My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 206KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #ifdef ENABLE_AUTO_BED_LEVELING
  31. #include "vector_3.h"
  32. #ifdef AUTO_BED_LEVELING_GRID
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  37. #ifdef MESH_BED_LEVELING
  38. #include "mesh_bed_leveling.h"
  39. #endif
  40. #include "ultralcd.h"
  41. #include "planner.h"
  42. #include "stepper.h"
  43. #include "temperature.h"
  44. #include "cardreader.h"
  45. #include "watchdog.h"
  46. #include "configuration_store.h"
  47. #include "language.h"
  48. #include "pins_arduino.h"
  49. #include "math.h"
  50. #ifdef BLINKM
  51. #include "blinkm.h"
  52. #include "Wire.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "servo.h"
  56. #endif
  57. #if HAS_DIGIPOTSS
  58. #include <SPI.h>
  59. #endif
  60. /**
  61. * Look here for descriptions of G-codes:
  62. * - http://linuxcnc.org/handbook/gcode/g-code.html
  63. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  64. *
  65. * Help us document these G-codes online:
  66. * - http://www.marlinfirmware.org/index.php/G-Code
  67. * - http://reprap.org/wiki/G-code
  68. *
  69. * -----------------
  70. * Implemented Codes
  71. * -----------------
  72. *
  73. * "G" Codes
  74. *
  75. * G0 -> G1
  76. * G1 - Coordinated Movement X Y Z E
  77. * G2 - CW ARC
  78. * G3 - CCW ARC
  79. * G4 - Dwell S<seconds> or P<milliseconds>
  80. * G10 - retract filament according to settings of M207
  81. * G11 - retract recover filament according to settings of M208
  82. * G28 - Home one or more axes
  83. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  84. * G30 - Single Z Probe, probes bed at current XY location.
  85. * G31 - Dock sled (Z_PROBE_SLED only)
  86. * G32 - Undock sled (Z_PROBE_SLED only)
  87. * G90 - Use Absolute Coordinates
  88. * G91 - Use Relative Coordinates
  89. * G92 - Set current position to coordinates given
  90. *
  91. * "M" Codes
  92. *
  93. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  94. * M1 - Same as M0
  95. * M17 - Enable/Power all stepper motors
  96. * M18 - Disable all stepper motors; same as M84
  97. * M20 - List SD card
  98. * M21 - Init SD card
  99. * M22 - Release SD card
  100. * M23 - Select SD file (M23 filename.g)
  101. * M24 - Start/resume SD print
  102. * M25 - Pause SD print
  103. * M26 - Set SD position in bytes (M26 S12345)
  104. * M27 - Report SD print status
  105. * M28 - Start SD write (M28 filename.g)
  106. * M29 - Stop SD write
  107. * M30 - Delete file from SD (M30 filename.g)
  108. * M31 - Output time since last M109 or SD card start to serial
  109. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  110. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  111. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  112. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  113. * M33 - Get the longname version of a path
  114. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  115. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  116. * M80 - Turn on Power Supply
  117. * M81 - Turn off Power Supply
  118. * M82 - Set E codes absolute (default)
  119. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  120. * M84 - Disable steppers until next move,
  121. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  122. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  123. * M92 - Set axis_steps_per_unit - same syntax as G92
  124. * M104 - Set extruder target temp
  125. * M105 - Read current temp
  126. * M106 - Fan on
  127. * M107 - Fan off
  128. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  129. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  130. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  131. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  132. * M112 - Emergency stop
  133. * M114 - Output current position to serial port
  134. * M115 - Capabilities string
  135. * M117 - Display a message on the controller screen
  136. * M119 - Output Endstop status to serial port
  137. * M120 - Enable endstop detection
  138. * M121 - Disable endstop detection
  139. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  140. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  141. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  142. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  143. * M140 - Set bed target temp
  144. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  145. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  146. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  147. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  148. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  149. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  150. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  151. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  152. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  153. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  154. * M206 - Set additional homing offset
  155. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  156. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  157. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  158. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  159. * M220 - Set speed factor override percentage: S<factor in percent>
  160. * M221 - Set extrude factor override percentage: S<factor in percent>
  161. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  162. * M240 - Trigger a camera to take a photograph
  163. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  164. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  165. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  166. * M301 - Set PID parameters P I and D
  167. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  168. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  169. * M304 - Set bed PID parameters P I and D
  170. * M380 - Activate solenoid on active extruder
  171. * M381 - Disable all solenoids
  172. * M400 - Finish all moves
  173. * M401 - Lower z-probe if present
  174. * M402 - Raise z-probe if present
  175. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  176. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  177. * M406 - Turn off Filament Sensor extrusion control
  178. * M407 - Display measured filament diameter
  179. * M410 - Quickstop. Abort all the planned moves
  180. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  181. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  182. * M428 - Set the home_offset logically based on the current_position
  183. * M500 - Store parameters in EEPROM
  184. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  185. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  186. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  187. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  188. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  189. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  190. * M666 - Set delta endstop adjustment
  191. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  192. * M907 - Set digital trimpot motor current using axis codes.
  193. * M908 - Control digital trimpot directly.
  194. * M350 - Set microstepping mode.
  195. * M351 - Toggle MS1 MS2 pins directly.
  196. *
  197. * ************ SCARA Specific - This can change to suit future G-code regulations
  198. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  199. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  200. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  201. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  202. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  203. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  204. * ************* SCARA End ***************
  205. *
  206. * ************ Custom codes - This can change to suit future G-code regulations
  207. * M851 - Set probe's Z offset (mm above extruder -- The value will always be negative)
  208. * M928 - Start SD logging (M928 filename.g) - ended by M29
  209. * M999 - Restart after being stopped by error
  210. *
  211. * "T" Codes
  212. *
  213. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  214. *
  215. */
  216. #ifdef SDSUPPORT
  217. CardReader card;
  218. #endif
  219. bool Running = true;
  220. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  221. static float feedrate = 1500.0, saved_feedrate;
  222. float current_position[NUM_AXIS] = { 0.0 };
  223. static float destination[NUM_AXIS] = { 0.0 };
  224. bool axis_known_position[3] = { false };
  225. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  226. static char *current_command, *current_command_args;
  227. static int cmd_queue_index_r = 0;
  228. static int cmd_queue_index_w = 0;
  229. static int commands_in_queue = 0;
  230. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  231. float homing_feedrate[] = HOMING_FEEDRATE;
  232. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  233. int feedrate_multiplier = 100; //100->1 200->2
  234. int saved_feedrate_multiplier;
  235. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  236. bool volumetric_enabled = false;
  237. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  238. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  239. float home_offset[3] = { 0 };
  240. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  241. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  242. uint8_t active_extruder = 0;
  243. int fanSpeed = 0;
  244. bool cancel_heatup = false;
  245. const char errormagic[] PROGMEM = "Error:";
  246. const char echomagic[] PROGMEM = "echo:";
  247. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  248. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  249. static char serial_char;
  250. static int serial_count = 0;
  251. static boolean comment_mode = false;
  252. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  253. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  254. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  255. // Inactivity shutdown
  256. millis_t previous_cmd_ms = 0;
  257. static millis_t max_inactive_time = 0;
  258. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  259. millis_t print_job_start_ms = 0; ///< Print job start time
  260. millis_t print_job_stop_ms = 0; ///< Print job stop time
  261. static uint8_t target_extruder;
  262. bool no_wait_for_cooling = true;
  263. bool target_direction;
  264. #ifdef ENABLE_AUTO_BED_LEVELING
  265. int xy_travel_speed = XY_TRAVEL_SPEED;
  266. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  267. #endif
  268. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  269. float z_endstop_adj = 0;
  270. #endif
  271. // Extruder offsets
  272. #if EXTRUDERS > 1
  273. #ifndef EXTRUDER_OFFSET_X
  274. #define EXTRUDER_OFFSET_X { 0 }
  275. #endif
  276. #ifndef EXTRUDER_OFFSET_Y
  277. #define EXTRUDER_OFFSET_Y { 0 }
  278. #endif
  279. float extruder_offset[][EXTRUDERS] = {
  280. EXTRUDER_OFFSET_X,
  281. EXTRUDER_OFFSET_Y
  282. #ifdef DUAL_X_CARRIAGE
  283. , { 0 } // supports offsets in XYZ plane
  284. #endif
  285. };
  286. #endif
  287. #ifdef SERVO_ENDSTOPS
  288. int servo_endstops[] = SERVO_ENDSTOPS;
  289. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  290. #endif
  291. #ifdef BARICUDA
  292. int ValvePressure = 0;
  293. int EtoPPressure = 0;
  294. #endif
  295. #ifdef FWRETRACT
  296. bool autoretract_enabled = false;
  297. bool retracted[EXTRUDERS] = { false };
  298. bool retracted_swap[EXTRUDERS] = { false };
  299. float retract_length = RETRACT_LENGTH;
  300. float retract_length_swap = RETRACT_LENGTH_SWAP;
  301. float retract_feedrate = RETRACT_FEEDRATE;
  302. float retract_zlift = RETRACT_ZLIFT;
  303. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  304. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  305. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  306. #endif // FWRETRACT
  307. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  308. bool powersupply =
  309. #ifdef PS_DEFAULT_OFF
  310. false
  311. #else
  312. true
  313. #endif
  314. ;
  315. #endif
  316. #ifdef DELTA
  317. float delta[3] = { 0 };
  318. #define SIN_60 0.8660254037844386
  319. #define COS_60 0.5
  320. float endstop_adj[3] = { 0 };
  321. // these are the default values, can be overriden with M665
  322. float delta_radius = DELTA_RADIUS;
  323. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  324. float delta_tower1_y = -COS_60 * delta_radius;
  325. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  326. float delta_tower2_y = -COS_60 * delta_radius;
  327. float delta_tower3_x = 0; // back middle tower
  328. float delta_tower3_y = delta_radius;
  329. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  330. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  331. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  332. #ifdef ENABLE_AUTO_BED_LEVELING
  333. int delta_grid_spacing[2] = { 0, 0 };
  334. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  335. #endif
  336. #else
  337. static bool home_all_axis = true;
  338. #endif
  339. #ifdef SCARA
  340. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  341. static float delta[3] = { 0 };
  342. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  343. #endif
  344. #ifdef FILAMENT_SENSOR
  345. //Variables for Filament Sensor input
  346. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  347. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  348. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  349. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  350. int delay_index1 = 0; //index into ring buffer
  351. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  352. float delay_dist = 0; //delay distance counter
  353. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  354. #endif
  355. #ifdef FILAMENT_RUNOUT_SENSOR
  356. static bool filrunoutEnqueued = false;
  357. #endif
  358. #ifdef SDSUPPORT
  359. static bool fromsd[BUFSIZE];
  360. #endif
  361. #if NUM_SERVOS > 0
  362. Servo servo[NUM_SERVOS];
  363. #endif
  364. #ifdef CHDK
  365. unsigned long chdkHigh = 0;
  366. boolean chdkActive = false;
  367. #endif
  368. //===========================================================================
  369. //================================ Functions ================================
  370. //===========================================================================
  371. void process_next_command();
  372. bool setTargetedHotend(int code);
  373. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  374. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  375. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  376. #ifdef PREVENT_DANGEROUS_EXTRUDE
  377. float extrude_min_temp = EXTRUDE_MINTEMP;
  378. #endif
  379. #ifdef SDSUPPORT
  380. #include "SdFatUtil.h"
  381. int freeMemory() { return SdFatUtil::FreeRam(); }
  382. #else
  383. extern "C" {
  384. extern unsigned int __bss_end;
  385. extern unsigned int __heap_start;
  386. extern void *__brkval;
  387. int freeMemory() {
  388. int free_memory;
  389. if ((int)__brkval == 0)
  390. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  391. else
  392. free_memory = ((int)&free_memory) - ((int)__brkval);
  393. return free_memory;
  394. }
  395. }
  396. #endif //!SDSUPPORT
  397. /**
  398. * Inject the next command from the command queue, when possible
  399. * Return false only if no command was pending
  400. */
  401. static bool drain_queued_commands_P() {
  402. if (!queued_commands_P) return false;
  403. // Get the next 30 chars from the sequence of gcodes to run
  404. char cmd[30];
  405. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  406. cmd[sizeof(cmd) - 1] = '\0';
  407. // Look for the end of line, or the end of sequence
  408. size_t i = 0;
  409. char c;
  410. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  411. cmd[i] = '\0';
  412. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  413. if (c)
  414. queued_commands_P += i + 1; // move to next command
  415. else
  416. queued_commands_P = NULL; // will have no more commands in the sequence
  417. }
  418. return true;
  419. }
  420. /**
  421. * Record one or many commands to run from program memory.
  422. * Aborts the current queue, if any.
  423. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  424. */
  425. void enqueuecommands_P(const char* pgcode) {
  426. queued_commands_P = pgcode;
  427. drain_queued_commands_P(); // first command executed asap (when possible)
  428. }
  429. /**
  430. * Copy a command directly into the main command buffer, from RAM.
  431. *
  432. * This is done in a non-safe way and needs a rework someday.
  433. * Returns false if it doesn't add any command
  434. */
  435. bool enqueuecommand(const char *cmd) {
  436. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  437. // This is dangerous if a mixing of serial and this happens
  438. char *command = command_queue[cmd_queue_index_w];
  439. strcpy(command, cmd);
  440. SERIAL_ECHO_START;
  441. SERIAL_ECHOPGM(MSG_Enqueueing);
  442. SERIAL_ECHO(command);
  443. SERIAL_ECHOLNPGM("\"");
  444. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  445. commands_in_queue++;
  446. return true;
  447. }
  448. void setup_killpin() {
  449. #if HAS_KILL
  450. SET_INPUT(KILL_PIN);
  451. WRITE(KILL_PIN, HIGH);
  452. #endif
  453. }
  454. void setup_filrunoutpin() {
  455. #if HAS_FILRUNOUT
  456. pinMode(FILRUNOUT_PIN, INPUT);
  457. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  458. WRITE(FILRUNOUT_PIN, HIGH);
  459. #endif
  460. #endif
  461. }
  462. // Set home pin
  463. void setup_homepin(void) {
  464. #if HAS_HOME
  465. SET_INPUT(HOME_PIN);
  466. WRITE(HOME_PIN, HIGH);
  467. #endif
  468. }
  469. void setup_photpin() {
  470. #if HAS_PHOTOGRAPH
  471. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  472. #endif
  473. }
  474. void setup_powerhold() {
  475. #if HAS_SUICIDE
  476. OUT_WRITE(SUICIDE_PIN, HIGH);
  477. #endif
  478. #if HAS_POWER_SWITCH
  479. #ifdef PS_DEFAULT_OFF
  480. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  481. #else
  482. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  483. #endif
  484. #endif
  485. }
  486. void suicide() {
  487. #if HAS_SUICIDE
  488. OUT_WRITE(SUICIDE_PIN, LOW);
  489. #endif
  490. }
  491. void servo_init() {
  492. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  493. servo[0].attach(SERVO0_PIN);
  494. #endif
  495. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  496. servo[1].attach(SERVO1_PIN);
  497. #endif
  498. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  499. servo[2].attach(SERVO2_PIN);
  500. #endif
  501. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  502. servo[3].attach(SERVO3_PIN);
  503. #endif
  504. // Set position of Servo Endstops that are defined
  505. #ifdef SERVO_ENDSTOPS
  506. for (int i = 0; i < 3; i++)
  507. if (servo_endstops[i] >= 0)
  508. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  509. #endif
  510. #if SERVO_LEVELING
  511. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  512. servo[servo_endstops[Z_AXIS]].detach();
  513. #endif
  514. }
  515. /**
  516. * Marlin entry-point: Set up before the program loop
  517. * - Set up the kill pin, filament runout, power hold
  518. * - Start the serial port
  519. * - Print startup messages and diagnostics
  520. * - Get EEPROM or default settings
  521. * - Initialize managers for:
  522. * • temperature
  523. * • planner
  524. * • watchdog
  525. * • stepper
  526. * • photo pin
  527. * • servos
  528. * • LCD controller
  529. * • Digipot I2C
  530. * • Z probe sled
  531. * • status LEDs
  532. */
  533. void setup() {
  534. setup_killpin();
  535. setup_filrunoutpin();
  536. setup_powerhold();
  537. MYSERIAL.begin(BAUDRATE);
  538. SERIAL_PROTOCOLLNPGM("start");
  539. SERIAL_ECHO_START;
  540. // Check startup - does nothing if bootloader sets MCUSR to 0
  541. byte mcu = MCUSR;
  542. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  543. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  544. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  545. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  546. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  547. MCUSR = 0;
  548. SERIAL_ECHOPGM(MSG_MARLIN);
  549. SERIAL_ECHOLNPGM(" " BUILD_VERSION);
  550. #ifdef STRING_DISTRIBUTION_DATE
  551. #ifdef STRING_CONFIG_H_AUTHOR
  552. SERIAL_ECHO_START;
  553. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  554. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  555. SERIAL_ECHOPGM(MSG_AUTHOR);
  556. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  557. SERIAL_ECHOPGM("Compiled: ");
  558. SERIAL_ECHOLNPGM(__DATE__);
  559. #endif // STRING_CONFIG_H_AUTHOR
  560. #endif // STRING_DISTRIBUTION_DATE
  561. SERIAL_ECHO_START;
  562. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  563. SERIAL_ECHO(freeMemory());
  564. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  565. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  566. #ifdef SDSUPPORT
  567. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  568. #endif
  569. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  570. Config_RetrieveSettings();
  571. lcd_init();
  572. _delay_ms(1000); // wait 1sec to display the splash screen
  573. tp_init(); // Initialize temperature loop
  574. plan_init(); // Initialize planner;
  575. watchdog_init();
  576. st_init(); // Initialize stepper, this enables interrupts!
  577. setup_photpin();
  578. servo_init();
  579. #if HAS_CONTROLLERFAN
  580. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  581. #endif
  582. #ifdef DIGIPOT_I2C
  583. digipot_i2c_init();
  584. #endif
  585. #ifdef Z_PROBE_SLED
  586. pinMode(SLED_PIN, OUTPUT);
  587. digitalWrite(SLED_PIN, LOW); // turn it off
  588. #endif // Z_PROBE_SLED
  589. setup_homepin();
  590. #ifdef STAT_LED_RED
  591. pinMode(STAT_LED_RED, OUTPUT);
  592. digitalWrite(STAT_LED_RED, LOW); // turn it off
  593. #endif
  594. #ifdef STAT_LED_BLUE
  595. pinMode(STAT_LED_BLUE, OUTPUT);
  596. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  597. #endif
  598. }
  599. /**
  600. * The main Marlin program loop
  601. *
  602. * - Save or log commands to SD
  603. * - Process available commands (if not saving)
  604. * - Call heater manager
  605. * - Call inactivity manager
  606. * - Call endstop manager
  607. * - Call LCD update
  608. */
  609. void loop() {
  610. if (commands_in_queue < BUFSIZE - 1) get_command();
  611. #ifdef SDSUPPORT
  612. card.checkautostart(false);
  613. #endif
  614. if (commands_in_queue) {
  615. #ifdef SDSUPPORT
  616. if (card.saving) {
  617. char *command = command_queue[cmd_queue_index_r];
  618. if (strstr_P(command, PSTR("M29"))) {
  619. // M29 closes the file
  620. card.closefile();
  621. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  622. }
  623. else {
  624. // Write the string from the read buffer to SD
  625. card.write_command(command);
  626. if (card.logging)
  627. process_next_command(); // The card is saving because it's logging
  628. else
  629. SERIAL_PROTOCOLLNPGM(MSG_OK);
  630. }
  631. }
  632. else
  633. process_next_command();
  634. #else
  635. process_next_command();
  636. #endif // SDSUPPORT
  637. commands_in_queue--;
  638. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  639. }
  640. checkHitEndstops();
  641. idle();
  642. }
  643. void gcode_line_error(const char *err, bool doFlush=true) {
  644. SERIAL_ERROR_START;
  645. serialprintPGM(err);
  646. SERIAL_ERRORLN(gcode_LastN);
  647. //Serial.println(gcode_N);
  648. if (doFlush) FlushSerialRequestResend();
  649. serial_count = 0;
  650. }
  651. /**
  652. * Add to the circular command queue the next command from:
  653. * - The command-injection queue (queued_commands_P)
  654. * - The active serial input (usually USB)
  655. * - The SD card file being actively printed
  656. */
  657. void get_command() {
  658. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  659. #ifdef NO_TIMEOUTS
  660. static millis_t last_command_time = 0;
  661. millis_t ms = millis();
  662. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  663. SERIAL_ECHOLNPGM(MSG_WAIT);
  664. last_command_time = ms;
  665. }
  666. #endif
  667. //
  668. // Loop while serial characters are incoming and the queue is not full
  669. //
  670. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  671. #ifdef NO_TIMEOUTS
  672. last_command_time = ms;
  673. #endif
  674. serial_char = MYSERIAL.read();
  675. //
  676. // If the character ends the line, or the line is full...
  677. //
  678. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  679. // end of line == end of comment
  680. comment_mode = false;
  681. if (!serial_count) return; // empty lines just exit
  682. char *command = command_queue[cmd_queue_index_w];
  683. command[serial_count] = 0; // terminate string
  684. // this item in the queue is not from sd
  685. #ifdef SDSUPPORT
  686. fromsd[cmd_queue_index_w] = false;
  687. #endif
  688. char *npos = strchr(command, 'N');
  689. char *apos = strchr(command, '*');
  690. if (npos) {
  691. gcode_N = strtol(npos + 1, NULL, 10);
  692. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  693. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  694. return;
  695. }
  696. if (apos) {
  697. byte checksum = 0, count = 0;
  698. while (command[count] != '*') checksum ^= command[count++];
  699. if (strtol(apos + 1, NULL, 10) != checksum) {
  700. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  701. return;
  702. }
  703. // if no errors, continue parsing
  704. }
  705. else {
  706. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  707. return;
  708. }
  709. gcode_LastN = gcode_N;
  710. // if no errors, continue parsing
  711. }
  712. else if (apos) { // No '*' without 'N'
  713. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  714. return;
  715. }
  716. // Movement commands alert when stopped
  717. if (IsStopped()) {
  718. char *gpos = strchr(command, 'G');
  719. if (gpos) {
  720. int codenum = strtol(gpos + 1, NULL, 10);
  721. switch (codenum) {
  722. case 0:
  723. case 1:
  724. case 2:
  725. case 3:
  726. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  727. LCD_MESSAGEPGM(MSG_STOPPED);
  728. break;
  729. }
  730. }
  731. }
  732. // If command was e-stop process now
  733. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  734. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  735. commands_in_queue += 1;
  736. serial_count = 0; //clear buffer
  737. }
  738. else if (serial_char == '\\') { // Handle escapes
  739. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  740. // if we have one more character, copy it over
  741. serial_char = MYSERIAL.read();
  742. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  743. }
  744. // otherwise do nothing
  745. }
  746. else { // its not a newline, carriage return or escape char
  747. if (serial_char == ';') comment_mode = true;
  748. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  749. }
  750. }
  751. #ifdef SDSUPPORT
  752. if (!card.sdprinting || serial_count) return;
  753. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  754. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  755. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  756. static bool stop_buffering = false;
  757. if (commands_in_queue == 0) stop_buffering = false;
  758. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  759. int16_t n = card.get();
  760. serial_char = (char)n;
  761. if (serial_char == '\n' || serial_char == '\r' ||
  762. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  763. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  764. ) {
  765. if (card.eof()) {
  766. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  767. print_job_stop_ms = millis();
  768. char time[30];
  769. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  770. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  771. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  772. SERIAL_ECHO_START;
  773. SERIAL_ECHOLN(time);
  774. lcd_setstatus(time, true);
  775. card.printingHasFinished();
  776. card.checkautostart(true);
  777. }
  778. if (serial_char == '#') stop_buffering = true;
  779. if (!serial_count) {
  780. comment_mode = false; //for new command
  781. return; //if empty line
  782. }
  783. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  784. // if (!comment_mode) {
  785. fromsd[cmd_queue_index_w] = true;
  786. commands_in_queue += 1;
  787. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  788. // }
  789. comment_mode = false; //for new command
  790. serial_count = 0; //clear buffer
  791. }
  792. else {
  793. if (serial_char == ';') comment_mode = true;
  794. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  795. }
  796. }
  797. #endif // SDSUPPORT
  798. }
  799. bool code_has_value() {
  800. int i = 1;
  801. char c = seen_pointer[i];
  802. if (c == '-' || c == '+') c = seen_pointer[++i];
  803. if (c == '.') c = seen_pointer[++i];
  804. return (c >= '0' && c <= '9');
  805. }
  806. float code_value() {
  807. float ret;
  808. char *e = strchr(seen_pointer, 'E');
  809. if (e) {
  810. *e = 0;
  811. ret = strtod(seen_pointer+1, NULL);
  812. *e = 'E';
  813. }
  814. else
  815. ret = strtod(seen_pointer+1, NULL);
  816. return ret;
  817. }
  818. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  819. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  820. bool code_seen(char code) {
  821. seen_pointer = strchr(current_command_args, code); // +3 since "G0 " is the shortest prefix
  822. return (seen_pointer != NULL); //Return True if a character was found
  823. }
  824. #define DEFINE_PGM_READ_ANY(type, reader) \
  825. static inline type pgm_read_any(const type *p) \
  826. { return pgm_read_##reader##_near(p); }
  827. DEFINE_PGM_READ_ANY(float, float);
  828. DEFINE_PGM_READ_ANY(signed char, byte);
  829. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  830. static const PROGMEM type array##_P[3] = \
  831. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  832. static inline type array(int axis) \
  833. { return pgm_read_any(&array##_P[axis]); }
  834. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  835. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  836. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  837. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  838. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  839. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  840. #ifdef DUAL_X_CARRIAGE
  841. #define DXC_FULL_CONTROL_MODE 0
  842. #define DXC_AUTO_PARK_MODE 1
  843. #define DXC_DUPLICATION_MODE 2
  844. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  845. static float x_home_pos(int extruder) {
  846. if (extruder == 0)
  847. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  848. else
  849. // In dual carriage mode the extruder offset provides an override of the
  850. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  851. // This allow soft recalibration of the second extruder offset position without firmware reflash
  852. // (through the M218 command).
  853. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  854. }
  855. static int x_home_dir(int extruder) {
  856. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  857. }
  858. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  859. static bool active_extruder_parked = false; // used in mode 1 & 2
  860. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  861. static millis_t delayed_move_time = 0; // used in mode 1
  862. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  863. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  864. bool extruder_duplication_enabled = false; // used in mode 2
  865. #endif //DUAL_X_CARRIAGE
  866. static void axis_is_at_home(AxisEnum axis) {
  867. #ifdef DUAL_X_CARRIAGE
  868. if (axis == X_AXIS) {
  869. if (active_extruder != 0) {
  870. current_position[X_AXIS] = x_home_pos(active_extruder);
  871. min_pos[X_AXIS] = X2_MIN_POS;
  872. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  873. return;
  874. }
  875. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  876. float xoff = home_offset[X_AXIS];
  877. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  878. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  879. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  880. return;
  881. }
  882. }
  883. #endif
  884. #ifdef SCARA
  885. if (axis == X_AXIS || axis == Y_AXIS) {
  886. float homeposition[3];
  887. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  888. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  889. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  890. // Works out real Homeposition angles using inverse kinematics,
  891. // and calculates homing offset using forward kinematics
  892. calculate_delta(homeposition);
  893. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  894. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  895. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  896. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  897. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  898. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  899. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  900. calculate_SCARA_forward_Transform(delta);
  901. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  902. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  903. current_position[axis] = delta[axis];
  904. // SCARA home positions are based on configuration since the actual limits are determined by the
  905. // inverse kinematic transform.
  906. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  907. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  908. }
  909. else
  910. #endif
  911. {
  912. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  913. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  914. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  915. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  916. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  917. #endif
  918. }
  919. }
  920. /**
  921. * Some planner shorthand inline functions
  922. */
  923. inline void set_homing_bump_feedrate(AxisEnum axis) {
  924. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  925. if (homing_bump_divisor[axis] >= 1)
  926. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  927. else {
  928. feedrate = homing_feedrate[axis] / 10;
  929. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  930. }
  931. }
  932. inline void line_to_current_position() {
  933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  934. }
  935. inline void line_to_z(float zPosition) {
  936. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  937. }
  938. inline void line_to_destination(float mm_m) {
  939. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  940. }
  941. inline void line_to_destination() {
  942. line_to_destination(feedrate);
  943. }
  944. inline void sync_plan_position() {
  945. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  946. }
  947. #if defined(DELTA) || defined(SCARA)
  948. inline void sync_plan_position_delta() {
  949. calculate_delta(current_position);
  950. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  951. }
  952. #endif
  953. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  954. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  955. static void setup_for_endstop_move() {
  956. saved_feedrate = feedrate;
  957. saved_feedrate_multiplier = feedrate_multiplier;
  958. feedrate_multiplier = 100;
  959. refresh_cmd_timeout();
  960. enable_endstops(true);
  961. }
  962. #ifdef ENABLE_AUTO_BED_LEVELING
  963. #ifdef DELTA
  964. /**
  965. * Calculate delta, start a line, and set current_position to destination
  966. */
  967. void prepare_move_raw() {
  968. refresh_cmd_timeout();
  969. calculate_delta(destination);
  970. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  971. set_current_to_destination();
  972. }
  973. #endif
  974. #ifdef AUTO_BED_LEVELING_GRID
  975. #ifndef DELTA
  976. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  977. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  978. planeNormal.debug("planeNormal");
  979. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  980. //bedLevel.debug("bedLevel");
  981. //plan_bed_level_matrix.debug("bed level before");
  982. //vector_3 uncorrected_position = plan_get_position_mm();
  983. //uncorrected_position.debug("position before");
  984. vector_3 corrected_position = plan_get_position();
  985. //corrected_position.debug("position after");
  986. current_position[X_AXIS] = corrected_position.x;
  987. current_position[Y_AXIS] = corrected_position.y;
  988. current_position[Z_AXIS] = corrected_position.z;
  989. sync_plan_position();
  990. }
  991. #endif // !DELTA
  992. #else // !AUTO_BED_LEVELING_GRID
  993. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  994. plan_bed_level_matrix.set_to_identity();
  995. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  996. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  997. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  998. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  999. if (planeNormal.z < 0) {
  1000. planeNormal.x = -planeNormal.x;
  1001. planeNormal.y = -planeNormal.y;
  1002. planeNormal.z = -planeNormal.z;
  1003. }
  1004. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1005. vector_3 corrected_position = plan_get_position();
  1006. current_position[X_AXIS] = corrected_position.x;
  1007. current_position[Y_AXIS] = corrected_position.y;
  1008. current_position[Z_AXIS] = corrected_position.z;
  1009. sync_plan_position();
  1010. }
  1011. #endif // !AUTO_BED_LEVELING_GRID
  1012. static void run_z_probe() {
  1013. #ifdef DELTA
  1014. float start_z = current_position[Z_AXIS];
  1015. long start_steps = st_get_position(Z_AXIS);
  1016. // move down slowly until you find the bed
  1017. feedrate = homing_feedrate[Z_AXIS] / 4;
  1018. destination[Z_AXIS] = -10;
  1019. prepare_move_raw(); // this will also set_current_to_destination
  1020. st_synchronize();
  1021. endstops_hit_on_purpose(); // clear endstop hit flags
  1022. // we have to let the planner know where we are right now as it is not where we said to go.
  1023. long stop_steps = st_get_position(Z_AXIS);
  1024. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1025. current_position[Z_AXIS] = mm;
  1026. sync_plan_position_delta();
  1027. #else // !DELTA
  1028. plan_bed_level_matrix.set_to_identity();
  1029. feedrate = homing_feedrate[Z_AXIS];
  1030. // Move down until the probe (or endstop?) is triggered
  1031. float zPosition = -10;
  1032. line_to_z(zPosition);
  1033. st_synchronize();
  1034. // Tell the planner where we ended up - Get this from the stepper handler
  1035. zPosition = st_get_position_mm(Z_AXIS);
  1036. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1037. // move up the retract distance
  1038. zPosition += home_bump_mm(Z_AXIS);
  1039. line_to_z(zPosition);
  1040. st_synchronize();
  1041. endstops_hit_on_purpose(); // clear endstop hit flags
  1042. // move back down slowly to find bed
  1043. set_homing_bump_feedrate(Z_AXIS);
  1044. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1045. line_to_z(zPosition);
  1046. st_synchronize();
  1047. endstops_hit_on_purpose(); // clear endstop hit flags
  1048. // Get the current stepper position after bumping an endstop
  1049. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1050. sync_plan_position();
  1051. #endif // !DELTA
  1052. }
  1053. /**
  1054. * Plan a move to (X, Y, Z) and set the current_position
  1055. * The final current_position may not be the one that was requested
  1056. */
  1057. static void do_blocking_move_to(float x, float y, float z) {
  1058. float oldFeedRate = feedrate;
  1059. #ifdef DELTA
  1060. feedrate = XY_TRAVEL_SPEED;
  1061. destination[X_AXIS] = x;
  1062. destination[Y_AXIS] = y;
  1063. destination[Z_AXIS] = z;
  1064. prepare_move_raw(); // this will also set_current_to_destination
  1065. st_synchronize();
  1066. #else
  1067. feedrate = homing_feedrate[Z_AXIS];
  1068. current_position[Z_AXIS] = z;
  1069. line_to_current_position();
  1070. st_synchronize();
  1071. feedrate = xy_travel_speed;
  1072. current_position[X_AXIS] = x;
  1073. current_position[Y_AXIS] = y;
  1074. line_to_current_position();
  1075. st_synchronize();
  1076. #endif
  1077. feedrate = oldFeedRate;
  1078. }
  1079. static void clean_up_after_endstop_move() {
  1080. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1081. enable_endstops(false);
  1082. #endif
  1083. feedrate = saved_feedrate;
  1084. feedrate_multiplier = saved_feedrate_multiplier;
  1085. refresh_cmd_timeout();
  1086. }
  1087. static void deploy_z_probe() {
  1088. #ifdef SERVO_ENDSTOPS
  1089. // Engage Z Servo endstop if enabled
  1090. if (servo_endstops[Z_AXIS] >= 0) {
  1091. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1092. #if SERVO_LEVELING
  1093. srv->attach(0);
  1094. #endif
  1095. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1096. #if SERVO_LEVELING
  1097. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1098. srv->detach();
  1099. #endif
  1100. }
  1101. #elif defined(Z_PROBE_ALLEN_KEY)
  1102. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1103. // If endstop is already false, the probe is deployed
  1104. #ifdef Z_PROBE_ENDSTOP
  1105. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1106. if (z_probe_endstop)
  1107. #else
  1108. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1109. if (z_min_endstop)
  1110. #endif
  1111. {
  1112. // Move to the start position to initiate deployment
  1113. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1114. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1115. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1116. prepare_move_raw(); // this will also set_current_to_destination
  1117. // Move to engage deployment
  1118. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE) {
  1119. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1120. }
  1121. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X) {
  1122. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1123. }
  1124. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) {
  1125. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1126. }
  1127. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) {
  1128. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1129. }
  1130. prepare_move_raw();
  1131. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1132. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1133. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1134. }
  1135. // Move to trigger deployment
  1136. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1137. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1138. }
  1139. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X) {
  1140. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1141. }
  1142. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) {
  1143. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1144. }
  1145. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) {
  1146. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1147. }
  1148. prepare_move_raw();
  1149. #endif
  1150. }
  1151. // Partially Home X,Y for safety
  1152. destination[X_AXIS] = destination[X_AXIS]*0.75;
  1153. destination[Y_AXIS] = destination[Y_AXIS]*0.75;
  1154. prepare_move_raw(); // this will also set_current_to_destination
  1155. st_synchronize();
  1156. #ifdef Z_PROBE_ENDSTOP
  1157. z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1158. if (z_probe_endstop)
  1159. #else
  1160. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1161. if (z_min_endstop)
  1162. #endif
  1163. {
  1164. if (IsRunning()) {
  1165. SERIAL_ERROR_START;
  1166. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1167. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1168. }
  1169. Stop();
  1170. }
  1171. #endif // Z_PROBE_ALLEN_KEY
  1172. }
  1173. static void stow_z_probe(bool doRaise=true) {
  1174. #ifdef SERVO_ENDSTOPS
  1175. // Retract Z Servo endstop if enabled
  1176. if (servo_endstops[Z_AXIS] >= 0) {
  1177. #if Z_RAISE_AFTER_PROBING > 0
  1178. if (doRaise) {
  1179. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1180. st_synchronize();
  1181. }
  1182. #endif
  1183. // Change the Z servo angle
  1184. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1185. #if SERVO_LEVELING
  1186. srv->attach(0);
  1187. #endif
  1188. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1189. #if SERVO_LEVELING
  1190. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1191. srv->detach();
  1192. #endif
  1193. }
  1194. #elif defined(Z_PROBE_ALLEN_KEY)
  1195. // Move up for safety
  1196. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1197. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1198. prepare_move_raw(); // this will also set_current_to_destination
  1199. // Move to the start position to initiate retraction
  1200. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1201. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1202. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1203. prepare_move_raw();
  1204. // Move the nozzle down to push the probe into retracted position
  1205. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE) {
  1206. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1207. }
  1208. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X) {
  1209. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1210. }
  1211. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y) {
  1212. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1213. }
  1214. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1215. prepare_move_raw();
  1216. // Move up for safety
  1217. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) {
  1218. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1219. }
  1220. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X) {
  1221. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1222. }
  1223. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y) {
  1224. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1225. }
  1226. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1227. prepare_move_raw();
  1228. // Home XY for safety
  1229. feedrate = homing_feedrate[X_AXIS]/2;
  1230. destination[X_AXIS] = 0;
  1231. destination[Y_AXIS] = 0;
  1232. prepare_move_raw(); // this will also set_current_to_destination
  1233. st_synchronize();
  1234. #ifdef Z_PROBE_ENDSTOP
  1235. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1236. if (!z_probe_endstop)
  1237. #else
  1238. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1239. if (!z_min_endstop)
  1240. #endif
  1241. {
  1242. if (IsRunning()) {
  1243. SERIAL_ERROR_START;
  1244. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1245. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1246. }
  1247. Stop();
  1248. }
  1249. #endif // Z_PROBE_ALLEN_KEY
  1250. }
  1251. enum ProbeAction {
  1252. ProbeStay = 0,
  1253. ProbeDeploy = BIT(0),
  1254. ProbeStow = BIT(1),
  1255. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1256. };
  1257. // Probe bed height at position (x,y), returns the measured z value
  1258. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1259. // Move Z up to the z_before height, then move the probe to the given XY
  1260. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1261. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1262. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1263. if (probe_action & ProbeDeploy) deploy_z_probe();
  1264. #endif
  1265. run_z_probe();
  1266. float measured_z = current_position[Z_AXIS];
  1267. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1268. if (probe_action & ProbeStow) stow_z_probe();
  1269. #endif
  1270. if (verbose_level > 2) {
  1271. SERIAL_PROTOCOLPGM("Bed X: ");
  1272. SERIAL_PROTOCOL_F(x, 3);
  1273. SERIAL_PROTOCOLPGM(" Y: ");
  1274. SERIAL_PROTOCOL_F(y, 3);
  1275. SERIAL_PROTOCOLPGM(" Z: ");
  1276. SERIAL_PROTOCOL_F(measured_z, 3);
  1277. SERIAL_EOL;
  1278. }
  1279. return measured_z;
  1280. }
  1281. #ifdef DELTA
  1282. /**
  1283. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1284. */
  1285. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1286. if (bed_level[x][y] != 0.0) {
  1287. return; // Don't overwrite good values.
  1288. }
  1289. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1290. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1291. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1292. float median = c; // Median is robust (ignores outliers).
  1293. if (a < b) {
  1294. if (b < c) median = b;
  1295. if (c < a) median = a;
  1296. } else { // b <= a
  1297. if (c < b) median = b;
  1298. if (a < c) median = a;
  1299. }
  1300. bed_level[x][y] = median;
  1301. }
  1302. // Fill in the unprobed points (corners of circular print surface)
  1303. // using linear extrapolation, away from the center.
  1304. static void extrapolate_unprobed_bed_level() {
  1305. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1306. for (int y = 0; y <= half; y++) {
  1307. for (int x = 0; x <= half; x++) {
  1308. if (x + y < 3) continue;
  1309. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1310. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1311. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1312. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1313. }
  1314. }
  1315. }
  1316. // Print calibration results for plotting or manual frame adjustment.
  1317. static void print_bed_level() {
  1318. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1319. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1320. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1321. SERIAL_PROTOCOLCHAR(' ');
  1322. }
  1323. SERIAL_EOL;
  1324. }
  1325. }
  1326. // Reset calibration results to zero.
  1327. void reset_bed_level() {
  1328. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1329. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1330. bed_level[x][y] = 0.0;
  1331. }
  1332. }
  1333. }
  1334. #endif // DELTA
  1335. #endif // ENABLE_AUTO_BED_LEVELING
  1336. #ifdef Z_PROBE_SLED
  1337. #ifndef SLED_DOCKING_OFFSET
  1338. #define SLED_DOCKING_OFFSET 0
  1339. #endif
  1340. /**
  1341. * Method to dock/undock a sled designed by Charles Bell.
  1342. *
  1343. * dock[in] If true, move to MAX_X and engage the electromagnet
  1344. * offset[in] The additional distance to move to adjust docking location
  1345. */
  1346. static void dock_sled(bool dock, int offset=0) {
  1347. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1348. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1349. SERIAL_ECHO_START;
  1350. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1351. return;
  1352. }
  1353. if (dock) {
  1354. float oldXpos = current_position[X_AXIS]; // save x position
  1355. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z
  1356. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]); // Dock sled a bit closer to ensure proper capturing
  1357. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1358. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1359. } else {
  1360. float oldXpos = current_position[X_AXIS]; // save x position
  1361. float z_loc = current_position[Z_AXIS];
  1362. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1363. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1364. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1365. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1366. }
  1367. }
  1368. #endif // Z_PROBE_SLED
  1369. /**
  1370. * Home an individual axis
  1371. */
  1372. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1373. static void homeaxis(AxisEnum axis) {
  1374. #define HOMEAXIS_DO(LETTER) \
  1375. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1376. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1377. int axis_home_dir =
  1378. #ifdef DUAL_X_CARRIAGE
  1379. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1380. #endif
  1381. home_dir(axis);
  1382. // Set the axis position as setup for the move
  1383. current_position[axis] = 0;
  1384. sync_plan_position();
  1385. #ifdef Z_PROBE_SLED
  1386. // Get Probe
  1387. if (axis == Z_AXIS) {
  1388. if (axis_home_dir < 0) dock_sled(false);
  1389. }
  1390. #endif
  1391. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1392. // Deploy a probe if there is one, and homing towards the bed
  1393. if (axis == Z_AXIS) {
  1394. if (axis_home_dir < 0) deploy_z_probe();
  1395. }
  1396. #endif
  1397. #ifdef SERVO_ENDSTOPS
  1398. if (axis != Z_AXIS) {
  1399. // Engage Servo endstop if enabled
  1400. if (servo_endstops[axis] > -1)
  1401. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1402. }
  1403. #endif
  1404. // Set a flag for Z motor locking
  1405. #ifdef Z_DUAL_ENDSTOPS
  1406. if (axis == Z_AXIS) In_Homing_Process(true);
  1407. #endif
  1408. // Move towards the endstop until an endstop is triggered
  1409. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1410. feedrate = homing_feedrate[axis];
  1411. line_to_destination();
  1412. st_synchronize();
  1413. // Set the axis position as setup for the move
  1414. current_position[axis] = 0;
  1415. sync_plan_position();
  1416. enable_endstops(false); // Disable endstops while moving away
  1417. // Move away from the endstop by the axis HOME_BUMP_MM
  1418. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1419. line_to_destination();
  1420. st_synchronize();
  1421. enable_endstops(true); // Enable endstops for next homing move
  1422. // Slow down the feedrate for the next move
  1423. set_homing_bump_feedrate(axis);
  1424. // Move slowly towards the endstop until triggered
  1425. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1426. line_to_destination();
  1427. st_synchronize();
  1428. #ifdef Z_DUAL_ENDSTOPS
  1429. if (axis == Z_AXIS) {
  1430. float adj = fabs(z_endstop_adj);
  1431. bool lockZ1;
  1432. if (axis_home_dir > 0) {
  1433. adj = -adj;
  1434. lockZ1 = (z_endstop_adj > 0);
  1435. }
  1436. else
  1437. lockZ1 = (z_endstop_adj < 0);
  1438. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1439. sync_plan_position();
  1440. // Move to the adjusted endstop height
  1441. feedrate = homing_feedrate[axis];
  1442. destination[Z_AXIS] = adj;
  1443. line_to_destination();
  1444. st_synchronize();
  1445. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1446. In_Homing_Process(false);
  1447. } // Z_AXIS
  1448. #endif
  1449. #ifdef DELTA
  1450. // retrace by the amount specified in endstop_adj
  1451. if (endstop_adj[axis] * axis_home_dir < 0) {
  1452. enable_endstops(false); // Disable endstops while moving away
  1453. sync_plan_position();
  1454. destination[axis] = endstop_adj[axis];
  1455. line_to_destination();
  1456. st_synchronize();
  1457. enable_endstops(true); // Enable endstops for next homing move
  1458. }
  1459. #endif
  1460. // Set the axis position to its home position (plus home offsets)
  1461. axis_is_at_home(axis);
  1462. sync_plan_position();
  1463. destination[axis] = current_position[axis];
  1464. feedrate = 0.0;
  1465. endstops_hit_on_purpose(); // clear endstop hit flags
  1466. axis_known_position[axis] = true;
  1467. #ifdef Z_PROBE_SLED
  1468. // bring probe back
  1469. if (axis == Z_AXIS) {
  1470. if (axis_home_dir < 0) dock_sled(true);
  1471. }
  1472. #endif
  1473. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1474. // Deploy a probe if there is one, and homing towards the bed
  1475. if (axis == Z_AXIS) {
  1476. if (axis_home_dir < 0) stow_z_probe();
  1477. }
  1478. else
  1479. #endif
  1480. #ifdef SERVO_ENDSTOPS
  1481. {
  1482. // Retract Servo endstop if enabled
  1483. if (servo_endstops[axis] > -1)
  1484. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1485. }
  1486. #endif
  1487. }
  1488. }
  1489. #ifdef FWRETRACT
  1490. void retract(bool retracting, bool swapping=false) {
  1491. if (retracting == retracted[active_extruder]) return;
  1492. float oldFeedrate = feedrate;
  1493. set_destination_to_current();
  1494. if (retracting) {
  1495. feedrate = retract_feedrate * 60;
  1496. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1497. plan_set_e_position(current_position[E_AXIS]);
  1498. prepare_move();
  1499. if (retract_zlift > 0.01) {
  1500. current_position[Z_AXIS] -= retract_zlift;
  1501. #ifdef DELTA
  1502. sync_plan_position_delta();
  1503. #else
  1504. sync_plan_position();
  1505. #endif
  1506. prepare_move();
  1507. }
  1508. }
  1509. else {
  1510. if (retract_zlift > 0.01) {
  1511. current_position[Z_AXIS] += retract_zlift;
  1512. #ifdef DELTA
  1513. sync_plan_position_delta();
  1514. #else
  1515. sync_plan_position();
  1516. #endif
  1517. //prepare_move();
  1518. }
  1519. feedrate = retract_recover_feedrate * 60;
  1520. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1521. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1522. plan_set_e_position(current_position[E_AXIS]);
  1523. prepare_move();
  1524. }
  1525. feedrate = oldFeedrate;
  1526. retracted[active_extruder] = retracting;
  1527. } // retract()
  1528. #endif // FWRETRACT
  1529. /**
  1530. *
  1531. * G-Code Handler functions
  1532. *
  1533. */
  1534. /**
  1535. * Set XYZE destination and feedrate from the current GCode command
  1536. *
  1537. * - Set destination from included axis codes
  1538. * - Set to current for missing axis codes
  1539. * - Set the feedrate, if included
  1540. */
  1541. void gcode_get_destination() {
  1542. for (int i = 0; i < NUM_AXIS; i++) {
  1543. if (code_seen(axis_codes[i]))
  1544. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1545. else
  1546. destination[i] = current_position[i];
  1547. }
  1548. if (code_seen('F')) {
  1549. float next_feedrate = code_value();
  1550. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1551. }
  1552. }
  1553. void unknown_command_error() {
  1554. SERIAL_ECHO_START;
  1555. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1556. SERIAL_ECHO(current_command);
  1557. SERIAL_ECHOPGM("\"\n");
  1558. }
  1559. /**
  1560. * G0, G1: Coordinated movement of X Y Z E axes
  1561. */
  1562. inline void gcode_G0_G1() {
  1563. if (IsRunning()) {
  1564. gcode_get_destination(); // For X Y Z E F
  1565. #ifdef FWRETRACT
  1566. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1567. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1568. // Is this move an attempt to retract or recover?
  1569. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1570. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1571. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1572. retract(!retracted[active_extruder]);
  1573. return;
  1574. }
  1575. }
  1576. #endif //FWRETRACT
  1577. prepare_move();
  1578. }
  1579. }
  1580. /**
  1581. * Plan an arc in 2 dimensions
  1582. *
  1583. * The arc is approximated by generating many small linear segments.
  1584. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  1585. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  1586. * larger segments will tend to be more efficient. Your slicer should have
  1587. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  1588. */
  1589. void plan_arc(
  1590. float *target, // Destination position
  1591. float *offset, // Center of rotation relative to current_position
  1592. uint8_t clockwise // Clockwise?
  1593. ) {
  1594. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  1595. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  1596. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  1597. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  1598. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  1599. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  1600. r_axis1 = -offset[Y_AXIS],
  1601. rt_axis0 = target[X_AXIS] - center_axis0,
  1602. rt_axis1 = target[Y_AXIS] - center_axis1;
  1603. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  1604. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  1605. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  1606. if (clockwise) { angular_travel -= RADIANS(360); }
  1607. // Make a circle if the angular rotation is 0
  1608. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  1609. angular_travel += RADIANS(360);
  1610. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  1611. if (mm_of_travel < 0.001) { return; }
  1612. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  1613. if (segments == 0) segments = 1;
  1614. float theta_per_segment = angular_travel/segments;
  1615. float linear_per_segment = linear_travel/segments;
  1616. float extruder_per_segment = extruder_travel/segments;
  1617. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  1618. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  1619. r_T = [cos(phi) -sin(phi);
  1620. sin(phi) cos(phi] * r ;
  1621. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  1622. defined from the circle center to the initial position. Each line segment is formed by successive
  1623. vector rotations. This requires only two cos() and sin() computations to form the rotation
  1624. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  1625. all double numbers are single precision on the Arduino. (True double precision will not have
  1626. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  1627. tool precision in some cases. Therefore, arc path correction is implemented.
  1628. Small angle approximation may be used to reduce computation overhead further. This approximation
  1629. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  1630. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  1631. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  1632. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  1633. issue for CNC machines with the single precision Arduino calculations.
  1634. This approximation also allows plan_arc to immediately insert a line segment into the planner
  1635. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  1636. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  1637. This is important when there are successive arc motions.
  1638. */
  1639. // Vector rotation matrix values
  1640. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  1641. float sin_T = theta_per_segment;
  1642. float arc_target[4];
  1643. float sin_Ti;
  1644. float cos_Ti;
  1645. float r_axisi;
  1646. uint16_t i;
  1647. int8_t count = 0;
  1648. // Initialize the linear axis
  1649. arc_target[Z_AXIS] = current_position[Z_AXIS];
  1650. // Initialize the extruder axis
  1651. arc_target[E_AXIS] = current_position[E_AXIS];
  1652. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  1653. for (i = 1; i < segments; i++) { // Increment (segments-1)
  1654. if (count < N_ARC_CORRECTION) {
  1655. // Apply vector rotation matrix to previous r_axis0 / 1
  1656. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  1657. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  1658. r_axis1 = r_axisi;
  1659. count++;
  1660. }
  1661. else {
  1662. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  1663. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  1664. cos_Ti = cos(i*theta_per_segment);
  1665. sin_Ti = sin(i*theta_per_segment);
  1666. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  1667. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  1668. count = 0;
  1669. }
  1670. // Update arc_target location
  1671. arc_target[X_AXIS] = center_axis0 + r_axis0;
  1672. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  1673. arc_target[Z_AXIS] += linear_per_segment;
  1674. arc_target[E_AXIS] += extruder_per_segment;
  1675. clamp_to_software_endstops(arc_target);
  1676. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  1677. }
  1678. // Ensure last segment arrives at target location.
  1679. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  1680. // As far as the parser is concerned, the position is now == target. In reality the
  1681. // motion control system might still be processing the action and the real tool position
  1682. // in any intermediate location.
  1683. set_current_to_destination();
  1684. }
  1685. /**
  1686. * G2: Clockwise Arc
  1687. * G3: Counterclockwise Arc
  1688. */
  1689. inline void gcode_G2_G3(bool clockwise) {
  1690. if (IsRunning()) {
  1691. #ifdef SF_ARC_FIX
  1692. bool relative_mode_backup = relative_mode;
  1693. relative_mode = true;
  1694. #endif
  1695. gcode_get_destination();
  1696. #ifdef SF_ARC_FIX
  1697. relative_mode = relative_mode_backup;
  1698. #endif
  1699. // Center of arc as offset from current_position
  1700. float arc_offset[2] = {
  1701. code_seen('I') ? code_value() : 0,
  1702. code_seen('J') ? code_value() : 0
  1703. };
  1704. // Send an arc to the planner
  1705. plan_arc(destination, arc_offset, clockwise);
  1706. refresh_cmd_timeout();
  1707. }
  1708. }
  1709. /**
  1710. * G4: Dwell S<seconds> or P<milliseconds>
  1711. */
  1712. inline void gcode_G4() {
  1713. millis_t codenum = 0;
  1714. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1715. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1716. st_synchronize();
  1717. refresh_cmd_timeout();
  1718. codenum += previous_cmd_ms; // keep track of when we started waiting
  1719. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1720. while (millis() < codenum) idle();
  1721. }
  1722. #ifdef FWRETRACT
  1723. /**
  1724. * G10 - Retract filament according to settings of M207
  1725. * G11 - Recover filament according to settings of M208
  1726. */
  1727. inline void gcode_G10_G11(bool doRetract=false) {
  1728. #if EXTRUDERS > 1
  1729. if (doRetract) {
  1730. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1731. }
  1732. #endif
  1733. retract(doRetract
  1734. #if EXTRUDERS > 1
  1735. , retracted_swap[active_extruder]
  1736. #endif
  1737. );
  1738. }
  1739. #endif //FWRETRACT
  1740. /**
  1741. * G28: Home all axes according to settings
  1742. *
  1743. * Parameters
  1744. *
  1745. * None Home to all axes with no parameters.
  1746. * With QUICK_HOME enabled XY will home together, then Z.
  1747. *
  1748. * Cartesian parameters
  1749. *
  1750. * X Home to the X endstop
  1751. * Y Home to the Y endstop
  1752. * Z Home to the Z endstop
  1753. *
  1754. */
  1755. inline void gcode_G28() {
  1756. // Wait for planner moves to finish!
  1757. st_synchronize();
  1758. // For auto bed leveling, clear the level matrix
  1759. #ifdef ENABLE_AUTO_BED_LEVELING
  1760. plan_bed_level_matrix.set_to_identity();
  1761. #ifdef DELTA
  1762. reset_bed_level();
  1763. #endif
  1764. #endif
  1765. // For manual bed leveling deactivate the matrix temporarily
  1766. #ifdef MESH_BED_LEVELING
  1767. uint8_t mbl_was_active = mbl.active;
  1768. mbl.active = 0;
  1769. #endif
  1770. setup_for_endstop_move();
  1771. set_destination_to_current();
  1772. feedrate = 0.0;
  1773. #ifdef DELTA
  1774. // A delta can only safely home all axis at the same time
  1775. // all axis have to home at the same time
  1776. // Pretend the current position is 0,0,0
  1777. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1778. sync_plan_position();
  1779. // Move all carriages up together until the first endstop is hit.
  1780. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1781. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1782. line_to_destination();
  1783. st_synchronize();
  1784. endstops_hit_on_purpose(); // clear endstop hit flags
  1785. // Destination reached
  1786. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1787. // take care of back off and rehome now we are all at the top
  1788. HOMEAXIS(X);
  1789. HOMEAXIS(Y);
  1790. HOMEAXIS(Z);
  1791. sync_plan_position_delta();
  1792. #else // NOT DELTA
  1793. bool homeX = code_seen(axis_codes[X_AXIS]),
  1794. homeY = code_seen(axis_codes[Y_AXIS]),
  1795. homeZ = code_seen(axis_codes[Z_AXIS]);
  1796. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1797. if (home_all_axis || homeZ) {
  1798. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1799. HOMEAXIS(Z);
  1800. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1801. // Raise Z before homing any other axes
  1802. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1803. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1804. feedrate = max_feedrate[Z_AXIS] * 60;
  1805. line_to_destination();
  1806. st_synchronize();
  1807. #endif
  1808. } // home_all_axis || homeZ
  1809. #ifdef QUICK_HOME
  1810. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1811. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1812. #ifdef DUAL_X_CARRIAGE
  1813. int x_axis_home_dir = x_home_dir(active_extruder);
  1814. extruder_duplication_enabled = false;
  1815. #else
  1816. int x_axis_home_dir = home_dir(X_AXIS);
  1817. #endif
  1818. sync_plan_position();
  1819. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1820. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1821. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1822. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1823. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1824. line_to_destination();
  1825. st_synchronize();
  1826. axis_is_at_home(X_AXIS);
  1827. axis_is_at_home(Y_AXIS);
  1828. sync_plan_position();
  1829. destination[X_AXIS] = current_position[X_AXIS];
  1830. destination[Y_AXIS] = current_position[Y_AXIS];
  1831. line_to_destination();
  1832. feedrate = 0.0;
  1833. st_synchronize();
  1834. endstops_hit_on_purpose(); // clear endstop hit flags
  1835. current_position[X_AXIS] = destination[X_AXIS];
  1836. current_position[Y_AXIS] = destination[Y_AXIS];
  1837. #ifndef SCARA
  1838. current_position[Z_AXIS] = destination[Z_AXIS];
  1839. #endif
  1840. }
  1841. #endif // QUICK_HOME
  1842. #ifdef HOME_Y_BEFORE_X
  1843. // Home Y
  1844. if (home_all_axis || homeY) HOMEAXIS(Y);
  1845. #endif
  1846. // Home X
  1847. if (home_all_axis || homeX) {
  1848. #ifdef DUAL_X_CARRIAGE
  1849. int tmp_extruder = active_extruder;
  1850. extruder_duplication_enabled = false;
  1851. active_extruder = !active_extruder;
  1852. HOMEAXIS(X);
  1853. inactive_extruder_x_pos = current_position[X_AXIS];
  1854. active_extruder = tmp_extruder;
  1855. HOMEAXIS(X);
  1856. // reset state used by the different modes
  1857. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1858. delayed_move_time = 0;
  1859. active_extruder_parked = true;
  1860. #else
  1861. HOMEAXIS(X);
  1862. #endif
  1863. }
  1864. #ifndef HOME_Y_BEFORE_X
  1865. // Home Y
  1866. if (home_all_axis || homeY) HOMEAXIS(Y);
  1867. #endif
  1868. // Home Z last if homing towards the bed
  1869. #if Z_HOME_DIR < 0
  1870. if (home_all_axis || homeZ) {
  1871. #ifdef Z_SAFE_HOMING
  1872. if (home_all_axis) {
  1873. current_position[Z_AXIS] = 0;
  1874. sync_plan_position();
  1875. //
  1876. // Set the probe (or just the nozzle) destination to the safe homing point
  1877. //
  1878. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1879. // then this may not work as expected.
  1880. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1881. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1882. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1883. feedrate = XY_TRAVEL_SPEED;
  1884. // This could potentially move X, Y, Z all together
  1885. line_to_destination();
  1886. st_synchronize();
  1887. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1888. current_position[X_AXIS] = destination[X_AXIS];
  1889. current_position[Y_AXIS] = destination[Y_AXIS];
  1890. // Home the Z axis
  1891. HOMEAXIS(Z);
  1892. }
  1893. else if (homeZ) { // Don't need to Home Z twice
  1894. // Let's see if X and Y are homed
  1895. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1896. // Make sure the probe is within the physical limits
  1897. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1898. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1899. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1900. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1901. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1902. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1903. // Set the plan current position to X, Y, 0
  1904. current_position[Z_AXIS] = 0;
  1905. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1906. // Set Z destination away from bed and raise the axis
  1907. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1908. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1909. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1910. line_to_destination();
  1911. st_synchronize();
  1912. // Home the Z axis
  1913. HOMEAXIS(Z);
  1914. }
  1915. else {
  1916. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1917. SERIAL_ECHO_START;
  1918. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1919. }
  1920. }
  1921. else {
  1922. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1923. SERIAL_ECHO_START;
  1924. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1925. }
  1926. } // !home_all_axes && homeZ
  1927. #else // !Z_SAFE_HOMING
  1928. HOMEAXIS(Z);
  1929. #endif // !Z_SAFE_HOMING
  1930. } // home_all_axis || homeZ
  1931. #endif // Z_HOME_DIR < 0
  1932. sync_plan_position();
  1933. #endif // else DELTA
  1934. #ifdef SCARA
  1935. sync_plan_position_delta();
  1936. #endif
  1937. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1938. enable_endstops(false);
  1939. #endif
  1940. // For manual leveling move back to 0,0
  1941. #ifdef MESH_BED_LEVELING
  1942. if (mbl_was_active) {
  1943. current_position[X_AXIS] = mbl.get_x(0);
  1944. current_position[Y_AXIS] = mbl.get_y(0);
  1945. set_destination_to_current();
  1946. feedrate = homing_feedrate[X_AXIS];
  1947. line_to_destination();
  1948. st_synchronize();
  1949. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1950. sync_plan_position();
  1951. mbl.active = 1;
  1952. }
  1953. #endif
  1954. feedrate = saved_feedrate;
  1955. feedrate_multiplier = saved_feedrate_multiplier;
  1956. refresh_cmd_timeout();
  1957. endstops_hit_on_purpose(); // clear endstop hit flags
  1958. }
  1959. #ifdef MESH_BED_LEVELING
  1960. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1961. /**
  1962. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1963. * mesh to compensate for variable bed height
  1964. *
  1965. * Parameters With MESH_BED_LEVELING:
  1966. *
  1967. * S0 Produce a mesh report
  1968. * S1 Start probing mesh points
  1969. * S2 Probe the next mesh point
  1970. * S3 Xn Yn Zn.nn Manually modify a single point
  1971. *
  1972. * The S0 report the points as below
  1973. *
  1974. * +----> X-axis
  1975. * |
  1976. * |
  1977. * v Y-axis
  1978. *
  1979. */
  1980. inline void gcode_G29() {
  1981. static int probe_point = -1;
  1982. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1983. if (state < 0 || state > 3) {
  1984. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1985. return;
  1986. }
  1987. int ix, iy;
  1988. float z;
  1989. switch(state) {
  1990. case MeshReport:
  1991. if (mbl.active) {
  1992. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1993. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1994. SERIAL_PROTOCOLCHAR(',');
  1995. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1996. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1997. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1998. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1999. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2000. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2001. SERIAL_PROTOCOLPGM(" ");
  2002. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2003. }
  2004. SERIAL_EOL;
  2005. }
  2006. }
  2007. else
  2008. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2009. break;
  2010. case MeshStart:
  2011. mbl.reset();
  2012. probe_point = 0;
  2013. enqueuecommands_P(PSTR("G28\nG29 S2"));
  2014. break;
  2015. case MeshNext:
  2016. if (probe_point < 0) {
  2017. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2018. return;
  2019. }
  2020. if (probe_point == 0) {
  2021. // Set Z to a positive value before recording the first Z.
  2022. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2023. sync_plan_position();
  2024. }
  2025. else {
  2026. // For others, save the Z of the previous point, then raise Z again.
  2027. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  2028. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  2029. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2030. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2031. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  2033. st_synchronize();
  2034. }
  2035. // Is there another point to sample? Move there.
  2036. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  2037. ix = probe_point % MESH_NUM_X_POINTS;
  2038. iy = probe_point / MESH_NUM_X_POINTS;
  2039. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2040. current_position[X_AXIS] = mbl.get_x(ix);
  2041. current_position[Y_AXIS] = mbl.get_y(iy);
  2042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  2043. st_synchronize();
  2044. probe_point++;
  2045. }
  2046. else {
  2047. // After recording the last point, activate the mbl and home
  2048. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2049. probe_point = -1;
  2050. mbl.active = 1;
  2051. enqueuecommands_P(PSTR("G28"));
  2052. }
  2053. break;
  2054. case MeshSet:
  2055. if (code_seen('X') || code_seen('x')) {
  2056. ix = code_value_long()-1;
  2057. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2058. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2059. return;
  2060. }
  2061. } else {
  2062. SERIAL_PROTOCOLPGM("X not entered.\n");
  2063. return;
  2064. }
  2065. if (code_seen('Y') || code_seen('y')) {
  2066. iy = code_value_long()-1;
  2067. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2068. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2069. return;
  2070. }
  2071. } else {
  2072. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2073. return;
  2074. }
  2075. if (code_seen('Z') || code_seen('z')) {
  2076. z = code_value();
  2077. } else {
  2078. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2079. return;
  2080. }
  2081. mbl.z_values[iy][ix] = z;
  2082. } // switch(state)
  2083. }
  2084. #elif defined(ENABLE_AUTO_BED_LEVELING)
  2085. void out_of_range_error(const char *p_edge) {
  2086. SERIAL_PROTOCOLPGM("?Probe ");
  2087. serialprintPGM(p_edge);
  2088. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2089. }
  2090. /**
  2091. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2092. * Will fail if the printer has not been homed with G28.
  2093. *
  2094. * Enhanced G29 Auto Bed Leveling Probe Routine
  2095. *
  2096. * Parameters With AUTO_BED_LEVELING_GRID:
  2097. *
  2098. * P Set the size of the grid that will be probed (P x P points).
  2099. * Not supported by non-linear delta printer bed leveling.
  2100. * Example: "G29 P4"
  2101. *
  2102. * S Set the XY travel speed between probe points (in mm/min)
  2103. *
  2104. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2105. * or clean the rotation Matrix. Useful to check the topology
  2106. * after a first run of G29.
  2107. *
  2108. * V Set the verbose level (0-4). Example: "G29 V3"
  2109. *
  2110. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2111. * This is useful for manual bed leveling and finding flaws in the bed (to
  2112. * assist with part placement).
  2113. * Not supported by non-linear delta printer bed leveling.
  2114. *
  2115. * F Set the Front limit of the probing grid
  2116. * B Set the Back limit of the probing grid
  2117. * L Set the Left limit of the probing grid
  2118. * R Set the Right limit of the probing grid
  2119. *
  2120. * Global Parameters:
  2121. *
  2122. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2123. * Include "E" to engage/disengage the probe for each sample.
  2124. * There's no extra effect if you have a fixed probe.
  2125. * Usage: "G29 E" or "G29 e"
  2126. *
  2127. */
  2128. inline void gcode_G29() {
  2129. // Don't allow auto-leveling without homing first
  2130. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2131. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2132. SERIAL_ECHO_START;
  2133. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2134. return;
  2135. }
  2136. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  2137. if (verbose_level < 0 || verbose_level > 4) {
  2138. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2139. return;
  2140. }
  2141. bool dryrun = code_seen('D') || code_seen('d'),
  2142. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2143. #ifdef AUTO_BED_LEVELING_GRID
  2144. #ifndef DELTA
  2145. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  2146. #endif
  2147. if (verbose_level > 0) {
  2148. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2149. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2150. }
  2151. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2152. #ifndef DELTA
  2153. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2154. if (auto_bed_leveling_grid_points < 2) {
  2155. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2156. return;
  2157. }
  2158. #endif
  2159. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2160. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2161. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2162. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2163. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2164. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2165. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2166. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2167. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2168. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2169. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2170. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2171. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2172. if (left_out || right_out || front_out || back_out) {
  2173. if (left_out) {
  2174. out_of_range_error(PSTR("(L)eft"));
  2175. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2176. }
  2177. if (right_out) {
  2178. out_of_range_error(PSTR("(R)ight"));
  2179. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2180. }
  2181. if (front_out) {
  2182. out_of_range_error(PSTR("(F)ront"));
  2183. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2184. }
  2185. if (back_out) {
  2186. out_of_range_error(PSTR("(B)ack"));
  2187. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2188. }
  2189. return;
  2190. }
  2191. #endif // AUTO_BED_LEVELING_GRID
  2192. #ifdef Z_PROBE_SLED
  2193. dock_sled(false); // engage (un-dock) the probe
  2194. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2195. deploy_z_probe();
  2196. #endif
  2197. st_synchronize();
  2198. if (!dryrun) {
  2199. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2200. plan_bed_level_matrix.set_to_identity();
  2201. #ifdef DELTA
  2202. reset_bed_level();
  2203. #else //!DELTA
  2204. //vector_3 corrected_position = plan_get_position_mm();
  2205. //corrected_position.debug("position before G29");
  2206. vector_3 uncorrected_position = plan_get_position();
  2207. //uncorrected_position.debug("position during G29");
  2208. current_position[X_AXIS] = uncorrected_position.x;
  2209. current_position[Y_AXIS] = uncorrected_position.y;
  2210. current_position[Z_AXIS] = uncorrected_position.z;
  2211. sync_plan_position();
  2212. #endif // !DELTA
  2213. }
  2214. setup_for_endstop_move();
  2215. feedrate = homing_feedrate[Z_AXIS];
  2216. #ifdef AUTO_BED_LEVELING_GRID
  2217. // probe at the points of a lattice grid
  2218. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2219. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2220. #ifdef DELTA
  2221. delta_grid_spacing[0] = xGridSpacing;
  2222. delta_grid_spacing[1] = yGridSpacing;
  2223. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2224. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2225. #else // !DELTA
  2226. // solve the plane equation ax + by + d = z
  2227. // A is the matrix with rows [x y 1] for all the probed points
  2228. // B is the vector of the Z positions
  2229. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2230. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2231. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2232. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2233. eqnBVector[abl2], // "B" vector of Z points
  2234. mean = 0.0;
  2235. #endif // !DELTA
  2236. int probePointCounter = 0;
  2237. bool zig = true;
  2238. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2239. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2240. int xStart, xStop, xInc;
  2241. if (zig) {
  2242. xStart = 0;
  2243. xStop = auto_bed_leveling_grid_points;
  2244. xInc = 1;
  2245. }
  2246. else {
  2247. xStart = auto_bed_leveling_grid_points - 1;
  2248. xStop = -1;
  2249. xInc = -1;
  2250. }
  2251. #ifndef DELTA
  2252. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2253. // This gets the probe points in more readable order.
  2254. if (!do_topography_map) zig = !zig;
  2255. #else
  2256. zig = !zig;
  2257. #endif
  2258. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2259. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2260. // raise extruder
  2261. float measured_z,
  2262. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2263. #ifdef DELTA
  2264. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2265. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2266. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2267. #endif //DELTA
  2268. ProbeAction act;
  2269. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2270. act = ProbeDeployAndStow;
  2271. else if (yCount == 0 && xCount == xStart)
  2272. act = ProbeDeploy;
  2273. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2274. act = ProbeStow;
  2275. else
  2276. act = ProbeStay;
  2277. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2278. #ifndef DELTA
  2279. mean += measured_z;
  2280. eqnBVector[probePointCounter] = measured_z;
  2281. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2282. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2283. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2284. #else
  2285. bed_level[xCount][yCount] = measured_z + z_offset;
  2286. #endif
  2287. probePointCounter++;
  2288. idle();
  2289. } //xProbe
  2290. } //yProbe
  2291. clean_up_after_endstop_move();
  2292. #ifdef DELTA
  2293. if (!dryrun) extrapolate_unprobed_bed_level();
  2294. print_bed_level();
  2295. #else // !DELTA
  2296. // solve lsq problem
  2297. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2298. mean /= abl2;
  2299. if (verbose_level) {
  2300. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2301. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2302. SERIAL_PROTOCOLPGM(" b: ");
  2303. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2304. SERIAL_PROTOCOLPGM(" d: ");
  2305. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2306. SERIAL_EOL;
  2307. if (verbose_level > 2) {
  2308. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2309. SERIAL_PROTOCOL_F(mean, 8);
  2310. SERIAL_EOL;
  2311. }
  2312. }
  2313. // Show the Topography map if enabled
  2314. if (do_topography_map) {
  2315. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2316. SERIAL_PROTOCOLPGM("+-----------+\n");
  2317. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2318. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2319. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2320. SERIAL_PROTOCOLPGM("+-----------+\n");
  2321. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2322. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2323. int ind = yy * auto_bed_leveling_grid_points + xx;
  2324. float diff = eqnBVector[ind] - mean;
  2325. if (diff >= 0.0)
  2326. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2327. else
  2328. SERIAL_PROTOCOLCHAR(' ');
  2329. SERIAL_PROTOCOL_F(diff, 5);
  2330. } // xx
  2331. SERIAL_EOL;
  2332. } // yy
  2333. SERIAL_EOL;
  2334. } //do_topography_map
  2335. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2336. free(plane_equation_coefficients);
  2337. #endif //!DELTA
  2338. #else // !AUTO_BED_LEVELING_GRID
  2339. // Actions for each probe
  2340. ProbeAction p1, p2, p3;
  2341. if (deploy_probe_for_each_reading)
  2342. p1 = p2 = p3 = ProbeDeployAndStow;
  2343. else
  2344. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2345. // Probe at 3 arbitrary points
  2346. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2347. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2348. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2349. clean_up_after_endstop_move();
  2350. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2351. #endif // !AUTO_BED_LEVELING_GRID
  2352. #ifndef DELTA
  2353. if (verbose_level > 0)
  2354. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2355. if (!dryrun) {
  2356. // Correct the Z height difference from z-probe position and hotend tip position.
  2357. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2358. // When the bed is uneven, this height must be corrected.
  2359. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2360. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2361. z_tmp = current_position[Z_AXIS],
  2362. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2363. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2364. current_position[Z_AXIS] += z_tmp - real_z; // The difference is added to current position and sent to planner.
  2365. sync_plan_position();
  2366. }
  2367. #endif // !DELTA
  2368. #ifdef Z_PROBE_SLED
  2369. dock_sled(true); // dock the probe
  2370. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2371. stow_z_probe();
  2372. #endif
  2373. #ifdef Z_PROBE_END_SCRIPT
  2374. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2375. st_synchronize();
  2376. #endif
  2377. }
  2378. #ifndef Z_PROBE_SLED
  2379. inline void gcode_G30() {
  2380. deploy_z_probe(); // Engage Z Servo endstop if available
  2381. st_synchronize();
  2382. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2383. setup_for_endstop_move();
  2384. feedrate = homing_feedrate[Z_AXIS];
  2385. run_z_probe();
  2386. SERIAL_PROTOCOLPGM("Bed X: ");
  2387. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2388. SERIAL_PROTOCOLPGM(" Y: ");
  2389. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2390. SERIAL_PROTOCOLPGM(" Z: ");
  2391. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2392. SERIAL_EOL;
  2393. clean_up_after_endstop_move();
  2394. stow_z_probe(); // Retract Z Servo endstop if available
  2395. }
  2396. #endif //!Z_PROBE_SLED
  2397. #endif //ENABLE_AUTO_BED_LEVELING
  2398. /**
  2399. * G92: Set current position to given X Y Z E
  2400. */
  2401. inline void gcode_G92() {
  2402. if (!code_seen(axis_codes[E_AXIS]))
  2403. st_synchronize();
  2404. bool didXYZ = false;
  2405. for (int i = 0; i < NUM_AXIS; i++) {
  2406. if (code_seen(axis_codes[i])) {
  2407. float v = current_position[i] = code_value();
  2408. if (i == E_AXIS)
  2409. plan_set_e_position(v);
  2410. else
  2411. didXYZ = true;
  2412. }
  2413. }
  2414. if (didXYZ) {
  2415. #if defined(DELTA) || defined(SCARA)
  2416. sync_plan_position_delta();
  2417. #else
  2418. sync_plan_position();
  2419. #endif
  2420. }
  2421. }
  2422. #ifdef ULTIPANEL
  2423. /**
  2424. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2425. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2426. */
  2427. inline void gcode_M0_M1() {
  2428. char *args = current_command_args;
  2429. millis_t codenum = 0;
  2430. bool hasP = false, hasS = false;
  2431. if (code_seen('P')) {
  2432. codenum = code_value_short(); // milliseconds to wait
  2433. hasP = codenum > 0;
  2434. }
  2435. if (code_seen('S')) {
  2436. codenum = code_value() * 1000; // seconds to wait
  2437. hasS = codenum > 0;
  2438. }
  2439. if (!hasP && !hasS && *args != '\0')
  2440. lcd_setstatus(args, true);
  2441. else {
  2442. LCD_MESSAGEPGM(MSG_USERWAIT);
  2443. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2444. dontExpireStatus();
  2445. #endif
  2446. }
  2447. lcd_ignore_click();
  2448. st_synchronize();
  2449. refresh_cmd_timeout();
  2450. if (codenum > 0) {
  2451. codenum += previous_cmd_ms; // wait until this time for a click
  2452. while (millis() < codenum && !lcd_clicked()) idle();
  2453. lcd_ignore_click(false);
  2454. }
  2455. else {
  2456. if (!lcd_detected()) return;
  2457. while (!lcd_clicked()) idle();
  2458. }
  2459. if (IS_SD_PRINTING)
  2460. LCD_MESSAGEPGM(MSG_RESUMING);
  2461. else
  2462. LCD_MESSAGEPGM(WELCOME_MSG);
  2463. }
  2464. #endif // ULTIPANEL
  2465. /**
  2466. * M17: Enable power on all stepper motors
  2467. */
  2468. inline void gcode_M17() {
  2469. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2470. enable_all_steppers();
  2471. }
  2472. #ifdef SDSUPPORT
  2473. /**
  2474. * M20: List SD card to serial output
  2475. */
  2476. inline void gcode_M20() {
  2477. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2478. card.ls();
  2479. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2480. }
  2481. /**
  2482. * M21: Init SD Card
  2483. */
  2484. inline void gcode_M21() {
  2485. card.initsd();
  2486. }
  2487. /**
  2488. * M22: Release SD Card
  2489. */
  2490. inline void gcode_M22() {
  2491. card.release();
  2492. }
  2493. /**
  2494. * M23: Select a file
  2495. */
  2496. inline void gcode_M23() {
  2497. card.openFile(current_command_args, true);
  2498. }
  2499. /**
  2500. * M24: Start SD Print
  2501. */
  2502. inline void gcode_M24() {
  2503. card.startFileprint();
  2504. print_job_start_ms = millis();
  2505. }
  2506. /**
  2507. * M25: Pause SD Print
  2508. */
  2509. inline void gcode_M25() {
  2510. card.pauseSDPrint();
  2511. }
  2512. /**
  2513. * M26: Set SD Card file index
  2514. */
  2515. inline void gcode_M26() {
  2516. if (card.cardOK && code_seen('S'))
  2517. card.setIndex(code_value_short());
  2518. }
  2519. /**
  2520. * M27: Get SD Card status
  2521. */
  2522. inline void gcode_M27() {
  2523. card.getStatus();
  2524. }
  2525. /**
  2526. * M28: Start SD Write
  2527. */
  2528. inline void gcode_M28() {
  2529. card.openFile(current_command_args, false);
  2530. }
  2531. /**
  2532. * M29: Stop SD Write
  2533. * Processed in write to file routine above
  2534. */
  2535. inline void gcode_M29() {
  2536. // card.saving = false;
  2537. }
  2538. /**
  2539. * M30 <filename>: Delete SD Card file
  2540. */
  2541. inline void gcode_M30() {
  2542. if (card.cardOK) {
  2543. card.closefile();
  2544. card.removeFile(current_command_args);
  2545. }
  2546. }
  2547. #endif
  2548. /**
  2549. * M31: Get the time since the start of SD Print (or last M109)
  2550. */
  2551. inline void gcode_M31() {
  2552. print_job_stop_ms = millis();
  2553. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2554. int min = t / 60, sec = t % 60;
  2555. char time[30];
  2556. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2557. SERIAL_ECHO_START;
  2558. SERIAL_ECHOLN(time);
  2559. lcd_setstatus(time);
  2560. autotempShutdown();
  2561. }
  2562. #ifdef SDSUPPORT
  2563. /**
  2564. * M32: Select file and start SD Print
  2565. */
  2566. inline void gcode_M32() {
  2567. if (card.sdprinting)
  2568. st_synchronize();
  2569. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2570. if (!namestartpos)
  2571. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2572. else
  2573. namestartpos++; //to skip the '!'
  2574. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2575. if (card.cardOK) {
  2576. card.openFile(namestartpos, true, !call_procedure);
  2577. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2578. card.setIndex(code_value_short());
  2579. card.startFileprint();
  2580. if (!call_procedure)
  2581. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2582. }
  2583. }
  2584. #ifdef LONG_FILENAME_HOST_SUPPORT
  2585. /**
  2586. * M33: Get the long full path of a file or folder
  2587. *
  2588. * Parameters:
  2589. * <dospath> Case-insensitive DOS-style path to a file or folder
  2590. *
  2591. * Example:
  2592. * M33 miscel~1/armchair/armcha~1.gco
  2593. *
  2594. * Output:
  2595. * /Miscellaneous/Armchair/Armchair.gcode
  2596. */
  2597. inline void gcode_M33() {
  2598. card.printLongPath(current_command_args);
  2599. }
  2600. #endif
  2601. /**
  2602. * M928: Start SD Write
  2603. */
  2604. inline void gcode_M928() {
  2605. card.openLogFile(current_command_args);
  2606. }
  2607. #endif // SDSUPPORT
  2608. /**
  2609. * M42: Change pin status via GCode
  2610. */
  2611. inline void gcode_M42() {
  2612. if (code_seen('S')) {
  2613. int pin_status = code_value_short(),
  2614. pin_number = LED_PIN;
  2615. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2616. pin_number = code_value_short();
  2617. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2618. if (sensitive_pins[i] == pin_number) {
  2619. pin_number = -1;
  2620. break;
  2621. }
  2622. }
  2623. #if HAS_FAN
  2624. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2625. #endif
  2626. if (pin_number > -1) {
  2627. pinMode(pin_number, OUTPUT);
  2628. digitalWrite(pin_number, pin_status);
  2629. analogWrite(pin_number, pin_status);
  2630. }
  2631. } // code_seen('S')
  2632. }
  2633. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2634. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2635. #ifdef Z_PROBE_ENDSTOP
  2636. #if !HAS_Z_PROBE
  2637. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2638. #endif
  2639. #elif !HAS_Z_MIN
  2640. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2641. #endif
  2642. /**
  2643. * M48: Z-Probe repeatability measurement function.
  2644. *
  2645. * Usage:
  2646. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2647. * P = Number of sampled points (4-50, default 10)
  2648. * X = Sample X position
  2649. * Y = Sample Y position
  2650. * V = Verbose level (0-4, default=1)
  2651. * E = Engage probe for each reading
  2652. * L = Number of legs of movement before probe
  2653. *
  2654. * This function assumes the bed has been homed. Specifically, that a G28 command
  2655. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2656. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2657. * regenerated.
  2658. */
  2659. inline void gcode_M48() {
  2660. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2661. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2662. if (code_seen('V') || code_seen('v')) {
  2663. verbose_level = code_value_short();
  2664. if (verbose_level < 0 || verbose_level > 4 ) {
  2665. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2666. return;
  2667. }
  2668. }
  2669. if (verbose_level > 0)
  2670. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2671. if (code_seen('P') || code_seen('p')) {
  2672. n_samples = code_value_short();
  2673. if (n_samples < 4 || n_samples > 50) {
  2674. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2675. return;
  2676. }
  2677. }
  2678. double X_current = st_get_position_mm(X_AXIS),
  2679. Y_current = st_get_position_mm(Y_AXIS),
  2680. Z_current = st_get_position_mm(Z_AXIS),
  2681. E_current = st_get_position_mm(E_AXIS),
  2682. X_probe_location = X_current, Y_probe_location = Y_current,
  2683. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2684. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2685. if (code_seen('X') || code_seen('x')) {
  2686. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2687. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2688. out_of_range_error(PSTR("X"));
  2689. return;
  2690. }
  2691. }
  2692. if (code_seen('Y') || code_seen('y')) {
  2693. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2694. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2695. out_of_range_error(PSTR("Y"));
  2696. return;
  2697. }
  2698. }
  2699. if (code_seen('L') || code_seen('l')) {
  2700. n_legs = code_value_short();
  2701. if (n_legs == 1) n_legs = 2;
  2702. if (n_legs < 0 || n_legs > 15) {
  2703. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2704. return;
  2705. }
  2706. }
  2707. //
  2708. // Do all the preliminary setup work. First raise the probe.
  2709. //
  2710. st_synchronize();
  2711. plan_bed_level_matrix.set_to_identity();
  2712. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2713. st_synchronize();
  2714. //
  2715. // Now get everything to the specified probe point So we can safely do a probe to
  2716. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2717. // use that as a starting point for each probe.
  2718. //
  2719. if (verbose_level > 2)
  2720. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2721. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2722. E_current,
  2723. homing_feedrate[X_AXIS]/60,
  2724. active_extruder);
  2725. st_synchronize();
  2726. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2727. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2728. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2729. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2730. //
  2731. // OK, do the initial probe to get us close to the bed.
  2732. // Then retrace the right amount and use that in subsequent probes
  2733. //
  2734. deploy_z_probe();
  2735. setup_for_endstop_move();
  2736. run_z_probe();
  2737. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2738. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2739. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2740. E_current,
  2741. homing_feedrate[X_AXIS]/60,
  2742. active_extruder);
  2743. st_synchronize();
  2744. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2745. if (deploy_probe_for_each_reading) stow_z_probe();
  2746. for (uint8_t n=0; n < n_samples; n++) {
  2747. // Make sure we are at the probe location
  2748. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2749. if (n_legs) {
  2750. millis_t ms = millis();
  2751. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2752. theta = RADIANS(ms % 360L);
  2753. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2754. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2755. //SERIAL_ECHOPAIR(" theta: ",theta);
  2756. //SERIAL_ECHOPAIR(" direction: ",dir);
  2757. //SERIAL_EOL;
  2758. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2759. ms = millis();
  2760. theta += RADIANS(dir * (ms % 20L));
  2761. radius += (ms % 10L) - 5L;
  2762. if (radius < 0.0) radius = -radius;
  2763. X_current = X_probe_location + cos(theta) * radius;
  2764. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2765. Y_current = Y_probe_location + sin(theta) * radius;
  2766. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2767. if (verbose_level > 3) {
  2768. SERIAL_ECHOPAIR("x: ", X_current);
  2769. SERIAL_ECHOPAIR("y: ", Y_current);
  2770. SERIAL_EOL;
  2771. }
  2772. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2773. } // n_legs loop
  2774. // Go back to the probe location
  2775. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2776. } // n_legs
  2777. if (deploy_probe_for_each_reading) {
  2778. deploy_z_probe();
  2779. delay(1000);
  2780. }
  2781. setup_for_endstop_move();
  2782. run_z_probe();
  2783. sample_set[n] = current_position[Z_AXIS];
  2784. //
  2785. // Get the current mean for the data points we have so far
  2786. //
  2787. sum = 0.0;
  2788. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2789. mean = sum / (n + 1);
  2790. //
  2791. // Now, use that mean to calculate the standard deviation for the
  2792. // data points we have so far
  2793. //
  2794. sum = 0.0;
  2795. for (uint8_t j = 0; j <= n; j++) {
  2796. float ss = sample_set[j] - mean;
  2797. sum += ss * ss;
  2798. }
  2799. sigma = sqrt(sum / (n + 1));
  2800. if (verbose_level > 1) {
  2801. SERIAL_PROTOCOL(n+1);
  2802. SERIAL_PROTOCOLPGM(" of ");
  2803. SERIAL_PROTOCOL(n_samples);
  2804. SERIAL_PROTOCOLPGM(" z: ");
  2805. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2806. if (verbose_level > 2) {
  2807. SERIAL_PROTOCOLPGM(" mean: ");
  2808. SERIAL_PROTOCOL_F(mean,6);
  2809. SERIAL_PROTOCOLPGM(" sigma: ");
  2810. SERIAL_PROTOCOL_F(sigma,6);
  2811. }
  2812. }
  2813. if (verbose_level > 0) SERIAL_EOL;
  2814. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2815. st_synchronize();
  2816. // Stow between
  2817. if (deploy_probe_for_each_reading) {
  2818. stow_z_probe();
  2819. delay(1000);
  2820. }
  2821. }
  2822. // Stow after
  2823. if (!deploy_probe_for_each_reading) {
  2824. stow_z_probe();
  2825. delay(1000);
  2826. }
  2827. clean_up_after_endstop_move();
  2828. if (verbose_level > 0) {
  2829. SERIAL_PROTOCOLPGM("Mean: ");
  2830. SERIAL_PROTOCOL_F(mean, 6);
  2831. SERIAL_EOL;
  2832. }
  2833. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2834. SERIAL_PROTOCOL_F(sigma, 6);
  2835. SERIAL_EOL; SERIAL_EOL;
  2836. }
  2837. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2838. /**
  2839. * M104: Set hot end temperature
  2840. */
  2841. inline void gcode_M104() {
  2842. if (setTargetedHotend(104)) return;
  2843. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2844. if (code_seen('S')) {
  2845. float temp = code_value();
  2846. setTargetHotend(temp, target_extruder);
  2847. #ifdef DUAL_X_CARRIAGE
  2848. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2849. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2850. #endif
  2851. }
  2852. }
  2853. /**
  2854. * M105: Read hot end and bed temperature
  2855. */
  2856. inline void gcode_M105() {
  2857. if (setTargetedHotend(105)) return;
  2858. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2859. SERIAL_PROTOCOLPGM(MSG_OK);
  2860. #if HAS_TEMP_0 || defined(HEATER_0_USES_MAX6675)
  2861. SERIAL_PROTOCOLPGM(" T:");
  2862. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2863. SERIAL_PROTOCOLPGM(" /");
  2864. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2865. #endif
  2866. #if HAS_TEMP_BED
  2867. SERIAL_PROTOCOLPGM(" B:");
  2868. SERIAL_PROTOCOL_F(degBed(), 1);
  2869. SERIAL_PROTOCOLPGM(" /");
  2870. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2871. #endif
  2872. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2873. SERIAL_PROTOCOLPGM(" T");
  2874. SERIAL_PROTOCOL(e);
  2875. SERIAL_PROTOCOLCHAR(':');
  2876. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2877. SERIAL_PROTOCOLPGM(" /");
  2878. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2879. }
  2880. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2881. SERIAL_ERROR_START;
  2882. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2883. #endif
  2884. SERIAL_PROTOCOLPGM(" @:");
  2885. #ifdef EXTRUDER_WATTS
  2886. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2887. SERIAL_PROTOCOLCHAR('W');
  2888. #else
  2889. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2890. #endif
  2891. SERIAL_PROTOCOLPGM(" B@:");
  2892. #ifdef BED_WATTS
  2893. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2894. SERIAL_PROTOCOLCHAR('W');
  2895. #else
  2896. SERIAL_PROTOCOL(getHeaterPower(-1));
  2897. #endif
  2898. #ifdef SHOW_TEMP_ADC_VALUES
  2899. #if HAS_TEMP_BED
  2900. SERIAL_PROTOCOLPGM(" ADC B:");
  2901. SERIAL_PROTOCOL_F(degBed(),1);
  2902. SERIAL_PROTOCOLPGM("C->");
  2903. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2904. #endif
  2905. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2906. SERIAL_PROTOCOLPGM(" T");
  2907. SERIAL_PROTOCOL(cur_extruder);
  2908. SERIAL_PROTOCOLCHAR(':');
  2909. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2910. SERIAL_PROTOCOLPGM("C->");
  2911. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2912. }
  2913. #endif
  2914. SERIAL_EOL;
  2915. }
  2916. #if HAS_FAN
  2917. /**
  2918. * M106: Set Fan Speed
  2919. */
  2920. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2921. /**
  2922. * M107: Fan Off
  2923. */
  2924. inline void gcode_M107() { fanSpeed = 0; }
  2925. #endif // HAS_FAN
  2926. /**
  2927. * M109: Wait for extruder(s) to reach temperature
  2928. */
  2929. inline void gcode_M109() {
  2930. if (setTargetedHotend(109)) return;
  2931. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2932. LCD_MESSAGEPGM(MSG_HEATING);
  2933. no_wait_for_cooling = code_seen('S');
  2934. if (no_wait_for_cooling || code_seen('R')) {
  2935. float temp = code_value();
  2936. setTargetHotend(temp, target_extruder);
  2937. #ifdef DUAL_X_CARRIAGE
  2938. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2939. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2940. #endif
  2941. }
  2942. #ifdef AUTOTEMP
  2943. autotemp_enabled = code_seen('F');
  2944. if (autotemp_enabled) autotemp_factor = code_value();
  2945. if (code_seen('S')) autotemp_min = code_value();
  2946. if (code_seen('B')) autotemp_max = code_value();
  2947. #endif
  2948. millis_t temp_ms = millis();
  2949. /* See if we are heating up or cooling down */
  2950. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2951. cancel_heatup = false;
  2952. #ifdef TEMP_RESIDENCY_TIME
  2953. long residency_start_ms = -1;
  2954. /* continue to loop until we have reached the target temp
  2955. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2956. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2957. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2958. #else
  2959. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2960. #endif //TEMP_RESIDENCY_TIME
  2961. { // while loop
  2962. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2963. SERIAL_PROTOCOLPGM("T:");
  2964. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2965. SERIAL_PROTOCOLPGM(" E:");
  2966. SERIAL_PROTOCOL((int)target_extruder);
  2967. #ifdef TEMP_RESIDENCY_TIME
  2968. SERIAL_PROTOCOLPGM(" W:");
  2969. if (residency_start_ms > -1) {
  2970. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2971. SERIAL_PROTOCOLLN(temp_ms);
  2972. }
  2973. else {
  2974. SERIAL_PROTOCOLLNPGM("?");
  2975. }
  2976. #else
  2977. SERIAL_EOL;
  2978. #endif
  2979. temp_ms = millis();
  2980. }
  2981. idle();
  2982. #ifdef TEMP_RESIDENCY_TIME
  2983. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2984. // or when current temp falls outside the hysteresis after target temp was reached
  2985. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2986. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2987. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2988. {
  2989. residency_start_ms = millis();
  2990. }
  2991. #endif //TEMP_RESIDENCY_TIME
  2992. }
  2993. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2994. refresh_cmd_timeout();
  2995. print_job_start_ms = previous_cmd_ms;
  2996. }
  2997. #if HAS_TEMP_BED
  2998. /**
  2999. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3000. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3001. */
  3002. inline void gcode_M190() {
  3003. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3004. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3005. no_wait_for_cooling = code_seen('S');
  3006. if (no_wait_for_cooling || code_seen('R'))
  3007. setTargetBed(code_value());
  3008. millis_t temp_ms = millis();
  3009. cancel_heatup = false;
  3010. target_direction = isHeatingBed(); // true if heating, false if cooling
  3011. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  3012. millis_t ms = millis();
  3013. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  3014. temp_ms = ms;
  3015. float tt = degHotend(active_extruder);
  3016. SERIAL_PROTOCOLPGM("T:");
  3017. SERIAL_PROTOCOL(tt);
  3018. SERIAL_PROTOCOLPGM(" E:");
  3019. SERIAL_PROTOCOL((int)active_extruder);
  3020. SERIAL_PROTOCOLPGM(" B:");
  3021. SERIAL_PROTOCOL_F(degBed(), 1);
  3022. SERIAL_EOL;
  3023. }
  3024. idle();
  3025. }
  3026. LCD_MESSAGEPGM(MSG_BED_DONE);
  3027. refresh_cmd_timeout();
  3028. }
  3029. #endif // HAS_TEMP_BED
  3030. /**
  3031. * M111: Set the debug level
  3032. */
  3033. inline void gcode_M111() {
  3034. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_COMMUNICATION;
  3035. SERIAL_ECHO_START;
  3036. if (marlin_debug_flags & DEBUG_ECHO) SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  3037. // FOR MOMENT NOT ACTIVE
  3038. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3039. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3040. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3041. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3042. setTargetBed(0);
  3043. for (int8_t cur_hotend = 0; cur_hotend < EXTRUDERS; ++cur_hotend) {
  3044. setTargetHotend(0, cur_hotend);
  3045. }
  3046. }
  3047. }
  3048. /**
  3049. * M112: Emergency Stop
  3050. */
  3051. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3052. #ifdef BARICUDA
  3053. #if HAS_HEATER_1
  3054. /**
  3055. * M126: Heater 1 valve open
  3056. */
  3057. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3058. /**
  3059. * M127: Heater 1 valve close
  3060. */
  3061. inline void gcode_M127() { ValvePressure = 0; }
  3062. #endif
  3063. #if HAS_HEATER_2
  3064. /**
  3065. * M128: Heater 2 valve open
  3066. */
  3067. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3068. /**
  3069. * M129: Heater 2 valve close
  3070. */
  3071. inline void gcode_M129() { EtoPPressure = 0; }
  3072. #endif
  3073. #endif //BARICUDA
  3074. /**
  3075. * M140: Set bed temperature
  3076. */
  3077. inline void gcode_M140() {
  3078. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3079. if (code_seen('S')) setTargetBed(code_value());
  3080. }
  3081. #ifdef ULTIPANEL
  3082. /**
  3083. * M145: Set the heatup state for a material in the LCD menu
  3084. * S<material> (0=PLA, 1=ABS)
  3085. * H<hotend temp>
  3086. * B<bed temp>
  3087. * F<fan speed>
  3088. */
  3089. inline void gcode_M145() {
  3090. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3091. if (material < 0 || material > 1) {
  3092. SERIAL_ERROR_START;
  3093. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3094. }
  3095. else {
  3096. int v;
  3097. switch (material) {
  3098. case 0:
  3099. if (code_seen('H')) {
  3100. v = code_value_short();
  3101. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3102. }
  3103. if (code_seen('F')) {
  3104. v = code_value_short();
  3105. plaPreheatFanSpeed = constrain(v, 0, 255);
  3106. }
  3107. #if TEMP_SENSOR_BED != 0
  3108. if (code_seen('B')) {
  3109. v = code_value_short();
  3110. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3111. }
  3112. #endif
  3113. break;
  3114. case 1:
  3115. if (code_seen('H')) {
  3116. v = code_value_short();
  3117. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3118. }
  3119. if (code_seen('F')) {
  3120. v = code_value_short();
  3121. absPreheatFanSpeed = constrain(v, 0, 255);
  3122. }
  3123. #if TEMP_SENSOR_BED != 0
  3124. if (code_seen('B')) {
  3125. v = code_value_short();
  3126. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3127. }
  3128. #endif
  3129. break;
  3130. }
  3131. }
  3132. }
  3133. #endif
  3134. #if HAS_POWER_SWITCH
  3135. /**
  3136. * M80: Turn on Power Supply
  3137. */
  3138. inline void gcode_M80() {
  3139. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3140. // If you have a switch on suicide pin, this is useful
  3141. // if you want to start another print with suicide feature after
  3142. // a print without suicide...
  3143. #if HAS_SUICIDE
  3144. OUT_WRITE(SUICIDE_PIN, HIGH);
  3145. #endif
  3146. #ifdef ULTIPANEL
  3147. powersupply = true;
  3148. LCD_MESSAGEPGM(WELCOME_MSG);
  3149. lcd_update();
  3150. #endif
  3151. }
  3152. #endif // HAS_POWER_SWITCH
  3153. /**
  3154. * M81: Turn off Power, including Power Supply, if there is one.
  3155. *
  3156. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3157. */
  3158. inline void gcode_M81() {
  3159. disable_all_heaters();
  3160. st_synchronize();
  3161. disable_e0();
  3162. disable_e1();
  3163. disable_e2();
  3164. disable_e3();
  3165. finishAndDisableSteppers();
  3166. fanSpeed = 0;
  3167. delay(1000); // Wait 1 second before switching off
  3168. #if HAS_SUICIDE
  3169. st_synchronize();
  3170. suicide();
  3171. #elif HAS_POWER_SWITCH
  3172. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3173. #endif
  3174. #ifdef ULTIPANEL
  3175. #if HAS_POWER_SWITCH
  3176. powersupply = false;
  3177. #endif
  3178. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3179. lcd_update();
  3180. #endif
  3181. }
  3182. /**
  3183. * M82: Set E codes absolute (default)
  3184. */
  3185. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3186. /**
  3187. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  3188. */
  3189. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3190. /**
  3191. * M18, M84: Disable all stepper motors
  3192. */
  3193. inline void gcode_M18_M84() {
  3194. if (code_seen('S')) {
  3195. stepper_inactive_time = code_value() * 1000;
  3196. }
  3197. else {
  3198. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3199. if (all_axis) {
  3200. st_synchronize();
  3201. disable_e0();
  3202. disable_e1();
  3203. disable_e2();
  3204. disable_e3();
  3205. finishAndDisableSteppers();
  3206. }
  3207. else {
  3208. st_synchronize();
  3209. if (code_seen('X')) disable_x();
  3210. if (code_seen('Y')) disable_y();
  3211. if (code_seen('Z')) disable_z();
  3212. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3213. if (code_seen('E')) {
  3214. disable_e0();
  3215. disable_e1();
  3216. disable_e2();
  3217. disable_e3();
  3218. }
  3219. #endif
  3220. }
  3221. }
  3222. }
  3223. /**
  3224. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3225. */
  3226. inline void gcode_M85() {
  3227. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3228. }
  3229. /**
  3230. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3231. * (Follows the same syntax as G92)
  3232. */
  3233. inline void gcode_M92() {
  3234. for(int8_t i=0; i < NUM_AXIS; i++) {
  3235. if (code_seen(axis_codes[i])) {
  3236. if (i == E_AXIS) {
  3237. float value = code_value();
  3238. if (value < 20.0) {
  3239. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3240. max_e_jerk *= factor;
  3241. max_feedrate[i] *= factor;
  3242. axis_steps_per_sqr_second[i] *= factor;
  3243. }
  3244. axis_steps_per_unit[i] = value;
  3245. }
  3246. else {
  3247. axis_steps_per_unit[i] = code_value();
  3248. }
  3249. }
  3250. }
  3251. }
  3252. /**
  3253. * M114: Output current position to serial port
  3254. */
  3255. inline void gcode_M114() {
  3256. SERIAL_PROTOCOLPGM("X:");
  3257. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3258. SERIAL_PROTOCOLPGM(" Y:");
  3259. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3260. SERIAL_PROTOCOLPGM(" Z:");
  3261. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3262. SERIAL_PROTOCOLPGM(" E:");
  3263. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3264. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3265. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3266. SERIAL_PROTOCOLPGM(" Y:");
  3267. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3268. SERIAL_PROTOCOLPGM(" Z:");
  3269. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3270. SERIAL_EOL;
  3271. #ifdef SCARA
  3272. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3273. SERIAL_PROTOCOL(delta[X_AXIS]);
  3274. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3275. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3276. SERIAL_EOL;
  3277. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3278. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3279. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3280. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3281. SERIAL_EOL;
  3282. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3283. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3284. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3285. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3286. SERIAL_EOL; SERIAL_EOL;
  3287. #endif
  3288. }
  3289. /**
  3290. * M115: Capabilities string
  3291. */
  3292. inline void gcode_M115() {
  3293. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3294. }
  3295. /**
  3296. * M117: Set LCD Status Message
  3297. */
  3298. inline void gcode_M117() {
  3299. lcd_setstatus(current_command_args);
  3300. }
  3301. /**
  3302. * M119: Output endstop states to serial output
  3303. */
  3304. inline void gcode_M119() {
  3305. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3306. #if HAS_X_MIN
  3307. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3308. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3309. #endif
  3310. #if HAS_X_MAX
  3311. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3312. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3313. #endif
  3314. #if HAS_Y_MIN
  3315. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3316. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3317. #endif
  3318. #if HAS_Y_MAX
  3319. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3320. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3321. #endif
  3322. #if HAS_Z_MIN
  3323. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3324. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3325. #endif
  3326. #if HAS_Z_MAX
  3327. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3328. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3329. #endif
  3330. #if HAS_Z2_MAX
  3331. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3332. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3333. #endif
  3334. #if HAS_Z_PROBE
  3335. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3336. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3337. #endif
  3338. }
  3339. /**
  3340. * M120: Enable endstops
  3341. */
  3342. inline void gcode_M120() { enable_endstops(true); }
  3343. /**
  3344. * M121: Disable endstops
  3345. */
  3346. inline void gcode_M121() { enable_endstops(false); }
  3347. #ifdef BLINKM
  3348. /**
  3349. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3350. */
  3351. inline void gcode_M150() {
  3352. SendColors(
  3353. code_seen('R') ? (byte)code_value_short() : 0,
  3354. code_seen('U') ? (byte)code_value_short() : 0,
  3355. code_seen('B') ? (byte)code_value_short() : 0
  3356. );
  3357. }
  3358. #endif // BLINKM
  3359. /**
  3360. * M200: Set filament diameter and set E axis units to cubic millimeters
  3361. *
  3362. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3363. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3364. */
  3365. inline void gcode_M200() {
  3366. if (setTargetedHotend(200)) return;
  3367. if (code_seen('D')) {
  3368. float diameter = code_value();
  3369. // setting any extruder filament size disables volumetric on the assumption that
  3370. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3371. // for all extruders
  3372. volumetric_enabled = (diameter != 0.0);
  3373. if (volumetric_enabled) {
  3374. filament_size[target_extruder] = diameter;
  3375. // make sure all extruders have some sane value for the filament size
  3376. for (int i=0; i<EXTRUDERS; i++)
  3377. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3378. }
  3379. }
  3380. else {
  3381. //reserved for setting filament diameter via UFID or filament measuring device
  3382. return;
  3383. }
  3384. calculate_volumetric_multipliers();
  3385. }
  3386. /**
  3387. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3388. */
  3389. inline void gcode_M201() {
  3390. for (int8_t i=0; i < NUM_AXIS; i++) {
  3391. if (code_seen(axis_codes[i])) {
  3392. max_acceleration_units_per_sq_second[i] = code_value();
  3393. }
  3394. }
  3395. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3396. reset_acceleration_rates();
  3397. }
  3398. #if 0 // Not used for Sprinter/grbl gen6
  3399. inline void gcode_M202() {
  3400. for(int8_t i=0; i < NUM_AXIS; i++) {
  3401. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3402. }
  3403. }
  3404. #endif
  3405. /**
  3406. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3407. */
  3408. inline void gcode_M203() {
  3409. for (int8_t i=0; i < NUM_AXIS; i++) {
  3410. if (code_seen(axis_codes[i])) {
  3411. max_feedrate[i] = code_value();
  3412. }
  3413. }
  3414. }
  3415. /**
  3416. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3417. *
  3418. * P = Printing moves
  3419. * R = Retract only (no X, Y, Z) moves
  3420. * T = Travel (non printing) moves
  3421. *
  3422. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3423. */
  3424. inline void gcode_M204() {
  3425. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3426. acceleration = code_value();
  3427. travel_acceleration = acceleration;
  3428. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3429. SERIAL_EOL;
  3430. }
  3431. if (code_seen('P')) {
  3432. acceleration = code_value();
  3433. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3434. SERIAL_EOL;
  3435. }
  3436. if (code_seen('R')) {
  3437. retract_acceleration = code_value();
  3438. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3439. SERIAL_EOL;
  3440. }
  3441. if (code_seen('T')) {
  3442. travel_acceleration = code_value();
  3443. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3444. SERIAL_EOL;
  3445. }
  3446. }
  3447. /**
  3448. * M205: Set Advanced Settings
  3449. *
  3450. * S = Min Feed Rate (mm/s)
  3451. * T = Min Travel Feed Rate (mm/s)
  3452. * B = Min Segment Time (µs)
  3453. * X = Max XY Jerk (mm/s/s)
  3454. * Z = Max Z Jerk (mm/s/s)
  3455. * E = Max E Jerk (mm/s/s)
  3456. */
  3457. inline void gcode_M205() {
  3458. if (code_seen('S')) minimumfeedrate = code_value();
  3459. if (code_seen('T')) mintravelfeedrate = code_value();
  3460. if (code_seen('B')) minsegmenttime = code_value();
  3461. if (code_seen('X')) max_xy_jerk = code_value();
  3462. if (code_seen('Z')) max_z_jerk = code_value();
  3463. if (code_seen('E')) max_e_jerk = code_value();
  3464. }
  3465. /**
  3466. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3467. */
  3468. inline void gcode_M206() {
  3469. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3470. if (code_seen(axis_codes[i])) {
  3471. home_offset[i] = code_value();
  3472. }
  3473. }
  3474. #ifdef SCARA
  3475. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3476. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3477. #endif
  3478. }
  3479. #ifdef DELTA
  3480. /**
  3481. * M665: Set delta configurations
  3482. *
  3483. * L = diagonal rod
  3484. * R = delta radius
  3485. * S = segments per second
  3486. */
  3487. inline void gcode_M665() {
  3488. if (code_seen('L')) delta_diagonal_rod = code_value();
  3489. if (code_seen('R')) delta_radius = code_value();
  3490. if (code_seen('S')) delta_segments_per_second = code_value();
  3491. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3492. }
  3493. /**
  3494. * M666: Set delta endstop adjustment
  3495. */
  3496. inline void gcode_M666() {
  3497. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3498. if (code_seen(axis_codes[i])) {
  3499. endstop_adj[i] = code_value();
  3500. }
  3501. }
  3502. }
  3503. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3504. /**
  3505. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3506. */
  3507. inline void gcode_M666() {
  3508. if (code_seen('Z')) z_endstop_adj = code_value();
  3509. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3510. SERIAL_EOL;
  3511. }
  3512. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3513. #ifdef FWRETRACT
  3514. /**
  3515. * M207: Set firmware retraction values
  3516. *
  3517. * S[+mm] retract_length
  3518. * W[+mm] retract_length_swap (multi-extruder)
  3519. * F[mm/min] retract_feedrate
  3520. * Z[mm] retract_zlift
  3521. */
  3522. inline void gcode_M207() {
  3523. if (code_seen('S')) retract_length = code_value();
  3524. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3525. if (code_seen('Z')) retract_zlift = code_value();
  3526. #if EXTRUDERS > 1
  3527. if (code_seen('W')) retract_length_swap = code_value();
  3528. #endif
  3529. }
  3530. /**
  3531. * M208: Set firmware un-retraction values
  3532. *
  3533. * S[+mm] retract_recover_length (in addition to M207 S*)
  3534. * W[+mm] retract_recover_length_swap (multi-extruder)
  3535. * F[mm/min] retract_recover_feedrate
  3536. */
  3537. inline void gcode_M208() {
  3538. if (code_seen('S')) retract_recover_length = code_value();
  3539. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3540. #if EXTRUDERS > 1
  3541. if (code_seen('W')) retract_recover_length_swap = code_value();
  3542. #endif
  3543. }
  3544. /**
  3545. * M209: Enable automatic retract (M209 S1)
  3546. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3547. */
  3548. inline void gcode_M209() {
  3549. if (code_seen('S')) {
  3550. int t = code_value_short();
  3551. switch(t) {
  3552. case 0:
  3553. autoretract_enabled = false;
  3554. break;
  3555. case 1:
  3556. autoretract_enabled = true;
  3557. break;
  3558. default:
  3559. unknown_command_error();
  3560. return;
  3561. }
  3562. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3563. }
  3564. }
  3565. #endif // FWRETRACT
  3566. #if EXTRUDERS > 1
  3567. /**
  3568. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3569. */
  3570. inline void gcode_M218() {
  3571. if (setTargetedHotend(218)) return;
  3572. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3573. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3574. #ifdef DUAL_X_CARRIAGE
  3575. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3576. #endif
  3577. SERIAL_ECHO_START;
  3578. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3579. for (int e = 0; e < EXTRUDERS; e++) {
  3580. SERIAL_CHAR(' ');
  3581. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3582. SERIAL_CHAR(',');
  3583. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3584. #ifdef DUAL_X_CARRIAGE
  3585. SERIAL_CHAR(',');
  3586. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3587. #endif
  3588. }
  3589. SERIAL_EOL;
  3590. }
  3591. #endif // EXTRUDERS > 1
  3592. /**
  3593. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3594. */
  3595. inline void gcode_M220() {
  3596. if (code_seen('S')) feedrate_multiplier = code_value();
  3597. }
  3598. /**
  3599. * M221: Set extrusion percentage (M221 T0 S95)
  3600. */
  3601. inline void gcode_M221() {
  3602. if (code_seen('S')) {
  3603. int sval = code_value();
  3604. if (code_seen('T')) {
  3605. if (setTargetedHotend(221)) return;
  3606. extruder_multiplier[target_extruder] = sval;
  3607. }
  3608. else {
  3609. extruder_multiplier[active_extruder] = sval;
  3610. }
  3611. }
  3612. }
  3613. /**
  3614. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3615. */
  3616. inline void gcode_M226() {
  3617. if (code_seen('P')) {
  3618. int pin_number = code_value();
  3619. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3620. if (pin_state >= -1 && pin_state <= 1) {
  3621. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3622. if (sensitive_pins[i] == pin_number) {
  3623. pin_number = -1;
  3624. break;
  3625. }
  3626. }
  3627. if (pin_number > -1) {
  3628. int target = LOW;
  3629. st_synchronize();
  3630. pinMode(pin_number, INPUT);
  3631. switch(pin_state){
  3632. case 1:
  3633. target = HIGH;
  3634. break;
  3635. case 0:
  3636. target = LOW;
  3637. break;
  3638. case -1:
  3639. target = !digitalRead(pin_number);
  3640. break;
  3641. }
  3642. while (digitalRead(pin_number) != target) idle();
  3643. } // pin_number > -1
  3644. } // pin_state -1 0 1
  3645. } // code_seen('P')
  3646. }
  3647. #if NUM_SERVOS > 0
  3648. /**
  3649. * M280: Get or set servo position. P<index> S<angle>
  3650. */
  3651. inline void gcode_M280() {
  3652. int servo_index = code_seen('P') ? code_value_short() : -1;
  3653. int servo_position = 0;
  3654. if (code_seen('S')) {
  3655. servo_position = code_value_short();
  3656. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3657. Servo *srv = &servo[servo_index];
  3658. #if SERVO_LEVELING
  3659. srv->attach(0);
  3660. #endif
  3661. srv->write(servo_position);
  3662. #if SERVO_LEVELING
  3663. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3664. srv->detach();
  3665. #endif
  3666. }
  3667. else {
  3668. SERIAL_ECHO_START;
  3669. SERIAL_ECHO("Servo ");
  3670. SERIAL_ECHO(servo_index);
  3671. SERIAL_ECHOLN(" out of range");
  3672. }
  3673. }
  3674. else if (servo_index >= 0) {
  3675. SERIAL_PROTOCOL(MSG_OK);
  3676. SERIAL_PROTOCOL(" Servo ");
  3677. SERIAL_PROTOCOL(servo_index);
  3678. SERIAL_PROTOCOL(": ");
  3679. SERIAL_PROTOCOL(servo[servo_index].read());
  3680. SERIAL_EOL;
  3681. }
  3682. }
  3683. #endif // NUM_SERVOS > 0
  3684. #if HAS_BUZZER
  3685. /**
  3686. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3687. */
  3688. inline void gcode_M300() {
  3689. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3690. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3691. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3692. buzz(beepP, beepS);
  3693. }
  3694. #endif // HAS_BUZZER
  3695. #ifdef PIDTEMP
  3696. /**
  3697. * M301: Set PID parameters P I D (and optionally C)
  3698. */
  3699. inline void gcode_M301() {
  3700. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3701. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3702. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3703. if (e < EXTRUDERS) { // catch bad input value
  3704. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3705. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3706. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3707. #ifdef PID_ADD_EXTRUSION_RATE
  3708. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3709. #endif
  3710. updatePID();
  3711. SERIAL_PROTOCOL(MSG_OK);
  3712. #ifdef PID_PARAMS_PER_EXTRUDER
  3713. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3714. SERIAL_PROTOCOL(e);
  3715. #endif // PID_PARAMS_PER_EXTRUDER
  3716. SERIAL_PROTOCOL(" p:");
  3717. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3718. SERIAL_PROTOCOL(" i:");
  3719. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3720. SERIAL_PROTOCOL(" d:");
  3721. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3722. #ifdef PID_ADD_EXTRUSION_RATE
  3723. SERIAL_PROTOCOL(" c:");
  3724. //Kc does not have scaling applied above, or in resetting defaults
  3725. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3726. #endif
  3727. SERIAL_EOL;
  3728. }
  3729. else {
  3730. SERIAL_ECHO_START;
  3731. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3732. }
  3733. }
  3734. #endif // PIDTEMP
  3735. #ifdef PIDTEMPBED
  3736. inline void gcode_M304() {
  3737. if (code_seen('P')) bedKp = code_value();
  3738. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3739. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3740. updatePID();
  3741. SERIAL_PROTOCOL(MSG_OK);
  3742. SERIAL_PROTOCOL(" p:");
  3743. SERIAL_PROTOCOL(bedKp);
  3744. SERIAL_PROTOCOL(" i:");
  3745. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3746. SERIAL_PROTOCOL(" d:");
  3747. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3748. SERIAL_EOL;
  3749. }
  3750. #endif // PIDTEMPBED
  3751. #if defined(CHDK) || HAS_PHOTOGRAPH
  3752. /**
  3753. * M240: Trigger a camera by emulating a Canon RC-1
  3754. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3755. */
  3756. inline void gcode_M240() {
  3757. #ifdef CHDK
  3758. OUT_WRITE(CHDK, HIGH);
  3759. chdkHigh = millis();
  3760. chdkActive = true;
  3761. #elif HAS_PHOTOGRAPH
  3762. const uint8_t NUM_PULSES = 16;
  3763. const float PULSE_LENGTH = 0.01524;
  3764. for (int i = 0; i < NUM_PULSES; i++) {
  3765. WRITE(PHOTOGRAPH_PIN, HIGH);
  3766. _delay_ms(PULSE_LENGTH);
  3767. WRITE(PHOTOGRAPH_PIN, LOW);
  3768. _delay_ms(PULSE_LENGTH);
  3769. }
  3770. delay(7.33);
  3771. for (int i = 0; i < NUM_PULSES; i++) {
  3772. WRITE(PHOTOGRAPH_PIN, HIGH);
  3773. _delay_ms(PULSE_LENGTH);
  3774. WRITE(PHOTOGRAPH_PIN, LOW);
  3775. _delay_ms(PULSE_LENGTH);
  3776. }
  3777. #endif // !CHDK && HAS_PHOTOGRAPH
  3778. }
  3779. #endif // CHDK || PHOTOGRAPH_PIN
  3780. #ifdef HAS_LCD_CONTRAST
  3781. /**
  3782. * M250: Read and optionally set the LCD contrast
  3783. */
  3784. inline void gcode_M250() {
  3785. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3786. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3787. SERIAL_PROTOCOL(lcd_contrast);
  3788. SERIAL_EOL;
  3789. }
  3790. #endif // HAS_LCD_CONTRAST
  3791. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3792. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3793. /**
  3794. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3795. */
  3796. inline void gcode_M302() {
  3797. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3798. }
  3799. #endif // PREVENT_DANGEROUS_EXTRUDE
  3800. /**
  3801. * M303: PID relay autotune
  3802. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3803. * E<extruder> (-1 for the bed)
  3804. * C<cycles>
  3805. */
  3806. inline void gcode_M303() {
  3807. int e = code_seen('E') ? code_value_short() : 0;
  3808. int c = code_seen('C') ? code_value_short() : 5;
  3809. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3810. PID_autotune(temp, e, c);
  3811. }
  3812. #ifdef SCARA
  3813. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3814. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3815. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3816. if (IsRunning()) {
  3817. //gcode_get_destination(); // For X Y Z E F
  3818. delta[X_AXIS] = delta_x;
  3819. delta[Y_AXIS] = delta_y;
  3820. calculate_SCARA_forward_Transform(delta);
  3821. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3822. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3823. prepare_move();
  3824. //ok_to_send();
  3825. return true;
  3826. }
  3827. return false;
  3828. }
  3829. /**
  3830. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3831. */
  3832. inline bool gcode_M360() {
  3833. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3834. return SCARA_move_to_cal(0, 120);
  3835. }
  3836. /**
  3837. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3838. */
  3839. inline bool gcode_M361() {
  3840. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3841. return SCARA_move_to_cal(90, 130);
  3842. }
  3843. /**
  3844. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3845. */
  3846. inline bool gcode_M362() {
  3847. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3848. return SCARA_move_to_cal(60, 180);
  3849. }
  3850. /**
  3851. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3852. */
  3853. inline bool gcode_M363() {
  3854. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3855. return SCARA_move_to_cal(50, 90);
  3856. }
  3857. /**
  3858. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3859. */
  3860. inline bool gcode_M364() {
  3861. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3862. return SCARA_move_to_cal(45, 135);
  3863. }
  3864. /**
  3865. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3866. */
  3867. inline void gcode_M365() {
  3868. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3869. if (code_seen(axis_codes[i])) {
  3870. axis_scaling[i] = code_value();
  3871. }
  3872. }
  3873. }
  3874. #endif // SCARA
  3875. #ifdef EXT_SOLENOID
  3876. void enable_solenoid(uint8_t num) {
  3877. switch(num) {
  3878. case 0:
  3879. OUT_WRITE(SOL0_PIN, HIGH);
  3880. break;
  3881. #if HAS_SOLENOID_1
  3882. case 1:
  3883. OUT_WRITE(SOL1_PIN, HIGH);
  3884. break;
  3885. #endif
  3886. #if HAS_SOLENOID_2
  3887. case 2:
  3888. OUT_WRITE(SOL2_PIN, HIGH);
  3889. break;
  3890. #endif
  3891. #if HAS_SOLENOID_3
  3892. case 3:
  3893. OUT_WRITE(SOL3_PIN, HIGH);
  3894. break;
  3895. #endif
  3896. default:
  3897. SERIAL_ECHO_START;
  3898. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3899. break;
  3900. }
  3901. }
  3902. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3903. void disable_all_solenoids() {
  3904. OUT_WRITE(SOL0_PIN, LOW);
  3905. OUT_WRITE(SOL1_PIN, LOW);
  3906. OUT_WRITE(SOL2_PIN, LOW);
  3907. OUT_WRITE(SOL3_PIN, LOW);
  3908. }
  3909. /**
  3910. * M380: Enable solenoid on the active extruder
  3911. */
  3912. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3913. /**
  3914. * M381: Disable all solenoids
  3915. */
  3916. inline void gcode_M381() { disable_all_solenoids(); }
  3917. #endif // EXT_SOLENOID
  3918. /**
  3919. * M400: Finish all moves
  3920. */
  3921. inline void gcode_M400() { st_synchronize(); }
  3922. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3923. #ifdef SERVO_ENDSTOPS
  3924. void raise_z_for_servo() {
  3925. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3926. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset : zpos;
  3927. if (zpos < z_dest)
  3928. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3929. }
  3930. #endif
  3931. /**
  3932. * M401: Engage Z Servo endstop if available
  3933. */
  3934. inline void gcode_M401() {
  3935. #ifdef SERVO_ENDSTOPS
  3936. raise_z_for_servo();
  3937. #endif
  3938. deploy_z_probe();
  3939. }
  3940. /**
  3941. * M402: Retract Z Servo endstop if enabled
  3942. */
  3943. inline void gcode_M402() {
  3944. #ifdef SERVO_ENDSTOPS
  3945. raise_z_for_servo();
  3946. #endif
  3947. stow_z_probe(false);
  3948. }
  3949. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3950. #ifdef FILAMENT_SENSOR
  3951. /**
  3952. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3953. */
  3954. inline void gcode_M404() {
  3955. #if HAS_FILWIDTH
  3956. if (code_seen('W')) {
  3957. filament_width_nominal = code_value();
  3958. }
  3959. else {
  3960. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3961. SERIAL_PROTOCOLLN(filament_width_nominal);
  3962. }
  3963. #endif
  3964. }
  3965. /**
  3966. * M405: Turn on filament sensor for control
  3967. */
  3968. inline void gcode_M405() {
  3969. if (code_seen('D')) meas_delay_cm = code_value();
  3970. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3971. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3972. int temp_ratio = widthFil_to_size_ratio();
  3973. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3974. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3975. delay_index1 = delay_index2 = 0;
  3976. }
  3977. filament_sensor = true;
  3978. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3979. //SERIAL_PROTOCOL(filament_width_meas);
  3980. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3981. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  3982. }
  3983. /**
  3984. * M406: Turn off filament sensor for control
  3985. */
  3986. inline void gcode_M406() { filament_sensor = false; }
  3987. /**
  3988. * M407: Get measured filament diameter on serial output
  3989. */
  3990. inline void gcode_M407() {
  3991. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3992. SERIAL_PROTOCOLLN(filament_width_meas);
  3993. }
  3994. #endif // FILAMENT_SENSOR
  3995. /**
  3996. * M410: Quickstop - Abort all planned moves
  3997. *
  3998. * This will stop the carriages mid-move, so most likely they
  3999. * will be out of sync with the stepper position after this.
  4000. */
  4001. inline void gcode_M410() { quickStop(); }
  4002. #ifdef MESH_BED_LEVELING
  4003. /**
  4004. * M420: Enable/Disable Mesh Bed Leveling
  4005. */
  4006. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4007. /**
  4008. * M421: Set a single Mesh Bed Leveling Z coordinate
  4009. */
  4010. inline void gcode_M421() {
  4011. float x, y, z;
  4012. bool err = false, hasX, hasY, hasZ;
  4013. if ((hasX = code_seen('X'))) x = code_value();
  4014. if ((hasY = code_seen('Y'))) y = code_value();
  4015. if ((hasZ = code_seen('Z'))) z = code_value();
  4016. if (!hasX || !hasY || !hasZ) {
  4017. SERIAL_ERROR_START;
  4018. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4019. err = true;
  4020. }
  4021. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4022. SERIAL_ERROR_START;
  4023. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4024. err = true;
  4025. }
  4026. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4027. }
  4028. #endif
  4029. /**
  4030. * M428: Set home_offset based on the distance between the
  4031. * current_position and the nearest "reference point."
  4032. * If an axis is past center its endstop position
  4033. * is the reference-point. Otherwise it uses 0. This allows
  4034. * the Z offset to be set near the bed when using a max endstop.
  4035. *
  4036. * M428 can't be used more than 2cm away from 0 or an endstop.
  4037. *
  4038. * Use M206 to set these values directly.
  4039. */
  4040. inline void gcode_M428() {
  4041. bool err = false;
  4042. float new_offs[3], new_pos[3];
  4043. memcpy(new_pos, current_position, sizeof(new_pos));
  4044. memcpy(new_offs, home_offset, sizeof(new_offs));
  4045. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4046. if (axis_known_position[i]) {
  4047. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4048. diff = new_pos[i] - base;
  4049. if (diff > -20 && diff < 20) {
  4050. new_offs[i] -= diff;
  4051. new_pos[i] = base;
  4052. }
  4053. else {
  4054. SERIAL_ERROR_START;
  4055. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4056. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4057. #if HAS_BUZZER
  4058. enqueuecommands_P(PSTR("M300 S40 P200"));
  4059. #endif
  4060. err = true;
  4061. break;
  4062. }
  4063. }
  4064. }
  4065. if (!err) {
  4066. memcpy(current_position, new_pos, sizeof(new_pos));
  4067. memcpy(home_offset, new_offs, sizeof(new_offs));
  4068. sync_plan_position();
  4069. LCD_ALERTMESSAGEPGM("Offset applied.");
  4070. #if HAS_BUZZER
  4071. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4072. #endif
  4073. }
  4074. }
  4075. /**
  4076. * M500: Store settings in EEPROM
  4077. */
  4078. inline void gcode_M500() {
  4079. Config_StoreSettings();
  4080. }
  4081. /**
  4082. * M501: Read settings from EEPROM
  4083. */
  4084. inline void gcode_M501() {
  4085. Config_RetrieveSettings();
  4086. }
  4087. /**
  4088. * M502: Revert to default settings
  4089. */
  4090. inline void gcode_M502() {
  4091. Config_ResetDefault();
  4092. }
  4093. /**
  4094. * M503: print settings currently in memory
  4095. */
  4096. inline void gcode_M503() {
  4097. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4098. }
  4099. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4100. /**
  4101. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4102. */
  4103. inline void gcode_M540() {
  4104. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4105. }
  4106. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4107. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4108. inline void gcode_SET_Z_PROBE_OFFSET() {
  4109. float value;
  4110. if (code_seen('Z')) {
  4111. value = code_value();
  4112. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4113. zprobe_zoffset = value;
  4114. SERIAL_ECHO_START;
  4115. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4116. SERIAL_EOL;
  4117. }
  4118. else {
  4119. SERIAL_ECHO_START;
  4120. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4121. SERIAL_ECHOPGM(MSG_Z_MIN);
  4122. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4123. SERIAL_ECHOPGM(MSG_Z_MAX);
  4124. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4125. SERIAL_EOL;
  4126. }
  4127. }
  4128. else {
  4129. SERIAL_ECHO_START;
  4130. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " : ");
  4131. SERIAL_ECHO(zprobe_zoffset);
  4132. SERIAL_EOL;
  4133. }
  4134. }
  4135. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4136. #ifdef FILAMENTCHANGEENABLE
  4137. /**
  4138. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4139. */
  4140. inline void gcode_M600() {
  4141. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4142. for (int i=0; i<NUM_AXIS; i++)
  4143. target[i] = lastpos[i] = current_position[i];
  4144. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  4145. #ifdef DELTA
  4146. #define RUNPLAN calculate_delta(target); BASICPLAN
  4147. #else
  4148. #define RUNPLAN BASICPLAN
  4149. #endif
  4150. //retract by E
  4151. if (code_seen('E')) target[E_AXIS] += code_value();
  4152. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4153. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4154. #endif
  4155. RUNPLAN;
  4156. //lift Z
  4157. if (code_seen('Z')) target[Z_AXIS] += code_value();
  4158. #ifdef FILAMENTCHANGE_ZADD
  4159. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4160. #endif
  4161. RUNPLAN;
  4162. //move xy
  4163. if (code_seen('X')) target[X_AXIS] = code_value();
  4164. #ifdef FILAMENTCHANGE_XPOS
  4165. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  4166. #endif
  4167. if (code_seen('Y')) target[Y_AXIS] = code_value();
  4168. #ifdef FILAMENTCHANGE_YPOS
  4169. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4170. #endif
  4171. RUNPLAN;
  4172. if (code_seen('L')) target[E_AXIS] += code_value();
  4173. #ifdef FILAMENTCHANGE_FINALRETRACT
  4174. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4175. #endif
  4176. RUNPLAN;
  4177. //finish moves
  4178. st_synchronize();
  4179. //disable extruder steppers so filament can be removed
  4180. disable_e0();
  4181. disable_e1();
  4182. disable_e2();
  4183. disable_e3();
  4184. delay(100);
  4185. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4186. uint8_t cnt = 0;
  4187. while (!lcd_clicked()) {
  4188. #ifndef AUTO_FILAMENT_CHANGE
  4189. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  4190. manage_heater();
  4191. manage_inactivity(true);
  4192. lcd_update();
  4193. #else
  4194. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4195. plan_buffer_line(target[X_AXIS],target[Y_AXIS],target[Z_MAX_ENDSTOP_INVERTING],current_position[E_AXIS],AUTO_FILAMENT_CHANGE_FEEDRATE/60,active_extruder);
  4196. st_synchronize();
  4197. #endif
  4198. } // while(!lcd_clicked)
  4199. #ifdef AUTO_FILAMENT_CHANGE
  4200. current_position[E_AXIS]= 0;
  4201. st_synchronize();
  4202. #endif
  4203. //return to normal
  4204. if (code_seen('L')) target[E_AXIS] -= code_value();
  4205. #ifdef FILAMENTCHANGE_FINALRETRACT
  4206. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4207. #endif
  4208. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4209. plan_set_e_position(current_position[E_AXIS]);
  4210. RUNPLAN; //should do nothing
  4211. lcd_reset_alert_level();
  4212. #ifdef DELTA
  4213. calculate_delta(lastpos);
  4214. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  4215. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4216. #else
  4217. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  4218. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  4219. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4220. #endif
  4221. #ifdef FILAMENT_RUNOUT_SENSOR
  4222. filrunoutEnqueued = false;
  4223. #endif
  4224. }
  4225. #endif // FILAMENTCHANGEENABLE
  4226. #ifdef DUAL_X_CARRIAGE
  4227. /**
  4228. * M605: Set dual x-carriage movement mode
  4229. *
  4230. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4231. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4232. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4233. * millimeters x-offset and an optional differential hotend temperature of
  4234. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4235. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4236. *
  4237. * Note: the X axis should be homed after changing dual x-carriage mode.
  4238. */
  4239. inline void gcode_M605() {
  4240. st_synchronize();
  4241. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4242. switch(dual_x_carriage_mode) {
  4243. case DXC_DUPLICATION_MODE:
  4244. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4245. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4246. SERIAL_ECHO_START;
  4247. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4248. SERIAL_CHAR(' ');
  4249. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4250. SERIAL_CHAR(',');
  4251. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4252. SERIAL_CHAR(' ');
  4253. SERIAL_ECHO(duplicate_extruder_x_offset);
  4254. SERIAL_CHAR(',');
  4255. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4256. break;
  4257. case DXC_FULL_CONTROL_MODE:
  4258. case DXC_AUTO_PARK_MODE:
  4259. break;
  4260. default:
  4261. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4262. break;
  4263. }
  4264. active_extruder_parked = false;
  4265. extruder_duplication_enabled = false;
  4266. delayed_move_time = 0;
  4267. }
  4268. #endif // DUAL_X_CARRIAGE
  4269. /**
  4270. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4271. */
  4272. inline void gcode_M907() {
  4273. #if HAS_DIGIPOTSS
  4274. for (int i=0;i<NUM_AXIS;i++)
  4275. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4276. if (code_seen('B')) digipot_current(4, code_value());
  4277. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4278. #endif
  4279. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4280. if (code_seen('X')) digipot_current(0, code_value());
  4281. #endif
  4282. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4283. if (code_seen('Z')) digipot_current(1, code_value());
  4284. #endif
  4285. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4286. if (code_seen('E')) digipot_current(2, code_value());
  4287. #endif
  4288. #ifdef DIGIPOT_I2C
  4289. // this one uses actual amps in floating point
  4290. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4291. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4292. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4293. #endif
  4294. }
  4295. #if HAS_DIGIPOTSS
  4296. /**
  4297. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4298. */
  4299. inline void gcode_M908() {
  4300. digitalPotWrite(
  4301. code_seen('P') ? code_value() : 0,
  4302. code_seen('S') ? code_value() : 0
  4303. );
  4304. }
  4305. #endif // HAS_DIGIPOTSS
  4306. #if HAS_MICROSTEPS
  4307. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4308. inline void gcode_M350() {
  4309. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4310. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4311. if(code_seen('B')) microstep_mode(4,code_value());
  4312. microstep_readings();
  4313. }
  4314. /**
  4315. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4316. * S# determines MS1 or MS2, X# sets the pin high/low.
  4317. */
  4318. inline void gcode_M351() {
  4319. if (code_seen('S')) switch(code_value_short()) {
  4320. case 1:
  4321. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4322. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4323. break;
  4324. case 2:
  4325. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4326. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4327. break;
  4328. }
  4329. microstep_readings();
  4330. }
  4331. #endif // HAS_MICROSTEPS
  4332. /**
  4333. * M999: Restart after being stopped
  4334. */
  4335. inline void gcode_M999() {
  4336. Running = true;
  4337. lcd_reset_alert_level();
  4338. gcode_LastN = Stopped_gcode_LastN;
  4339. FlushSerialRequestResend();
  4340. }
  4341. /**
  4342. * T0-T3: Switch tool, usually switching extruders
  4343. *
  4344. * F[mm/min] Set the movement feedrate
  4345. */
  4346. inline void gcode_T(uint8_t tmp_extruder) {
  4347. if (tmp_extruder >= EXTRUDERS) {
  4348. SERIAL_ECHO_START;
  4349. SERIAL_CHAR('T');
  4350. SERIAL_ECHO(tmp_extruder);
  4351. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4352. }
  4353. else {
  4354. target_extruder = tmp_extruder;
  4355. #if EXTRUDERS > 1
  4356. bool make_move = false;
  4357. #endif
  4358. if (code_seen('F')) {
  4359. #if EXTRUDERS > 1
  4360. make_move = true;
  4361. #endif
  4362. float next_feedrate = code_value();
  4363. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4364. }
  4365. #if EXTRUDERS > 1
  4366. if (tmp_extruder != active_extruder) {
  4367. // Save current position to return to after applying extruder offset
  4368. set_destination_to_current();
  4369. #ifdef DUAL_X_CARRIAGE
  4370. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4371. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4372. // Park old head: 1) raise 2) move to park position 3) lower
  4373. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4374. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4375. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4376. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4377. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4378. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4379. st_synchronize();
  4380. }
  4381. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4382. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4383. extruder_offset[Y_AXIS][active_extruder] +
  4384. extruder_offset[Y_AXIS][tmp_extruder];
  4385. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4386. extruder_offset[Z_AXIS][active_extruder] +
  4387. extruder_offset[Z_AXIS][tmp_extruder];
  4388. active_extruder = tmp_extruder;
  4389. // This function resets the max/min values - the current position may be overwritten below.
  4390. axis_is_at_home(X_AXIS);
  4391. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4392. current_position[X_AXIS] = inactive_extruder_x_pos;
  4393. inactive_extruder_x_pos = destination[X_AXIS];
  4394. }
  4395. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4396. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4397. if (active_extruder == 0 || active_extruder_parked)
  4398. current_position[X_AXIS] = inactive_extruder_x_pos;
  4399. else
  4400. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4401. inactive_extruder_x_pos = destination[X_AXIS];
  4402. extruder_duplication_enabled = false;
  4403. }
  4404. else {
  4405. // record raised toolhead position for use by unpark
  4406. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4407. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4408. active_extruder_parked = true;
  4409. delayed_move_time = 0;
  4410. }
  4411. #else // !DUAL_X_CARRIAGE
  4412. // Offset extruder (only by XY)
  4413. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4414. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4415. // Set the new active extruder and position
  4416. active_extruder = tmp_extruder;
  4417. #endif // !DUAL_X_CARRIAGE
  4418. #ifdef DELTA
  4419. sync_plan_position_delta();
  4420. #else
  4421. sync_plan_position();
  4422. #endif
  4423. // Move to the old position if 'F' was in the parameters
  4424. if (make_move && IsRunning()) prepare_move();
  4425. }
  4426. #ifdef EXT_SOLENOID
  4427. st_synchronize();
  4428. disable_all_solenoids();
  4429. enable_solenoid_on_active_extruder();
  4430. #endif // EXT_SOLENOID
  4431. #endif // EXTRUDERS > 1
  4432. SERIAL_ECHO_START;
  4433. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4434. SERIAL_PROTOCOLLN((int)active_extruder);
  4435. }
  4436. }
  4437. /**
  4438. * Process a single command and dispatch it to its handler
  4439. * This is called from the main loop()
  4440. */
  4441. void process_next_command() {
  4442. current_command = command_queue[cmd_queue_index_r];
  4443. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4444. SERIAL_ECHO_START;
  4445. SERIAL_ECHOLN(current_command);
  4446. }
  4447. // Sanitize the current command:
  4448. // - Skip leading spaces
  4449. // - Bypass N[0-9][0-9]*[ ]*
  4450. // - Overwrite * with nul to mark the end
  4451. while (*current_command == ' ') ++current_command;
  4452. if (*current_command == 'N' && current_command[1] >= '0' && current_command[1] <= '9') {
  4453. current_command += 2; // skip N[0-9]
  4454. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  4455. while (*current_command == ' ') ++current_command; // skip [ ]*
  4456. }
  4457. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4458. if (starpos) *starpos = '\0';
  4459. // Get the command code, which must be G, M, or T
  4460. char command_code = *current_command;
  4461. // The code must have a numeric value
  4462. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4463. int codenum; // define ahead of goto
  4464. // Bail early if there's no code
  4465. if (!code_is_good) goto ExitUnknownCommand;
  4466. // Args pointer optimizes code_seen, especially those taking XYZEF
  4467. // This wastes a little cpu on commands that expect no arguments.
  4468. current_command_args = current_command;
  4469. while (*current_command_args && *current_command_args != ' ') ++current_command_args;
  4470. while (*current_command_args == ' ') ++current_command_args;
  4471. // Interpret the code int
  4472. seen_pointer = current_command;
  4473. codenum = code_value_short();
  4474. // Handle a known G, M, or T
  4475. switch(command_code) {
  4476. case 'G': switch (codenum) {
  4477. // G0, G1
  4478. case 0:
  4479. case 1:
  4480. gcode_G0_G1();
  4481. break;
  4482. // G2, G3
  4483. #ifndef SCARA
  4484. case 2: // G2 - CW ARC
  4485. case 3: // G3 - CCW ARC
  4486. gcode_G2_G3(codenum == 2);
  4487. break;
  4488. #endif
  4489. // G4 Dwell
  4490. case 4:
  4491. gcode_G4();
  4492. break;
  4493. #ifdef FWRETRACT
  4494. case 10: // G10: retract
  4495. case 11: // G11: retract_recover
  4496. gcode_G10_G11(codenum == 10);
  4497. break;
  4498. #endif //FWRETRACT
  4499. case 28: // G28: Home all axes, one at a time
  4500. gcode_G28();
  4501. break;
  4502. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4503. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4504. gcode_G29();
  4505. break;
  4506. #endif
  4507. #ifdef ENABLE_AUTO_BED_LEVELING
  4508. #ifndef Z_PROBE_SLED
  4509. case 30: // G30 Single Z Probe
  4510. gcode_G30();
  4511. break;
  4512. #else // Z_PROBE_SLED
  4513. case 31: // G31: dock the sled
  4514. case 32: // G32: undock the sled
  4515. dock_sled(codenum == 31);
  4516. break;
  4517. #endif // Z_PROBE_SLED
  4518. #endif // ENABLE_AUTO_BED_LEVELING
  4519. case 90: // G90
  4520. relative_mode = false;
  4521. break;
  4522. case 91: // G91
  4523. relative_mode = true;
  4524. break;
  4525. case 92: // G92
  4526. gcode_G92();
  4527. break;
  4528. }
  4529. break;
  4530. case 'M': switch (codenum) {
  4531. #ifdef ULTIPANEL
  4532. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4533. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4534. gcode_M0_M1();
  4535. break;
  4536. #endif // ULTIPANEL
  4537. case 17:
  4538. gcode_M17();
  4539. break;
  4540. #ifdef SDSUPPORT
  4541. case 20: // M20 - list SD card
  4542. gcode_M20(); break;
  4543. case 21: // M21 - init SD card
  4544. gcode_M21(); break;
  4545. case 22: //M22 - release SD card
  4546. gcode_M22(); break;
  4547. case 23: //M23 - Select file
  4548. gcode_M23(); break;
  4549. case 24: //M24 - Start SD print
  4550. gcode_M24(); break;
  4551. case 25: //M25 - Pause SD print
  4552. gcode_M25(); break;
  4553. case 26: //M26 - Set SD index
  4554. gcode_M26(); break;
  4555. case 27: //M27 - Get SD status
  4556. gcode_M27(); break;
  4557. case 28: //M28 - Start SD write
  4558. gcode_M28(); break;
  4559. case 29: //M29 - Stop SD write
  4560. gcode_M29(); break;
  4561. case 30: //M30 <filename> Delete File
  4562. gcode_M30(); break;
  4563. case 32: //M32 - Select file and start SD print
  4564. gcode_M32(); break;
  4565. #ifdef LONG_FILENAME_HOST_SUPPORT
  4566. case 33: //M33 - Get the long full path to a file or folder
  4567. gcode_M33(); break;
  4568. #endif // LONG_FILENAME_HOST_SUPPORT
  4569. case 928: //M928 - Start SD write
  4570. gcode_M928(); break;
  4571. #endif //SDSUPPORT
  4572. case 31: //M31 take time since the start of the SD print or an M109 command
  4573. gcode_M31();
  4574. break;
  4575. case 42: //M42 -Change pin status via gcode
  4576. gcode_M42();
  4577. break;
  4578. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4579. case 48: // M48 Z-Probe repeatability
  4580. gcode_M48();
  4581. break;
  4582. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4583. case 104: // M104
  4584. gcode_M104();
  4585. break;
  4586. case 111: // M111: Set debug level
  4587. gcode_M111();
  4588. break;
  4589. case 112: // M112: Emergency Stop
  4590. gcode_M112();
  4591. break;
  4592. case 140: // M140: Set bed temp
  4593. gcode_M140();
  4594. break;
  4595. case 105: // M105: Read current temperature
  4596. gcode_M105();
  4597. return; // "ok" already printed
  4598. case 109: // M109: Wait for temperature
  4599. gcode_M109();
  4600. break;
  4601. #if HAS_TEMP_BED
  4602. case 190: // M190: Wait for bed heater to reach target
  4603. gcode_M190();
  4604. break;
  4605. #endif // HAS_TEMP_BED
  4606. #if HAS_FAN
  4607. case 106: // M106: Fan On
  4608. gcode_M106();
  4609. break;
  4610. case 107: // M107: Fan Off
  4611. gcode_M107();
  4612. break;
  4613. #endif // HAS_FAN
  4614. #ifdef BARICUDA
  4615. // PWM for HEATER_1_PIN
  4616. #if HAS_HEATER_1
  4617. case 126: // M126: valve open
  4618. gcode_M126();
  4619. break;
  4620. case 127: // M127: valve closed
  4621. gcode_M127();
  4622. break;
  4623. #endif // HAS_HEATER_1
  4624. // PWM for HEATER_2_PIN
  4625. #if HAS_HEATER_2
  4626. case 128: // M128: valve open
  4627. gcode_M128();
  4628. break;
  4629. case 129: // M129: valve closed
  4630. gcode_M129();
  4631. break;
  4632. #endif // HAS_HEATER_2
  4633. #endif // BARICUDA
  4634. #if HAS_POWER_SWITCH
  4635. case 80: // M80: Turn on Power Supply
  4636. gcode_M80();
  4637. break;
  4638. #endif // HAS_POWER_SWITCH
  4639. case 81: // M81: Turn off Power, including Power Supply, if possible
  4640. gcode_M81();
  4641. break;
  4642. case 82:
  4643. gcode_M82();
  4644. break;
  4645. case 83:
  4646. gcode_M83();
  4647. break;
  4648. case 18: // (for compatibility)
  4649. case 84: // M84
  4650. gcode_M18_M84();
  4651. break;
  4652. case 85: // M85
  4653. gcode_M85();
  4654. break;
  4655. case 92: // M92: Set the steps-per-unit for one or more axes
  4656. gcode_M92();
  4657. break;
  4658. case 115: // M115: Report capabilities
  4659. gcode_M115();
  4660. break;
  4661. case 117: // M117: Set LCD message text, if possible
  4662. gcode_M117();
  4663. break;
  4664. case 114: // M114: Report current position
  4665. gcode_M114();
  4666. break;
  4667. case 120: // M120: Enable endstops
  4668. gcode_M120();
  4669. break;
  4670. case 121: // M121: Disable endstops
  4671. gcode_M121();
  4672. break;
  4673. case 119: // M119: Report endstop states
  4674. gcode_M119();
  4675. break;
  4676. #ifdef ULTIPANEL
  4677. case 145: // M145: Set material heatup parameters
  4678. gcode_M145();
  4679. break;
  4680. #endif
  4681. #ifdef BLINKM
  4682. case 150: // M150
  4683. gcode_M150();
  4684. break;
  4685. #endif //BLINKM
  4686. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4687. gcode_M200();
  4688. break;
  4689. case 201: // M201
  4690. gcode_M201();
  4691. break;
  4692. #if 0 // Not used for Sprinter/grbl gen6
  4693. case 202: // M202
  4694. gcode_M202();
  4695. break;
  4696. #endif
  4697. case 203: // M203 max feedrate mm/sec
  4698. gcode_M203();
  4699. break;
  4700. case 204: // M204 acclereration S normal moves T filmanent only moves
  4701. gcode_M204();
  4702. break;
  4703. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4704. gcode_M205();
  4705. break;
  4706. case 206: // M206 additional homing offset
  4707. gcode_M206();
  4708. break;
  4709. #ifdef DELTA
  4710. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4711. gcode_M665();
  4712. break;
  4713. #endif
  4714. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4715. case 666: // M666 set delta / dual endstop adjustment
  4716. gcode_M666();
  4717. break;
  4718. #endif
  4719. #ifdef FWRETRACT
  4720. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4721. gcode_M207();
  4722. break;
  4723. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4724. gcode_M208();
  4725. break;
  4726. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4727. gcode_M209();
  4728. break;
  4729. #endif // FWRETRACT
  4730. #if EXTRUDERS > 1
  4731. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4732. gcode_M218();
  4733. break;
  4734. #endif
  4735. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4736. gcode_M220();
  4737. break;
  4738. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4739. gcode_M221();
  4740. break;
  4741. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4742. gcode_M226();
  4743. break;
  4744. #if NUM_SERVOS > 0
  4745. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4746. gcode_M280();
  4747. break;
  4748. #endif // NUM_SERVOS > 0
  4749. #if HAS_BUZZER
  4750. case 300: // M300 - Play beep tone
  4751. gcode_M300();
  4752. break;
  4753. #endif // HAS_BUZZER
  4754. #ifdef PIDTEMP
  4755. case 301: // M301
  4756. gcode_M301();
  4757. break;
  4758. #endif // PIDTEMP
  4759. #ifdef PIDTEMPBED
  4760. case 304: // M304
  4761. gcode_M304();
  4762. break;
  4763. #endif // PIDTEMPBED
  4764. #if defined(CHDK) || HAS_PHOTOGRAPH
  4765. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4766. gcode_M240();
  4767. break;
  4768. #endif // CHDK || PHOTOGRAPH_PIN
  4769. #ifdef HAS_LCD_CONTRAST
  4770. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4771. gcode_M250();
  4772. break;
  4773. #endif // HAS_LCD_CONTRAST
  4774. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4775. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4776. gcode_M302();
  4777. break;
  4778. #endif // PREVENT_DANGEROUS_EXTRUDE
  4779. case 303: // M303 PID autotune
  4780. gcode_M303();
  4781. break;
  4782. #ifdef SCARA
  4783. case 360: // M360 SCARA Theta pos1
  4784. if (gcode_M360()) return;
  4785. break;
  4786. case 361: // M361 SCARA Theta pos2
  4787. if (gcode_M361()) return;
  4788. break;
  4789. case 362: // M362 SCARA Psi pos1
  4790. if (gcode_M362()) return;
  4791. break;
  4792. case 363: // M363 SCARA Psi pos2
  4793. if (gcode_M363()) return;
  4794. break;
  4795. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4796. if (gcode_M364()) return;
  4797. break;
  4798. case 365: // M365 Set SCARA scaling for X Y Z
  4799. gcode_M365();
  4800. break;
  4801. #endif // SCARA
  4802. case 400: // M400 finish all moves
  4803. gcode_M400();
  4804. break;
  4805. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
  4806. case 401:
  4807. gcode_M401();
  4808. break;
  4809. case 402:
  4810. gcode_M402();
  4811. break;
  4812. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4813. #ifdef FILAMENT_SENSOR
  4814. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4815. gcode_M404();
  4816. break;
  4817. case 405: //M405 Turn on filament sensor for control
  4818. gcode_M405();
  4819. break;
  4820. case 406: //M406 Turn off filament sensor for control
  4821. gcode_M406();
  4822. break;
  4823. case 407: //M407 Display measured filament diameter
  4824. gcode_M407();
  4825. break;
  4826. #endif // FILAMENT_SENSOR
  4827. case 410: // M410 quickstop - Abort all the planned moves.
  4828. gcode_M410();
  4829. break;
  4830. #ifdef MESH_BED_LEVELING
  4831. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4832. gcode_M420();
  4833. break;
  4834. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4835. gcode_M421();
  4836. break;
  4837. #endif
  4838. case 428: // M428 Apply current_position to home_offset
  4839. gcode_M428();
  4840. break;
  4841. case 500: // M500 Store settings in EEPROM
  4842. gcode_M500();
  4843. break;
  4844. case 501: // M501 Read settings from EEPROM
  4845. gcode_M501();
  4846. break;
  4847. case 502: // M502 Revert to default settings
  4848. gcode_M502();
  4849. break;
  4850. case 503: // M503 print settings currently in memory
  4851. gcode_M503();
  4852. break;
  4853. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4854. case 540:
  4855. gcode_M540();
  4856. break;
  4857. #endif
  4858. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4859. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4860. gcode_SET_Z_PROBE_OFFSET();
  4861. break;
  4862. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4863. #ifdef FILAMENTCHANGEENABLE
  4864. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4865. gcode_M600();
  4866. break;
  4867. #endif // FILAMENTCHANGEENABLE
  4868. #ifdef DUAL_X_CARRIAGE
  4869. case 605:
  4870. gcode_M605();
  4871. break;
  4872. #endif // DUAL_X_CARRIAGE
  4873. case 907: // M907 Set digital trimpot motor current using axis codes.
  4874. gcode_M907();
  4875. break;
  4876. #if HAS_DIGIPOTSS
  4877. case 908: // M908 Control digital trimpot directly.
  4878. gcode_M908();
  4879. break;
  4880. #endif // HAS_DIGIPOTSS
  4881. #if HAS_MICROSTEPS
  4882. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4883. gcode_M350();
  4884. break;
  4885. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4886. gcode_M351();
  4887. break;
  4888. #endif // HAS_MICROSTEPS
  4889. case 999: // M999: Restart after being Stopped
  4890. gcode_M999();
  4891. break;
  4892. }
  4893. break;
  4894. case 'T':
  4895. gcode_T(codenum);
  4896. break;
  4897. default: code_is_good = false;
  4898. }
  4899. ExitUnknownCommand:
  4900. // Still unknown command? Throw an error
  4901. if (!code_is_good) unknown_command_error();
  4902. ok_to_send();
  4903. }
  4904. void FlushSerialRequestResend() {
  4905. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4906. MYSERIAL.flush();
  4907. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4908. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4909. ok_to_send();
  4910. }
  4911. void ok_to_send() {
  4912. refresh_cmd_timeout();
  4913. #ifdef SDSUPPORT
  4914. if (fromsd[cmd_queue_index_r]) return;
  4915. #endif
  4916. SERIAL_PROTOCOLPGM(MSG_OK);
  4917. #ifdef ADVANCED_OK
  4918. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4919. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4920. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4921. #endif
  4922. SERIAL_EOL;
  4923. }
  4924. void clamp_to_software_endstops(float target[3]) {
  4925. if (min_software_endstops) {
  4926. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4927. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4928. float negative_z_offset = 0;
  4929. #ifdef ENABLE_AUTO_BED_LEVELING
  4930. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4931. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4932. #endif
  4933. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4934. }
  4935. if (max_software_endstops) {
  4936. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4937. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4938. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4939. }
  4940. }
  4941. #ifdef DELTA
  4942. void recalc_delta_settings(float radius, float diagonal_rod) {
  4943. delta_tower1_x = -SIN_60 * radius; // front left tower
  4944. delta_tower1_y = -COS_60 * radius;
  4945. delta_tower2_x = SIN_60 * radius; // front right tower
  4946. delta_tower2_y = -COS_60 * radius;
  4947. delta_tower3_x = 0.0; // back middle tower
  4948. delta_tower3_y = radius;
  4949. delta_diagonal_rod_2 = sq(diagonal_rod);
  4950. }
  4951. void calculate_delta(float cartesian[3]) {
  4952. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4953. - sq(delta_tower1_x-cartesian[X_AXIS])
  4954. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4955. ) + cartesian[Z_AXIS];
  4956. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4957. - sq(delta_tower2_x-cartesian[X_AXIS])
  4958. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4959. ) + cartesian[Z_AXIS];
  4960. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4961. - sq(delta_tower3_x-cartesian[X_AXIS])
  4962. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4963. ) + cartesian[Z_AXIS];
  4964. /*
  4965. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4966. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4967. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4968. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4969. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4970. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4971. */
  4972. }
  4973. #ifdef ENABLE_AUTO_BED_LEVELING
  4974. // Adjust print surface height by linear interpolation over the bed_level array.
  4975. void adjust_delta(float cartesian[3]) {
  4976. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4977. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4978. float h1 = 0.001 - half, h2 = half - 0.001,
  4979. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4980. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4981. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4982. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4983. z1 = bed_level[floor_x + half][floor_y + half],
  4984. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4985. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4986. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4987. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4988. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4989. offset = (1 - ratio_x) * left + ratio_x * right;
  4990. delta[X_AXIS] += offset;
  4991. delta[Y_AXIS] += offset;
  4992. delta[Z_AXIS] += offset;
  4993. /*
  4994. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4995. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4996. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4997. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4998. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4999. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5000. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5001. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5002. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5003. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5004. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5005. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5006. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5007. */
  5008. }
  5009. #endif // ENABLE_AUTO_BED_LEVELING
  5010. #endif // DELTA
  5011. #ifdef MESH_BED_LEVELING
  5012. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5013. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  5014. {
  5015. if (!mbl.active) {
  5016. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5017. set_current_to_destination();
  5018. return;
  5019. }
  5020. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5021. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5022. int ix = mbl.select_x_index(x);
  5023. int iy = mbl.select_y_index(y);
  5024. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5025. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5026. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5027. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5028. if (pix == ix && piy == iy) {
  5029. // Start and end on same mesh square
  5030. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5031. set_current_to_destination();
  5032. return;
  5033. }
  5034. float nx, ny, ne, normalized_dist;
  5035. if (ix > pix && (x_splits) & BIT(ix)) {
  5036. nx = mbl.get_x(ix);
  5037. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5038. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5039. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5040. x_splits ^= BIT(ix);
  5041. } else if (ix < pix && (x_splits) & BIT(pix)) {
  5042. nx = mbl.get_x(pix);
  5043. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5044. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5045. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5046. x_splits ^= BIT(pix);
  5047. } else if (iy > piy && (y_splits) & BIT(iy)) {
  5048. ny = mbl.get_y(iy);
  5049. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5050. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5051. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5052. y_splits ^= BIT(iy);
  5053. } else if (iy < piy && (y_splits) & BIT(piy)) {
  5054. ny = mbl.get_y(piy);
  5055. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5056. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5057. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5058. y_splits ^= BIT(piy);
  5059. } else {
  5060. // Already split on a border
  5061. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5062. set_current_to_destination();
  5063. return;
  5064. }
  5065. // Do the split and look for more borders
  5066. destination[X_AXIS] = nx;
  5067. destination[Y_AXIS] = ny;
  5068. destination[E_AXIS] = ne;
  5069. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5070. destination[X_AXIS] = x;
  5071. destination[Y_AXIS] = y;
  5072. destination[E_AXIS] = e;
  5073. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5074. }
  5075. #endif // MESH_BED_LEVELING
  5076. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5077. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5078. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5079. float de = dest_e - curr_e;
  5080. if (de) {
  5081. if (degHotend(active_extruder) < extrude_min_temp) {
  5082. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5083. SERIAL_ECHO_START;
  5084. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5085. }
  5086. #ifdef PREVENT_LENGTHY_EXTRUDE
  5087. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5088. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5089. SERIAL_ECHO_START;
  5090. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5091. }
  5092. #endif
  5093. }
  5094. }
  5095. #endif // PREVENT_DANGEROUS_EXTRUDE
  5096. #if defined(DELTA) || defined(SCARA)
  5097. inline bool prepare_move_delta() {
  5098. float difference[NUM_AXIS];
  5099. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  5100. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5101. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5102. if (cartesian_mm < 0.000001) return false;
  5103. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5104. int steps = max(1, int(delta_segments_per_second * seconds));
  5105. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5106. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5107. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5108. for (int s = 1; s <= steps; s++) {
  5109. float fraction = float(s) / float(steps);
  5110. for (int8_t i = 0; i < NUM_AXIS; i++)
  5111. destination[i] = current_position[i] + difference[i] * fraction;
  5112. calculate_delta(destination);
  5113. #ifdef ENABLE_AUTO_BED_LEVELING
  5114. adjust_delta(destination);
  5115. #endif
  5116. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  5117. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  5118. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  5119. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5120. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5121. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5122. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5123. }
  5124. return true;
  5125. }
  5126. #endif // DELTA || SCARA
  5127. #ifdef SCARA
  5128. inline bool prepare_move_scara() { return prepare_move_delta(); }
  5129. #endif
  5130. #ifdef DUAL_X_CARRIAGE
  5131. inline bool prepare_move_dual_x_carriage() {
  5132. if (active_extruder_parked) {
  5133. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5134. // move duplicate extruder into correct duplication position.
  5135. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5136. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5137. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5138. sync_plan_position();
  5139. st_synchronize();
  5140. extruder_duplication_enabled = true;
  5141. active_extruder_parked = false;
  5142. }
  5143. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5144. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5145. // This is a travel move (with no extrusion)
  5146. // Skip it, but keep track of the current position
  5147. // (so it can be used as the start of the next non-travel move)
  5148. if (delayed_move_time != 0xFFFFFFFFUL) {
  5149. set_current_to_destination();
  5150. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5151. delayed_move_time = millis();
  5152. return false;
  5153. }
  5154. }
  5155. delayed_move_time = 0;
  5156. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5157. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5158. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5160. active_extruder_parked = false;
  5161. }
  5162. }
  5163. return true;
  5164. }
  5165. #endif // DUAL_X_CARRIAGE
  5166. #if !defined(DELTA) && !defined(SCARA)
  5167. inline bool prepare_move_cartesian() {
  5168. // Do not use feedrate_multiplier for E or Z only moves
  5169. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5170. line_to_destination();
  5171. }
  5172. else {
  5173. #ifdef MESH_BED_LEVELING
  5174. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5175. return false;
  5176. #else
  5177. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5178. #endif
  5179. }
  5180. return true;
  5181. }
  5182. #endif // !DELTA && !SCARA
  5183. /**
  5184. * Prepare a single move and get ready for the next one
  5185. */
  5186. void prepare_move() {
  5187. clamp_to_software_endstops(destination);
  5188. refresh_cmd_timeout();
  5189. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5190. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5191. #endif
  5192. #ifdef SCARA
  5193. if (!prepare_move_scara()) return;
  5194. #elif defined(DELTA)
  5195. if (!prepare_move_delta()) return;
  5196. #endif
  5197. #ifdef DUAL_X_CARRIAGE
  5198. if (!prepare_move_dual_x_carriage()) return;
  5199. #endif
  5200. #if !defined(DELTA) && !defined(SCARA)
  5201. if (!prepare_move_cartesian()) return;
  5202. #endif
  5203. set_current_to_destination();
  5204. }
  5205. #if HAS_CONTROLLERFAN
  5206. void controllerFan() {
  5207. static millis_t lastMotor = 0; // Last time a motor was turned on
  5208. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5209. millis_t ms = millis();
  5210. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5211. lastMotorCheck = ms;
  5212. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5213. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5214. #if EXTRUDERS > 1
  5215. || E1_ENABLE_READ == E_ENABLE_ON
  5216. #if HAS_X2_ENABLE
  5217. || X2_ENABLE_READ == X_ENABLE_ON
  5218. #endif
  5219. #if EXTRUDERS > 2
  5220. || E2_ENABLE_READ == E_ENABLE_ON
  5221. #if EXTRUDERS > 3
  5222. || E3_ENABLE_READ == E_ENABLE_ON
  5223. #endif
  5224. #endif
  5225. #endif
  5226. ) {
  5227. lastMotor = ms; //... set time to NOW so the fan will turn on
  5228. }
  5229. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5230. // allows digital or PWM fan output to be used (see M42 handling)
  5231. digitalWrite(CONTROLLERFAN_PIN, speed);
  5232. analogWrite(CONTROLLERFAN_PIN, speed);
  5233. }
  5234. }
  5235. #endif // HAS_CONTROLLERFAN
  5236. #ifdef SCARA
  5237. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5238. // Perform forward kinematics, and place results in delta[3]
  5239. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5240. float x_sin, x_cos, y_sin, y_cos;
  5241. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5242. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5243. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5244. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5245. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5246. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5247. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5248. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5249. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5250. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5251. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5252. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5253. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5254. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5255. }
  5256. void calculate_delta(float cartesian[3]){
  5257. //reverse kinematics.
  5258. // Perform reversed kinematics, and place results in delta[3]
  5259. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5260. float SCARA_pos[2];
  5261. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5262. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5263. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5264. #if (Linkage_1 == Linkage_2)
  5265. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5266. #else
  5267. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5268. #endif
  5269. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5270. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5271. SCARA_K2 = Linkage_2 * SCARA_S2;
  5272. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5273. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5274. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5275. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5276. delta[Z_AXIS] = cartesian[Z_AXIS];
  5277. /*
  5278. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5279. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5280. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5281. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5282. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5283. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5284. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5285. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5286. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5287. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5288. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5289. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5290. SERIAL_EOL;
  5291. */
  5292. }
  5293. #endif // SCARA
  5294. #ifdef TEMP_STAT_LEDS
  5295. static bool red_led = false;
  5296. static millis_t next_status_led_update_ms = 0;
  5297. void handle_status_leds(void) {
  5298. float max_temp = 0.0;
  5299. if (millis() > next_status_led_update_ms) {
  5300. next_status_led_update_ms += 500; // Update every 0.5s
  5301. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5302. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5303. #if HAS_TEMP_BED
  5304. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5305. #endif
  5306. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5307. if (new_led != red_led) {
  5308. red_led = new_led;
  5309. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5310. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5311. }
  5312. }
  5313. }
  5314. #endif
  5315. void enable_all_steppers() {
  5316. enable_x();
  5317. enable_y();
  5318. enable_z();
  5319. enable_e0();
  5320. enable_e1();
  5321. enable_e2();
  5322. enable_e3();
  5323. }
  5324. void disable_all_steppers() {
  5325. disable_x();
  5326. disable_y();
  5327. disable_z();
  5328. disable_e0();
  5329. disable_e1();
  5330. disable_e2();
  5331. disable_e3();
  5332. }
  5333. /**
  5334. * Standard idle routine keeps the machine alive
  5335. */
  5336. void idle() {
  5337. manage_heater();
  5338. manage_inactivity();
  5339. lcd_update();
  5340. }
  5341. /**
  5342. * Manage several activities:
  5343. * - Check for Filament Runout
  5344. * - Keep the command buffer full
  5345. * - Check for maximum inactive time between commands
  5346. * - Check for maximum inactive time between stepper commands
  5347. * - Check if pin CHDK needs to go LOW
  5348. * - Check for KILL button held down
  5349. * - Check for HOME button held down
  5350. * - Check if cooling fan needs to be switched on
  5351. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5352. */
  5353. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5354. #if HAS_FILRUNOUT
  5355. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5356. filrunout();
  5357. #endif
  5358. if (commands_in_queue < BUFSIZE - 1) get_command();
  5359. millis_t ms = millis();
  5360. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5361. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5362. && !ignore_stepper_queue && !blocks_queued()) {
  5363. #if DISABLE_X == true
  5364. disable_x();
  5365. #endif
  5366. #if DISABLE_Y == true
  5367. disable_y();
  5368. #endif
  5369. #if DISABLE_Z == true
  5370. disable_z();
  5371. #endif
  5372. #if DISABLE_E == true
  5373. disable_e0();
  5374. disable_e1();
  5375. disable_e2();
  5376. disable_e3();
  5377. #endif
  5378. }
  5379. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5380. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5381. chdkActive = false;
  5382. WRITE(CHDK, LOW);
  5383. }
  5384. #endif
  5385. #if HAS_KILL
  5386. // Check if the kill button was pressed and wait just in case it was an accidental
  5387. // key kill key press
  5388. // -------------------------------------------------------------------------------
  5389. static int killCount = 0; // make the inactivity button a bit less responsive
  5390. const int KILL_DELAY = 750;
  5391. if (!READ(KILL_PIN))
  5392. killCount++;
  5393. else if (killCount > 0)
  5394. killCount--;
  5395. // Exceeded threshold and we can confirm that it was not accidental
  5396. // KILL the machine
  5397. // ----------------------------------------------------------------
  5398. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5399. #endif
  5400. #if HAS_HOME
  5401. // Check to see if we have to home, use poor man's debouncer
  5402. // ---------------------------------------------------------
  5403. static int homeDebounceCount = 0; // poor man's debouncing count
  5404. const int HOME_DEBOUNCE_DELAY = 750;
  5405. if (!READ(HOME_PIN)) {
  5406. if (!homeDebounceCount) {
  5407. enqueuecommands_P(PSTR("G28"));
  5408. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5409. }
  5410. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5411. homeDebounceCount++;
  5412. else
  5413. homeDebounceCount = 0;
  5414. }
  5415. #endif
  5416. #if HAS_CONTROLLERFAN
  5417. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5418. #endif
  5419. #ifdef EXTRUDER_RUNOUT_PREVENT
  5420. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5421. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5422. bool oldstatus;
  5423. switch(active_extruder) {
  5424. case 0:
  5425. oldstatus = E0_ENABLE_READ;
  5426. enable_e0();
  5427. break;
  5428. #if EXTRUDERS > 1
  5429. case 1:
  5430. oldstatus = E1_ENABLE_READ;
  5431. enable_e1();
  5432. break;
  5433. #if EXTRUDERS > 2
  5434. case 2:
  5435. oldstatus = E2_ENABLE_READ;
  5436. enable_e2();
  5437. break;
  5438. #if EXTRUDERS > 3
  5439. case 3:
  5440. oldstatus = E3_ENABLE_READ;
  5441. enable_e3();
  5442. break;
  5443. #endif
  5444. #endif
  5445. #endif
  5446. }
  5447. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5448. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5449. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5450. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5451. current_position[E_AXIS] = oldepos;
  5452. destination[E_AXIS] = oldedes;
  5453. plan_set_e_position(oldepos);
  5454. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5455. st_synchronize();
  5456. switch(active_extruder) {
  5457. case 0:
  5458. E0_ENABLE_WRITE(oldstatus);
  5459. break;
  5460. #if EXTRUDERS > 1
  5461. case 1:
  5462. E1_ENABLE_WRITE(oldstatus);
  5463. break;
  5464. #if EXTRUDERS > 2
  5465. case 2:
  5466. E2_ENABLE_WRITE(oldstatus);
  5467. break;
  5468. #if EXTRUDERS > 3
  5469. case 3:
  5470. E3_ENABLE_WRITE(oldstatus);
  5471. break;
  5472. #endif
  5473. #endif
  5474. #endif
  5475. }
  5476. }
  5477. #endif
  5478. #ifdef DUAL_X_CARRIAGE
  5479. // handle delayed move timeout
  5480. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5481. // travel moves have been received so enact them
  5482. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5483. set_destination_to_current();
  5484. prepare_move();
  5485. }
  5486. #endif
  5487. #ifdef TEMP_STAT_LEDS
  5488. handle_status_leds();
  5489. #endif
  5490. check_axes_activity();
  5491. }
  5492. void kill(const char *lcd_msg) {
  5493. #ifdef ULTRA_LCD
  5494. lcd_setalertstatuspgm(lcd_msg);
  5495. #endif
  5496. cli(); // Stop interrupts
  5497. disable_all_heaters();
  5498. disable_all_steppers();
  5499. #if HAS_POWER_SWITCH
  5500. pinMode(PS_ON_PIN, INPUT);
  5501. #endif
  5502. SERIAL_ERROR_START;
  5503. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5504. // FMC small patch to update the LCD before ending
  5505. sei(); // enable interrupts
  5506. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5507. cli(); // disable interrupts
  5508. suicide();
  5509. while(1) { /* Intentionally left empty */ } // Wait for reset
  5510. }
  5511. #ifdef FILAMENT_RUNOUT_SENSOR
  5512. void filrunout() {
  5513. if (!filrunoutEnqueued) {
  5514. filrunoutEnqueued = true;
  5515. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5516. st_synchronize();
  5517. }
  5518. }
  5519. #endif // FILAMENT_RUNOUT_SENSOR
  5520. #ifdef FAST_PWM_FAN
  5521. void setPwmFrequency(uint8_t pin, int val) {
  5522. val &= 0x07;
  5523. switch (digitalPinToTimer(pin)) {
  5524. #if defined(TCCR0A)
  5525. case TIMER0A:
  5526. case TIMER0B:
  5527. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5528. // TCCR0B |= val;
  5529. break;
  5530. #endif
  5531. #if defined(TCCR1A)
  5532. case TIMER1A:
  5533. case TIMER1B:
  5534. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5535. // TCCR1B |= val;
  5536. break;
  5537. #endif
  5538. #if defined(TCCR2)
  5539. case TIMER2:
  5540. case TIMER2:
  5541. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5542. TCCR2 |= val;
  5543. break;
  5544. #endif
  5545. #if defined(TCCR2A)
  5546. case TIMER2A:
  5547. case TIMER2B:
  5548. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5549. TCCR2B |= val;
  5550. break;
  5551. #endif
  5552. #if defined(TCCR3A)
  5553. case TIMER3A:
  5554. case TIMER3B:
  5555. case TIMER3C:
  5556. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5557. TCCR3B |= val;
  5558. break;
  5559. #endif
  5560. #if defined(TCCR4A)
  5561. case TIMER4A:
  5562. case TIMER4B:
  5563. case TIMER4C:
  5564. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5565. TCCR4B |= val;
  5566. break;
  5567. #endif
  5568. #if defined(TCCR5A)
  5569. case TIMER5A:
  5570. case TIMER5B:
  5571. case TIMER5C:
  5572. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5573. TCCR5B |= val;
  5574. break;
  5575. #endif
  5576. }
  5577. }
  5578. #endif // FAST_PWM_FAN
  5579. void Stop() {
  5580. disable_all_heaters();
  5581. if (IsRunning()) {
  5582. Running = false;
  5583. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5584. SERIAL_ERROR_START;
  5585. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5586. LCD_MESSAGEPGM(MSG_STOPPED);
  5587. }
  5588. }
  5589. /**
  5590. * Set target_extruder from the T parameter or the active_extruder
  5591. *
  5592. * Returns TRUE if the target is invalid
  5593. */
  5594. bool setTargetedHotend(int code) {
  5595. target_extruder = active_extruder;
  5596. if (code_seen('T')) {
  5597. target_extruder = code_value_short();
  5598. if (target_extruder >= EXTRUDERS) {
  5599. SERIAL_ECHO_START;
  5600. SERIAL_CHAR('M');
  5601. SERIAL_ECHO(code);
  5602. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  5603. SERIAL_ECHOLN(target_extruder);
  5604. return true;
  5605. }
  5606. }
  5607. return false;
  5608. }
  5609. float calculate_volumetric_multiplier(float diameter) {
  5610. if (!volumetric_enabled || diameter == 0) return 1.0;
  5611. float d2 = diameter * 0.5;
  5612. return 1.0 / (M_PI * d2 * d2);
  5613. }
  5614. void calculate_volumetric_multipliers() {
  5615. for (int i=0; i<EXTRUDERS; i++)
  5616. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5617. }