My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

settings.cpp 118KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * settings.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. */
  36. // Change EEPROM version if the structure changes
  37. #define EEPROM_VERSION "V84"
  38. #define EEPROM_OFFSET 100
  39. // Check the integrity of data offsets.
  40. // Can be disabled for production build.
  41. //#define DEBUG_EEPROM_READWRITE
  42. #include "settings.h"
  43. #include "endstops.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "../lcd/marlinui.h"
  48. #include "../libs/vector_3.h" // for matrix_3x3
  49. #include "../gcode/gcode.h"
  50. #include "../MarlinCore.h"
  51. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  52. #include "../HAL/shared/eeprom_api.h"
  53. #endif
  54. #include "probe.h"
  55. #if HAS_LEVELING
  56. #include "../feature/bedlevel/bedlevel.h"
  57. #endif
  58. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  59. #include "../feature/z_stepper_align.h"
  60. #endif
  61. #if ENABLED(EXTENSIBLE_UI)
  62. #include "../lcd/extui/ui_api.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_SERVOS && HAS_SERVO_ANGLES
  68. #define EEPROM_NUM_SERVOS NUM_SERVOS
  69. #else
  70. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  71. #endif
  72. #include "../feature/fwretract.h"
  73. #if ENABLED(POWER_LOSS_RECOVERY)
  74. #include "../feature/powerloss.h"
  75. #endif
  76. #if HAS_POWER_MONITOR
  77. #include "../feature/power_monitor.h"
  78. #endif
  79. #include "../feature/pause.h"
  80. #if ENABLED(BACKLASH_COMPENSATION)
  81. #include "../feature/backlash.h"
  82. #endif
  83. #if HAS_FILAMENT_SENSOR
  84. #include "../feature/runout.h"
  85. #ifndef FIL_RUNOUT_ENABLED_DEFAULT
  86. #define FIL_RUNOUT_ENABLED_DEFAULT true
  87. #endif
  88. #endif
  89. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  90. extern float other_extruder_advance_K[EXTRUDERS];
  91. #endif
  92. #if HAS_MULTI_EXTRUDER
  93. #include "tool_change.h"
  94. void M217_report(const bool eeprom);
  95. #endif
  96. #if ENABLED(BLTOUCH)
  97. #include "../feature/bltouch.h"
  98. #endif
  99. #if HAS_TRINAMIC_CONFIG
  100. #include "stepper/indirection.h"
  101. #include "../feature/tmc_util.h"
  102. #endif
  103. #if ENABLED(PROBE_TEMP_COMPENSATION)
  104. #include "../feature/probe_temp_comp.h"
  105. #endif
  106. #include "../feature/controllerfan.h"
  107. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  108. void M710_report(const bool forReplay=true);
  109. #endif
  110. #if ENABLED(CASE_LIGHT_ENABLE)
  111. #include "../feature/caselight.h"
  112. #endif
  113. #if ENABLED(PASSWORD_FEATURE)
  114. #include "../feature/password/password.h"
  115. #endif
  116. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  117. #include "../lcd/tft_io/touch_calibration.h"
  118. #endif
  119. #if HAS_ETHERNET
  120. #include "../feature/ethernet.h"
  121. #endif
  122. #if ENABLED(SOUND_MENU_ITEM)
  123. #include "../libs/buzzer.h"
  124. #endif
  125. #if ENABLED(DGUS_LCD_UI_MKS)
  126. #include "../lcd/extui/dgus/DGUSScreenHandler.h"
  127. #include "../lcd/extui/dgus/DGUSDisplayDef.h"
  128. #endif
  129. #pragma pack(push, 1) // No padding between variables
  130. #if HAS_ETHERNET
  131. void ETH0_report();
  132. void MAC_report();
  133. void M552_report();
  134. void M553_report();
  135. void M554_report();
  136. #endif
  137. #if EITHER(DELTA, HAS_EXTRA_ENDSTOPS)
  138. void M666_report(const bool forReplay=true);
  139. #endif
  140. #define _EN_ITEM(N) , E##N
  141. typedef struct { uint16_t LINEAR_AXIS_LIST(X, Y, Z, I, J, K), X2, Y2, Z2, Z3, Z4 REPEAT(E_STEPPERS, _EN_ITEM); } tmc_stepper_current_t;
  142. typedef struct { uint32_t LINEAR_AXIS_LIST(X, Y, Z, I, J, K), X2, Y2, Z2, Z3, Z4 REPEAT(E_STEPPERS, _EN_ITEM); } tmc_hybrid_threshold_t;
  143. typedef struct { int16_t LINEAR_AXIS_LIST(X, Y, Z, I, J, K), X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
  144. typedef struct { bool LINEAR_AXIS_LIST(X, Y, Z, I, J, K), X2, Y2, Z2, Z3, Z4 REPEAT(E_STEPPERS, _EN_ITEM); } tmc_stealth_enabled_t;
  145. #undef _EN_ITEM
  146. // Limit an index to an array size
  147. #define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
  148. // Defaults for reset / fill in on load
  149. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  150. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  151. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  152. /**
  153. * Current EEPROM Layout
  154. *
  155. * Keep this data structure up to date so
  156. * EEPROM size is known at compile time!
  157. */
  158. typedef struct SettingsDataStruct {
  159. char version[4]; // Vnn\0
  160. uint16_t crc; // Data Checksum
  161. //
  162. // DISTINCT_E_FACTORS
  163. //
  164. uint8_t esteppers; // DISTINCT_AXES - LINEAR_AXES
  165. planner_settings_t planner_settings;
  166. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  167. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  168. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  169. #if HAS_HOTEND_OFFSET
  170. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  171. #endif
  172. //
  173. // FILAMENT_RUNOUT_SENSOR
  174. //
  175. bool runout_sensor_enabled; // M412 S
  176. float runout_distance_mm; // M412 D
  177. //
  178. // ENABLE_LEVELING_FADE_HEIGHT
  179. //
  180. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  181. //
  182. // MESH_BED_LEVELING
  183. //
  184. float mbl_z_offset; // mbl.z_offset
  185. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  186. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
  187. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  188. //
  189. // HAS_BED_PROBE
  190. //
  191. xyz_pos_t probe_offset;
  192. //
  193. // ABL_PLANAR
  194. //
  195. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  196. //
  197. // AUTO_BED_LEVELING_BILINEAR
  198. //
  199. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  200. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  201. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  202. bed_mesh_t z_values; // G29
  203. #else
  204. float z_values[3][3];
  205. #endif
  206. //
  207. // AUTO_BED_LEVELING_UBL
  208. //
  209. bool planner_leveling_active; // M420 S planner.leveling_active
  210. int8_t ubl_storage_slot; // ubl.storage_slot
  211. //
  212. // SERVO_ANGLES
  213. //
  214. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  215. //
  216. // Temperature first layer compensation values
  217. //
  218. #if ENABLED(PROBE_TEMP_COMPENSATION)
  219. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  220. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  221. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  222. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  223. #endif
  224. ;
  225. #endif
  226. //
  227. // BLTOUCH
  228. //
  229. bool bltouch_last_written_mode;
  230. //
  231. // DELTA / [XYZ]_DUAL_ENDSTOPS
  232. //
  233. #if ENABLED(DELTA)
  234. float delta_height; // M666 H
  235. abc_float_t delta_endstop_adj; // M666 X Y Z
  236. float delta_radius, // M665 R
  237. delta_diagonal_rod, // M665 L
  238. segments_per_second; // M665 S
  239. abc_float_t delta_tower_angle_trim, // M665 X Y Z
  240. delta_diagonal_rod_trim; // M665 A B C
  241. #elif HAS_EXTRA_ENDSTOPS
  242. float x2_endstop_adj, // M666 X
  243. y2_endstop_adj, // M666 Y
  244. z2_endstop_adj, // M666 (S2) Z
  245. z3_endstop_adj, // M666 (S3) Z
  246. z4_endstop_adj; // M666 (S4) Z
  247. #endif
  248. //
  249. // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
  250. //
  251. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  252. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
  253. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  254. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
  255. #endif
  256. #endif
  257. //
  258. // Material Presets
  259. //
  260. #if PREHEAT_COUNT
  261. preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
  262. #endif
  263. //
  264. // PIDTEMP
  265. //
  266. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  267. int16_t lpq_len; // M301 L
  268. //
  269. // PIDTEMPBED
  270. //
  271. PID_t bedPID; // M304 PID / M303 E-1 U
  272. //
  273. // PIDTEMPCHAMBER
  274. //
  275. PID_t chamberPID; // M309 PID / M303 E-2 U
  276. //
  277. // User-defined Thermistors
  278. //
  279. #if HAS_USER_THERMISTORS
  280. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  281. #endif
  282. //
  283. // Power monitor
  284. //
  285. uint8_t power_monitor_flags; // M430 I V W
  286. //
  287. // HAS_LCD_CONTRAST
  288. //
  289. int16_t lcd_contrast; // M250 C
  290. //
  291. // HAS_LCD_BRIGHTNESS
  292. //
  293. uint8_t lcd_brightness; // M256 B
  294. //
  295. // Controller fan settings
  296. //
  297. controllerFan_settings_t controllerFan_settings; // M710
  298. //
  299. // POWER_LOSS_RECOVERY
  300. //
  301. bool recovery_enabled; // M413 S
  302. //
  303. // FWRETRACT
  304. //
  305. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  306. bool autoretract_enabled; // M209 S
  307. //
  308. // !NO_VOLUMETRIC
  309. //
  310. bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
  311. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  312. float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
  313. //
  314. // HAS_TRINAMIC_CONFIG
  315. //
  316. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  317. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  318. tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
  319. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  320. //
  321. // LIN_ADVANCE
  322. //
  323. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  324. //
  325. // HAS_MOTOR_CURRENT_PWM
  326. //
  327. #ifndef MOTOR_CURRENT_COUNT
  328. #define MOTOR_CURRENT_COUNT LINEAR_AXES
  329. #endif
  330. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E ...
  331. //
  332. // CNC_COORDINATE_SYSTEMS
  333. //
  334. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  335. //
  336. // SKEW_CORRECTION
  337. //
  338. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  339. //
  340. // ADVANCED_PAUSE_FEATURE
  341. //
  342. #if HAS_EXTRUDERS
  343. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  344. #endif
  345. //
  346. // Tool-change settings
  347. //
  348. #if HAS_MULTI_EXTRUDER
  349. toolchange_settings_t toolchange_settings; // M217 S P R
  350. #endif
  351. //
  352. // BACKLASH_COMPENSATION
  353. //
  354. xyz_float_t backlash_distance_mm; // M425 X Y Z
  355. uint8_t backlash_correction; // M425 F
  356. float backlash_smoothing_mm; // M425 S
  357. //
  358. // EXTENSIBLE_UI
  359. //
  360. #if ENABLED(EXTENSIBLE_UI)
  361. // This is a significant hardware change; don't reserve space when not present
  362. uint8_t extui_data[ExtUI::eeprom_data_size];
  363. #endif
  364. //
  365. // CASELIGHT_USES_BRIGHTNESS
  366. //
  367. #if CASELIGHT_USES_BRIGHTNESS
  368. uint8_t caselight_brightness; // M355 P
  369. #endif
  370. //
  371. // PASSWORD_FEATURE
  372. //
  373. #if ENABLED(PASSWORD_FEATURE)
  374. bool password_is_set;
  375. uint32_t password_value;
  376. #endif
  377. //
  378. // TOUCH_SCREEN_CALIBRATION
  379. //
  380. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  381. touch_calibration_t touch_calibration_data;
  382. #endif
  383. // Ethernet settings
  384. #if HAS_ETHERNET
  385. bool ethernet_hardware_enabled; // M552 S
  386. uint32_t ethernet_ip, // M552 P
  387. ethernet_dns,
  388. ethernet_gateway, // M553 P
  389. ethernet_subnet; // M554 P
  390. #endif
  391. //
  392. // Buzzer enable/disable
  393. //
  394. #if ENABLED(SOUND_MENU_ITEM)
  395. bool buzzer_enabled;
  396. #endif
  397. //
  398. // MKS UI controller
  399. //
  400. #if ENABLED(DGUS_LCD_UI_MKS)
  401. uint8_t mks_language_index; // Display Language
  402. xy_int_t mks_corner_offsets[5]; // Bed Tramming
  403. xyz_int_t mks_park_pos; // Custom Parking (without NOZZLE_PARK)
  404. celsius_t mks_min_extrusion_temp; // Min E Temp (shadow M302 value)
  405. #endif
  406. #if HAS_MULTI_LANGUAGE
  407. uint8_t ui_language; // M414 S
  408. #endif
  409. } SettingsData;
  410. //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
  411. MarlinSettings settings;
  412. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  413. /**
  414. * Post-process after Retrieve or Reset
  415. */
  416. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  417. float new_z_fade_height;
  418. #endif
  419. void MarlinSettings::postprocess() {
  420. xyze_pos_t oldpos = current_position;
  421. // steps per s2 needs to be updated to agree with units per s2
  422. planner.reset_acceleration_rates();
  423. // Make sure delta kinematics are updated before refreshing the
  424. // planner position so the stepper counts will be set correctly.
  425. TERN_(DELTA, recalc_delta_settings());
  426. TERN_(PIDTEMP, thermalManager.updatePID());
  427. #if DISABLED(NO_VOLUMETRICS)
  428. planner.calculate_volumetric_multipliers();
  429. #elif EXTRUDERS
  430. for (uint8_t i = COUNT(planner.e_factor); i--;)
  431. planner.refresh_e_factor(i);
  432. #endif
  433. // Software endstops depend on home_offset
  434. LOOP_LINEAR_AXES(i) {
  435. update_workspace_offset((AxisEnum)i);
  436. update_software_endstops((AxisEnum)i);
  437. }
  438. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  439. TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
  440. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  441. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  442. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  443. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.update_brightness());
  444. TERN_(EXTENSIBLE_UI, ExtUI::onPostprocessSettings());
  445. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  446. // and init stepper.count[], planner.position[] with current_position
  447. planner.refresh_positioning();
  448. // Various factors can change the current position
  449. if (oldpos != current_position)
  450. report_current_position();
  451. }
  452. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  453. #include "printcounter.h"
  454. static_assert(
  455. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  456. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  457. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  458. );
  459. #endif
  460. #if ENABLED(SD_FIRMWARE_UPDATE)
  461. #if ENABLED(EEPROM_SETTINGS)
  462. static_assert(
  463. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  464. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  465. );
  466. #endif
  467. bool MarlinSettings::sd_update_status() {
  468. uint8_t val;
  469. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  470. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  471. }
  472. bool MarlinSettings::set_sd_update_status(const bool enable) {
  473. if (enable != sd_update_status())
  474. persistentStore.write_data(
  475. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  476. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  477. );
  478. return true;
  479. }
  480. #endif // SD_FIRMWARE_UPDATE
  481. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  482. static_assert(EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  483. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data.");
  484. #endif
  485. //
  486. // This file simply uses the DEBUG_ECHO macros to implement EEPROM_CHITCHAT.
  487. // For deeper debugging of EEPROM issues enable DEBUG_EEPROM_READWRITE.
  488. //
  489. #define DEBUG_OUT EITHER(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  490. #include "../core/debug_out.h"
  491. #if ENABLED(EEPROM_SETTINGS)
  492. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  493. #if ENABLED(DEBUG_EEPROM_READWRITE)
  494. #define _FIELD_TEST(FIELD) \
  495. EEPROM_ASSERT( \
  496. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  497. "Field " STRINGIFY(FIELD) " mismatch." \
  498. )
  499. #else
  500. #define _FIELD_TEST(FIELD) NOOP
  501. #endif
  502. const char version[4] = EEPROM_VERSION;
  503. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  504. int MarlinSettings::eeprom_index;
  505. uint16_t MarlinSettings::working_crc;
  506. bool MarlinSettings::size_error(const uint16_t size) {
  507. if (size != datasize()) {
  508. DEBUG_ERROR_MSG("EEPROM datasize error.");
  509. return true;
  510. }
  511. return false;
  512. }
  513. /**
  514. * M500 - Store Configuration
  515. */
  516. bool MarlinSettings::save() {
  517. float dummyf = 0;
  518. char ver[4] = "ERR";
  519. if (!EEPROM_START(EEPROM_OFFSET)) return false;
  520. eeprom_error = false;
  521. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  522. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  523. EEPROM_SKIP(working_crc); // Skip the checksum slot
  524. working_crc = 0; // clear before first "real data"
  525. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - LINEAR_AXES;
  526. _FIELD_TEST(esteppers);
  527. EEPROM_WRITE(esteppers);
  528. //
  529. // Planner Motion
  530. //
  531. {
  532. EEPROM_WRITE(planner.settings);
  533. #if HAS_CLASSIC_JERK
  534. EEPROM_WRITE(planner.max_jerk);
  535. #if HAS_LINEAR_E_JERK
  536. dummyf = float(DEFAULT_EJERK);
  537. EEPROM_WRITE(dummyf);
  538. #endif
  539. #else
  540. const xyze_pos_t planner_max_jerk = LOGICAL_AXIS_ARRAY(float(DEFAULT_EJERK), 10, 10, 0.4, 0.4, 0.4, 0.4);
  541. EEPROM_WRITE(planner_max_jerk);
  542. #endif
  543. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  544. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  545. }
  546. //
  547. // Home Offset
  548. //
  549. {
  550. _FIELD_TEST(home_offset);
  551. #if HAS_SCARA_OFFSET
  552. EEPROM_WRITE(scara_home_offset);
  553. #else
  554. #if !HAS_HOME_OFFSET
  555. const xyz_pos_t home_offset{0};
  556. #endif
  557. EEPROM_WRITE(home_offset);
  558. #endif
  559. }
  560. //
  561. // Hotend Offsets, if any
  562. //
  563. {
  564. #if HAS_HOTEND_OFFSET
  565. // Skip hotend 0 which must be 0
  566. LOOP_S_L_N(e, 1, HOTENDS)
  567. EEPROM_WRITE(hotend_offset[e]);
  568. #endif
  569. }
  570. //
  571. // Filament Runout Sensor
  572. //
  573. {
  574. #if HAS_FILAMENT_SENSOR
  575. const bool &runout_sensor_enabled = runout.enabled;
  576. #else
  577. constexpr int8_t runout_sensor_enabled = -1;
  578. #endif
  579. _FIELD_TEST(runout_sensor_enabled);
  580. EEPROM_WRITE(runout_sensor_enabled);
  581. #if HAS_FILAMENT_RUNOUT_DISTANCE
  582. const float &runout_distance_mm = runout.runout_distance();
  583. #else
  584. constexpr float runout_distance_mm = 0;
  585. #endif
  586. EEPROM_WRITE(runout_distance_mm);
  587. }
  588. //
  589. // Global Leveling
  590. //
  591. {
  592. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, (DEFAULT_LEVELING_FADE_HEIGHT));
  593. EEPROM_WRITE(zfh);
  594. }
  595. //
  596. // Mesh Bed Leveling
  597. //
  598. {
  599. #if ENABLED(MESH_BED_LEVELING)
  600. static_assert(
  601. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  602. "MBL Z array is the wrong size."
  603. );
  604. #else
  605. dummyf = 0;
  606. #endif
  607. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  608. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  609. EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
  610. EEPROM_WRITE(mesh_num_x);
  611. EEPROM_WRITE(mesh_num_y);
  612. #if ENABLED(MESH_BED_LEVELING)
  613. EEPROM_WRITE(mbl.z_values);
  614. #else
  615. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  616. #endif
  617. }
  618. //
  619. // Probe XYZ Offsets
  620. //
  621. {
  622. _FIELD_TEST(probe_offset);
  623. #if HAS_BED_PROBE
  624. const xyz_pos_t &zpo = probe.offset;
  625. #else
  626. constexpr xyz_pos_t zpo{0};
  627. #endif
  628. EEPROM_WRITE(zpo);
  629. }
  630. //
  631. // Planar Bed Leveling matrix
  632. //
  633. {
  634. #if ABL_PLANAR
  635. EEPROM_WRITE(planner.bed_level_matrix);
  636. #else
  637. dummyf = 0;
  638. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  639. #endif
  640. }
  641. //
  642. // Bilinear Auto Bed Leveling
  643. //
  644. {
  645. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  646. static_assert(
  647. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  648. "Bilinear Z array is the wrong size."
  649. );
  650. #else
  651. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  652. #endif
  653. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  654. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  655. EEPROM_WRITE(grid_max_x);
  656. EEPROM_WRITE(grid_max_y);
  657. EEPROM_WRITE(bilinear_grid_spacing);
  658. EEPROM_WRITE(bilinear_start);
  659. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  660. EEPROM_WRITE(z_values); // 9-256 floats
  661. #else
  662. dummyf = 0;
  663. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  664. #endif
  665. }
  666. //
  667. // Unified Bed Leveling
  668. //
  669. {
  670. _FIELD_TEST(planner_leveling_active);
  671. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  672. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
  673. EEPROM_WRITE(ubl_active);
  674. EEPROM_WRITE(storage_slot);
  675. }
  676. //
  677. // Servo Angles
  678. //
  679. {
  680. _FIELD_TEST(servo_angles);
  681. #if !HAS_SERVO_ANGLES
  682. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  683. #endif
  684. EEPROM_WRITE(servo_angles);
  685. }
  686. //
  687. // Thermal first layer compensation values
  688. //
  689. #if ENABLED(PROBE_TEMP_COMPENSATION)
  690. EEPROM_WRITE(temp_comp.z_offsets_probe);
  691. EEPROM_WRITE(temp_comp.z_offsets_bed);
  692. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  693. EEPROM_WRITE(temp_comp.z_offsets_ext);
  694. #endif
  695. #else
  696. // No placeholder data for this feature
  697. #endif
  698. //
  699. // BLTOUCH
  700. //
  701. {
  702. _FIELD_TEST(bltouch_last_written_mode);
  703. const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
  704. EEPROM_WRITE(bltouch_last_written_mode);
  705. }
  706. //
  707. // DELTA Geometry or Dual Endstops offsets
  708. //
  709. {
  710. #if ENABLED(DELTA)
  711. _FIELD_TEST(delta_height);
  712. EEPROM_WRITE(delta_height); // 1 float
  713. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  714. EEPROM_WRITE(delta_radius); // 1 float
  715. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  716. EEPROM_WRITE(segments_per_second); // 1 float
  717. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  718. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  719. #elif HAS_EXTRA_ENDSTOPS
  720. _FIELD_TEST(x2_endstop_adj);
  721. // Write dual endstops in X, Y, Z order. Unused = 0.0
  722. dummyf = 0;
  723. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  724. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  725. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  726. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  727. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  728. #else
  729. EEPROM_WRITE(dummyf);
  730. #endif
  731. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  732. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  733. #else
  734. EEPROM_WRITE(dummyf);
  735. #endif
  736. #endif
  737. }
  738. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  739. EEPROM_WRITE(z_stepper_align.xy);
  740. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  741. EEPROM_WRITE(z_stepper_align.stepper_xy);
  742. #endif
  743. #endif
  744. //
  745. // LCD Preheat settings
  746. //
  747. #if PREHEAT_COUNT
  748. _FIELD_TEST(ui_material_preset);
  749. EEPROM_WRITE(ui.material_preset);
  750. #endif
  751. //
  752. // PIDTEMP
  753. //
  754. {
  755. _FIELD_TEST(hotendPID);
  756. HOTEND_LOOP() {
  757. PIDCF_t pidcf = {
  758. #if DISABLED(PIDTEMP)
  759. NAN, NAN, NAN,
  760. NAN, NAN
  761. #else
  762. PID_PARAM(Kp, e),
  763. unscalePID_i(PID_PARAM(Ki, e)),
  764. unscalePID_d(PID_PARAM(Kd, e)),
  765. PID_PARAM(Kc, e),
  766. PID_PARAM(Kf, e)
  767. #endif
  768. };
  769. EEPROM_WRITE(pidcf);
  770. }
  771. _FIELD_TEST(lpq_len);
  772. #if DISABLED(PID_EXTRUSION_SCALING)
  773. const int16_t lpq_len = 20;
  774. #endif
  775. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  776. }
  777. //
  778. // PIDTEMPBED
  779. //
  780. {
  781. _FIELD_TEST(bedPID);
  782. const PID_t bed_pid = {
  783. #if DISABLED(PIDTEMPBED)
  784. NAN, NAN, NAN
  785. #else
  786. // Store the unscaled PID values
  787. thermalManager.temp_bed.pid.Kp,
  788. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  789. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  790. #endif
  791. };
  792. EEPROM_WRITE(bed_pid);
  793. }
  794. //
  795. // PIDTEMPCHAMBER
  796. //
  797. {
  798. _FIELD_TEST(chamberPID);
  799. const PID_t chamber_pid = {
  800. #if DISABLED(PIDTEMPCHAMBER)
  801. NAN, NAN, NAN
  802. #else
  803. // Store the unscaled PID values
  804. thermalManager.temp_chamber.pid.Kp,
  805. unscalePID_i(thermalManager.temp_chamber.pid.Ki),
  806. unscalePID_d(thermalManager.temp_chamber.pid.Kd)
  807. #endif
  808. };
  809. EEPROM_WRITE(chamber_pid);
  810. }
  811. //
  812. // User-defined Thermistors
  813. //
  814. #if HAS_USER_THERMISTORS
  815. {
  816. _FIELD_TEST(user_thermistor);
  817. EEPROM_WRITE(thermalManager.user_thermistor);
  818. }
  819. #endif
  820. //
  821. // Power monitor
  822. //
  823. {
  824. #if HAS_POWER_MONITOR
  825. const uint8_t &power_monitor_flags = power_monitor.flags;
  826. #else
  827. constexpr uint8_t power_monitor_flags = 0x00;
  828. #endif
  829. _FIELD_TEST(power_monitor_flags);
  830. EEPROM_WRITE(power_monitor_flags);
  831. }
  832. //
  833. // LCD Contrast
  834. //
  835. {
  836. _FIELD_TEST(lcd_contrast);
  837. const int16_t lcd_contrast = TERN(HAS_LCD_CONTRAST, ui.contrast, 127);
  838. EEPROM_WRITE(lcd_contrast);
  839. }
  840. //
  841. // LCD Brightness
  842. //
  843. {
  844. _FIELD_TEST(lcd_brightness);
  845. const uint8_t lcd_brightness = TERN(HAS_LCD_BRIGHTNESS, ui.brightness, 255);
  846. EEPROM_WRITE(lcd_brightness);
  847. }
  848. //
  849. // Controller Fan
  850. //
  851. {
  852. _FIELD_TEST(controllerFan_settings);
  853. #if ENABLED(USE_CONTROLLER_FAN)
  854. const controllerFan_settings_t &cfs = controllerFan.settings;
  855. #else
  856. controllerFan_settings_t cfs = controllerFan_defaults;
  857. #endif
  858. EEPROM_WRITE(cfs);
  859. }
  860. //
  861. // Power-Loss Recovery
  862. //
  863. {
  864. _FIELD_TEST(recovery_enabled);
  865. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  866. EEPROM_WRITE(recovery_enabled);
  867. }
  868. //
  869. // Firmware Retraction
  870. //
  871. {
  872. _FIELD_TEST(fwretract_settings);
  873. #if DISABLED(FWRETRACT)
  874. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  875. #endif
  876. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  877. #if DISABLED(FWRETRACT_AUTORETRACT)
  878. const bool autoretract_enabled = false;
  879. #endif
  880. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  881. }
  882. //
  883. // Volumetric & Filament Size
  884. //
  885. {
  886. _FIELD_TEST(parser_volumetric_enabled);
  887. #if DISABLED(NO_VOLUMETRICS)
  888. EEPROM_WRITE(parser.volumetric_enabled);
  889. EEPROM_WRITE(planner.filament_size);
  890. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  891. EEPROM_WRITE(planner.volumetric_extruder_limit);
  892. #else
  893. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  894. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  895. #endif
  896. #else
  897. const bool volumetric_enabled = false;
  898. EEPROM_WRITE(volumetric_enabled);
  899. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  900. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  901. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  902. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  903. #endif
  904. }
  905. //
  906. // TMC Configuration
  907. //
  908. {
  909. _FIELD_TEST(tmc_stepper_current);
  910. tmc_stepper_current_t tmc_stepper_current{0};
  911. #if HAS_TRINAMIC_CONFIG
  912. #if AXIS_IS_TMC(X)
  913. tmc_stepper_current.X = stepperX.getMilliamps();
  914. #endif
  915. #if AXIS_IS_TMC(Y)
  916. tmc_stepper_current.Y = stepperY.getMilliamps();
  917. #endif
  918. #if AXIS_IS_TMC(Z)
  919. tmc_stepper_current.Z = stepperZ.getMilliamps();
  920. #endif
  921. #if AXIS_IS_TMC(I)
  922. tmc_stepper_current.I = stepperI.getMilliamps();
  923. #endif
  924. #if AXIS_IS_TMC(J)
  925. tmc_stepper_current.J = stepperJ.getMilliamps();
  926. #endif
  927. #if AXIS_IS_TMC(K)
  928. tmc_stepper_current.K = stepperK.getMilliamps();
  929. #endif
  930. #if AXIS_IS_TMC(X2)
  931. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  932. #endif
  933. #if AXIS_IS_TMC(Y2)
  934. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  935. #endif
  936. #if AXIS_IS_TMC(Z2)
  937. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  938. #endif
  939. #if AXIS_IS_TMC(Z3)
  940. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  941. #endif
  942. #if AXIS_IS_TMC(Z4)
  943. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  944. #endif
  945. #if AXIS_IS_TMC(E0)
  946. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  947. #endif
  948. #if AXIS_IS_TMC(E1)
  949. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  950. #endif
  951. #if AXIS_IS_TMC(E2)
  952. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  953. #endif
  954. #if AXIS_IS_TMC(E3)
  955. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  956. #endif
  957. #if AXIS_IS_TMC(E4)
  958. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  959. #endif
  960. #if AXIS_IS_TMC(E5)
  961. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  962. #endif
  963. #if AXIS_IS_TMC(E6)
  964. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  965. #endif
  966. #if AXIS_IS_TMC(E7)
  967. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  968. #endif
  969. #endif
  970. EEPROM_WRITE(tmc_stepper_current);
  971. }
  972. //
  973. // TMC Hybrid Threshold, and placeholder values
  974. //
  975. {
  976. _FIELD_TEST(tmc_hybrid_threshold);
  977. #if ENABLED(HYBRID_THRESHOLD)
  978. tmc_hybrid_threshold_t tmc_hybrid_threshold{0};
  979. TERN_(X_HAS_STEALTHCHOP, tmc_hybrid_threshold.X = stepperX.get_pwm_thrs());
  980. TERN_(Y_HAS_STEALTHCHOP, tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs());
  981. TERN_(Z_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs());
  982. TERN_(I_HAS_STEALTHCHOP, tmc_hybrid_threshold.I = stepperI.get_pwm_thrs());
  983. TERN_(J_HAS_STEALTHCHOP, tmc_hybrid_threshold.J = stepperJ.get_pwm_thrs());
  984. TERN_(K_HAS_STEALTHCHOP, tmc_hybrid_threshold.K = stepperK.get_pwm_thrs());
  985. TERN_(X2_HAS_STEALTHCHOP, tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs());
  986. TERN_(Y2_HAS_STEALTHCHOP, tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs());
  987. TERN_(Z2_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs());
  988. TERN_(Z3_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs());
  989. TERN_(Z4_HAS_STEALTHCHOP, tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs());
  990. TERN_(E0_HAS_STEALTHCHOP, tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs());
  991. TERN_(E1_HAS_STEALTHCHOP, tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs());
  992. TERN_(E2_HAS_STEALTHCHOP, tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs());
  993. TERN_(E3_HAS_STEALTHCHOP, tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs());
  994. TERN_(E4_HAS_STEALTHCHOP, tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs());
  995. TERN_(E5_HAS_STEALTHCHOP, tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs());
  996. TERN_(E6_HAS_STEALTHCHOP, tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs());
  997. TERN_(E7_HAS_STEALTHCHOP, tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs());
  998. #else
  999. #define _EN_ITEM(N) , .E##N = 30
  1000. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  1001. LINEAR_AXIS_LIST(.X = 100, .Y = 100, .Z = 3, .I = 3, .J = 3, .K = 3),
  1002. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3
  1003. REPEAT(E_STEPPERS, _EN_ITEM)
  1004. };
  1005. #undef _EN_ITEM
  1006. #endif
  1007. EEPROM_WRITE(tmc_hybrid_threshold);
  1008. }
  1009. //
  1010. // TMC StallGuard threshold
  1011. //
  1012. {
  1013. tmc_sgt_t tmc_sgt{0};
  1014. #if USE_SENSORLESS
  1015. LINEAR_AXIS_CODE(
  1016. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold()),
  1017. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold()),
  1018. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold()),
  1019. TERN_(I_SENSORLESS, tmc_sgt.I = stepperI.homing_threshold()),
  1020. TERN_(J_SENSORLESS, tmc_sgt.J = stepperJ.homing_threshold()),
  1021. TERN_(K_SENSORLESS, tmc_sgt.K = stepperK.homing_threshold())
  1022. );
  1023. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  1024. TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
  1025. TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
  1026. TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
  1027. TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
  1028. #endif
  1029. EEPROM_WRITE(tmc_sgt);
  1030. }
  1031. //
  1032. // TMC stepping mode
  1033. //
  1034. {
  1035. _FIELD_TEST(tmc_stealth_enabled);
  1036. tmc_stealth_enabled_t tmc_stealth_enabled = { false };
  1037. TERN_(X_HAS_STEALTHCHOP, tmc_stealth_enabled.X = stepperX.get_stored_stealthChop());
  1038. TERN_(Y_HAS_STEALTHCHOP, tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop());
  1039. TERN_(Z_HAS_STEALTHCHOP, tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop());
  1040. TERN_(I_HAS_STEALTHCHOP, tmc_stealth_enabled.I = stepperI.get_stored_stealthChop());
  1041. TERN_(J_HAS_STEALTHCHOP, tmc_stealth_enabled.J = stepperJ.get_stored_stealthChop());
  1042. TERN_(K_HAS_STEALTHCHOP, tmc_stealth_enabled.K = stepperK.get_stored_stealthChop());
  1043. TERN_(X2_HAS_STEALTHCHOP, tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop());
  1044. TERN_(Y2_HAS_STEALTHCHOP, tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop());
  1045. TERN_(Z2_HAS_STEALTHCHOP, tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop());
  1046. TERN_(Z3_HAS_STEALTHCHOP, tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop());
  1047. TERN_(Z4_HAS_STEALTHCHOP, tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop());
  1048. TERN_(E0_HAS_STEALTHCHOP, tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop());
  1049. TERN_(E1_HAS_STEALTHCHOP, tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop());
  1050. TERN_(E2_HAS_STEALTHCHOP, tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop());
  1051. TERN_(E3_HAS_STEALTHCHOP, tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop());
  1052. TERN_(E4_HAS_STEALTHCHOP, tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop());
  1053. TERN_(E5_HAS_STEALTHCHOP, tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop());
  1054. TERN_(E6_HAS_STEALTHCHOP, tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop());
  1055. TERN_(E7_HAS_STEALTHCHOP, tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop());
  1056. EEPROM_WRITE(tmc_stealth_enabled);
  1057. }
  1058. //
  1059. // Linear Advance
  1060. //
  1061. {
  1062. _FIELD_TEST(planner_extruder_advance_K);
  1063. #if ENABLED(LIN_ADVANCE)
  1064. EEPROM_WRITE(planner.extruder_advance_K);
  1065. #else
  1066. dummyf = 0;
  1067. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1068. #endif
  1069. }
  1070. //
  1071. // Motor Current PWM
  1072. //
  1073. {
  1074. _FIELD_TEST(motor_current_setting);
  1075. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1076. EEPROM_WRITE(stepper.motor_current_setting);
  1077. #else
  1078. const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 };
  1079. EEPROM_WRITE(no_current);
  1080. #endif
  1081. }
  1082. //
  1083. // CNC Coordinate Systems
  1084. //
  1085. _FIELD_TEST(coordinate_system);
  1086. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1087. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1088. #endif
  1089. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1090. //
  1091. // Skew correction factors
  1092. //
  1093. _FIELD_TEST(planner_skew_factor);
  1094. EEPROM_WRITE(planner.skew_factor);
  1095. //
  1096. // Advanced Pause filament load & unload lengths
  1097. //
  1098. #if HAS_EXTRUDERS
  1099. {
  1100. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1101. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1102. #endif
  1103. _FIELD_TEST(fc_settings);
  1104. EEPROM_WRITE(fc_settings);
  1105. }
  1106. #endif
  1107. //
  1108. // Multiple Extruders
  1109. //
  1110. #if HAS_MULTI_EXTRUDER
  1111. _FIELD_TEST(toolchange_settings);
  1112. EEPROM_WRITE(toolchange_settings);
  1113. #endif
  1114. //
  1115. // Backlash Compensation
  1116. //
  1117. {
  1118. #if ENABLED(BACKLASH_GCODE)
  1119. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1120. const uint8_t &backlash_correction = backlash.correction;
  1121. #else
  1122. const xyz_float_t backlash_distance_mm{0};
  1123. const uint8_t backlash_correction = 0;
  1124. #endif
  1125. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1126. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1127. #else
  1128. const float backlash_smoothing_mm = 3;
  1129. #endif
  1130. _FIELD_TEST(backlash_distance_mm);
  1131. EEPROM_WRITE(backlash_distance_mm);
  1132. EEPROM_WRITE(backlash_correction);
  1133. EEPROM_WRITE(backlash_smoothing_mm);
  1134. }
  1135. //
  1136. // Extensible UI User Data
  1137. //
  1138. #if ENABLED(EXTENSIBLE_UI)
  1139. {
  1140. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1141. ExtUI::onStoreSettings(extui_data);
  1142. _FIELD_TEST(extui_data);
  1143. EEPROM_WRITE(extui_data);
  1144. }
  1145. #endif
  1146. //
  1147. // Case Light Brightness
  1148. //
  1149. #if CASELIGHT_USES_BRIGHTNESS
  1150. EEPROM_WRITE(caselight.brightness);
  1151. #endif
  1152. //
  1153. // Password feature
  1154. //
  1155. #if ENABLED(PASSWORD_FEATURE)
  1156. EEPROM_WRITE(password.is_set);
  1157. EEPROM_WRITE(password.value);
  1158. #endif
  1159. //
  1160. // TOUCH_SCREEN_CALIBRATION
  1161. //
  1162. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1163. EEPROM_WRITE(touch_calibration.calibration);
  1164. #endif
  1165. //
  1166. // Ethernet network info
  1167. //
  1168. #if HAS_ETHERNET
  1169. {
  1170. _FIELD_TEST(ethernet_hardware_enabled);
  1171. const bool ethernet_hardware_enabled = ethernet.hardware_enabled;
  1172. const uint32_t ethernet_ip = ethernet.ip,
  1173. ethernet_dns = ethernet.myDns,
  1174. ethernet_gateway = ethernet.gateway,
  1175. ethernet_subnet = ethernet.subnet;
  1176. EEPROM_WRITE(ethernet_hardware_enabled);
  1177. EEPROM_WRITE(ethernet_ip);
  1178. EEPROM_WRITE(ethernet_dns);
  1179. EEPROM_WRITE(ethernet_gateway);
  1180. EEPROM_WRITE(ethernet_subnet);
  1181. }
  1182. #endif
  1183. //
  1184. // Buzzer enable/disable
  1185. //
  1186. #if ENABLED(SOUND_MENU_ITEM)
  1187. EEPROM_WRITE(ui.buzzer_enabled);
  1188. #endif
  1189. //
  1190. // MKS UI controller
  1191. //
  1192. #if ENABLED(DGUS_LCD_UI_MKS)
  1193. EEPROM_WRITE(mks_language_index);
  1194. EEPROM_WRITE(mks_corner_offsets);
  1195. EEPROM_WRITE(mks_park_pos);
  1196. EEPROM_WRITE(mks_min_extrusion_temp);
  1197. #endif
  1198. //
  1199. // Selected LCD language
  1200. //
  1201. #if HAS_MULTI_LANGUAGE
  1202. EEPROM_WRITE(ui.language);
  1203. #endif
  1204. //
  1205. // Report final CRC and Data Size
  1206. //
  1207. if (!eeprom_error) {
  1208. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1209. final_crc = working_crc;
  1210. // Write the EEPROM header
  1211. eeprom_index = EEPROM_OFFSET;
  1212. EEPROM_WRITE(version);
  1213. EEPROM_WRITE(final_crc);
  1214. // Report storage size
  1215. DEBUG_ECHO_MSG("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1216. eeprom_error |= size_error(eeprom_size);
  1217. }
  1218. EEPROM_FINISH();
  1219. //
  1220. // UBL Mesh
  1221. //
  1222. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1223. if (ubl.storage_slot >= 0)
  1224. store_mesh(ubl.storage_slot);
  1225. #endif
  1226. if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
  1227. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
  1228. return !eeprom_error;
  1229. }
  1230. /**
  1231. * M501 - Retrieve Configuration
  1232. */
  1233. bool MarlinSettings::_load() {
  1234. if (!EEPROM_START(EEPROM_OFFSET)) return false;
  1235. char stored_ver[4];
  1236. EEPROM_READ_ALWAYS(stored_ver);
  1237. uint16_t stored_crc;
  1238. EEPROM_READ_ALWAYS(stored_crc);
  1239. // Version has to match or defaults are used
  1240. if (strncmp(version, stored_ver, 3) != 0) {
  1241. if (stored_ver[3] != '\0') {
  1242. stored_ver[0] = '?';
  1243. stored_ver[1] = '\0';
  1244. }
  1245. DEBUG_ECHO_MSG("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1246. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_version());
  1247. eeprom_error = true;
  1248. }
  1249. else {
  1250. float dummyf = 0;
  1251. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1252. _FIELD_TEST(esteppers);
  1253. // Number of esteppers may change
  1254. uint8_t esteppers;
  1255. EEPROM_READ_ALWAYS(esteppers);
  1256. //
  1257. // Planner Motion
  1258. //
  1259. {
  1260. // Get only the number of E stepper parameters previously stored
  1261. // Any steppers added later are set to their defaults
  1262. uint32_t tmp1[LINEAR_AXES + esteppers];
  1263. float tmp2[LINEAR_AXES + esteppers];
  1264. feedRate_t tmp3[LINEAR_AXES + esteppers];
  1265. EEPROM_READ((uint8_t *)tmp1, sizeof(tmp1)); // max_acceleration_mm_per_s2
  1266. EEPROM_READ(planner.settings.min_segment_time_us);
  1267. EEPROM_READ((uint8_t *)tmp2, sizeof(tmp2)); // axis_steps_per_mm
  1268. EEPROM_READ((uint8_t *)tmp3, sizeof(tmp3)); // max_feedrate_mm_s
  1269. if (!validating) LOOP_DISTINCT_AXES(i) {
  1270. const bool in = (i < esteppers + LINEAR_AXES);
  1271. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1272. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1273. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1274. }
  1275. EEPROM_READ(planner.settings.acceleration);
  1276. EEPROM_READ(planner.settings.retract_acceleration);
  1277. EEPROM_READ(planner.settings.travel_acceleration);
  1278. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1279. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1280. #if HAS_CLASSIC_JERK
  1281. EEPROM_READ(planner.max_jerk);
  1282. #if HAS_LINEAR_E_JERK
  1283. EEPROM_READ(dummyf);
  1284. #endif
  1285. #else
  1286. for (uint8_t q = LOGICAL_AXES; q--;) EEPROM_READ(dummyf);
  1287. #endif
  1288. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1289. }
  1290. //
  1291. // Home Offset (M206 / M665)
  1292. //
  1293. {
  1294. _FIELD_TEST(home_offset);
  1295. #if HAS_SCARA_OFFSET
  1296. EEPROM_READ(scara_home_offset);
  1297. #else
  1298. #if !HAS_HOME_OFFSET
  1299. xyz_pos_t home_offset;
  1300. #endif
  1301. EEPROM_READ(home_offset);
  1302. #endif
  1303. }
  1304. //
  1305. // Hotend Offsets, if any
  1306. //
  1307. {
  1308. #if HAS_HOTEND_OFFSET
  1309. // Skip hotend 0 which must be 0
  1310. LOOP_S_L_N(e, 1, HOTENDS)
  1311. EEPROM_READ(hotend_offset[e]);
  1312. #endif
  1313. }
  1314. //
  1315. // Filament Runout Sensor
  1316. //
  1317. {
  1318. int8_t runout_sensor_enabled;
  1319. _FIELD_TEST(runout_sensor_enabled);
  1320. EEPROM_READ(runout_sensor_enabled);
  1321. #if HAS_FILAMENT_SENSOR
  1322. runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
  1323. #endif
  1324. TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
  1325. float runout_distance_mm;
  1326. EEPROM_READ(runout_distance_mm);
  1327. #if HAS_FILAMENT_RUNOUT_DISTANCE
  1328. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1329. #endif
  1330. }
  1331. //
  1332. // Global Leveling
  1333. //
  1334. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1335. //
  1336. // Mesh (Manual) Bed Leveling
  1337. //
  1338. {
  1339. uint8_t mesh_num_x, mesh_num_y;
  1340. EEPROM_READ(dummyf);
  1341. EEPROM_READ_ALWAYS(mesh_num_x);
  1342. EEPROM_READ_ALWAYS(mesh_num_y);
  1343. #if ENABLED(MESH_BED_LEVELING)
  1344. if (!validating) mbl.z_offset = dummyf;
  1345. if (mesh_num_x == (GRID_MAX_POINTS_X) && mesh_num_y == (GRID_MAX_POINTS_Y)) {
  1346. // EEPROM data fits the current mesh
  1347. EEPROM_READ(mbl.z_values);
  1348. }
  1349. else {
  1350. // EEPROM data is stale
  1351. if (!validating) mbl.reset();
  1352. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1353. }
  1354. #else
  1355. // MBL is disabled - skip the stored data
  1356. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1357. #endif // MESH_BED_LEVELING
  1358. }
  1359. //
  1360. // Probe Z Offset
  1361. //
  1362. {
  1363. _FIELD_TEST(probe_offset);
  1364. #if HAS_BED_PROBE
  1365. const xyz_pos_t &zpo = probe.offset;
  1366. #else
  1367. xyz_pos_t zpo;
  1368. #endif
  1369. EEPROM_READ(zpo);
  1370. }
  1371. //
  1372. // Planar Bed Leveling matrix
  1373. //
  1374. {
  1375. #if ABL_PLANAR
  1376. EEPROM_READ(planner.bed_level_matrix);
  1377. #else
  1378. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1379. #endif
  1380. }
  1381. //
  1382. // Bilinear Auto Bed Leveling
  1383. //
  1384. {
  1385. uint8_t grid_max_x, grid_max_y;
  1386. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1387. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1388. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1389. if (grid_max_x == (GRID_MAX_POINTS_X) && grid_max_y == (GRID_MAX_POINTS_Y)) {
  1390. if (!validating) set_bed_leveling_enabled(false);
  1391. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1392. EEPROM_READ(bilinear_start); // 2 ints
  1393. EEPROM_READ(z_values); // 9 to 256 floats
  1394. }
  1395. else // EEPROM data is stale
  1396. #endif // AUTO_BED_LEVELING_BILINEAR
  1397. {
  1398. // Skip past disabled (or stale) Bilinear Grid data
  1399. xy_pos_t bgs, bs;
  1400. EEPROM_READ(bgs);
  1401. EEPROM_READ(bs);
  1402. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1403. }
  1404. }
  1405. //
  1406. // Unified Bed Leveling active state
  1407. //
  1408. {
  1409. _FIELD_TEST(planner_leveling_active);
  1410. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1411. const bool &planner_leveling_active = planner.leveling_active;
  1412. const int8_t &ubl_storage_slot = ubl.storage_slot;
  1413. #else
  1414. bool planner_leveling_active;
  1415. int8_t ubl_storage_slot;
  1416. #endif
  1417. EEPROM_READ(planner_leveling_active);
  1418. EEPROM_READ(ubl_storage_slot);
  1419. }
  1420. //
  1421. // SERVO_ANGLES
  1422. //
  1423. {
  1424. _FIELD_TEST(servo_angles);
  1425. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1426. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1427. #else
  1428. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1429. #endif
  1430. EEPROM_READ(servo_angles_arr);
  1431. }
  1432. //
  1433. // Thermal first layer compensation values
  1434. //
  1435. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1436. EEPROM_READ(temp_comp.z_offsets_probe);
  1437. EEPROM_READ(temp_comp.z_offsets_bed);
  1438. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1439. EEPROM_READ(temp_comp.z_offsets_ext);
  1440. #endif
  1441. temp_comp.reset_index();
  1442. #else
  1443. // No placeholder data for this feature
  1444. #endif
  1445. //
  1446. // BLTOUCH
  1447. //
  1448. {
  1449. _FIELD_TEST(bltouch_last_written_mode);
  1450. #if ENABLED(BLTOUCH)
  1451. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1452. #else
  1453. bool bltouch_last_written_mode;
  1454. #endif
  1455. EEPROM_READ(bltouch_last_written_mode);
  1456. }
  1457. //
  1458. // DELTA Geometry or Dual Endstops offsets
  1459. //
  1460. {
  1461. #if ENABLED(DELTA)
  1462. _FIELD_TEST(delta_height);
  1463. EEPROM_READ(delta_height); // 1 float
  1464. EEPROM_READ(delta_endstop_adj); // 3 floats
  1465. EEPROM_READ(delta_radius); // 1 float
  1466. EEPROM_READ(delta_diagonal_rod); // 1 float
  1467. EEPROM_READ(segments_per_second); // 1 float
  1468. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1469. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  1470. #elif HAS_EXTRA_ENDSTOPS
  1471. _FIELD_TEST(x2_endstop_adj);
  1472. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1473. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1474. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1475. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1476. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1477. #else
  1478. EEPROM_READ(dummyf);
  1479. #endif
  1480. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1481. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1482. #else
  1483. EEPROM_READ(dummyf);
  1484. #endif
  1485. #endif
  1486. }
  1487. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1488. EEPROM_READ(z_stepper_align.xy);
  1489. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  1490. EEPROM_READ(z_stepper_align.stepper_xy);
  1491. #endif
  1492. #endif
  1493. //
  1494. // LCD Preheat settings
  1495. //
  1496. #if PREHEAT_COUNT
  1497. _FIELD_TEST(ui_material_preset);
  1498. EEPROM_READ(ui.material_preset);
  1499. #endif
  1500. //
  1501. // Hotend PID
  1502. //
  1503. {
  1504. HOTEND_LOOP() {
  1505. PIDCF_t pidcf;
  1506. EEPROM_READ(pidcf);
  1507. #if ENABLED(PIDTEMP)
  1508. if (!validating && !isnan(pidcf.Kp)) {
  1509. // Scale PID values since EEPROM values are unscaled
  1510. PID_PARAM(Kp, e) = pidcf.Kp;
  1511. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1512. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1513. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1514. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1515. }
  1516. #endif
  1517. }
  1518. }
  1519. //
  1520. // PID Extrusion Scaling
  1521. //
  1522. {
  1523. _FIELD_TEST(lpq_len);
  1524. #if ENABLED(PID_EXTRUSION_SCALING)
  1525. const int16_t &lpq_len = thermalManager.lpq_len;
  1526. #else
  1527. int16_t lpq_len;
  1528. #endif
  1529. EEPROM_READ(lpq_len);
  1530. }
  1531. //
  1532. // Heated Bed PID
  1533. //
  1534. {
  1535. PID_t pid;
  1536. EEPROM_READ(pid);
  1537. #if ENABLED(PIDTEMPBED)
  1538. if (!validating && !isnan(pid.Kp)) {
  1539. // Scale PID values since EEPROM values are unscaled
  1540. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1541. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1542. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1543. }
  1544. #endif
  1545. }
  1546. //
  1547. // Heated Chamber PID
  1548. //
  1549. {
  1550. PID_t pid;
  1551. EEPROM_READ(pid);
  1552. #if ENABLED(PIDTEMPCHAMBER)
  1553. if (!validating && !isnan(pid.Kp)) {
  1554. // Scale PID values since EEPROM values are unscaled
  1555. thermalManager.temp_chamber.pid.Kp = pid.Kp;
  1556. thermalManager.temp_chamber.pid.Ki = scalePID_i(pid.Ki);
  1557. thermalManager.temp_chamber.pid.Kd = scalePID_d(pid.Kd);
  1558. }
  1559. #endif
  1560. }
  1561. //
  1562. // User-defined Thermistors
  1563. //
  1564. #if HAS_USER_THERMISTORS
  1565. {
  1566. _FIELD_TEST(user_thermistor);
  1567. EEPROM_READ(thermalManager.user_thermistor);
  1568. }
  1569. #endif
  1570. //
  1571. // Power monitor
  1572. //
  1573. {
  1574. #if HAS_POWER_MONITOR
  1575. uint8_t &power_monitor_flags = power_monitor.flags;
  1576. #else
  1577. uint8_t power_monitor_flags;
  1578. #endif
  1579. _FIELD_TEST(power_monitor_flags);
  1580. EEPROM_READ(power_monitor_flags);
  1581. }
  1582. //
  1583. // LCD Contrast
  1584. //
  1585. {
  1586. _FIELD_TEST(lcd_contrast);
  1587. int16_t lcd_contrast;
  1588. EEPROM_READ(lcd_contrast);
  1589. if (!validating) {
  1590. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
  1591. }
  1592. }
  1593. //
  1594. // LCD Brightness
  1595. //
  1596. {
  1597. _FIELD_TEST(lcd_brightness);
  1598. uint8_t lcd_brightness;
  1599. EEPROM_READ(lcd_brightness);
  1600. TERN_(HAS_LCD_BRIGHTNESS, if (!validating) ui.set_brightness(lcd_brightness));
  1601. }
  1602. //
  1603. // Controller Fan
  1604. //
  1605. {
  1606. _FIELD_TEST(controllerFan_settings);
  1607. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  1608. const controllerFan_settings_t &cfs = controllerFan.settings;
  1609. #else
  1610. controllerFan_settings_t cfs = { 0 };
  1611. #endif
  1612. EEPROM_READ(cfs);
  1613. }
  1614. //
  1615. // Power-Loss Recovery
  1616. //
  1617. {
  1618. _FIELD_TEST(recovery_enabled);
  1619. #if ENABLED(POWER_LOSS_RECOVERY)
  1620. const bool &recovery_enabled = recovery.enabled;
  1621. #else
  1622. bool recovery_enabled;
  1623. #endif
  1624. EEPROM_READ(recovery_enabled);
  1625. }
  1626. //
  1627. // Firmware Retraction
  1628. //
  1629. {
  1630. _FIELD_TEST(fwretract_settings);
  1631. #if ENABLED(FWRETRACT)
  1632. EEPROM_READ(fwretract.settings);
  1633. #else
  1634. fwretract_settings_t fwretract_settings;
  1635. EEPROM_READ(fwretract_settings);
  1636. #endif
  1637. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1638. EEPROM_READ(fwretract.autoretract_enabled);
  1639. #else
  1640. bool autoretract_enabled;
  1641. EEPROM_READ(autoretract_enabled);
  1642. #endif
  1643. }
  1644. //
  1645. // Volumetric & Filament Size
  1646. //
  1647. {
  1648. struct {
  1649. bool volumetric_enabled;
  1650. float filament_size[EXTRUDERS];
  1651. float volumetric_extruder_limit[EXTRUDERS];
  1652. } storage;
  1653. _FIELD_TEST(parser_volumetric_enabled);
  1654. EEPROM_READ(storage);
  1655. #if DISABLED(NO_VOLUMETRICS)
  1656. if (!validating) {
  1657. parser.volumetric_enabled = storage.volumetric_enabled;
  1658. COPY(planner.filament_size, storage.filament_size);
  1659. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1660. COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
  1661. #endif
  1662. }
  1663. #endif
  1664. }
  1665. //
  1666. // TMC Stepper Settings
  1667. //
  1668. if (!validating) reset_stepper_drivers();
  1669. // TMC Stepper Current
  1670. {
  1671. _FIELD_TEST(tmc_stepper_current);
  1672. tmc_stepper_current_t currents;
  1673. EEPROM_READ(currents);
  1674. #if HAS_TRINAMIC_CONFIG
  1675. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1676. if (!validating) {
  1677. #if AXIS_IS_TMC(X)
  1678. SET_CURR(X);
  1679. #endif
  1680. #if AXIS_IS_TMC(Y)
  1681. SET_CURR(Y);
  1682. #endif
  1683. #if AXIS_IS_TMC(Z)
  1684. SET_CURR(Z);
  1685. #endif
  1686. #if AXIS_IS_TMC(X2)
  1687. SET_CURR(X2);
  1688. #endif
  1689. #if AXIS_IS_TMC(Y2)
  1690. SET_CURR(Y2);
  1691. #endif
  1692. #if AXIS_IS_TMC(Z2)
  1693. SET_CURR(Z2);
  1694. #endif
  1695. #if AXIS_IS_TMC(Z3)
  1696. SET_CURR(Z3);
  1697. #endif
  1698. #if AXIS_IS_TMC(Z4)
  1699. SET_CURR(Z4);
  1700. #endif
  1701. #if AXIS_IS_TMC(I)
  1702. SET_CURR(I);
  1703. #endif
  1704. #if AXIS_IS_TMC(J)
  1705. SET_CURR(J);
  1706. #endif
  1707. #if AXIS_IS_TMC(K)
  1708. SET_CURR(K);
  1709. #endif
  1710. #if AXIS_IS_TMC(E0)
  1711. SET_CURR(E0);
  1712. #endif
  1713. #if AXIS_IS_TMC(E1)
  1714. SET_CURR(E1);
  1715. #endif
  1716. #if AXIS_IS_TMC(E2)
  1717. SET_CURR(E2);
  1718. #endif
  1719. #if AXIS_IS_TMC(E3)
  1720. SET_CURR(E3);
  1721. #endif
  1722. #if AXIS_IS_TMC(E4)
  1723. SET_CURR(E4);
  1724. #endif
  1725. #if AXIS_IS_TMC(E5)
  1726. SET_CURR(E5);
  1727. #endif
  1728. #if AXIS_IS_TMC(E6)
  1729. SET_CURR(E6);
  1730. #endif
  1731. #if AXIS_IS_TMC(E7)
  1732. SET_CURR(E7);
  1733. #endif
  1734. }
  1735. #endif
  1736. }
  1737. // TMC Hybrid Threshold
  1738. {
  1739. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1740. _FIELD_TEST(tmc_hybrid_threshold);
  1741. EEPROM_READ(tmc_hybrid_threshold);
  1742. #if ENABLED(HYBRID_THRESHOLD)
  1743. if (!validating) {
  1744. TERN_(X_HAS_STEALTHCHOP, stepperX.set_pwm_thrs(tmc_hybrid_threshold.X));
  1745. TERN_(Y_HAS_STEALTHCHOP, stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y));
  1746. TERN_(Z_HAS_STEALTHCHOP, stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z));
  1747. TERN_(X2_HAS_STEALTHCHOP, stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2));
  1748. TERN_(Y2_HAS_STEALTHCHOP, stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2));
  1749. TERN_(Z2_HAS_STEALTHCHOP, stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2));
  1750. TERN_(Z3_HAS_STEALTHCHOP, stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3));
  1751. TERN_(Z4_HAS_STEALTHCHOP, stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4));
  1752. TERN_(I_HAS_STEALTHCHOP, stepperI.set_pwm_thrs(tmc_hybrid_threshold.I));
  1753. TERN_(J_HAS_STEALTHCHOP, stepperJ.set_pwm_thrs(tmc_hybrid_threshold.J));
  1754. TERN_(K_HAS_STEALTHCHOP, stepperK.set_pwm_thrs(tmc_hybrid_threshold.K));
  1755. TERN_(E0_HAS_STEALTHCHOP, stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0));
  1756. TERN_(E1_HAS_STEALTHCHOP, stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1));
  1757. TERN_(E2_HAS_STEALTHCHOP, stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2));
  1758. TERN_(E3_HAS_STEALTHCHOP, stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3));
  1759. TERN_(E4_HAS_STEALTHCHOP, stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4));
  1760. TERN_(E5_HAS_STEALTHCHOP, stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5));
  1761. TERN_(E6_HAS_STEALTHCHOP, stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6));
  1762. TERN_(E7_HAS_STEALTHCHOP, stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7));
  1763. }
  1764. #endif
  1765. }
  1766. //
  1767. // TMC StallGuard threshold.
  1768. //
  1769. {
  1770. tmc_sgt_t tmc_sgt;
  1771. _FIELD_TEST(tmc_sgt);
  1772. EEPROM_READ(tmc_sgt);
  1773. #if USE_SENSORLESS
  1774. if (!validating) {
  1775. LINEAR_AXIS_CODE(
  1776. TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X)),
  1777. TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y)),
  1778. TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z)),
  1779. TERN_(I_SENSORLESS, stepperI.homing_threshold(tmc_sgt.I)),
  1780. TERN_(J_SENSORLESS, stepperJ.homing_threshold(tmc_sgt.J)),
  1781. TERN_(K_SENSORLESS, stepperK.homing_threshold(tmc_sgt.K))
  1782. );
  1783. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  1784. TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
  1785. TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
  1786. TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
  1787. TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
  1788. }
  1789. #endif
  1790. }
  1791. // TMC stepping mode
  1792. {
  1793. _FIELD_TEST(tmc_stealth_enabled);
  1794. tmc_stealth_enabled_t tmc_stealth_enabled;
  1795. EEPROM_READ(tmc_stealth_enabled);
  1796. #if HAS_TRINAMIC_CONFIG
  1797. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1798. if (!validating) {
  1799. TERN_(X_HAS_STEALTHCHOP, SET_STEPPING_MODE(X));
  1800. TERN_(Y_HAS_STEALTHCHOP, SET_STEPPING_MODE(Y));
  1801. TERN_(Z_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z));
  1802. TERN_(I_HAS_STEALTHCHOP, SET_STEPPING_MODE(I));
  1803. TERN_(J_HAS_STEALTHCHOP, SET_STEPPING_MODE(J));
  1804. TERN_(K_HAS_STEALTHCHOP, SET_STEPPING_MODE(K));
  1805. TERN_(X2_HAS_STEALTHCHOP, SET_STEPPING_MODE(X2));
  1806. TERN_(Y2_HAS_STEALTHCHOP, SET_STEPPING_MODE(Y2));
  1807. TERN_(Z2_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z2));
  1808. TERN_(Z3_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z3));
  1809. TERN_(Z4_HAS_STEALTHCHOP, SET_STEPPING_MODE(Z4));
  1810. TERN_(E0_HAS_STEALTHCHOP, SET_STEPPING_MODE(E0));
  1811. TERN_(E1_HAS_STEALTHCHOP, SET_STEPPING_MODE(E1));
  1812. TERN_(E2_HAS_STEALTHCHOP, SET_STEPPING_MODE(E2));
  1813. TERN_(E3_HAS_STEALTHCHOP, SET_STEPPING_MODE(E3));
  1814. TERN_(E4_HAS_STEALTHCHOP, SET_STEPPING_MODE(E4));
  1815. TERN_(E5_HAS_STEALTHCHOP, SET_STEPPING_MODE(E5));
  1816. TERN_(E6_HAS_STEALTHCHOP, SET_STEPPING_MODE(E6));
  1817. TERN_(E7_HAS_STEALTHCHOP, SET_STEPPING_MODE(E7));
  1818. }
  1819. #endif
  1820. }
  1821. //
  1822. // Linear Advance
  1823. //
  1824. {
  1825. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1826. _FIELD_TEST(planner_extruder_advance_K);
  1827. EEPROM_READ(extruder_advance_K);
  1828. #if ENABLED(LIN_ADVANCE)
  1829. if (!validating)
  1830. COPY(planner.extruder_advance_K, extruder_advance_K);
  1831. #endif
  1832. }
  1833. //
  1834. // Motor Current PWM
  1835. //
  1836. {
  1837. _FIELD_TEST(motor_current_setting);
  1838. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]
  1839. #if HAS_MOTOR_CURRENT_SPI
  1840. = DIGIPOT_MOTOR_CURRENT
  1841. #endif
  1842. ;
  1843. #if HAS_MOTOR_CURRENT_SPI
  1844. DEBUG_ECHO_MSG("DIGIPOTS Loading");
  1845. #endif
  1846. EEPROM_READ(motor_current_setting);
  1847. #if HAS_MOTOR_CURRENT_SPI
  1848. DEBUG_ECHO_MSG("DIGIPOTS Loaded");
  1849. #endif
  1850. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1851. if (!validating)
  1852. COPY(stepper.motor_current_setting, motor_current_setting);
  1853. #endif
  1854. }
  1855. //
  1856. // CNC Coordinate System
  1857. //
  1858. {
  1859. _FIELD_TEST(coordinate_system);
  1860. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1861. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1862. EEPROM_READ(gcode.coordinate_system);
  1863. #else
  1864. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1865. EEPROM_READ(coordinate_system);
  1866. #endif
  1867. }
  1868. //
  1869. // Skew correction factors
  1870. //
  1871. {
  1872. skew_factor_t skew_factor;
  1873. _FIELD_TEST(planner_skew_factor);
  1874. EEPROM_READ(skew_factor);
  1875. #if ENABLED(SKEW_CORRECTION_GCODE)
  1876. if (!validating) {
  1877. planner.skew_factor.xy = skew_factor.xy;
  1878. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1879. planner.skew_factor.xz = skew_factor.xz;
  1880. planner.skew_factor.yz = skew_factor.yz;
  1881. #endif
  1882. }
  1883. #endif
  1884. }
  1885. //
  1886. // Advanced Pause filament load & unload lengths
  1887. //
  1888. #if HAS_EXTRUDERS
  1889. {
  1890. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1891. fil_change_settings_t fc_settings[EXTRUDERS];
  1892. #endif
  1893. _FIELD_TEST(fc_settings);
  1894. EEPROM_READ(fc_settings);
  1895. }
  1896. #endif
  1897. //
  1898. // Tool-change settings
  1899. //
  1900. #if HAS_MULTI_EXTRUDER
  1901. _FIELD_TEST(toolchange_settings);
  1902. EEPROM_READ(toolchange_settings);
  1903. #endif
  1904. //
  1905. // Backlash Compensation
  1906. //
  1907. {
  1908. #if ENABLED(BACKLASH_GCODE)
  1909. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1910. const uint8_t &backlash_correction = backlash.correction;
  1911. #else
  1912. xyz_float_t backlash_distance_mm;
  1913. uint8_t backlash_correction;
  1914. #endif
  1915. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1916. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1917. #else
  1918. float backlash_smoothing_mm;
  1919. #endif
  1920. _FIELD_TEST(backlash_distance_mm);
  1921. EEPROM_READ(backlash_distance_mm);
  1922. EEPROM_READ(backlash_correction);
  1923. EEPROM_READ(backlash_smoothing_mm);
  1924. }
  1925. //
  1926. // Extensible UI User Data
  1927. //
  1928. #if ENABLED(EXTENSIBLE_UI)
  1929. { // This is a significant hardware change; don't reserve EEPROM space when not present
  1930. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1931. _FIELD_TEST(extui_data);
  1932. EEPROM_READ(extui_data);
  1933. if (!validating) ExtUI::onLoadSettings(extui_data);
  1934. }
  1935. #endif
  1936. //
  1937. // Case Light Brightness
  1938. //
  1939. #if CASELIGHT_USES_BRIGHTNESS
  1940. _FIELD_TEST(caselight_brightness);
  1941. EEPROM_READ(caselight.brightness);
  1942. #endif
  1943. //
  1944. // Password feature
  1945. //
  1946. #if ENABLED(PASSWORD_FEATURE)
  1947. _FIELD_TEST(password_is_set);
  1948. EEPROM_READ(password.is_set);
  1949. EEPROM_READ(password.value);
  1950. #endif
  1951. //
  1952. // TOUCH_SCREEN_CALIBRATION
  1953. //
  1954. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1955. _FIELD_TEST(touch_calibration_data);
  1956. EEPROM_READ(touch_calibration.calibration);
  1957. #endif
  1958. //
  1959. // Ethernet network info
  1960. //
  1961. #if HAS_ETHERNET
  1962. _FIELD_TEST(ethernet_hardware_enabled);
  1963. uint32_t ethernet_ip, ethernet_dns, ethernet_gateway, ethernet_subnet;
  1964. EEPROM_READ(ethernet.hardware_enabled);
  1965. EEPROM_READ(ethernet_ip); ethernet.ip = ethernet_ip;
  1966. EEPROM_READ(ethernet_dns); ethernet.myDns = ethernet_dns;
  1967. EEPROM_READ(ethernet_gateway); ethernet.gateway = ethernet_gateway;
  1968. EEPROM_READ(ethernet_subnet); ethernet.subnet = ethernet_subnet;
  1969. #endif
  1970. //
  1971. // Buzzer enable/disable
  1972. //
  1973. #if ENABLED(SOUND_MENU_ITEM)
  1974. _FIELD_TEST(buzzer_enabled);
  1975. EEPROM_READ(ui.buzzer_enabled);
  1976. #endif
  1977. //
  1978. // MKS UI controller
  1979. //
  1980. #if ENABLED(DGUS_LCD_UI_MKS)
  1981. _FIELD_TEST(mks_language_index);
  1982. EEPROM_READ(mks_language_index);
  1983. EEPROM_READ(mks_corner_offsets);
  1984. EEPROM_READ(mks_park_pos);
  1985. EEPROM_READ(mks_min_extrusion_temp);
  1986. #endif
  1987. //
  1988. // Selected LCD language
  1989. //
  1990. #if HAS_MULTI_LANGUAGE
  1991. {
  1992. uint8_t ui_language;
  1993. EEPROM_READ(ui_language);
  1994. if (ui_language >= NUM_LANGUAGES) ui_language = 0;
  1995. ui.set_language(ui_language);
  1996. }
  1997. #endif
  1998. //
  1999. // Validate Final Size and CRC
  2000. //
  2001. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  2002. if (eeprom_error) {
  2003. DEBUG_ECHO_MSG("Index: ", eeprom_index - (EEPROM_OFFSET), " Size: ", datasize());
  2004. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_index());
  2005. }
  2006. else if (working_crc != stored_crc) {
  2007. eeprom_error = true;
  2008. DEBUG_ERROR_MSG("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  2009. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_crc());
  2010. }
  2011. else if (!validating) {
  2012. DEBUG_ECHO_START();
  2013. DEBUG_ECHO(version);
  2014. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  2015. }
  2016. if (!validating && !eeprom_error) postprocess();
  2017. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2018. if (!validating) {
  2019. ubl.report_state();
  2020. if (!ubl.sanity_check()) {
  2021. SERIAL_EOL();
  2022. #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2023. ubl.echo_name();
  2024. DEBUG_ECHOLNPGM(" initialized.\n");
  2025. #endif
  2026. }
  2027. else {
  2028. eeprom_error = true;
  2029. #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2030. DEBUG_ECHOPGM("?Can't enable ");
  2031. ubl.echo_name();
  2032. DEBUG_ECHOLNPGM(".");
  2033. #endif
  2034. ubl.reset();
  2035. }
  2036. if (ubl.storage_slot >= 0) {
  2037. load_mesh(ubl.storage_slot);
  2038. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  2039. }
  2040. else {
  2041. ubl.reset();
  2042. DEBUG_ECHOLNPGM("UBL reset");
  2043. }
  2044. }
  2045. #endif
  2046. }
  2047. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  2048. // Report the EEPROM settings
  2049. if (!validating && TERN1(EEPROM_BOOT_SILENT, IsRunning())) report();
  2050. #endif
  2051. EEPROM_FINISH();
  2052. return !eeprom_error;
  2053. }
  2054. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2055. extern bool restoreEEPROM();
  2056. #endif
  2057. bool MarlinSettings::validate() {
  2058. validating = true;
  2059. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2060. bool success = _load();
  2061. if (!success && restoreEEPROM()) {
  2062. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  2063. success = _load();
  2064. }
  2065. #else
  2066. const bool success = _load();
  2067. #endif
  2068. validating = false;
  2069. return success;
  2070. }
  2071. bool MarlinSettings::load() {
  2072. if (validate()) {
  2073. const bool success = _load();
  2074. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
  2075. return success;
  2076. }
  2077. reset();
  2078. #if ENABLED(EEPROM_AUTO_INIT)
  2079. (void)save();
  2080. SERIAL_ECHO_MSG("EEPROM Initialized");
  2081. #endif
  2082. return false;
  2083. }
  2084. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2085. inline void ubl_invalid_slot(const int s) {
  2086. DEBUG_ECHOLNPAIR("?Invalid slot.\n", s, " mesh slots available.");
  2087. UNUSED(s);
  2088. }
  2089. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  2090. // is a placeholder for the size of the MAT; the MAT will always
  2091. // live at the very end of the eeprom
  2092. uint16_t MarlinSettings::meshes_start_index() {
  2093. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  2094. // or down a little bit without disrupting the mesh data
  2095. }
  2096. #define MESH_STORE_SIZE sizeof(TERN(OPTIMIZED_MESH_STORAGE, mesh_store_t, ubl.z_values))
  2097. uint16_t MarlinSettings::calc_num_meshes() {
  2098. return (meshes_end - meshes_start_index()) / MESH_STORE_SIZE;
  2099. }
  2100. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  2101. return meshes_end - (slot + 1) * MESH_STORE_SIZE;
  2102. }
  2103. void MarlinSettings::store_mesh(const int8_t slot) {
  2104. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2105. const int16_t a = calc_num_meshes();
  2106. if (!WITHIN(slot, 0, a - 1)) {
  2107. ubl_invalid_slot(a);
  2108. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  2109. DEBUG_EOL();
  2110. return;
  2111. }
  2112. int pos = mesh_slot_offset(slot);
  2113. uint16_t crc = 0;
  2114. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2115. int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2116. ubl.set_store_from_mesh(ubl.z_values, z_mesh_store);
  2117. uint8_t * const src = (uint8_t*)&z_mesh_store;
  2118. #else
  2119. uint8_t * const src = (uint8_t*)&ubl.z_values;
  2120. #endif
  2121. // Write crc to MAT along with other data, or just tack on to the beginning or end
  2122. persistentStore.access_start();
  2123. const bool status = persistentStore.write_data(pos, src, MESH_STORE_SIZE, &crc);
  2124. persistentStore.access_finish();
  2125. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  2126. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  2127. #else
  2128. // Other mesh types
  2129. #endif
  2130. }
  2131. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2132. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2133. const int16_t a = settings.calc_num_meshes();
  2134. if (!WITHIN(slot, 0, a - 1)) {
  2135. ubl_invalid_slot(a);
  2136. return;
  2137. }
  2138. int pos = mesh_slot_offset(slot);
  2139. uint16_t crc = 0;
  2140. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2141. int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2142. uint8_t * const dest = (uint8_t*)&z_mesh_store;
  2143. #else
  2144. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2145. #endif
  2146. persistentStore.access_start();
  2147. const uint16_t status = persistentStore.read_data(pos, dest, MESH_STORE_SIZE, &crc);
  2148. persistentStore.access_finish();
  2149. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2150. if (into) {
  2151. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2152. ubl.set_mesh_from_store(z_mesh_store, z_values);
  2153. memcpy(into, z_values, sizeof(z_values));
  2154. }
  2155. else
  2156. ubl.set_mesh_from_store(z_mesh_store, ubl.z_values);
  2157. #endif
  2158. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2159. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2160. EEPROM_FINISH();
  2161. #else
  2162. // Other mesh types
  2163. #endif
  2164. }
  2165. //void MarlinSettings::delete_mesh() { return; }
  2166. //void MarlinSettings::defrag_meshes() { return; }
  2167. #endif // AUTO_BED_LEVELING_UBL
  2168. #else // !EEPROM_SETTINGS
  2169. bool MarlinSettings::save() {
  2170. DEBUG_ERROR_MSG("EEPROM disabled");
  2171. return false;
  2172. }
  2173. #endif // !EEPROM_SETTINGS
  2174. /**
  2175. * M502 - Reset Configuration
  2176. */
  2177. void MarlinSettings::reset() {
  2178. LOOP_DISTINCT_AXES(i) {
  2179. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2180. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2181. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2182. }
  2183. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2184. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2185. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2186. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2187. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2188. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2189. #if HAS_CLASSIC_JERK
  2190. #ifndef DEFAULT_XJERK
  2191. #define DEFAULT_XJERK 0
  2192. #endif
  2193. #if HAS_Y_AXIS && !defined(DEFAULT_YJERK)
  2194. #define DEFAULT_YJERK 0
  2195. #endif
  2196. #if HAS_Z_AXIS && !defined(DEFAULT_ZJERK)
  2197. #define DEFAULT_ZJERK 0
  2198. #endif
  2199. #if LINEAR_AXES >= 4 && !defined(DEFAULT_IJERK)
  2200. #define DEFAULT_IJERK 0
  2201. #endif
  2202. #if LINEAR_AXES >= 5 && !defined(DEFAULT_JJERK)
  2203. #define DEFAULT_JJERK 0
  2204. #endif
  2205. #if LINEAR_AXES >= 6 && !defined(DEFAULT_KJERK)
  2206. #define DEFAULT_KJERK 0
  2207. #endif
  2208. planner.max_jerk.set(
  2209. LINEAR_AXIS_LIST(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK, DEFAULT_IJERK, DEFAULT_JJERK, DEFAULT_KJERK)
  2210. );
  2211. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK);
  2212. #endif
  2213. #if HAS_JUNCTION_DEVIATION
  2214. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2215. #endif
  2216. #if HAS_SCARA_OFFSET
  2217. scara_home_offset.reset();
  2218. #elif HAS_HOME_OFFSET
  2219. home_offset.reset();
  2220. #endif
  2221. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2222. //
  2223. // Filament Runout Sensor
  2224. //
  2225. #if HAS_FILAMENT_SENSOR
  2226. runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
  2227. runout.reset();
  2228. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
  2229. #endif
  2230. //
  2231. // Tool-change Settings
  2232. //
  2233. #if HAS_MULTI_EXTRUDER
  2234. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2235. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2236. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2237. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2238. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2239. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2240. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2241. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2242. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2243. #endif
  2244. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2245. enable_first_prime = false;
  2246. #endif
  2247. #if ENABLED(TOOLCHANGE_PARK)
  2248. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2249. toolchange_settings.enable_park = true;
  2250. toolchange_settings.change_point = tpxy;
  2251. #endif
  2252. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2253. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2254. migration = migration_defaults;
  2255. #endif
  2256. #endif
  2257. #if ENABLED(BACKLASH_GCODE)
  2258. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2259. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2260. backlash.distance_mm = tmp;
  2261. #ifdef BACKLASH_SMOOTHING_MM
  2262. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2263. #endif
  2264. #endif
  2265. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2266. //
  2267. // Case Light Brightness
  2268. //
  2269. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2270. //
  2271. // TOUCH_SCREEN_CALIBRATION
  2272. //
  2273. TERN_(TOUCH_SCREEN_CALIBRATION, touch_calibration.calibration_reset());
  2274. //
  2275. // Buzzer enable/disable
  2276. //
  2277. TERN_(SOUND_MENU_ITEM, ui.buzzer_enabled = true);
  2278. //
  2279. // Magnetic Parking Extruder
  2280. //
  2281. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2282. //
  2283. // Global Leveling
  2284. //
  2285. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = (DEFAULT_LEVELING_FADE_HEIGHT));
  2286. TERN_(HAS_LEVELING, reset_bed_level());
  2287. #if HAS_BED_PROBE
  2288. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2289. static_assert(COUNT(dpo) == LINEAR_AXES, "NOZZLE_TO_PROBE_OFFSET must contain offsets for each linear axis X, Y, Z....");
  2290. #if HAS_PROBE_XY_OFFSET
  2291. LOOP_LINEAR_AXES(a) probe.offset[a] = dpo[a];
  2292. #else
  2293. probe.offset.set(LINEAR_AXIS_LIST(0, 0, dpo[Z_AXIS], 0, 0, 0));
  2294. #endif
  2295. #endif
  2296. //
  2297. // Z Stepper Auto-alignment points
  2298. //
  2299. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2300. //
  2301. // Servo Angles
  2302. //
  2303. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2304. //
  2305. // BLTOUCH
  2306. //
  2307. //#if ENABLED(BLTOUCH)
  2308. // bltouch.last_written_mode;
  2309. //#endif
  2310. //
  2311. // Endstop Adjustments
  2312. //
  2313. #if ENABLED(DELTA)
  2314. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  2315. delta_height = DELTA_HEIGHT;
  2316. delta_endstop_adj = adj;
  2317. delta_radius = DELTA_RADIUS;
  2318. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2319. segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2320. delta_tower_angle_trim = dta;
  2321. delta_diagonal_rod_trim = ddr;
  2322. #endif
  2323. #if ENABLED(X_DUAL_ENDSTOPS)
  2324. #ifndef X2_ENDSTOP_ADJUSTMENT
  2325. #define X2_ENDSTOP_ADJUSTMENT 0
  2326. #endif
  2327. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2328. #endif
  2329. #if ENABLED(Y_DUAL_ENDSTOPS)
  2330. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2331. #define Y2_ENDSTOP_ADJUSTMENT 0
  2332. #endif
  2333. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2334. #endif
  2335. #if ENABLED(Z_MULTI_ENDSTOPS)
  2336. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2337. #define Z2_ENDSTOP_ADJUSTMENT 0
  2338. #endif
  2339. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2340. #if NUM_Z_STEPPER_DRIVERS >= 3
  2341. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2342. #define Z3_ENDSTOP_ADJUSTMENT 0
  2343. #endif
  2344. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2345. #endif
  2346. #if NUM_Z_STEPPER_DRIVERS >= 4
  2347. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2348. #define Z4_ENDSTOP_ADJUSTMENT 0
  2349. #endif
  2350. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2351. #endif
  2352. #endif
  2353. //
  2354. // Preheat parameters
  2355. //
  2356. #if PREHEAT_COUNT
  2357. #define _PITEM(N,T) PREHEAT_##N##_##T,
  2358. #if HAS_HOTEND
  2359. constexpr uint16_t hpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, TEMP_HOTEND) };
  2360. #endif
  2361. #if HAS_HEATED_BED
  2362. constexpr uint16_t bpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, TEMP_BED) };
  2363. #endif
  2364. #if HAS_FAN
  2365. constexpr uint8_t fpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, FAN_SPEED) };
  2366. #endif
  2367. LOOP_L_N(i, PREHEAT_COUNT) {
  2368. TERN_(HAS_HOTEND, ui.material_preset[i].hotend_temp = hpre[i]);
  2369. TERN_(HAS_HEATED_BED, ui.material_preset[i].bed_temp = bpre[i]);
  2370. TERN_(HAS_FAN, ui.material_preset[i].fan_speed = fpre[i]);
  2371. }
  2372. #endif
  2373. //
  2374. // Hotend PID
  2375. //
  2376. #if ENABLED(PIDTEMP)
  2377. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2378. constexpr float defKp[] =
  2379. #ifdef DEFAULT_Kp_LIST
  2380. DEFAULT_Kp_LIST
  2381. #else
  2382. ARRAY_BY_HOTENDS1(DEFAULT_Kp)
  2383. #endif
  2384. , defKi[] =
  2385. #ifdef DEFAULT_Ki_LIST
  2386. DEFAULT_Ki_LIST
  2387. #else
  2388. ARRAY_BY_HOTENDS1(DEFAULT_Ki)
  2389. #endif
  2390. , defKd[] =
  2391. #ifdef DEFAULT_Kd_LIST
  2392. DEFAULT_Kd_LIST
  2393. #else
  2394. ARRAY_BY_HOTENDS1(DEFAULT_Kd)
  2395. #endif
  2396. ;
  2397. static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
  2398. static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
  2399. static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
  2400. #if ENABLED(PID_EXTRUSION_SCALING)
  2401. constexpr float defKc[] =
  2402. #ifdef DEFAULT_Kc_LIST
  2403. DEFAULT_Kc_LIST
  2404. #else
  2405. ARRAY_BY_HOTENDS1(DEFAULT_Kc)
  2406. #endif
  2407. ;
  2408. static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
  2409. #endif
  2410. #if ENABLED(PID_FAN_SCALING)
  2411. constexpr float defKf[] =
  2412. #ifdef DEFAULT_Kf_LIST
  2413. DEFAULT_Kf_LIST
  2414. #else
  2415. ARRAY_BY_HOTENDS1(DEFAULT_Kf)
  2416. #endif
  2417. ;
  2418. static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
  2419. #endif
  2420. #define PID_DEFAULT(N,E) def##N[E]
  2421. #else
  2422. #define PID_DEFAULT(N,E) DEFAULT_##N
  2423. #endif
  2424. HOTEND_LOOP() {
  2425. PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
  2426. PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
  2427. PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
  2428. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
  2429. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
  2430. }
  2431. #endif
  2432. //
  2433. // PID Extrusion Scaling
  2434. //
  2435. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2436. //
  2437. // Heated Bed PID
  2438. //
  2439. #if ENABLED(PIDTEMPBED)
  2440. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2441. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2442. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2443. #endif
  2444. //
  2445. // Heated Chamber PID
  2446. //
  2447. #if ENABLED(PIDTEMPCHAMBER)
  2448. thermalManager.temp_chamber.pid.Kp = DEFAULT_chamberKp;
  2449. thermalManager.temp_chamber.pid.Ki = scalePID_i(DEFAULT_chamberKi);
  2450. thermalManager.temp_chamber.pid.Kd = scalePID_d(DEFAULT_chamberKd);
  2451. #endif
  2452. //
  2453. // User-Defined Thermistors
  2454. //
  2455. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2456. //
  2457. // Power Monitor
  2458. //
  2459. TERN_(POWER_MONITOR, power_monitor.reset());
  2460. //
  2461. // LCD Contrast
  2462. //
  2463. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
  2464. //
  2465. // LCD Brightness
  2466. //
  2467. TERN_(HAS_LCD_BRIGHTNESS, ui.set_brightness(DEFAULT_LCD_BRIGHTNESS));
  2468. //
  2469. // Controller Fan
  2470. //
  2471. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2472. //
  2473. // Power-Loss Recovery
  2474. //
  2475. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2476. //
  2477. // Firmware Retraction
  2478. //
  2479. TERN_(FWRETRACT, fwretract.reset());
  2480. //
  2481. // Volumetric & Filament Size
  2482. //
  2483. #if DISABLED(NO_VOLUMETRICS)
  2484. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2485. LOOP_L_N(q, COUNT(planner.filament_size))
  2486. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2487. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2488. LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
  2489. planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  2490. #endif
  2491. #endif
  2492. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2493. reset_stepper_drivers();
  2494. //
  2495. // Linear Advance
  2496. //
  2497. #if ENABLED(LIN_ADVANCE)
  2498. LOOP_L_N(i, EXTRUDERS) {
  2499. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2500. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
  2501. }
  2502. #endif
  2503. //
  2504. // Motor Current PWM
  2505. //
  2506. #if HAS_MOTOR_CURRENT_PWM
  2507. constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT;
  2508. LOOP_L_N(q, MOTOR_CURRENT_COUNT)
  2509. stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2510. #endif
  2511. //
  2512. // DIGIPOTS
  2513. //
  2514. #if HAS_MOTOR_CURRENT_SPI
  2515. static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT;
  2516. DEBUG_ECHOLNPGM("Writing Digipot");
  2517. LOOP_L_N(q, COUNT(tmp_motor_current_setting))
  2518. stepper.set_digipot_current(q, tmp_motor_current_setting[q]);
  2519. DEBUG_ECHOLNPGM("Digipot Written");
  2520. #endif
  2521. //
  2522. // CNC Coordinate System
  2523. //
  2524. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2525. //
  2526. // Skew Correction
  2527. //
  2528. #if ENABLED(SKEW_CORRECTION_GCODE)
  2529. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2530. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2531. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2532. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2533. #endif
  2534. #endif
  2535. //
  2536. // Advanced Pause filament load & unload lengths
  2537. //
  2538. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2539. LOOP_L_N(e, EXTRUDERS) {
  2540. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2541. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2542. }
  2543. #endif
  2544. #if ENABLED(PASSWORD_FEATURE)
  2545. #ifdef PASSWORD_DEFAULT_VALUE
  2546. password.is_set = true;
  2547. password.value = PASSWORD_DEFAULT_VALUE;
  2548. #else
  2549. password.is_set = false;
  2550. #endif
  2551. #endif
  2552. //
  2553. // MKS UI controller
  2554. //
  2555. TERN_(DGUS_LCD_UI_MKS, MKS_reset_settings());
  2556. postprocess();
  2557. DEBUG_ECHO_START();
  2558. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2559. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2560. }
  2561. #if DISABLED(DISABLE_M503)
  2562. static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
  2563. if (!repl) {
  2564. SERIAL_ECHO_START();
  2565. SERIAL_ECHOPGM("; ");
  2566. SERIAL_ECHOPGM_P(pstr);
  2567. if (eol) SERIAL_EOL();
  2568. }
  2569. }
  2570. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2571. #define CONFIG_ECHO_MSG(V...) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(V); }while(0)
  2572. #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
  2573. #if HAS_TRINAMIC_CONFIG
  2574. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2575. #if HAS_STEALTHCHOP
  2576. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2577. CONFIG_ECHO_START();
  2578. SERIAL_ECHOPGM(" M569 S1");
  2579. if (etc) {
  2580. SERIAL_CHAR(' ');
  2581. SERIAL_ECHOPGM_P(etc);
  2582. }
  2583. if (newLine) SERIAL_EOL();
  2584. }
  2585. #endif
  2586. #if ENABLED(HYBRID_THRESHOLD)
  2587. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2588. #endif
  2589. #if USE_SENSORLESS
  2590. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2591. #endif
  2592. #endif
  2593. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2594. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2595. #endif
  2596. inline void say_units(const bool colon) {
  2597. SERIAL_ECHOPGM_P(
  2598. #if ENABLED(INCH_MODE_SUPPORT)
  2599. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2600. #endif
  2601. PSTR(" (mm)")
  2602. );
  2603. if (colon) SERIAL_ECHOLNPGM(":");
  2604. }
  2605. void report_M92(const bool echo=true, const int8_t e=-1);
  2606. /**
  2607. * M503 - Report current settings in RAM
  2608. *
  2609. * Unless specifically disabled, M503 is available even without EEPROM
  2610. */
  2611. void MarlinSettings::report(const bool forReplay) {
  2612. /**
  2613. * Announce current units, in case inches are being displayed
  2614. */
  2615. CONFIG_ECHO_START();
  2616. #if ENABLED(INCH_MODE_SUPPORT)
  2617. SERIAL_ECHOPGM(" G2");
  2618. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2619. SERIAL_ECHOPGM(" ;");
  2620. say_units(false);
  2621. #else
  2622. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2623. say_units(false);
  2624. #endif
  2625. SERIAL_EOL();
  2626. #if HAS_LCD_MENU
  2627. // Temperature units - for Ultipanel temperature options
  2628. CONFIG_ECHO_START();
  2629. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2630. SERIAL_ECHOPGM(" M149 ");
  2631. SERIAL_CHAR(parser.temp_units_code());
  2632. SERIAL_ECHOPGM(" ; Units in ");
  2633. SERIAL_ECHOPGM_P(parser.temp_units_name());
  2634. #else
  2635. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2636. #endif
  2637. #endif
  2638. SERIAL_EOL();
  2639. #if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
  2640. /**
  2641. * Volumetric extrusion M200
  2642. */
  2643. if (!forReplay) {
  2644. config_heading(forReplay, PSTR("Filament settings:"), false);
  2645. if (parser.volumetric_enabled)
  2646. SERIAL_EOL();
  2647. else
  2648. SERIAL_ECHOLNPGM(" Disabled");
  2649. }
  2650. #if EXTRUDERS == 1
  2651. CONFIG_ECHO_MSG(" M200 S", parser.volumetric_enabled
  2652. , " D", LINEAR_UNIT(planner.filament_size[0])
  2653. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2654. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
  2655. #endif
  2656. );
  2657. #else
  2658. LOOP_L_N(i, EXTRUDERS) {
  2659. CONFIG_ECHO_MSG(" M200 T", i
  2660. , " D", LINEAR_UNIT(planner.filament_size[i])
  2661. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2662. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
  2663. #endif
  2664. );
  2665. }
  2666. CONFIG_ECHO_MSG(" M200 S", parser.volumetric_enabled);
  2667. #endif
  2668. #endif // EXTRUDERS && !NO_VOLUMETRICS
  2669. CONFIG_ECHO_HEADING("Steps per unit:");
  2670. report_M92(!forReplay);
  2671. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2672. CONFIG_ECHO_START();
  2673. SERIAL_ECHOLNPAIR_P(
  2674. LIST_N(DOUBLE(LINEAR_AXES),
  2675. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS]),
  2676. SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS]),
  2677. SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS]),
  2678. SP_I_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[I_AXIS]),
  2679. SP_J_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[J_AXIS]),
  2680. SP_K_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[K_AXIS])
  2681. )
  2682. #if HAS_EXTRUDERS && DISABLED(DISTINCT_E_FACTORS)
  2683. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2684. #endif
  2685. );
  2686. #if ENABLED(DISTINCT_E_FACTORS)
  2687. LOOP_L_N(i, E_STEPPERS) {
  2688. CONFIG_ECHO_START();
  2689. SERIAL_ECHOLNPAIR_P(
  2690. PSTR(" M203 T"), i
  2691. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2692. );
  2693. }
  2694. #endif
  2695. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2696. CONFIG_ECHO_START();
  2697. SERIAL_ECHOLNPAIR_P(
  2698. LIST_N(DOUBLE(LINEAR_AXES),
  2699. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS]),
  2700. SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS]),
  2701. SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS]),
  2702. SP_I_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[I_AXIS]),
  2703. SP_J_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[J_AXIS]),
  2704. SP_K_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[K_AXIS])
  2705. )
  2706. #if HAS_EXTRUDERS && DISABLED(DISTINCT_E_FACTORS)
  2707. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2708. #endif
  2709. );
  2710. #if ENABLED(DISTINCT_E_FACTORS)
  2711. LOOP_L_N(i, E_STEPPERS) {
  2712. CONFIG_ECHO_START();
  2713. SERIAL_ECHOLNPAIR_P(
  2714. PSTR(" M201 T"), i
  2715. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2716. );
  2717. }
  2718. #endif
  2719. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2720. CONFIG_ECHO_START();
  2721. SERIAL_ECHOLNPAIR_P(
  2722. PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
  2723. , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
  2724. , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
  2725. );
  2726. CONFIG_ECHO_HEADING(
  2727. "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
  2728. #if HAS_JUNCTION_DEVIATION
  2729. " J<junc_dev>"
  2730. #endif
  2731. #if HAS_CLASSIC_JERK
  2732. " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
  2733. TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
  2734. #endif
  2735. );
  2736. CONFIG_ECHO_START();
  2737. SERIAL_ECHOLNPAIR_P(
  2738. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2739. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2740. , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2741. #if HAS_JUNCTION_DEVIATION
  2742. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2743. #endif
  2744. #if HAS_CLASSIC_JERK
  2745. , LIST_N(DOUBLE(LINEAR_AXES),
  2746. SP_X_STR, LINEAR_UNIT(planner.max_jerk.x),
  2747. SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y),
  2748. SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z),
  2749. SP_I_STR, LINEAR_UNIT(planner.max_jerk.i),
  2750. SP_J_STR, LINEAR_UNIT(planner.max_jerk.j),
  2751. SP_K_STR, LINEAR_UNIT(planner.max_jerk.k)
  2752. )
  2753. #if HAS_CLASSIC_E_JERK
  2754. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2755. #endif
  2756. #endif
  2757. );
  2758. #if HAS_M206_COMMAND
  2759. CONFIG_ECHO_HEADING("Home offset:");
  2760. CONFIG_ECHO_START();
  2761. SERIAL_ECHOLNPAIR_P(
  2762. #if IS_CARTESIAN
  2763. LIST_N(DOUBLE(LINEAR_AXES),
  2764. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x),
  2765. SP_Y_STR, LINEAR_UNIT(home_offset.y),
  2766. SP_Z_STR, LINEAR_UNIT(home_offset.z),
  2767. SP_I_STR, LINEAR_UNIT(home_offset.i),
  2768. SP_J_STR, LINEAR_UNIT(home_offset.j),
  2769. SP_K_STR, LINEAR_UNIT(home_offset.k)
  2770. )
  2771. #else
  2772. PSTR(" M206 Z"), LINEAR_UNIT(home_offset.z)
  2773. #endif
  2774. );
  2775. #endif
  2776. #if HAS_HOTEND_OFFSET
  2777. CONFIG_ECHO_HEADING("Hotend offsets:");
  2778. CONFIG_ECHO_START();
  2779. LOOP_S_L_N(e, 1, HOTENDS) {
  2780. SERIAL_ECHOPAIR_P(
  2781. PSTR(" M218 T"), e,
  2782. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2783. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2784. );
  2785. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2786. }
  2787. #endif
  2788. /**
  2789. * Bed Leveling
  2790. */
  2791. #if HAS_LEVELING
  2792. #if ENABLED(MESH_BED_LEVELING)
  2793. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2794. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2795. config_heading(forReplay, NUL_STR, false);
  2796. if (!forReplay) {
  2797. ubl.echo_name();
  2798. SERIAL_CHAR(':');
  2799. SERIAL_EOL();
  2800. }
  2801. #elif HAS_ABL_OR_UBL
  2802. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2803. #endif
  2804. CONFIG_ECHO_START();
  2805. SERIAL_ECHOLNPAIR_P(
  2806. PSTR(" M420 S"), planner.leveling_active
  2807. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2808. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2809. #endif
  2810. );
  2811. #if ENABLED(MESH_BED_LEVELING)
  2812. if (leveling_is_valid()) {
  2813. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2814. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2815. CONFIG_ECHO_START();
  2816. SERIAL_ECHOPAIR(" G29 S3 I", px, " J", py);
  2817. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2818. }
  2819. }
  2820. CONFIG_ECHO_START();
  2821. SERIAL_ECHOLNPAIR_F(" G29 S4 Z", LINEAR_UNIT(mbl.z_offset), 5);
  2822. }
  2823. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2824. if (!forReplay) {
  2825. SERIAL_EOL();
  2826. ubl.report_state();
  2827. SERIAL_EOL();
  2828. config_heading(false, PSTR("Active Mesh Slot: "), false);
  2829. SERIAL_ECHOLN(ubl.storage_slot);
  2830. config_heading(false, PSTR("EEPROM can hold "), false);
  2831. SERIAL_ECHO(calc_num_meshes());
  2832. SERIAL_ECHOLNPGM(" meshes.\n");
  2833. }
  2834. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2835. // solution needs to be found.
  2836. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2837. if (leveling_is_valid()) {
  2838. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2839. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2840. CONFIG_ECHO_START();
  2841. SERIAL_ECHOPAIR(" G29 W I", px, " J", py);
  2842. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2843. }
  2844. }
  2845. }
  2846. #endif
  2847. #endif // HAS_LEVELING
  2848. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2849. CONFIG_ECHO_HEADING("Servo Angles:");
  2850. LOOP_L_N(i, NUM_SERVOS) {
  2851. switch (i) {
  2852. #if ENABLED(SWITCHING_EXTRUDER)
  2853. case SWITCHING_EXTRUDER_SERVO_NR:
  2854. #if EXTRUDERS > 3
  2855. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2856. #endif
  2857. #elif ENABLED(SWITCHING_NOZZLE)
  2858. case SWITCHING_NOZZLE_SERVO_NR:
  2859. #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
  2860. case Z_PROBE_SERVO_NR:
  2861. #endif
  2862. CONFIG_ECHO_MSG(" M281 P", i, " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2863. default: break;
  2864. }
  2865. }
  2866. #endif // EDITABLE_SERVO_ANGLES
  2867. #if HAS_SCARA_OFFSET
  2868. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2869. CONFIG_ECHO_START();
  2870. SERIAL_ECHOLNPAIR_P(
  2871. PSTR(" M665 S"), segments_per_second
  2872. , SP_P_STR, scara_home_offset.a
  2873. , SP_T_STR, scara_home_offset.b
  2874. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2875. );
  2876. #elif ENABLED(DELTA)
  2877. CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>");
  2878. CONFIG_ECHO_START();
  2879. SERIAL_ECHOLNPAIR_P(
  2880. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2881. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2882. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2883. , PSTR(" S"), segments_per_second
  2884. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2885. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2886. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2887. , PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a)
  2888. , PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b)
  2889. , PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c)
  2890. );
  2891. #endif
  2892. #if EITHER(DELTA, HAS_EXTRA_ENDSTOPS)
  2893. M666_report(forReplay);
  2894. #endif
  2895. #if PREHEAT_COUNT
  2896. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2897. LOOP_L_N(i, PREHEAT_COUNT) {
  2898. CONFIG_ECHO_START();
  2899. SERIAL_ECHOLNPAIR_P(
  2900. PSTR(" M145 S"), i
  2901. #if HAS_HOTEND
  2902. , PSTR(" H"), parser.to_temp_units(ui.material_preset[i].hotend_temp)
  2903. #endif
  2904. #if HAS_HEATED_BED
  2905. , SP_B_STR, parser.to_temp_units(ui.material_preset[i].bed_temp)
  2906. #endif
  2907. #if HAS_FAN
  2908. , PSTR(" F"), ui.material_preset[i].fan_speed
  2909. #endif
  2910. );
  2911. }
  2912. #endif
  2913. #if HAS_PID_HEATING
  2914. CONFIG_ECHO_HEADING("PID settings:");
  2915. #if ENABLED(PIDTEMP)
  2916. HOTEND_LOOP() {
  2917. CONFIG_ECHO_START();
  2918. SERIAL_ECHOPAIR_P(
  2919. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2920. PSTR(" M301 E"), e,
  2921. SP_P_STR
  2922. #else
  2923. PSTR(" M301 P")
  2924. #endif
  2925. , PID_PARAM(Kp, e)
  2926. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2927. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2928. );
  2929. #if ENABLED(PID_EXTRUSION_SCALING)
  2930. SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e));
  2931. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2932. #endif
  2933. #if ENABLED(PID_FAN_SCALING)
  2934. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2935. #endif
  2936. SERIAL_EOL();
  2937. }
  2938. #endif // PIDTEMP
  2939. #if ENABLED(PIDTEMPBED)
  2940. CONFIG_ECHO_MSG(
  2941. " M304 P", thermalManager.temp_bed.pid.Kp
  2942. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2943. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2944. );
  2945. #endif
  2946. #if ENABLED(PIDTEMPCHAMBER)
  2947. CONFIG_ECHO_START();
  2948. SERIAL_ECHOLNPAIR(
  2949. " M309 P", thermalManager.temp_chamber.pid.Kp
  2950. , " I", unscalePID_i(thermalManager.temp_chamber.pid.Ki)
  2951. , " D", unscalePID_d(thermalManager.temp_chamber.pid.Kd)
  2952. );
  2953. #endif
  2954. #endif // PIDTEMP || PIDTEMPBED || PIDTEMPCHAMBER
  2955. #if HAS_USER_THERMISTORS
  2956. CONFIG_ECHO_HEADING("User thermistors:");
  2957. LOOP_L_N(i, USER_THERMISTORS)
  2958. thermalManager.log_user_thermistor(i, true);
  2959. #endif
  2960. #if HAS_LCD_CONTRAST
  2961. CONFIG_ECHO_HEADING("LCD Contrast:");
  2962. CONFIG_ECHO_MSG(" M250 C", ui.contrast);
  2963. #endif
  2964. #if HAS_LCD_BRIGHTNESS
  2965. CONFIG_ECHO_HEADING("LCD Brightness:");
  2966. CONFIG_ECHO_MSG(" M256 B", ui.brightness);
  2967. #endif
  2968. TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
  2969. #if ENABLED(POWER_LOSS_RECOVERY)
  2970. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2971. CONFIG_ECHO_MSG(" M413 S", recovery.enabled);
  2972. #endif
  2973. #if ENABLED(FWRETRACT)
  2974. fwretract.M207_report(forReplay);
  2975. fwretract.M208_report(forReplay);
  2976. TERN_(FWRETRACT_AUTORETRACT, fwretract.M209_report(forReplay));
  2977. #endif
  2978. /**
  2979. * Probe Offset
  2980. */
  2981. #if HAS_BED_PROBE
  2982. config_heading(forReplay, PSTR("Z-Probe Offset"), false);
  2983. if (!forReplay) say_units(true);
  2984. CONFIG_ECHO_START();
  2985. SERIAL_ECHOLNPAIR_P(
  2986. #if HAS_PROBE_XY_OFFSET
  2987. PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
  2988. SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
  2989. SP_Z_STR
  2990. #else
  2991. PSTR(" M851 X0 Y0 Z")
  2992. #endif
  2993. , LINEAR_UNIT(probe.offset.z)
  2994. );
  2995. #endif
  2996. /**
  2997. * Bed Skew Correction
  2998. */
  2999. #if ENABLED(SKEW_CORRECTION_GCODE)
  3000. CONFIG_ECHO_HEADING("Skew Factor: ");
  3001. CONFIG_ECHO_START();
  3002. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  3003. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  3004. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  3005. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  3006. #else
  3007. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  3008. #endif
  3009. #endif
  3010. #if HAS_TRINAMIC_CONFIG
  3011. /**
  3012. * TMC stepper driver current
  3013. */
  3014. CONFIG_ECHO_HEADING("Stepper driver current:");
  3015. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  3016. say_M906(forReplay);
  3017. #if AXIS_IS_TMC(X)
  3018. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  3019. #endif
  3020. #if AXIS_IS_TMC(Y)
  3021. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  3022. #endif
  3023. #if AXIS_IS_TMC(Z)
  3024. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  3025. #endif
  3026. SERIAL_EOL();
  3027. #endif
  3028. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  3029. say_M906(forReplay);
  3030. SERIAL_ECHOPGM(" I1");
  3031. #if AXIS_IS_TMC(X2)
  3032. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  3033. #endif
  3034. #if AXIS_IS_TMC(Y2)
  3035. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  3036. #endif
  3037. #if AXIS_IS_TMC(Z2)
  3038. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  3039. #endif
  3040. SERIAL_EOL();
  3041. #endif
  3042. #if AXIS_IS_TMC(Z3)
  3043. say_M906(forReplay);
  3044. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  3045. #endif
  3046. #if AXIS_IS_TMC(Z4)
  3047. say_M906(forReplay);
  3048. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  3049. #endif
  3050. #if AXIS_IS_TMC(I)
  3051. say_M906(forReplay);
  3052. SERIAL_ECHOLNPAIR_P(SP_I_STR, stepperI.getMilliamps());
  3053. #endif
  3054. #if AXIS_IS_TMC(J)
  3055. say_M906(forReplay);
  3056. SERIAL_ECHOLNPAIR_P(SP_J_STR, stepperJ.getMilliamps());
  3057. #endif
  3058. #if AXIS_IS_TMC(K)
  3059. say_M906(forReplay);
  3060. SERIAL_ECHOLNPAIR_P(SP_K_STR, stepperK.getMilliamps());
  3061. #endif
  3062. #if AXIS_IS_TMC(E0)
  3063. say_M906(forReplay);
  3064. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  3065. #endif
  3066. #if AXIS_IS_TMC(E1)
  3067. say_M906(forReplay);
  3068. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  3069. #endif
  3070. #if AXIS_IS_TMC(E2)
  3071. say_M906(forReplay);
  3072. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  3073. #endif
  3074. #if AXIS_IS_TMC(E3)
  3075. say_M906(forReplay);
  3076. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  3077. #endif
  3078. #if AXIS_IS_TMC(E4)
  3079. say_M906(forReplay);
  3080. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  3081. #endif
  3082. #if AXIS_IS_TMC(E5)
  3083. say_M906(forReplay);
  3084. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  3085. #endif
  3086. #if AXIS_IS_TMC(E6)
  3087. say_M906(forReplay);
  3088. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
  3089. #endif
  3090. #if AXIS_IS_TMC(E7)
  3091. say_M906(forReplay);
  3092. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
  3093. #endif
  3094. SERIAL_EOL();
  3095. /**
  3096. * TMC Hybrid Threshold
  3097. */
  3098. #if ENABLED(HYBRID_THRESHOLD)
  3099. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  3100. #if X_HAS_STEALTHCHOP || Y_HAS_STEALTHCHOP || Z_HAS_STEALTHCHOP
  3101. say_M913(forReplay);
  3102. #if X_HAS_STEALTHCHOP
  3103. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  3104. #endif
  3105. #if Y_HAS_STEALTHCHOP
  3106. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  3107. #endif
  3108. #if Z_HAS_STEALTHCHOP
  3109. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  3110. #endif
  3111. SERIAL_EOL();
  3112. #endif
  3113. #if X2_HAS_STEALTHCHOP || Y2_HAS_STEALTHCHOP || Z2_HAS_STEALTHCHOP
  3114. say_M913(forReplay);
  3115. SERIAL_ECHOPGM(" I1");
  3116. #if X2_HAS_STEALTHCHOP
  3117. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  3118. #endif
  3119. #if Y2_HAS_STEALTHCHOP
  3120. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  3121. #endif
  3122. #if Z2_HAS_STEALTHCHOP
  3123. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  3124. #endif
  3125. SERIAL_EOL();
  3126. #endif
  3127. #if Z3_HAS_STEALTHCHOP
  3128. say_M913(forReplay);
  3129. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  3130. #endif
  3131. #if Z4_HAS_STEALTHCHOP
  3132. say_M913(forReplay);
  3133. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  3134. #endif
  3135. #if I_HAS_STEALTHCHOP
  3136. say_M913(forReplay);
  3137. SERIAL_ECHOLNPAIR_P(SP_I_STR, stepperI.get_pwm_thrs());
  3138. #endif
  3139. #if J_HAS_STEALTHCHOP
  3140. say_M913(forReplay);
  3141. SERIAL_ECHOLNPAIR_P(SP_J_STR, stepperJ.get_pwm_thrs());
  3142. #endif
  3143. #if K_HAS_STEALTHCHOP
  3144. say_M913(forReplay);
  3145. SERIAL_ECHOLNPAIR_P(SP_K_STR, stepperK.get_pwm_thrs());
  3146. #endif
  3147. #if E0_HAS_STEALTHCHOP
  3148. say_M913(forReplay);
  3149. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  3150. #endif
  3151. #if E1_HAS_STEALTHCHOP
  3152. say_M913(forReplay);
  3153. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  3154. #endif
  3155. #if E2_HAS_STEALTHCHOP
  3156. say_M913(forReplay);
  3157. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  3158. #endif
  3159. #if E3_HAS_STEALTHCHOP
  3160. say_M913(forReplay);
  3161. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  3162. #endif
  3163. #if E4_HAS_STEALTHCHOP
  3164. say_M913(forReplay);
  3165. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  3166. #endif
  3167. #if E5_HAS_STEALTHCHOP
  3168. say_M913(forReplay);
  3169. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  3170. #endif
  3171. #if E6_HAS_STEALTHCHOP
  3172. say_M913(forReplay);
  3173. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
  3174. #endif
  3175. #if E7_HAS_STEALTHCHOP
  3176. say_M913(forReplay);
  3177. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
  3178. #endif
  3179. SERIAL_EOL();
  3180. #endif // HYBRID_THRESHOLD
  3181. /**
  3182. * TMC Sensorless homing thresholds
  3183. */
  3184. #if USE_SENSORLESS
  3185. CONFIG_ECHO_HEADING("StallGuard threshold:");
  3186. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  3187. CONFIG_ECHO_START();
  3188. say_M914();
  3189. #if X_SENSORLESS
  3190. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  3191. #endif
  3192. #if Y_SENSORLESS
  3193. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  3194. #endif
  3195. #if Z_SENSORLESS
  3196. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  3197. #endif
  3198. SERIAL_EOL();
  3199. #endif
  3200. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  3201. CONFIG_ECHO_START();
  3202. say_M914();
  3203. SERIAL_ECHOPGM(" I1");
  3204. #if X2_SENSORLESS
  3205. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  3206. #endif
  3207. #if Y2_SENSORLESS
  3208. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  3209. #endif
  3210. #if Z2_SENSORLESS
  3211. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  3212. #endif
  3213. SERIAL_EOL();
  3214. #endif
  3215. #if Z3_SENSORLESS
  3216. CONFIG_ECHO_START();
  3217. say_M914();
  3218. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  3219. #endif
  3220. #if Z4_SENSORLESS
  3221. CONFIG_ECHO_START();
  3222. say_M914();
  3223. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  3224. #endif
  3225. #if I_SENSORLESS
  3226. CONFIG_ECHO_START();
  3227. say_M914();
  3228. SERIAL_ECHOLNPAIR_P(SP_I_STR, stepperI.homing_threshold());
  3229. #endif
  3230. #if J_SENSORLESS
  3231. CONFIG_ECHO_START();
  3232. say_M914();
  3233. SERIAL_ECHOLNPAIR_P(SP_J_STR, stepperJ.homing_threshold());
  3234. #endif
  3235. #if K_SENSORLESS
  3236. CONFIG_ECHO_START();
  3237. say_M914();
  3238. SERIAL_ECHOLNPAIR_P(SP_K_STR, stepperK.homing_threshold());
  3239. #endif
  3240. #endif // USE_SENSORLESS
  3241. /**
  3242. * TMC stepping mode
  3243. */
  3244. #if HAS_STEALTHCHOP
  3245. CONFIG_ECHO_HEADING("Driver stepping mode:");
  3246. const bool chop_x = TERN0(X_HAS_STEALTHCHOP, stepperX.get_stored_stealthChop()),
  3247. chop_y = TERN0(Y_HAS_STEALTHCHOP, stepperY.get_stored_stealthChop()),
  3248. chop_z = TERN0(Z_HAS_STEALTHCHOP, stepperZ.get_stored_stealthChop()),
  3249. chop_i = TERN0(I_HAS_STEALTHCHOP, stepperI.get_stored_stealthChop()),
  3250. chop_j = TERN0(J_HAS_STEALTHCHOP, stepperJ.get_stored_stealthChop()),
  3251. chop_k = TERN0(K_HAS_STEALTHCHOP, stepperK.get_stored_stealthChop());
  3252. if (chop_x || chop_y || chop_z || chop_i || chop_j || chop_k) {
  3253. say_M569(forReplay);
  3254. LINEAR_AXIS_CODE(
  3255. if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR),
  3256. if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR),
  3257. if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR),
  3258. if (chop_i) SERIAL_ECHOPGM_P(SP_I_STR),
  3259. if (chop_j) SERIAL_ECHOPGM_P(SP_J_STR),
  3260. if (chop_k) SERIAL_ECHOPGM_P(SP_K_STR)
  3261. );
  3262. SERIAL_EOL();
  3263. }
  3264. const bool chop_x2 = TERN0(X2_HAS_STEALTHCHOP, stepperX2.get_stored_stealthChop()),
  3265. chop_y2 = TERN0(Y2_HAS_STEALTHCHOP, stepperY2.get_stored_stealthChop()),
  3266. chop_z2 = TERN0(Z2_HAS_STEALTHCHOP, stepperZ2.get_stored_stealthChop());
  3267. if (chop_x2 || chop_y2 || chop_z2) {
  3268. say_M569(forReplay, PSTR("I1"));
  3269. if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
  3270. if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
  3271. if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
  3272. SERIAL_EOL();
  3273. }
  3274. if (TERN0(Z3_HAS_STEALTHCHOP, stepperZ3.get_stored_stealthChop())) { say_M569(forReplay, PSTR("I2 Z"), true); }
  3275. if (TERN0(Z4_HAS_STEALTHCHOP, stepperZ4.get_stored_stealthChop())) { say_M569(forReplay, PSTR("I3 Z"), true); }
  3276. if (TERN0( I_HAS_STEALTHCHOP, stepperI.get_stored_stealthChop())) { say_M569(forReplay, SP_I_STR, true); }
  3277. if (TERN0( J_HAS_STEALTHCHOP, stepperJ.get_stored_stealthChop())) { say_M569(forReplay, SP_J_STR, true); }
  3278. if (TERN0( K_HAS_STEALTHCHOP, stepperK.get_stored_stealthChop())) { say_M569(forReplay, SP_K_STR, true); }
  3279. if (TERN0(E0_HAS_STEALTHCHOP, stepperE0.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T0 E"), true); }
  3280. if (TERN0(E1_HAS_STEALTHCHOP, stepperE1.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T1 E"), true); }
  3281. if (TERN0(E2_HAS_STEALTHCHOP, stepperE2.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T2 E"), true); }
  3282. if (TERN0(E3_HAS_STEALTHCHOP, stepperE3.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T3 E"), true); }
  3283. if (TERN0(E4_HAS_STEALTHCHOP, stepperE4.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T4 E"), true); }
  3284. if (TERN0(E5_HAS_STEALTHCHOP, stepperE5.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T5 E"), true); }
  3285. if (TERN0(E6_HAS_STEALTHCHOP, stepperE6.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T6 E"), true); }
  3286. if (TERN0(E7_HAS_STEALTHCHOP, stepperE7.get_stored_stealthChop())) { say_M569(forReplay, PSTR("T7 E"), true); }
  3287. #endif // HAS_STEALTHCHOP
  3288. #endif // HAS_TRINAMIC_CONFIG
  3289. /**
  3290. * Linear Advance
  3291. */
  3292. #if ENABLED(LIN_ADVANCE)
  3293. CONFIG_ECHO_HEADING("Linear Advance:");
  3294. #if EXTRUDERS < 2
  3295. CONFIG_ECHO_MSG(" M900 K", planner.extruder_advance_K[0]);
  3296. #else
  3297. LOOP_L_N(i, EXTRUDERS)
  3298. CONFIG_ECHO_MSG(" M900 T", i, " K", planner.extruder_advance_K[i]);
  3299. #endif
  3300. #endif
  3301. #if EITHER(HAS_MOTOR_CURRENT_SPI, HAS_MOTOR_CURRENT_PWM)
  3302. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3303. CONFIG_ECHO_START();
  3304. #if HAS_MOTOR_CURRENT_PWM
  3305. SERIAL_ECHOLNPAIR_P( // PWM-based has 3 values:
  3306. PSTR(" M907 X"), stepper.motor_current_setting[0] // X and Y
  3307. , SP_Z_STR, stepper.motor_current_setting[1] // Z
  3308. , SP_E_STR, stepper.motor_current_setting[2] // E
  3309. );
  3310. #elif HAS_MOTOR_CURRENT_SPI
  3311. SERIAL_ECHOPGM(" M907"); // SPI-based has 5 values:
  3312. LOOP_LOGICAL_AXES(q) { // X Y Z (I J K) E (map to X Y Z (I J K) E0 by default)
  3313. SERIAL_CHAR(' ', axis_codes[q]);
  3314. SERIAL_ECHO(stepper.motor_current_setting[q]);
  3315. }
  3316. SERIAL_CHAR(' ', 'B'); // B (maps to E1 by default)
  3317. SERIAL_ECHOLN(stepper.motor_current_setting[4]);
  3318. #endif
  3319. #elif HAS_MOTOR_CURRENT_I2C // i2c-based has any number of values
  3320. // Values sent over i2c are not stored.
  3321. // Indexes map directly to drivers, not axes.
  3322. #elif HAS_MOTOR_CURRENT_DAC // DAC-based has 4 values, for X Y Z (I J K) E
  3323. // Values sent over i2c are not stored. Uses indirect mapping.
  3324. #endif
  3325. /**
  3326. * Advanced Pause filament load & unload lengths
  3327. */
  3328. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3329. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3330. #if EXTRUDERS == 1
  3331. say_M603(forReplay);
  3332. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3333. #else
  3334. auto echo_603 = [](const bool f, const uint8_t n) { say_M603(f); SERIAL_ECHOLNPAIR("T", n, " L", LINEAR_UNIT(fc_settings[n].load_length), " U", LINEAR_UNIT(fc_settings[n].unload_length)); };
  3335. LOOP_L_N(i, EXTRUDERS) echo_603(forReplay, i);
  3336. #endif
  3337. #endif
  3338. #if HAS_MULTI_EXTRUDER
  3339. CONFIG_ECHO_HEADING("Tool-changing:");
  3340. CONFIG_ECHO_START();
  3341. M217_report(true);
  3342. #endif
  3343. #if ENABLED(BACKLASH_GCODE)
  3344. CONFIG_ECHO_HEADING("Backlash compensation:");
  3345. CONFIG_ECHO_START();
  3346. SERIAL_ECHOLNPAIR_P(
  3347. PSTR(" M425 F"), backlash.get_correction()
  3348. , LIST_N(DOUBLE(LINEAR_AXES),
  3349. SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x),
  3350. SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y),
  3351. SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z),
  3352. SP_I_STR, LINEAR_UNIT(backlash.distance_mm.i),
  3353. SP_J_STR, LINEAR_UNIT(backlash.distance_mm.j),
  3354. SP_K_STR, LINEAR_UNIT(backlash.distance_mm.k)
  3355. )
  3356. #ifdef BACKLASH_SMOOTHING_MM
  3357. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3358. #endif
  3359. );
  3360. #endif
  3361. #if HAS_FILAMENT_SENSOR
  3362. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3363. CONFIG_ECHO_MSG(
  3364. " M412 S", runout.enabled
  3365. #if HAS_FILAMENT_RUNOUT_DISTANCE
  3366. , " D", LINEAR_UNIT(runout.runout_distance())
  3367. #endif
  3368. );
  3369. #endif
  3370. #if HAS_ETHERNET
  3371. CONFIG_ECHO_HEADING("Ethernet:");
  3372. if (!forReplay) { CONFIG_ECHO_START(); ETH0_report(); }
  3373. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); MAC_report();
  3374. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M552_report();
  3375. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M553_report();
  3376. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M554_report();
  3377. #endif
  3378. #if HAS_MULTI_LANGUAGE
  3379. CONFIG_ECHO_HEADING("UI Language:");
  3380. SERIAL_ECHO_MSG(" M414 S", ui.language);
  3381. #endif
  3382. }
  3383. #endif // !DISABLE_M503
  3384. #pragma pack(pop)