My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 241KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. /**
  70. * Look here for descriptions of G-codes:
  71. * - http://linuxcnc.org/handbook/gcode/g-code.html
  72. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  73. *
  74. * Help us document these G-codes online:
  75. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  76. * - http://reprap.org/wiki/G-code
  77. *
  78. * -----------------
  79. * Implemented Codes
  80. * -----------------
  81. *
  82. * "G" Codes
  83. *
  84. * G0 -> G1
  85. * G1 - Coordinated Movement X Y Z E
  86. * G2 - CW ARC
  87. * G3 - CCW ARC
  88. * G4 - Dwell S<seconds> or P<milliseconds>
  89. * G10 - retract filament according to settings of M207
  90. * G11 - retract recover filament according to settings of M208
  91. * G28 - Home one or more axes
  92. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  93. * G30 - Single Z probe, probes bed at current XY location.
  94. * G31 - Dock sled (Z_PROBE_SLED only)
  95. * G32 - Undock sled (Z_PROBE_SLED only)
  96. * G90 - Use Absolute Coordinates
  97. * G91 - Use Relative Coordinates
  98. * G92 - Set current position to coordinates given
  99. *
  100. * "M" Codes
  101. *
  102. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  103. * M1 - Same as M0
  104. * M17 - Enable/Power all stepper motors
  105. * M18 - Disable all stepper motors; same as M84
  106. * M20 - List SD card
  107. * M21 - Init SD card
  108. * M22 - Release SD card
  109. * M23 - Select SD file (M23 filename.g)
  110. * M24 - Start/resume SD print
  111. * M25 - Pause SD print
  112. * M26 - Set SD position in bytes (M26 S12345)
  113. * M27 - Report SD print status
  114. * M28 - Start SD write (M28 filename.g)
  115. * M29 - Stop SD write
  116. * M30 - Delete file from SD (M30 filename.g)
  117. * M31 - Output time since last M109 or SD card start to serial
  118. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  119. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  120. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  121. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  122. * M33 - Get the longname version of a path
  123. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  124. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  125. * M80 - Turn on Power Supply
  126. * M81 - Turn off Power Supply
  127. * M82 - Set E codes absolute (default)
  128. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  129. * M84 - Disable steppers until next move,
  130. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  131. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  132. * M92 - Set axis_steps_per_unit - same syntax as G92
  133. * M104 - Set extruder target temp
  134. * M105 - Read current temp
  135. * M106 - Fan on
  136. * M107 - Fan off
  137. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  138. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  139. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  140. * M110 - Set the current line number
  141. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  142. * M112 - Emergency stop
  143. * M114 - Output current position to serial port
  144. * M115 - Capabilities string
  145. * M117 - Display a message on the controller screen
  146. * M119 - Output Endstop status to serial port
  147. * M120 - Enable endstop detection
  148. * M121 - Disable endstop detection
  149. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  150. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  151. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  152. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  153. * M140 - Set bed target temp
  154. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  155. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  156. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  157. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  158. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  159. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  160. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  161. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  162. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  163. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  164. * M206 - Set additional homing offset
  165. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  166. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  167. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  168. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  169. * M220 - Set speed factor override percentage: S<factor in percent>
  170. * M221 - Set extrude factor override percentage: S<factor in percent>
  171. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  172. * M240 - Trigger a camera to take a photograph
  173. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  174. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  175. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  176. * M301 - Set PID parameters P I and D
  177. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  178. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  179. * M304 - Set bed PID parameters P I and D
  180. * M380 - Activate solenoid on active extruder
  181. * M381 - Disable all solenoids
  182. * M400 - Finish all moves
  183. * M401 - Lower Z probe if present
  184. * M402 - Raise Z probe if present
  185. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. * M406 - Turn off Filament Sensor extrusion control
  188. * M407 - Display measured filament diameter
  189. * M410 - Quickstop. Abort all the planned moves
  190. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  191. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  192. * M428 - Set the home_offset logically based on the current_position
  193. * M500 - Store parameters in EEPROM
  194. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  195. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  196. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  197. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  198. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  199. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  200. * M666 - Set delta endstop adjustment
  201. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  202. * M907 - Set digital trimpot motor current using axis codes.
  203. * M908 - Control digital trimpot directly.
  204. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  205. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  206. * M350 - Set microstepping mode.
  207. * M351 - Toggle MS1 MS2 pins directly.
  208. *
  209. * ************ SCARA Specific - This can change to suit future G-code regulations
  210. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  211. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  212. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  213. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  214. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  215. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  216. * ************* SCARA End ***************
  217. *
  218. * ************ Custom codes - This can change to suit future G-code regulations
  219. * M100 - Watch Free Memory (For Debugging Only)
  220. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  221. * M928 - Start SD logging (M928 filename.g) - ended by M29
  222. * M999 - Restart after being stopped by error
  223. *
  224. * "T" Codes
  225. *
  226. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  227. *
  228. */
  229. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  230. void gcode_M100();
  231. #endif
  232. #if ENABLED(SDSUPPORT)
  233. CardReader card;
  234. #endif
  235. bool Running = true;
  236. uint8_t marlin_debug_flags = DEBUG_NONE;
  237. static float feedrate = 1500.0, saved_feedrate;
  238. float current_position[NUM_AXIS] = { 0.0 };
  239. static float destination[NUM_AXIS] = { 0.0 };
  240. bool axis_known_position[3] = { false };
  241. bool axis_homed[3] = { false };
  242. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  243. static char* current_command, *current_command_args;
  244. static int cmd_queue_index_r = 0;
  245. static int cmd_queue_index_w = 0;
  246. static int commands_in_queue = 0;
  247. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  248. const float homing_feedrate[] = HOMING_FEEDRATE;
  249. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  250. int feedrate_multiplier = 100; //100->1 200->2
  251. int saved_feedrate_multiplier;
  252. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  253. bool volumetric_enabled = false;
  254. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  255. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  256. float home_offset[3] = { 0 };
  257. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  258. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  259. #if FAN_COUNT > 0
  260. int fanSpeeds[FAN_COUNT] = { 0 };
  261. #endif
  262. uint8_t active_extruder = 0;
  263. bool cancel_heatup = false;
  264. const char errormagic[] PROGMEM = "Error:";
  265. const char echomagic[] PROGMEM = "echo:";
  266. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  267. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  268. static int serial_count = 0;
  269. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  270. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  271. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  272. // Inactivity shutdown
  273. millis_t previous_cmd_ms = 0;
  274. static millis_t max_inactive_time = 0;
  275. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000L;
  276. millis_t print_job_start_ms = 0; ///< Print job start time
  277. millis_t print_job_stop_ms = 0; ///< Print job stop time
  278. static uint8_t target_extruder;
  279. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  280. int xy_travel_speed = XY_TRAVEL_SPEED;
  281. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  282. #endif
  283. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  284. float z_endstop_adj = 0;
  285. #endif
  286. // Extruder offsets
  287. #if EXTRUDERS > 1
  288. #ifndef EXTRUDER_OFFSET_X
  289. #define EXTRUDER_OFFSET_X { 0 }
  290. #endif
  291. #ifndef EXTRUDER_OFFSET_Y
  292. #define EXTRUDER_OFFSET_Y { 0 }
  293. #endif
  294. float extruder_offset[][EXTRUDERS] = {
  295. EXTRUDER_OFFSET_X,
  296. EXTRUDER_OFFSET_Y
  297. #if ENABLED(DUAL_X_CARRIAGE)
  298. , { 0 } // supports offsets in XYZ plane
  299. #endif
  300. };
  301. #endif
  302. #if HAS_SERVO_ENDSTOPS
  303. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  304. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  305. #endif
  306. #if ENABLED(BARICUDA)
  307. int ValvePressure = 0;
  308. int EtoPPressure = 0;
  309. #endif
  310. #if ENABLED(FWRETRACT)
  311. bool autoretract_enabled = false;
  312. bool retracted[EXTRUDERS] = { false };
  313. bool retracted_swap[EXTRUDERS] = { false };
  314. float retract_length = RETRACT_LENGTH;
  315. float retract_length_swap = RETRACT_LENGTH_SWAP;
  316. float retract_feedrate = RETRACT_FEEDRATE;
  317. float retract_zlift = RETRACT_ZLIFT;
  318. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  319. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  320. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  321. #endif // FWRETRACT
  322. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  323. bool powersupply =
  324. #if ENABLED(PS_DEFAULT_OFF)
  325. false
  326. #else
  327. true
  328. #endif
  329. ;
  330. #endif
  331. #if ENABLED(DELTA)
  332. #define TOWER_1 X_AXIS
  333. #define TOWER_2 Y_AXIS
  334. #define TOWER_3 Z_AXIS
  335. float delta[3] = { 0 };
  336. #define SIN_60 0.8660254037844386
  337. #define COS_60 0.5
  338. float endstop_adj[3] = { 0 };
  339. // these are the default values, can be overriden with M665
  340. float delta_radius = DELTA_RADIUS;
  341. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  342. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  343. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  344. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  345. float delta_tower3_x = 0; // back middle tower
  346. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  347. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  348. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  349. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  350. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  351. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  352. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  353. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  354. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  355. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  356. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  357. int delta_grid_spacing[2] = { 0, 0 };
  358. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  359. #endif
  360. #else
  361. static bool home_all_axis = true;
  362. #endif
  363. #if ENABLED(SCARA)
  364. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  365. static float delta[3] = { 0 };
  366. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  367. #endif
  368. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  369. //Variables for Filament Sensor input
  370. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  371. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  372. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  373. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  374. int delay_index1 = 0; //index into ring buffer
  375. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  376. float delay_dist = 0; //delay distance counter
  377. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  378. #endif
  379. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  380. static bool filrunoutEnqueued = false;
  381. #endif
  382. static bool send_ok[BUFSIZE];
  383. #if HAS_SERVOS
  384. Servo servo[NUM_SERVOS];
  385. #endif
  386. #ifdef CHDK
  387. unsigned long chdkHigh = 0;
  388. boolean chdkActive = false;
  389. #endif
  390. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  391. int lpq_len = 20;
  392. #endif
  393. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  394. // States for managing Marlin and host communication
  395. // Marlin sends messages if blocked or busy
  396. enum MarlinBusyState {
  397. NOT_BUSY, // Not in a handler
  398. IN_HANDLER, // Processing a GCode
  399. IN_PROCESS, // Known to be blocking command input (as in G29)
  400. PAUSED_FOR_USER, // Blocking pending any input
  401. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  402. };
  403. static MarlinBusyState busy_state = NOT_BUSY;
  404. static millis_t next_busy_signal_ms = -1;
  405. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  406. #else
  407. #define host_keepalive() ;
  408. #define KEEPALIVE_STATE(n) ;
  409. #endif // HOST_KEEPALIVE_FEATURE
  410. /**
  411. * ***************************************************************************
  412. * ******************************** FUNCTIONS ********************************
  413. * ***************************************************************************
  414. */
  415. void get_available_commands();
  416. void process_next_command();
  417. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  418. bool setTargetedHotend(int code);
  419. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  420. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  421. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  422. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  423. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  424. void gcode_M114();
  425. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  426. float extrude_min_temp = EXTRUDE_MINTEMP;
  427. #endif
  428. #if ENABLED(HAS_Z_MIN_PROBE)
  429. extern volatile bool z_probe_is_active;
  430. #endif
  431. #if ENABLED(SDSUPPORT)
  432. #include "SdFatUtil.h"
  433. int freeMemory() { return SdFatUtil::FreeRam(); }
  434. #else
  435. extern "C" {
  436. extern unsigned int __bss_end;
  437. extern unsigned int __heap_start;
  438. extern void* __brkval;
  439. int freeMemory() {
  440. int free_memory;
  441. if ((int)__brkval == 0)
  442. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  443. else
  444. free_memory = ((int)&free_memory) - ((int)__brkval);
  445. return free_memory;
  446. }
  447. }
  448. #endif //!SDSUPPORT
  449. /**
  450. * Inject the next "immediate" command, when possible.
  451. * Return true if any immediate commands remain to inject.
  452. */
  453. static bool drain_queued_commands_P() {
  454. if (queued_commands_P != NULL) {
  455. size_t i = 0;
  456. char c, cmd[30];
  457. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  458. cmd[sizeof(cmd) - 1] = '\0';
  459. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  460. cmd[i] = '\0';
  461. if (enqueue_and_echo_command(cmd)) { // success?
  462. if (c) // newline char?
  463. queued_commands_P += i + 1; // advance to the next command
  464. else
  465. queued_commands_P = NULL; // nul char? no more commands
  466. }
  467. }
  468. return (queued_commands_P != NULL); // return whether any more remain
  469. }
  470. /**
  471. * Record one or many commands to run from program memory.
  472. * Aborts the current queue, if any.
  473. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  474. */
  475. void enqueue_and_echo_commands_P(const char* pgcode) {
  476. queued_commands_P = pgcode;
  477. drain_queued_commands_P(); // first command executed asap (when possible)
  478. }
  479. /**
  480. * Once a new command is in the ring buffer, call this to commit it
  481. */
  482. inline void _commit_command(bool say_ok) {
  483. send_ok[cmd_queue_index_w] = say_ok;
  484. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  485. commands_in_queue++;
  486. }
  487. /**
  488. * Copy a command directly into the main command buffer, from RAM.
  489. * Returns true if successfully adds the command
  490. */
  491. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  492. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  493. strcpy(command_queue[cmd_queue_index_w], cmd);
  494. _commit_command(say_ok);
  495. return true;
  496. }
  497. void enqueue_and_echo_command_now(const char* cmd) {
  498. while (!enqueue_and_echo_command(cmd)) idle();
  499. }
  500. /**
  501. * Enqueue with Serial Echo
  502. */
  503. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  504. if (_enqueuecommand(cmd, say_ok)) {
  505. SERIAL_ECHO_START;
  506. SERIAL_ECHOPGM(MSG_Enqueueing);
  507. SERIAL_ECHO(cmd);
  508. SERIAL_ECHOLNPGM("\"");
  509. return true;
  510. }
  511. return false;
  512. }
  513. void setup_killpin() {
  514. #if HAS_KILL
  515. SET_INPUT(KILL_PIN);
  516. WRITE(KILL_PIN, HIGH);
  517. #endif
  518. }
  519. void setup_filrunoutpin() {
  520. #if HAS_FILRUNOUT
  521. pinMode(FILRUNOUT_PIN, INPUT);
  522. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  523. WRITE(FILRUNOUT_PIN, HIGH);
  524. #endif
  525. #endif
  526. }
  527. // Set home pin
  528. void setup_homepin(void) {
  529. #if HAS_HOME
  530. SET_INPUT(HOME_PIN);
  531. WRITE(HOME_PIN, HIGH);
  532. #endif
  533. }
  534. void setup_photpin() {
  535. #if HAS_PHOTOGRAPH
  536. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  537. #endif
  538. }
  539. void setup_powerhold() {
  540. #if HAS_SUICIDE
  541. OUT_WRITE(SUICIDE_PIN, HIGH);
  542. #endif
  543. #if HAS_POWER_SWITCH
  544. #if ENABLED(PS_DEFAULT_OFF)
  545. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  546. #else
  547. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  548. #endif
  549. #endif
  550. }
  551. void suicide() {
  552. #if HAS_SUICIDE
  553. OUT_WRITE(SUICIDE_PIN, LOW);
  554. #endif
  555. }
  556. void servo_init() {
  557. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  558. servo[0].attach(SERVO0_PIN);
  559. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  560. #endif
  561. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  562. servo[1].attach(SERVO1_PIN);
  563. servo[1].detach();
  564. #endif
  565. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  566. servo[2].attach(SERVO2_PIN);
  567. servo[2].detach();
  568. #endif
  569. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  570. servo[3].attach(SERVO3_PIN);
  571. servo[3].detach();
  572. #endif
  573. #if HAS_SERVO_ENDSTOPS
  574. z_probe_is_active = false;
  575. /**
  576. * Set position of all defined Servo Endstops
  577. *
  578. * ** UNSAFE! - NEEDS UPDATE! **
  579. *
  580. * The servo might be deployed and positioned too low to stow
  581. * when starting up the machine or rebooting the board.
  582. * There's no way to know where the nozzle is positioned until
  583. * homing has been done - no homing with z-probe without init!
  584. *
  585. */
  586. for (int i = 0; i < 3; i++)
  587. if (servo_endstop_id[i] >= 0)
  588. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  589. #endif // HAS_SERVO_ENDSTOPS
  590. }
  591. /**
  592. * Stepper Reset (RigidBoard, et.al.)
  593. */
  594. #if HAS_STEPPER_RESET
  595. void disableStepperDrivers() {
  596. pinMode(STEPPER_RESET_PIN, OUTPUT);
  597. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  598. }
  599. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  600. #endif
  601. /**
  602. * Marlin entry-point: Set up before the program loop
  603. * - Set up the kill pin, filament runout, power hold
  604. * - Start the serial port
  605. * - Print startup messages and diagnostics
  606. * - Get EEPROM or default settings
  607. * - Initialize managers for:
  608. * • temperature
  609. * • planner
  610. * • watchdog
  611. * • stepper
  612. * • photo pin
  613. * • servos
  614. * • LCD controller
  615. * • Digipot I2C
  616. * • Z probe sled
  617. * • status LEDs
  618. */
  619. void setup() {
  620. #ifdef DISABLE_JTAG
  621. // Disable JTAG on AT90USB chips to free up pins for IO
  622. MCUCR = 0x80;
  623. MCUCR = 0x80;
  624. #endif
  625. setup_killpin();
  626. setup_filrunoutpin();
  627. setup_powerhold();
  628. #if HAS_STEPPER_RESET
  629. disableStepperDrivers();
  630. #endif
  631. MYSERIAL.begin(BAUDRATE);
  632. SERIAL_PROTOCOLLNPGM("start");
  633. SERIAL_ECHO_START;
  634. // Check startup - does nothing if bootloader sets MCUSR to 0
  635. byte mcu = MCUSR;
  636. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  637. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  638. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  639. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  640. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  641. MCUSR = 0;
  642. SERIAL_ECHOPGM(MSG_MARLIN);
  643. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  644. #ifdef STRING_DISTRIBUTION_DATE
  645. #ifdef STRING_CONFIG_H_AUTHOR
  646. SERIAL_ECHO_START;
  647. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  648. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  649. SERIAL_ECHOPGM(MSG_AUTHOR);
  650. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  651. SERIAL_ECHOPGM("Compiled: ");
  652. SERIAL_ECHOLNPGM(__DATE__);
  653. #endif // STRING_CONFIG_H_AUTHOR
  654. #endif // STRING_DISTRIBUTION_DATE
  655. SERIAL_ECHO_START;
  656. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  657. SERIAL_ECHO(freeMemory());
  658. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  659. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  660. // Send "ok" after commands by default
  661. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  662. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  663. Config_RetrieveSettings();
  664. lcd_init();
  665. tp_init(); // Initialize temperature loop
  666. plan_init(); // Initialize planner;
  667. #if ENABLED(USE_WATCHDOG)
  668. watchdog_init();
  669. #endif
  670. st_init(); // Initialize stepper, this enables interrupts!
  671. setup_photpin();
  672. servo_init();
  673. #if HAS_CONTROLLERFAN
  674. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  675. #endif
  676. #if HAS_STEPPER_RESET
  677. enableStepperDrivers();
  678. #endif
  679. #if ENABLED(DIGIPOT_I2C)
  680. digipot_i2c_init();
  681. #endif
  682. #if ENABLED(Z_PROBE_SLED)
  683. pinMode(SLED_PIN, OUTPUT);
  684. digitalWrite(SLED_PIN, LOW); // turn it off
  685. #endif // Z_PROBE_SLED
  686. setup_homepin();
  687. #ifdef STAT_LED_RED
  688. pinMode(STAT_LED_RED, OUTPUT);
  689. digitalWrite(STAT_LED_RED, LOW); // turn it off
  690. #endif
  691. #ifdef STAT_LED_BLUE
  692. pinMode(STAT_LED_BLUE, OUTPUT);
  693. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  694. #endif
  695. }
  696. /**
  697. * The main Marlin program loop
  698. *
  699. * - Save or log commands to SD
  700. * - Process available commands (if not saving)
  701. * - Call heater manager
  702. * - Call inactivity manager
  703. * - Call endstop manager
  704. * - Call LCD update
  705. */
  706. void loop() {
  707. if (commands_in_queue < BUFSIZE) get_available_commands();
  708. #if ENABLED(SDSUPPORT)
  709. card.checkautostart(false);
  710. #endif
  711. if (commands_in_queue) {
  712. #if ENABLED(SDSUPPORT)
  713. if (card.saving) {
  714. char* command = command_queue[cmd_queue_index_r];
  715. if (strstr_P(command, PSTR("M29"))) {
  716. // M29 closes the file
  717. card.closefile();
  718. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  719. ok_to_send();
  720. }
  721. else {
  722. // Write the string from the read buffer to SD
  723. card.write_command(command);
  724. if (card.logging)
  725. process_next_command(); // The card is saving because it's logging
  726. else
  727. ok_to_send();
  728. }
  729. }
  730. else
  731. process_next_command();
  732. #else
  733. process_next_command();
  734. #endif // SDSUPPORT
  735. commands_in_queue--;
  736. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  737. }
  738. checkHitEndstops();
  739. idle();
  740. }
  741. void gcode_line_error(const char* err, bool doFlush = true) {
  742. SERIAL_ERROR_START;
  743. serialprintPGM(err);
  744. SERIAL_ERRORLN(gcode_LastN);
  745. //Serial.println(gcode_N);
  746. if (doFlush) FlushSerialRequestResend();
  747. serial_count = 0;
  748. }
  749. inline void get_serial_commands() {
  750. static char serial_line_buffer[MAX_CMD_SIZE];
  751. static boolean serial_comment_mode = false;
  752. // If the command buffer is empty for too long,
  753. // send "wait" to indicate Marlin is still waiting.
  754. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  755. static millis_t last_command_time = 0;
  756. millis_t ms = millis();
  757. if (commands_in_queue == 0 && !MYSERIAL.available() && ms > last_command_time + NO_TIMEOUTS) {
  758. SERIAL_ECHOLNPGM(MSG_WAIT);
  759. last_command_time = ms;
  760. }
  761. #endif
  762. /**
  763. * Loop while serial characters are incoming and the queue is not full
  764. */
  765. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  766. char serial_char = MYSERIAL.read();
  767. /**
  768. * If the character ends the line
  769. */
  770. if (serial_char == '\n' || serial_char == '\r') {
  771. serial_comment_mode = false; // end of line == end of comment
  772. if (!serial_count) continue; // skip empty lines
  773. serial_line_buffer[serial_count] = 0; // terminate string
  774. serial_count = 0; //reset buffer
  775. char* command = serial_line_buffer;
  776. while (*command == ' ') command++; // skip any leading spaces
  777. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  778. char* apos = strchr(command, '*');
  779. if (npos) {
  780. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  781. if (M110) {
  782. char* n2pos = strchr(command + 4, 'N');
  783. if (n2pos) npos = n2pos;
  784. }
  785. gcode_N = strtol(npos + 1, NULL, 10);
  786. if (gcode_N != gcode_LastN + 1 && !M110) {
  787. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  788. return;
  789. }
  790. if (apos) {
  791. byte checksum = 0, count = 0;
  792. while (command[count] != '*') checksum ^= command[count++];
  793. if (strtol(apos + 1, NULL, 10) != checksum) {
  794. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  795. return;
  796. }
  797. // if no errors, continue parsing
  798. }
  799. else {
  800. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  801. return;
  802. }
  803. gcode_LastN = gcode_N;
  804. // if no errors, continue parsing
  805. }
  806. else if (apos) { // No '*' without 'N'
  807. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  808. return;
  809. }
  810. // Movement commands alert when stopped
  811. if (IsStopped()) {
  812. char* gpos = strchr(command, 'G');
  813. if (gpos) {
  814. int codenum = strtol(gpos + 1, NULL, 10);
  815. switch (codenum) {
  816. case 0:
  817. case 1:
  818. case 2:
  819. case 3:
  820. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  821. LCD_MESSAGEPGM(MSG_STOPPED);
  822. break;
  823. }
  824. }
  825. }
  826. // If command was e-stop process now
  827. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  828. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  829. last_command_time = ms;
  830. #endif
  831. // Add the command to the queue
  832. _enqueuecommand(serial_line_buffer, true);
  833. }
  834. else if (serial_count >= MAX_CMD_SIZE - 1) {
  835. // Keep fetching, but ignore normal characters beyond the max length
  836. // The command will be injected when EOL is reached
  837. }
  838. else if (serial_char == '\\') { // Handle escapes
  839. if (MYSERIAL.available() > 0) {
  840. // if we have one more character, copy it over
  841. serial_char = MYSERIAL.read();
  842. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  843. }
  844. // otherwise do nothing
  845. }
  846. else { // it's not a newline, carriage return or escape char
  847. if (serial_char == ';') serial_comment_mode = true;
  848. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  849. }
  850. } // queue has space, serial has data
  851. }
  852. #if ENABLED(SDSUPPORT)
  853. inline void get_sdcard_commands() {
  854. static bool stop_buffering = false,
  855. sd_comment_mode = false;
  856. if (!card.sdprinting) return;
  857. /**
  858. * '#' stops reading from SD to the buffer prematurely, so procedural
  859. * macro calls are possible. If it occurs, stop_buffering is triggered
  860. * and the buffer is run dry; this character _can_ occur in serial com
  861. * due to checksums, however, no checksums are used in SD printing.
  862. */
  863. if (commands_in_queue == 0) stop_buffering = false;
  864. uint16_t sd_count = 0;
  865. bool card_eof = card.eof();
  866. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  867. int16_t n = card.get();
  868. char sd_char = (char)n;
  869. card_eof = card.eof();
  870. if (card_eof || n == -1
  871. || sd_char == '\n' || sd_char == '\r'
  872. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  873. ) {
  874. if (card_eof) {
  875. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  876. print_job_stop(true);
  877. char time[30];
  878. millis_t t = print_job_timer();
  879. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  880. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  881. SERIAL_ECHO_START;
  882. SERIAL_ECHOLN(time);
  883. lcd_setstatus(time, true);
  884. card.printingHasFinished();
  885. card.checkautostart(true);
  886. }
  887. if (sd_char == '#') stop_buffering = true;
  888. sd_comment_mode = false; //for new command
  889. if (!sd_count) continue; //skip empty lines
  890. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  891. sd_count = 0; //clear buffer
  892. _commit_command(false);
  893. }
  894. else if (sd_count >= MAX_CMD_SIZE - 1) {
  895. /**
  896. * Keep fetching, but ignore normal characters beyond the max length
  897. * The command will be injected when EOL is reached
  898. */
  899. }
  900. else {
  901. if (sd_char == ';') sd_comment_mode = true;
  902. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  903. }
  904. }
  905. }
  906. #endif // SDSUPPORT
  907. /**
  908. * Add to the circular command queue the next command from:
  909. * - The command-injection queue (queued_commands_P)
  910. * - The active serial input (usually USB)
  911. * - The SD card file being actively printed
  912. */
  913. void get_available_commands() {
  914. // if any immediate commands remain, don't get other commands yet
  915. if (drain_queued_commands_P()) return;
  916. get_serial_commands();
  917. #if ENABLED(SDSUPPORT)
  918. get_sdcard_commands();
  919. #endif
  920. }
  921. bool code_has_value() {
  922. int i = 1;
  923. char c = seen_pointer[i];
  924. while (c == ' ') c = seen_pointer[++i];
  925. if (c == '-' || c == '+') c = seen_pointer[++i];
  926. if (c == '.') c = seen_pointer[++i];
  927. return NUMERIC(c);
  928. }
  929. float code_value() {
  930. float ret;
  931. char* e = strchr(seen_pointer, 'E');
  932. if (e) {
  933. *e = 0;
  934. ret = strtod(seen_pointer + 1, NULL);
  935. *e = 'E';
  936. }
  937. else
  938. ret = strtod(seen_pointer + 1, NULL);
  939. return ret;
  940. }
  941. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  942. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  943. bool code_seen(char code) {
  944. seen_pointer = strchr(current_command_args, code);
  945. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  946. }
  947. #define DEFINE_PGM_READ_ANY(type, reader) \
  948. static inline type pgm_read_any(const type *p) \
  949. { return pgm_read_##reader##_near(p); }
  950. DEFINE_PGM_READ_ANY(float, float);
  951. DEFINE_PGM_READ_ANY(signed char, byte);
  952. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  953. static const PROGMEM type array##_P[3] = \
  954. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  955. static inline type array(int axis) \
  956. { return pgm_read_any(&array##_P[axis]); }
  957. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  958. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  959. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  960. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  961. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  962. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  963. #if ENABLED(DUAL_X_CARRIAGE)
  964. #define DXC_FULL_CONTROL_MODE 0
  965. #define DXC_AUTO_PARK_MODE 1
  966. #define DXC_DUPLICATION_MODE 2
  967. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  968. static float x_home_pos(int extruder) {
  969. if (extruder == 0)
  970. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  971. else
  972. /**
  973. * In dual carriage mode the extruder offset provides an override of the
  974. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  975. * This allow soft recalibration of the second extruder offset position
  976. * without firmware reflash (through the M218 command).
  977. */
  978. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  979. }
  980. static int x_home_dir(int extruder) {
  981. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  982. }
  983. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  984. static bool active_extruder_parked = false; // used in mode 1 & 2
  985. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  986. static millis_t delayed_move_time = 0; // used in mode 1
  987. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  988. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  989. bool extruder_duplication_enabled = false; // used in mode 2
  990. #endif //DUAL_X_CARRIAGE
  991. #if ENABLED(DEBUG_LEVELING_FEATURE)
  992. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  993. SERIAL_ECHO(prefix);
  994. SERIAL_ECHOPAIR(": (", x);
  995. SERIAL_ECHOPAIR(", ", y);
  996. SERIAL_ECHOPAIR(", ", z);
  997. SERIAL_ECHOLNPGM(")");
  998. }
  999. void print_xyz(const char* prefix, const float xyz[]) {
  1000. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  1001. }
  1002. #endif
  1003. static void set_axis_is_at_home(AxisEnum axis) {
  1004. #if ENABLED(DUAL_X_CARRIAGE)
  1005. if (axis == X_AXIS) {
  1006. if (active_extruder != 0) {
  1007. current_position[X_AXIS] = x_home_pos(active_extruder);
  1008. min_pos[X_AXIS] = X2_MIN_POS;
  1009. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1010. return;
  1011. }
  1012. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1013. float xoff = home_offset[X_AXIS];
  1014. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  1015. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  1016. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  1017. return;
  1018. }
  1019. }
  1020. #endif
  1021. #if ENABLED(SCARA)
  1022. if (axis == X_AXIS || axis == Y_AXIS) {
  1023. float homeposition[3];
  1024. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1025. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1026. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1027. /**
  1028. * Works out real Homeposition angles using inverse kinematics,
  1029. * and calculates homing offset using forward kinematics
  1030. */
  1031. calculate_delta(homeposition);
  1032. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1033. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1034. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1035. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1036. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1037. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1038. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1039. calculate_SCARA_forward_Transform(delta);
  1040. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1041. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1042. current_position[axis] = delta[axis];
  1043. /**
  1044. * SCARA home positions are based on configuration since the actual
  1045. * limits are determined by the inverse kinematic transform.
  1046. */
  1047. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1048. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1049. }
  1050. else
  1051. #endif
  1052. {
  1053. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1054. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  1055. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  1056. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1057. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  1058. #endif
  1059. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1060. if (DEBUGGING(LEVELING)) {
  1061. SERIAL_ECHOPAIR("set_axis_is_at_home ", (unsigned long)axis);
  1062. SERIAL_ECHOPAIR(" > (home_offset[axis]==", home_offset[axis]);
  1063. print_xyz(") > current_position", current_position);
  1064. }
  1065. #endif
  1066. }
  1067. }
  1068. /**
  1069. * Some planner shorthand inline functions
  1070. */
  1071. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1072. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1073. int hbd = homing_bump_divisor[axis];
  1074. if (hbd < 1) {
  1075. hbd = 10;
  1076. SERIAL_ECHO_START;
  1077. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1078. }
  1079. feedrate = homing_feedrate[axis] / hbd;
  1080. }
  1081. inline void line_to_current_position() {
  1082. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1083. }
  1084. inline void line_to_z(float zPosition) {
  1085. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1086. }
  1087. inline void line_to_destination(float mm_m) {
  1088. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1089. }
  1090. inline void line_to_destination() {
  1091. line_to_destination(feedrate);
  1092. }
  1093. inline void sync_plan_position() {
  1094. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1095. }
  1096. #if ENABLED(DELTA) || ENABLED(SCARA)
  1097. inline void sync_plan_position_delta() {
  1098. calculate_delta(current_position);
  1099. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1100. }
  1101. #endif
  1102. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1103. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1104. static void setup_for_endstop_move() {
  1105. saved_feedrate = feedrate;
  1106. saved_feedrate_multiplier = feedrate_multiplier;
  1107. feedrate_multiplier = 100;
  1108. refresh_cmd_timeout();
  1109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1110. if (DEBUGGING(LEVELING)) {
  1111. SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1112. }
  1113. #endif
  1114. enable_endstops(true);
  1115. }
  1116. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1117. #if ENABLED(DELTA)
  1118. /**
  1119. * Calculate delta, start a line, and set current_position to destination
  1120. */
  1121. void prepare_move_raw() {
  1122. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1123. if (DEBUGGING(LEVELING)) {
  1124. print_xyz("prepare_move_raw > destination", destination);
  1125. }
  1126. #endif
  1127. refresh_cmd_timeout();
  1128. calculate_delta(destination);
  1129. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1130. set_current_to_destination();
  1131. }
  1132. #endif
  1133. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1134. #if DISABLED(DELTA)
  1135. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1136. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1137. planeNormal.debug("planeNormal");
  1138. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1139. //bedLevel.debug("bedLevel");
  1140. //plan_bed_level_matrix.debug("bed level before");
  1141. //vector_3 uncorrected_position = plan_get_position_mm();
  1142. //uncorrected_position.debug("position before");
  1143. vector_3 corrected_position = plan_get_position();
  1144. //corrected_position.debug("position after");
  1145. current_position[X_AXIS] = corrected_position.x;
  1146. current_position[Y_AXIS] = corrected_position.y;
  1147. current_position[Z_AXIS] = corrected_position.z;
  1148. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1149. if (DEBUGGING(LEVELING)) {
  1150. print_xyz("set_bed_level_equation_lsq > current_position", current_position);
  1151. }
  1152. #endif
  1153. sync_plan_position();
  1154. }
  1155. #endif // !DELTA
  1156. #else // !AUTO_BED_LEVELING_GRID
  1157. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1158. plan_bed_level_matrix.set_to_identity();
  1159. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1160. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1161. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1162. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1163. if (planeNormal.z < 0) {
  1164. planeNormal.x = -planeNormal.x;
  1165. planeNormal.y = -planeNormal.y;
  1166. planeNormal.z = -planeNormal.z;
  1167. }
  1168. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1169. vector_3 corrected_position = plan_get_position();
  1170. current_position[X_AXIS] = corrected_position.x;
  1171. current_position[Y_AXIS] = corrected_position.y;
  1172. current_position[Z_AXIS] = corrected_position.z;
  1173. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1174. if (DEBUGGING(LEVELING)) {
  1175. print_xyz("set_bed_level_equation_3pts > current_position", current_position);
  1176. }
  1177. #endif
  1178. sync_plan_position();
  1179. }
  1180. #endif // !AUTO_BED_LEVELING_GRID
  1181. static void run_z_probe() {
  1182. /**
  1183. * To prevent stepper_inactive_time from running out and
  1184. * EXTRUDER_RUNOUT_PREVENT from extruding
  1185. */
  1186. refresh_cmd_timeout();
  1187. #if ENABLED(DELTA)
  1188. float start_z = current_position[Z_AXIS];
  1189. long start_steps = st_get_position(Z_AXIS);
  1190. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1191. if (DEBUGGING(LEVELING)) {
  1192. SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1193. }
  1194. #endif
  1195. // move down slowly until you find the bed
  1196. feedrate = homing_feedrate[Z_AXIS] / 4;
  1197. destination[Z_AXIS] = -10;
  1198. prepare_move_raw(); // this will also set_current_to_destination
  1199. st_synchronize();
  1200. endstops_hit_on_purpose(); // clear endstop hit flags
  1201. /**
  1202. * We have to let the planner know where we are right now as it
  1203. * is not where we said to go.
  1204. */
  1205. long stop_steps = st_get_position(Z_AXIS);
  1206. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1207. current_position[Z_AXIS] = mm;
  1208. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1209. if (DEBUGGING(LEVELING)) {
  1210. print_xyz("run_z_probe (DELTA) 2 > current_position", current_position);
  1211. }
  1212. #endif
  1213. sync_plan_position_delta();
  1214. #else // !DELTA
  1215. plan_bed_level_matrix.set_to_identity();
  1216. feedrate = homing_feedrate[Z_AXIS];
  1217. // Move down until the Z probe (or endstop?) is triggered
  1218. float zPosition = -(Z_MAX_LENGTH + 10);
  1219. line_to_z(zPosition);
  1220. st_synchronize();
  1221. // Tell the planner where we ended up - Get this from the stepper handler
  1222. zPosition = st_get_axis_position_mm(Z_AXIS);
  1223. plan_set_position(
  1224. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1225. current_position[E_AXIS]
  1226. );
  1227. // move up the retract distance
  1228. zPosition += home_bump_mm(Z_AXIS);
  1229. line_to_z(zPosition);
  1230. st_synchronize();
  1231. endstops_hit_on_purpose(); // clear endstop hit flags
  1232. // move back down slowly to find bed
  1233. set_homing_bump_feedrate(Z_AXIS);
  1234. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1235. line_to_z(zPosition);
  1236. st_synchronize();
  1237. endstops_hit_on_purpose(); // clear endstop hit flags
  1238. // Get the current stepper position after bumping an endstop
  1239. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1240. sync_plan_position();
  1241. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1242. if (DEBUGGING(LEVELING)) {
  1243. print_xyz("run_z_probe > current_position", current_position);
  1244. }
  1245. #endif
  1246. #endif // !DELTA
  1247. }
  1248. /**
  1249. * Plan a move to (X, Y, Z) and set the current_position
  1250. * The final current_position may not be the one that was requested
  1251. */
  1252. static void do_blocking_move_to(float x, float y, float z) {
  1253. float oldFeedRate = feedrate;
  1254. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1255. if (DEBUGGING(LEVELING)) {
  1256. print_xyz("do_blocking_move_to", x, y, z);
  1257. }
  1258. #endif
  1259. #if ENABLED(DELTA)
  1260. feedrate = XY_TRAVEL_SPEED;
  1261. destination[X_AXIS] = x;
  1262. destination[Y_AXIS] = y;
  1263. destination[Z_AXIS] = z;
  1264. prepare_move_raw(); // this will also set_current_to_destination
  1265. st_synchronize();
  1266. #else
  1267. feedrate = homing_feedrate[Z_AXIS];
  1268. current_position[Z_AXIS] = z;
  1269. line_to_current_position();
  1270. st_synchronize();
  1271. feedrate = xy_travel_speed;
  1272. current_position[X_AXIS] = x;
  1273. current_position[Y_AXIS] = y;
  1274. line_to_current_position();
  1275. st_synchronize();
  1276. #endif
  1277. feedrate = oldFeedRate;
  1278. }
  1279. inline void do_blocking_move_to_xy(float x, float y) {
  1280. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1281. }
  1282. inline void do_blocking_move_to_x(float x) {
  1283. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1284. }
  1285. inline void do_blocking_move_to_z(float z) {
  1286. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1287. }
  1288. inline void raise_z_after_probing() {
  1289. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1290. }
  1291. static void clean_up_after_endstop_move() {
  1292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1293. if (DEBUGGING(LEVELING)) {
  1294. SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1295. }
  1296. #endif
  1297. endstops_not_homing();
  1298. feedrate = saved_feedrate;
  1299. feedrate_multiplier = saved_feedrate_multiplier;
  1300. refresh_cmd_timeout();
  1301. }
  1302. #if ENABLED(HAS_Z_MIN_PROBE)
  1303. static void deploy_z_probe() {
  1304. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1305. if (DEBUGGING(LEVELING)) {
  1306. print_xyz("deploy_z_probe > current_position", current_position);
  1307. }
  1308. #endif
  1309. if (z_probe_is_active) return;
  1310. #if HAS_SERVO_ENDSTOPS
  1311. // Engage Z Servo endstop if enabled
  1312. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1313. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1314. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1315. // If endstop is already false, the Z probe is deployed
  1316. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1317. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1318. if (z_probe_endstop)
  1319. #else
  1320. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1321. if (z_min_endstop)
  1322. #endif
  1323. {
  1324. // Move to the start position to initiate deployment
  1325. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1326. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1327. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1328. prepare_move_raw(); // this will also set_current_to_destination
  1329. // Move to engage deployment
  1330. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1331. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1332. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1333. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1334. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1335. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1336. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1337. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1338. prepare_move_raw();
  1339. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1340. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1341. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1342. // Move to trigger deployment
  1343. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1344. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1345. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1346. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1347. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1348. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1349. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1350. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1351. prepare_move_raw();
  1352. #endif
  1353. }
  1354. // Partially Home X,Y for safety
  1355. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1356. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1357. prepare_move_raw(); // this will also set_current_to_destination
  1358. st_synchronize();
  1359. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1360. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1361. if (z_probe_endstop)
  1362. #else
  1363. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1364. if (z_min_endstop)
  1365. #endif
  1366. {
  1367. if (IsRunning()) {
  1368. SERIAL_ERROR_START;
  1369. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1370. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1371. }
  1372. Stop();
  1373. }
  1374. #endif // Z_PROBE_ALLEN_KEY
  1375. #if ENABLED(FIX_MOUNTED_PROBE)
  1376. // Noting to be done. Just set z_probe_is_active
  1377. #endif
  1378. z_probe_is_active = true;
  1379. }
  1380. static void stow_z_probe(bool doRaise = true) {
  1381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1382. if (DEBUGGING(LEVELING)) {
  1383. print_xyz("stow_z_probe > current_position", current_position);
  1384. }
  1385. #endif
  1386. if (!z_probe_is_active) return;
  1387. #if HAS_SERVO_ENDSTOPS
  1388. // Retract Z Servo endstop if enabled
  1389. if (servo_endstop_id[Z_AXIS] >= 0) {
  1390. #if Z_RAISE_AFTER_PROBING > 0
  1391. if (doRaise) {
  1392. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1393. if (DEBUGGING(LEVELING)) {
  1394. SERIAL_ECHOPAIR("Raise Z (after) by ", (float)Z_RAISE_AFTER_PROBING);
  1395. SERIAL_EOL;
  1396. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1397. SERIAL_EOL;
  1398. }
  1399. #endif
  1400. raise_z_after_probing(); // this also updates current_position
  1401. st_synchronize();
  1402. }
  1403. #endif
  1404. // Change the Z servo angle
  1405. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1406. }
  1407. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1408. // Move up for safety
  1409. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1410. #if Z_RAISE_AFTER_PROBING > 0
  1411. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1412. prepare_move_raw(); // this will also set_current_to_destination
  1413. #endif
  1414. // Move to the start position to initiate retraction
  1415. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1416. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1417. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1418. prepare_move_raw();
  1419. // Move the nozzle down to push the Z probe into retracted position
  1420. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1421. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1422. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1423. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1424. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1425. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1426. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1427. prepare_move_raw();
  1428. // Move up for safety
  1429. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1430. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1431. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1432. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1433. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1434. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1435. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1436. prepare_move_raw();
  1437. // Home XY for safety
  1438. feedrate = homing_feedrate[X_AXIS] / 2;
  1439. destination[X_AXIS] = 0;
  1440. destination[Y_AXIS] = 0;
  1441. prepare_move_raw(); // this will also set_current_to_destination
  1442. st_synchronize();
  1443. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1444. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1445. if (!z_probe_endstop)
  1446. #else
  1447. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1448. if (!z_min_endstop)
  1449. #endif
  1450. {
  1451. if (IsRunning()) {
  1452. SERIAL_ERROR_START;
  1453. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1454. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1455. }
  1456. Stop();
  1457. }
  1458. #endif // Z_PROBE_ALLEN_KEY
  1459. #if ENABLED(FIX_MOUNTED_PROBE)
  1460. // Noting to be done. Just set z_probe_is_active
  1461. #endif
  1462. z_probe_is_active = false;
  1463. }
  1464. #endif // HAS_Z_MIN_PROBE
  1465. enum ProbeAction {
  1466. ProbeStay = 0,
  1467. ProbeDeploy = _BV(0),
  1468. ProbeStow = _BV(1),
  1469. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1470. };
  1471. // Probe bed height at position (x,y), returns the measured z value
  1472. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1473. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1474. if (DEBUGGING(LEVELING)) {
  1475. SERIAL_ECHOLNPGM("probe_pt >>>");
  1476. SERIAL_ECHOPAIR("> ProbeAction:", (unsigned long)probe_action);
  1477. SERIAL_EOL;
  1478. print_xyz("> current_position", current_position);
  1479. }
  1480. #endif
  1481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1482. if (DEBUGGING(LEVELING)) {
  1483. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1484. SERIAL_EOL;
  1485. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1486. SERIAL_EOL;
  1487. }
  1488. #endif
  1489. // Move Z up to the z_before height, then move the Z probe to the given XY
  1490. do_blocking_move_to_z(z_before); // this also updates current_position
  1491. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1492. if (DEBUGGING(LEVELING)) {
  1493. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1494. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1495. SERIAL_EOL;
  1496. }
  1497. #endif
  1498. // this also updates current_position
  1499. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1500. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1501. if (probe_action & ProbeDeploy) {
  1502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1503. if (DEBUGGING(LEVELING)) {
  1504. SERIAL_ECHOLNPGM("> ProbeDeploy");
  1505. }
  1506. #endif
  1507. deploy_z_probe();
  1508. }
  1509. #endif
  1510. run_z_probe();
  1511. float measured_z = current_position[Z_AXIS];
  1512. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1513. if (probe_action & ProbeStow) {
  1514. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1515. if (DEBUGGING(LEVELING)) {
  1516. SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1517. }
  1518. #endif
  1519. stow_z_probe();
  1520. }
  1521. #endif
  1522. if (verbose_level > 2) {
  1523. SERIAL_PROTOCOLPGM("Bed X: ");
  1524. SERIAL_PROTOCOL_F(x, 3);
  1525. SERIAL_PROTOCOLPGM(" Y: ");
  1526. SERIAL_PROTOCOL_F(y, 3);
  1527. SERIAL_PROTOCOLPGM(" Z: ");
  1528. SERIAL_PROTOCOL_F(measured_z, 3);
  1529. SERIAL_EOL;
  1530. }
  1531. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1532. if (DEBUGGING(LEVELING)) {
  1533. SERIAL_ECHOLNPGM("<<< probe_pt");
  1534. }
  1535. #endif
  1536. return measured_z;
  1537. }
  1538. #if ENABLED(DELTA)
  1539. /**
  1540. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1541. */
  1542. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1543. if (bed_level[x][y] != 0.0) {
  1544. return; // Don't overwrite good values.
  1545. }
  1546. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1547. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1548. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1549. float median = c; // Median is robust (ignores outliers).
  1550. if (a < b) {
  1551. if (b < c) median = b;
  1552. if (c < a) median = a;
  1553. }
  1554. else { // b <= a
  1555. if (c < b) median = b;
  1556. if (a < c) median = a;
  1557. }
  1558. bed_level[x][y] = median;
  1559. }
  1560. /**
  1561. * Fill in the unprobed points (corners of circular print surface)
  1562. * using linear extrapolation, away from the center.
  1563. */
  1564. static void extrapolate_unprobed_bed_level() {
  1565. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1566. for (int y = 0; y <= half; y++) {
  1567. for (int x = 0; x <= half; x++) {
  1568. if (x + y < 3) continue;
  1569. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1570. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1571. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1572. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1573. }
  1574. }
  1575. }
  1576. /**
  1577. * Print calibration results for plotting or manual frame adjustment.
  1578. */
  1579. static void print_bed_level() {
  1580. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1581. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1582. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1583. SERIAL_PROTOCOLCHAR(' ');
  1584. }
  1585. SERIAL_EOL;
  1586. }
  1587. }
  1588. /**
  1589. * Reset calibration results to zero.
  1590. */
  1591. void reset_bed_level() {
  1592. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1593. if (DEBUGGING(LEVELING)) {
  1594. SERIAL_ECHOLNPGM("reset_bed_level");
  1595. }
  1596. #endif
  1597. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1598. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1599. bed_level[x][y] = 0.0;
  1600. }
  1601. }
  1602. }
  1603. #endif // DELTA
  1604. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1605. void raise_z_for_servo() {
  1606. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1607. /**
  1608. * The zprobe_zoffset is negative any switch below the nozzle, so
  1609. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1610. */
  1611. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1612. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1613. }
  1614. #endif
  1615. #endif // AUTO_BED_LEVELING_FEATURE
  1616. static void axis_unhomed_error() {
  1617. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1618. SERIAL_ECHO_START;
  1619. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1620. }
  1621. #if ENABLED(Z_PROBE_SLED)
  1622. #ifndef SLED_DOCKING_OFFSET
  1623. #define SLED_DOCKING_OFFSET 0
  1624. #endif
  1625. /**
  1626. * Method to dock/undock a sled designed by Charles Bell.
  1627. *
  1628. * dock[in] If true, move to MAX_X and engage the electromagnet
  1629. * offset[in] The additional distance to move to adjust docking location
  1630. */
  1631. static void dock_sled(bool dock, int offset = 0) {
  1632. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1633. if (DEBUGGING(LEVELING)) {
  1634. SERIAL_ECHOPAIR("dock_sled", dock);
  1635. SERIAL_EOL;
  1636. }
  1637. #endif
  1638. if (z_probe_is_active == dock) return;
  1639. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1640. axis_unhomed_error();
  1641. return;
  1642. }
  1643. float oldXpos = current_position[X_AXIS]; // save x position
  1644. if (dock) {
  1645. #if Z_RAISE_AFTER_PROBING > 0
  1646. raise_z_after_probing(); // raise Z
  1647. #endif
  1648. // Dock sled a bit closer to ensure proper capturing
  1649. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1650. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1651. }
  1652. else {
  1653. float z_loc = current_position[Z_AXIS];
  1654. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1655. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1656. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1657. }
  1658. do_blocking_move_to_x(oldXpos); // return to position before docking
  1659. z_probe_is_active = dock;
  1660. }
  1661. #endif // Z_PROBE_SLED
  1662. /**
  1663. * Home an individual axis
  1664. */
  1665. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1666. static void homeaxis(AxisEnum axis) {
  1667. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1668. if (DEBUGGING(LEVELING)) {
  1669. SERIAL_ECHOPAIR(">>> homeaxis(", (unsigned long)axis);
  1670. SERIAL_CHAR(')');
  1671. SERIAL_EOL;
  1672. }
  1673. #endif
  1674. #define HOMEAXIS_DO(LETTER) \
  1675. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1676. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1677. int axis_home_dir =
  1678. #if ENABLED(DUAL_X_CARRIAGE)
  1679. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1680. #endif
  1681. home_dir(axis);
  1682. // Set the axis position as setup for the move
  1683. current_position[axis] = 0;
  1684. sync_plan_position();
  1685. #if ENABLED(Z_PROBE_SLED)
  1686. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1687. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1688. #define _Z_DEPLOY (dock_sled(false))
  1689. #define _Z_STOW (dock_sled(true))
  1690. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1691. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1692. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1693. #define _Z_DEPLOY (deploy_z_probe())
  1694. #define _Z_STOW (stow_z_probe())
  1695. #elif HAS_SERVO_ENDSTOPS
  1696. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1697. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1698. #endif
  1699. if (axis == Z_AXIS) {
  1700. // If there's a Z probe that needs deployment...
  1701. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1702. // ...and homing Z towards the bed? Deploy it.
  1703. if (axis_home_dir < 0) _Z_DEPLOY;
  1704. #endif
  1705. }
  1706. #if HAS_SERVO_ENDSTOPS
  1707. // Engage an X or Y Servo endstop if enabled
  1708. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1709. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1710. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1711. }
  1712. #endif
  1713. // Set a flag for Z motor locking
  1714. #if ENABLED(Z_DUAL_ENDSTOPS)
  1715. if (axis == Z_AXIS) In_Homing_Process(true);
  1716. #endif
  1717. // Move towards the endstop until an endstop is triggered
  1718. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1719. feedrate = homing_feedrate[axis];
  1720. line_to_destination();
  1721. st_synchronize();
  1722. // Set the axis position as setup for the move
  1723. current_position[axis] = 0;
  1724. sync_plan_position();
  1725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1726. if (DEBUGGING(LEVELING)) {
  1727. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1728. }
  1729. #endif
  1730. enable_endstops(false); // Disable endstops while moving away
  1731. // Move away from the endstop by the axis HOME_BUMP_MM
  1732. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1733. line_to_destination();
  1734. st_synchronize();
  1735. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1736. if (DEBUGGING(LEVELING)) {
  1737. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1738. }
  1739. #endif
  1740. enable_endstops(true); // Enable endstops for next homing move
  1741. // Slow down the feedrate for the next move
  1742. set_homing_bump_feedrate(axis);
  1743. // Move slowly towards the endstop until triggered
  1744. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1745. line_to_destination();
  1746. st_synchronize();
  1747. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1748. if (DEBUGGING(LEVELING)) {
  1749. print_xyz("> TRIGGER ENDSTOP > current_position", current_position);
  1750. }
  1751. #endif
  1752. #if ENABLED(Z_DUAL_ENDSTOPS)
  1753. if (axis == Z_AXIS) {
  1754. float adj = fabs(z_endstop_adj);
  1755. bool lockZ1;
  1756. if (axis_home_dir > 0) {
  1757. adj = -adj;
  1758. lockZ1 = (z_endstop_adj > 0);
  1759. }
  1760. else
  1761. lockZ1 = (z_endstop_adj < 0);
  1762. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1763. sync_plan_position();
  1764. // Move to the adjusted endstop height
  1765. feedrate = homing_feedrate[axis];
  1766. destination[Z_AXIS] = adj;
  1767. line_to_destination();
  1768. st_synchronize();
  1769. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1770. In_Homing_Process(false);
  1771. } // Z_AXIS
  1772. #endif
  1773. #if ENABLED(DELTA)
  1774. // retrace by the amount specified in endstop_adj
  1775. if (endstop_adj[axis] * axis_home_dir < 0) {
  1776. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1777. if (DEBUGGING(LEVELING)) {
  1778. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1779. }
  1780. #endif
  1781. enable_endstops(false); // Disable endstops while moving away
  1782. sync_plan_position();
  1783. destination[axis] = endstop_adj[axis];
  1784. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1785. if (DEBUGGING(LEVELING)) {
  1786. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1787. print_xyz(" > destination", destination);
  1788. }
  1789. #endif
  1790. line_to_destination();
  1791. st_synchronize();
  1792. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1793. if (DEBUGGING(LEVELING)) {
  1794. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1795. }
  1796. #endif
  1797. enable_endstops(true); // Enable endstops for next homing move
  1798. }
  1799. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1800. else {
  1801. if (DEBUGGING(LEVELING)) {
  1802. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1803. SERIAL_EOL;
  1804. }
  1805. }
  1806. #endif
  1807. #endif
  1808. // Set the axis position to its home position (plus home offsets)
  1809. set_axis_is_at_home(axis);
  1810. sync_plan_position();
  1811. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1812. if (DEBUGGING(LEVELING)) {
  1813. print_xyz("> AFTER set_axis_is_at_home > current_position", current_position);
  1814. }
  1815. #endif
  1816. destination[axis] = current_position[axis];
  1817. feedrate = 0.0;
  1818. endstops_hit_on_purpose(); // clear endstop hit flags
  1819. axis_known_position[axis] = true;
  1820. axis_homed[axis] = true;
  1821. // Put away the Z probe
  1822. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1823. if (axis == Z_AXIS && axis_home_dir < 0) {
  1824. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1825. if (DEBUGGING(LEVELING)) {
  1826. SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1827. }
  1828. #endif
  1829. _Z_STOW;
  1830. }
  1831. #endif
  1832. // Retract Servo endstop if enabled
  1833. #if HAS_SERVO_ENDSTOPS
  1834. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1835. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1836. if (DEBUGGING(LEVELING)) {
  1837. SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1838. }
  1839. #endif
  1840. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1841. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1842. }
  1843. #endif
  1844. }
  1845. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1846. if (DEBUGGING(LEVELING)) {
  1847. SERIAL_ECHOPAIR("<<< homeaxis(", (unsigned long)axis);
  1848. SERIAL_CHAR(')');
  1849. SERIAL_EOL;
  1850. }
  1851. #endif
  1852. }
  1853. #if ENABLED(FWRETRACT)
  1854. void retract(bool retracting, bool swapping = false) {
  1855. if (retracting == retracted[active_extruder]) return;
  1856. float oldFeedrate = feedrate;
  1857. set_destination_to_current();
  1858. if (retracting) {
  1859. feedrate = retract_feedrate * 60;
  1860. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1861. plan_set_e_position(current_position[E_AXIS]);
  1862. prepare_move();
  1863. if (retract_zlift > 0.01) {
  1864. current_position[Z_AXIS] -= retract_zlift;
  1865. #if ENABLED(DELTA)
  1866. sync_plan_position_delta();
  1867. #else
  1868. sync_plan_position();
  1869. #endif
  1870. prepare_move();
  1871. }
  1872. }
  1873. else {
  1874. if (retract_zlift > 0.01) {
  1875. current_position[Z_AXIS] += retract_zlift;
  1876. #if ENABLED(DELTA)
  1877. sync_plan_position_delta();
  1878. #else
  1879. sync_plan_position();
  1880. #endif
  1881. //prepare_move();
  1882. }
  1883. feedrate = retract_recover_feedrate * 60;
  1884. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1885. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1886. plan_set_e_position(current_position[E_AXIS]);
  1887. prepare_move();
  1888. }
  1889. feedrate = oldFeedrate;
  1890. retracted[active_extruder] = retracting;
  1891. } // retract()
  1892. #endif // FWRETRACT
  1893. /**
  1894. * ***************************************************************************
  1895. * ***************************** G-CODE HANDLING *****************************
  1896. * ***************************************************************************
  1897. */
  1898. /**
  1899. * Set XYZE destination and feedrate from the current GCode command
  1900. *
  1901. * - Set destination from included axis codes
  1902. * - Set to current for missing axis codes
  1903. * - Set the feedrate, if included
  1904. */
  1905. void gcode_get_destination() {
  1906. for (int i = 0; i < NUM_AXIS; i++) {
  1907. if (code_seen(axis_codes[i]))
  1908. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1909. else
  1910. destination[i] = current_position[i];
  1911. }
  1912. if (code_seen('F')) {
  1913. float next_feedrate = code_value();
  1914. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1915. }
  1916. }
  1917. void unknown_command_error() {
  1918. SERIAL_ECHO_START;
  1919. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1920. SERIAL_ECHO(current_command);
  1921. SERIAL_ECHOPGM("\"\n");
  1922. }
  1923. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1924. /**
  1925. * Output a "busy" message at regular intervals
  1926. * while the machine is not accepting commands.
  1927. */
  1928. void host_keepalive() {
  1929. millis_t ms = millis();
  1930. if (busy_state != NOT_BUSY) {
  1931. if (ms < next_busy_signal_ms) return;
  1932. switch (busy_state) {
  1933. case IN_HANDLER:
  1934. case IN_PROCESS:
  1935. SERIAL_ECHO_START;
  1936. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1937. break;
  1938. case PAUSED_FOR_USER:
  1939. SERIAL_ECHO_START;
  1940. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1941. break;
  1942. case PAUSED_FOR_INPUT:
  1943. SERIAL_ECHO_START;
  1944. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1945. break;
  1946. }
  1947. }
  1948. next_busy_signal_ms = ms + 10000UL; // "busy: ..." message every 10s
  1949. }
  1950. #endif //HOST_KEEPALIVE_FEATURE
  1951. /**
  1952. * G0, G1: Coordinated movement of X Y Z E axes
  1953. */
  1954. inline void gcode_G0_G1() {
  1955. if (IsRunning()) {
  1956. gcode_get_destination(); // For X Y Z E F
  1957. #if ENABLED(FWRETRACT)
  1958. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1959. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1960. // Is this move an attempt to retract or recover?
  1961. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1962. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1963. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1964. retract(!retracted[active_extruder]);
  1965. return;
  1966. }
  1967. }
  1968. #endif //FWRETRACT
  1969. prepare_move();
  1970. }
  1971. }
  1972. /**
  1973. * G2: Clockwise Arc
  1974. * G3: Counterclockwise Arc
  1975. */
  1976. inline void gcode_G2_G3(bool clockwise) {
  1977. if (IsRunning()) {
  1978. #if ENABLED(SF_ARC_FIX)
  1979. bool relative_mode_backup = relative_mode;
  1980. relative_mode = true;
  1981. #endif
  1982. gcode_get_destination();
  1983. #if ENABLED(SF_ARC_FIX)
  1984. relative_mode = relative_mode_backup;
  1985. #endif
  1986. // Center of arc as offset from current_position
  1987. float arc_offset[2] = {
  1988. code_seen('I') ? code_value() : 0,
  1989. code_seen('J') ? code_value() : 0
  1990. };
  1991. // Send an arc to the planner
  1992. plan_arc(destination, arc_offset, clockwise);
  1993. refresh_cmd_timeout();
  1994. }
  1995. }
  1996. /**
  1997. * G4: Dwell S<seconds> or P<milliseconds>
  1998. */
  1999. inline void gcode_G4() {
  2000. millis_t codenum = 0;
  2001. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  2002. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2003. st_synchronize();
  2004. refresh_cmd_timeout();
  2005. codenum += previous_cmd_ms; // keep track of when we started waiting
  2006. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2007. while (millis() < codenum) idle();
  2008. }
  2009. #if ENABLED(FWRETRACT)
  2010. /**
  2011. * G10 - Retract filament according to settings of M207
  2012. * G11 - Recover filament according to settings of M208
  2013. */
  2014. inline void gcode_G10_G11(bool doRetract=false) {
  2015. #if EXTRUDERS > 1
  2016. if (doRetract) {
  2017. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2018. }
  2019. #endif
  2020. retract(doRetract
  2021. #if EXTRUDERS > 1
  2022. , retracted_swap[active_extruder]
  2023. #endif
  2024. );
  2025. }
  2026. #endif //FWRETRACT
  2027. /**
  2028. * G28: Home all axes according to settings
  2029. *
  2030. * Parameters
  2031. *
  2032. * None Home to all axes with no parameters.
  2033. * With QUICK_HOME enabled XY will home together, then Z.
  2034. *
  2035. * Cartesian parameters
  2036. *
  2037. * X Home to the X endstop
  2038. * Y Home to the Y endstop
  2039. * Z Home to the Z endstop
  2040. *
  2041. */
  2042. inline void gcode_G28() {
  2043. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2044. if (DEBUGGING(LEVELING)) {
  2045. SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2046. }
  2047. #endif
  2048. // Wait for planner moves to finish!
  2049. st_synchronize();
  2050. // For auto bed leveling, clear the level matrix
  2051. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2052. plan_bed_level_matrix.set_to_identity();
  2053. #if ENABLED(DELTA)
  2054. reset_bed_level();
  2055. #endif
  2056. #endif
  2057. /**
  2058. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2059. * on again when homing all axis
  2060. */
  2061. #if ENABLED(MESH_BED_LEVELING)
  2062. uint8_t mbl_was_active = mbl.active;
  2063. mbl.active = 0;
  2064. #endif
  2065. setup_for_endstop_move();
  2066. /**
  2067. * Directly after a reset this is all 0. Later we get a hint if we have
  2068. * to raise z or not.
  2069. */
  2070. set_destination_to_current();
  2071. feedrate = 0.0;
  2072. #if ENABLED(DELTA)
  2073. /**
  2074. * A delta can only safely home all axis at the same time
  2075. * all axis have to home at the same time
  2076. */
  2077. // Pretend the current position is 0,0,0
  2078. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2079. sync_plan_position();
  2080. // Move all carriages up together until the first endstop is hit.
  2081. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2082. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2083. line_to_destination();
  2084. st_synchronize();
  2085. endstops_hit_on_purpose(); // clear endstop hit flags
  2086. // Destination reached
  2087. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2088. // take care of back off and rehome now we are all at the top
  2089. HOMEAXIS(X);
  2090. HOMEAXIS(Y);
  2091. HOMEAXIS(Z);
  2092. sync_plan_position_delta();
  2093. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2094. if (DEBUGGING(LEVELING)) {
  2095. print_xyz("(DELTA) > current_position", current_position);
  2096. }
  2097. #endif
  2098. #else // NOT DELTA
  2099. bool homeX = code_seen(axis_codes[X_AXIS]),
  2100. homeY = code_seen(axis_codes[Y_AXIS]),
  2101. homeZ = code_seen(axis_codes[Z_AXIS]);
  2102. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2103. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2104. if (home_all_axis || homeZ) {
  2105. HOMEAXIS(Z);
  2106. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2107. if (DEBUGGING(LEVELING)) {
  2108. print_xyz("> HOMEAXIS(Z) > current_position", current_position);
  2109. }
  2110. #endif
  2111. }
  2112. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2113. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2114. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2115. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2116. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2117. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2118. if (DEBUGGING(LEVELING)) {
  2119. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (float)(MIN_Z_HEIGHT_FOR_HOMING));
  2120. SERIAL_EOL;
  2121. print_xyz("> (home_all_axis || homeZ) > current_position", current_position);
  2122. print_xyz("> (home_all_axis || homeZ) > destination", destination);
  2123. }
  2124. #endif
  2125. line_to_destination();
  2126. st_synchronize();
  2127. /**
  2128. * Update the current Z position even if it currently not real from
  2129. * Z-home otherwise each call to line_to_destination() will want to
  2130. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2131. */
  2132. current_position[Z_AXIS] = destination[Z_AXIS];
  2133. }
  2134. #endif
  2135. #if ENABLED(QUICK_HOME)
  2136. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2137. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2138. #if ENABLED(DUAL_X_CARRIAGE)
  2139. int x_axis_home_dir = x_home_dir(active_extruder);
  2140. extruder_duplication_enabled = false;
  2141. #else
  2142. int x_axis_home_dir = home_dir(X_AXIS);
  2143. #endif
  2144. sync_plan_position();
  2145. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2146. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2147. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2148. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2149. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2150. line_to_destination();
  2151. st_synchronize();
  2152. set_axis_is_at_home(X_AXIS);
  2153. set_axis_is_at_home(Y_AXIS);
  2154. sync_plan_position();
  2155. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2156. if (DEBUGGING(LEVELING)) {
  2157. print_xyz("> QUICK_HOME > current_position 1", current_position);
  2158. }
  2159. #endif
  2160. destination[X_AXIS] = current_position[X_AXIS];
  2161. destination[Y_AXIS] = current_position[Y_AXIS];
  2162. line_to_destination();
  2163. feedrate = 0.0;
  2164. st_synchronize();
  2165. endstops_hit_on_purpose(); // clear endstop hit flags
  2166. current_position[X_AXIS] = destination[X_AXIS];
  2167. current_position[Y_AXIS] = destination[Y_AXIS];
  2168. #if DISABLED(SCARA)
  2169. current_position[Z_AXIS] = destination[Z_AXIS];
  2170. #endif
  2171. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2172. if (DEBUGGING(LEVELING)) {
  2173. print_xyz("> QUICK_HOME > current_position 2", current_position);
  2174. }
  2175. #endif
  2176. }
  2177. #endif // QUICK_HOME
  2178. #if ENABLED(HOME_Y_BEFORE_X)
  2179. // Home Y
  2180. if (home_all_axis || homeY) HOMEAXIS(Y);
  2181. #endif
  2182. // Home X
  2183. if (home_all_axis || homeX) {
  2184. #if ENABLED(DUAL_X_CARRIAGE)
  2185. int tmp_extruder = active_extruder;
  2186. extruder_duplication_enabled = false;
  2187. active_extruder = !active_extruder;
  2188. HOMEAXIS(X);
  2189. inactive_extruder_x_pos = current_position[X_AXIS];
  2190. active_extruder = tmp_extruder;
  2191. HOMEAXIS(X);
  2192. // reset state used by the different modes
  2193. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2194. delayed_move_time = 0;
  2195. active_extruder_parked = true;
  2196. #else
  2197. HOMEAXIS(X);
  2198. #endif
  2199. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2200. if (DEBUGGING(LEVELING)) {
  2201. print_xyz("> homeX", current_position);
  2202. }
  2203. #endif
  2204. }
  2205. #if DISABLED(HOME_Y_BEFORE_X)
  2206. // Home Y
  2207. if (home_all_axis || homeY) {
  2208. HOMEAXIS(Y);
  2209. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2210. if (DEBUGGING(LEVELING)) {
  2211. print_xyz("> homeY", current_position);
  2212. }
  2213. #endif
  2214. }
  2215. #endif
  2216. // Home Z last if homing towards the bed
  2217. #if Z_HOME_DIR < 0
  2218. if (home_all_axis || homeZ) {
  2219. #if ENABLED(Z_SAFE_HOMING)
  2220. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2221. if (DEBUGGING(LEVELING)) {
  2222. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2223. }
  2224. #endif
  2225. if (home_all_axis) {
  2226. /**
  2227. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2228. * No need to move Z any more as this height should already be safe
  2229. * enough to reach Z_SAFE_HOMING XY positions.
  2230. * Just make sure the planner is in sync.
  2231. */
  2232. sync_plan_position();
  2233. /**
  2234. * Set the Z probe (or just the nozzle) destination to the safe
  2235. * homing point
  2236. */
  2237. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2238. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2239. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2240. feedrate = XY_TRAVEL_SPEED;
  2241. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2242. if (DEBUGGING(LEVELING)) {
  2243. print_xyz("> Z_SAFE_HOMING > home_all_axis > current_position", current_position);
  2244. print_xyz("> Z_SAFE_HOMING > home_all_axis > destination", destination);
  2245. }
  2246. #endif
  2247. // Move in the XY plane
  2248. line_to_destination();
  2249. st_synchronize();
  2250. /**
  2251. * Update the current positions for XY, Z is still at least at
  2252. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2253. */
  2254. current_position[X_AXIS] = destination[X_AXIS];
  2255. current_position[Y_AXIS] = destination[Y_AXIS];
  2256. // Home the Z axis
  2257. HOMEAXIS(Z);
  2258. }
  2259. else if (homeZ) { // Don't need to Home Z twice
  2260. // Let's see if X and Y are homed
  2261. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2262. /**
  2263. * Make sure the Z probe is within the physical limits
  2264. * NOTE: This doesn't necessarily ensure the Z probe is also
  2265. * within the bed!
  2266. */
  2267. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2268. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2269. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2270. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2271. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2272. // Home the Z axis
  2273. HOMEAXIS(Z);
  2274. }
  2275. else {
  2276. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2277. SERIAL_ECHO_START;
  2278. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2279. }
  2280. }
  2281. else {
  2282. axis_unhomed_error();
  2283. }
  2284. } // !home_all_axes && homeZ
  2285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2286. if (DEBUGGING(LEVELING)) {
  2287. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2288. }
  2289. #endif
  2290. #else // !Z_SAFE_HOMING
  2291. HOMEAXIS(Z);
  2292. #endif // !Z_SAFE_HOMING
  2293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2294. if (DEBUGGING(LEVELING)) {
  2295. print_xyz("> (home_all_axis || homeZ) > final", current_position);
  2296. }
  2297. #endif
  2298. } // home_all_axis || homeZ
  2299. #endif // Z_HOME_DIR < 0
  2300. sync_plan_position();
  2301. #endif // else DELTA
  2302. #if ENABLED(SCARA)
  2303. sync_plan_position_delta();
  2304. #endif
  2305. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2306. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2307. if (DEBUGGING(LEVELING)) {
  2308. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2309. }
  2310. #endif
  2311. enable_endstops(false);
  2312. #endif
  2313. // For mesh leveling move back to Z=0
  2314. #if ENABLED(MESH_BED_LEVELING)
  2315. if (mbl_was_active && home_all_axis) {
  2316. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2317. sync_plan_position();
  2318. mbl.active = 1;
  2319. current_position[Z_AXIS] = 0.0;
  2320. set_destination_to_current();
  2321. feedrate = homing_feedrate[Z_AXIS];
  2322. line_to_destination();
  2323. st_synchronize();
  2324. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2325. if (DEBUGGING(LEVELING)) {
  2326. print_xyz("mbl_was_active > current_position", current_position);
  2327. }
  2328. #endif
  2329. }
  2330. #endif
  2331. feedrate = saved_feedrate;
  2332. feedrate_multiplier = saved_feedrate_multiplier;
  2333. refresh_cmd_timeout();
  2334. endstops_hit_on_purpose(); // clear endstop hit flags
  2335. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2336. if (DEBUGGING(LEVELING)) {
  2337. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2338. }
  2339. #endif
  2340. gcode_M114(); // Send end position to RepetierHost
  2341. }
  2342. #if ENABLED(MESH_BED_LEVELING)
  2343. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2344. /**
  2345. * G29: Mesh-based Z probe, probes a grid and produces a
  2346. * mesh to compensate for variable bed height
  2347. *
  2348. * Parameters With MESH_BED_LEVELING:
  2349. *
  2350. * S0 Produce a mesh report
  2351. * S1 Start probing mesh points
  2352. * S2 Probe the next mesh point
  2353. * S3 Xn Yn Zn.nn Manually modify a single point
  2354. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2355. *
  2356. * The S0 report the points as below
  2357. *
  2358. * +----> X-axis 1-n
  2359. * |
  2360. * |
  2361. * v Y-axis 1-n
  2362. *
  2363. */
  2364. inline void gcode_G29() {
  2365. static int probe_point = -1;
  2366. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2367. if (state < 0 || state > 4) {
  2368. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2369. return;
  2370. }
  2371. int ix, iy;
  2372. float z;
  2373. switch (state) {
  2374. case MeshReport:
  2375. if (mbl.active) {
  2376. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2377. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2378. SERIAL_PROTOCOLCHAR(',');
  2379. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2380. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2381. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2382. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2383. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2384. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2385. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2386. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2387. SERIAL_PROTOCOLPGM(" ");
  2388. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2389. }
  2390. SERIAL_EOL;
  2391. }
  2392. }
  2393. else
  2394. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2395. break;
  2396. case MeshStart:
  2397. mbl.reset();
  2398. probe_point = 0;
  2399. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2400. break;
  2401. case MeshNext:
  2402. if (probe_point < 0) {
  2403. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2404. return;
  2405. }
  2406. if (probe_point == 0) {
  2407. // Set Z to a positive value before recording the first Z.
  2408. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2409. sync_plan_position();
  2410. }
  2411. else {
  2412. // For others, save the Z of the previous point, then raise Z again.
  2413. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2414. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2415. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2416. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2417. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2418. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2419. st_synchronize();
  2420. }
  2421. // Is there another point to sample? Move there.
  2422. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2423. ix = probe_point % (MESH_NUM_X_POINTS);
  2424. iy = probe_point / (MESH_NUM_X_POINTS);
  2425. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2426. current_position[X_AXIS] = mbl.get_x(ix);
  2427. current_position[Y_AXIS] = mbl.get_y(iy);
  2428. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2429. st_synchronize();
  2430. probe_point++;
  2431. }
  2432. else {
  2433. // After recording the last point, activate the mbl and home
  2434. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2435. probe_point = -1;
  2436. mbl.active = 1;
  2437. enqueue_and_echo_commands_P(PSTR("G28"));
  2438. }
  2439. break;
  2440. case MeshSet:
  2441. if (code_seen('X')) {
  2442. ix = code_value_long() - 1;
  2443. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2444. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2445. return;
  2446. }
  2447. }
  2448. else {
  2449. SERIAL_PROTOCOLPGM("X not entered.\n");
  2450. return;
  2451. }
  2452. if (code_seen('Y')) {
  2453. iy = code_value_long() - 1;
  2454. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2455. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2456. return;
  2457. }
  2458. }
  2459. else {
  2460. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2461. return;
  2462. }
  2463. if (code_seen('Z')) {
  2464. z = code_value();
  2465. }
  2466. else {
  2467. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2468. return;
  2469. }
  2470. mbl.z_values[iy][ix] = z;
  2471. break;
  2472. case MeshSetZOffset:
  2473. if (code_seen('Z')) {
  2474. z = code_value();
  2475. }
  2476. else {
  2477. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2478. return;
  2479. }
  2480. mbl.z_offset = z;
  2481. } // switch(state)
  2482. }
  2483. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2484. void out_of_range_error(const char* p_edge) {
  2485. SERIAL_PROTOCOLPGM("?Probe ");
  2486. serialprintPGM(p_edge);
  2487. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2488. }
  2489. /**
  2490. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2491. * Will fail if the printer has not been homed with G28.
  2492. *
  2493. * Enhanced G29 Auto Bed Leveling Probe Routine
  2494. *
  2495. * Parameters With AUTO_BED_LEVELING_GRID:
  2496. *
  2497. * P Set the size of the grid that will be probed (P x P points).
  2498. * Not supported by non-linear delta printer bed leveling.
  2499. * Example: "G29 P4"
  2500. *
  2501. * S Set the XY travel speed between probe points (in mm/min)
  2502. *
  2503. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2504. * or clean the rotation Matrix. Useful to check the topology
  2505. * after a first run of G29.
  2506. *
  2507. * V Set the verbose level (0-4). Example: "G29 V3"
  2508. *
  2509. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2510. * This is useful for manual bed leveling and finding flaws in the bed (to
  2511. * assist with part placement).
  2512. * Not supported by non-linear delta printer bed leveling.
  2513. *
  2514. * F Set the Front limit of the probing grid
  2515. * B Set the Back limit of the probing grid
  2516. * L Set the Left limit of the probing grid
  2517. * R Set the Right limit of the probing grid
  2518. *
  2519. * Global Parameters:
  2520. *
  2521. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2522. * Include "E" to engage/disengage the Z probe for each sample.
  2523. * There's no extra effect if you have a fixed Z probe.
  2524. * Usage: "G29 E" or "G29 e"
  2525. *
  2526. */
  2527. inline void gcode_G29() {
  2528. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2529. if (DEBUGGING(LEVELING)) {
  2530. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2531. }
  2532. #endif
  2533. // Don't allow auto-leveling without homing first
  2534. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2535. axis_unhomed_error();
  2536. return;
  2537. }
  2538. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2539. if (verbose_level < 0 || verbose_level > 4) {
  2540. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2541. return;
  2542. }
  2543. bool dryrun = code_seen('D'),
  2544. deploy_probe_for_each_reading = code_seen('E');
  2545. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2546. #if DISABLED(DELTA)
  2547. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2548. #endif
  2549. if (verbose_level > 0) {
  2550. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2551. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2552. }
  2553. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2554. #if DISABLED(DELTA)
  2555. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2556. if (auto_bed_leveling_grid_points < 2) {
  2557. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2558. return;
  2559. }
  2560. #endif
  2561. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2562. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2563. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2564. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2565. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2566. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2567. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2568. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2569. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2570. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2571. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2572. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2573. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2574. if (left_out || right_out || front_out || back_out) {
  2575. if (left_out) {
  2576. out_of_range_error(PSTR("(L)eft"));
  2577. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2578. }
  2579. if (right_out) {
  2580. out_of_range_error(PSTR("(R)ight"));
  2581. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2582. }
  2583. if (front_out) {
  2584. out_of_range_error(PSTR("(F)ront"));
  2585. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2586. }
  2587. if (back_out) {
  2588. out_of_range_error(PSTR("(B)ack"));
  2589. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2590. }
  2591. return;
  2592. }
  2593. #endif // AUTO_BED_LEVELING_GRID
  2594. #if ENABLED(Z_PROBE_SLED)
  2595. dock_sled(false); // engage (un-dock) the Z probe
  2596. #elif ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2597. deploy_z_probe();
  2598. #endif
  2599. st_synchronize();
  2600. if (!dryrun) {
  2601. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2602. plan_bed_level_matrix.set_to_identity();
  2603. #if ENABLED(DELTA)
  2604. reset_bed_level();
  2605. #else //!DELTA
  2606. //vector_3 corrected_position = plan_get_position_mm();
  2607. //corrected_position.debug("position before G29");
  2608. vector_3 uncorrected_position = plan_get_position();
  2609. //uncorrected_position.debug("position during G29");
  2610. current_position[X_AXIS] = uncorrected_position.x;
  2611. current_position[Y_AXIS] = uncorrected_position.y;
  2612. current_position[Z_AXIS] = uncorrected_position.z;
  2613. sync_plan_position();
  2614. #endif // !DELTA
  2615. }
  2616. setup_for_endstop_move();
  2617. feedrate = homing_feedrate[Z_AXIS];
  2618. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2619. // probe at the points of a lattice grid
  2620. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2621. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2622. #if ENABLED(DELTA)
  2623. delta_grid_spacing[0] = xGridSpacing;
  2624. delta_grid_spacing[1] = yGridSpacing;
  2625. float z_offset = zprobe_zoffset;
  2626. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2627. #else // !DELTA
  2628. /**
  2629. * solve the plane equation ax + by + d = z
  2630. * A is the matrix with rows [x y 1] for all the probed points
  2631. * B is the vector of the Z positions
  2632. * the normal vector to the plane is formed by the coefficients of the
  2633. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2634. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2635. */
  2636. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2637. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2638. eqnBVector[abl2], // "B" vector of Z points
  2639. mean = 0.0;
  2640. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2641. #endif // !DELTA
  2642. int probePointCounter = 0;
  2643. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2644. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2645. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2646. int xStart, xStop, xInc;
  2647. if (zig) {
  2648. xStart = 0;
  2649. xStop = auto_bed_leveling_grid_points;
  2650. xInc = 1;
  2651. }
  2652. else {
  2653. xStart = auto_bed_leveling_grid_points - 1;
  2654. xStop = -1;
  2655. xInc = -1;
  2656. }
  2657. zig = !zig;
  2658. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2659. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2660. // raise extruder
  2661. float measured_z,
  2662. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2663. if (probePointCounter) {
  2664. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2665. if (DEBUGGING(LEVELING)) {
  2666. SERIAL_ECHOPAIR("z_before = (between) ", (float)(Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2667. SERIAL_EOL;
  2668. }
  2669. #endif
  2670. }
  2671. else {
  2672. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2673. if (DEBUGGING(LEVELING)) {
  2674. SERIAL_ECHOPAIR("z_before = (before) ", (float)Z_RAISE_BEFORE_PROBING);
  2675. SERIAL_EOL;
  2676. }
  2677. #endif
  2678. }
  2679. #if ENABLED(DELTA)
  2680. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2681. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2682. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2683. #endif //DELTA
  2684. ProbeAction act;
  2685. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2686. act = ProbeDeployAndStow;
  2687. else if (yCount == 0 && xCount == xStart)
  2688. act = ProbeDeploy;
  2689. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2690. act = ProbeStow;
  2691. else
  2692. act = ProbeStay;
  2693. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2694. #if DISABLED(DELTA)
  2695. mean += measured_z;
  2696. eqnBVector[probePointCounter] = measured_z;
  2697. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2698. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2699. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2700. indexIntoAB[xCount][yCount] = probePointCounter;
  2701. #else
  2702. bed_level[xCount][yCount] = measured_z + z_offset;
  2703. #endif
  2704. probePointCounter++;
  2705. idle();
  2706. } //xProbe
  2707. } //yProbe
  2708. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2709. if (DEBUGGING(LEVELING)) {
  2710. print_xyz("> probing complete > current_position", current_position);
  2711. }
  2712. #endif
  2713. clean_up_after_endstop_move();
  2714. #if ENABLED(DELTA)
  2715. if (!dryrun) extrapolate_unprobed_bed_level();
  2716. print_bed_level();
  2717. #else // !DELTA
  2718. // solve lsq problem
  2719. double plane_equation_coefficients[3];
  2720. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2721. mean /= abl2;
  2722. if (verbose_level) {
  2723. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2724. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2725. SERIAL_PROTOCOLPGM(" b: ");
  2726. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2727. SERIAL_PROTOCOLPGM(" d: ");
  2728. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2729. SERIAL_EOL;
  2730. if (verbose_level > 2) {
  2731. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2732. SERIAL_PROTOCOL_F(mean, 8);
  2733. SERIAL_EOL;
  2734. }
  2735. }
  2736. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2737. // Show the Topography map if enabled
  2738. if (do_topography_map) {
  2739. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2740. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2741. SERIAL_PROTOCOLPGM(" | |\n");
  2742. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2743. SERIAL_PROTOCOLPGM(" E | | I\n");
  2744. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2745. SERIAL_PROTOCOLPGM(" T | | H\n");
  2746. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2747. SERIAL_PROTOCOLPGM(" | |\n");
  2748. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2749. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2750. float min_diff = 999;
  2751. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2752. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2753. int ind = indexIntoAB[xx][yy];
  2754. float diff = eqnBVector[ind] - mean;
  2755. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2756. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2757. z_tmp = 0;
  2758. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2759. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2760. if (diff >= 0.0)
  2761. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2762. else
  2763. SERIAL_PROTOCOLCHAR(' ');
  2764. SERIAL_PROTOCOL_F(diff, 5);
  2765. } // xx
  2766. SERIAL_EOL;
  2767. } // yy
  2768. SERIAL_EOL;
  2769. if (verbose_level > 3) {
  2770. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2771. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2772. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2773. int ind = indexIntoAB[xx][yy];
  2774. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2775. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2776. z_tmp = 0;
  2777. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2778. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2779. if (diff >= 0.0)
  2780. SERIAL_PROTOCOLPGM(" +");
  2781. // Include + for column alignment
  2782. else
  2783. SERIAL_PROTOCOLCHAR(' ');
  2784. SERIAL_PROTOCOL_F(diff, 5);
  2785. } // xx
  2786. SERIAL_EOL;
  2787. } // yy
  2788. SERIAL_EOL;
  2789. }
  2790. } //do_topography_map
  2791. #endif //!DELTA
  2792. #else // !AUTO_BED_LEVELING_GRID
  2793. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2794. if (DEBUGGING(LEVELING)) {
  2795. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2796. }
  2797. #endif
  2798. // Actions for each probe
  2799. ProbeAction p1, p2, p3;
  2800. if (deploy_probe_for_each_reading)
  2801. p1 = p2 = p3 = ProbeDeployAndStow;
  2802. else
  2803. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2804. // Probe at 3 arbitrary points
  2805. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2806. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2807. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2808. clean_up_after_endstop_move();
  2809. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2810. #endif // !AUTO_BED_LEVELING_GRID
  2811. #if ENABLED(DELTA)
  2812. // Allen Key Probe for Delta
  2813. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2814. stow_z_probe();
  2815. #elif Z_RAISE_AFTER_PROBING > 0
  2816. raise_z_after_probing(); // ???
  2817. #endif
  2818. #else // !DELTA
  2819. if (verbose_level > 0)
  2820. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2821. if (!dryrun) {
  2822. /**
  2823. * Correct the Z height difference from Z probe position and nozzle tip position.
  2824. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2825. * from the nozzle. When the bed is uneven, this height must be corrected.
  2826. */
  2827. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2828. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2829. z_tmp = current_position[Z_AXIS],
  2830. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2831. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2832. if (DEBUGGING(LEVELING)) {
  2833. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2834. SERIAL_EOL;
  2835. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2836. SERIAL_EOL;
  2837. }
  2838. #endif
  2839. // Apply the correction sending the Z probe offset
  2840. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2841. /*
  2842. * Get the current Z position and send it to the planner.
  2843. *
  2844. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2845. * (most recent plan_set_position/sync_plan_position)
  2846. *
  2847. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2848. * (set by default, M851, EEPROM, or Menu)
  2849. *
  2850. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2851. * after the last probe
  2852. *
  2853. * >> Should home_offset[Z_AXIS] be included?
  2854. *
  2855. *
  2856. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2857. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2858. * not actually "homing" Z... then perhaps it should not be included
  2859. * here. The purpose of home_offset[] is to adjust for inaccurate
  2860. * endstops, not for reasonably accurate probes. If it were added
  2861. * here, it could be seen as a compensating factor for the Z probe.
  2862. */
  2863. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2864. if (DEBUGGING(LEVELING)) {
  2865. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2866. SERIAL_EOL;
  2867. }
  2868. #endif
  2869. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2870. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2871. + Z_RAISE_AFTER_PROBING
  2872. #endif
  2873. ;
  2874. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2875. sync_plan_position();
  2876. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2877. if (DEBUGGING(LEVELING)) {
  2878. print_xyz("> corrected Z in G29", current_position);
  2879. }
  2880. #endif
  2881. }
  2882. // Sled assembly for Cartesian bots
  2883. #if ENABLED(Z_PROBE_SLED)
  2884. dock_sled(true); // dock the sled
  2885. #elif Z_RAISE_AFTER_PROBING > 0
  2886. // Raise Z axis for non-delta and non servo based probes
  2887. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2888. raise_z_after_probing();
  2889. #endif
  2890. #endif
  2891. #endif // !DELTA
  2892. #ifdef Z_PROBE_END_SCRIPT
  2893. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2894. if (DEBUGGING(LEVELING)) {
  2895. SERIAL_ECHO("Z Probe End Script: ");
  2896. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2897. }
  2898. #endif
  2899. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2900. #if ENABLED(HAS_Z_MIN_PROBE)
  2901. z_probe_is_active = false;
  2902. #endif
  2903. st_synchronize();
  2904. #endif
  2905. KEEPALIVE_STATE(IN_HANDLER);
  2906. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2907. if (DEBUGGING(LEVELING)) {
  2908. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2909. }
  2910. #endif
  2911. gcode_M114(); // Send end position to RepetierHost
  2912. }
  2913. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2914. /**
  2915. * G30: Do a single Z probe at the current XY
  2916. */
  2917. inline void gcode_G30() {
  2918. #if HAS_SERVO_ENDSTOPS
  2919. raise_z_for_servo();
  2920. #endif
  2921. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2922. st_synchronize();
  2923. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2924. setup_for_endstop_move(); // Too late. Must be done before deploying.
  2925. feedrate = homing_feedrate[Z_AXIS];
  2926. run_z_probe();
  2927. SERIAL_PROTOCOLPGM("Bed X: ");
  2928. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2929. SERIAL_PROTOCOLPGM(" Y: ");
  2930. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2931. SERIAL_PROTOCOLPGM(" Z: ");
  2932. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2933. SERIAL_EOL;
  2934. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  2935. #if HAS_SERVO_ENDSTOPS
  2936. raise_z_for_servo();
  2937. #endif
  2938. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2939. gcode_M114(); // Send end position to RepetierHost
  2940. }
  2941. #endif //!Z_PROBE_SLED
  2942. #endif //AUTO_BED_LEVELING_FEATURE
  2943. /**
  2944. * G92: Set current position to given X Y Z E
  2945. */
  2946. inline void gcode_G92() {
  2947. if (!code_seen(axis_codes[E_AXIS]))
  2948. st_synchronize();
  2949. bool didXYZ = false;
  2950. for (int i = 0; i < NUM_AXIS; i++) {
  2951. if (code_seen(axis_codes[i])) {
  2952. float v = current_position[i] = code_value();
  2953. if (i == E_AXIS)
  2954. plan_set_e_position(v);
  2955. else
  2956. didXYZ = true;
  2957. }
  2958. }
  2959. if (didXYZ) {
  2960. #if ENABLED(DELTA) || ENABLED(SCARA)
  2961. sync_plan_position_delta();
  2962. #else
  2963. sync_plan_position();
  2964. #endif
  2965. }
  2966. }
  2967. #if ENABLED(ULTIPANEL)
  2968. /**
  2969. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2970. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2971. */
  2972. inline void gcode_M0_M1() {
  2973. char* args = current_command_args;
  2974. millis_t codenum = 0;
  2975. bool hasP = false, hasS = false;
  2976. if (code_seen('P')) {
  2977. codenum = code_value_short(); // milliseconds to wait
  2978. hasP = codenum > 0;
  2979. }
  2980. if (code_seen('S')) {
  2981. codenum = code_value() * 1000; // seconds to wait
  2982. hasS = codenum > 0;
  2983. }
  2984. if (!hasP && !hasS && *args != '\0')
  2985. lcd_setstatus(args, true);
  2986. else {
  2987. LCD_MESSAGEPGM(MSG_USERWAIT);
  2988. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2989. dontExpireStatus();
  2990. #endif
  2991. }
  2992. lcd_ignore_click();
  2993. st_synchronize();
  2994. refresh_cmd_timeout();
  2995. if (codenum > 0) {
  2996. codenum += previous_cmd_ms; // wait until this time for a click
  2997. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2998. while (millis() < codenum && !lcd_clicked()) idle();
  2999. KEEPALIVE_STATE(IN_HANDLER);
  3000. lcd_ignore_click(false);
  3001. }
  3002. else {
  3003. if (!lcd_detected()) return;
  3004. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3005. while (!lcd_clicked()) idle();
  3006. KEEPALIVE_STATE(IN_HANDLER);
  3007. }
  3008. if (IS_SD_PRINTING)
  3009. LCD_MESSAGEPGM(MSG_RESUMING);
  3010. else
  3011. LCD_MESSAGEPGM(WELCOME_MSG);
  3012. }
  3013. #endif // ULTIPANEL
  3014. /**
  3015. * M17: Enable power on all stepper motors
  3016. */
  3017. inline void gcode_M17() {
  3018. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3019. enable_all_steppers();
  3020. }
  3021. #if ENABLED(SDSUPPORT)
  3022. /**
  3023. * M20: List SD card to serial output
  3024. */
  3025. inline void gcode_M20() {
  3026. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3027. card.ls();
  3028. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3029. }
  3030. /**
  3031. * M21: Init SD Card
  3032. */
  3033. inline void gcode_M21() {
  3034. card.initsd();
  3035. }
  3036. /**
  3037. * M22: Release SD Card
  3038. */
  3039. inline void gcode_M22() {
  3040. card.release();
  3041. }
  3042. /**
  3043. * M23: Open a file
  3044. */
  3045. inline void gcode_M23() {
  3046. card.openFile(current_command_args, true);
  3047. }
  3048. /**
  3049. * M24: Start SD Print
  3050. */
  3051. inline void gcode_M24() {
  3052. card.startFileprint();
  3053. print_job_start();
  3054. }
  3055. /**
  3056. * M25: Pause SD Print
  3057. */
  3058. inline void gcode_M25() {
  3059. card.pauseSDPrint();
  3060. }
  3061. /**
  3062. * M26: Set SD Card file index
  3063. */
  3064. inline void gcode_M26() {
  3065. if (card.cardOK && code_seen('S'))
  3066. card.setIndex(code_value_short());
  3067. }
  3068. /**
  3069. * M27: Get SD Card status
  3070. */
  3071. inline void gcode_M27() {
  3072. card.getStatus();
  3073. }
  3074. /**
  3075. * M28: Start SD Write
  3076. */
  3077. inline void gcode_M28() {
  3078. card.openFile(current_command_args, false);
  3079. }
  3080. /**
  3081. * M29: Stop SD Write
  3082. * Processed in write to file routine above
  3083. */
  3084. inline void gcode_M29() {
  3085. // card.saving = false;
  3086. }
  3087. /**
  3088. * M30 <filename>: Delete SD Card file
  3089. */
  3090. inline void gcode_M30() {
  3091. if (card.cardOK) {
  3092. card.closefile();
  3093. card.removeFile(current_command_args);
  3094. }
  3095. }
  3096. #endif //SDSUPPORT
  3097. /**
  3098. * M31: Get the time since the start of SD Print (or last M109)
  3099. */
  3100. inline void gcode_M31() {
  3101. millis_t t = print_job_timer();
  3102. int min = t / 60, sec = t % 60;
  3103. char time[30];
  3104. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3105. SERIAL_ECHO_START;
  3106. SERIAL_ECHOLN(time);
  3107. lcd_setstatus(time);
  3108. autotempShutdown();
  3109. }
  3110. #if ENABLED(SDSUPPORT)
  3111. /**
  3112. * M32: Select file and start SD Print
  3113. */
  3114. inline void gcode_M32() {
  3115. if (card.sdprinting)
  3116. st_synchronize();
  3117. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3118. if (!namestartpos)
  3119. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3120. else
  3121. namestartpos++; //to skip the '!'
  3122. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3123. if (card.cardOK) {
  3124. card.openFile(namestartpos, true, call_procedure);
  3125. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3126. card.setIndex(code_value_short());
  3127. card.startFileprint();
  3128. // Procedure calls count as normal print time.
  3129. if (!call_procedure) print_job_start();
  3130. }
  3131. }
  3132. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3133. /**
  3134. * M33: Get the long full path of a file or folder
  3135. *
  3136. * Parameters:
  3137. * <dospath> Case-insensitive DOS-style path to a file or folder
  3138. *
  3139. * Example:
  3140. * M33 miscel~1/armchair/armcha~1.gco
  3141. *
  3142. * Output:
  3143. * /Miscellaneous/Armchair/Armchair.gcode
  3144. */
  3145. inline void gcode_M33() {
  3146. card.printLongPath(current_command_args);
  3147. }
  3148. #endif
  3149. /**
  3150. * M928: Start SD Write
  3151. */
  3152. inline void gcode_M928() {
  3153. card.openLogFile(current_command_args);
  3154. }
  3155. #endif // SDSUPPORT
  3156. /**
  3157. * M42: Change pin status via GCode
  3158. *
  3159. * P<pin> Pin number (LED if omitted)
  3160. * S<byte> Pin status from 0 - 255
  3161. */
  3162. inline void gcode_M42() {
  3163. if (code_seen('S')) {
  3164. int pin_status = code_value_short();
  3165. if (pin_status < 0 || pin_status > 255) return;
  3166. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3167. if (pin_number < 0) return;
  3168. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3169. if (pin_number == sensitive_pins[i]) return;
  3170. pinMode(pin_number, OUTPUT);
  3171. digitalWrite(pin_number, pin_status);
  3172. analogWrite(pin_number, pin_status);
  3173. #if FAN_COUNT > 0
  3174. switch (pin_number) {
  3175. #if HAS_FAN0
  3176. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3177. #endif
  3178. #if HAS_FAN1
  3179. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3180. #endif
  3181. #if HAS_FAN2
  3182. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3183. #endif
  3184. }
  3185. #endif
  3186. } // code_seen('S')
  3187. }
  3188. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3189. /**
  3190. * This is redundant since the SanityCheck.h already checks for a valid
  3191. * Z_MIN_PROBE_PIN, but here for clarity.
  3192. */
  3193. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3194. #if !HAS_Z_PROBE
  3195. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3196. #endif
  3197. #elif !HAS_Z_MIN
  3198. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3199. #endif
  3200. /**
  3201. * M48: Z probe repeatability measurement function.
  3202. *
  3203. * Usage:
  3204. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3205. * P = Number of sampled points (4-50, default 10)
  3206. * X = Sample X position
  3207. * Y = Sample Y position
  3208. * V = Verbose level (0-4, default=1)
  3209. * E = Engage Z probe for each reading
  3210. * L = Number of legs of movement before probe
  3211. * S = Schizoid (Or Star if you prefer)
  3212. *
  3213. * This function assumes the bed has been homed. Specifically, that a G28 command
  3214. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3215. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3216. * regenerated.
  3217. */
  3218. inline void gcode_M48() {
  3219. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3220. axis_unhomed_error();
  3221. return;
  3222. }
  3223. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3224. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3225. if (code_seen('V')) {
  3226. verbose_level = code_value_short();
  3227. if (verbose_level < 0 || verbose_level > 4) {
  3228. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3229. return;
  3230. }
  3231. }
  3232. if (verbose_level > 0)
  3233. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3234. if (code_seen('P')) {
  3235. n_samples = code_value_short();
  3236. if (n_samples < 4 || n_samples > 50) {
  3237. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3238. return;
  3239. }
  3240. }
  3241. float X_current = current_position[X_AXIS],
  3242. Y_current = current_position[Y_AXIS],
  3243. Z_current = current_position[Z_AXIS],
  3244. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3245. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3246. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3247. bool deploy_probe_for_each_reading = code_seen('E');
  3248. if (code_seen('X')) {
  3249. X_probe_location = code_value();
  3250. #if DISABLED(DELTA)
  3251. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3252. out_of_range_error(PSTR("X"));
  3253. return;
  3254. }
  3255. #endif
  3256. }
  3257. if (code_seen('Y')) {
  3258. Y_probe_location = code_value();
  3259. #if DISABLED(DELTA)
  3260. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3261. out_of_range_error(PSTR("Y"));
  3262. return;
  3263. }
  3264. #endif
  3265. }
  3266. #if ENABLED(DELTA)
  3267. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3268. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3269. return;
  3270. }
  3271. #endif
  3272. bool seen_L = code_seen('L');
  3273. if (seen_L) {
  3274. n_legs = code_value_short();
  3275. if (n_legs < 0 || n_legs > 15) {
  3276. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3277. return;
  3278. }
  3279. if (n_legs == 1) n_legs = 2;
  3280. }
  3281. if (code_seen('S')) {
  3282. schizoid_flag++;
  3283. if (!seen_L) n_legs = 7;
  3284. }
  3285. /**
  3286. * Now get everything to the specified probe point So we can safely do a
  3287. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3288. * we don't want to use that as a starting point for each probe.
  3289. */
  3290. if (verbose_level > 2)
  3291. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3292. #if ENABLED(DELTA)
  3293. // we don't do bed level correction in M48 because we want the raw data when we probe
  3294. reset_bed_level();
  3295. #else
  3296. // we don't do bed level correction in M48 because we want the raw data when we probe
  3297. plan_bed_level_matrix.set_to_identity();
  3298. #endif
  3299. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3300. do_blocking_move_to_z(Z_start_location);
  3301. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3302. /**
  3303. * OK, do the initial probe to get us close to the bed.
  3304. * Then retrace the right amount and use that in subsequent probes
  3305. */
  3306. setup_for_endstop_move();
  3307. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3308. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3309. verbose_level);
  3310. raise_z_after_probing();
  3311. for (uint8_t n = 0; n < n_samples; n++) {
  3312. randomSeed(millis());
  3313. delay(500);
  3314. if (n_legs) {
  3315. float radius, angle = random(0.0, 360.0);
  3316. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3317. radius = random(
  3318. #if ENABLED(DELTA)
  3319. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3320. #else
  3321. 5, X_MAX_LENGTH / 8
  3322. #endif
  3323. );
  3324. if (verbose_level > 3) {
  3325. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3326. SERIAL_ECHOPAIR(" angle: ", angle);
  3327. delay(100);
  3328. if (dir > 0)
  3329. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3330. else
  3331. SERIAL_ECHO(" Direction: Clockwise \n");
  3332. delay(100);
  3333. }
  3334. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3335. double delta_angle;
  3336. if (schizoid_flag)
  3337. // The points of a 5 point star are 72 degrees apart. We need to
  3338. // skip a point and go to the next one on the star.
  3339. delta_angle = dir * 2.0 * 72.0;
  3340. else
  3341. // If we do this line, we are just trying to move further
  3342. // around the circle.
  3343. delta_angle = dir * (float) random(25, 45);
  3344. angle += delta_angle;
  3345. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3346. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3347. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3348. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3349. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
  3350. Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
  3351. #if DISABLED(DELTA)
  3352. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3353. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3354. #else
  3355. // If we have gone out too far, we can do a simple fix and scale the numbers
  3356. // back in closer to the origin.
  3357. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3358. X_current /= 1.25;
  3359. Y_current /= 1.25;
  3360. if (verbose_level > 3) {
  3361. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3362. SERIAL_ECHOPAIR(", ", Y_current);
  3363. SERIAL_EOL;
  3364. delay(50);
  3365. }
  3366. }
  3367. #endif
  3368. if (verbose_level > 3) {
  3369. SERIAL_PROTOCOL("Going to:");
  3370. SERIAL_ECHOPAIR("x: ", X_current);
  3371. SERIAL_ECHOPAIR("y: ", Y_current);
  3372. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3373. SERIAL_EOL;
  3374. delay(55);
  3375. }
  3376. do_blocking_move_to_xy(X_current, Y_current);
  3377. } // n_legs loop
  3378. } // n_legs
  3379. /**
  3380. * We don't really have to do this move, but if we don't we can see a
  3381. * funny shift in the Z Height because the user might not have the
  3382. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3383. * height. This gets us back to the probe location at the same height that
  3384. * we have been running around the circle at.
  3385. */
  3386. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3387. if (deploy_probe_for_each_reading)
  3388. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3389. else {
  3390. if (n == n_samples - 1)
  3391. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3392. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3393. }
  3394. /**
  3395. * Get the current mean for the data points we have so far
  3396. */
  3397. sum = 0.0;
  3398. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3399. mean = sum / (n + 1);
  3400. /**
  3401. * Now, use that mean to calculate the standard deviation for the
  3402. * data points we have so far
  3403. */
  3404. sum = 0.0;
  3405. for (uint8_t j = 0; j <= n; j++) {
  3406. float ss = sample_set[j] - mean;
  3407. sum += ss * ss;
  3408. }
  3409. sigma = sqrt(sum / (n + 1));
  3410. if (verbose_level > 1) {
  3411. SERIAL_PROTOCOL(n + 1);
  3412. SERIAL_PROTOCOLPGM(" of ");
  3413. SERIAL_PROTOCOL((int)n_samples);
  3414. SERIAL_PROTOCOLPGM(" z: ");
  3415. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3416. delay(50);
  3417. if (verbose_level > 2) {
  3418. SERIAL_PROTOCOLPGM(" mean: ");
  3419. SERIAL_PROTOCOL_F(mean, 6);
  3420. SERIAL_PROTOCOLPGM(" sigma: ");
  3421. SERIAL_PROTOCOL_F(sigma, 6);
  3422. }
  3423. }
  3424. if (verbose_level > 0) SERIAL_EOL;
  3425. delay(50);
  3426. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3427. } // End of probe loop code
  3428. // raise_z_after_probing();
  3429. if (verbose_level > 0) {
  3430. SERIAL_PROTOCOLPGM("Mean: ");
  3431. SERIAL_PROTOCOL_F(mean, 6);
  3432. SERIAL_EOL;
  3433. delay(25);
  3434. }
  3435. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3436. SERIAL_PROTOCOL_F(sigma, 6);
  3437. SERIAL_EOL; SERIAL_EOL;
  3438. delay(25);
  3439. clean_up_after_endstop_move();
  3440. gcode_M114(); // Send end position to RepetierHost
  3441. }
  3442. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3443. /**
  3444. * M104: Set hot end temperature
  3445. */
  3446. inline void gcode_M104() {
  3447. if (setTargetedHotend(104)) return;
  3448. if (DEBUGGING(DRYRUN)) return;
  3449. // Start hook must happen before setTargetHotend()
  3450. print_job_start();
  3451. if (code_seen('S')) {
  3452. float temp = code_value();
  3453. setTargetHotend(temp, target_extruder);
  3454. #if ENABLED(DUAL_X_CARRIAGE)
  3455. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3456. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3457. #endif
  3458. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3459. }
  3460. if (print_job_stop()) LCD_MESSAGEPGM(WELCOME_MSG);
  3461. }
  3462. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3463. void print_heaterstates() {
  3464. #if HAS_TEMP_0 || ENABLED(HEATER_0_USES_MAX6675)
  3465. SERIAL_PROTOCOLPGM(" T:");
  3466. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3467. SERIAL_PROTOCOLPGM(" /");
  3468. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3469. #endif
  3470. #if HAS_TEMP_BED
  3471. SERIAL_PROTOCOLPGM(" B:");
  3472. SERIAL_PROTOCOL_F(degBed(), 1);
  3473. SERIAL_PROTOCOLPGM(" /");
  3474. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3475. #endif
  3476. #if EXTRUDERS > 1
  3477. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3478. SERIAL_PROTOCOLPGM(" T");
  3479. SERIAL_PROTOCOL(e);
  3480. SERIAL_PROTOCOLCHAR(':');
  3481. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3482. SERIAL_PROTOCOLPGM(" /");
  3483. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3484. }
  3485. #endif
  3486. #if HAS_TEMP_BED
  3487. SERIAL_PROTOCOLPGM(" B@:");
  3488. #ifdef BED_WATTS
  3489. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3490. SERIAL_PROTOCOLCHAR('W');
  3491. #else
  3492. SERIAL_PROTOCOL(getHeaterPower(-1));
  3493. #endif
  3494. #endif
  3495. SERIAL_PROTOCOLPGM(" @:");
  3496. #ifdef EXTRUDER_WATTS
  3497. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3498. SERIAL_PROTOCOLCHAR('W');
  3499. #else
  3500. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3501. #endif
  3502. #if EXTRUDERS > 1
  3503. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3504. SERIAL_PROTOCOLPGM(" @");
  3505. SERIAL_PROTOCOL(e);
  3506. SERIAL_PROTOCOLCHAR(':');
  3507. #ifdef EXTRUDER_WATTS
  3508. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3509. SERIAL_PROTOCOLCHAR('W');
  3510. #else
  3511. SERIAL_PROTOCOL(getHeaterPower(e));
  3512. #endif
  3513. }
  3514. #endif
  3515. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3516. #if HAS_TEMP_BED
  3517. SERIAL_PROTOCOLPGM(" ADC B:");
  3518. SERIAL_PROTOCOL_F(degBed(), 1);
  3519. SERIAL_PROTOCOLPGM("C->");
  3520. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3521. #endif
  3522. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3523. SERIAL_PROTOCOLPGM(" T");
  3524. SERIAL_PROTOCOL(cur_extruder);
  3525. SERIAL_PROTOCOLCHAR(':');
  3526. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3527. SERIAL_PROTOCOLPGM("C->");
  3528. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3529. }
  3530. #endif
  3531. }
  3532. #endif
  3533. /**
  3534. * M105: Read hot end and bed temperature
  3535. */
  3536. inline void gcode_M105() {
  3537. if (setTargetedHotend(105)) return;
  3538. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3539. SERIAL_PROTOCOLPGM(MSG_OK);
  3540. print_heaterstates();
  3541. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  3542. SERIAL_ERROR_START;
  3543. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3544. #endif
  3545. SERIAL_EOL;
  3546. }
  3547. #if FAN_COUNT > 0
  3548. /**
  3549. * M106: Set Fan Speed
  3550. *
  3551. * S<int> Speed between 0-255
  3552. * P<index> Fan index, if more than one fan
  3553. */
  3554. inline void gcode_M106() {
  3555. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3556. p = code_seen('P') ? code_value_short() : 0;
  3557. NOMORE(s, 255);
  3558. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3559. }
  3560. /**
  3561. * M107: Fan Off
  3562. */
  3563. inline void gcode_M107() {
  3564. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3565. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3566. }
  3567. #endif // FAN_COUNT > 0
  3568. /**
  3569. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3570. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3571. */
  3572. inline void gcode_M109() {
  3573. bool no_wait_for_cooling = true;
  3574. if (setTargetedHotend(109)) return;
  3575. if (DEBUGGING(DRYRUN)) return;
  3576. // Start hook must happen before setTargetHotend()
  3577. print_job_start();
  3578. no_wait_for_cooling = code_seen('S');
  3579. if (no_wait_for_cooling || code_seen('R')) {
  3580. float temp = code_value();
  3581. setTargetHotend(temp, target_extruder);
  3582. #if ENABLED(DUAL_X_CARRIAGE)
  3583. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3584. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3585. #endif
  3586. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3587. }
  3588. if (print_job_stop()) LCD_MESSAGEPGM(WELCOME_MSG);
  3589. #if ENABLED(AUTOTEMP)
  3590. autotemp_enabled = code_seen('F');
  3591. if (autotemp_enabled) autotemp_factor = code_value();
  3592. if (code_seen('S')) autotemp_min = code_value();
  3593. if (code_seen('B')) autotemp_max = code_value();
  3594. #endif
  3595. // Exit if the temperature is above target and not waiting for cooling
  3596. if (no_wait_for_cooling && !isHeatingHotend(target_extruder)) return;
  3597. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3598. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3599. if (degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP/2)) return;
  3600. #ifdef TEMP_RESIDENCY_TIME
  3601. long residency_start_ms = -1;
  3602. // Loop until the temperature has stabilized
  3603. #define TEMP_CONDITIONS (residency_start_ms < 0 || now < residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)
  3604. #else
  3605. // Loop until the temperature is very close target
  3606. #define TEMP_CONDITIONS (isHeatingHotend(target_extruder))
  3607. #endif //TEMP_RESIDENCY_TIME
  3608. cancel_heatup = false;
  3609. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3610. while (!cancel_heatup && TEMP_CONDITIONS) {
  3611. now = millis();
  3612. if (now > next_temp_ms) { //Print temp & remaining time every 1s while waiting
  3613. next_temp_ms = now + 1000UL;
  3614. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3615. print_heaterstates();
  3616. #endif
  3617. #ifdef TEMP_RESIDENCY_TIME
  3618. SERIAL_PROTOCOLPGM(" W:");
  3619. if (residency_start_ms >= 0) {
  3620. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3621. SERIAL_PROTOCOLLN(rem);
  3622. }
  3623. else {
  3624. SERIAL_PROTOCOLLNPGM("?");
  3625. }
  3626. #else
  3627. SERIAL_EOL;
  3628. #endif
  3629. }
  3630. idle();
  3631. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3632. #ifdef TEMP_RESIDENCY_TIME
  3633. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3634. // Restart the timer whenever the temperature falls outside the hysteresis.
  3635. if (labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > ((residency_start_ms < 0) ? TEMP_WINDOW : TEMP_HYSTERESIS))
  3636. residency_start_ms = millis();
  3637. #endif //TEMP_RESIDENCY_TIME
  3638. } // while(!cancel_heatup && TEMP_CONDITIONS)
  3639. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3640. }
  3641. #if HAS_TEMP_BED
  3642. /**
  3643. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3644. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3645. */
  3646. inline void gcode_M190() {
  3647. if (DEBUGGING(DRYRUN)) return;
  3648. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3649. bool no_wait_for_cooling = code_seen('S');
  3650. if (no_wait_for_cooling || code_seen('R'))
  3651. setTargetBed(code_value());
  3652. // Exit if the temperature is above target and not waiting for cooling
  3653. if (no_wait_for_cooling && !isHeatingBed()) return;
  3654. cancel_heatup = false;
  3655. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3656. while (!cancel_heatup && isHeatingBed()) {
  3657. millis_t now = millis();
  3658. if (now > next_temp_ms) { //Print Temp Reading every 1 second while heating up.
  3659. next_temp_ms = now + 1000UL;
  3660. print_heaterstates();
  3661. SERIAL_EOL;
  3662. }
  3663. idle();
  3664. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3665. }
  3666. LCD_MESSAGEPGM(MSG_BED_DONE);
  3667. }
  3668. #endif // HAS_TEMP_BED
  3669. /**
  3670. * M110: Set Current Line Number
  3671. */
  3672. inline void gcode_M110() {
  3673. if (code_seen('N')) gcode_N = code_value_long();
  3674. }
  3675. /**
  3676. * M111: Set the debug level
  3677. */
  3678. inline void gcode_M111() {
  3679. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3680. const char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3681. const char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3682. const char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3683. const char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3684. const char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3685. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3686. const char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3687. #endif
  3688. const char* const debug_strings[] PROGMEM = {
  3689. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3690. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3691. str_debug_32
  3692. #endif
  3693. };
  3694. SERIAL_ECHO_START;
  3695. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3696. if (marlin_debug_flags) {
  3697. uint8_t comma = 0;
  3698. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3699. if (TEST(marlin_debug_flags, i)) {
  3700. if (comma++) SERIAL_CHAR('|');
  3701. serialprintPGM(debug_strings[i]);
  3702. }
  3703. }
  3704. }
  3705. else {
  3706. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3707. }
  3708. SERIAL_EOL;
  3709. }
  3710. /**
  3711. * M112: Emergency Stop
  3712. */
  3713. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3714. #if ENABLED(BARICUDA)
  3715. #if HAS_HEATER_1
  3716. /**
  3717. * M126: Heater 1 valve open
  3718. */
  3719. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3720. /**
  3721. * M127: Heater 1 valve close
  3722. */
  3723. inline void gcode_M127() { ValvePressure = 0; }
  3724. #endif
  3725. #if HAS_HEATER_2
  3726. /**
  3727. * M128: Heater 2 valve open
  3728. */
  3729. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3730. /**
  3731. * M129: Heater 2 valve close
  3732. */
  3733. inline void gcode_M129() { EtoPPressure = 0; }
  3734. #endif
  3735. #endif //BARICUDA
  3736. /**
  3737. * M140: Set bed temperature
  3738. */
  3739. inline void gcode_M140() {
  3740. if (DEBUGGING(DRYRUN)) return;
  3741. if (code_seen('S')) setTargetBed(code_value());
  3742. }
  3743. #if ENABLED(ULTIPANEL)
  3744. /**
  3745. * M145: Set the heatup state for a material in the LCD menu
  3746. * S<material> (0=PLA, 1=ABS)
  3747. * H<hotend temp>
  3748. * B<bed temp>
  3749. * F<fan speed>
  3750. */
  3751. inline void gcode_M145() {
  3752. int8_t material = code_seen('S') ? code_value_short() : 0;
  3753. if (material < 0 || material > 1) {
  3754. SERIAL_ERROR_START;
  3755. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3756. }
  3757. else {
  3758. int v;
  3759. switch (material) {
  3760. case 0:
  3761. if (code_seen('H')) {
  3762. v = code_value_short();
  3763. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3764. }
  3765. if (code_seen('F')) {
  3766. v = code_value_short();
  3767. plaPreheatFanSpeed = constrain(v, 0, 255);
  3768. }
  3769. #if TEMP_SENSOR_BED != 0
  3770. if (code_seen('B')) {
  3771. v = code_value_short();
  3772. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3773. }
  3774. #endif
  3775. break;
  3776. case 1:
  3777. if (code_seen('H')) {
  3778. v = code_value_short();
  3779. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3780. }
  3781. if (code_seen('F')) {
  3782. v = code_value_short();
  3783. absPreheatFanSpeed = constrain(v, 0, 255);
  3784. }
  3785. #if TEMP_SENSOR_BED != 0
  3786. if (code_seen('B')) {
  3787. v = code_value_short();
  3788. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3789. }
  3790. #endif
  3791. break;
  3792. }
  3793. }
  3794. }
  3795. #endif
  3796. #if HAS_POWER_SWITCH
  3797. /**
  3798. * M80: Turn on Power Supply
  3799. */
  3800. inline void gcode_M80() {
  3801. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3802. /**
  3803. * If you have a switch on suicide pin, this is useful
  3804. * if you want to start another print with suicide feature after
  3805. * a print without suicide...
  3806. */
  3807. #if HAS_SUICIDE
  3808. OUT_WRITE(SUICIDE_PIN, HIGH);
  3809. #endif
  3810. #if ENABLED(ULTIPANEL)
  3811. powersupply = true;
  3812. LCD_MESSAGEPGM(WELCOME_MSG);
  3813. lcd_update();
  3814. #endif
  3815. }
  3816. #endif // HAS_POWER_SWITCH
  3817. /**
  3818. * M81: Turn off Power, including Power Supply, if there is one.
  3819. *
  3820. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3821. */
  3822. inline void gcode_M81() {
  3823. disable_all_heaters();
  3824. finishAndDisableSteppers();
  3825. #if FAN_COUNT > 0
  3826. #if FAN_COUNT > 1
  3827. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3828. #else
  3829. fanSpeeds[0] = 0;
  3830. #endif
  3831. #endif
  3832. delay(1000); // Wait 1 second before switching off
  3833. #if HAS_SUICIDE
  3834. st_synchronize();
  3835. suicide();
  3836. #elif HAS_POWER_SWITCH
  3837. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3838. #endif
  3839. #if ENABLED(ULTIPANEL)
  3840. #if HAS_POWER_SWITCH
  3841. powersupply = false;
  3842. #endif
  3843. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3844. lcd_update();
  3845. #endif
  3846. }
  3847. /**
  3848. * M82: Set E codes absolute (default)
  3849. */
  3850. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3851. /**
  3852. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3853. */
  3854. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3855. /**
  3856. * M18, M84: Disable all stepper motors
  3857. */
  3858. inline void gcode_M18_M84() {
  3859. if (code_seen('S')) {
  3860. stepper_inactive_time = code_value() * 1000;
  3861. }
  3862. else {
  3863. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3864. if (all_axis) {
  3865. finishAndDisableSteppers();
  3866. }
  3867. else {
  3868. st_synchronize();
  3869. if (code_seen('X')) disable_x();
  3870. if (code_seen('Y')) disable_y();
  3871. if (code_seen('Z')) disable_z();
  3872. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3873. if (code_seen('E')) {
  3874. disable_e0();
  3875. disable_e1();
  3876. disable_e2();
  3877. disable_e3();
  3878. }
  3879. #endif
  3880. }
  3881. }
  3882. }
  3883. /**
  3884. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3885. */
  3886. inline void gcode_M85() {
  3887. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3888. }
  3889. /**
  3890. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3891. * (Follows the same syntax as G92)
  3892. */
  3893. inline void gcode_M92() {
  3894. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3895. if (code_seen(axis_codes[i])) {
  3896. if (i == E_AXIS) {
  3897. float value = code_value();
  3898. if (value < 20.0) {
  3899. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3900. max_e_jerk *= factor;
  3901. max_feedrate[i] *= factor;
  3902. axis_steps_per_sqr_second[i] *= factor;
  3903. }
  3904. axis_steps_per_unit[i] = value;
  3905. }
  3906. else {
  3907. axis_steps_per_unit[i] = code_value();
  3908. }
  3909. }
  3910. }
  3911. }
  3912. /**
  3913. * M114: Output current position to serial port
  3914. */
  3915. inline void gcode_M114() {
  3916. SERIAL_PROTOCOLPGM("X:");
  3917. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3918. SERIAL_PROTOCOLPGM(" Y:");
  3919. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3920. SERIAL_PROTOCOLPGM(" Z:");
  3921. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3922. SERIAL_PROTOCOLPGM(" E:");
  3923. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3924. CRITICAL_SECTION_START;
  3925. extern volatile long count_position[NUM_AXIS];
  3926. long xpos = count_position[X_AXIS],
  3927. ypos = count_position[Y_AXIS],
  3928. zpos = count_position[Z_AXIS];
  3929. CRITICAL_SECTION_END;
  3930. #if ENABLED(COREXY) || ENABLED(COREXZ)
  3931. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  3932. #else
  3933. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3934. #endif
  3935. SERIAL_PROTOCOL(xpos);
  3936. #if ENABLED(COREXY)
  3937. SERIAL_PROTOCOLPGM(" B:");
  3938. #else
  3939. SERIAL_PROTOCOLPGM(" Y:");
  3940. #endif
  3941. SERIAL_PROTOCOL(ypos);
  3942. #if ENABLED(COREXZ)
  3943. SERIAL_PROTOCOLPGM(" C:");
  3944. #else
  3945. SERIAL_PROTOCOLPGM(" Z:");
  3946. #endif
  3947. SERIAL_PROTOCOL(zpos);
  3948. SERIAL_EOL;
  3949. #if ENABLED(SCARA)
  3950. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3951. SERIAL_PROTOCOL(delta[X_AXIS]);
  3952. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3953. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3954. SERIAL_EOL;
  3955. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3956. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  3957. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3958. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  3959. SERIAL_EOL;
  3960. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3961. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  3962. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3963. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  3964. SERIAL_EOL; SERIAL_EOL;
  3965. #endif
  3966. }
  3967. /**
  3968. * M115: Capabilities string
  3969. */
  3970. inline void gcode_M115() {
  3971. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3972. }
  3973. /**
  3974. * M117: Set LCD Status Message
  3975. */
  3976. inline void gcode_M117() {
  3977. lcd_setstatus(current_command_args);
  3978. }
  3979. /**
  3980. * M119: Output endstop states to serial output
  3981. */
  3982. inline void gcode_M119() {
  3983. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3984. #if HAS_X_MIN
  3985. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3986. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3987. #endif
  3988. #if HAS_X_MAX
  3989. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3990. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3991. #endif
  3992. #if HAS_Y_MIN
  3993. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3994. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3995. #endif
  3996. #if HAS_Y_MAX
  3997. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3998. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3999. #endif
  4000. #if HAS_Z_MIN
  4001. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  4002. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4003. #endif
  4004. #if HAS_Z_MAX
  4005. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  4006. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4007. #endif
  4008. #if HAS_Z2_MAX
  4009. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  4010. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4011. #endif
  4012. #if HAS_Z_PROBE
  4013. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  4014. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4015. #endif
  4016. }
  4017. /**
  4018. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4019. */
  4020. inline void gcode_M120() { enable_endstops_globally(true); }
  4021. /**
  4022. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4023. */
  4024. inline void gcode_M121() { enable_endstops_globally(false); }
  4025. #if ENABLED(BLINKM)
  4026. /**
  4027. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4028. */
  4029. inline void gcode_M150() {
  4030. SendColors(
  4031. code_seen('R') ? (byte)code_value_short() : 0,
  4032. code_seen('U') ? (byte)code_value_short() : 0,
  4033. code_seen('B') ? (byte)code_value_short() : 0
  4034. );
  4035. }
  4036. #endif // BLINKM
  4037. /**
  4038. * M200: Set filament diameter and set E axis units to cubic millimeters
  4039. *
  4040. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4041. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4042. */
  4043. inline void gcode_M200() {
  4044. if (setTargetedHotend(200)) return;
  4045. if (code_seen('D')) {
  4046. float diameter = code_value();
  4047. // setting any extruder filament size disables volumetric on the assumption that
  4048. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4049. // for all extruders
  4050. volumetric_enabled = (diameter != 0.0);
  4051. if (volumetric_enabled) {
  4052. filament_size[target_extruder] = diameter;
  4053. // make sure all extruders have some sane value for the filament size
  4054. for (int i = 0; i < EXTRUDERS; i++)
  4055. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4056. }
  4057. }
  4058. else {
  4059. //reserved for setting filament diameter via UFID or filament measuring device
  4060. return;
  4061. }
  4062. calculate_volumetric_multipliers();
  4063. }
  4064. /**
  4065. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4066. */
  4067. inline void gcode_M201() {
  4068. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4069. if (code_seen(axis_codes[i])) {
  4070. max_acceleration_units_per_sq_second[i] = code_value();
  4071. }
  4072. }
  4073. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4074. reset_acceleration_rates();
  4075. }
  4076. #if 0 // Not used for Sprinter/grbl gen6
  4077. inline void gcode_M202() {
  4078. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4079. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4080. }
  4081. }
  4082. #endif
  4083. /**
  4084. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4085. */
  4086. inline void gcode_M203() {
  4087. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4088. if (code_seen(axis_codes[i])) {
  4089. max_feedrate[i] = code_value();
  4090. }
  4091. }
  4092. }
  4093. /**
  4094. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4095. *
  4096. * P = Printing moves
  4097. * R = Retract only (no X, Y, Z) moves
  4098. * T = Travel (non printing) moves
  4099. *
  4100. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4101. */
  4102. inline void gcode_M204() {
  4103. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4104. travel_acceleration = acceleration = code_value();
  4105. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4106. SERIAL_EOL;
  4107. }
  4108. if (code_seen('P')) {
  4109. acceleration = code_value();
  4110. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4111. SERIAL_EOL;
  4112. }
  4113. if (code_seen('R')) {
  4114. retract_acceleration = code_value();
  4115. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4116. SERIAL_EOL;
  4117. }
  4118. if (code_seen('T')) {
  4119. travel_acceleration = code_value();
  4120. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4121. SERIAL_EOL;
  4122. }
  4123. }
  4124. /**
  4125. * M205: Set Advanced Settings
  4126. *
  4127. * S = Min Feed Rate (mm/s)
  4128. * T = Min Travel Feed Rate (mm/s)
  4129. * B = Min Segment Time (µs)
  4130. * X = Max XY Jerk (mm/s/s)
  4131. * Z = Max Z Jerk (mm/s/s)
  4132. * E = Max E Jerk (mm/s/s)
  4133. */
  4134. inline void gcode_M205() {
  4135. if (code_seen('S')) minimumfeedrate = code_value();
  4136. if (code_seen('T')) mintravelfeedrate = code_value();
  4137. if (code_seen('B')) minsegmenttime = code_value();
  4138. if (code_seen('X')) max_xy_jerk = code_value();
  4139. if (code_seen('Z')) max_z_jerk = code_value();
  4140. if (code_seen('E')) max_e_jerk = code_value();
  4141. }
  4142. /**
  4143. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4144. */
  4145. inline void gcode_M206() {
  4146. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4147. if (code_seen(axis_codes[i])) {
  4148. home_offset[i] = code_value();
  4149. }
  4150. }
  4151. #if ENABLED(SCARA)
  4152. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  4153. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  4154. #endif
  4155. }
  4156. #if ENABLED(DELTA)
  4157. /**
  4158. * M665: Set delta configurations
  4159. *
  4160. * L = diagonal rod
  4161. * R = delta radius
  4162. * S = segments per second
  4163. * A = Alpha (Tower 1) diagonal rod trim
  4164. * B = Beta (Tower 2) diagonal rod trim
  4165. * C = Gamma (Tower 3) diagonal rod trim
  4166. */
  4167. inline void gcode_M665() {
  4168. if (code_seen('L')) delta_diagonal_rod = code_value();
  4169. if (code_seen('R')) delta_radius = code_value();
  4170. if (code_seen('S')) delta_segments_per_second = code_value();
  4171. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4172. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4173. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4174. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4175. }
  4176. /**
  4177. * M666: Set delta endstop adjustment
  4178. */
  4179. inline void gcode_M666() {
  4180. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4181. if (DEBUGGING(LEVELING)) {
  4182. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4183. }
  4184. #endif
  4185. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4186. if (code_seen(axis_codes[i])) {
  4187. endstop_adj[i] = code_value();
  4188. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4189. if (DEBUGGING(LEVELING)) {
  4190. SERIAL_ECHOPGM("endstop_adj[");
  4191. SERIAL_ECHO(axis_codes[i]);
  4192. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4193. SERIAL_EOL;
  4194. }
  4195. #endif
  4196. }
  4197. }
  4198. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4199. if (DEBUGGING(LEVELING)) {
  4200. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4201. }
  4202. #endif
  4203. }
  4204. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4205. /**
  4206. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4207. */
  4208. inline void gcode_M666() {
  4209. if (code_seen('Z')) z_endstop_adj = code_value();
  4210. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4211. SERIAL_EOL;
  4212. }
  4213. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4214. #if ENABLED(FWRETRACT)
  4215. /**
  4216. * M207: Set firmware retraction values
  4217. *
  4218. * S[+mm] retract_length
  4219. * W[+mm] retract_length_swap (multi-extruder)
  4220. * F[mm/min] retract_feedrate
  4221. * Z[mm] retract_zlift
  4222. */
  4223. inline void gcode_M207() {
  4224. if (code_seen('S')) retract_length = code_value();
  4225. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4226. if (code_seen('Z')) retract_zlift = code_value();
  4227. #if EXTRUDERS > 1
  4228. if (code_seen('W')) retract_length_swap = code_value();
  4229. #endif
  4230. }
  4231. /**
  4232. * M208: Set firmware un-retraction values
  4233. *
  4234. * S[+mm] retract_recover_length (in addition to M207 S*)
  4235. * W[+mm] retract_recover_length_swap (multi-extruder)
  4236. * F[mm/min] retract_recover_feedrate
  4237. */
  4238. inline void gcode_M208() {
  4239. if (code_seen('S')) retract_recover_length = code_value();
  4240. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4241. #if EXTRUDERS > 1
  4242. if (code_seen('W')) retract_recover_length_swap = code_value();
  4243. #endif
  4244. }
  4245. /**
  4246. * M209: Enable automatic retract (M209 S1)
  4247. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4248. */
  4249. inline void gcode_M209() {
  4250. if (code_seen('S')) {
  4251. int t = code_value_short();
  4252. switch (t) {
  4253. case 0:
  4254. autoretract_enabled = false;
  4255. break;
  4256. case 1:
  4257. autoretract_enabled = true;
  4258. break;
  4259. default:
  4260. unknown_command_error();
  4261. return;
  4262. }
  4263. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4264. }
  4265. }
  4266. #endif // FWRETRACT
  4267. #if EXTRUDERS > 1
  4268. /**
  4269. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4270. */
  4271. inline void gcode_M218() {
  4272. if (setTargetedHotend(218)) return;
  4273. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4274. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4275. #if ENABLED(DUAL_X_CARRIAGE)
  4276. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4277. #endif
  4278. SERIAL_ECHO_START;
  4279. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4280. for (int e = 0; e < EXTRUDERS; e++) {
  4281. SERIAL_CHAR(' ');
  4282. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4283. SERIAL_CHAR(',');
  4284. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4285. #if ENABLED(DUAL_X_CARRIAGE)
  4286. SERIAL_CHAR(',');
  4287. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4288. #endif
  4289. }
  4290. SERIAL_EOL;
  4291. }
  4292. #endif // EXTRUDERS > 1
  4293. /**
  4294. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4295. */
  4296. inline void gcode_M220() {
  4297. if (code_seen('S')) feedrate_multiplier = code_value();
  4298. }
  4299. /**
  4300. * M221: Set extrusion percentage (M221 T0 S95)
  4301. */
  4302. inline void gcode_M221() {
  4303. if (code_seen('S')) {
  4304. int sval = code_value();
  4305. if (setTargetedHotend(221)) return;
  4306. extruder_multiplier[target_extruder] = sval;
  4307. }
  4308. }
  4309. /**
  4310. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4311. */
  4312. inline void gcode_M226() {
  4313. if (code_seen('P')) {
  4314. int pin_number = code_value();
  4315. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4316. if (pin_state >= -1 && pin_state <= 1) {
  4317. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4318. if (sensitive_pins[i] == pin_number) {
  4319. pin_number = -1;
  4320. break;
  4321. }
  4322. }
  4323. if (pin_number > -1) {
  4324. int target = LOW;
  4325. st_synchronize();
  4326. pinMode(pin_number, INPUT);
  4327. switch (pin_state) {
  4328. case 1:
  4329. target = HIGH;
  4330. break;
  4331. case 0:
  4332. target = LOW;
  4333. break;
  4334. case -1:
  4335. target = !digitalRead(pin_number);
  4336. break;
  4337. }
  4338. while (digitalRead(pin_number) != target) idle();
  4339. } // pin_number > -1
  4340. } // pin_state -1 0 1
  4341. } // code_seen('P')
  4342. }
  4343. #if HAS_SERVOS
  4344. /**
  4345. * M280: Get or set servo position. P<index> S<angle>
  4346. */
  4347. inline void gcode_M280() {
  4348. int servo_index = code_seen('P') ? code_value_short() : -1;
  4349. int servo_position = 0;
  4350. if (code_seen('S')) {
  4351. servo_position = code_value_short();
  4352. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4353. servo[servo_index].move(servo_position);
  4354. else {
  4355. SERIAL_ERROR_START;
  4356. SERIAL_ERROR("Servo ");
  4357. SERIAL_ERROR(servo_index);
  4358. SERIAL_ERRORLN(" out of range");
  4359. }
  4360. }
  4361. else if (servo_index >= 0) {
  4362. SERIAL_ECHO_START;
  4363. SERIAL_ECHO(" Servo ");
  4364. SERIAL_ECHO(servo_index);
  4365. SERIAL_ECHO(": ");
  4366. SERIAL_ECHOLN(servo[servo_index].read());
  4367. }
  4368. }
  4369. #endif // HAS_SERVOS
  4370. #if HAS_BUZZER
  4371. /**
  4372. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4373. */
  4374. inline void gcode_M300() {
  4375. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4376. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4377. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4378. buzz(beepP, beepS);
  4379. }
  4380. #endif // HAS_BUZZER
  4381. #if ENABLED(PIDTEMP)
  4382. /**
  4383. * M301: Set PID parameters P I D (and optionally C, L)
  4384. *
  4385. * P[float] Kp term
  4386. * I[float] Ki term (unscaled)
  4387. * D[float] Kd term (unscaled)
  4388. *
  4389. * With PID_ADD_EXTRUSION_RATE:
  4390. *
  4391. * C[float] Kc term
  4392. * L[float] LPQ length
  4393. */
  4394. inline void gcode_M301() {
  4395. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4396. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4397. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4398. if (e < EXTRUDERS) { // catch bad input value
  4399. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4400. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4401. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4402. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4403. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4404. if (code_seen('L')) lpq_len = code_value();
  4405. NOMORE(lpq_len, LPQ_MAX_LEN);
  4406. #endif
  4407. updatePID();
  4408. SERIAL_ECHO_START;
  4409. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4410. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4411. SERIAL_ECHO(e);
  4412. #endif // PID_PARAMS_PER_EXTRUDER
  4413. SERIAL_ECHO(" p:");
  4414. SERIAL_ECHO(PID_PARAM(Kp, e));
  4415. SERIAL_ECHO(" i:");
  4416. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4417. SERIAL_ECHO(" d:");
  4418. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4419. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4420. SERIAL_ECHO(" c:");
  4421. //Kc does not have scaling applied above, or in resetting defaults
  4422. SERIAL_ECHO(PID_PARAM(Kc, e));
  4423. #endif
  4424. SERIAL_EOL;
  4425. }
  4426. else {
  4427. SERIAL_ERROR_START;
  4428. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4429. }
  4430. }
  4431. #endif // PIDTEMP
  4432. #if ENABLED(PIDTEMPBED)
  4433. inline void gcode_M304() {
  4434. if (code_seen('P')) bedKp = code_value();
  4435. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4436. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4437. updatePID();
  4438. SERIAL_ECHO_START;
  4439. SERIAL_ECHO(" p:");
  4440. SERIAL_ECHO(bedKp);
  4441. SERIAL_ECHO(" i:");
  4442. SERIAL_ECHO(unscalePID_i(bedKi));
  4443. SERIAL_ECHO(" d:");
  4444. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4445. }
  4446. #endif // PIDTEMPBED
  4447. #if defined(CHDK) || HAS_PHOTOGRAPH
  4448. /**
  4449. * M240: Trigger a camera by emulating a Canon RC-1
  4450. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4451. */
  4452. inline void gcode_M240() {
  4453. #ifdef CHDK
  4454. OUT_WRITE(CHDK, HIGH);
  4455. chdkHigh = millis();
  4456. chdkActive = true;
  4457. #elif HAS_PHOTOGRAPH
  4458. const uint8_t NUM_PULSES = 16;
  4459. const float PULSE_LENGTH = 0.01524;
  4460. for (int i = 0; i < NUM_PULSES; i++) {
  4461. WRITE(PHOTOGRAPH_PIN, HIGH);
  4462. _delay_ms(PULSE_LENGTH);
  4463. WRITE(PHOTOGRAPH_PIN, LOW);
  4464. _delay_ms(PULSE_LENGTH);
  4465. }
  4466. delay(7.33);
  4467. for (int i = 0; i < NUM_PULSES; i++) {
  4468. WRITE(PHOTOGRAPH_PIN, HIGH);
  4469. _delay_ms(PULSE_LENGTH);
  4470. WRITE(PHOTOGRAPH_PIN, LOW);
  4471. _delay_ms(PULSE_LENGTH);
  4472. }
  4473. #endif // !CHDK && HAS_PHOTOGRAPH
  4474. }
  4475. #endif // CHDK || PHOTOGRAPH_PIN
  4476. #if ENABLED(HAS_LCD_CONTRAST)
  4477. /**
  4478. * M250: Read and optionally set the LCD contrast
  4479. */
  4480. inline void gcode_M250() {
  4481. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4482. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4483. SERIAL_PROTOCOL(lcd_contrast);
  4484. SERIAL_EOL;
  4485. }
  4486. #endif // HAS_LCD_CONTRAST
  4487. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4488. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4489. /**
  4490. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4491. */
  4492. inline void gcode_M302() {
  4493. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4494. }
  4495. #endif // PREVENT_DANGEROUS_EXTRUDE
  4496. /**
  4497. * M303: PID relay autotune
  4498. *
  4499. * S<temperature> sets the target temperature. (default 150C)
  4500. * E<extruder> (-1 for the bed) (default 0)
  4501. * C<cycles>
  4502. * U<bool> with a non-zero value will apply the result to current settings
  4503. */
  4504. inline void gcode_M303() {
  4505. int e = code_seen('E') ? code_value_short() : 0;
  4506. int c = code_seen('C') ? code_value_short() : 5;
  4507. bool u = code_seen('U') && code_value_short() != 0;
  4508. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4509. if (e >= 0 && e < EXTRUDERS)
  4510. target_extruder = e;
  4511. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4512. PID_autotune(temp, e, c, u);
  4513. KEEPALIVE_STATE(IN_HANDLER);
  4514. }
  4515. #if ENABLED(SCARA)
  4516. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4517. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4518. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4519. if (IsRunning()) {
  4520. //gcode_get_destination(); // For X Y Z E F
  4521. delta[X_AXIS] = delta_x;
  4522. delta[Y_AXIS] = delta_y;
  4523. calculate_SCARA_forward_Transform(delta);
  4524. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4525. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4526. prepare_move();
  4527. //ok_to_send();
  4528. return true;
  4529. }
  4530. return false;
  4531. }
  4532. /**
  4533. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4534. */
  4535. inline bool gcode_M360() {
  4536. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4537. return SCARA_move_to_cal(0, 120);
  4538. }
  4539. /**
  4540. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4541. */
  4542. inline bool gcode_M361() {
  4543. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4544. return SCARA_move_to_cal(90, 130);
  4545. }
  4546. /**
  4547. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4548. */
  4549. inline bool gcode_M362() {
  4550. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4551. return SCARA_move_to_cal(60, 180);
  4552. }
  4553. /**
  4554. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4555. */
  4556. inline bool gcode_M363() {
  4557. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4558. return SCARA_move_to_cal(50, 90);
  4559. }
  4560. /**
  4561. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4562. */
  4563. inline bool gcode_M364() {
  4564. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4565. return SCARA_move_to_cal(45, 135);
  4566. }
  4567. /**
  4568. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4569. */
  4570. inline void gcode_M365() {
  4571. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4572. if (code_seen(axis_codes[i])) {
  4573. axis_scaling[i] = code_value();
  4574. }
  4575. }
  4576. }
  4577. #endif // SCARA
  4578. #if ENABLED(EXT_SOLENOID)
  4579. void enable_solenoid(uint8_t num) {
  4580. switch (num) {
  4581. case 0:
  4582. OUT_WRITE(SOL0_PIN, HIGH);
  4583. break;
  4584. #if HAS_SOLENOID_1
  4585. case 1:
  4586. OUT_WRITE(SOL1_PIN, HIGH);
  4587. break;
  4588. #endif
  4589. #if HAS_SOLENOID_2
  4590. case 2:
  4591. OUT_WRITE(SOL2_PIN, HIGH);
  4592. break;
  4593. #endif
  4594. #if HAS_SOLENOID_3
  4595. case 3:
  4596. OUT_WRITE(SOL3_PIN, HIGH);
  4597. break;
  4598. #endif
  4599. default:
  4600. SERIAL_ECHO_START;
  4601. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4602. break;
  4603. }
  4604. }
  4605. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4606. void disable_all_solenoids() {
  4607. OUT_WRITE(SOL0_PIN, LOW);
  4608. OUT_WRITE(SOL1_PIN, LOW);
  4609. OUT_WRITE(SOL2_PIN, LOW);
  4610. OUT_WRITE(SOL3_PIN, LOW);
  4611. }
  4612. /**
  4613. * M380: Enable solenoid on the active extruder
  4614. */
  4615. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4616. /**
  4617. * M381: Disable all solenoids
  4618. */
  4619. inline void gcode_M381() { disable_all_solenoids(); }
  4620. #endif // EXT_SOLENOID
  4621. /**
  4622. * M400: Finish all moves
  4623. */
  4624. inline void gcode_M400() { st_synchronize(); }
  4625. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4626. /**
  4627. * M401: Engage Z Servo endstop if available
  4628. */
  4629. inline void gcode_M401() {
  4630. #if HAS_SERVO_ENDSTOPS
  4631. raise_z_for_servo();
  4632. #endif
  4633. deploy_z_probe();
  4634. }
  4635. /**
  4636. * M402: Retract Z Servo endstop if enabled
  4637. */
  4638. inline void gcode_M402() {
  4639. #if HAS_SERVO_ENDSTOPS
  4640. raise_z_for_servo();
  4641. #endif
  4642. stow_z_probe(false);
  4643. }
  4644. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4645. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4646. /**
  4647. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4648. */
  4649. inline void gcode_M404() {
  4650. if (code_seen('W')) {
  4651. filament_width_nominal = code_value();
  4652. }
  4653. else {
  4654. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4655. SERIAL_PROTOCOLLN(filament_width_nominal);
  4656. }
  4657. }
  4658. /**
  4659. * M405: Turn on filament sensor for control
  4660. */
  4661. inline void gcode_M405() {
  4662. if (code_seen('D')) meas_delay_cm = code_value();
  4663. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4664. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  4665. int temp_ratio = widthFil_to_size_ratio();
  4666. for (delay_index1 = 0; delay_index1 < COUNT(measurement_delay); ++delay_index1)
  4667. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  4668. delay_index1 = delay_index2 = 0;
  4669. }
  4670. filament_sensor = true;
  4671. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4672. //SERIAL_PROTOCOL(filament_width_meas);
  4673. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4674. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4675. }
  4676. /**
  4677. * M406: Turn off filament sensor for control
  4678. */
  4679. inline void gcode_M406() { filament_sensor = false; }
  4680. /**
  4681. * M407: Get measured filament diameter on serial output
  4682. */
  4683. inline void gcode_M407() {
  4684. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4685. SERIAL_PROTOCOLLN(filament_width_meas);
  4686. }
  4687. #endif // FILAMENT_WIDTH_SENSOR
  4688. /**
  4689. * M410: Quickstop - Abort all planned moves
  4690. *
  4691. * This will stop the carriages mid-move, so most likely they
  4692. * will be out of sync with the stepper position after this.
  4693. */
  4694. inline void gcode_M410() { quickStop(); }
  4695. #if ENABLED(MESH_BED_LEVELING)
  4696. /**
  4697. * M420: Enable/Disable Mesh Bed Leveling
  4698. */
  4699. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4700. /**
  4701. * M421: Set a single Mesh Bed Leveling Z coordinate
  4702. */
  4703. inline void gcode_M421() {
  4704. float x, y, z;
  4705. bool err = false, hasX, hasY, hasZ;
  4706. if ((hasX = code_seen('X'))) x = code_value();
  4707. if ((hasY = code_seen('Y'))) y = code_value();
  4708. if ((hasZ = code_seen('Z'))) z = code_value();
  4709. if (!hasX || !hasY || !hasZ) {
  4710. SERIAL_ERROR_START;
  4711. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4712. err = true;
  4713. }
  4714. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4715. SERIAL_ERROR_START;
  4716. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4717. err = true;
  4718. }
  4719. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4720. }
  4721. #endif
  4722. /**
  4723. * M428: Set home_offset based on the distance between the
  4724. * current_position and the nearest "reference point."
  4725. * If an axis is past center its endstop position
  4726. * is the reference-point. Otherwise it uses 0. This allows
  4727. * the Z offset to be set near the bed when using a max endstop.
  4728. *
  4729. * M428 can't be used more than 2cm away from 0 or an endstop.
  4730. *
  4731. * Use M206 to set these values directly.
  4732. */
  4733. inline void gcode_M428() {
  4734. bool err = false;
  4735. float new_offs[3], new_pos[3];
  4736. memcpy(new_pos, current_position, sizeof(new_pos));
  4737. memcpy(new_offs, home_offset, sizeof(new_offs));
  4738. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4739. if (axis_homed[i]) {
  4740. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4741. diff = new_pos[i] - base;
  4742. if (diff > -20 && diff < 20) {
  4743. new_offs[i] -= diff;
  4744. new_pos[i] = base;
  4745. }
  4746. else {
  4747. SERIAL_ERROR_START;
  4748. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4749. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4750. #if HAS_BUZZER
  4751. buzz(200, 40);
  4752. #endif
  4753. err = true;
  4754. break;
  4755. }
  4756. }
  4757. }
  4758. if (!err) {
  4759. memcpy(current_position, new_pos, sizeof(new_pos));
  4760. memcpy(home_offset, new_offs, sizeof(new_offs));
  4761. sync_plan_position();
  4762. LCD_ALERTMESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  4763. #if HAS_BUZZER
  4764. buzz(200, 659);
  4765. buzz(200, 698);
  4766. #endif
  4767. }
  4768. }
  4769. /**
  4770. * M500: Store settings in EEPROM
  4771. */
  4772. inline void gcode_M500() {
  4773. Config_StoreSettings();
  4774. }
  4775. /**
  4776. * M501: Read settings from EEPROM
  4777. */
  4778. inline void gcode_M501() {
  4779. Config_RetrieveSettings();
  4780. }
  4781. /**
  4782. * M502: Revert to default settings
  4783. */
  4784. inline void gcode_M502() {
  4785. Config_ResetDefault();
  4786. }
  4787. /**
  4788. * M503: print settings currently in memory
  4789. */
  4790. inline void gcode_M503() {
  4791. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4792. }
  4793. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4794. /**
  4795. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4796. */
  4797. inline void gcode_M540() {
  4798. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4799. }
  4800. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4801. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4802. inline void gcode_SET_Z_PROBE_OFFSET() {
  4803. SERIAL_ECHO_START;
  4804. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4805. SERIAL_CHAR(' ');
  4806. if (code_seen('Z')) {
  4807. float value = code_value();
  4808. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4809. zprobe_zoffset = value;
  4810. SERIAL_ECHO(zprobe_zoffset);
  4811. }
  4812. else {
  4813. SERIAL_ECHOPGM(MSG_Z_MIN);
  4814. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4815. SERIAL_ECHOPGM(MSG_Z_MAX);
  4816. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4817. }
  4818. }
  4819. else {
  4820. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4821. }
  4822. SERIAL_EOL;
  4823. }
  4824. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4825. #if ENABLED(FILAMENTCHANGEENABLE)
  4826. /**
  4827. * M600: Pause for filament change
  4828. *
  4829. * E[distance] - Retract the filament this far (negative value)
  4830. * Z[distance] - Move the Z axis by this distance
  4831. * X[position] - Move to this X position, with Y
  4832. * Y[position] - Move to this Y position, with X
  4833. * L[distance] - Retract distance for removal (manual reload)
  4834. *
  4835. * Default values are used for omitted arguments.
  4836. *
  4837. */
  4838. inline void gcode_M600() {
  4839. if (degHotend(active_extruder) < extrude_min_temp) {
  4840. SERIAL_ERROR_START;
  4841. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4842. return;
  4843. }
  4844. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4845. for (int i = 0; i < NUM_AXIS; i++)
  4846. lastpos[i] = destination[i] = current_position[i];
  4847. #if ENABLED(DELTA)
  4848. #define RUNPLAN calculate_delta(destination); \
  4849. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4850. #else
  4851. #define RUNPLAN line_to_destination();
  4852. #endif
  4853. //retract by E
  4854. if (code_seen('E')) destination[E_AXIS] += code_value();
  4855. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4856. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4857. #endif
  4858. RUNPLAN;
  4859. //lift Z
  4860. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4861. #ifdef FILAMENTCHANGE_ZADD
  4862. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4863. #endif
  4864. RUNPLAN;
  4865. //move xy
  4866. if (code_seen('X')) destination[X_AXIS] = code_value();
  4867. #ifdef FILAMENTCHANGE_XPOS
  4868. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4869. #endif
  4870. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4871. #ifdef FILAMENTCHANGE_YPOS
  4872. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4873. #endif
  4874. RUNPLAN;
  4875. if (code_seen('L')) destination[E_AXIS] += code_value();
  4876. #ifdef FILAMENTCHANGE_FINALRETRACT
  4877. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4878. #endif
  4879. RUNPLAN;
  4880. //finish moves
  4881. st_synchronize();
  4882. //disable extruder steppers so filament can be removed
  4883. disable_e0();
  4884. disable_e1();
  4885. disable_e2();
  4886. disable_e3();
  4887. delay(100);
  4888. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4889. millis_t next_tick = 0;
  4890. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4891. while (!lcd_clicked()) {
  4892. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4893. millis_t ms = millis();
  4894. if (ms >= next_tick) {
  4895. lcd_quick_feedback();
  4896. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4897. }
  4898. idle(true);
  4899. #else
  4900. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4901. destination[E_AXIS] = current_position[E_AXIS];
  4902. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4903. st_synchronize();
  4904. #endif
  4905. } // while(!lcd_clicked)
  4906. KEEPALIVE_STATE(IN_HANDLER);
  4907. lcd_quick_feedback(); // click sound feedback
  4908. #if ENABLED(AUTO_FILAMENT_CHANGE)
  4909. current_position[E_AXIS] = 0;
  4910. st_synchronize();
  4911. #endif
  4912. //return to normal
  4913. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4914. #ifdef FILAMENTCHANGE_FINALRETRACT
  4915. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4916. #endif
  4917. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4918. plan_set_e_position(current_position[E_AXIS]);
  4919. RUNPLAN; //should do nothing
  4920. lcd_reset_alert_level();
  4921. #if ENABLED(DELTA)
  4922. // Move XYZ to starting position, then E
  4923. calculate_delta(lastpos);
  4924. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4925. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4926. #else
  4927. // Move XY to starting position, then Z, then E
  4928. destination[X_AXIS] = lastpos[X_AXIS];
  4929. destination[Y_AXIS] = lastpos[Y_AXIS];
  4930. line_to_destination();
  4931. destination[Z_AXIS] = lastpos[Z_AXIS];
  4932. line_to_destination();
  4933. destination[E_AXIS] = lastpos[E_AXIS];
  4934. line_to_destination();
  4935. #endif
  4936. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4937. filrunoutEnqueued = false;
  4938. #endif
  4939. }
  4940. #endif // FILAMENTCHANGEENABLE
  4941. #if ENABLED(DUAL_X_CARRIAGE)
  4942. /**
  4943. * M605: Set dual x-carriage movement mode
  4944. *
  4945. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4946. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4947. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4948. * millimeters x-offset and an optional differential hotend temperature of
  4949. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4950. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4951. *
  4952. * Note: the X axis should be homed after changing dual x-carriage mode.
  4953. */
  4954. inline void gcode_M605() {
  4955. st_synchronize();
  4956. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4957. switch (dual_x_carriage_mode) {
  4958. case DXC_DUPLICATION_MODE:
  4959. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4960. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4961. SERIAL_ECHO_START;
  4962. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4963. SERIAL_CHAR(' ');
  4964. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4965. SERIAL_CHAR(',');
  4966. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4967. SERIAL_CHAR(' ');
  4968. SERIAL_ECHO(duplicate_extruder_x_offset);
  4969. SERIAL_CHAR(',');
  4970. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4971. break;
  4972. case DXC_FULL_CONTROL_MODE:
  4973. case DXC_AUTO_PARK_MODE:
  4974. break;
  4975. default:
  4976. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4977. break;
  4978. }
  4979. active_extruder_parked = false;
  4980. extruder_duplication_enabled = false;
  4981. delayed_move_time = 0;
  4982. }
  4983. #endif // DUAL_X_CARRIAGE
  4984. /**
  4985. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4986. */
  4987. inline void gcode_M907() {
  4988. #if HAS_DIGIPOTSS
  4989. for (int i = 0; i < NUM_AXIS; i++)
  4990. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4991. if (code_seen('B')) digipot_current(4, code_value());
  4992. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  4993. #endif
  4994. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  4995. if (code_seen('X')) digipot_current(0, code_value());
  4996. #endif
  4997. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  4998. if (code_seen('Z')) digipot_current(1, code_value());
  4999. #endif
  5000. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5001. if (code_seen('E')) digipot_current(2, code_value());
  5002. #endif
  5003. #if ENABLED(DIGIPOT_I2C)
  5004. // this one uses actual amps in floating point
  5005. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5006. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5007. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5008. #endif
  5009. #if ENABLED(DAC_STEPPER_CURRENT)
  5010. if (code_seen('S')) {
  5011. float dac_percent = code_value();
  5012. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5013. }
  5014. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5015. #endif
  5016. }
  5017. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5018. /**
  5019. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5020. */
  5021. inline void gcode_M908() {
  5022. #if HAS_DIGIPOTSS
  5023. digitalPotWrite(
  5024. code_seen('P') ? code_value() : 0,
  5025. code_seen('S') ? code_value() : 0
  5026. );
  5027. #endif
  5028. #ifdef DAC_STEPPER_CURRENT
  5029. dac_current_raw(
  5030. code_seen('P') ? code_value_long() : -1,
  5031. code_seen('S') ? code_value_short() : 0
  5032. );
  5033. #endif
  5034. }
  5035. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5036. inline void gcode_M909() { dac_print_values(); }
  5037. inline void gcode_M910() { dac_commit_eeprom(); }
  5038. #endif
  5039. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5040. #if HAS_MICROSTEPS
  5041. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5042. inline void gcode_M350() {
  5043. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5044. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5045. if (code_seen('B')) microstep_mode(4, code_value());
  5046. microstep_readings();
  5047. }
  5048. /**
  5049. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5050. * S# determines MS1 or MS2, X# sets the pin high/low.
  5051. */
  5052. inline void gcode_M351() {
  5053. if (code_seen('S')) switch (code_value_short()) {
  5054. case 1:
  5055. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5056. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5057. break;
  5058. case 2:
  5059. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5060. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5061. break;
  5062. }
  5063. microstep_readings();
  5064. }
  5065. #endif // HAS_MICROSTEPS
  5066. /**
  5067. * M999: Restart after being stopped
  5068. */
  5069. inline void gcode_M999() {
  5070. Running = true;
  5071. lcd_reset_alert_level();
  5072. // gcode_LastN = Stopped_gcode_LastN;
  5073. FlushSerialRequestResend();
  5074. }
  5075. /**
  5076. * T0-T3: Switch tool, usually switching extruders
  5077. *
  5078. * F[mm/min] Set the movement feedrate
  5079. */
  5080. inline void gcode_T(uint8_t tmp_extruder) {
  5081. if (tmp_extruder >= EXTRUDERS) {
  5082. SERIAL_ECHO_START;
  5083. SERIAL_CHAR('T');
  5084. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5085. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5086. }
  5087. else {
  5088. target_extruder = tmp_extruder;
  5089. #if EXTRUDERS > 1
  5090. bool make_move = false;
  5091. #endif
  5092. if (code_seen('F')) {
  5093. #if EXTRUDERS > 1
  5094. make_move = true;
  5095. #endif
  5096. float next_feedrate = code_value();
  5097. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5098. }
  5099. #if EXTRUDERS > 1
  5100. if (tmp_extruder != active_extruder) {
  5101. // Save current position to return to after applying extruder offset
  5102. set_destination_to_current();
  5103. #if ENABLED(DUAL_X_CARRIAGE)
  5104. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5105. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5106. // Park old head: 1) raise 2) move to park position 3) lower
  5107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5108. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5109. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5110. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5111. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5112. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5113. st_synchronize();
  5114. }
  5115. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5116. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5117. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5118. active_extruder = tmp_extruder;
  5119. // This function resets the max/min values - the current position may be overwritten below.
  5120. set_axis_is_at_home(X_AXIS);
  5121. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5122. current_position[X_AXIS] = inactive_extruder_x_pos;
  5123. inactive_extruder_x_pos = destination[X_AXIS];
  5124. }
  5125. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5126. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5127. if (active_extruder == 0 || active_extruder_parked)
  5128. current_position[X_AXIS] = inactive_extruder_x_pos;
  5129. else
  5130. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5131. inactive_extruder_x_pos = destination[X_AXIS];
  5132. extruder_duplication_enabled = false;
  5133. }
  5134. else {
  5135. // record raised toolhead position for use by unpark
  5136. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5137. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5138. active_extruder_parked = true;
  5139. delayed_move_time = 0;
  5140. }
  5141. #else // !DUAL_X_CARRIAGE
  5142. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5143. // Offset extruder, make sure to apply the bed level rotation matrix
  5144. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5145. extruder_offset[Y_AXIS][tmp_extruder],
  5146. extruder_offset[Z_AXIS][tmp_extruder]),
  5147. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5148. extruder_offset[Y_AXIS][active_extruder],
  5149. extruder_offset[Z_AXIS][active_extruder]),
  5150. offset_vec = tmp_offset_vec - act_offset_vec;
  5151. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5152. current_position[X_AXIS] += offset_vec.x;
  5153. current_position[Y_AXIS] += offset_vec.y;
  5154. current_position[Z_AXIS] += offset_vec.z;
  5155. #else // !AUTO_BED_LEVELING_FEATURE
  5156. // Offset extruder (only by XY)
  5157. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5158. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5159. #endif // !AUTO_BED_LEVELING_FEATURE
  5160. // Set the new active extruder and position
  5161. active_extruder = tmp_extruder;
  5162. #endif // !DUAL_X_CARRIAGE
  5163. #if ENABLED(DELTA)
  5164. sync_plan_position_delta();
  5165. #else
  5166. sync_plan_position();
  5167. #endif
  5168. // Move to the old position if 'F' was in the parameters
  5169. if (make_move && IsRunning()) prepare_move();
  5170. }
  5171. #if ENABLED(EXT_SOLENOID)
  5172. st_synchronize();
  5173. disable_all_solenoids();
  5174. enable_solenoid_on_active_extruder();
  5175. #endif // EXT_SOLENOID
  5176. #endif // EXTRUDERS > 1
  5177. SERIAL_ECHO_START;
  5178. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5179. SERIAL_PROTOCOLLN((int)active_extruder);
  5180. }
  5181. }
  5182. /**
  5183. * Process a single command and dispatch it to its handler
  5184. * This is called from the main loop()
  5185. */
  5186. void process_next_command() {
  5187. current_command = command_queue[cmd_queue_index_r];
  5188. if (DEBUGGING(ECHO)) {
  5189. SERIAL_ECHO_START;
  5190. SERIAL_ECHOLN(current_command);
  5191. }
  5192. // Sanitize the current command:
  5193. // - Skip leading spaces
  5194. // - Bypass N[-0-9][0-9]*[ ]*
  5195. // - Overwrite * with nul to mark the end
  5196. while (*current_command == ' ') ++current_command;
  5197. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5198. current_command += 2; // skip N[-0-9]
  5199. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5200. while (*current_command == ' ') ++current_command; // skip [ ]*
  5201. }
  5202. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5203. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5204. char *cmd_ptr = current_command;
  5205. // Get the command code, which must be G, M, or T
  5206. char command_code = *cmd_ptr++;
  5207. // Skip spaces to get the numeric part
  5208. while (*cmd_ptr == ' ') cmd_ptr++;
  5209. uint16_t codenum = 0; // define ahead of goto
  5210. // Bail early if there's no code
  5211. bool code_is_good = NUMERIC(*cmd_ptr);
  5212. if (!code_is_good) goto ExitUnknownCommand;
  5213. // Get and skip the code number
  5214. do {
  5215. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5216. cmd_ptr++;
  5217. } while (NUMERIC(*cmd_ptr));
  5218. // Skip all spaces to get to the first argument, or nul
  5219. while (*cmd_ptr == ' ') cmd_ptr++;
  5220. // The command's arguments (if any) start here, for sure!
  5221. current_command_args = cmd_ptr;
  5222. KEEPALIVE_STATE(IN_HANDLER);
  5223. // Handle a known G, M, or T
  5224. switch (command_code) {
  5225. case 'G': switch (codenum) {
  5226. // G0, G1
  5227. case 0:
  5228. case 1:
  5229. gcode_G0_G1();
  5230. break;
  5231. // G2, G3
  5232. #if DISABLED(SCARA)
  5233. case 2: // G2 - CW ARC
  5234. case 3: // G3 - CCW ARC
  5235. gcode_G2_G3(codenum == 2);
  5236. break;
  5237. #endif
  5238. // G4 Dwell
  5239. case 4:
  5240. gcode_G4();
  5241. break;
  5242. #if ENABLED(FWRETRACT)
  5243. case 10: // G10: retract
  5244. case 11: // G11: retract_recover
  5245. gcode_G10_G11(codenum == 10);
  5246. break;
  5247. #endif //FWRETRACT
  5248. case 28: // G28: Home all axes, one at a time
  5249. gcode_G28();
  5250. break;
  5251. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5252. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5253. gcode_G29();
  5254. break;
  5255. #endif
  5256. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5257. #if DISABLED(Z_PROBE_SLED)
  5258. case 30: // G30 Single Z probe
  5259. gcode_G30();
  5260. break;
  5261. #else // Z_PROBE_SLED
  5262. case 31: // G31: dock the sled
  5263. case 32: // G32: undock the sled
  5264. dock_sled(codenum == 31);
  5265. break;
  5266. #endif // Z_PROBE_SLED
  5267. #endif // AUTO_BED_LEVELING_FEATURE
  5268. case 90: // G90
  5269. relative_mode = false;
  5270. break;
  5271. case 91: // G91
  5272. relative_mode = true;
  5273. break;
  5274. case 92: // G92
  5275. gcode_G92();
  5276. break;
  5277. }
  5278. break;
  5279. case 'M': switch (codenum) {
  5280. #if ENABLED(ULTIPANEL)
  5281. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5282. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5283. gcode_M0_M1();
  5284. break;
  5285. #endif // ULTIPANEL
  5286. case 17:
  5287. gcode_M17();
  5288. break;
  5289. #if ENABLED(SDSUPPORT)
  5290. case 20: // M20 - list SD card
  5291. gcode_M20(); break;
  5292. case 21: // M21 - init SD card
  5293. gcode_M21(); break;
  5294. case 22: //M22 - release SD card
  5295. gcode_M22(); break;
  5296. case 23: //M23 - Select file
  5297. gcode_M23(); break;
  5298. case 24: //M24 - Start SD print
  5299. gcode_M24(); break;
  5300. case 25: //M25 - Pause SD print
  5301. gcode_M25(); break;
  5302. case 26: //M26 - Set SD index
  5303. gcode_M26(); break;
  5304. case 27: //M27 - Get SD status
  5305. gcode_M27(); break;
  5306. case 28: //M28 - Start SD write
  5307. gcode_M28(); break;
  5308. case 29: //M29 - Stop SD write
  5309. gcode_M29(); break;
  5310. case 30: //M30 <filename> Delete File
  5311. gcode_M30(); break;
  5312. case 32: //M32 - Select file and start SD print
  5313. gcode_M32(); break;
  5314. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5315. case 33: //M33 - Get the long full path to a file or folder
  5316. gcode_M33(); break;
  5317. #endif // LONG_FILENAME_HOST_SUPPORT
  5318. case 928: //M928 - Start SD write
  5319. gcode_M928(); break;
  5320. #endif //SDSUPPORT
  5321. case 31: //M31 take time since the start of the SD print or an M109 command
  5322. gcode_M31();
  5323. break;
  5324. case 42: //M42 -Change pin status via gcode
  5325. gcode_M42();
  5326. break;
  5327. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5328. case 48: // M48 Z probe repeatability
  5329. gcode_M48();
  5330. break;
  5331. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5332. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5333. case 100:
  5334. gcode_M100();
  5335. break;
  5336. #endif
  5337. case 104: // M104
  5338. gcode_M104();
  5339. break;
  5340. case 110: // M110: Set Current Line Number
  5341. gcode_M110();
  5342. break;
  5343. case 111: // M111: Set debug level
  5344. gcode_M111();
  5345. break;
  5346. case 112: // M112: Emergency Stop
  5347. gcode_M112();
  5348. break;
  5349. case 140: // M140: Set bed temp
  5350. gcode_M140();
  5351. break;
  5352. case 105: // M105: Read current temperature
  5353. gcode_M105();
  5354. KEEPALIVE_STATE(NOT_BUSY);
  5355. return; // "ok" already printed
  5356. case 109: // M109: Wait for temperature
  5357. gcode_M109();
  5358. break;
  5359. #if HAS_TEMP_BED
  5360. case 190: // M190: Wait for bed heater to reach target
  5361. gcode_M190();
  5362. break;
  5363. #endif // HAS_TEMP_BED
  5364. #if FAN_COUNT > 0
  5365. case 106: // M106: Fan On
  5366. gcode_M106();
  5367. break;
  5368. case 107: // M107: Fan Off
  5369. gcode_M107();
  5370. break;
  5371. #endif // FAN_COUNT > 0
  5372. #if ENABLED(BARICUDA)
  5373. // PWM for HEATER_1_PIN
  5374. #if HAS_HEATER_1
  5375. case 126: // M126: valve open
  5376. gcode_M126();
  5377. break;
  5378. case 127: // M127: valve closed
  5379. gcode_M127();
  5380. break;
  5381. #endif // HAS_HEATER_1
  5382. // PWM for HEATER_2_PIN
  5383. #if HAS_HEATER_2
  5384. case 128: // M128: valve open
  5385. gcode_M128();
  5386. break;
  5387. case 129: // M129: valve closed
  5388. gcode_M129();
  5389. break;
  5390. #endif // HAS_HEATER_2
  5391. #endif // BARICUDA
  5392. #if HAS_POWER_SWITCH
  5393. case 80: // M80: Turn on Power Supply
  5394. gcode_M80();
  5395. break;
  5396. #endif // HAS_POWER_SWITCH
  5397. case 81: // M81: Turn off Power, including Power Supply, if possible
  5398. gcode_M81();
  5399. break;
  5400. case 82:
  5401. gcode_M82();
  5402. break;
  5403. case 83:
  5404. gcode_M83();
  5405. break;
  5406. case 18: // (for compatibility)
  5407. case 84: // M84
  5408. gcode_M18_M84();
  5409. break;
  5410. case 85: // M85
  5411. gcode_M85();
  5412. break;
  5413. case 92: // M92: Set the steps-per-unit for one or more axes
  5414. gcode_M92();
  5415. break;
  5416. case 115: // M115: Report capabilities
  5417. gcode_M115();
  5418. break;
  5419. case 117: // M117: Set LCD message text, if possible
  5420. gcode_M117();
  5421. break;
  5422. case 114: // M114: Report current position
  5423. gcode_M114();
  5424. break;
  5425. case 120: // M120: Enable endstops
  5426. gcode_M120();
  5427. break;
  5428. case 121: // M121: Disable endstops
  5429. gcode_M121();
  5430. break;
  5431. case 119: // M119: Report endstop states
  5432. gcode_M119();
  5433. break;
  5434. #if ENABLED(ULTIPANEL)
  5435. case 145: // M145: Set material heatup parameters
  5436. gcode_M145();
  5437. break;
  5438. #endif
  5439. #if ENABLED(BLINKM)
  5440. case 150: // M150
  5441. gcode_M150();
  5442. break;
  5443. #endif //BLINKM
  5444. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5445. gcode_M200();
  5446. break;
  5447. case 201: // M201
  5448. gcode_M201();
  5449. break;
  5450. #if 0 // Not used for Sprinter/grbl gen6
  5451. case 202: // M202
  5452. gcode_M202();
  5453. break;
  5454. #endif
  5455. case 203: // M203 max feedrate mm/sec
  5456. gcode_M203();
  5457. break;
  5458. case 204: // M204 acclereration S normal moves T filmanent only moves
  5459. gcode_M204();
  5460. break;
  5461. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5462. gcode_M205();
  5463. break;
  5464. case 206: // M206 additional homing offset
  5465. gcode_M206();
  5466. break;
  5467. #if ENABLED(DELTA)
  5468. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5469. gcode_M665();
  5470. break;
  5471. #endif
  5472. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5473. case 666: // M666 set delta / dual endstop adjustment
  5474. gcode_M666();
  5475. break;
  5476. #endif
  5477. #if ENABLED(FWRETRACT)
  5478. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5479. gcode_M207();
  5480. break;
  5481. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5482. gcode_M208();
  5483. break;
  5484. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5485. gcode_M209();
  5486. break;
  5487. #endif // FWRETRACT
  5488. #if EXTRUDERS > 1
  5489. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5490. gcode_M218();
  5491. break;
  5492. #endif
  5493. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5494. gcode_M220();
  5495. break;
  5496. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5497. gcode_M221();
  5498. break;
  5499. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5500. gcode_M226();
  5501. break;
  5502. #if HAS_SERVOS
  5503. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5504. gcode_M280();
  5505. break;
  5506. #endif // HAS_SERVOS
  5507. #if HAS_BUZZER
  5508. case 300: // M300 - Play beep tone
  5509. gcode_M300();
  5510. break;
  5511. #endif // HAS_BUZZER
  5512. #if ENABLED(PIDTEMP)
  5513. case 301: // M301
  5514. gcode_M301();
  5515. break;
  5516. #endif // PIDTEMP
  5517. #if ENABLED(PIDTEMPBED)
  5518. case 304: // M304
  5519. gcode_M304();
  5520. break;
  5521. #endif // PIDTEMPBED
  5522. #if defined(CHDK) || HAS_PHOTOGRAPH
  5523. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5524. gcode_M240();
  5525. break;
  5526. #endif // CHDK || PHOTOGRAPH_PIN
  5527. #if ENABLED(HAS_LCD_CONTRAST)
  5528. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5529. gcode_M250();
  5530. break;
  5531. #endif // HAS_LCD_CONTRAST
  5532. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5533. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5534. gcode_M302();
  5535. break;
  5536. #endif // PREVENT_DANGEROUS_EXTRUDE
  5537. case 303: // M303 PID autotune
  5538. gcode_M303();
  5539. break;
  5540. #if ENABLED(SCARA)
  5541. case 360: // M360 SCARA Theta pos1
  5542. if (gcode_M360()) return;
  5543. break;
  5544. case 361: // M361 SCARA Theta pos2
  5545. if (gcode_M361()) return;
  5546. break;
  5547. case 362: // M362 SCARA Psi pos1
  5548. if (gcode_M362()) return;
  5549. break;
  5550. case 363: // M363 SCARA Psi pos2
  5551. if (gcode_M363()) return;
  5552. break;
  5553. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5554. if (gcode_M364()) return;
  5555. break;
  5556. case 365: // M365 Set SCARA scaling for X Y Z
  5557. gcode_M365();
  5558. break;
  5559. #endif // SCARA
  5560. case 400: // M400 finish all moves
  5561. gcode_M400();
  5562. break;
  5563. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5564. case 401:
  5565. gcode_M401();
  5566. break;
  5567. case 402:
  5568. gcode_M402();
  5569. break;
  5570. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5571. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5572. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5573. gcode_M404();
  5574. break;
  5575. case 405: //M405 Turn on filament sensor for control
  5576. gcode_M405();
  5577. break;
  5578. case 406: //M406 Turn off filament sensor for control
  5579. gcode_M406();
  5580. break;
  5581. case 407: //M407 Display measured filament diameter
  5582. gcode_M407();
  5583. break;
  5584. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5585. case 410: // M410 quickstop - Abort all the planned moves.
  5586. gcode_M410();
  5587. break;
  5588. #if ENABLED(MESH_BED_LEVELING)
  5589. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5590. gcode_M420();
  5591. break;
  5592. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5593. gcode_M421();
  5594. break;
  5595. #endif
  5596. case 428: // M428 Apply current_position to home_offset
  5597. gcode_M428();
  5598. break;
  5599. case 500: // M500 Store settings in EEPROM
  5600. gcode_M500();
  5601. break;
  5602. case 501: // M501 Read settings from EEPROM
  5603. gcode_M501();
  5604. break;
  5605. case 502: // M502 Revert to default settings
  5606. gcode_M502();
  5607. break;
  5608. case 503: // M503 print settings currently in memory
  5609. gcode_M503();
  5610. break;
  5611. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5612. case 540:
  5613. gcode_M540();
  5614. break;
  5615. #endif
  5616. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5617. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5618. gcode_SET_Z_PROBE_OFFSET();
  5619. break;
  5620. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5621. #if ENABLED(FILAMENTCHANGEENABLE)
  5622. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5623. gcode_M600();
  5624. break;
  5625. #endif // FILAMENTCHANGEENABLE
  5626. #if ENABLED(DUAL_X_CARRIAGE)
  5627. case 605:
  5628. gcode_M605();
  5629. break;
  5630. #endif // DUAL_X_CARRIAGE
  5631. case 907: // M907 Set digital trimpot motor current using axis codes.
  5632. gcode_M907();
  5633. break;
  5634. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5635. case 908: // M908 Control digital trimpot directly.
  5636. gcode_M908();
  5637. break;
  5638. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5639. case 909: // M909 Print digipot/DAC current value
  5640. gcode_M909();
  5641. break;
  5642. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5643. gcode_M910();
  5644. break;
  5645. #endif
  5646. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5647. #if HAS_MICROSTEPS
  5648. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5649. gcode_M350();
  5650. break;
  5651. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5652. gcode_M351();
  5653. break;
  5654. #endif // HAS_MICROSTEPS
  5655. case 999: // M999: Restart after being Stopped
  5656. gcode_M999();
  5657. break;
  5658. }
  5659. break;
  5660. case 'T':
  5661. gcode_T(codenum);
  5662. break;
  5663. default: code_is_good = false;
  5664. }
  5665. KEEPALIVE_STATE(NOT_BUSY);
  5666. ExitUnknownCommand:
  5667. // Still unknown command? Throw an error
  5668. if (!code_is_good) unknown_command_error();
  5669. ok_to_send();
  5670. }
  5671. void FlushSerialRequestResend() {
  5672. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5673. MYSERIAL.flush();
  5674. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5675. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5676. ok_to_send();
  5677. }
  5678. void ok_to_send() {
  5679. refresh_cmd_timeout();
  5680. if (!send_ok[cmd_queue_index_r]) return;
  5681. SERIAL_PROTOCOLPGM(MSG_OK);
  5682. #if ENABLED(ADVANCED_OK)
  5683. char* p = command_queue[cmd_queue_index_r];
  5684. if (*p == 'N') {
  5685. SERIAL_PROTOCOL(' ');
  5686. SERIAL_ECHO(*p++);
  5687. while (NUMERIC_SIGNED(*p))
  5688. SERIAL_ECHO(*p++);
  5689. }
  5690. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5691. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5692. #endif
  5693. SERIAL_EOL;
  5694. }
  5695. void clamp_to_software_endstops(float target[3]) {
  5696. if (min_software_endstops) {
  5697. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5698. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5699. float negative_z_offset = 0;
  5700. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5701. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5702. if (home_offset[Z_AXIS] < 0) {
  5703. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5704. if (DEBUGGING(LEVELING)) {
  5705. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5706. SERIAL_EOL;
  5707. }
  5708. #endif
  5709. negative_z_offset += home_offset[Z_AXIS];
  5710. }
  5711. #endif
  5712. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5713. }
  5714. if (max_software_endstops) {
  5715. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5716. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5717. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5718. }
  5719. }
  5720. #if ENABLED(DELTA)
  5721. void recalc_delta_settings(float radius, float diagonal_rod) {
  5722. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5723. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5724. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5725. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5726. delta_tower3_x = 0.0; // back middle tower
  5727. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5728. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5729. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5730. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5731. }
  5732. void calculate_delta(float cartesian[3]) {
  5733. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5734. - sq(delta_tower1_x - cartesian[X_AXIS])
  5735. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5736. ) + cartesian[Z_AXIS];
  5737. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5738. - sq(delta_tower2_x - cartesian[X_AXIS])
  5739. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5740. ) + cartesian[Z_AXIS];
  5741. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5742. - sq(delta_tower3_x - cartesian[X_AXIS])
  5743. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5744. ) + cartesian[Z_AXIS];
  5745. /**
  5746. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5747. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5748. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5749. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5750. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5751. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5752. */
  5753. }
  5754. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5755. // Adjust print surface height by linear interpolation over the bed_level array.
  5756. void adjust_delta(float cartesian[3]) {
  5757. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5758. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5759. float h1 = 0.001 - half, h2 = half - 0.001,
  5760. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5761. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5762. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5763. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5764. z1 = bed_level[floor_x + half][floor_y + half],
  5765. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5766. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5767. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5768. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5769. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5770. offset = (1 - ratio_x) * left + ratio_x * right;
  5771. delta[X_AXIS] += offset;
  5772. delta[Y_AXIS] += offset;
  5773. delta[Z_AXIS] += offset;
  5774. /**
  5775. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5776. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5777. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5778. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5779. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5780. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5781. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5782. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5783. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5784. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5785. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5786. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5787. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5788. */
  5789. }
  5790. #endif // AUTO_BED_LEVELING_FEATURE
  5791. #endif // DELTA
  5792. #if ENABLED(MESH_BED_LEVELING)
  5793. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5794. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5795. if (!mbl.active) {
  5796. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5797. set_current_to_destination();
  5798. return;
  5799. }
  5800. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5801. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5802. int ix = mbl.select_x_index(x);
  5803. int iy = mbl.select_y_index(y);
  5804. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5805. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5806. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5807. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5808. if (pix == ix && piy == iy) {
  5809. // Start and end on same mesh square
  5810. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5811. set_current_to_destination();
  5812. return;
  5813. }
  5814. float nx, ny, nz, ne, normalized_dist;
  5815. if (ix > pix && TEST(x_splits, ix)) {
  5816. nx = mbl.get_x(ix);
  5817. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5818. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5819. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5820. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5821. CBI(x_splits, ix);
  5822. }
  5823. else if (ix < pix && TEST(x_splits, pix)) {
  5824. nx = mbl.get_x(pix);
  5825. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5826. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5827. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5828. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5829. CBI(x_splits, pix);
  5830. }
  5831. else if (iy > piy && TEST(y_splits, iy)) {
  5832. ny = mbl.get_y(iy);
  5833. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5834. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5835. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5836. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5837. CBI(y_splits, iy);
  5838. }
  5839. else if (iy < piy && TEST(y_splits, piy)) {
  5840. ny = mbl.get_y(piy);
  5841. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5842. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5843. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5844. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5845. CBI(y_splits, piy);
  5846. }
  5847. else {
  5848. // Already split on a border
  5849. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5850. set_current_to_destination();
  5851. return;
  5852. }
  5853. // Do the split and look for more borders
  5854. destination[X_AXIS] = nx;
  5855. destination[Y_AXIS] = ny;
  5856. destination[Z_AXIS] = nz;
  5857. destination[E_AXIS] = ne;
  5858. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  5859. destination[X_AXIS] = x;
  5860. destination[Y_AXIS] = y;
  5861. destination[Z_AXIS] = z;
  5862. destination[E_AXIS] = e;
  5863. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5864. }
  5865. #endif // MESH_BED_LEVELING
  5866. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5867. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  5868. if (DEBUGGING(DRYRUN)) return;
  5869. float de = dest_e - curr_e;
  5870. if (de) {
  5871. if (degHotend(active_extruder) < extrude_min_temp) {
  5872. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5873. SERIAL_ECHO_START;
  5874. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5875. }
  5876. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5877. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5878. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5879. SERIAL_ECHO_START;
  5880. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5881. }
  5882. #endif
  5883. }
  5884. }
  5885. #endif // PREVENT_DANGEROUS_EXTRUDE
  5886. #if ENABLED(DELTA) || ENABLED(SCARA)
  5887. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5888. float difference[NUM_AXIS];
  5889. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5890. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5891. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5892. if (cartesian_mm < 0.000001) return false;
  5893. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5894. int steps = max(1, int(delta_segments_per_second * seconds));
  5895. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5896. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5897. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5898. for (int s = 1; s <= steps; s++) {
  5899. float fraction = float(s) / float(steps);
  5900. for (int8_t i = 0; i < NUM_AXIS; i++)
  5901. target[i] = current_position[i] + difference[i] * fraction;
  5902. calculate_delta(target);
  5903. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5904. adjust_delta(target);
  5905. #endif
  5906. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5907. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5908. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5909. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5910. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5911. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5912. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  5913. }
  5914. return true;
  5915. }
  5916. #endif // DELTA || SCARA
  5917. #if ENABLED(SCARA)
  5918. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5919. #endif
  5920. #if ENABLED(DUAL_X_CARRIAGE)
  5921. inline bool prepare_move_dual_x_carriage() {
  5922. if (active_extruder_parked) {
  5923. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5924. // move duplicate extruder into correct duplication position.
  5925. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5926. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5927. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5928. sync_plan_position();
  5929. st_synchronize();
  5930. extruder_duplication_enabled = true;
  5931. active_extruder_parked = false;
  5932. }
  5933. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5934. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5935. // This is a travel move (with no extrusion)
  5936. // Skip it, but keep track of the current position
  5937. // (so it can be used as the start of the next non-travel move)
  5938. if (delayed_move_time != 0xFFFFFFFFUL) {
  5939. set_current_to_destination();
  5940. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5941. delayed_move_time = millis();
  5942. return false;
  5943. }
  5944. }
  5945. delayed_move_time = 0;
  5946. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5947. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5948. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5949. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5950. active_extruder_parked = false;
  5951. }
  5952. }
  5953. return true;
  5954. }
  5955. #endif // DUAL_X_CARRIAGE
  5956. #if DISABLED(DELTA) && DISABLED(SCARA)
  5957. inline bool prepare_move_cartesian() {
  5958. // Do not use feedrate_multiplier for E or Z only moves
  5959. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5960. line_to_destination();
  5961. }
  5962. else {
  5963. #if ENABLED(MESH_BED_LEVELING)
  5964. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  5965. return false;
  5966. #else
  5967. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5968. #endif
  5969. }
  5970. return true;
  5971. }
  5972. #endif // !DELTA && !SCARA
  5973. /**
  5974. * Prepare a single move and get ready for the next one
  5975. *
  5976. * (This may call plan_buffer_line several times to put
  5977. * smaller moves into the planner for DELTA or SCARA.)
  5978. */
  5979. void prepare_move() {
  5980. clamp_to_software_endstops(destination);
  5981. refresh_cmd_timeout();
  5982. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5983. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5984. #endif
  5985. #if ENABLED(SCARA)
  5986. if (!prepare_move_scara(destination)) return;
  5987. #elif ENABLED(DELTA)
  5988. if (!prepare_move_delta(destination)) return;
  5989. #endif
  5990. #if ENABLED(DUAL_X_CARRIAGE)
  5991. if (!prepare_move_dual_x_carriage()) return;
  5992. #endif
  5993. #if DISABLED(DELTA) && DISABLED(SCARA)
  5994. if (!prepare_move_cartesian()) return;
  5995. #endif
  5996. set_current_to_destination();
  5997. }
  5998. /**
  5999. * Plan an arc in 2 dimensions
  6000. *
  6001. * The arc is approximated by generating many small linear segments.
  6002. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6003. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6004. * larger segments will tend to be more efficient. Your slicer should have
  6005. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6006. */
  6007. void plan_arc(
  6008. float target[NUM_AXIS], // Destination position
  6009. float* offset, // Center of rotation relative to current_position
  6010. uint8_t clockwise // Clockwise?
  6011. ) {
  6012. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6013. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  6014. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  6015. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6016. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6017. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  6018. r_axis1 = -offset[Y_AXIS],
  6019. rt_axis0 = target[X_AXIS] - center_axis0,
  6020. rt_axis1 = target[Y_AXIS] - center_axis1;
  6021. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6022. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  6023. if (angular_travel < 0) angular_travel += RADIANS(360);
  6024. if (clockwise) angular_travel -= RADIANS(360);
  6025. // Make a circle if the angular rotation is 0
  6026. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  6027. angular_travel += RADIANS(360);
  6028. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6029. if (mm_of_travel < 0.001) return;
  6030. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6031. if (segments == 0) segments = 1;
  6032. float theta_per_segment = angular_travel / segments;
  6033. float linear_per_segment = linear_travel / segments;
  6034. float extruder_per_segment = extruder_travel / segments;
  6035. /**
  6036. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6037. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6038. * r_T = [cos(phi) -sin(phi);
  6039. * sin(phi) cos(phi] * r ;
  6040. *
  6041. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6042. * defined from the circle center to the initial position. Each line segment is formed by successive
  6043. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6044. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6045. * all double numbers are single precision on the Arduino. (True double precision will not have
  6046. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6047. * tool precision in some cases. Therefore, arc path correction is implemented.
  6048. *
  6049. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6050. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6051. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6052. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6053. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6054. * issue for CNC machines with the single precision Arduino calculations.
  6055. *
  6056. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6057. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6058. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6059. * This is important when there are successive arc motions.
  6060. */
  6061. // Vector rotation matrix values
  6062. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6063. float sin_T = theta_per_segment;
  6064. float arc_target[NUM_AXIS];
  6065. float sin_Ti;
  6066. float cos_Ti;
  6067. float r_axisi;
  6068. uint16_t i;
  6069. int8_t count = 0;
  6070. // Initialize the linear axis
  6071. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6072. // Initialize the extruder axis
  6073. arc_target[E_AXIS] = current_position[E_AXIS];
  6074. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6075. for (i = 1; i < segments; i++) { // Increment (segments-1)
  6076. if (count < N_ARC_CORRECTION) {
  6077. // Apply vector rotation matrix to previous r_axis0 / 1
  6078. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  6079. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  6080. r_axis1 = r_axisi;
  6081. count++;
  6082. }
  6083. else {
  6084. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6085. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6086. cos_Ti = cos(i * theta_per_segment);
  6087. sin_Ti = sin(i * theta_per_segment);
  6088. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6089. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6090. count = 0;
  6091. }
  6092. // Update arc_target location
  6093. arc_target[X_AXIS] = center_axis0 + r_axis0;
  6094. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  6095. arc_target[Z_AXIS] += linear_per_segment;
  6096. arc_target[E_AXIS] += extruder_per_segment;
  6097. clamp_to_software_endstops(arc_target);
  6098. #if ENABLED(DELTA) || ENABLED(SCARA)
  6099. calculate_delta(arc_target);
  6100. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6101. adjust_delta(arc_target);
  6102. #endif
  6103. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6104. #else
  6105. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6106. #endif
  6107. }
  6108. // Ensure last segment arrives at target location.
  6109. #if ENABLED(DELTA) || ENABLED(SCARA)
  6110. calculate_delta(target);
  6111. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6112. adjust_delta(target);
  6113. #endif
  6114. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6115. #else
  6116. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6117. #endif
  6118. // As far as the parser is concerned, the position is now == target. In reality the
  6119. // motion control system might still be processing the action and the real tool position
  6120. // in any intermediate location.
  6121. set_current_to_destination();
  6122. }
  6123. #if HAS_CONTROLLERFAN
  6124. void controllerFan() {
  6125. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6126. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6127. millis_t ms = millis();
  6128. if (ms >= nextMotorCheck) {
  6129. nextMotorCheck = ms + 2500; // Not a time critical function, so only check every 2.5s
  6130. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6131. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6132. #if EXTRUDERS > 1
  6133. || E1_ENABLE_READ == E_ENABLE_ON
  6134. #if HAS_X2_ENABLE
  6135. || X2_ENABLE_READ == X_ENABLE_ON
  6136. #endif
  6137. #if EXTRUDERS > 2
  6138. || E2_ENABLE_READ == E_ENABLE_ON
  6139. #if EXTRUDERS > 3
  6140. || E3_ENABLE_READ == E_ENABLE_ON
  6141. #endif
  6142. #endif
  6143. #endif
  6144. ) {
  6145. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6146. }
  6147. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6148. uint8_t speed = (lastMotorOn == 0 || ms >= lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL) ? 0 : CONTROLLERFAN_SPEED;
  6149. // allows digital or PWM fan output to be used (see M42 handling)
  6150. digitalWrite(CONTROLLERFAN_PIN, speed);
  6151. analogWrite(CONTROLLERFAN_PIN, speed);
  6152. }
  6153. }
  6154. #endif // HAS_CONTROLLERFAN
  6155. #if ENABLED(SCARA)
  6156. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6157. // Perform forward kinematics, and place results in delta[3]
  6158. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6159. float x_sin, x_cos, y_sin, y_cos;
  6160. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6161. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6162. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6163. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6164. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6165. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6166. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6167. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6168. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6169. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6170. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6171. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6172. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6173. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6174. }
  6175. void calculate_delta(float cartesian[3]) {
  6176. //reverse kinematics.
  6177. // Perform reversed kinematics, and place results in delta[3]
  6178. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6179. float SCARA_pos[2];
  6180. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6181. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6182. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6183. #if (Linkage_1 == Linkage_2)
  6184. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6185. #else
  6186. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6187. #endif
  6188. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6189. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6190. SCARA_K2 = Linkage_2 * SCARA_S2;
  6191. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6192. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6193. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6194. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6195. delta[Z_AXIS] = cartesian[Z_AXIS];
  6196. /**
  6197. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6198. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6199. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6200. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6201. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6202. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6203. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6204. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6205. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6206. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6207. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6208. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6209. SERIAL_EOL;
  6210. */
  6211. }
  6212. #endif // SCARA
  6213. #if ENABLED(TEMP_STAT_LEDS)
  6214. static bool red_led = false;
  6215. static millis_t next_status_led_update_ms = 0;
  6216. void handle_status_leds(void) {
  6217. float max_temp = 0.0;
  6218. if (millis() > next_status_led_update_ms) {
  6219. next_status_led_update_ms += 500; // Update every 0.5s
  6220. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6221. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6222. #if HAS_TEMP_BED
  6223. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6224. #endif
  6225. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6226. if (new_led != red_led) {
  6227. red_led = new_led;
  6228. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6229. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6230. }
  6231. }
  6232. }
  6233. #endif
  6234. void enable_all_steppers() {
  6235. enable_x();
  6236. enable_y();
  6237. enable_z();
  6238. enable_e0();
  6239. enable_e1();
  6240. enable_e2();
  6241. enable_e3();
  6242. }
  6243. void disable_all_steppers() {
  6244. disable_x();
  6245. disable_y();
  6246. disable_z();
  6247. disable_e0();
  6248. disable_e1();
  6249. disable_e2();
  6250. disable_e3();
  6251. }
  6252. /**
  6253. * Standard idle routine keeps the machine alive
  6254. */
  6255. void idle(
  6256. #if ENABLED(FILAMENTCHANGEENABLE)
  6257. bool no_stepper_sleep/*=false*/
  6258. #endif
  6259. ) {
  6260. manage_heater();
  6261. manage_inactivity(
  6262. #if ENABLED(FILAMENTCHANGEENABLE)
  6263. no_stepper_sleep
  6264. #endif
  6265. );
  6266. host_keepalive();
  6267. lcd_update();
  6268. }
  6269. /**
  6270. * Manage several activities:
  6271. * - Check for Filament Runout
  6272. * - Keep the command buffer full
  6273. * - Check for maximum inactive time between commands
  6274. * - Check for maximum inactive time between stepper commands
  6275. * - Check if pin CHDK needs to go LOW
  6276. * - Check for KILL button held down
  6277. * - Check for HOME button held down
  6278. * - Check if cooling fan needs to be switched on
  6279. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6280. */
  6281. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6282. #if HAS_FILRUNOUT
  6283. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6284. filrunout();
  6285. #endif
  6286. if (commands_in_queue < BUFSIZE) get_available_commands();
  6287. millis_t ms = millis();
  6288. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  6289. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  6290. && !ignore_stepper_queue && !blocks_queued()) {
  6291. #if ENABLED(DISABLE_INACTIVE_X)
  6292. disable_x();
  6293. #endif
  6294. #if ENABLED(DISABLE_INACTIVE_Y)
  6295. disable_y();
  6296. #endif
  6297. #if ENABLED(DISABLE_INACTIVE_Z)
  6298. disable_z();
  6299. #endif
  6300. #if ENABLED(DISABLE_INACTIVE_E)
  6301. disable_e0();
  6302. disable_e1();
  6303. disable_e2();
  6304. disable_e3();
  6305. #endif
  6306. }
  6307. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6308. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  6309. chdkActive = false;
  6310. WRITE(CHDK, LOW);
  6311. }
  6312. #endif
  6313. #if HAS_KILL
  6314. // Check if the kill button was pressed and wait just in case it was an accidental
  6315. // key kill key press
  6316. // -------------------------------------------------------------------------------
  6317. static int killCount = 0; // make the inactivity button a bit less responsive
  6318. const int KILL_DELAY = 750;
  6319. if (!READ(KILL_PIN))
  6320. killCount++;
  6321. else if (killCount > 0)
  6322. killCount--;
  6323. // Exceeded threshold and we can confirm that it was not accidental
  6324. // KILL the machine
  6325. // ----------------------------------------------------------------
  6326. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6327. #endif
  6328. #if HAS_HOME
  6329. // Check to see if we have to home, use poor man's debouncer
  6330. // ---------------------------------------------------------
  6331. static int homeDebounceCount = 0; // poor man's debouncing count
  6332. const int HOME_DEBOUNCE_DELAY = 2500;
  6333. if (!READ(HOME_PIN)) {
  6334. if (!homeDebounceCount) {
  6335. enqueue_and_echo_commands_P(PSTR("G28"));
  6336. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6337. }
  6338. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6339. homeDebounceCount++;
  6340. else
  6341. homeDebounceCount = 0;
  6342. }
  6343. #endif
  6344. #if HAS_CONTROLLERFAN
  6345. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6346. #endif
  6347. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6348. if (ms > previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000)
  6349. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6350. bool oldstatus;
  6351. switch (active_extruder) {
  6352. case 0:
  6353. oldstatus = E0_ENABLE_READ;
  6354. enable_e0();
  6355. break;
  6356. #if EXTRUDERS > 1
  6357. case 1:
  6358. oldstatus = E1_ENABLE_READ;
  6359. enable_e1();
  6360. break;
  6361. #if EXTRUDERS > 2
  6362. case 2:
  6363. oldstatus = E2_ENABLE_READ;
  6364. enable_e2();
  6365. break;
  6366. #if EXTRUDERS > 3
  6367. case 3:
  6368. oldstatus = E3_ENABLE_READ;
  6369. enable_e3();
  6370. break;
  6371. #endif
  6372. #endif
  6373. #endif
  6374. }
  6375. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6376. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6377. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6378. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6379. current_position[E_AXIS] = oldepos;
  6380. destination[E_AXIS] = oldedes;
  6381. plan_set_e_position(oldepos);
  6382. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6383. st_synchronize();
  6384. switch (active_extruder) {
  6385. case 0:
  6386. E0_ENABLE_WRITE(oldstatus);
  6387. break;
  6388. #if EXTRUDERS > 1
  6389. case 1:
  6390. E1_ENABLE_WRITE(oldstatus);
  6391. break;
  6392. #if EXTRUDERS > 2
  6393. case 2:
  6394. E2_ENABLE_WRITE(oldstatus);
  6395. break;
  6396. #if EXTRUDERS > 3
  6397. case 3:
  6398. E3_ENABLE_WRITE(oldstatus);
  6399. break;
  6400. #endif
  6401. #endif
  6402. #endif
  6403. }
  6404. }
  6405. #endif
  6406. #if ENABLED(DUAL_X_CARRIAGE)
  6407. // handle delayed move timeout
  6408. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  6409. // travel moves have been received so enact them
  6410. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6411. set_destination_to_current();
  6412. prepare_move();
  6413. }
  6414. #endif
  6415. #if ENABLED(TEMP_STAT_LEDS)
  6416. handle_status_leds();
  6417. #endif
  6418. check_axes_activity();
  6419. }
  6420. void kill(const char* lcd_msg) {
  6421. #if ENABLED(ULTRA_LCD)
  6422. lcd_setalertstatuspgm(lcd_msg);
  6423. #else
  6424. UNUSED(lcd_msg);
  6425. #endif
  6426. cli(); // Stop interrupts
  6427. disable_all_heaters();
  6428. disable_all_steppers();
  6429. #if HAS_POWER_SWITCH
  6430. pinMode(PS_ON_PIN, INPUT);
  6431. #endif
  6432. SERIAL_ERROR_START;
  6433. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6434. // FMC small patch to update the LCD before ending
  6435. sei(); // enable interrupts
  6436. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6437. cli(); // disable interrupts
  6438. suicide();
  6439. while (1) {
  6440. #if ENABLED(USE_WATCHDOG)
  6441. watchdog_reset();
  6442. #endif
  6443. } // Wait for reset
  6444. }
  6445. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6446. void filrunout() {
  6447. if (!filrunoutEnqueued) {
  6448. filrunoutEnqueued = true;
  6449. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6450. st_synchronize();
  6451. }
  6452. }
  6453. #endif // FILAMENT_RUNOUT_SENSOR
  6454. #if ENABLED(FAST_PWM_FAN)
  6455. void setPwmFrequency(uint8_t pin, int val) {
  6456. val &= 0x07;
  6457. switch (digitalPinToTimer(pin)) {
  6458. #if defined(TCCR0A)
  6459. case TIMER0A:
  6460. case TIMER0B:
  6461. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6462. // TCCR0B |= val;
  6463. break;
  6464. #endif
  6465. #if defined(TCCR1A)
  6466. case TIMER1A:
  6467. case TIMER1B:
  6468. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6469. // TCCR1B |= val;
  6470. break;
  6471. #endif
  6472. #if defined(TCCR2)
  6473. case TIMER2:
  6474. case TIMER2:
  6475. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6476. TCCR2 |= val;
  6477. break;
  6478. #endif
  6479. #if defined(TCCR2A)
  6480. case TIMER2A:
  6481. case TIMER2B:
  6482. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6483. TCCR2B |= val;
  6484. break;
  6485. #endif
  6486. #if defined(TCCR3A)
  6487. case TIMER3A:
  6488. case TIMER3B:
  6489. case TIMER3C:
  6490. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6491. TCCR3B |= val;
  6492. break;
  6493. #endif
  6494. #if defined(TCCR4A)
  6495. case TIMER4A:
  6496. case TIMER4B:
  6497. case TIMER4C:
  6498. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6499. TCCR4B |= val;
  6500. break;
  6501. #endif
  6502. #if defined(TCCR5A)
  6503. case TIMER5A:
  6504. case TIMER5B:
  6505. case TIMER5C:
  6506. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6507. TCCR5B |= val;
  6508. break;
  6509. #endif
  6510. }
  6511. }
  6512. #endif // FAST_PWM_FAN
  6513. void Stop() {
  6514. disable_all_heaters();
  6515. if (IsRunning()) {
  6516. Running = false;
  6517. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6518. SERIAL_ERROR_START;
  6519. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6520. LCD_MESSAGEPGM(MSG_STOPPED);
  6521. }
  6522. }
  6523. /**
  6524. * Set target_extruder from the T parameter or the active_extruder
  6525. *
  6526. * Returns TRUE if the target is invalid
  6527. */
  6528. bool setTargetedHotend(int code) {
  6529. target_extruder = active_extruder;
  6530. if (code_seen('T')) {
  6531. target_extruder = code_value_short();
  6532. if (target_extruder >= EXTRUDERS) {
  6533. SERIAL_ECHO_START;
  6534. SERIAL_CHAR('M');
  6535. SERIAL_ECHO(code);
  6536. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6537. SERIAL_ECHOLN((int)target_extruder);
  6538. return true;
  6539. }
  6540. }
  6541. return false;
  6542. }
  6543. float calculate_volumetric_multiplier(float diameter) {
  6544. if (!volumetric_enabled || diameter == 0) return 1.0;
  6545. float d2 = diameter * 0.5;
  6546. return 1.0 / (M_PI * d2 * d2);
  6547. }
  6548. void calculate_volumetric_multipliers() {
  6549. for (int i = 0; i < EXTRUDERS; i++)
  6550. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6551. }
  6552. /**
  6553. * Start the print job timer
  6554. *
  6555. * The print job is only started if all extruders have their target temp at zero
  6556. * otherwise the print job timew would be reset everytime a M109 is received.
  6557. *
  6558. * @param t start timer timestamp
  6559. *
  6560. * @return true if the timer was started at function call
  6561. */
  6562. bool print_job_start(millis_t t /* = 0 */) {
  6563. for (int i = 0; i < EXTRUDERS; i++) if (degTargetHotend(i) > 0) return false;
  6564. print_job_start_ms = (t) ? t : millis();
  6565. print_job_stop_ms = 0;
  6566. return true;
  6567. }
  6568. /**
  6569. * Check if the running print job has finished and stop the timer
  6570. *
  6571. * When the target temperature for all extruders is zero then we assume that the
  6572. * print job has finished printing. There are some special conditions under which
  6573. * this assumption may not be valid: If during a print job for some reason the
  6574. * user decides to bring a nozzle temp down and only then heat the other afterwards.
  6575. *
  6576. * @param force stops the timer ignoring all pre-checks
  6577. *
  6578. * @return boolean true if the print job has finished printing
  6579. */
  6580. bool print_job_stop(bool force /* = false */) {
  6581. if (!print_job_start_ms) return false;
  6582. if (!force) for (int i = 0; i < EXTRUDERS; i++) if (degTargetHotend(i) > 0) return false;
  6583. print_job_stop_ms = millis();
  6584. return true;
  6585. }
  6586. /**
  6587. * Output the print job timer in seconds
  6588. *
  6589. * @return the number of seconds
  6590. */
  6591. millis_t print_job_timer() {
  6592. if (!print_job_start_ms) return 0;
  6593. return (((print_job_stop_ms > print_job_start_ms)
  6594. ? print_job_stop_ms : millis()) - print_job_start_ms) / 1000;
  6595. }