  1410. }
  1411. else if (curTodo < 0) {
  1412. babystep(axis,/*fwd*/false);
  1413. babystepsTodo[axis]++; //fewer to do next time
  1414. }
  1415. }
  1416. #endif //BABYSTEPPING
  1417. }
  1418. #ifdef PIDTEMP
  1419. // Apply the scale factors to the PID values
  1420. float scalePID_i(float i) { return i * PID_dT; }
  1421. float unscalePID_i(float i) { return i / PID_dT; }
  1422. float scalePID_d(float d) { return d / PID_dT; }
  1423. float unscalePID_d(float d) { return d * PID_dT; }
  1424. #endif //PIDTEMP