My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 65KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "planner.h"
  26. #include "stepper.h"
  27. #include "temperature.h"
  28. #include "motion_control.h"
  29. #include "cardreader.h"
  30. #include "watchdog.h"
  31. #include "ConfigurationStore.h"
  32. #include "language.h"
  33. #include "pins_arduino.h"
  34. #if DIGIPOTSS_PIN > -1
  35. #include <SPI.h>
  36. #endif
  37. #define VERSION_STRING "1.0.0"
  38. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  39. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  40. //Implemented Codes
  41. //-------------------
  42. // G0 -> G1
  43. // G1 - Coordinated Movement X Y Z E
  44. // G2 - CW ARC
  45. // G3 - CCW ARC
  46. // G4 - Dwell S<seconds> or P<milliseconds>
  47. // G10 - retract filament according to settings of M207
  48. // G11 - retract recover filament according to settings of M208
  49. // G28 - Home all Axis
  50. // G90 - Use Absolute Coordinates
  51. // G91 - Use Relative Coordinates
  52. // G92 - Set current position to cordinates given
  53. //RepRap M Codes
  54. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  55. // M1 - Same as M0
  56. // M104 - Set extruder target temp
  57. // M105 - Read current temp
  58. // M106 - Fan on
  59. // M107 - Fan off
  60. // M109 - Wait for extruder current temp to reach target temp.
  61. // M114 - Display current position
  62. //Custom M Codes
  63. // M17 - Enable/Power all stepper motors
  64. // M18 - Disable all stepper motors; same as M84
  65. // M20 - List SD card
  66. // M21 - Init SD card
  67. // M22 - Release SD card
  68. // M23 - Select SD file (M23 filename.g)
  69. // M24 - Start/resume SD print
  70. // M25 - Pause SD print
  71. // M26 - Set SD position in bytes (M26 S12345)
  72. // M27 - Report SD print status
  73. // M28 - Start SD write (M28 filename.g)
  74. // M29 - Stop SD write
  75. // M30 - Delete file from SD (M30 filename.g)
  76. // M31 - Output time since last M109 or SD card start to serial
  77. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  78. // M80 - Turn on Power Supply
  79. // M81 - Turn off Power Supply
  80. // M82 - Set E codes absolute (default)
  81. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  82. // M84 - Disable steppers until next move,
  83. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  84. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  85. // M92 - Set axis_steps_per_unit - same syntax as G92
  86. // M114 - Output current position to serial port
  87. // M115 - Capabilities string
  88. // M117 - display message
  89. // M119 - Output Endstop status to serial port
  90. // M140 - Set bed target temp
  91. // M190 - Wait for bed current temp to reach target temp.
  92. // M200 - Set filament diameter
  93. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  94. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  95. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  96. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  97. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  98. // M206 - set additional homeing offset
  99. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  100. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  101. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  102. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  103. // M220 S<factor in percent>- set speed factor override percentage
  104. // M221 S<factor in percent>- set extrude factor override percentage
  105. // M240 - Trigger a camera to take a photograph
  106. // M301 - Set PID parameters P I and D
  107. // M302 - Allow cold extrudes
  108. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  109. // M304 - Set bed PID parameters P I and D
  110. // M400 - Finish all moves
  111. // M500 - stores paramters in EEPROM
  112. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  113. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  114. // M503 - print the current settings (from memory not from eeprom)
  115. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  116. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  117. // M907 - Set digital trimpot motor current using axis codes.
  118. // M908 - Control digital trimpot directly.
  119. // M350 - Set microstepping mode.
  120. // M351 - Toggle MS1 MS2 pins directly.
  121. // M999 - Restart after being stopped by error
  122. //Stepper Movement Variables
  123. //===========================================================================
  124. //=============================imported variables============================
  125. //===========================================================================
  126. //===========================================================================
  127. //=============================public variables=============================
  128. //===========================================================================
  129. #ifdef SDSUPPORT
  130. CardReader card;
  131. #endif
  132. float homing_feedrate[] = HOMING_FEEDRATE;
  133. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  134. int feedmultiply=100; //100->1 200->2
  135. int saved_feedmultiply;
  136. int extrudemultiply=100; //100->1 200->2
  137. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  138. float add_homeing[3]={0,0,0};
  139. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  140. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  141. // Extruder offset, only in XY plane
  142. #if EXTRUDERS > 1
  143. float extruder_offset[2][EXTRUDERS] = {
  144. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  145. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  146. #endif
  147. };
  148. #endif
  149. uint8_t active_extruder = 0;
  150. int fanSpeed=0;
  151. #ifdef FWRETRACT
  152. bool autoretract_enabled=true;
  153. bool retracted=false;
  154. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  155. float retract_recover_length=0, retract_recover_feedrate=8*60;
  156. #endif
  157. //===========================================================================
  158. //=============================private variables=============================
  159. //===========================================================================
  160. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  161. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  162. static float offset[3] = {0.0, 0.0, 0.0};
  163. static bool home_all_axis = true;
  164. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  165. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  166. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  167. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  168. static bool fromsd[BUFSIZE];
  169. static int bufindr = 0;
  170. static int bufindw = 0;
  171. static int buflen = 0;
  172. //static int i = 0;
  173. static char serial_char;
  174. static int serial_count = 0;
  175. static boolean comment_mode = false;
  176. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  177. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  178. //static float tt = 0;
  179. //static float bt = 0;
  180. //Inactivity shutdown variables
  181. static unsigned long previous_millis_cmd = 0;
  182. static unsigned long max_inactive_time = 0;
  183. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  184. unsigned long starttime=0;
  185. unsigned long stoptime=0;
  186. static uint8_t tmp_extruder;
  187. bool Stopped=false;
  188. //===========================================================================
  189. //=============================ROUTINES=============================
  190. //===========================================================================
  191. void get_arc_coordinates();
  192. bool setTargetedHotend(int code);
  193. void serial_echopair_P(const char *s_P, float v)
  194. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  195. void serial_echopair_P(const char *s_P, double v)
  196. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  197. void serial_echopair_P(const char *s_P, unsigned long v)
  198. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  199. extern "C"{
  200. extern unsigned int __bss_end;
  201. extern unsigned int __heap_start;
  202. extern void *__brkval;
  203. int freeMemory() {
  204. int free_memory;
  205. if((int)__brkval == 0)
  206. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  207. else
  208. free_memory = ((int)&free_memory) - ((int)__brkval);
  209. return free_memory;
  210. }
  211. }
  212. //adds an command to the main command buffer
  213. //thats really done in a non-safe way.
  214. //needs overworking someday
  215. void enquecommand(const char *cmd)
  216. {
  217. if(buflen < BUFSIZE)
  218. {
  219. //this is dangerous if a mixing of serial and this happsens
  220. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  221. SERIAL_ECHO_START;
  222. SERIAL_ECHOPGM("enqueing \"");
  223. SERIAL_ECHO(cmdbuffer[bufindw]);
  224. SERIAL_ECHOLNPGM("\"");
  225. bufindw= (bufindw + 1)%BUFSIZE;
  226. buflen += 1;
  227. }
  228. }
  229. void enquecommand_P(const char *cmd)
  230. {
  231. if(buflen < BUFSIZE)
  232. {
  233. //this is dangerous if a mixing of serial and this happsens
  234. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  235. SERIAL_ECHO_START;
  236. SERIAL_ECHOPGM("enqueing \"");
  237. SERIAL_ECHO(cmdbuffer[bufindw]);
  238. SERIAL_ECHOLNPGM("\"");
  239. bufindw= (bufindw + 1)%BUFSIZE;
  240. buflen += 1;
  241. }
  242. }
  243. void setup_killpin()
  244. {
  245. #if( KILL_PIN>-1 )
  246. pinMode(KILL_PIN,INPUT);
  247. WRITE(KILL_PIN,HIGH);
  248. #endif
  249. }
  250. void setup_photpin()
  251. {
  252. #ifdef PHOTOGRAPH_PIN
  253. #if (PHOTOGRAPH_PIN > -1)
  254. SET_OUTPUT(PHOTOGRAPH_PIN);
  255. WRITE(PHOTOGRAPH_PIN, LOW);
  256. #endif
  257. #endif
  258. }
  259. void setup_powerhold()
  260. {
  261. #ifdef SUICIDE_PIN
  262. #if (SUICIDE_PIN> -1)
  263. SET_OUTPUT(SUICIDE_PIN);
  264. WRITE(SUICIDE_PIN, HIGH);
  265. #endif
  266. #endif
  267. #if (PS_ON_PIN > -1)
  268. SET_OUTPUT(PS_ON_PIN);
  269. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  270. #endif
  271. }
  272. void suicide()
  273. {
  274. #ifdef SUICIDE_PIN
  275. #if (SUICIDE_PIN> -1)
  276. SET_OUTPUT(SUICIDE_PIN);
  277. WRITE(SUICIDE_PIN, LOW);
  278. #endif
  279. #endif
  280. }
  281. void setup()
  282. {
  283. setup_killpin();
  284. setup_powerhold();
  285. MYSERIAL.begin(BAUDRATE);
  286. SERIAL_PROTOCOLLNPGM("start");
  287. SERIAL_ECHO_START;
  288. // Check startup - does nothing if bootloader sets MCUSR to 0
  289. byte mcu = MCUSR;
  290. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  291. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  292. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  293. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  294. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  295. MCUSR=0;
  296. SERIAL_ECHOPGM(MSG_MARLIN);
  297. SERIAL_ECHOLNPGM(VERSION_STRING);
  298. #ifdef STRING_VERSION_CONFIG_H
  299. #ifdef STRING_CONFIG_H_AUTHOR
  300. SERIAL_ECHO_START;
  301. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  302. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  303. SERIAL_ECHOPGM(MSG_AUTHOR);
  304. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  305. SERIAL_ECHOPGM("Compiled: ");
  306. SERIAL_ECHOLNPGM(__DATE__);
  307. #endif
  308. #endif
  309. SERIAL_ECHO_START;
  310. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  311. SERIAL_ECHO(freeMemory());
  312. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  313. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  314. for(int8_t i = 0; i < BUFSIZE; i++)
  315. {
  316. fromsd[i] = false;
  317. }
  318. Config_RetrieveSettings(); // loads data from EEPROM if available
  319. for(int8_t i=0; i < NUM_AXIS; i++)
  320. {
  321. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  322. }
  323. tp_init(); // Initialize temperature loop
  324. plan_init(); // Initialize planner;
  325. watchdog_init();
  326. st_init(); // Initialize stepper, this enables interrupts!
  327. setup_photpin();
  328. lcd_init();
  329. }
  330. void loop()
  331. {
  332. if(buflen < (BUFSIZE-1))
  333. get_command();
  334. #ifdef SDSUPPORT
  335. card.checkautostart(false);
  336. #endif
  337. if(buflen)
  338. {
  339. #ifdef SDSUPPORT
  340. if(card.saving)
  341. {
  342. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  343. {
  344. card.write_command(cmdbuffer[bufindr]);
  345. SERIAL_PROTOCOLLNPGM(MSG_OK);
  346. }
  347. else
  348. {
  349. card.closefile();
  350. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  351. }
  352. }
  353. else
  354. {
  355. process_commands();
  356. }
  357. #else
  358. process_commands();
  359. #endif //SDSUPPORT
  360. buflen = (buflen-1);
  361. bufindr = (bufindr + 1)%BUFSIZE;
  362. }
  363. //check heater every n milliseconds
  364. manage_heater();
  365. manage_inactivity();
  366. checkHitEndstops();
  367. lcd_update();
  368. }
  369. void get_command()
  370. {
  371. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  372. serial_char = MYSERIAL.read();
  373. if(serial_char == '\n' ||
  374. serial_char == '\r' ||
  375. (serial_char == ':' && comment_mode == false) ||
  376. serial_count >= (MAX_CMD_SIZE - 1) )
  377. {
  378. if(!serial_count) { //if empty line
  379. comment_mode = false; //for new command
  380. return;
  381. }
  382. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  383. if(!comment_mode){
  384. comment_mode = false; //for new command
  385. fromsd[bufindw] = false;
  386. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  387. {
  388. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  389. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  390. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  391. SERIAL_ERROR_START;
  392. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  393. SERIAL_ERRORLN(gcode_LastN);
  394. //Serial.println(gcode_N);
  395. FlushSerialRequestResend();
  396. serial_count = 0;
  397. return;
  398. }
  399. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  400. {
  401. byte checksum = 0;
  402. byte count = 0;
  403. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  404. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  405. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  406. SERIAL_ERROR_START;
  407. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  408. SERIAL_ERRORLN(gcode_LastN);
  409. FlushSerialRequestResend();
  410. serial_count = 0;
  411. return;
  412. }
  413. //if no errors, continue parsing
  414. }
  415. else
  416. {
  417. SERIAL_ERROR_START;
  418. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  419. SERIAL_ERRORLN(gcode_LastN);
  420. FlushSerialRequestResend();
  421. serial_count = 0;
  422. return;
  423. }
  424. gcode_LastN = gcode_N;
  425. //if no errors, continue parsing
  426. }
  427. else // if we don't receive 'N' but still see '*'
  428. {
  429. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  430. {
  431. SERIAL_ERROR_START;
  432. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  433. SERIAL_ERRORLN(gcode_LastN);
  434. serial_count = 0;
  435. return;
  436. }
  437. }
  438. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  439. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  440. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  441. case 0:
  442. case 1:
  443. case 2:
  444. case 3:
  445. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  446. #ifdef SDSUPPORT
  447. if(card.saving)
  448. break;
  449. #endif //SDSUPPORT
  450. SERIAL_PROTOCOLLNPGM(MSG_OK);
  451. }
  452. else {
  453. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  454. LCD_MESSAGEPGM(MSG_STOPPED);
  455. }
  456. break;
  457. default:
  458. break;
  459. }
  460. }
  461. bufindw = (bufindw + 1)%BUFSIZE;
  462. buflen += 1;
  463. }
  464. serial_count = 0; //clear buffer
  465. }
  466. else
  467. {
  468. if(serial_char == ';') comment_mode = true;
  469. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  470. }
  471. }
  472. #ifdef SDSUPPORT
  473. if(!card.sdprinting || serial_count!=0){
  474. return;
  475. }
  476. while( !card.eof() && buflen < BUFSIZE) {
  477. int16_t n=card.get();
  478. serial_char = (char)n;
  479. if(serial_char == '\n' ||
  480. serial_char == '\r' ||
  481. (serial_char == ':' && comment_mode == false) ||
  482. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  483. {
  484. if(card.eof()){
  485. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  486. stoptime=millis();
  487. char time[30];
  488. unsigned long t=(stoptime-starttime)/1000;
  489. int hours, minutes;
  490. minutes=(t/60)%60;
  491. hours=t/60/60;
  492. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  493. SERIAL_ECHO_START;
  494. SERIAL_ECHOLN(time);
  495. lcd_setstatus(time);
  496. card.printingHasFinished();
  497. card.checkautostart(true);
  498. }
  499. if(!serial_count)
  500. {
  501. comment_mode = false; //for new command
  502. return; //if empty line
  503. }
  504. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  505. // if(!comment_mode){
  506. fromsd[bufindw] = true;
  507. buflen += 1;
  508. bufindw = (bufindw + 1)%BUFSIZE;
  509. // }
  510. comment_mode = false; //for new command
  511. serial_count = 0; //clear buffer
  512. }
  513. else
  514. {
  515. if(serial_char == ';') comment_mode = true;
  516. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  517. }
  518. }
  519. #endif //SDSUPPORT
  520. }
  521. float code_value()
  522. {
  523. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  524. }
  525. long code_value_long()
  526. {
  527. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  528. }
  529. bool code_seen(char code)
  530. {
  531. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  532. return (strchr_pointer != NULL); //Return True if a character was found
  533. }
  534. #define DEFINE_PGM_READ_ANY(type, reader) \
  535. static inline type pgm_read_any(const type *p) \
  536. { return pgm_read_##reader##_near(p); }
  537. DEFINE_PGM_READ_ANY(float, float);
  538. DEFINE_PGM_READ_ANY(signed char, byte);
  539. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  540. static const PROGMEM type array##_P[3] = \
  541. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  542. static inline type array(int axis) \
  543. { return pgm_read_any(&array##_P[axis]); }
  544. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  545. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  546. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  547. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  548. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  549. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  550. static void axis_is_at_home(int axis) {
  551. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  552. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  553. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  554. }
  555. static void homeaxis(int axis) {
  556. #define HOMEAXIS_DO(LETTER) \
  557. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  558. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  559. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  560. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  561. 0) {
  562. current_position[axis] = 0;
  563. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  564. destination[axis] = 1.5 * max_length(axis) * home_dir(axis);
  565. feedrate = homing_feedrate[axis];
  566. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  567. st_synchronize();
  568. current_position[axis] = 0;
  569. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  570. destination[axis] = -home_retract_mm(axis) * home_dir(axis);
  571. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  572. st_synchronize();
  573. destination[axis] = 2*home_retract_mm(axis) * home_dir(axis);
  574. feedrate = homing_feedrate[axis]/2 ;
  575. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  576. st_synchronize();
  577. axis_is_at_home(axis);
  578. destination[axis] = current_position[axis];
  579. feedrate = 0.0;
  580. endstops_hit_on_purpose();
  581. }
  582. }
  583. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  584. void process_commands()
  585. {
  586. unsigned long codenum; //throw away variable
  587. char *starpos = NULL;
  588. if(code_seen('G'))
  589. {
  590. switch((int)code_value())
  591. {
  592. case 0: // G0 -> G1
  593. case 1: // G1
  594. if(Stopped == false) {
  595. get_coordinates(); // For X Y Z E F
  596. prepare_move();
  597. //ClearToSend();
  598. return;
  599. }
  600. //break;
  601. case 2: // G2 - CW ARC
  602. if(Stopped == false) {
  603. get_arc_coordinates();
  604. prepare_arc_move(true);
  605. return;
  606. }
  607. case 3: // G3 - CCW ARC
  608. if(Stopped == false) {
  609. get_arc_coordinates();
  610. prepare_arc_move(false);
  611. return;
  612. }
  613. case 4: // G4 dwell
  614. LCD_MESSAGEPGM(MSG_DWELL);
  615. codenum = 0;
  616. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  617. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  618. st_synchronize();
  619. codenum += millis(); // keep track of when we started waiting
  620. previous_millis_cmd = millis();
  621. while(millis() < codenum ){
  622. manage_heater();
  623. manage_inactivity();
  624. lcd_update();
  625. }
  626. break;
  627. #ifdef FWRETRACT
  628. case 10: // G10 retract
  629. if(!retracted)
  630. {
  631. destination[X_AXIS]=current_position[X_AXIS];
  632. destination[Y_AXIS]=current_position[Y_AXIS];
  633. destination[Z_AXIS]=current_position[Z_AXIS];
  634. current_position[Z_AXIS]+=-retract_zlift;
  635. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  636. feedrate=retract_feedrate;
  637. retracted=true;
  638. prepare_move();
  639. }
  640. break;
  641. case 11: // G10 retract_recover
  642. if(!retracted)
  643. {
  644. destination[X_AXIS]=current_position[X_AXIS];
  645. destination[Y_AXIS]=current_position[Y_AXIS];
  646. destination[Z_AXIS]=current_position[Z_AXIS];
  647. current_position[Z_AXIS]+=retract_zlift;
  648. current_position[E_AXIS]+=-retract_recover_length;
  649. feedrate=retract_recover_feedrate;
  650. retracted=false;
  651. prepare_move();
  652. }
  653. break;
  654. #endif //FWRETRACT
  655. case 28: //G28 Home all Axis one at a time
  656. saved_feedrate = feedrate;
  657. saved_feedmultiply = feedmultiply;
  658. feedmultiply = 100;
  659. previous_millis_cmd = millis();
  660. enable_endstops(true);
  661. for(int8_t i=0; i < NUM_AXIS; i++) {
  662. destination[i] = current_position[i];
  663. }
  664. feedrate = 0.0;
  665. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  666. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  667. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  668. HOMEAXIS(Z);
  669. }
  670. #endif
  671. #ifdef QUICK_HOME
  672. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  673. {
  674. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  675. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  676. destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
  677. feedrate = homing_feedrate[X_AXIS];
  678. if(homing_feedrate[Y_AXIS]<feedrate)
  679. feedrate =homing_feedrate[Y_AXIS];
  680. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  681. st_synchronize();
  682. axis_is_at_home(X_AXIS);
  683. axis_is_at_home(Y_AXIS);
  684. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  685. destination[X_AXIS] = current_position[X_AXIS];
  686. destination[Y_AXIS] = current_position[Y_AXIS];
  687. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  688. feedrate = 0.0;
  689. st_synchronize();
  690. endstops_hit_on_purpose();
  691. }
  692. #endif
  693. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  694. {
  695. HOMEAXIS(X);
  696. }
  697. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  698. HOMEAXIS(Y);
  699. }
  700. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  701. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  702. HOMEAXIS(Z);
  703. }
  704. #endif
  705. if(code_seen(axis_codes[X_AXIS]))
  706. {
  707. if(code_value_long() != 0) {
  708. current_position[X_AXIS]=code_value()+add_homeing[0];
  709. }
  710. }
  711. if(code_seen(axis_codes[Y_AXIS])) {
  712. if(code_value_long() != 0) {
  713. current_position[Y_AXIS]=code_value()+add_homeing[1];
  714. }
  715. }
  716. if(code_seen(axis_codes[Z_AXIS])) {
  717. if(code_value_long() != 0) {
  718. current_position[Z_AXIS]=code_value()+add_homeing[2];
  719. }
  720. }
  721. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  722. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  723. enable_endstops(false);
  724. #endif
  725. feedrate = saved_feedrate;
  726. feedmultiply = saved_feedmultiply;
  727. previous_millis_cmd = millis();
  728. endstops_hit_on_purpose();
  729. break;
  730. case 90: // G90
  731. relative_mode = false;
  732. break;
  733. case 91: // G91
  734. relative_mode = true;
  735. break;
  736. case 92: // G92
  737. if(!code_seen(axis_codes[E_AXIS]))
  738. st_synchronize();
  739. for(int8_t i=0; i < NUM_AXIS; i++) {
  740. if(code_seen(axis_codes[i])) {
  741. if(i == E_AXIS) {
  742. current_position[i] = code_value();
  743. plan_set_e_position(current_position[E_AXIS]);
  744. }
  745. else {
  746. current_position[i] = code_value()+add_homeing[i];
  747. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  748. }
  749. }
  750. }
  751. break;
  752. }
  753. }
  754. else if(code_seen('M'))
  755. {
  756. switch( (int)code_value() )
  757. {
  758. #ifdef ULTIPANEL
  759. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  760. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  761. {
  762. LCD_MESSAGEPGM(MSG_USERWAIT);
  763. codenum = 0;
  764. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  765. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  766. st_synchronize();
  767. previous_millis_cmd = millis();
  768. if (codenum > 0){
  769. codenum += millis(); // keep track of when we started waiting
  770. while(millis() < codenum && !LCD_CLICKED){
  771. manage_heater();
  772. manage_inactivity();
  773. lcd_update();
  774. }
  775. }else{
  776. while(!LCD_CLICKED){
  777. manage_heater();
  778. manage_inactivity();
  779. lcd_update();
  780. }
  781. }
  782. LCD_MESSAGEPGM(MSG_RESUMING);
  783. }
  784. break;
  785. #endif
  786. case 17:
  787. LCD_MESSAGEPGM(MSG_NO_MOVE);
  788. enable_x();
  789. enable_y();
  790. enable_z();
  791. enable_e0();
  792. enable_e1();
  793. enable_e2();
  794. break;
  795. #ifdef SDSUPPORT
  796. case 20: // M20 - list SD card
  797. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  798. card.ls();
  799. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  800. break;
  801. case 21: // M21 - init SD card
  802. card.initsd();
  803. break;
  804. case 22: //M22 - release SD card
  805. card.release();
  806. break;
  807. case 23: //M23 - Select file
  808. starpos = (strchr(strchr_pointer + 4,'*'));
  809. if(starpos!=NULL)
  810. *(starpos-1)='\0';
  811. card.openFile(strchr_pointer + 4,true);
  812. break;
  813. case 24: //M24 - Start SD print
  814. card.startFileprint();
  815. starttime=millis();
  816. break;
  817. case 25: //M25 - Pause SD print
  818. card.pauseSDPrint();
  819. break;
  820. case 26: //M26 - Set SD index
  821. if(card.cardOK && code_seen('S')) {
  822. card.setIndex(code_value_long());
  823. }
  824. break;
  825. case 27: //M27 - Get SD status
  826. card.getStatus();
  827. break;
  828. case 28: //M28 - Start SD write
  829. starpos = (strchr(strchr_pointer + 4,'*'));
  830. if(starpos != NULL){
  831. char* npos = strchr(cmdbuffer[bufindr], 'N');
  832. strchr_pointer = strchr(npos,' ') + 1;
  833. *(starpos-1) = '\0';
  834. }
  835. card.openFile(strchr_pointer+4,false);
  836. break;
  837. case 29: //M29 - Stop SD write
  838. //processed in write to file routine above
  839. //card,saving = false;
  840. break;
  841. case 30: //M30 <filename> Delete File
  842. if (card.cardOK){
  843. card.closefile();
  844. starpos = (strchr(strchr_pointer + 4,'*'));
  845. if(starpos != NULL){
  846. char* npos = strchr(cmdbuffer[bufindr], 'N');
  847. strchr_pointer = strchr(npos,' ') + 1;
  848. *(starpos-1) = '\0';
  849. }
  850. card.removeFile(strchr_pointer + 4);
  851. }
  852. break;
  853. #endif //SDSUPPORT
  854. case 31: //M31 take time since the start of the SD print or an M109 command
  855. {
  856. stoptime=millis();
  857. char time[30];
  858. unsigned long t=(stoptime-starttime)/1000;
  859. int sec,min;
  860. min=t/60;
  861. sec=t%60;
  862. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  863. SERIAL_ECHO_START;
  864. SERIAL_ECHOLN(time);
  865. lcd_setstatus(time);
  866. autotempShutdown();
  867. }
  868. break;
  869. case 42: //M42 -Change pin status via gcode
  870. if (code_seen('S'))
  871. {
  872. int pin_status = code_value();
  873. int pin_number = LED_PIN;
  874. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  875. pin_number = code_value();
  876. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  877. {
  878. if (sensitive_pins[i] == pin_number)
  879. {
  880. pin_number = -1;
  881. break;
  882. }
  883. }
  884. #if FAN_PIN > -1
  885. if (pin_number == FAN_PIN)
  886. fanSpeed = pin_status;
  887. #endif
  888. if (pin_number > -1)
  889. {
  890. pinMode(pin_number, OUTPUT);
  891. digitalWrite(pin_number, pin_status);
  892. analogWrite(pin_number, pin_status);
  893. }
  894. }
  895. break;
  896. case 104: // M104
  897. if(setTargetedHotend(104)){
  898. break;
  899. }
  900. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  901. setWatch();
  902. break;
  903. case 140: // M140 set bed temp
  904. if (code_seen('S')) setTargetBed(code_value());
  905. break;
  906. case 105 : // M105
  907. if(setTargetedHotend(105)){
  908. break;
  909. }
  910. #if (TEMP_0_PIN > -1)
  911. SERIAL_PROTOCOLPGM("ok T:");
  912. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  913. SERIAL_PROTOCOLPGM(" /");
  914. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  915. #if TEMP_BED_PIN > -1
  916. SERIAL_PROTOCOLPGM(" B:");
  917. SERIAL_PROTOCOL_F(degBed(),1);
  918. SERIAL_PROTOCOLPGM(" /");
  919. SERIAL_PROTOCOL_F(degTargetBed(),1);
  920. #endif //TEMP_BED_PIN
  921. #else
  922. SERIAL_ERROR_START;
  923. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  924. #endif
  925. SERIAL_PROTOCOLPGM(" @:");
  926. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  927. SERIAL_PROTOCOLPGM(" B@:");
  928. SERIAL_PROTOCOL(getHeaterPower(-1));
  929. SERIAL_PROTOCOLLN("");
  930. return;
  931. break;
  932. case 109:
  933. {// M109 - Wait for extruder heater to reach target.
  934. if(setTargetedHotend(109)){
  935. break;
  936. }
  937. LCD_MESSAGEPGM(MSG_HEATING);
  938. #ifdef AUTOTEMP
  939. autotemp_enabled=false;
  940. #endif
  941. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  942. #ifdef AUTOTEMP
  943. if (code_seen('S')) autotemp_min=code_value();
  944. if (code_seen('B')) autotemp_max=code_value();
  945. if (code_seen('F'))
  946. {
  947. autotemp_factor=code_value();
  948. autotemp_enabled=true;
  949. }
  950. #endif
  951. setWatch();
  952. codenum = millis();
  953. /* See if we are heating up or cooling down */
  954. bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  955. #ifdef TEMP_RESIDENCY_TIME
  956. long residencyStart;
  957. residencyStart = -1;
  958. /* continue to loop until we have reached the target temp
  959. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  960. while((residencyStart == -1) ||
  961. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  962. #else
  963. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  964. #endif //TEMP_RESIDENCY_TIME
  965. if( (millis() - codenum) > 1000UL )
  966. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  967. SERIAL_PROTOCOLPGM("T:");
  968. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  969. SERIAL_PROTOCOLPGM(" E:");
  970. SERIAL_PROTOCOL((int)tmp_extruder);
  971. #ifdef TEMP_RESIDENCY_TIME
  972. SERIAL_PROTOCOLPGM(" W:");
  973. if(residencyStart > -1)
  974. {
  975. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  976. SERIAL_PROTOCOLLN( codenum );
  977. }
  978. else
  979. {
  980. SERIAL_PROTOCOLLN( "?" );
  981. }
  982. #else
  983. SERIAL_PROTOCOLLN("");
  984. #endif
  985. codenum = millis();
  986. }
  987. manage_heater();
  988. manage_inactivity();
  989. lcd_update();
  990. #ifdef TEMP_RESIDENCY_TIME
  991. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  992. or when current temp falls outside the hysteresis after target temp was reached */
  993. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  994. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  995. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  996. {
  997. residencyStart = millis();
  998. }
  999. #endif //TEMP_RESIDENCY_TIME
  1000. }
  1001. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1002. starttime=millis();
  1003. previous_millis_cmd = millis();
  1004. }
  1005. break;
  1006. case 190: // M190 - Wait for bed heater to reach target.
  1007. #if TEMP_BED_PIN > -1
  1008. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1009. if (code_seen('S')) setTargetBed(code_value());
  1010. codenum = millis();
  1011. while(isHeatingBed())
  1012. {
  1013. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1014. {
  1015. float tt=degHotend(active_extruder);
  1016. SERIAL_PROTOCOLPGM("T:");
  1017. SERIAL_PROTOCOL(tt);
  1018. SERIAL_PROTOCOLPGM(" E:");
  1019. SERIAL_PROTOCOL((int)active_extruder);
  1020. SERIAL_PROTOCOLPGM(" B:");
  1021. SERIAL_PROTOCOL_F(degBed(),1);
  1022. SERIAL_PROTOCOLLN("");
  1023. codenum = millis();
  1024. }
  1025. manage_heater();
  1026. manage_inactivity();
  1027. lcd_update();
  1028. }
  1029. LCD_MESSAGEPGM(MSG_BED_DONE);
  1030. previous_millis_cmd = millis();
  1031. #endif
  1032. break;
  1033. #if FAN_PIN > -1
  1034. case 106: //M106 Fan On
  1035. if (code_seen('S')){
  1036. fanSpeed=constrain(code_value(),0,255);
  1037. }
  1038. else {
  1039. fanSpeed=255;
  1040. }
  1041. break;
  1042. case 107: //M107 Fan Off
  1043. fanSpeed = 0;
  1044. break;
  1045. #endif //FAN_PIN
  1046. #if (PS_ON_PIN > -1)
  1047. case 80: // M80 - ATX Power On
  1048. SET_OUTPUT(PS_ON_PIN); //GND
  1049. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1050. break;
  1051. #endif
  1052. case 81: // M81 - ATX Power Off
  1053. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1054. st_synchronize();
  1055. suicide();
  1056. #elif (PS_ON_PIN > -1)
  1057. SET_OUTPUT(PS_ON_PIN);
  1058. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1059. #endif
  1060. break;
  1061. case 82:
  1062. axis_relative_modes[3] = false;
  1063. break;
  1064. case 83:
  1065. axis_relative_modes[3] = true;
  1066. break;
  1067. case 18: //compatibility
  1068. case 84: // M84
  1069. if(code_seen('S')){
  1070. stepper_inactive_time = code_value() * 1000;
  1071. }
  1072. else
  1073. {
  1074. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1075. if(all_axis)
  1076. {
  1077. st_synchronize();
  1078. disable_e0();
  1079. disable_e1();
  1080. disable_e2();
  1081. finishAndDisableSteppers();
  1082. }
  1083. else
  1084. {
  1085. st_synchronize();
  1086. if(code_seen('X')) disable_x();
  1087. if(code_seen('Y')) disable_y();
  1088. if(code_seen('Z')) disable_z();
  1089. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1090. if(code_seen('E')) {
  1091. disable_e0();
  1092. disable_e1();
  1093. disable_e2();
  1094. }
  1095. #endif
  1096. }
  1097. }
  1098. break;
  1099. case 85: // M85
  1100. code_seen('S');
  1101. max_inactive_time = code_value() * 1000;
  1102. break;
  1103. case 92: // M92
  1104. for(int8_t i=0; i < NUM_AXIS; i++)
  1105. {
  1106. if(code_seen(axis_codes[i]))
  1107. {
  1108. if(i == 3) { // E
  1109. float value = code_value();
  1110. if(value < 20.0) {
  1111. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1112. max_e_jerk *= factor;
  1113. max_feedrate[i] *= factor;
  1114. axis_steps_per_sqr_second[i] *= factor;
  1115. }
  1116. axis_steps_per_unit[i] = value;
  1117. }
  1118. else {
  1119. axis_steps_per_unit[i] = code_value();
  1120. }
  1121. }
  1122. }
  1123. break;
  1124. case 115: // M115
  1125. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1126. break;
  1127. case 117: // M117 display message
  1128. starpos = (strchr(strchr_pointer + 5,'*'));
  1129. if(starpos!=NULL)
  1130. *(starpos-1)='\0';
  1131. lcd_setstatus(strchr_pointer + 5);
  1132. break;
  1133. case 114: // M114
  1134. SERIAL_PROTOCOLPGM("X:");
  1135. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1136. SERIAL_PROTOCOLPGM("Y:");
  1137. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1138. SERIAL_PROTOCOLPGM("Z:");
  1139. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1140. SERIAL_PROTOCOLPGM("E:");
  1141. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1142. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1143. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1144. SERIAL_PROTOCOLPGM("Y:");
  1145. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1146. SERIAL_PROTOCOLPGM("Z:");
  1147. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1148. SERIAL_PROTOCOLLN("");
  1149. break;
  1150. case 120: // M120
  1151. enable_endstops(false) ;
  1152. break;
  1153. case 121: // M121
  1154. enable_endstops(true) ;
  1155. break;
  1156. case 119: // M119
  1157. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1158. #if (X_MIN_PIN > -1)
  1159. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1160. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1161. #endif
  1162. #if (X_MAX_PIN > -1)
  1163. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1164. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1165. #endif
  1166. #if (Y_MIN_PIN > -1)
  1167. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1168. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1169. #endif
  1170. #if (Y_MAX_PIN > -1)
  1171. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1172. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1173. #endif
  1174. #if (Z_MIN_PIN > -1)
  1175. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1176. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1177. #endif
  1178. #if (Z_MAX_PIN > -1)
  1179. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1180. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1181. #endif
  1182. break;
  1183. //TODO: update for all axis, use for loop
  1184. case 201: // M201
  1185. for(int8_t i=0; i < NUM_AXIS; i++)
  1186. {
  1187. if(code_seen(axis_codes[i]))
  1188. {
  1189. max_acceleration_units_per_sq_second[i] = code_value();
  1190. axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1191. }
  1192. }
  1193. break;
  1194. #if 0 // Not used for Sprinter/grbl gen6
  1195. case 202: // M202
  1196. for(int8_t i=0; i < NUM_AXIS; i++) {
  1197. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1198. }
  1199. break;
  1200. #endif
  1201. case 203: // M203 max feedrate mm/sec
  1202. for(int8_t i=0; i < NUM_AXIS; i++) {
  1203. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1204. }
  1205. break;
  1206. case 204: // M204 acclereration S normal moves T filmanent only moves
  1207. {
  1208. if(code_seen('S')) acceleration = code_value() ;
  1209. if(code_seen('T')) retract_acceleration = code_value() ;
  1210. }
  1211. break;
  1212. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1213. {
  1214. if(code_seen('S')) minimumfeedrate = code_value();
  1215. if(code_seen('T')) mintravelfeedrate = code_value();
  1216. if(code_seen('B')) minsegmenttime = code_value() ;
  1217. if(code_seen('X')) max_xy_jerk = code_value() ;
  1218. if(code_seen('Z')) max_z_jerk = code_value() ;
  1219. if(code_seen('E')) max_e_jerk = code_value() ;
  1220. }
  1221. break;
  1222. case 206: // M206 additional homeing offset
  1223. for(int8_t i=0; i < 3; i++)
  1224. {
  1225. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1226. }
  1227. break;
  1228. #ifdef FWRETRACT
  1229. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1230. {
  1231. if(code_seen('S'))
  1232. {
  1233. retract_length = code_value() ;
  1234. }
  1235. if(code_seen('F'))
  1236. {
  1237. retract_feedrate = code_value() ;
  1238. }
  1239. if(code_seen('Z'))
  1240. {
  1241. retract_zlift = code_value() ;
  1242. }
  1243. }break;
  1244. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1245. {
  1246. if(code_seen('S'))
  1247. {
  1248. retract_recover_length = code_value() ;
  1249. }
  1250. if(code_seen('F'))
  1251. {
  1252. retract_recover_feedrate = code_value() ;
  1253. }
  1254. }break;
  1255. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1256. {
  1257. if(code_seen('S'))
  1258. {
  1259. int t= code_value() ;
  1260. switch(t)
  1261. {
  1262. case 0: autoretract_enabled=false;retracted=false;break;
  1263. case 1: autoretract_enabled=true;retracted=false;break;
  1264. default:
  1265. SERIAL_ECHO_START;
  1266. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1267. SERIAL_ECHO(cmdbuffer[bufindr]);
  1268. SERIAL_ECHOLNPGM("\"");
  1269. }
  1270. }
  1271. }break;
  1272. #endif // FWRETRACT
  1273. #if EXTRUDERS > 1
  1274. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  1275. {
  1276. if(setTargetedHotend(218)){
  1277. break;
  1278. }
  1279. if(code_seen('X'))
  1280. {
  1281. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  1282. }
  1283. if(code_seen('Y'))
  1284. {
  1285. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  1286. }
  1287. SERIAL_ECHO_START;
  1288. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  1289. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  1290. {
  1291. SERIAL_ECHO(" ");
  1292. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  1293. SERIAL_ECHO(",");
  1294. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  1295. }
  1296. SERIAL_ECHOLN("");
  1297. }break;
  1298. #endif
  1299. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1300. {
  1301. if(code_seen('S'))
  1302. {
  1303. feedmultiply = code_value() ;
  1304. }
  1305. }
  1306. break;
  1307. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1308. {
  1309. if(code_seen('S'))
  1310. {
  1311. extrudemultiply = code_value() ;
  1312. }
  1313. }
  1314. break;
  1315. #ifdef PIDTEMP
  1316. case 301: // M301
  1317. {
  1318. if(code_seen('P')) Kp = code_value();
  1319. if(code_seen('I')) Ki = code_value()*PID_dT;
  1320. if(code_seen('D')) Kd = code_value()/PID_dT;
  1321. #ifdef PID_ADD_EXTRUSION_RATE
  1322. if(code_seen('C')) Kc = code_value();
  1323. #endif
  1324. updatePID();
  1325. SERIAL_PROTOCOL(MSG_OK);
  1326. SERIAL_PROTOCOL(" p:");
  1327. SERIAL_PROTOCOL(Kp);
  1328. SERIAL_PROTOCOL(" i:");
  1329. SERIAL_PROTOCOL(Ki/PID_dT);
  1330. SERIAL_PROTOCOL(" d:");
  1331. SERIAL_PROTOCOL(Kd*PID_dT);
  1332. #ifdef PID_ADD_EXTRUSION_RATE
  1333. SERIAL_PROTOCOL(" c:");
  1334. SERIAL_PROTOCOL(Kc*PID_dT);
  1335. #endif
  1336. SERIAL_PROTOCOLLN("");
  1337. }
  1338. break;
  1339. #endif //PIDTEMP
  1340. #ifdef PIDTEMPBED
  1341. case 304: // M304
  1342. {
  1343. if(code_seen('P')) bedKp = code_value();
  1344. if(code_seen('I')) bedKi = code_value()*PID_dT;
  1345. if(code_seen('D')) bedKd = code_value()/PID_dT;
  1346. updatePID();
  1347. SERIAL_PROTOCOL(MSG_OK);
  1348. SERIAL_PROTOCOL(" p:");
  1349. SERIAL_PROTOCOL(bedKp);
  1350. SERIAL_PROTOCOL(" i:");
  1351. SERIAL_PROTOCOL(bedKi/PID_dT);
  1352. SERIAL_PROTOCOL(" d:");
  1353. SERIAL_PROTOCOL(bedKd*PID_dT);
  1354. SERIAL_PROTOCOLLN("");
  1355. }
  1356. break;
  1357. #endif //PIDTEMP
  1358. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1359. {
  1360. #ifdef PHOTOGRAPH_PIN
  1361. #if (PHOTOGRAPH_PIN > -1)
  1362. const uint8_t NUM_PULSES=16;
  1363. const float PULSE_LENGTH=0.01524;
  1364. for(int i=0; i < NUM_PULSES; i++) {
  1365. WRITE(PHOTOGRAPH_PIN, HIGH);
  1366. _delay_ms(PULSE_LENGTH);
  1367. WRITE(PHOTOGRAPH_PIN, LOW);
  1368. _delay_ms(PULSE_LENGTH);
  1369. }
  1370. delay(7.33);
  1371. for(int i=0; i < NUM_PULSES; i++) {
  1372. WRITE(PHOTOGRAPH_PIN, HIGH);
  1373. _delay_ms(PULSE_LENGTH);
  1374. WRITE(PHOTOGRAPH_PIN, LOW);
  1375. _delay_ms(PULSE_LENGTH);
  1376. }
  1377. #endif
  1378. #endif
  1379. }
  1380. break;
  1381. case 302: // allow cold extrudes
  1382. {
  1383. allow_cold_extrudes(true);
  1384. }
  1385. break;
  1386. case 303: // M303 PID autotune
  1387. {
  1388. float temp = 150.0;
  1389. int e=0;
  1390. int c=5;
  1391. if (code_seen('E')) e=code_value();
  1392. if (e<0)
  1393. temp=70;
  1394. if (code_seen('S')) temp=code_value();
  1395. if (code_seen('C')) c=code_value();
  1396. PID_autotune(temp, e, c);
  1397. }
  1398. break;
  1399. case 400: // M400 finish all moves
  1400. {
  1401. st_synchronize();
  1402. }
  1403. break;
  1404. case 500: // M500 Store settings in EEPROM
  1405. {
  1406. Config_StoreSettings();
  1407. }
  1408. break;
  1409. case 501: // M501 Read settings from EEPROM
  1410. {
  1411. Config_RetrieveSettings();
  1412. }
  1413. break;
  1414. case 502: // M502 Revert to default settings
  1415. {
  1416. Config_ResetDefault();
  1417. }
  1418. break;
  1419. case 503: // M503 print settings currently in memory
  1420. {
  1421. Config_PrintSettings();
  1422. }
  1423. break;
  1424. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  1425. case 540:
  1426. {
  1427. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  1428. }
  1429. break;
  1430. #endif
  1431. #ifdef FILAMENTCHANGEENABLE
  1432. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  1433. {
  1434. float target[4];
  1435. float lastpos[4];
  1436. target[X_AXIS]=current_position[X_AXIS];
  1437. target[Y_AXIS]=current_position[Y_AXIS];
  1438. target[Z_AXIS]=current_position[Z_AXIS];
  1439. target[E_AXIS]=current_position[E_AXIS];
  1440. lastpos[X_AXIS]=current_position[X_AXIS];
  1441. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1442. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1443. lastpos[E_AXIS]=current_position[E_AXIS];
  1444. //retract by E
  1445. if(code_seen('E'))
  1446. {
  1447. target[E_AXIS]+= code_value();
  1448. }
  1449. else
  1450. {
  1451. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  1452. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1453. #endif
  1454. }
  1455. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1456. //lift Z
  1457. if(code_seen('Z'))
  1458. {
  1459. target[Z_AXIS]+= code_value();
  1460. }
  1461. else
  1462. {
  1463. #ifdef FILAMENTCHANGE_ZADD
  1464. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1465. #endif
  1466. }
  1467. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1468. //move xy
  1469. if(code_seen('X'))
  1470. {
  1471. target[X_AXIS]+= code_value();
  1472. }
  1473. else
  1474. {
  1475. #ifdef FILAMENTCHANGE_XPOS
  1476. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1477. #endif
  1478. }
  1479. if(code_seen('Y'))
  1480. {
  1481. target[Y_AXIS]= code_value();
  1482. }
  1483. else
  1484. {
  1485. #ifdef FILAMENTCHANGE_YPOS
  1486. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1487. #endif
  1488. }
  1489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1490. if(code_seen('L'))
  1491. {
  1492. target[E_AXIS]+= code_value();
  1493. }
  1494. else
  1495. {
  1496. #ifdef FILAMENTCHANGE_FINALRETRACT
  1497. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1498. #endif
  1499. }
  1500. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1501. //finish moves
  1502. st_synchronize();
  1503. //disable extruder steppers so filament can be removed
  1504. disable_e0();
  1505. disable_e1();
  1506. disable_e2();
  1507. delay(100);
  1508. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1509. uint8_t cnt=0;
  1510. while(!LCD_CLICKED){
  1511. cnt++;
  1512. manage_heater();
  1513. manage_inactivity();
  1514. lcd_update();
  1515. #if BEEPER > -1
  1516. if(cnt==0)
  1517. {
  1518. SET_OUTPUT(BEEPER);
  1519. WRITE(BEEPER,HIGH);
  1520. delay(3);
  1521. WRITE(BEEPER,LOW);
  1522. delay(3);
  1523. }
  1524. #endif
  1525. }
  1526. //return to normal
  1527. if(code_seen('L'))
  1528. {
  1529. target[E_AXIS]+= -code_value();
  1530. }
  1531. else
  1532. {
  1533. #ifdef FILAMENTCHANGE_FINALRETRACT
  1534. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  1535. #endif
  1536. }
  1537. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1538. plan_set_e_position(current_position[E_AXIS]);
  1539. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  1540. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  1541. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  1542. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  1543. }
  1544. break;
  1545. #endif //FILAMENTCHANGEENABLE
  1546. case 907: // M907 Set digital trimpot motor current using axis codes.
  1547. {
  1548. #if DIGIPOTSS_PIN > -1
  1549. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  1550. if(code_seen('B')) digipot_current(4,code_value());
  1551. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  1552. #endif
  1553. }
  1554. case 908: // M908 Control digital trimpot directly.
  1555. {
  1556. #if DIGIPOTSS_PIN > -1
  1557. uint8_t channel,current;
  1558. if(code_seen('P')) channel=code_value();
  1559. if(code_seen('S')) current=code_value();
  1560. digitalPotWrite(channel, current);
  1561. #endif
  1562. }
  1563. break;
  1564. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  1565. {
  1566. #if X_MS1_PIN > -1
  1567. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  1568. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  1569. if(code_seen('B')) microstep_mode(4,code_value());
  1570. microstep_readings();
  1571. #endif
  1572. }
  1573. break;
  1574. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  1575. {
  1576. #if X_MS1_PIN > -1
  1577. if(code_seen('S')) switch((int)code_value())
  1578. {
  1579. case 1:
  1580. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  1581. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  1582. break;
  1583. case 2:
  1584. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  1585. if(code_seen('B')) microstep_ms(4,-1,code_value());
  1586. break;
  1587. }
  1588. microstep_readings();
  1589. #endif
  1590. }
  1591. break;
  1592. case 999: // M999: Restart after being stopped
  1593. Stopped = false;
  1594. lcd_reset_alert_level();
  1595. gcode_LastN = Stopped_gcode_LastN;
  1596. FlushSerialRequestResend();
  1597. break;
  1598. }
  1599. }
  1600. else if(code_seen('T'))
  1601. {
  1602. tmp_extruder = code_value();
  1603. if(tmp_extruder >= EXTRUDERS) {
  1604. SERIAL_ECHO_START;
  1605. SERIAL_ECHO("T");
  1606. SERIAL_ECHO(tmp_extruder);
  1607. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  1608. }
  1609. else {
  1610. boolean make_move = false;
  1611. if(code_seen('F')) {
  1612. make_move = true;
  1613. next_feedrate = code_value();
  1614. if(next_feedrate > 0.0) {
  1615. feedrate = next_feedrate;
  1616. }
  1617. }
  1618. #if EXTRUDERS > 1
  1619. if(tmp_extruder != active_extruder) {
  1620. // Save current position to return to after applying extruder offset
  1621. memcpy(destination, current_position, sizeof(destination));
  1622. // Offset extruder (only by XY)
  1623. int i;
  1624. for(i = 0; i < 2; i++) {
  1625. current_position[i] = current_position[i] -
  1626. extruder_offset[i][active_extruder] +
  1627. extruder_offset[i][tmp_extruder];
  1628. }
  1629. // Set the new active extruder and position
  1630. active_extruder = tmp_extruder;
  1631. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1632. // Move to the old position if 'F' was in the parameters
  1633. if(make_move && Stopped == false) {
  1634. prepare_move();
  1635. }
  1636. }
  1637. #endif
  1638. SERIAL_ECHO_START;
  1639. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  1640. SERIAL_PROTOCOLLN((int)active_extruder);
  1641. }
  1642. }
  1643. else
  1644. {
  1645. SERIAL_ECHO_START;
  1646. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1647. SERIAL_ECHO(cmdbuffer[bufindr]);
  1648. SERIAL_ECHOLNPGM("\"");
  1649. }
  1650. ClearToSend();
  1651. }
  1652. void FlushSerialRequestResend()
  1653. {
  1654. //char cmdbuffer[bufindr][100]="Resend:";
  1655. MYSERIAL.flush();
  1656. SERIAL_PROTOCOLPGM(MSG_RESEND);
  1657. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  1658. ClearToSend();
  1659. }
  1660. void ClearToSend()
  1661. {
  1662. previous_millis_cmd = millis();
  1663. #ifdef SDSUPPORT
  1664. if(fromsd[bufindr])
  1665. return;
  1666. #endif //SDSUPPORT
  1667. SERIAL_PROTOCOLLNPGM(MSG_OK);
  1668. }
  1669. void get_coordinates()
  1670. {
  1671. bool seen[4]={false,false,false,false};
  1672. for(int8_t i=0; i < NUM_AXIS; i++) {
  1673. if(code_seen(axis_codes[i]))
  1674. {
  1675. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  1676. seen[i]=true;
  1677. }
  1678. else destination[i] = current_position[i]; //Are these else lines really needed?
  1679. }
  1680. if(code_seen('F')) {
  1681. next_feedrate = code_value();
  1682. if(next_feedrate > 0.0) feedrate = next_feedrate;
  1683. }
  1684. #ifdef FWRETRACT
  1685. if(autoretract_enabled)
  1686. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  1687. {
  1688. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1689. if(echange<-MIN_RETRACT) //retract
  1690. {
  1691. if(!retracted)
  1692. {
  1693. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  1694. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  1695. float correctede=-echange-retract_length;
  1696. //to generate the additional steps, not the destination is changed, but inversely the current position
  1697. current_position[E_AXIS]+=-correctede;
  1698. feedrate=retract_feedrate;
  1699. retracted=true;
  1700. }
  1701. }
  1702. else
  1703. if(echange>MIN_RETRACT) //retract_recover
  1704. {
  1705. if(retracted)
  1706. {
  1707. //current_position[Z_AXIS]+=-retract_zlift;
  1708. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  1709. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  1710. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  1711. feedrate=retract_recover_feedrate;
  1712. retracted=false;
  1713. }
  1714. }
  1715. }
  1716. #endif //FWRETRACT
  1717. }
  1718. void get_arc_coordinates()
  1719. {
  1720. #ifdef SF_ARC_FIX
  1721. bool relative_mode_backup = relative_mode;
  1722. relative_mode = true;
  1723. #endif
  1724. get_coordinates();
  1725. #ifdef SF_ARC_FIX
  1726. relative_mode=relative_mode_backup;
  1727. #endif
  1728. if(code_seen('I')) {
  1729. offset[0] = code_value();
  1730. }
  1731. else {
  1732. offset[0] = 0.0;
  1733. }
  1734. if(code_seen('J')) {
  1735. offset[1] = code_value();
  1736. }
  1737. else {
  1738. offset[1] = 0.0;
  1739. }
  1740. }
  1741. void clamp_to_software_endstops(float target[3])
  1742. {
  1743. if (min_software_endstops) {
  1744. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  1745. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  1746. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  1747. }
  1748. if (max_software_endstops) {
  1749. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  1750. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  1751. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  1752. }
  1753. }
  1754. void prepare_move()
  1755. {
  1756. clamp_to_software_endstops(destination);
  1757. previous_millis_cmd = millis();
  1758. // Do not use feedmultiply for E or Z only moves
  1759. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  1760. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1761. }
  1762. else {
  1763. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  1764. }
  1765. for(int8_t i=0; i < NUM_AXIS; i++) {
  1766. current_position[i] = destination[i];
  1767. }
  1768. }
  1769. void prepare_arc_move(char isclockwise) {
  1770. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  1771. // Trace the arc
  1772. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  1773. // As far as the parser is concerned, the position is now == target. In reality the
  1774. // motion control system might still be processing the action and the real tool position
  1775. // in any intermediate location.
  1776. for(int8_t i=0; i < NUM_AXIS; i++) {
  1777. current_position[i] = destination[i];
  1778. }
  1779. previous_millis_cmd = millis();
  1780. }
  1781. #ifdef CONTROLLERFAN_PIN
  1782. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  1783. unsigned long lastMotorCheck = 0;
  1784. void controllerFan()
  1785. {
  1786. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  1787. {
  1788. lastMotorCheck = millis();
  1789. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  1790. #if EXTRUDERS > 2
  1791. || !READ(E2_ENABLE_PIN)
  1792. #endif
  1793. #if EXTRUDER > 1
  1794. || !READ(E2_ENABLE_PIN)
  1795. #endif
  1796. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  1797. {
  1798. lastMotor = millis(); //... set time to NOW so the fan will turn on
  1799. }
  1800. if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  1801. {
  1802. WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off
  1803. }
  1804. else
  1805. {
  1806. WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on
  1807. }
  1808. }
  1809. }
  1810. #endif
  1811. void manage_inactivity()
  1812. {
  1813. if( (millis() - previous_millis_cmd) > max_inactive_time )
  1814. if(max_inactive_time)
  1815. kill();
  1816. if(stepper_inactive_time) {
  1817. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  1818. {
  1819. if(blocks_queued() == false) {
  1820. disable_x();
  1821. disable_y();
  1822. disable_z();
  1823. disable_e0();
  1824. disable_e1();
  1825. disable_e2();
  1826. }
  1827. }
  1828. }
  1829. #if( KILL_PIN>-1 )
  1830. if( 0 == READ(KILL_PIN) )
  1831. kill();
  1832. #endif
  1833. #ifdef CONTROLLERFAN_PIN
  1834. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  1835. #endif
  1836. #ifdef EXTRUDER_RUNOUT_PREVENT
  1837. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  1838. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  1839. {
  1840. bool oldstatus=READ(E0_ENABLE_PIN);
  1841. enable_e0();
  1842. float oldepos=current_position[E_AXIS];
  1843. float oldedes=destination[E_AXIS];
  1844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  1845. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  1846. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  1847. current_position[E_AXIS]=oldepos;
  1848. destination[E_AXIS]=oldedes;
  1849. plan_set_e_position(oldepos);
  1850. previous_millis_cmd=millis();
  1851. st_synchronize();
  1852. WRITE(E0_ENABLE_PIN,oldstatus);
  1853. }
  1854. #endif
  1855. check_axes_activity();
  1856. }
  1857. void kill()
  1858. {
  1859. cli(); // Stop interrupts
  1860. disable_heater();
  1861. disable_x();
  1862. disable_y();
  1863. disable_z();
  1864. disable_e0();
  1865. disable_e1();
  1866. disable_e2();
  1867. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  1868. SERIAL_ERROR_START;
  1869. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  1870. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  1871. suicide();
  1872. while(1) { /* Intentionally left empty */ } // Wait for reset
  1873. }
  1874. void Stop()
  1875. {
  1876. disable_heater();
  1877. if(Stopped == false) {
  1878. Stopped = true;
  1879. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  1880. SERIAL_ERROR_START;
  1881. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1882. LCD_MESSAGEPGM(MSG_STOPPED);
  1883. }
  1884. }
  1885. bool IsStopped() { return Stopped; };
  1886. #ifdef FAST_PWM_FAN
  1887. void setPwmFrequency(uint8_t pin, int val)
  1888. {
  1889. val &= 0x07;
  1890. switch(digitalPinToTimer(pin))
  1891. {
  1892. #if defined(TCCR0A)
  1893. case TIMER0A:
  1894. case TIMER0B:
  1895. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  1896. // TCCR0B |= val;
  1897. break;
  1898. #endif
  1899. #if defined(TCCR1A)
  1900. case TIMER1A:
  1901. case TIMER1B:
  1902. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  1903. // TCCR1B |= val;
  1904. break;
  1905. #endif
  1906. #if defined(TCCR2)
  1907. case TIMER2:
  1908. case TIMER2:
  1909. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  1910. TCCR2 |= val;
  1911. break;
  1912. #endif
  1913. #if defined(TCCR2A)
  1914. case TIMER2A:
  1915. case TIMER2B:
  1916. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  1917. TCCR2B |= val;
  1918. break;
  1919. #endif
  1920. #if defined(TCCR3A)
  1921. case TIMER3A:
  1922. case TIMER3B:
  1923. case TIMER3C:
  1924. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  1925. TCCR3B |= val;
  1926. break;
  1927. #endif
  1928. #if defined(TCCR4A)
  1929. case TIMER4A:
  1930. case TIMER4B:
  1931. case TIMER4C:
  1932. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  1933. TCCR4B |= val;
  1934. break;
  1935. #endif
  1936. #if defined(TCCR5A)
  1937. case TIMER5A:
  1938. case TIMER5B:
  1939. case TIMER5C:
  1940. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  1941. TCCR5B |= val;
  1942. break;
  1943. #endif
  1944. }
  1945. }
  1946. #endif //FAST_PWM_FAN
  1947. bool setTargetedHotend(int code){
  1948. tmp_extruder = active_extruder;
  1949. if(code_seen('T')) {
  1950. tmp_extruder = code_value();
  1951. if(tmp_extruder >= EXTRUDERS) {
  1952. SERIAL_ECHO_START;
  1953. switch(code){
  1954. case 104:
  1955. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  1956. break;
  1957. case 105:
  1958. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  1959. break;
  1960. case 109:
  1961. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  1962. break;
  1963. case 218:
  1964. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  1965. break;
  1966. }
  1967. SERIAL_ECHOLN(tmp_extruder);
  1968. return true;
  1969. }
  1970. }
  1971. return false;
  1972. }