My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 362KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  63. * G90 - Use Absolute Coordinates
  64. * G91 - Use Relative Coordinates
  65. * G92 - Set current position to coordinates given
  66. *
  67. * "M" Codes
  68. *
  69. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  70. * M1 - Same as M0
  71. * M17 - Enable/Power all stepper motors
  72. * M18 - Disable all stepper motors; same as M84
  73. * M20 - List SD card. (Requires SDSUPPORT)
  74. * M21 - Init SD card. (Requires SDSUPPORT)
  75. * M22 - Release SD card. (Requires SDSUPPORT)
  76. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  77. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  78. * M25 - Pause SD print. (Requires SDSUPPORT)
  79. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  80. * M27 - Report SD print status. (Requires SDSUPPORT)
  81. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  82. * M29 - Stop SD write. (Requires SDSUPPORT)
  83. * M30 - Delete file from SD: "M30 /path/file.gco"
  84. * M31 - Report time since last M109 or SD card start to serial.
  85. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  86. * Use P to run other files as sub-programs: "M32 P !filename#"
  87. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  88. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  89. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  90. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  91. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  92. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  93. * M75 - Start the print job timer.
  94. * M76 - Pause the print job timer.
  95. * M77 - Stop the print job timer.
  96. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  97. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  98. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  99. * M82 - Set E codes absolute (default).
  100. * M83 - Set E codes relative while in Absolute (G90) mode.
  101. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  102. * duration after which steppers should turn off. S0 disables the timeout.
  103. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  105. * M104 - Set extruder target temp.
  106. * M105 - Report current temperatures.
  107. * M106 - Fan on.
  108. * M107 - Fan off.
  109. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  110. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  111. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  112. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  113. * M110 - Set the current line number. (Used by host printing)
  114. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  115. * M112 - Emergency stop.
  116. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  117. * M114 - Report current position.
  118. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  119. * M117 - Display a message on the controller screen. (Requires an LCD)
  120. * M119 - Report endstops status.
  121. * M120 - Enable endstops detection.
  122. * M121 - Disable endstops detection.
  123. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  124. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  125. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  126. * M128 - EtoP Open. (Requires BARICUDA)
  127. * M129 - EtoP Closed. (Requires BARICUDA)
  128. * M140 - Set bed target temp. S<temp>
  129. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  130. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  131. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  132. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  133. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  134. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  135. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  136. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  137. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  138. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  139. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  140. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  141. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  142. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  143. * M205 - Set advanced settings. Current units apply:
  144. S<print> T<travel> minimum speeds
  145. B<minimum segment time>
  146. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  147. * M206 - Set additional homing offset.
  148. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  149. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  150. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  151. Every normal extrude-only move will be classified as retract depending on the direction.
  152. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  153. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  154. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  155. * M221 - Set Flow Percentage: "M221 S<percent>"
  156. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  157. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  158. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  159. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  160. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  162. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  163. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  164. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  165. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  166. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  167. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  168. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  169. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  170. * M400 - Finish all moves.
  171. * M401 - Lower Z probe. (Requires a probe)
  172. * M402 - Raise Z probe. (Requires a probe)
  173. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  174. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  176. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M410 - Quickstop. Abort all planned moves.
  178. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  179. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  180. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  181. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  182. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  183. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  184. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  185. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  186. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  187. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  188. * M666 - Set delta endstop adjustment. (Requires DELTA)
  189. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  190. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  191. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  197. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  198. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  199. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  200. *
  201. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  202. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  203. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  204. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  205. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if HAS_ABL
  232. #include "vector_3.h"
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. #include "qr_solve.h"
  235. #endif
  236. #elif ENABLED(MESH_BED_LEVELING)
  237. #include "mesh_bed_leveling.h"
  238. #endif
  239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  240. #include "planner_bezier.h"
  241. #endif
  242. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  243. #include "buzzer.h"
  244. #endif
  245. #if ENABLED(USE_WATCHDOG)
  246. #include "watchdog.h"
  247. #endif
  248. #if ENABLED(BLINKM)
  249. #include "blinkm.h"
  250. #include "Wire.h"
  251. #endif
  252. #if HAS_SERVOS
  253. #include "servo.h"
  254. #endif
  255. #if HAS_DIGIPOTSS
  256. #include <SPI.h>
  257. #endif
  258. #if ENABLED(DAC_STEPPER_CURRENT)
  259. #include "stepper_dac.h"
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. #include "twibus.h"
  263. #endif
  264. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  265. #include "endstop_interrupts.h"
  266. #endif
  267. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  268. void gcode_M100();
  269. #endif
  270. #if ENABLED(SDSUPPORT)
  271. CardReader card;
  272. #endif
  273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  274. TWIBus i2c;
  275. #endif
  276. #if ENABLED(G38_PROBE_TARGET)
  277. bool G38_move = false,
  278. G38_endstop_hit = false;
  279. #endif
  280. #if ENABLED(AUTO_BED_LEVELING_UBL)
  281. #include "ubl.h"
  282. unified_bed_leveling ubl;
  283. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  284. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  285. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  286. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  287. || isnan(ubl.z_values[0][0]))
  288. #endif
  289. bool Running = true;
  290. uint8_t marlin_debug_flags = DEBUG_NONE;
  291. /**
  292. * Cartesian Current Position
  293. * Used to track the logical position as moves are queued.
  294. * Used by 'line_to_current_position' to do a move after changing it.
  295. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  296. */
  297. float current_position[XYZE] = { 0.0 };
  298. /**
  299. * Cartesian Destination
  300. * A temporary position, usually applied to 'current_position'.
  301. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  302. * 'line_to_destination' sets 'current_position' to 'destination'.
  303. */
  304. float destination[XYZE] = { 0.0 };
  305. /**
  306. * axis_homed
  307. * Flags that each linear axis was homed.
  308. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  309. *
  310. * axis_known_position
  311. * Flags that the position is known in each linear axis. Set when homed.
  312. * Cleared whenever a stepper powers off, potentially losing its position.
  313. */
  314. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  315. /**
  316. * GCode line number handling. Hosts may opt to include line numbers when
  317. * sending commands to Marlin, and lines will be checked for sequentiality.
  318. * M110 N<int> sets the current line number.
  319. */
  320. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  321. /**
  322. * GCode Command Queue
  323. * A simple ring buffer of BUFSIZE command strings.
  324. *
  325. * Commands are copied into this buffer by the command injectors
  326. * (immediate, serial, sd card) and they are processed sequentially by
  327. * the main loop. The process_next_command function parses the next
  328. * command and hands off execution to individual handler functions.
  329. */
  330. uint8_t commands_in_queue = 0; // Count of commands in the queue
  331. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  332. cmd_queue_index_w = 0; // Ring buffer write position
  333. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  334. /**
  335. * Current GCode Command
  336. * When a GCode handler is running, these will be set
  337. */
  338. static char *current_command, // The command currently being executed
  339. *current_command_args, // The address where arguments begin
  340. *seen_pointer; // Set by code_seen(), used by the code_value functions
  341. /**
  342. * Next Injected Command pointer. NULL if no commands are being injected.
  343. * Used by Marlin internally to ensure that commands initiated from within
  344. * are enqueued ahead of any pending serial or sd card commands.
  345. */
  346. static const char *injected_commands_P = NULL;
  347. #if ENABLED(INCH_MODE_SUPPORT)
  348. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  349. #endif
  350. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  351. TempUnit input_temp_units = TEMPUNIT_C;
  352. #endif
  353. /**
  354. * Feed rates are often configured with mm/m
  355. * but the planner and stepper like mm/s units.
  356. */
  357. float constexpr homing_feedrate_mm_s[] = {
  358. #if ENABLED(DELTA)
  359. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  360. #else
  361. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  362. #endif
  363. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  364. };
  365. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  366. int feedrate_percentage = 100, saved_feedrate_percentage,
  367. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  368. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  369. volumetric_enabled =
  370. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  371. true
  372. #else
  373. false
  374. #endif
  375. ;
  376. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  377. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  378. #if DISABLED(NO_WORKSPACE_OFFSETS)
  379. // The distance that XYZ has been offset by G92. Reset by G28.
  380. float position_shift[XYZ] = { 0 };
  381. // This offset is added to the configured home position.
  382. // Set by M206, M428, or menu item. Saved to EEPROM.
  383. float home_offset[XYZ] = { 0 };
  384. // The above two are combined to save on computes
  385. float workspace_offset[XYZ] = { 0 };
  386. #endif
  387. // Software Endstops are based on the configured limits.
  388. #if HAS_SOFTWARE_ENDSTOPS
  389. bool soft_endstops_enabled = true;
  390. #endif
  391. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  392. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  393. #if FAN_COUNT > 0
  394. int fanSpeeds[FAN_COUNT] = { 0 };
  395. #endif
  396. // The active extruder (tool). Set with T<extruder> command.
  397. uint8_t active_extruder = 0;
  398. // Relative Mode. Enable with G91, disable with G90.
  399. static bool relative_mode = false;
  400. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  401. volatile bool wait_for_heatup = true;
  402. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  403. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  404. volatile bool wait_for_user = false;
  405. #endif
  406. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  407. // Number of characters read in the current line of serial input
  408. static int serial_count = 0;
  409. // Inactivity shutdown
  410. millis_t previous_cmd_ms = 0;
  411. static millis_t max_inactive_time = 0;
  412. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  413. // Print Job Timer
  414. #if ENABLED(PRINTCOUNTER)
  415. PrintCounter print_job_timer = PrintCounter();
  416. #else
  417. Stopwatch print_job_timer = Stopwatch();
  418. #endif
  419. // Buzzer - I2C on the LCD or a BEEPER_PIN
  420. #if ENABLED(LCD_USE_I2C_BUZZER)
  421. #define BUZZ(d,f) lcd_buzz(d, f)
  422. #elif PIN_EXISTS(BEEPER)
  423. Buzzer buzzer;
  424. #define BUZZ(d,f) buzzer.tone(d, f)
  425. #else
  426. #define BUZZ(d,f) NOOP
  427. #endif
  428. static uint8_t target_extruder;
  429. #if HAS_BED_PROBE
  430. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  431. #endif
  432. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  433. #if HAS_ABL
  434. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  435. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  436. #elif defined(XY_PROBE_SPEED)
  437. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  438. #else
  439. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  440. #endif
  441. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  442. #if ENABLED(DELTA)
  443. #define ADJUST_DELTA(V) \
  444. if (planner.abl_enabled) { \
  445. const float zadj = bilinear_z_offset(V); \
  446. delta[A_AXIS] += zadj; \
  447. delta[B_AXIS] += zadj; \
  448. delta[C_AXIS] += zadj; \
  449. }
  450. #else
  451. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  452. #endif
  453. #elif IS_KINEMATIC
  454. #define ADJUST_DELTA(V) NOOP
  455. #endif
  456. #if ENABLED(Z_DUAL_ENDSTOPS)
  457. float z_endstop_adj =
  458. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  459. Z_DUAL_ENDSTOPS_ADJUSTMENT
  460. #else
  461. 0
  462. #endif
  463. ;
  464. #endif
  465. // Extruder offsets
  466. #if HOTENDS > 1
  467. float hotend_offset[XYZ][HOTENDS];
  468. #endif
  469. #if HAS_Z_SERVO_ENDSTOP
  470. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  471. #endif
  472. #if ENABLED(BARICUDA)
  473. int baricuda_valve_pressure = 0;
  474. int baricuda_e_to_p_pressure = 0;
  475. #endif
  476. #if ENABLED(FWRETRACT)
  477. bool autoretract_enabled = false;
  478. bool retracted[EXTRUDERS] = { false };
  479. bool retracted_swap[EXTRUDERS] = { false };
  480. float retract_length = RETRACT_LENGTH;
  481. float retract_length_swap = RETRACT_LENGTH_SWAP;
  482. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  483. float retract_zlift = RETRACT_ZLIFT;
  484. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  485. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  486. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  487. #endif // FWRETRACT
  488. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  489. bool powersupply =
  490. #if ENABLED(PS_DEFAULT_OFF)
  491. false
  492. #else
  493. true
  494. #endif
  495. ;
  496. #endif
  497. #if HAS_CASE_LIGHT
  498. bool case_light_on =
  499. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  500. true
  501. #else
  502. false
  503. #endif
  504. ;
  505. #endif
  506. #if ENABLED(DELTA)
  507. float delta[ABC],
  508. endstop_adj[ABC] = { 0 };
  509. // These values are loaded or reset at boot time when setup() calls
  510. // Config_RetrieveSettings(), which calls recalc_delta_settings().
  511. float delta_radius,
  512. delta_tower_angle_trim[ABC],
  513. delta_tower[ABC][2],
  514. delta_diagonal_rod,
  515. delta_diagonal_rod_trim[ABC],
  516. delta_diagonal_rod_2_tower[ABC],
  517. delta_segments_per_second,
  518. delta_clip_start_height = Z_MAX_POS;
  519. float delta_safe_distance_from_top();
  520. #endif
  521. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  522. int bilinear_grid_spacing[2], bilinear_start[2];
  523. float bed_level_grid[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  524. #endif
  525. #if IS_SCARA
  526. // Float constants for SCARA calculations
  527. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  528. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  529. L2_2 = sq(float(L2));
  530. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  531. delta[ABC];
  532. #endif
  533. float cartes[XYZ] = { 0 };
  534. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  535. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  536. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  537. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  538. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  539. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  540. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  541. #endif
  542. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  543. static bool filament_ran_out = false;
  544. #endif
  545. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  546. FilamentChangeMenuResponse filament_change_menu_response;
  547. #endif
  548. #if ENABLED(MIXING_EXTRUDER)
  549. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  550. #if MIXING_VIRTUAL_TOOLS > 1
  551. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  552. #endif
  553. #endif
  554. static bool send_ok[BUFSIZE];
  555. #if HAS_SERVOS
  556. Servo servo[NUM_SERVOS];
  557. #define MOVE_SERVO(I, P) servo[I].move(P)
  558. #if HAS_Z_SERVO_ENDSTOP
  559. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  560. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  561. #endif
  562. #endif
  563. #ifdef CHDK
  564. millis_t chdkHigh = 0;
  565. bool chdkActive = false;
  566. #endif
  567. #if ENABLED(PID_EXTRUSION_SCALING)
  568. int lpq_len = 20;
  569. #endif
  570. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  571. MarlinBusyState busy_state = NOT_BUSY;
  572. static millis_t next_busy_signal_ms = 0;
  573. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  574. #else
  575. #define host_keepalive() NOOP
  576. #endif
  577. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  578. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  579. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  580. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  581. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); }
  582. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  583. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  584. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  585. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  586. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  587. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  588. /**
  589. * ***************************************************************************
  590. * ******************************** FUNCTIONS ********************************
  591. * ***************************************************************************
  592. */
  593. void stop();
  594. void get_available_commands();
  595. void process_next_command();
  596. void prepare_move_to_destination();
  597. void get_cartesian_from_steppers();
  598. void set_current_from_steppers_for_axis(const AxisEnum axis);
  599. #if ENABLED(ARC_SUPPORT)
  600. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  601. #endif
  602. #if ENABLED(BEZIER_CURVE_SUPPORT)
  603. void plan_cubic_move(const float offset[4]);
  604. #endif
  605. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  606. static void report_current_position();
  607. #if ENABLED(DEBUG_LEVELING_FEATURE)
  608. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  609. serialprintPGM(prefix);
  610. SERIAL_ECHOPAIR("(", x);
  611. SERIAL_ECHOPAIR(", ", y);
  612. SERIAL_ECHOPAIR(", ", z);
  613. SERIAL_CHAR(')');
  614. if (suffix) serialprintPGM(suffix);
  615. else SERIAL_EOL;
  616. }
  617. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  618. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  619. }
  620. #if HAS_ABL
  621. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  622. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  623. }
  624. #endif
  625. #define DEBUG_POS(SUFFIX,VAR) do { \
  626. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  627. #endif
  628. /**
  629. * sync_plan_position
  630. *
  631. * Set the planner/stepper positions directly from current_position with
  632. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  633. */
  634. inline void sync_plan_position() {
  635. #if ENABLED(DEBUG_LEVELING_FEATURE)
  636. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  637. #endif
  638. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  639. }
  640. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  641. #if IS_KINEMATIC
  642. inline void sync_plan_position_kinematic() {
  643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  644. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  645. #endif
  646. planner.set_position_mm_kinematic(current_position);
  647. }
  648. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  649. #else
  650. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  651. #endif
  652. #if ENABLED(SDSUPPORT)
  653. #include "SdFatUtil.h"
  654. int freeMemory() { return SdFatUtil::FreeRam(); }
  655. #else
  656. extern "C" {
  657. extern char __bss_end;
  658. extern char __heap_start;
  659. extern void* __brkval;
  660. int freeMemory() {
  661. int free_memory;
  662. if ((int)__brkval == 0)
  663. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  664. else
  665. free_memory = ((int)&free_memory) - ((int)__brkval);
  666. return free_memory;
  667. }
  668. }
  669. #endif //!SDSUPPORT
  670. #if ENABLED(DIGIPOT_I2C)
  671. extern void digipot_i2c_set_current(int channel, float current);
  672. extern void digipot_i2c_init();
  673. #endif
  674. /**
  675. * Inject the next "immediate" command, when possible, onto the front of the queue.
  676. * Return true if any immediate commands remain to inject.
  677. */
  678. static bool drain_injected_commands_P() {
  679. if (injected_commands_P != NULL) {
  680. size_t i = 0;
  681. char c, cmd[30];
  682. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  683. cmd[sizeof(cmd) - 1] = '\0';
  684. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  685. cmd[i] = '\0';
  686. if (enqueue_and_echo_command(cmd)) // success?
  687. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  688. }
  689. return (injected_commands_P != NULL); // return whether any more remain
  690. }
  691. /**
  692. * Record one or many commands to run from program memory.
  693. * Aborts the current queue, if any.
  694. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  695. */
  696. void enqueue_and_echo_commands_P(const char* pgcode) {
  697. injected_commands_P = pgcode;
  698. drain_injected_commands_P(); // first command executed asap (when possible)
  699. }
  700. /**
  701. * Clear the Marlin command queue
  702. */
  703. void clear_command_queue() {
  704. cmd_queue_index_r = cmd_queue_index_w;
  705. commands_in_queue = 0;
  706. }
  707. /**
  708. * Once a new command is in the ring buffer, call this to commit it
  709. */
  710. inline void _commit_command(bool say_ok) {
  711. send_ok[cmd_queue_index_w] = say_ok;
  712. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  713. commands_in_queue++;
  714. }
  715. /**
  716. * Copy a command from RAM into the main command buffer.
  717. * Return true if the command was successfully added.
  718. * Return false for a full buffer, or if the 'command' is a comment.
  719. */
  720. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  721. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  722. strcpy(command_queue[cmd_queue_index_w], cmd);
  723. _commit_command(say_ok);
  724. return true;
  725. }
  726. /**
  727. * Enqueue with Serial Echo
  728. */
  729. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  730. if (_enqueuecommand(cmd, say_ok)) {
  731. SERIAL_ECHO_START;
  732. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  733. SERIAL_CHAR('"');
  734. SERIAL_EOL;
  735. return true;
  736. }
  737. return false;
  738. }
  739. void setup_killpin() {
  740. #if HAS_KILL
  741. SET_INPUT_PULLUP(KILL_PIN);
  742. #endif
  743. }
  744. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  745. void setup_filrunoutpin() {
  746. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  747. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  748. #else
  749. SET_INPUT(FIL_RUNOUT_PIN);
  750. #endif
  751. }
  752. #endif
  753. void setup_homepin(void) {
  754. #if HAS_HOME
  755. SET_INPUT_PULLUP(HOME_PIN);
  756. #endif
  757. }
  758. void setup_powerhold() {
  759. #if HAS_SUICIDE
  760. OUT_WRITE(SUICIDE_PIN, HIGH);
  761. #endif
  762. #if HAS_POWER_SWITCH
  763. #if ENABLED(PS_DEFAULT_OFF)
  764. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  765. #else
  766. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  767. #endif
  768. #endif
  769. }
  770. void suicide() {
  771. #if HAS_SUICIDE
  772. OUT_WRITE(SUICIDE_PIN, LOW);
  773. #endif
  774. }
  775. void servo_init() {
  776. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  777. servo[0].attach(SERVO0_PIN);
  778. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  779. #endif
  780. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  781. servo[1].attach(SERVO1_PIN);
  782. servo[1].detach();
  783. #endif
  784. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  785. servo[2].attach(SERVO2_PIN);
  786. servo[2].detach();
  787. #endif
  788. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  789. servo[3].attach(SERVO3_PIN);
  790. servo[3].detach();
  791. #endif
  792. #if HAS_Z_SERVO_ENDSTOP
  793. /**
  794. * Set position of Z Servo Endstop
  795. *
  796. * The servo might be deployed and positioned too low to stow
  797. * when starting up the machine or rebooting the board.
  798. * There's no way to know where the nozzle is positioned until
  799. * homing has been done - no homing with z-probe without init!
  800. *
  801. */
  802. STOW_Z_SERVO();
  803. #endif
  804. }
  805. /**
  806. * Stepper Reset (RigidBoard, et.al.)
  807. */
  808. #if HAS_STEPPER_RESET
  809. void disableStepperDrivers() {
  810. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  811. }
  812. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  813. #endif
  814. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  815. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  816. i2c.receive(bytes);
  817. }
  818. void i2c_on_request() { // just send dummy data for now
  819. i2c.reply("Hello World!\n");
  820. }
  821. #endif
  822. void gcode_line_error(const char* err, bool doFlush = true) {
  823. SERIAL_ERROR_START;
  824. serialprintPGM(err);
  825. SERIAL_ERRORLN(gcode_LastN);
  826. //Serial.println(gcode_N);
  827. if (doFlush) FlushSerialRequestResend();
  828. serial_count = 0;
  829. }
  830. /**
  831. * Get all commands waiting on the serial port and queue them.
  832. * Exit when the buffer is full or when no more characters are
  833. * left on the serial port.
  834. */
  835. inline void get_serial_commands() {
  836. static char serial_line_buffer[MAX_CMD_SIZE];
  837. static bool serial_comment_mode = false;
  838. // If the command buffer is empty for too long,
  839. // send "wait" to indicate Marlin is still waiting.
  840. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  841. static millis_t last_command_time = 0;
  842. const millis_t ms = millis();
  843. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  844. SERIAL_ECHOLNPGM(MSG_WAIT);
  845. last_command_time = ms;
  846. }
  847. #endif
  848. /**
  849. * Loop while serial characters are incoming and the queue is not full
  850. */
  851. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  852. char serial_char = MYSERIAL.read();
  853. /**
  854. * If the character ends the line
  855. */
  856. if (serial_char == '\n' || serial_char == '\r') {
  857. serial_comment_mode = false; // end of line == end of comment
  858. if (!serial_count) continue; // skip empty lines
  859. serial_line_buffer[serial_count] = 0; // terminate string
  860. serial_count = 0; //reset buffer
  861. char* command = serial_line_buffer;
  862. while (*command == ' ') command++; // skip any leading spaces
  863. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  864. char* apos = strchr(command, '*');
  865. if (npos) {
  866. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  867. if (M110) {
  868. char* n2pos = strchr(command + 4, 'N');
  869. if (n2pos) npos = n2pos;
  870. }
  871. gcode_N = strtol(npos + 1, NULL, 10);
  872. if (gcode_N != gcode_LastN + 1 && !M110) {
  873. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  874. return;
  875. }
  876. if (apos) {
  877. byte checksum = 0, count = 0;
  878. while (command[count] != '*') checksum ^= command[count++];
  879. if (strtol(apos + 1, NULL, 10) != checksum) {
  880. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  881. return;
  882. }
  883. // if no errors, continue parsing
  884. }
  885. else {
  886. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  887. return;
  888. }
  889. gcode_LastN = gcode_N;
  890. // if no errors, continue parsing
  891. }
  892. else if (apos) { // No '*' without 'N'
  893. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  894. return;
  895. }
  896. // Movement commands alert when stopped
  897. if (IsStopped()) {
  898. char* gpos = strchr(command, 'G');
  899. if (gpos) {
  900. int codenum = strtol(gpos + 1, NULL, 10);
  901. switch (codenum) {
  902. case 0:
  903. case 1:
  904. case 2:
  905. case 3:
  906. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  907. LCD_MESSAGEPGM(MSG_STOPPED);
  908. break;
  909. }
  910. }
  911. }
  912. #if DISABLED(EMERGENCY_PARSER)
  913. // If command was e-stop process now
  914. if (strcmp(command, "M108") == 0) {
  915. wait_for_heatup = false;
  916. #if ENABLED(ULTIPANEL)
  917. wait_for_user = false;
  918. #endif
  919. }
  920. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  921. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  922. #endif
  923. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  924. last_command_time = ms;
  925. #endif
  926. // Add the command to the queue
  927. _enqueuecommand(serial_line_buffer, true);
  928. }
  929. else if (serial_count >= MAX_CMD_SIZE - 1) {
  930. // Keep fetching, but ignore normal characters beyond the max length
  931. // The command will be injected when EOL is reached
  932. }
  933. else if (serial_char == '\\') { // Handle escapes
  934. if (MYSERIAL.available() > 0) {
  935. // if we have one more character, copy it over
  936. serial_char = MYSERIAL.read();
  937. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  938. }
  939. // otherwise do nothing
  940. }
  941. else { // it's not a newline, carriage return or escape char
  942. if (serial_char == ';') serial_comment_mode = true;
  943. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  944. }
  945. } // queue has space, serial has data
  946. }
  947. #if ENABLED(SDSUPPORT)
  948. /**
  949. * Get commands from the SD Card until the command buffer is full
  950. * or until the end of the file is reached. The special character '#'
  951. * can also interrupt buffering.
  952. */
  953. inline void get_sdcard_commands() {
  954. static bool stop_buffering = false,
  955. sd_comment_mode = false;
  956. if (!card.sdprinting) return;
  957. /**
  958. * '#' stops reading from SD to the buffer prematurely, so procedural
  959. * macro calls are possible. If it occurs, stop_buffering is triggered
  960. * and the buffer is run dry; this character _can_ occur in serial com
  961. * due to checksums, however, no checksums are used in SD printing.
  962. */
  963. if (commands_in_queue == 0) stop_buffering = false;
  964. uint16_t sd_count = 0;
  965. bool card_eof = card.eof();
  966. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  967. const int16_t n = card.get();
  968. char sd_char = (char)n;
  969. card_eof = card.eof();
  970. if (card_eof || n == -1
  971. || sd_char == '\n' || sd_char == '\r'
  972. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  973. ) {
  974. if (card_eof) {
  975. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  976. card.printingHasFinished();
  977. card.checkautostart(true);
  978. }
  979. else if (n == -1) {
  980. SERIAL_ERROR_START;
  981. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  982. }
  983. if (sd_char == '#') stop_buffering = true;
  984. sd_comment_mode = false; // for new command
  985. if (!sd_count) continue; // skip empty lines (and comment lines)
  986. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  987. sd_count = 0; // clear sd line buffer
  988. _commit_command(false);
  989. }
  990. else if (sd_count >= MAX_CMD_SIZE - 1) {
  991. /**
  992. * Keep fetching, but ignore normal characters beyond the max length
  993. * The command will be injected when EOL is reached
  994. */
  995. }
  996. else {
  997. if (sd_char == ';') sd_comment_mode = true;
  998. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  999. }
  1000. }
  1001. }
  1002. #endif // SDSUPPORT
  1003. /**
  1004. * Add to the circular command queue the next command from:
  1005. * - The command-injection queue (injected_commands_P)
  1006. * - The active serial input (usually USB)
  1007. * - The SD card file being actively printed
  1008. */
  1009. void get_available_commands() {
  1010. // if any immediate commands remain, don't get other commands yet
  1011. if (drain_injected_commands_P()) return;
  1012. get_serial_commands();
  1013. #if ENABLED(SDSUPPORT)
  1014. get_sdcard_commands();
  1015. #endif
  1016. }
  1017. inline bool code_has_value() {
  1018. int i = 1;
  1019. char c = seen_pointer[i];
  1020. while (c == ' ') c = seen_pointer[++i];
  1021. if (c == '-' || c == '+') c = seen_pointer[++i];
  1022. if (c == '.') c = seen_pointer[++i];
  1023. return NUMERIC(c);
  1024. }
  1025. inline float code_value_float() {
  1026. char* e = strchr(seen_pointer, 'E');
  1027. if (!e) return strtod(seen_pointer + 1, NULL);
  1028. *e = 0;
  1029. float ret = strtod(seen_pointer + 1, NULL);
  1030. *e = 'E';
  1031. return ret;
  1032. }
  1033. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1034. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1035. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1036. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1037. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1038. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1039. #if ENABLED(INCH_MODE_SUPPORT)
  1040. inline void set_input_linear_units(LinearUnit units) {
  1041. switch (units) {
  1042. case LINEARUNIT_INCH:
  1043. linear_unit_factor = 25.4;
  1044. break;
  1045. case LINEARUNIT_MM:
  1046. default:
  1047. linear_unit_factor = 1.0;
  1048. break;
  1049. }
  1050. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1051. }
  1052. inline float axis_unit_factor(int axis) {
  1053. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1054. }
  1055. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1056. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1057. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1058. #else
  1059. inline float code_value_linear_units() { return code_value_float(); }
  1060. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1061. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1062. #endif
  1063. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1064. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1065. float code_value_temp_abs() {
  1066. switch (input_temp_units) {
  1067. case TEMPUNIT_C:
  1068. return code_value_float();
  1069. case TEMPUNIT_F:
  1070. return (code_value_float() - 32) * 0.5555555556;
  1071. case TEMPUNIT_K:
  1072. return code_value_float() - 273.15;
  1073. default:
  1074. return code_value_float();
  1075. }
  1076. }
  1077. float code_value_temp_diff() {
  1078. switch (input_temp_units) {
  1079. case TEMPUNIT_C:
  1080. case TEMPUNIT_K:
  1081. return code_value_float();
  1082. case TEMPUNIT_F:
  1083. return code_value_float() * 0.5555555556;
  1084. default:
  1085. return code_value_float();
  1086. }
  1087. }
  1088. #else
  1089. float code_value_temp_abs() { return code_value_float(); }
  1090. float code_value_temp_diff() { return code_value_float(); }
  1091. #endif
  1092. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1093. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1094. bool code_seen(char code) {
  1095. seen_pointer = strchr(current_command_args, code);
  1096. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1097. }
  1098. /**
  1099. * Set target_extruder from the T parameter or the active_extruder
  1100. *
  1101. * Returns TRUE if the target is invalid
  1102. */
  1103. bool get_target_extruder_from_command(int code) {
  1104. if (code_seen('T')) {
  1105. if (code_value_byte() >= EXTRUDERS) {
  1106. SERIAL_ECHO_START;
  1107. SERIAL_CHAR('M');
  1108. SERIAL_ECHO(code);
  1109. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1110. return true;
  1111. }
  1112. target_extruder = code_value_byte();
  1113. }
  1114. else
  1115. target_extruder = active_extruder;
  1116. return false;
  1117. }
  1118. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1119. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1120. #endif
  1121. #if ENABLED(DUAL_X_CARRIAGE)
  1122. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1123. static float x_home_pos(const int extruder) {
  1124. if (extruder == 0)
  1125. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1126. else
  1127. /**
  1128. * In dual carriage mode the extruder offset provides an override of the
  1129. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1130. * This allows soft recalibration of the second extruder home position
  1131. * without firmware reflash (through the M218 command).
  1132. */
  1133. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1134. }
  1135. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1136. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1137. static bool active_extruder_parked = false; // used in mode 1 & 2
  1138. static float raised_parked_position[XYZE]; // used in mode 1
  1139. static millis_t delayed_move_time = 0; // used in mode 1
  1140. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1141. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1142. #endif // DUAL_X_CARRIAGE
  1143. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  1144. /**
  1145. * Software endstops can be used to monitor the open end of
  1146. * an axis that has a hardware endstop on the other end. Or
  1147. * they can prevent axes from moving past endstops and grinding.
  1148. *
  1149. * To keep doing their job as the coordinate system changes,
  1150. * the software endstop positions must be refreshed to remain
  1151. * at the same positions relative to the machine.
  1152. */
  1153. void update_software_endstops(const AxisEnum axis) {
  1154. const float offs = workspace_offset[axis] = home_offset[axis] + position_shift[axis];
  1155. #if ENABLED(DUAL_X_CARRIAGE)
  1156. if (axis == X_AXIS) {
  1157. // In Dual X mode hotend_offset[X] is T1's home position
  1158. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1159. if (active_extruder != 0) {
  1160. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1161. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1162. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1163. }
  1164. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1165. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1166. // but not so far to the right that T1 would move past the end
  1167. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1168. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1169. }
  1170. else {
  1171. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1172. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1173. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1174. }
  1175. }
  1176. #else
  1177. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1178. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1179. #endif
  1180. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1181. if (DEBUGGING(LEVELING)) {
  1182. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1183. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1184. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1185. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1186. #endif
  1187. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1188. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1189. }
  1190. #endif
  1191. #if ENABLED(DELTA)
  1192. if (axis == Z_AXIS)
  1193. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1194. #endif
  1195. }
  1196. #endif // NO_WORKSPACE_OFFSETS
  1197. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1198. /**
  1199. * Change the home offset for an axis, update the current
  1200. * position and the software endstops to retain the same
  1201. * relative distance to the new home.
  1202. *
  1203. * Since this changes the current_position, code should
  1204. * call sync_plan_position soon after this.
  1205. */
  1206. static void set_home_offset(const AxisEnum axis, const float v) {
  1207. current_position[axis] += v - home_offset[axis];
  1208. home_offset[axis] = v;
  1209. update_software_endstops(axis);
  1210. }
  1211. #endif // NO_WORKSPACE_OFFSETS
  1212. /**
  1213. * Set an axis' current position to its home position (after homing).
  1214. *
  1215. * For Core and Cartesian robots this applies one-to-one when an
  1216. * individual axis has been homed.
  1217. *
  1218. * DELTA should wait until all homing is done before setting the XYZ
  1219. * current_position to home, because homing is a single operation.
  1220. * In the case where the axis positions are already known and previously
  1221. * homed, DELTA could home to X or Y individually by moving either one
  1222. * to the center. However, homing Z always homes XY and Z.
  1223. *
  1224. * SCARA should wait until all XY homing is done before setting the XY
  1225. * current_position to home, because neither X nor Y is at home until
  1226. * both are at home. Z can however be homed individually.
  1227. *
  1228. * Callers must sync the planner position after calling this!
  1229. */
  1230. static void set_axis_is_at_home(AxisEnum axis) {
  1231. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1232. if (DEBUGGING(LEVELING)) {
  1233. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1234. SERIAL_CHAR(')');
  1235. SERIAL_EOL;
  1236. }
  1237. #endif
  1238. axis_known_position[axis] = axis_homed[axis] = true;
  1239. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1240. position_shift[axis] = 0;
  1241. update_software_endstops(axis);
  1242. #endif
  1243. #if ENABLED(DUAL_X_CARRIAGE)
  1244. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1245. current_position[X_AXIS] = x_home_pos(active_extruder);
  1246. return;
  1247. }
  1248. #endif
  1249. #if ENABLED(MORGAN_SCARA)
  1250. /**
  1251. * Morgan SCARA homes XY at the same time
  1252. */
  1253. if (axis == X_AXIS || axis == Y_AXIS) {
  1254. float homeposition[XYZ];
  1255. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1256. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1257. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1258. /**
  1259. * Get Home position SCARA arm angles using inverse kinematics,
  1260. * and calculate homing offset using forward kinematics
  1261. */
  1262. inverse_kinematics(homeposition);
  1263. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1264. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1265. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1266. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1267. /**
  1268. * SCARA home positions are based on configuration since the actual
  1269. * limits are determined by the inverse kinematic transform.
  1270. */
  1271. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1272. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1273. }
  1274. else
  1275. #endif
  1276. {
  1277. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1278. }
  1279. /**
  1280. * Z Probe Z Homing? Account for the probe's Z offset.
  1281. */
  1282. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1283. if (axis == Z_AXIS) {
  1284. #if HOMING_Z_WITH_PROBE
  1285. current_position[Z_AXIS] -= zprobe_zoffset;
  1286. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1287. if (DEBUGGING(LEVELING)) {
  1288. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1289. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1290. }
  1291. #endif
  1292. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1293. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1294. #endif
  1295. }
  1296. #endif
  1297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1298. if (DEBUGGING(LEVELING)) {
  1299. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1300. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1301. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1302. #endif
  1303. DEBUG_POS("", current_position);
  1304. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1305. SERIAL_CHAR(')');
  1306. SERIAL_EOL;
  1307. }
  1308. #endif
  1309. }
  1310. /**
  1311. * Some planner shorthand inline functions
  1312. */
  1313. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1314. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1315. int hbd = homing_bump_divisor[axis];
  1316. if (hbd < 1) {
  1317. hbd = 10;
  1318. SERIAL_ECHO_START;
  1319. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1320. }
  1321. return homing_feedrate_mm_s[axis] / hbd;
  1322. }
  1323. //
  1324. // line_to_current_position
  1325. // Move the planner to the current position from wherever it last moved
  1326. // (or from wherever it has been told it is located).
  1327. //
  1328. inline void line_to_current_position() {
  1329. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1330. }
  1331. //
  1332. // line_to_destination
  1333. // Move the planner, not necessarily synced with current_position
  1334. //
  1335. inline void line_to_destination(float fr_mm_s) {
  1336. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1337. }
  1338. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1339. inline void set_current_to_destination() { COPY(current_position, destination); }
  1340. inline void set_destination_to_current() { COPY(destination, current_position); }
  1341. #if IS_KINEMATIC
  1342. /**
  1343. * Calculate delta, start a line, and set current_position to destination
  1344. */
  1345. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1346. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1347. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1348. #endif
  1349. if ( current_position[X_AXIS] == destination[X_AXIS]
  1350. && current_position[Y_AXIS] == destination[Y_AXIS]
  1351. && current_position[Z_AXIS] == destination[Z_AXIS]
  1352. && current_position[E_AXIS] == destination[E_AXIS]
  1353. ) return;
  1354. refresh_cmd_timeout();
  1355. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1356. set_current_to_destination();
  1357. }
  1358. #endif // IS_KINEMATIC
  1359. /**
  1360. * Plan a move to (X, Y, Z) and set the current_position
  1361. * The final current_position may not be the one that was requested
  1362. */
  1363. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1364. const float old_feedrate_mm_s = feedrate_mm_s;
  1365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1366. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1367. #endif
  1368. #if ENABLED(DELTA)
  1369. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1370. set_destination_to_current(); // sync destination at the start
  1371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1372. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1373. #endif
  1374. // when in the danger zone
  1375. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1376. if (z > delta_clip_start_height) { // staying in the danger zone
  1377. destination[X_AXIS] = x; // move directly (uninterpolated)
  1378. destination[Y_AXIS] = y;
  1379. destination[Z_AXIS] = z;
  1380. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1382. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1383. #endif
  1384. return;
  1385. }
  1386. else {
  1387. destination[Z_AXIS] = delta_clip_start_height;
  1388. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1390. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1391. #endif
  1392. }
  1393. }
  1394. if (z > current_position[Z_AXIS]) { // raising?
  1395. destination[Z_AXIS] = z;
  1396. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1397. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1398. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1399. #endif
  1400. }
  1401. destination[X_AXIS] = x;
  1402. destination[Y_AXIS] = y;
  1403. prepare_move_to_destination(); // set_current_to_destination
  1404. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1405. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1406. #endif
  1407. if (z < current_position[Z_AXIS]) { // lowering?
  1408. destination[Z_AXIS] = z;
  1409. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1411. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1412. #endif
  1413. }
  1414. #elif IS_SCARA
  1415. set_destination_to_current();
  1416. // If Z needs to raise, do it before moving XY
  1417. if (destination[Z_AXIS] < z) {
  1418. destination[Z_AXIS] = z;
  1419. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1420. }
  1421. destination[X_AXIS] = x;
  1422. destination[Y_AXIS] = y;
  1423. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1424. // If Z needs to lower, do it after moving XY
  1425. if (destination[Z_AXIS] > z) {
  1426. destination[Z_AXIS] = z;
  1427. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1428. }
  1429. #else
  1430. // If Z needs to raise, do it before moving XY
  1431. if (current_position[Z_AXIS] < z) {
  1432. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1433. current_position[Z_AXIS] = z;
  1434. line_to_current_position();
  1435. }
  1436. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1437. current_position[X_AXIS] = x;
  1438. current_position[Y_AXIS] = y;
  1439. line_to_current_position();
  1440. // If Z needs to lower, do it after moving XY
  1441. if (current_position[Z_AXIS] > z) {
  1442. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1443. current_position[Z_AXIS] = z;
  1444. line_to_current_position();
  1445. }
  1446. #endif
  1447. stepper.synchronize();
  1448. feedrate_mm_s = old_feedrate_mm_s;
  1449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1450. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1451. #endif
  1452. }
  1453. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1454. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1455. }
  1456. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1457. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1458. }
  1459. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1460. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1461. }
  1462. //
  1463. // Prepare to do endstop or probe moves
  1464. // with custom feedrates.
  1465. //
  1466. // - Save current feedrates
  1467. // - Reset the rate multiplier
  1468. // - Reset the command timeout
  1469. // - Enable the endstops (for endstop moves)
  1470. //
  1471. static void setup_for_endstop_or_probe_move() {
  1472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1473. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1474. #endif
  1475. saved_feedrate_mm_s = feedrate_mm_s;
  1476. saved_feedrate_percentage = feedrate_percentage;
  1477. feedrate_percentage = 100;
  1478. refresh_cmd_timeout();
  1479. }
  1480. static void clean_up_after_endstop_or_probe_move() {
  1481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1482. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1483. #endif
  1484. feedrate_mm_s = saved_feedrate_mm_s;
  1485. feedrate_percentage = saved_feedrate_percentage;
  1486. refresh_cmd_timeout();
  1487. }
  1488. #if HAS_BED_PROBE
  1489. /**
  1490. * Raise Z to a minimum height to make room for a probe to move
  1491. */
  1492. inline void do_probe_raise(float z_raise) {
  1493. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1494. if (DEBUGGING(LEVELING)) {
  1495. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1496. SERIAL_CHAR(')');
  1497. SERIAL_EOL;
  1498. }
  1499. #endif
  1500. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1501. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1502. if (z_dest > current_position[Z_AXIS])
  1503. do_blocking_move_to_z(z_dest);
  1504. }
  1505. #endif //HAS_BED_PROBE
  1506. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1507. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1508. const bool xx = x && !axis_homed[X_AXIS],
  1509. yy = y && !axis_homed[Y_AXIS],
  1510. zz = z && !axis_homed[Z_AXIS];
  1511. if (xx || yy || zz) {
  1512. SERIAL_ECHO_START;
  1513. SERIAL_ECHOPGM(MSG_HOME " ");
  1514. if (xx) SERIAL_ECHOPGM(MSG_X);
  1515. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1516. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1517. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1518. #if ENABLED(ULTRA_LCD)
  1519. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1520. #endif
  1521. return true;
  1522. }
  1523. return false;
  1524. }
  1525. #endif
  1526. #if ENABLED(Z_PROBE_SLED)
  1527. #ifndef SLED_DOCKING_OFFSET
  1528. #define SLED_DOCKING_OFFSET 0
  1529. #endif
  1530. /**
  1531. * Method to dock/undock a sled designed by Charles Bell.
  1532. *
  1533. * stow[in] If false, move to MAX_X and engage the solenoid
  1534. * If true, move to MAX_X and release the solenoid
  1535. */
  1536. static void dock_sled(bool stow) {
  1537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1538. if (DEBUGGING(LEVELING)) {
  1539. SERIAL_ECHOPAIR("dock_sled(", stow);
  1540. SERIAL_CHAR(')');
  1541. SERIAL_EOL;
  1542. }
  1543. #endif
  1544. // Dock sled a bit closer to ensure proper capturing
  1545. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1546. #if PIN_EXISTS(SLED)
  1547. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1548. #endif
  1549. }
  1550. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1551. void run_deploy_moves_script() {
  1552. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1553. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1554. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1555. #endif
  1556. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1557. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1558. #endif
  1559. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1560. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1561. #endif
  1562. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1563. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1564. #endif
  1565. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1566. #endif
  1567. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1568. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1569. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1570. #endif
  1571. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1572. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1573. #endif
  1574. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1575. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1576. #endif
  1577. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1578. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1579. #endif
  1580. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1581. #endif
  1582. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1583. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1584. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1585. #endif
  1586. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1587. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1588. #endif
  1589. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1590. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1591. #endif
  1592. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1593. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1594. #endif
  1595. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1596. #endif
  1597. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1598. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1599. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1600. #endif
  1601. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1602. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1603. #endif
  1604. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1605. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1606. #endif
  1607. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1608. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1609. #endif
  1610. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1611. #endif
  1612. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1613. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1614. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1617. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1618. #endif
  1619. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1620. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1621. #endif
  1622. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1623. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1624. #endif
  1625. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1626. #endif
  1627. }
  1628. void run_stow_moves_script() {
  1629. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1630. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1631. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1632. #endif
  1633. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1634. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1635. #endif
  1636. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1637. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1638. #endif
  1639. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1640. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1641. #endif
  1642. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1643. #endif
  1644. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1645. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1646. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1647. #endif
  1648. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1649. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1650. #endif
  1651. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1652. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1653. #endif
  1654. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1655. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1656. #endif
  1657. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1658. #endif
  1659. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1660. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1661. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1662. #endif
  1663. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1664. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1665. #endif
  1666. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1667. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1668. #endif
  1669. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1670. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1671. #endif
  1672. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1673. #endif
  1674. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1675. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1676. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1677. #endif
  1678. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1679. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1680. #endif
  1681. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1682. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1683. #endif
  1684. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1685. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1686. #endif
  1687. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1688. #endif
  1689. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1690. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1691. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1692. #endif
  1693. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1694. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1695. #endif
  1696. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1697. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1698. #endif
  1699. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1700. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1701. #endif
  1702. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1703. #endif
  1704. }
  1705. #endif
  1706. #if HAS_BED_PROBE
  1707. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1708. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1709. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1710. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1711. #else
  1712. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1713. #endif
  1714. #endif
  1715. #if ENABLED(BLTOUCH)
  1716. void bltouch_command(int angle) {
  1717. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1718. safe_delay(BLTOUCH_DELAY);
  1719. }
  1720. void set_bltouch_deployed(const bool deploy) {
  1721. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1722. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1723. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1724. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1725. safe_delay(1500); // wait for internal self test to complete
  1726. // measured completion time was 0.65 seconds
  1727. // after reset, deploy & stow sequence
  1728. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1729. SERIAL_ERROR_START;
  1730. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1731. stop(); // punt!
  1732. }
  1733. }
  1734. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1735. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1736. if (DEBUGGING(LEVELING)) {
  1737. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1738. SERIAL_CHAR(')');
  1739. SERIAL_EOL;
  1740. }
  1741. #endif
  1742. }
  1743. #endif
  1744. // returns false for ok and true for failure
  1745. bool set_probe_deployed(bool deploy) {
  1746. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1747. if (DEBUGGING(LEVELING)) {
  1748. DEBUG_POS("set_probe_deployed", current_position);
  1749. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1750. }
  1751. #endif
  1752. if (endstops.z_probe_enabled == deploy) return false;
  1753. // Make room for probe
  1754. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1755. // When deploying make sure BLTOUCH is not already triggered
  1756. #if ENABLED(BLTOUCH)
  1757. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1758. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1759. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1760. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1761. safe_delay(1500); // wait for internal self test to complete
  1762. // measured completion time was 0.65 seconds
  1763. // after reset, deploy & stow sequence
  1764. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1765. SERIAL_ERROR_START;
  1766. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1767. stop(); // punt!
  1768. return true;
  1769. }
  1770. }
  1771. #elif ENABLED(Z_PROBE_SLED)
  1772. if (axis_unhomed_error(true, false, false)) {
  1773. SERIAL_ERROR_START;
  1774. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1775. stop();
  1776. return true;
  1777. }
  1778. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1779. if (axis_unhomed_error(true, true, true )) {
  1780. SERIAL_ERROR_START;
  1781. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1782. stop();
  1783. return true;
  1784. }
  1785. #endif
  1786. const float oldXpos = current_position[X_AXIS],
  1787. oldYpos = current_position[Y_AXIS];
  1788. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1789. // If endstop is already false, the Z probe is deployed
  1790. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1791. // Would a goto be less ugly?
  1792. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1793. // for a triggered when stowed manual probe.
  1794. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1795. // otherwise an Allen-Key probe can't be stowed.
  1796. #endif
  1797. #if ENABLED(Z_PROBE_SLED)
  1798. dock_sled(!deploy);
  1799. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1800. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1801. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1802. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1803. #endif
  1804. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1805. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1806. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1807. if (IsRunning()) {
  1808. SERIAL_ERROR_START;
  1809. SERIAL_ERRORLNPGM("Z-Probe failed");
  1810. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1811. }
  1812. stop();
  1813. return true;
  1814. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1815. #endif
  1816. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1817. endstops.enable_z_probe(deploy);
  1818. return false;
  1819. }
  1820. static void do_probe_move(float z, float fr_mm_m) {
  1821. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1822. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1823. #endif
  1824. // Deploy BLTouch at the start of any probe
  1825. #if ENABLED(BLTOUCH)
  1826. set_bltouch_deployed(true);
  1827. #endif
  1828. // Move down until probe triggered
  1829. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1830. // Retract BLTouch immediately after a probe
  1831. #if ENABLED(BLTOUCH)
  1832. set_bltouch_deployed(false);
  1833. #endif
  1834. // Clear endstop flags
  1835. endstops.hit_on_purpose();
  1836. // Get Z where the steppers were interrupted
  1837. set_current_from_steppers_for_axis(Z_AXIS);
  1838. // Tell the planner where we actually are
  1839. SYNC_PLAN_POSITION_KINEMATIC();
  1840. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1841. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1842. #endif
  1843. }
  1844. // Do a single Z probe and return with current_position[Z_AXIS]
  1845. // at the height where the probe triggered.
  1846. static float run_z_probe() {
  1847. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1848. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1849. #endif
  1850. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1851. refresh_cmd_timeout();
  1852. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1853. // Do a first probe at the fast speed
  1854. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1855. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1856. float first_probe_z = current_position[Z_AXIS];
  1857. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1858. #endif
  1859. // move up by the bump distance
  1860. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1861. #else
  1862. // If the nozzle is above the travel height then
  1863. // move down quickly before doing the slow probe
  1864. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1865. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1866. if (z < current_position[Z_AXIS])
  1867. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1868. #endif
  1869. // move down slowly to find bed
  1870. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1872. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1873. #endif
  1874. // Debug: compare probe heights
  1875. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1876. if (DEBUGGING(LEVELING)) {
  1877. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1878. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1879. }
  1880. #endif
  1881. return current_position[Z_AXIS] + zprobe_zoffset;
  1882. }
  1883. //
  1884. // - Move to the given XY
  1885. // - Deploy the probe, if not already deployed
  1886. // - Probe the bed, get the Z position
  1887. // - Depending on the 'stow' flag
  1888. // - Stow the probe, or
  1889. // - Raise to the BETWEEN height
  1890. // - Return the probed Z position
  1891. //
  1892. float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
  1893. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1894. if (DEBUGGING(LEVELING)) {
  1895. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1896. SERIAL_ECHOPAIR(", ", y);
  1897. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1898. SERIAL_ECHOLNPGM("stow)");
  1899. DEBUG_POS("", current_position);
  1900. }
  1901. #endif
  1902. const float old_feedrate_mm_s = feedrate_mm_s;
  1903. #if ENABLED(DELTA)
  1904. if (current_position[Z_AXIS] > delta_clip_start_height)
  1905. do_blocking_move_to_z(delta_clip_start_height);
  1906. #endif
  1907. // Ensure a minimum height before moving the probe
  1908. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1909. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1910. // Move the probe to the given XY
  1911. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1912. if (DEPLOY_PROBE()) return NAN;
  1913. const float measured_z = run_z_probe();
  1914. if (!stow)
  1915. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1916. else
  1917. if (STOW_PROBE()) return NAN;
  1918. if (verbose_level > 2) {
  1919. SERIAL_PROTOCOLPGM("Bed X: ");
  1920. SERIAL_PROTOCOL_F(x, 3);
  1921. SERIAL_PROTOCOLPGM(" Y: ");
  1922. SERIAL_PROTOCOL_F(y, 3);
  1923. SERIAL_PROTOCOLPGM(" Z: ");
  1924. SERIAL_PROTOCOL_F(FIXFLOAT(measured_z), 3);
  1925. SERIAL_EOL;
  1926. }
  1927. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1928. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1929. #endif
  1930. feedrate_mm_s = old_feedrate_mm_s;
  1931. return measured_z;
  1932. }
  1933. #endif // HAS_BED_PROBE
  1934. #if PLANNER_LEVELING
  1935. /**
  1936. * Turn bed leveling on or off, fixing the current
  1937. * position as-needed.
  1938. *
  1939. * Disable: Current position = physical position
  1940. * Enable: Current position = "unleveled" physical position
  1941. */
  1942. void set_bed_leveling_enabled(bool enable/*=true*/) {
  1943. #if ENABLED(MESH_BED_LEVELING)
  1944. if (enable != mbl.active()) {
  1945. if (!enable)
  1946. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1947. mbl.set_active(enable && mbl.has_mesh());
  1948. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  1949. }
  1950. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  1951. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1952. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  1953. #else
  1954. constexpr bool can_change = true;
  1955. #endif
  1956. if (can_change && enable != planner.abl_enabled) {
  1957. planner.abl_enabled = enable;
  1958. if (!enable)
  1959. set_current_from_steppers_for_axis(
  1960. #if ABL_PLANAR
  1961. ALL_AXES
  1962. #else
  1963. Z_AXIS
  1964. #endif
  1965. );
  1966. else
  1967. planner.unapply_leveling(current_position);
  1968. }
  1969. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1970. ubl.state.active = enable;
  1971. //set_current_from_steppers_for_axis(Z_AXIS);
  1972. #endif
  1973. }
  1974. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1975. void set_z_fade_height(const float zfh) {
  1976. planner.z_fade_height = zfh;
  1977. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  1978. if (
  1979. #if ENABLED(MESH_BED_LEVELING)
  1980. mbl.active()
  1981. #else
  1982. planner.abl_enabled
  1983. #endif
  1984. ) {
  1985. set_current_from_steppers_for_axis(
  1986. #if ABL_PLANAR
  1987. ALL_AXES
  1988. #else
  1989. Z_AXIS
  1990. #endif
  1991. );
  1992. }
  1993. }
  1994. #endif // LEVELING_FADE_HEIGHT
  1995. /**
  1996. * Reset calibration results to zero.
  1997. */
  1998. void reset_bed_level() {
  1999. set_bed_leveling_enabled(false);
  2000. #if ENABLED(MESH_BED_LEVELING)
  2001. if (mbl.has_mesh()) {
  2002. mbl.reset();
  2003. mbl.set_has_mesh(false);
  2004. }
  2005. #else
  2006. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2007. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2008. #endif
  2009. #if ABL_PLANAR
  2010. planner.bed_level_matrix.set_to_identity();
  2011. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2012. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2013. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2014. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2015. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2016. bed_level_grid[x][y] = NAN;
  2017. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2018. ubl.reset();
  2019. #endif
  2020. #endif
  2021. }
  2022. #endif // PLANNER_LEVELING
  2023. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2024. //
  2025. // Enable if you prefer your output in JSON format
  2026. // suitable for SCAD or JavaScript mesh visualizers.
  2027. //
  2028. // Visualize meshes in OpenSCAD using the included script.
  2029. //
  2030. // buildroot/shared/scripts/MarlinMesh.scad
  2031. //
  2032. //#define SCAD_MESH_OUTPUT
  2033. /**
  2034. * Print calibration results for plotting or manual frame adjustment.
  2035. */
  2036. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2037. #ifndef SCAD_MESH_OUTPUT
  2038. for (uint8_t x = 0; x < sx; x++) {
  2039. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2040. SERIAL_PROTOCOLCHAR(' ');
  2041. SERIAL_PROTOCOL((int)x);
  2042. }
  2043. SERIAL_EOL;
  2044. #endif
  2045. #ifdef SCAD_MESH_OUTPUT
  2046. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2047. #endif
  2048. for (uint8_t y = 0; y < sy; y++) {
  2049. #ifdef SCAD_MESH_OUTPUT
  2050. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2051. #else
  2052. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2053. SERIAL_PROTOCOL((int)y);
  2054. #endif
  2055. for (uint8_t x = 0; x < sx; x++) {
  2056. SERIAL_PROTOCOLCHAR(' ');
  2057. const float offset = fn(x, y);
  2058. if (offset != NAN) {
  2059. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2060. SERIAL_PROTOCOL_F(offset, precision);
  2061. }
  2062. else {
  2063. #ifdef SCAD_MESH_OUTPUT
  2064. for (uint8_t i = 3; i < precision + 3; i++)
  2065. SERIAL_PROTOCOLCHAR(' ');
  2066. SERIAL_PROTOCOLPGM("NAN");
  2067. #else
  2068. for (uint8_t i = 0; i < precision + 3; i++)
  2069. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2070. #endif
  2071. }
  2072. #ifdef SCAD_MESH_OUTPUT
  2073. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2074. #endif
  2075. }
  2076. #ifdef SCAD_MESH_OUTPUT
  2077. SERIAL_PROTOCOLCHAR(' ');
  2078. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2079. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2080. #endif
  2081. SERIAL_EOL;
  2082. }
  2083. #ifdef SCAD_MESH_OUTPUT
  2084. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2085. #endif
  2086. SERIAL_EOL;
  2087. }
  2088. #endif
  2089. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2090. /**
  2091. * Extrapolate a single point from its neighbors
  2092. */
  2093. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2094. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2095. if (DEBUGGING(LEVELING)) {
  2096. SERIAL_ECHOPGM("Extrapolate [");
  2097. if (x < 10) SERIAL_CHAR(' ');
  2098. SERIAL_ECHO((int)x);
  2099. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2100. SERIAL_CHAR(' ');
  2101. if (y < 10) SERIAL_CHAR(' ');
  2102. SERIAL_ECHO((int)y);
  2103. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2104. SERIAL_CHAR(']');
  2105. }
  2106. #endif
  2107. if (bed_level_grid[x][y] != NAN) {
  2108. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2109. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2110. #endif
  2111. return; // Don't overwrite good values.
  2112. }
  2113. SERIAL_EOL;
  2114. // Get X neighbors, Y neighbors, and XY neighbors
  2115. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2116. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2117. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2118. // Treat far unprobed points as zero, near as equal to far
  2119. if (a2 == NAN) a2 = 0.0; if (a1 == NAN) a1 = a2;
  2120. if (b2 == NAN) b2 = 0.0; if (b1 == NAN) b1 = b2;
  2121. if (c2 == NAN) c2 = 0.0; if (c1 == NAN) c1 = c2;
  2122. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2123. // Take the average instead of the median
  2124. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2125. // Median is robust (ignores outliers).
  2126. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2127. // : ((c < b) ? b : (a < c) ? a : c);
  2128. }
  2129. //Enable this if your SCARA uses 180° of total area
  2130. //#define EXTRAPOLATE_FROM_EDGE
  2131. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2132. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2133. #define HALF_IN_X
  2134. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2135. #define HALF_IN_Y
  2136. #endif
  2137. #endif
  2138. /**
  2139. * Fill in the unprobed points (corners of circular print surface)
  2140. * using linear extrapolation, away from the center.
  2141. */
  2142. static void extrapolate_unprobed_bed_level() {
  2143. #ifdef HALF_IN_X
  2144. const uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2145. #else
  2146. const uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2147. ctrx2 = GRID_MAX_POINTS_X / 2, // right-of-center
  2148. xlen = ctrx1;
  2149. #endif
  2150. #ifdef HALF_IN_Y
  2151. const uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2152. #else
  2153. const uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2154. ctry2 = GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2155. ylen = ctry1;
  2156. #endif
  2157. for (uint8_t xo = 0; xo <= xlen; xo++)
  2158. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2159. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2160. #ifndef HALF_IN_X
  2161. const uint8_t x1 = ctrx1 - xo;
  2162. #endif
  2163. #ifndef HALF_IN_Y
  2164. const uint8_t y1 = ctry1 - yo;
  2165. #ifndef HALF_IN_X
  2166. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2167. #endif
  2168. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2169. #endif
  2170. #ifndef HALF_IN_X
  2171. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2172. #endif
  2173. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2174. }
  2175. }
  2176. static void print_bilinear_leveling_grid() {
  2177. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2178. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2179. [](const uint8_t ix, const uint8_t iy) { return bed_level_grid[ix][iy]; }
  2180. );
  2181. }
  2182. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2183. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2184. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2185. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2186. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2187. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2188. int bilinear_grid_spacing_virt[2] = { 0 };
  2189. static void bed_level_virt_print() {
  2190. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2191. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2192. [](const uint8_t ix, const uint8_t iy) { return bed_level_grid_virt[ix][iy]; }
  2193. );
  2194. }
  2195. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2196. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2197. uint8_t ep = 0, ip = 1;
  2198. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2199. if (x) {
  2200. ep = GRID_MAX_POINTS_X - 1;
  2201. ip = GRID_MAX_POINTS_X - 2;
  2202. }
  2203. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2204. return LINEAR_EXTRAPOLATION(
  2205. bed_level_grid[ep][y - 1],
  2206. bed_level_grid[ip][y - 1]
  2207. );
  2208. else
  2209. return LINEAR_EXTRAPOLATION(
  2210. bed_level_virt_coord(ep + 1, y),
  2211. bed_level_virt_coord(ip + 1, y)
  2212. );
  2213. }
  2214. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2215. if (y) {
  2216. ep = GRID_MAX_POINTS_Y - 1;
  2217. ip = GRID_MAX_POINTS_Y - 2;
  2218. }
  2219. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2220. return LINEAR_EXTRAPOLATION(
  2221. bed_level_grid[x - 1][ep],
  2222. bed_level_grid[x - 1][ip]
  2223. );
  2224. else
  2225. return LINEAR_EXTRAPOLATION(
  2226. bed_level_virt_coord(x, ep + 1),
  2227. bed_level_virt_coord(x, ip + 1)
  2228. );
  2229. }
  2230. return bed_level_grid[x - 1][y - 1];
  2231. }
  2232. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2233. return (
  2234. p[i-1] * -t * sq(1 - t)
  2235. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2236. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2237. - p[i+2] * sq(t) * (1 - t)
  2238. ) * 0.5;
  2239. }
  2240. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2241. float row[4], column[4];
  2242. for (uint8_t i = 0; i < 4; i++) {
  2243. for (uint8_t j = 0; j < 4; j++) {
  2244. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2245. }
  2246. row[i] = bed_level_virt_cmr(column, 1, ty);
  2247. }
  2248. return bed_level_virt_cmr(row, 1, tx);
  2249. }
  2250. void bed_level_virt_interpolate() {
  2251. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2252. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2253. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2254. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2255. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2256. continue;
  2257. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2258. bed_level_virt_2cmr(
  2259. x + 1,
  2260. y + 1,
  2261. (float)tx / (BILINEAR_SUBDIVISIONS),
  2262. (float)ty / (BILINEAR_SUBDIVISIONS)
  2263. );
  2264. }
  2265. }
  2266. #endif // ABL_BILINEAR_SUBDIVISION
  2267. #endif // AUTO_BED_LEVELING_BILINEAR
  2268. /**
  2269. * Home an individual linear axis
  2270. */
  2271. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2272. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2273. if (DEBUGGING(LEVELING)) {
  2274. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2275. SERIAL_ECHOPAIR(", ", distance);
  2276. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2277. SERIAL_CHAR(')');
  2278. SERIAL_EOL;
  2279. }
  2280. #endif
  2281. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2282. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2283. if (deploy_bltouch) set_bltouch_deployed(true);
  2284. #endif
  2285. // Tell the planner we're at Z=0
  2286. current_position[axis] = 0;
  2287. #if IS_SCARA
  2288. SYNC_PLAN_POSITION_KINEMATIC();
  2289. current_position[axis] = distance;
  2290. inverse_kinematics(current_position);
  2291. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2292. #else
  2293. sync_plan_position();
  2294. current_position[axis] = distance;
  2295. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2296. #endif
  2297. stepper.synchronize();
  2298. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2299. if (deploy_bltouch) set_bltouch_deployed(false);
  2300. #endif
  2301. endstops.hit_on_purpose();
  2302. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2303. if (DEBUGGING(LEVELING)) {
  2304. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2305. SERIAL_CHAR(')');
  2306. SERIAL_EOL;
  2307. }
  2308. #endif
  2309. }
  2310. /**
  2311. * Home an individual "raw axis" to its endstop.
  2312. * This applies to XYZ on Cartesian and Core robots, and
  2313. * to the individual ABC steppers on DELTA and SCARA.
  2314. *
  2315. * At the end of the procedure the axis is marked as
  2316. * homed and the current position of that axis is updated.
  2317. * Kinematic robots should wait till all axes are homed
  2318. * before updating the current position.
  2319. */
  2320. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2321. static void homeaxis(const AxisEnum axis) {
  2322. #if IS_SCARA
  2323. // Only Z homing (with probe) is permitted
  2324. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2325. #else
  2326. #define CAN_HOME(A) \
  2327. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2328. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2329. #endif
  2330. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2331. if (DEBUGGING(LEVELING)) {
  2332. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2333. SERIAL_CHAR(')');
  2334. SERIAL_EOL;
  2335. }
  2336. #endif
  2337. const int axis_home_dir =
  2338. #if ENABLED(DUAL_X_CARRIAGE)
  2339. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2340. #endif
  2341. home_dir(axis);
  2342. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2343. #if HOMING_Z_WITH_PROBE
  2344. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2345. #endif
  2346. // Set a flag for Z motor locking
  2347. #if ENABLED(Z_DUAL_ENDSTOPS)
  2348. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2349. #endif
  2350. // Fast move towards endstop until triggered
  2351. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2352. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2353. #endif
  2354. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2355. // When homing Z with probe respect probe clearance
  2356. const float bump = axis_home_dir * (
  2357. #if HOMING_Z_WITH_PROBE
  2358. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2359. #endif
  2360. home_bump_mm(axis)
  2361. );
  2362. // If a second homing move is configured...
  2363. if (bump) {
  2364. // Move away from the endstop by the axis HOME_BUMP_MM
  2365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2366. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2367. #endif
  2368. do_homing_move(axis, -bump);
  2369. // Slow move towards endstop until triggered
  2370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2371. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2372. #endif
  2373. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2374. }
  2375. #if ENABLED(Z_DUAL_ENDSTOPS)
  2376. if (axis == Z_AXIS) {
  2377. float adj = fabs(z_endstop_adj);
  2378. bool lockZ1;
  2379. if (axis_home_dir > 0) {
  2380. adj = -adj;
  2381. lockZ1 = (z_endstop_adj > 0);
  2382. }
  2383. else
  2384. lockZ1 = (z_endstop_adj < 0);
  2385. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2386. // Move to the adjusted endstop height
  2387. do_homing_move(axis, adj);
  2388. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2389. stepper.set_homing_flag(false);
  2390. } // Z_AXIS
  2391. #endif
  2392. #if IS_SCARA
  2393. set_axis_is_at_home(axis);
  2394. SYNC_PLAN_POSITION_KINEMATIC();
  2395. #elif ENABLED(DELTA)
  2396. // Delta has already moved all three towers up in G28
  2397. // so here it re-homes each tower in turn.
  2398. // Delta homing treats the axes as normal linear axes.
  2399. // retrace by the amount specified in endstop_adj
  2400. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2401. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2402. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2403. #endif
  2404. do_homing_move(axis, endstop_adj[axis]);
  2405. }
  2406. #else
  2407. // For cartesian/core machines,
  2408. // set the axis to its home position
  2409. set_axis_is_at_home(axis);
  2410. sync_plan_position();
  2411. destination[axis] = current_position[axis];
  2412. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2413. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2414. #endif
  2415. #endif
  2416. // Put away the Z probe
  2417. #if HOMING_Z_WITH_PROBE
  2418. if (axis == Z_AXIS && STOW_PROBE()) return;
  2419. #endif
  2420. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2421. if (DEBUGGING(LEVELING)) {
  2422. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2423. SERIAL_CHAR(')');
  2424. SERIAL_EOL;
  2425. }
  2426. #endif
  2427. } // homeaxis()
  2428. #if ENABLED(FWRETRACT)
  2429. void retract(const bool retracting, const bool swapping = false) {
  2430. static float hop_height;
  2431. if (retracting == retracted[active_extruder]) return;
  2432. const float old_feedrate_mm_s = feedrate_mm_s;
  2433. set_destination_to_current();
  2434. if (retracting) {
  2435. feedrate_mm_s = retract_feedrate_mm_s;
  2436. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2437. sync_plan_position_e();
  2438. prepare_move_to_destination();
  2439. if (retract_zlift > 0.01) {
  2440. hop_height = current_position[Z_AXIS];
  2441. // Pretend current position is lower
  2442. current_position[Z_AXIS] -= retract_zlift;
  2443. SYNC_PLAN_POSITION_KINEMATIC();
  2444. // Raise up to the old current_position
  2445. prepare_move_to_destination();
  2446. }
  2447. }
  2448. else {
  2449. // If the height hasn't been altered, undo the Z hop
  2450. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2451. // Pretend current position is higher. Z will lower on the next move
  2452. current_position[Z_AXIS] += retract_zlift;
  2453. SYNC_PLAN_POSITION_KINEMATIC();
  2454. }
  2455. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2456. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2457. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2458. sync_plan_position_e();
  2459. // Lower Z and recover E
  2460. prepare_move_to_destination();
  2461. }
  2462. feedrate_mm_s = old_feedrate_mm_s;
  2463. retracted[active_extruder] = retracting;
  2464. } // retract()
  2465. #endif // FWRETRACT
  2466. #if ENABLED(MIXING_EXTRUDER)
  2467. void normalize_mix() {
  2468. float mix_total = 0.0;
  2469. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2470. // Scale all values if they don't add up to ~1.0
  2471. if (!NEAR(mix_total, 1.0)) {
  2472. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2473. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2474. }
  2475. }
  2476. #if ENABLED(DIRECT_MIXING_IN_G1)
  2477. // Get mixing parameters from the GCode
  2478. // The total "must" be 1.0 (but it will be normalized)
  2479. // If no mix factors are given, the old mix is preserved
  2480. void gcode_get_mix() {
  2481. const char* mixing_codes = "ABCDHI";
  2482. byte mix_bits = 0;
  2483. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2484. if (code_seen(mixing_codes[i])) {
  2485. SBI(mix_bits, i);
  2486. float v = code_value_float();
  2487. NOLESS(v, 0.0);
  2488. mixing_factor[i] = RECIPROCAL(v);
  2489. }
  2490. }
  2491. // If any mixing factors were included, clear the rest
  2492. // If none were included, preserve the last mix
  2493. if (mix_bits) {
  2494. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2495. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2496. normalize_mix();
  2497. }
  2498. }
  2499. #endif
  2500. #endif
  2501. /**
  2502. * ***************************************************************************
  2503. * ***************************** G-CODE HANDLING *****************************
  2504. * ***************************************************************************
  2505. */
  2506. /**
  2507. * Set XYZE destination and feedrate from the current GCode command
  2508. *
  2509. * - Set destination from included axis codes
  2510. * - Set to current for missing axis codes
  2511. * - Set the feedrate, if included
  2512. */
  2513. void gcode_get_destination() {
  2514. LOOP_XYZE(i) {
  2515. if (code_seen(axis_codes[i]))
  2516. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2517. else
  2518. destination[i] = current_position[i];
  2519. }
  2520. if (code_seen('F') && code_value_linear_units() > 0.0)
  2521. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2522. #if ENABLED(PRINTCOUNTER)
  2523. if (!DEBUGGING(DRYRUN))
  2524. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2525. #endif
  2526. // Get ABCDHI mixing factors
  2527. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2528. gcode_get_mix();
  2529. #endif
  2530. }
  2531. void unknown_command_error() {
  2532. SERIAL_ECHO_START;
  2533. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2534. SERIAL_CHAR('"');
  2535. SERIAL_EOL;
  2536. }
  2537. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2538. /**
  2539. * Output a "busy" message at regular intervals
  2540. * while the machine is not accepting commands.
  2541. */
  2542. void host_keepalive() {
  2543. const millis_t ms = millis();
  2544. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2545. if (PENDING(ms, next_busy_signal_ms)) return;
  2546. switch (busy_state) {
  2547. case IN_HANDLER:
  2548. case IN_PROCESS:
  2549. SERIAL_ECHO_START;
  2550. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2551. break;
  2552. case PAUSED_FOR_USER:
  2553. SERIAL_ECHO_START;
  2554. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2555. break;
  2556. case PAUSED_FOR_INPUT:
  2557. SERIAL_ECHO_START;
  2558. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2559. break;
  2560. default:
  2561. break;
  2562. }
  2563. }
  2564. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2565. }
  2566. #endif //HOST_KEEPALIVE_FEATURE
  2567. bool position_is_reachable(float target[XYZ]
  2568. #if HAS_BED_PROBE
  2569. , bool by_probe=false
  2570. #endif
  2571. ) {
  2572. float dx = RAW_X_POSITION(target[X_AXIS]),
  2573. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2574. #if HAS_BED_PROBE
  2575. if (by_probe) {
  2576. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2577. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2578. }
  2579. #endif
  2580. #if IS_SCARA
  2581. #if MIDDLE_DEAD_ZONE_R > 0
  2582. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2583. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2584. #else
  2585. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2586. #endif
  2587. #elif ENABLED(DELTA)
  2588. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2589. #else
  2590. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2591. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2592. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2593. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2594. #endif
  2595. }
  2596. /**************************************************
  2597. ***************** GCode Handlers *****************
  2598. **************************************************/
  2599. /**
  2600. * G0, G1: Coordinated movement of X Y Z E axes
  2601. */
  2602. inline void gcode_G0_G1(
  2603. #if IS_SCARA
  2604. bool fast_move=false
  2605. #endif
  2606. ) {
  2607. if (IsRunning()) {
  2608. gcode_get_destination(); // For X Y Z E F
  2609. #if ENABLED(FWRETRACT)
  2610. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2611. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2612. // Is this move an attempt to retract or recover?
  2613. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2614. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2615. sync_plan_position_e(); // AND from the planner
  2616. retract(!retracted[active_extruder]);
  2617. return;
  2618. }
  2619. }
  2620. #endif //FWRETRACT
  2621. #if IS_SCARA
  2622. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2623. #else
  2624. prepare_move_to_destination();
  2625. #endif
  2626. }
  2627. }
  2628. /**
  2629. * G2: Clockwise Arc
  2630. * G3: Counterclockwise Arc
  2631. *
  2632. * This command has two forms: IJ-form and R-form.
  2633. *
  2634. * - I specifies an X offset. J specifies a Y offset.
  2635. * At least one of the IJ parameters is required.
  2636. * X and Y can be omitted to do a complete circle.
  2637. * The given XY is not error-checked. The arc ends
  2638. * based on the angle of the destination.
  2639. * Mixing I or J with R will throw an error.
  2640. *
  2641. * - R specifies the radius. X or Y is required.
  2642. * Omitting both X and Y will throw an error.
  2643. * X or Y must differ from the current XY.
  2644. * Mixing R with I or J will throw an error.
  2645. *
  2646. * Examples:
  2647. *
  2648. * G2 I10 ; CW circle centered at X+10
  2649. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2650. */
  2651. #if ENABLED(ARC_SUPPORT)
  2652. inline void gcode_G2_G3(bool clockwise) {
  2653. if (IsRunning()) {
  2654. #if ENABLED(SF_ARC_FIX)
  2655. const bool relative_mode_backup = relative_mode;
  2656. relative_mode = true;
  2657. #endif
  2658. gcode_get_destination();
  2659. #if ENABLED(SF_ARC_FIX)
  2660. relative_mode = relative_mode_backup;
  2661. #endif
  2662. float arc_offset[2] = { 0.0, 0.0 };
  2663. if (code_seen('R')) {
  2664. const float r = code_value_axis_units(X_AXIS),
  2665. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2666. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2667. if (r && (x2 != x1 || y2 != y1)) {
  2668. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2669. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2670. d = HYPOT(dx, dy), // Linear distance between the points
  2671. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2672. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2673. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2674. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2675. arc_offset[X_AXIS] = cx - x1;
  2676. arc_offset[Y_AXIS] = cy - y1;
  2677. }
  2678. }
  2679. else {
  2680. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2681. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2682. }
  2683. if (arc_offset[0] || arc_offset[1]) {
  2684. // Send an arc to the planner
  2685. plan_arc(destination, arc_offset, clockwise);
  2686. refresh_cmd_timeout();
  2687. }
  2688. else {
  2689. // Bad arguments
  2690. SERIAL_ERROR_START;
  2691. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2692. }
  2693. }
  2694. }
  2695. #endif
  2696. /**
  2697. * G4: Dwell S<seconds> or P<milliseconds>
  2698. */
  2699. inline void gcode_G4() {
  2700. millis_t dwell_ms = 0;
  2701. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2702. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2703. stepper.synchronize();
  2704. refresh_cmd_timeout();
  2705. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2706. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2707. while (PENDING(millis(), dwell_ms)) idle();
  2708. }
  2709. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2710. /**
  2711. * Parameters interpreted according to:
  2712. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2713. * However I, J omission is not supported at this point; all
  2714. * parameters can be omitted and default to zero.
  2715. */
  2716. /**
  2717. * G5: Cubic B-spline
  2718. */
  2719. inline void gcode_G5() {
  2720. if (IsRunning()) {
  2721. gcode_get_destination();
  2722. const float offset[] = {
  2723. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2724. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2725. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2726. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2727. };
  2728. plan_cubic_move(offset);
  2729. }
  2730. }
  2731. #endif // BEZIER_CURVE_SUPPORT
  2732. #if ENABLED(FWRETRACT)
  2733. /**
  2734. * G10 - Retract filament according to settings of M207
  2735. * G11 - Recover filament according to settings of M208
  2736. */
  2737. inline void gcode_G10_G11(bool doRetract=false) {
  2738. #if EXTRUDERS > 1
  2739. if (doRetract) {
  2740. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2741. }
  2742. #endif
  2743. retract(doRetract
  2744. #if EXTRUDERS > 1
  2745. , retracted_swap[active_extruder]
  2746. #endif
  2747. );
  2748. }
  2749. #endif //FWRETRACT
  2750. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2751. /**
  2752. * G12: Clean the nozzle
  2753. */
  2754. inline void gcode_G12() {
  2755. // Don't allow nozzle cleaning without homing first
  2756. if (axis_unhomed_error(true, true, true)) return;
  2757. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2758. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2759. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2760. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2761. Nozzle::clean(pattern, strokes, radius, objects);
  2762. }
  2763. #endif
  2764. #if ENABLED(INCH_MODE_SUPPORT)
  2765. /**
  2766. * G20: Set input mode to inches
  2767. */
  2768. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2769. /**
  2770. * G21: Set input mode to millimeters
  2771. */
  2772. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2773. #endif
  2774. #if ENABLED(NOZZLE_PARK_FEATURE)
  2775. /**
  2776. * G27: Park the nozzle
  2777. */
  2778. inline void gcode_G27() {
  2779. // Don't allow nozzle parking without homing first
  2780. if (axis_unhomed_error(true, true, true)) return;
  2781. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2782. }
  2783. #endif // NOZZLE_PARK_FEATURE
  2784. #if ENABLED(QUICK_HOME)
  2785. static void quick_home_xy() {
  2786. // Pretend the current position is 0,0
  2787. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2788. sync_plan_position();
  2789. const int x_axis_home_dir =
  2790. #if ENABLED(DUAL_X_CARRIAGE)
  2791. x_home_dir(active_extruder)
  2792. #else
  2793. home_dir(X_AXIS)
  2794. #endif
  2795. ;
  2796. const float mlx = max_length(X_AXIS),
  2797. mly = max_length(Y_AXIS),
  2798. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2799. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2800. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2801. endstops.hit_on_purpose(); // clear endstop hit flags
  2802. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2803. }
  2804. #endif // QUICK_HOME
  2805. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2806. void log_machine_info() {
  2807. SERIAL_ECHOPGM("Machine Type: ");
  2808. #if ENABLED(DELTA)
  2809. SERIAL_ECHOLNPGM("Delta");
  2810. #elif IS_SCARA
  2811. SERIAL_ECHOLNPGM("SCARA");
  2812. #elif IS_CORE
  2813. SERIAL_ECHOLNPGM("Core");
  2814. #else
  2815. SERIAL_ECHOLNPGM("Cartesian");
  2816. #endif
  2817. SERIAL_ECHOPGM("Probe: ");
  2818. #if ENABLED(PROBE_MANUALLY)
  2819. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2820. #elif ENABLED(FIX_MOUNTED_PROBE)
  2821. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2822. #elif ENABLED(BLTOUCH)
  2823. SERIAL_ECHOLNPGM("BLTOUCH");
  2824. #elif HAS_Z_SERVO_ENDSTOP
  2825. SERIAL_ECHOLNPGM("SERVO PROBE");
  2826. #elif ENABLED(Z_PROBE_SLED)
  2827. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2828. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2829. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2830. #else
  2831. SERIAL_ECHOLNPGM("NONE");
  2832. #endif
  2833. #if HAS_BED_PROBE
  2834. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2835. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2836. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2837. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2838. SERIAL_ECHOPGM(" (Right");
  2839. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2840. SERIAL_ECHOPGM(" (Left");
  2841. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2842. SERIAL_ECHOPGM(" (Middle");
  2843. #else
  2844. SERIAL_ECHOPGM(" (Aligned With");
  2845. #endif
  2846. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2847. SERIAL_ECHOPGM("-Back");
  2848. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2849. SERIAL_ECHOPGM("-Front");
  2850. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2851. SERIAL_ECHOPGM("-Center");
  2852. #endif
  2853. if (zprobe_zoffset < 0)
  2854. SERIAL_ECHOPGM(" & Below");
  2855. else if (zprobe_zoffset > 0)
  2856. SERIAL_ECHOPGM(" & Above");
  2857. else
  2858. SERIAL_ECHOPGM(" & Same Z as");
  2859. SERIAL_ECHOLNPGM(" Nozzle)");
  2860. #endif
  2861. #if HAS_ABL
  2862. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2863. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2864. SERIAL_ECHOPGM("LINEAR");
  2865. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2866. SERIAL_ECHOPGM("BILINEAR");
  2867. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2868. SERIAL_ECHOPGM("3POINT");
  2869. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2870. SERIAL_ECHOPGM("UBL");
  2871. #endif
  2872. if (planner.abl_enabled) {
  2873. SERIAL_ECHOLNPGM(" (enabled)");
  2874. #if ABL_PLANAR
  2875. float diff[XYZ] = {
  2876. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2877. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2878. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2879. };
  2880. SERIAL_ECHOPGM("ABL Adjustment X");
  2881. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2882. SERIAL_ECHO(diff[X_AXIS]);
  2883. SERIAL_ECHOPGM(" Y");
  2884. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2885. SERIAL_ECHO(diff[Y_AXIS]);
  2886. SERIAL_ECHOPGM(" Z");
  2887. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2888. SERIAL_ECHO(diff[Z_AXIS]);
  2889. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2890. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  2891. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2892. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2893. #endif
  2894. }
  2895. else
  2896. SERIAL_ECHOLNPGM(" (disabled)");
  2897. SERIAL_EOL;
  2898. #elif ENABLED(MESH_BED_LEVELING)
  2899. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2900. if (mbl.active()) {
  2901. float lz = current_position[Z_AXIS];
  2902. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  2903. SERIAL_ECHOLNPGM(" (enabled)");
  2904. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  2905. }
  2906. else
  2907. SERIAL_ECHOPGM(" (disabled)");
  2908. SERIAL_EOL;
  2909. #endif // MESH_BED_LEVELING
  2910. }
  2911. #endif // DEBUG_LEVELING_FEATURE
  2912. #if ENABLED(DELTA)
  2913. /**
  2914. * A delta can only safely home all axes at the same time
  2915. * This is like quick_home_xy() but for 3 towers.
  2916. */
  2917. inline void home_delta() {
  2918. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2919. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2920. #endif
  2921. // Init the current position of all carriages to 0,0,0
  2922. ZERO(current_position);
  2923. sync_plan_position();
  2924. // Move all carriages together linearly until an endstop is hit.
  2925. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2926. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2927. line_to_current_position();
  2928. stepper.synchronize();
  2929. endstops.hit_on_purpose(); // clear endstop hit flags
  2930. // At least one carriage has reached the top.
  2931. // Now re-home each carriage separately.
  2932. HOMEAXIS(A);
  2933. HOMEAXIS(B);
  2934. HOMEAXIS(C);
  2935. // Set all carriages to their home positions
  2936. // Do this here all at once for Delta, because
  2937. // XYZ isn't ABC. Applying this per-tower would
  2938. // give the impression that they are the same.
  2939. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2940. SYNC_PLAN_POSITION_KINEMATIC();
  2941. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2942. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2943. #endif
  2944. }
  2945. #endif // DELTA
  2946. #if ENABLED(Z_SAFE_HOMING)
  2947. inline void home_z_safely() {
  2948. // Disallow Z homing if X or Y are unknown
  2949. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2950. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2951. SERIAL_ECHO_START;
  2952. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2953. return;
  2954. }
  2955. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2956. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2957. #endif
  2958. SYNC_PLAN_POSITION_KINEMATIC();
  2959. /**
  2960. * Move the Z probe (or just the nozzle) to the safe homing point
  2961. */
  2962. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2963. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2964. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2965. if (position_is_reachable(
  2966. destination
  2967. #if HOMING_Z_WITH_PROBE
  2968. , true
  2969. #endif
  2970. )
  2971. ) {
  2972. #if HOMING_Z_WITH_PROBE
  2973. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2974. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2975. #endif
  2976. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2977. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2978. #endif
  2979. // This causes the carriage on Dual X to unpark
  2980. #if ENABLED(DUAL_X_CARRIAGE)
  2981. active_extruder_parked = false;
  2982. #endif
  2983. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2984. HOMEAXIS(Z);
  2985. }
  2986. else {
  2987. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2988. SERIAL_ECHO_START;
  2989. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2990. }
  2991. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2992. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2993. #endif
  2994. }
  2995. #endif // Z_SAFE_HOMING
  2996. #if ENABLED(PROBE_MANUALLY)
  2997. bool g29_in_progress = false;
  2998. #else
  2999. constexpr bool g29_in_progress = false;
  3000. #endif
  3001. /**
  3002. * G28: Home all axes according to settings
  3003. *
  3004. * Parameters
  3005. *
  3006. * None Home to all axes with no parameters.
  3007. * With QUICK_HOME enabled XY will home together, then Z.
  3008. *
  3009. * Cartesian parameters
  3010. *
  3011. * X Home to the X endstop
  3012. * Y Home to the Y endstop
  3013. * Z Home to the Z endstop
  3014. *
  3015. */
  3016. inline void gcode_G28() {
  3017. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3018. if (DEBUGGING(LEVELING)) {
  3019. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3020. log_machine_info();
  3021. }
  3022. #endif
  3023. // Wait for planner moves to finish!
  3024. stepper.synchronize();
  3025. // Cancel the active G29 session
  3026. #if ENABLED(PROBE_MANUALLY)
  3027. g29_in_progress = false;
  3028. #endif
  3029. // Disable the leveling matrix before homing
  3030. #if PLANNER_LEVELING
  3031. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3032. const bool bed_leveling_state_at_entry = ubl.state.active;
  3033. #endif
  3034. set_bed_leveling_enabled(false);
  3035. #endif
  3036. // Always home with tool 0 active
  3037. #if HOTENDS > 1
  3038. const uint8_t old_tool_index = active_extruder;
  3039. tool_change(0, 0, true);
  3040. #endif
  3041. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3042. extruder_duplication_enabled = false;
  3043. #endif
  3044. setup_for_endstop_or_probe_move();
  3045. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3046. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3047. #endif
  3048. endstops.enable(true); // Enable endstops for next homing move
  3049. #if ENABLED(DELTA)
  3050. home_delta();
  3051. #else // NOT DELTA
  3052. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3053. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3054. set_destination_to_current();
  3055. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3056. if (home_all_axis || homeZ) {
  3057. HOMEAXIS(Z);
  3058. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3059. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3060. #endif
  3061. }
  3062. #else
  3063. if (home_all_axis || homeX || homeY) {
  3064. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3065. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3066. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3067. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3068. if (DEBUGGING(LEVELING))
  3069. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3070. #endif
  3071. do_blocking_move_to_z(destination[Z_AXIS]);
  3072. }
  3073. }
  3074. #endif
  3075. #if ENABLED(QUICK_HOME)
  3076. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3077. #endif
  3078. #if ENABLED(HOME_Y_BEFORE_X)
  3079. // Home Y
  3080. if (home_all_axis || homeY) {
  3081. HOMEAXIS(Y);
  3082. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3083. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3084. #endif
  3085. }
  3086. #endif
  3087. // Home X
  3088. if (home_all_axis || homeX) {
  3089. #if ENABLED(DUAL_X_CARRIAGE)
  3090. // Always home the 2nd (right) extruder first
  3091. active_extruder = 1;
  3092. HOMEAXIS(X);
  3093. // Remember this extruder's position for later tool change
  3094. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3095. // Home the 1st (left) extruder
  3096. active_extruder = 0;
  3097. HOMEAXIS(X);
  3098. // Consider the active extruder to be parked
  3099. COPY(raised_parked_position, current_position);
  3100. delayed_move_time = 0;
  3101. active_extruder_parked = true;
  3102. #else
  3103. HOMEAXIS(X);
  3104. #endif
  3105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3106. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3107. #endif
  3108. }
  3109. #if DISABLED(HOME_Y_BEFORE_X)
  3110. // Home Y
  3111. if (home_all_axis || homeY) {
  3112. HOMEAXIS(Y);
  3113. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3114. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3115. #endif
  3116. }
  3117. #endif
  3118. // Home Z last if homing towards the bed
  3119. #if Z_HOME_DIR < 0
  3120. if (home_all_axis || homeZ) {
  3121. #if ENABLED(Z_SAFE_HOMING)
  3122. home_z_safely();
  3123. #else
  3124. HOMEAXIS(Z);
  3125. #endif
  3126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3127. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3128. #endif
  3129. } // home_all_axis || homeZ
  3130. #endif // Z_HOME_DIR < 0
  3131. SYNC_PLAN_POSITION_KINEMATIC();
  3132. #endif // !DELTA (gcode_G28)
  3133. endstops.not_homing();
  3134. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3135. // move to a height where we can use the full xy-area
  3136. do_blocking_move_to_z(delta_clip_start_height);
  3137. #endif
  3138. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3139. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3140. #endif
  3141. // Enable mesh leveling again
  3142. #if ENABLED(MESH_BED_LEVELING)
  3143. if (mbl.reactivate()) {
  3144. set_bed_leveling_enabled(true);
  3145. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3146. #if ENABLED(MESH_G28_REST_ORIGIN)
  3147. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3148. set_destination_to_current();
  3149. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3150. stepper.synchronize();
  3151. #endif
  3152. }
  3153. }
  3154. #endif
  3155. clean_up_after_endstop_or_probe_move();
  3156. // Restore the active tool after homing
  3157. #if HOTENDS > 1
  3158. tool_change(old_tool_index, 0, true);
  3159. #endif
  3160. report_current_position();
  3161. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3162. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3163. #endif
  3164. }
  3165. #if HAS_PROBING_PROCEDURE
  3166. void out_of_range_error(const char* p_edge) {
  3167. SERIAL_PROTOCOLPGM("?Probe ");
  3168. serialprintPGM(p_edge);
  3169. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3170. }
  3171. #endif
  3172. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3173. inline void _manual_goto_xy(const float &x, const float &y) {
  3174. const float old_feedrate_mm_s = feedrate_mm_s;
  3175. #if MANUAL_PROBE_HEIGHT > 0
  3176. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3177. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3178. line_to_current_position();
  3179. #endif
  3180. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3181. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3182. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3183. line_to_current_position();
  3184. #if MANUAL_PROBE_HEIGHT > 0
  3185. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3186. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3187. line_to_current_position();
  3188. #endif
  3189. feedrate_mm_s = old_feedrate_mm_s;
  3190. stepper.synchronize();
  3191. }
  3192. #endif
  3193. #if ENABLED(MESH_BED_LEVELING)
  3194. // Save 130 bytes with non-duplication of PSTR
  3195. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3196. void mbl_mesh_report() {
  3197. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3198. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3199. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3200. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3201. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3202. );
  3203. }
  3204. /**
  3205. * G29: Mesh-based Z probe, probes a grid and produces a
  3206. * mesh to compensate for variable bed height
  3207. *
  3208. * Parameters With MESH_BED_LEVELING:
  3209. *
  3210. * S0 Produce a mesh report
  3211. * S1 Start probing mesh points
  3212. * S2 Probe the next mesh point
  3213. * S3 Xn Yn Zn.nn Manually modify a single point
  3214. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3215. * S5 Reset and disable mesh
  3216. *
  3217. * The S0 report the points as below
  3218. *
  3219. * +----> X-axis 1-n
  3220. * |
  3221. * |
  3222. * v Y-axis 1-n
  3223. *
  3224. */
  3225. inline void gcode_G29() {
  3226. static int mbl_probe_index = -1;
  3227. #if HAS_SOFTWARE_ENDSTOPS
  3228. static bool enable_soft_endstops;
  3229. #endif
  3230. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3231. if (!WITHIN(state, 0, 5)) {
  3232. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3233. return;
  3234. }
  3235. int8_t px, py;
  3236. switch (state) {
  3237. case MeshReport:
  3238. if (mbl.has_mesh()) {
  3239. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3240. mbl_mesh_report();
  3241. }
  3242. else
  3243. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3244. break;
  3245. case MeshStart:
  3246. mbl.reset();
  3247. mbl_probe_index = 0;
  3248. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3249. break;
  3250. case MeshNext:
  3251. if (mbl_probe_index < 0) {
  3252. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3253. return;
  3254. }
  3255. // For each G29 S2...
  3256. if (mbl_probe_index == 0) {
  3257. #if HAS_SOFTWARE_ENDSTOPS
  3258. // For the initial G29 S2 save software endstop state
  3259. enable_soft_endstops = soft_endstops_enabled;
  3260. #endif
  3261. }
  3262. else {
  3263. // For G29 S2 after adjusting Z.
  3264. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3265. #if HAS_SOFTWARE_ENDSTOPS
  3266. soft_endstops_enabled = enable_soft_endstops;
  3267. #endif
  3268. }
  3269. // If there's another point to sample, move there with optional lift.
  3270. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) {
  3271. mbl.zigzag(mbl_probe_index, px, py);
  3272. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3273. #if HAS_SOFTWARE_ENDSTOPS
  3274. // Disable software endstops to allow manual adjustment
  3275. // If G29 is not completed, they will not be re-enabled
  3276. soft_endstops_enabled = false;
  3277. #endif
  3278. mbl_probe_index++;
  3279. }
  3280. else {
  3281. // One last "return to the bed" (as originally coded) at completion
  3282. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3283. line_to_current_position();
  3284. stepper.synchronize();
  3285. // After recording the last point, activate the mbl and home
  3286. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3287. mbl_probe_index = -1;
  3288. mbl.set_has_mesh(true);
  3289. mbl.set_reactivate(true);
  3290. enqueue_and_echo_commands_P(PSTR("G28"));
  3291. BUZZ(100, 659);
  3292. BUZZ(100, 698);
  3293. }
  3294. break;
  3295. case MeshSet:
  3296. if (code_seen('X')) {
  3297. px = code_value_int() - 1;
  3298. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3299. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3300. return;
  3301. }
  3302. }
  3303. else {
  3304. SERIAL_CHAR('X'); say_not_entered();
  3305. return;
  3306. }
  3307. if (code_seen('Y')) {
  3308. py = code_value_int() - 1;
  3309. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3310. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3311. return;
  3312. }
  3313. }
  3314. else {
  3315. SERIAL_CHAR('Y'); say_not_entered();
  3316. return;
  3317. }
  3318. if (code_seen('Z')) {
  3319. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3320. }
  3321. else {
  3322. SERIAL_CHAR('Z'); say_not_entered();
  3323. return;
  3324. }
  3325. break;
  3326. case MeshSetZOffset:
  3327. if (code_seen('Z')) {
  3328. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3329. }
  3330. else {
  3331. SERIAL_CHAR('Z'); say_not_entered();
  3332. return;
  3333. }
  3334. break;
  3335. case MeshReset:
  3336. reset_bed_level();
  3337. break;
  3338. } // switch(state)
  3339. report_current_position();
  3340. }
  3341. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3342. #if ABL_GRID
  3343. #if ENABLED(PROBE_Y_FIRST)
  3344. #define PR_OUTER_VAR xCount
  3345. #define PR_OUTER_END abl_grid_points_x
  3346. #define PR_INNER_VAR yCount
  3347. #define PR_INNER_END abl_grid_points_y
  3348. #else
  3349. #define PR_OUTER_VAR yCount
  3350. #define PR_OUTER_END abl_grid_points_y
  3351. #define PR_INNER_VAR xCount
  3352. #define PR_INNER_END abl_grid_points_x
  3353. #endif
  3354. #endif
  3355. /**
  3356. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3357. * Will fail if the printer has not been homed with G28.
  3358. *
  3359. * Enhanced G29 Auto Bed Leveling Probe Routine
  3360. *
  3361. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3362. * or alter the bed level data. Useful to check the topology
  3363. * after a first run of G29.
  3364. *
  3365. * J Jettison current bed leveling data
  3366. *
  3367. * V Set the verbose level (0-4). Example: "G29 V3"
  3368. *
  3369. * Parameters With LINEAR leveling only:
  3370. *
  3371. * P Set the size of the grid that will be probed (P x P points).
  3372. * Example: "G29 P4"
  3373. *
  3374. * X Set the X size of the grid that will be probed (X x Y points).
  3375. * Example: "G29 X7 Y5"
  3376. *
  3377. * Y Set the Y size of the grid that will be probed (X x Y points).
  3378. *
  3379. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3380. * This is useful for manual bed leveling and finding flaws in the bed (to
  3381. * assist with part placement).
  3382. * Not supported by non-linear delta printer bed leveling.
  3383. *
  3384. * Parameters With LINEAR and BILINEAR leveling only:
  3385. *
  3386. * S Set the XY travel speed between probe points (in units/min)
  3387. *
  3388. * F Set the Front limit of the probing grid
  3389. * B Set the Back limit of the probing grid
  3390. * L Set the Left limit of the probing grid
  3391. * R Set the Right limit of the probing grid
  3392. *
  3393. * Parameters with BILINEAR leveling only:
  3394. *
  3395. * Z Supply an additional Z probe offset
  3396. *
  3397. * Extra parameters with PROBE_MANUALLY:
  3398. *
  3399. * To do manual probing simply repeat G29 until the procedure is complete.
  3400. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3401. *
  3402. * Q Query leveling and G29 state
  3403. *
  3404. * A Abort current leveling procedure
  3405. *
  3406. * W Write a mesh point. (Ignored during leveling.)
  3407. * X Required X for mesh point
  3408. * Y Required Y for mesh point
  3409. * Z Required Z for mesh point
  3410. *
  3411. * Without PROBE_MANUALLY:
  3412. *
  3413. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3414. * Include "E" to engage/disengage the Z probe for each sample.
  3415. * There's no extra effect if you have a fixed Z probe.
  3416. *
  3417. */
  3418. inline void gcode_G29() {
  3419. // G29 Q is also available if debugging
  3420. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3421. const bool query = code_seen('Q');
  3422. const uint8_t old_debug_flags = marlin_debug_flags;
  3423. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3424. if (DEBUGGING(LEVELING)) {
  3425. DEBUG_POS(">>> gcode_G29", current_position);
  3426. log_machine_info();
  3427. }
  3428. marlin_debug_flags = old_debug_flags;
  3429. #if DISABLED(PROBE_MANUALLY)
  3430. if (query) return;
  3431. #endif
  3432. #endif
  3433. // Don't allow auto-leveling without homing first
  3434. if (axis_unhomed_error(true, true, true)) return;
  3435. // Define local vars 'static' for manual probing, 'auto' otherwise
  3436. #if ENABLED(PROBE_MANUALLY)
  3437. #define ABL_VAR static
  3438. #else
  3439. #define ABL_VAR
  3440. #endif
  3441. ABL_VAR int verbose_level, abl_probe_index;
  3442. ABL_VAR float xProbe, yProbe, measured_z;
  3443. ABL_VAR bool dryrun, abl_should_enable;
  3444. #if HAS_SOFTWARE_ENDSTOPS
  3445. ABL_VAR bool enable_soft_endstops = true;
  3446. #endif
  3447. #if ABL_GRID
  3448. ABL_VAR uint8_t PR_OUTER_VAR;
  3449. ABL_VAR int8_t PR_INNER_VAR;
  3450. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3451. ABL_VAR float xGridSpacing, yGridSpacing;
  3452. #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)
  3453. #if ABL_PLANAR
  3454. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3455. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3456. ABL_VAR int abl2;
  3457. ABL_VAR bool do_topography_map;
  3458. #else // 3-point
  3459. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3460. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3461. int constexpr abl2 = ABL_GRID_MAX;
  3462. #endif
  3463. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3464. ABL_VAR float zoffset;
  3465. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3466. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3467. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3468. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3469. mean;
  3470. #endif
  3471. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3472. // Probe at 3 arbitrary points
  3473. ABL_VAR vector_3 points[3] = {
  3474. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3475. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3476. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3477. };
  3478. #endif // AUTO_BED_LEVELING_3POINT
  3479. /**
  3480. * On the initial G29 fetch command parameters.
  3481. */
  3482. if (!g29_in_progress) {
  3483. abl_probe_index = 0;
  3484. abl_should_enable = planner.abl_enabled;
  3485. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3486. if (code_seen('W')) {
  3487. if (!bilinear_grid_spacing[X_AXIS]) {
  3488. SERIAL_ERROR_START;
  3489. SERIAL_ERRORLNPGM("No bilinear grid");
  3490. return;
  3491. }
  3492. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3493. if (!WITHIN(z, -10, 10)) {
  3494. SERIAL_ERROR_START;
  3495. SERIAL_ERRORLNPGM("Bad Z value");
  3496. return;
  3497. }
  3498. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3499. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3500. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3501. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3502. if (x < 99998 && y < 99998) {
  3503. // Get nearest i / j from x / y
  3504. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3505. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3506. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3507. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3508. }
  3509. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3510. set_bed_leveling_enabled(false);
  3511. bed_level_grid[i][j] = z;
  3512. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3513. bed_level_virt_interpolate();
  3514. #endif
  3515. set_bed_leveling_enabled(abl_should_enable);
  3516. }
  3517. return;
  3518. } // code_seen('W')
  3519. #endif
  3520. #if PLANNER_LEVELING
  3521. // Jettison bed leveling data
  3522. if (code_seen('J')) {
  3523. reset_bed_level();
  3524. return;
  3525. }
  3526. #endif
  3527. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3528. if (!WITHIN(verbose_level, 0, 4)) {
  3529. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3530. return;
  3531. }
  3532. dryrun = code_seen('D') ? code_value_bool() : false;
  3533. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3534. do_topography_map = verbose_level > 2 || code_seen('T');
  3535. // X and Y specify points in each direction, overriding the default
  3536. // These values may be saved with the completed mesh
  3537. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3538. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3539. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3540. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3541. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3542. return;
  3543. }
  3544. abl2 = abl_grid_points_x * abl_grid_points_y;
  3545. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3546. zoffset = code_seen('Z') ? code_value_axis_units(Z_AXIS) : 0;
  3547. #endif
  3548. #if ABL_GRID
  3549. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3550. left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3551. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3552. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3553. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3554. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3555. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3556. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3557. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3558. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3559. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3560. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3561. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3562. if (left_out || right_out || front_out || back_out) {
  3563. if (left_out) {
  3564. out_of_range_error(PSTR("(L)eft"));
  3565. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3566. }
  3567. if (right_out) {
  3568. out_of_range_error(PSTR("(R)ight"));
  3569. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3570. }
  3571. if (front_out) {
  3572. out_of_range_error(PSTR("(F)ront"));
  3573. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3574. }
  3575. if (back_out) {
  3576. out_of_range_error(PSTR("(B)ack"));
  3577. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3578. }
  3579. return;
  3580. }
  3581. // probe at the points of a lattice grid
  3582. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3583. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3584. #endif // ABL_GRID
  3585. if (verbose_level > 0) {
  3586. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3587. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3588. }
  3589. stepper.synchronize();
  3590. // Disable auto bed leveling during G29
  3591. planner.abl_enabled = false;
  3592. if (!dryrun) {
  3593. // Re-orient the current position without leveling
  3594. // based on where the steppers are positioned.
  3595. set_current_from_steppers_for_axis(ALL_AXES);
  3596. // Sync the planner to where the steppers stopped
  3597. SYNC_PLAN_POSITION_KINEMATIC();
  3598. }
  3599. setup_for_endstop_or_probe_move();
  3600. //xProbe = yProbe = measured_z = 0;
  3601. #if HAS_BED_PROBE
  3602. // Deploy the probe. Probe will raise if needed.
  3603. if (DEPLOY_PROBE()) {
  3604. planner.abl_enabled = abl_should_enable;
  3605. return;
  3606. }
  3607. #endif
  3608. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3609. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3610. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3611. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3612. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3613. ) {
  3614. if (dryrun) {
  3615. // Before reset bed level, re-enable to correct the position
  3616. planner.abl_enabled = abl_should_enable;
  3617. }
  3618. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3619. reset_bed_level();
  3620. // Initialize a grid with the given dimensions
  3621. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3622. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3623. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3624. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3625. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3626. bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS);
  3627. bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS);
  3628. #endif
  3629. // Can't re-enable (on error) until the new grid is written
  3630. abl_should_enable = false;
  3631. }
  3632. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3633. mean = 0.0;
  3634. #endif // AUTO_BED_LEVELING_LINEAR
  3635. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3636. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3637. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3638. #endif
  3639. // Probe at 3 arbitrary points
  3640. points[0].z = points[1].z = points[2].z = 0;
  3641. #endif // AUTO_BED_LEVELING_3POINT
  3642. } // !g29_in_progress
  3643. #if ENABLED(PROBE_MANUALLY)
  3644. // Abort current G29 procedure, go back to ABLStart
  3645. if (code_seen('A') && g29_in_progress) {
  3646. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3647. #if HAS_SOFTWARE_ENDSTOPS
  3648. soft_endstops_enabled = enable_soft_endstops;
  3649. #endif
  3650. planner.abl_enabled = abl_should_enable;
  3651. g29_in_progress = false;
  3652. }
  3653. // Query G29 status
  3654. if (code_seen('Q')) {
  3655. if (!g29_in_progress)
  3656. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3657. else {
  3658. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3659. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3660. }
  3661. }
  3662. if (code_seen('A') || code_seen('Q')) return;
  3663. // Fall through to probe the first point
  3664. g29_in_progress = true;
  3665. if (abl_probe_index == 0) {
  3666. // For the initial G29 S2 save software endstop state
  3667. #if HAS_SOFTWARE_ENDSTOPS
  3668. enable_soft_endstops = soft_endstops_enabled;
  3669. #endif
  3670. }
  3671. else {
  3672. // For G29 after adjusting Z.
  3673. // Save the previous Z before going to the next point
  3674. measured_z = current_position[Z_AXIS];
  3675. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3676. mean += measured_z;
  3677. eqnBVector[abl_probe_index] = measured_z;
  3678. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3679. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3680. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3681. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3682. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3683. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3684. points[i].z = measured_z;
  3685. #endif
  3686. }
  3687. //
  3688. // If there's another point to sample, move there with optional lift.
  3689. //
  3690. #if ABL_GRID
  3691. // Find a next point to probe
  3692. // On the first G29 this will be the first probe point
  3693. while (abl_probe_index < abl2) {
  3694. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3695. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3696. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3697. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3698. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3699. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3700. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3701. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3702. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3703. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3704. indexIntoAB[xCount][yCount] = abl_probe_index;
  3705. #endif
  3706. float pos[XYZ] = { xProbe, yProbe, 0 };
  3707. if (position_is_reachable(pos)) break;
  3708. ++abl_probe_index;
  3709. }
  3710. // Is there a next point to move to?
  3711. if (abl_probe_index < abl2) {
  3712. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3713. ++abl_probe_index;
  3714. #if HAS_SOFTWARE_ENDSTOPS
  3715. // Disable software endstops to allow manual adjustment
  3716. // If G29 is not completed, they will not be re-enabled
  3717. soft_endstops_enabled = false;
  3718. #endif
  3719. return;
  3720. }
  3721. else {
  3722. // Then leveling is done!
  3723. // G29 finishing code goes here
  3724. // After recording the last point, activate abl
  3725. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3726. g29_in_progress = false;
  3727. // Re-enable software endstops, if needed
  3728. #if HAS_SOFTWARE_ENDSTOPS
  3729. soft_endstops_enabled = enable_soft_endstops;
  3730. #endif
  3731. }
  3732. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3733. // Probe at 3 arbitrary points
  3734. if (abl_probe_index < 3) {
  3735. xProbe = LOGICAL_X_POSITION(points[i].x);
  3736. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3737. ++abl_probe_index;
  3738. #if HAS_SOFTWARE_ENDSTOPS
  3739. // Disable software endstops to allow manual adjustment
  3740. // If G29 is not completed, they will not be re-enabled
  3741. soft_endstops_enabled = false;
  3742. #endif
  3743. return;
  3744. }
  3745. else {
  3746. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3747. g29_in_progress = false;
  3748. // Re-enable software endstops, if needed
  3749. #if HAS_SOFTWARE_ENDSTOPS
  3750. soft_endstops_enabled = enable_soft_endstops;
  3751. #endif
  3752. if (!dryrun) {
  3753. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3754. if (planeNormal.z < 0) {
  3755. planeNormal.x *= -1;
  3756. planeNormal.y *= -1;
  3757. planeNormal.z *= -1;
  3758. }
  3759. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3760. // Can't re-enable (on error) until the new grid is written
  3761. abl_should_enable = false;
  3762. }
  3763. }
  3764. #endif // AUTO_BED_LEVELING_3POINT
  3765. #else // !PROBE_MANUALLY
  3766. bool stow_probe_after_each = code_seen('E');
  3767. #if ABL_GRID
  3768. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3769. // Outer loop is Y with PROBE_Y_FIRST disabled
  3770. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3771. int8_t inStart, inStop, inInc;
  3772. if (zig) { // away from origin
  3773. inStart = 0;
  3774. inStop = PR_INNER_END;
  3775. inInc = 1;
  3776. }
  3777. else { // towards origin
  3778. inStart = PR_INNER_END - 1;
  3779. inStop = -1;
  3780. inInc = -1;
  3781. }
  3782. zig = !zig; // zag
  3783. // Inner loop is Y with PROBE_Y_FIRST enabled
  3784. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3785. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3786. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3787. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3788. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3789. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3790. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3791. #endif
  3792. #if IS_KINEMATIC
  3793. // Avoid probing outside the round or hexagonal area
  3794. float pos[XYZ] = { xProbe, yProbe, 0 };
  3795. if (!position_is_reachable(pos, true)) continue;
  3796. #endif
  3797. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3798. if (measured_z == NAN) {
  3799. planner.abl_enabled = abl_should_enable;
  3800. return;
  3801. }
  3802. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3803. mean += measured_z;
  3804. eqnBVector[abl_probe_index] = measured_z;
  3805. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3806. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3807. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3808. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3809. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3810. #endif
  3811. abl_should_enable = false;
  3812. idle();
  3813. } // inner
  3814. } // outer
  3815. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3816. // Probe at 3 arbitrary points
  3817. for (uint8_t i = 0; i < 3; ++i) {
  3818. // Retain the last probe position
  3819. xProbe = LOGICAL_X_POSITION(points[i].x);
  3820. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3821. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3822. }
  3823. if (measured_z == NAN) {
  3824. planner.abl_enabled = abl_should_enable;
  3825. return;
  3826. }
  3827. if (!dryrun) {
  3828. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3829. if (planeNormal.z < 0) {
  3830. planeNormal.x *= -1;
  3831. planeNormal.y *= -1;
  3832. planeNormal.z *= -1;
  3833. }
  3834. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3835. // Can't re-enable (on error) until the new grid is written
  3836. abl_should_enable = false;
  3837. }
  3838. #endif // AUTO_BED_LEVELING_3POINT
  3839. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3840. if (STOW_PROBE()) {
  3841. planner.abl_enabled = abl_should_enable;
  3842. return;
  3843. }
  3844. #endif // !PROBE_MANUALLY
  3845. //
  3846. // G29 Finishing Code
  3847. //
  3848. // Unless this is a dry run, auto bed leveling will
  3849. // definitely be enabled after this point
  3850. //
  3851. // Restore state after probing
  3852. clean_up_after_endstop_or_probe_move();
  3853. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3854. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3855. #endif
  3856. // Calculate leveling, print reports, correct the position
  3857. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3858. if (!dryrun) extrapolate_unprobed_bed_level();
  3859. print_bilinear_leveling_grid();
  3860. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3861. bed_level_virt_interpolate();
  3862. bed_level_virt_print();
  3863. #endif
  3864. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3865. // For LINEAR leveling calculate matrix, print reports, correct the position
  3866. /**
  3867. * solve the plane equation ax + by + d = z
  3868. * A is the matrix with rows [x y 1] for all the probed points
  3869. * B is the vector of the Z positions
  3870. * the normal vector to the plane is formed by the coefficients of the
  3871. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3872. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3873. */
  3874. float plane_equation_coefficients[3];
  3875. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3876. mean /= abl2;
  3877. if (verbose_level) {
  3878. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3879. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3880. SERIAL_PROTOCOLPGM(" b: ");
  3881. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3882. SERIAL_PROTOCOLPGM(" d: ");
  3883. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3884. SERIAL_EOL;
  3885. if (verbose_level > 2) {
  3886. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3887. SERIAL_PROTOCOL_F(mean, 8);
  3888. SERIAL_EOL;
  3889. }
  3890. }
  3891. // Create the matrix but don't correct the position yet
  3892. if (!dryrun) {
  3893. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3894. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3895. );
  3896. }
  3897. // Show the Topography map if enabled
  3898. if (do_topography_map) {
  3899. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3900. " +--- BACK --+\n"
  3901. " | |\n"
  3902. " L | (+) | R\n"
  3903. " E | | I\n"
  3904. " F | (-) N (+) | G\n"
  3905. " T | | H\n"
  3906. " | (-) | T\n"
  3907. " | |\n"
  3908. " O-- FRONT --+\n"
  3909. " (0,0)");
  3910. float min_diff = 999;
  3911. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3912. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3913. int ind = indexIntoAB[xx][yy];
  3914. float diff = eqnBVector[ind] - mean,
  3915. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3916. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3917. z_tmp = 0;
  3918. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3919. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3920. if (diff >= 0.0)
  3921. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3922. else
  3923. SERIAL_PROTOCOLCHAR(' ');
  3924. SERIAL_PROTOCOL_F(diff, 5);
  3925. } // xx
  3926. SERIAL_EOL;
  3927. } // yy
  3928. SERIAL_EOL;
  3929. if (verbose_level > 3) {
  3930. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3931. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3932. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3933. int ind = indexIntoAB[xx][yy];
  3934. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3935. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3936. z_tmp = 0;
  3937. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3938. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3939. if (diff >= 0.0)
  3940. SERIAL_PROTOCOLPGM(" +");
  3941. // Include + for column alignment
  3942. else
  3943. SERIAL_PROTOCOLCHAR(' ');
  3944. SERIAL_PROTOCOL_F(diff, 5);
  3945. } // xx
  3946. SERIAL_EOL;
  3947. } // yy
  3948. SERIAL_EOL;
  3949. }
  3950. } //do_topography_map
  3951. #endif // AUTO_BED_LEVELING_LINEAR
  3952. #if ABL_PLANAR
  3953. // For LINEAR and 3POINT leveling correct the current position
  3954. if (verbose_level > 0)
  3955. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3956. if (!dryrun) {
  3957. //
  3958. // Correct the current XYZ position based on the tilted plane.
  3959. //
  3960. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3961. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3962. #endif
  3963. float converted[XYZ];
  3964. COPY(converted, current_position);
  3965. planner.abl_enabled = true;
  3966. planner.unapply_leveling(converted); // use conversion machinery
  3967. planner.abl_enabled = false;
  3968. // Use the last measured distance to the bed, if possible
  3969. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3970. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3971. ) {
  3972. float simple_z = current_position[Z_AXIS] - measured_z;
  3973. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3974. if (DEBUGGING(LEVELING)) {
  3975. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3976. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  3977. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  3978. }
  3979. #endif
  3980. converted[Z_AXIS] = simple_z;
  3981. }
  3982. // The rotated XY and corrected Z are now current_position
  3983. COPY(current_position, converted);
  3984. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3985. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3986. #endif
  3987. }
  3988. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3989. if (!dryrun) {
  3990. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3991. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3992. #endif
  3993. // Unapply the offset because it is going to be immediately applied
  3994. // and cause compensation movement in Z
  3995. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3996. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3997. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3998. #endif
  3999. }
  4000. #endif // ABL_PLANAR
  4001. #ifdef Z_PROBE_END_SCRIPT
  4002. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4003. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4004. #endif
  4005. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4006. stepper.synchronize();
  4007. #endif
  4008. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4009. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4010. #endif
  4011. report_current_position();
  4012. KEEPALIVE_STATE(IN_HANDLER);
  4013. // Auto Bed Leveling is complete! Enable if possible.
  4014. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4015. if (planner.abl_enabled)
  4016. SYNC_PLAN_POSITION_KINEMATIC();
  4017. }
  4018. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  4019. #if HAS_BED_PROBE
  4020. /**
  4021. * G30: Do a single Z probe at the current XY
  4022. * Usage:
  4023. * G30 <X#> <Y#> <S#>
  4024. * X = Probe X position (default=current probe position)
  4025. * Y = Probe Y position (default=current probe position)
  4026. * S = Stows the probe if 1 (default=1)
  4027. */
  4028. inline void gcode_G30() {
  4029. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4030. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4031. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  4032. if (!position_is_reachable(pos, true)) return;
  4033. bool stow = code_seen('S') ? code_value_bool() : true;
  4034. // Disable leveling so the planner won't mess with us
  4035. #if PLANNER_LEVELING
  4036. set_bed_leveling_enabled(false);
  4037. #endif
  4038. setup_for_endstop_or_probe_move();
  4039. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  4040. SERIAL_PROTOCOLPGM("Bed X: ");
  4041. SERIAL_PROTOCOL(FIXFLOAT(X_probe_location));
  4042. SERIAL_PROTOCOLPGM(" Y: ");
  4043. SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location));
  4044. SERIAL_PROTOCOLPGM(" Z: ");
  4045. SERIAL_PROTOCOLLN(FIXFLOAT(measured_z));
  4046. clean_up_after_endstop_or_probe_move();
  4047. report_current_position();
  4048. }
  4049. #if ENABLED(Z_PROBE_SLED)
  4050. /**
  4051. * G31: Deploy the Z probe
  4052. */
  4053. inline void gcode_G31() { DEPLOY_PROBE(); }
  4054. /**
  4055. * G32: Stow the Z probe
  4056. */
  4057. inline void gcode_G32() { STOW_PROBE(); }
  4058. #endif // Z_PROBE_SLED
  4059. #endif // HAS_BED_PROBE
  4060. #if ENABLED(G38_PROBE_TARGET)
  4061. static bool G38_run_probe() {
  4062. bool G38_pass_fail = false;
  4063. // Get direction of move and retract
  4064. float retract_mm[XYZ];
  4065. LOOP_XYZ(i) {
  4066. float dist = destination[i] - current_position[i];
  4067. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4068. }
  4069. stepper.synchronize(); // wait until the machine is idle
  4070. // Move until destination reached or target hit
  4071. endstops.enable(true);
  4072. G38_move = true;
  4073. G38_endstop_hit = false;
  4074. prepare_move_to_destination();
  4075. stepper.synchronize();
  4076. G38_move = false;
  4077. endstops.hit_on_purpose();
  4078. set_current_from_steppers_for_axis(ALL_AXES);
  4079. SYNC_PLAN_POSITION_KINEMATIC();
  4080. if (G38_endstop_hit) {
  4081. G38_pass_fail = true;
  4082. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4083. // Move away by the retract distance
  4084. set_destination_to_current();
  4085. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4086. endstops.enable(false);
  4087. prepare_move_to_destination();
  4088. stepper.synchronize();
  4089. feedrate_mm_s /= 4;
  4090. // Bump the target more slowly
  4091. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4092. endstops.enable(true);
  4093. G38_move = true;
  4094. prepare_move_to_destination();
  4095. stepper.synchronize();
  4096. G38_move = false;
  4097. set_current_from_steppers_for_axis(ALL_AXES);
  4098. SYNC_PLAN_POSITION_KINEMATIC();
  4099. #endif
  4100. }
  4101. endstops.hit_on_purpose();
  4102. endstops.not_homing();
  4103. return G38_pass_fail;
  4104. }
  4105. /**
  4106. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4107. * G38.3 - probe toward workpiece, stop on contact
  4108. *
  4109. * Like G28 except uses Z min probe for all axes
  4110. */
  4111. inline void gcode_G38(bool is_38_2) {
  4112. // Get X Y Z E F
  4113. gcode_get_destination();
  4114. setup_for_endstop_or_probe_move();
  4115. // If any axis has enough movement, do the move
  4116. LOOP_XYZ(i)
  4117. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4118. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4119. // If G38.2 fails throw an error
  4120. if (!G38_run_probe() && is_38_2) {
  4121. SERIAL_ERROR_START;
  4122. SERIAL_ERRORLNPGM("Failed to reach target");
  4123. }
  4124. break;
  4125. }
  4126. clean_up_after_endstop_or_probe_move();
  4127. }
  4128. #endif // G38_PROBE_TARGET
  4129. /**
  4130. * G92: Set current position to given X Y Z E
  4131. */
  4132. inline void gcode_G92() {
  4133. bool didXYZ = false,
  4134. didE = code_seen('E');
  4135. if (!didE) stepper.synchronize();
  4136. LOOP_XYZE(i) {
  4137. if (code_seen(axis_codes[i])) {
  4138. #if IS_SCARA
  4139. current_position[i] = code_value_axis_units(i);
  4140. if (i != E_AXIS) didXYZ = true;
  4141. #else
  4142. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4143. float p = current_position[i];
  4144. #endif
  4145. float v = code_value_axis_units(i);
  4146. current_position[i] = v;
  4147. if (i != E_AXIS) {
  4148. didXYZ = true;
  4149. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4150. position_shift[i] += v - p; // Offset the coordinate space
  4151. update_software_endstops((AxisEnum)i);
  4152. #endif
  4153. }
  4154. #endif
  4155. }
  4156. }
  4157. if (didXYZ)
  4158. SYNC_PLAN_POSITION_KINEMATIC();
  4159. else if (didE)
  4160. sync_plan_position_e();
  4161. report_current_position();
  4162. }
  4163. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4164. /**
  4165. * M0: Unconditional stop - Wait for user button press on LCD
  4166. * M1: Conditional stop - Wait for user button press on LCD
  4167. */
  4168. inline void gcode_M0_M1() {
  4169. char* args = current_command_args;
  4170. millis_t codenum = 0;
  4171. bool hasP = false, hasS = false;
  4172. if (code_seen('P')) {
  4173. codenum = code_value_millis(); // milliseconds to wait
  4174. hasP = codenum > 0;
  4175. }
  4176. if (code_seen('S')) {
  4177. codenum = code_value_millis_from_seconds(); // seconds to wait
  4178. hasS = codenum > 0;
  4179. }
  4180. #if ENABLED(ULTIPANEL)
  4181. if (!hasP && !hasS && *args != '\0')
  4182. lcd_setstatus(args, true);
  4183. else {
  4184. LCD_MESSAGEPGM(MSG_USERWAIT);
  4185. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4186. dontExpireStatus();
  4187. #endif
  4188. }
  4189. #else
  4190. if (!hasP && !hasS && *args != '\0') {
  4191. SERIAL_ECHO_START;
  4192. SERIAL_ECHOLN(args);
  4193. }
  4194. #endif
  4195. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4196. wait_for_user = true;
  4197. stepper.synchronize();
  4198. refresh_cmd_timeout();
  4199. if (codenum > 0) {
  4200. codenum += previous_cmd_ms; // wait until this time for a click
  4201. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4202. }
  4203. else {
  4204. #if ENABLED(ULTIPANEL)
  4205. if (lcd_detected()) {
  4206. while (wait_for_user) idle();
  4207. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4208. }
  4209. #else
  4210. while (wait_for_user) idle();
  4211. #endif
  4212. }
  4213. wait_for_user = false;
  4214. KEEPALIVE_STATE(IN_HANDLER);
  4215. }
  4216. #endif // EMERGENCY_PARSER || ULTIPANEL
  4217. /**
  4218. * M17: Enable power on all stepper motors
  4219. */
  4220. inline void gcode_M17() {
  4221. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4222. enable_all_steppers();
  4223. }
  4224. #if IS_KINEMATIC
  4225. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4226. #else
  4227. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4228. #endif
  4229. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4230. float resume_position[XYZE];
  4231. bool move_away_flag = false;
  4232. inline void move_back_on_resume() {
  4233. if (!move_away_flag) return;
  4234. move_away_flag = false;
  4235. // Set extruder to saved position
  4236. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4237. planner.set_e_position_mm(current_position[E_AXIS]);
  4238. #if IS_KINEMATIC
  4239. // Move XYZ to starting position
  4240. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4241. #else
  4242. // Move XY to starting position, then Z
  4243. destination[X_AXIS] = resume_position[X_AXIS];
  4244. destination[Y_AXIS] = resume_position[Y_AXIS];
  4245. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4246. destination[Z_AXIS] = resume_position[Z_AXIS];
  4247. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4248. #endif
  4249. stepper.synchronize();
  4250. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4251. filament_ran_out = false;
  4252. #endif
  4253. set_current_to_destination();
  4254. }
  4255. #endif // PARK_HEAD_ON_PAUSE
  4256. #if ENABLED(SDSUPPORT)
  4257. /**
  4258. * M20: List SD card to serial output
  4259. */
  4260. inline void gcode_M20() {
  4261. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4262. card.ls();
  4263. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4264. }
  4265. /**
  4266. * M21: Init SD Card
  4267. */
  4268. inline void gcode_M21() { card.initsd(); }
  4269. /**
  4270. * M22: Release SD Card
  4271. */
  4272. inline void gcode_M22() { card.release(); }
  4273. /**
  4274. * M23: Open a file
  4275. */
  4276. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4277. /**
  4278. * M24: Start or Resume SD Print
  4279. */
  4280. inline void gcode_M24() {
  4281. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4282. move_back_on_resume();
  4283. #endif
  4284. card.startFileprint();
  4285. print_job_timer.start();
  4286. }
  4287. /**
  4288. * M25: Pause SD Print
  4289. */
  4290. inline void gcode_M25() {
  4291. card.pauseSDPrint();
  4292. print_job_timer.pause();
  4293. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4294. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4295. #endif
  4296. }
  4297. /**
  4298. * M26: Set SD Card file index
  4299. */
  4300. inline void gcode_M26() {
  4301. if (card.cardOK && code_seen('S'))
  4302. card.setIndex(code_value_long());
  4303. }
  4304. /**
  4305. * M27: Get SD Card status
  4306. */
  4307. inline void gcode_M27() { card.getStatus(); }
  4308. /**
  4309. * M28: Start SD Write
  4310. */
  4311. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4312. /**
  4313. * M29: Stop SD Write
  4314. * Processed in write to file routine above
  4315. */
  4316. inline void gcode_M29() {
  4317. // card.saving = false;
  4318. }
  4319. /**
  4320. * M30 <filename>: Delete SD Card file
  4321. */
  4322. inline void gcode_M30() {
  4323. if (card.cardOK) {
  4324. card.closefile();
  4325. card.removeFile(current_command_args);
  4326. }
  4327. }
  4328. #endif // SDSUPPORT
  4329. /**
  4330. * M31: Get the time since the start of SD Print (or last M109)
  4331. */
  4332. inline void gcode_M31() {
  4333. char buffer[21];
  4334. duration_t elapsed = print_job_timer.duration();
  4335. elapsed.toString(buffer);
  4336. lcd_setstatus(buffer);
  4337. SERIAL_ECHO_START;
  4338. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4339. #if ENABLED(AUTOTEMP)
  4340. thermalManager.autotempShutdown();
  4341. #endif
  4342. }
  4343. #if ENABLED(SDSUPPORT)
  4344. /**
  4345. * M32: Select file and start SD Print
  4346. */
  4347. inline void gcode_M32() {
  4348. if (card.sdprinting)
  4349. stepper.synchronize();
  4350. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4351. if (!namestartpos)
  4352. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4353. else
  4354. namestartpos++; //to skip the '!'
  4355. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4356. if (card.cardOK) {
  4357. card.openFile(namestartpos, true, call_procedure);
  4358. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4359. card.setIndex(code_value_long());
  4360. card.startFileprint();
  4361. // Procedure calls count as normal print time.
  4362. if (!call_procedure) print_job_timer.start();
  4363. }
  4364. }
  4365. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4366. /**
  4367. * M33: Get the long full path of a file or folder
  4368. *
  4369. * Parameters:
  4370. * <dospath> Case-insensitive DOS-style path to a file or folder
  4371. *
  4372. * Example:
  4373. * M33 miscel~1/armchair/armcha~1.gco
  4374. *
  4375. * Output:
  4376. * /Miscellaneous/Armchair/Armchair.gcode
  4377. */
  4378. inline void gcode_M33() {
  4379. card.printLongPath(current_command_args);
  4380. }
  4381. #endif
  4382. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4383. /**
  4384. * M34: Set SD Card Sorting Options
  4385. */
  4386. inline void gcode_M34() {
  4387. if (code_seen('S')) card.setSortOn(code_value_bool());
  4388. if (code_seen('F')) {
  4389. int v = code_value_long();
  4390. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4391. }
  4392. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4393. }
  4394. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4395. /**
  4396. * M928: Start SD Write
  4397. */
  4398. inline void gcode_M928() {
  4399. card.openLogFile(current_command_args);
  4400. }
  4401. #endif // SDSUPPORT
  4402. /**
  4403. * Sensitive pin test for M42, M226
  4404. */
  4405. static bool pin_is_protected(uint8_t pin) {
  4406. static const int sensitive_pins[] = SENSITIVE_PINS;
  4407. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4408. if (sensitive_pins[i] == pin) return true;
  4409. return false;
  4410. }
  4411. /**
  4412. * M42: Change pin status via GCode
  4413. *
  4414. * P<pin> Pin number (LED if omitted)
  4415. * S<byte> Pin status from 0 - 255
  4416. */
  4417. inline void gcode_M42() {
  4418. if (!code_seen('S')) return;
  4419. int pin_status = code_value_int();
  4420. if (!WITHIN(pin_status, 0, 255)) return;
  4421. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4422. if (pin_number < 0) return;
  4423. if (pin_is_protected(pin_number)) {
  4424. SERIAL_ERROR_START;
  4425. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4426. return;
  4427. }
  4428. pinMode(pin_number, OUTPUT);
  4429. digitalWrite(pin_number, pin_status);
  4430. analogWrite(pin_number, pin_status);
  4431. #if FAN_COUNT > 0
  4432. switch (pin_number) {
  4433. #if HAS_FAN0
  4434. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4435. #endif
  4436. #if HAS_FAN1
  4437. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4438. #endif
  4439. #if HAS_FAN2
  4440. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4441. #endif
  4442. }
  4443. #endif
  4444. }
  4445. #if ENABLED(PINS_DEBUGGING)
  4446. #include "pinsDebug.h"
  4447. inline void toggle_pins() {
  4448. int pin, j;
  4449. bool I_flag = code_seen('I') ? code_value_bool() : false;
  4450. int repeat = code_seen('R') ? code_value_int() : 1,
  4451. start = code_seen('S') ? code_value_int() : 0,
  4452. end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
  4453. wait = code_seen('W') ? code_value_int() : 500;
  4454. for (pin = start; pin <= end; pin++) {
  4455. if (!I_flag && pin_is_protected(pin)) {
  4456. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  4457. SERIAL_ECHOPGM(" untouched.\n");
  4458. }
  4459. else {
  4460. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  4461. pinMode(pin, OUTPUT);
  4462. for(j = 0; j < repeat; j++) {
  4463. digitalWrite(pin, 0);
  4464. safe_delay(wait);
  4465. digitalWrite(pin, 1);
  4466. safe_delay(wait);
  4467. digitalWrite(pin, 0);
  4468. safe_delay(wait);
  4469. }
  4470. }
  4471. SERIAL_ECHOPGM("\n");
  4472. }
  4473. SERIAL_ECHOPGM("Done\n");
  4474. } // toggle_pins
  4475. inline void servo_probe_test(){
  4476. #if !(NUM_SERVOS >= 1 && HAS_SERVO_0)
  4477. SERIAL_ERROR_START;
  4478. SERIAL_ERRORLNPGM("SERVO not setup");
  4479. #else
  4480. #if !defined(z_servo_angle)
  4481. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  4482. #endif
  4483. uint8_t probe_index = code_seen('P') ? code_value_byte() : 0;
  4484. SERIAL_PROTOCOLLNPGM("Servo probe test");
  4485. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  4486. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  4487. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  4488. bool probe_inverting;
  4489. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  4490. #define PROBE_TEST_PIN Z_MIN_PIN
  4491. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  4492. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  4493. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  4494. if (Z_MIN_ENDSTOP_INVERTING) SERIAL_PROTOCOLLNPGM("true");
  4495. else SERIAL_PROTOCOLLNPGM("false");
  4496. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  4497. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  4498. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  4499. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  4500. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  4501. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  4502. if (Z_MIN_PROBE_ENDSTOP_INVERTING) SERIAL_PROTOCOLLNPGM("true");
  4503. else SERIAL_PROTOCOLLNPGM("false");
  4504. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  4505. #else
  4506. #error "ERROR - probe pin not defined - strange, SANITY_CHECK should have caught this"
  4507. #endif
  4508. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  4509. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  4510. bool deploy_state;
  4511. bool stow_state;
  4512. for (uint8_t i = 0; i < 4; i++) {
  4513. servo[probe_index].move(z_servo_angle[0]); //deploy
  4514. safe_delay(500);
  4515. deploy_state = digitalRead(PROBE_TEST_PIN);
  4516. servo[probe_index].move(z_servo_angle[1]); //stow
  4517. safe_delay(500);
  4518. stow_state = digitalRead(PROBE_TEST_PIN);
  4519. }
  4520. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  4521. refresh_cmd_timeout();
  4522. if (deploy_state != stow_state) {
  4523. SERIAL_PROTOCOLLNPGM("TLTouch detected"); // BLTouch clone?
  4524. if (deploy_state) {
  4525. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  4526. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  4527. }
  4528. else {
  4529. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  4530. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  4531. }
  4532. }
  4533. else { // measure active signal length
  4534. servo[probe_index].move(z_servo_angle[0]); //deploy
  4535. safe_delay(500);
  4536. SERIAL_PROTOCOLLNPGM("please trigger probe");
  4537. uint16_t probe_counter = 0;
  4538. for (uint16_t j = 0; j < 500*30 && probe_counter == 0 ; j++) { // allow 30 seconds max for operator to trigger probe
  4539. safe_delay(2);
  4540. if ( 0 == j%(500*1)) {refresh_cmd_timeout(); watchdog_reset();} // beat the dog every 45 seconds
  4541. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  4542. for (probe_counter = 1; probe_counter < 50 && (deploy_state != digitalRead(PROBE_TEST_PIN)); probe_counter ++) {
  4543. safe_delay(2);
  4544. }
  4545. if (probe_counter == 50) {
  4546. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  4547. }
  4548. else if (probe_counter >= 2 ) {
  4549. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2 ); // allow 4 - 100mS pulse
  4550. }
  4551. else {
  4552. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  4553. }
  4554. servo[probe_index].move(z_servo_angle[1]); //stow
  4555. } // pulse detected
  4556. } // for loop waiting for trigger
  4557. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  4558. } // measure active signal length
  4559. #endif
  4560. } // servo_probe_test
  4561. /**
  4562. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  4563. *
  4564. * M43 - report name and state of pin(s)
  4565. * P<pin> Pin to read or watch. If omitted, reads all pins.
  4566. * I Flag to ignore Marlin's pin protection.
  4567. *
  4568. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  4569. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  4570. * I Flag to ignore Marlin's pin protection.
  4571. *
  4572. * M43 E<bool> - Enable / disable background endstop monitoring
  4573. * - Machine continues to operate
  4574. * - Reports changes to endstops
  4575. * - Toggles LED when an endstop changes
  4576. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  4577. *
  4578. * M43 T - Toggle pin(s) and report which pin is being toggled
  4579. * S<pin> - Start Pin number. If not given, will default to 0
  4580. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  4581. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  4582. * R - Repeat pulses on each pin this number of times before continueing to next pin
  4583. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  4584. *
  4585. * M43 S - Servo probe test
  4586. * P<index> - Probe index (optional - defaults to 0
  4587. */
  4588. inline void gcode_M43() {
  4589. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  4590. toggle_pins();
  4591. return;
  4592. }
  4593. // Enable or disable endstop monitoring
  4594. if (code_seen('E')) {
  4595. endstop_monitor_flag = code_value_bool();
  4596. SERIAL_PROTOCOLPGM("endstop monitor ");
  4597. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  4598. SERIAL_PROTOCOLLNPGM("abled");
  4599. return;
  4600. }
  4601. if (code_seen('S')) {
  4602. servo_probe_test();
  4603. return;
  4604. }
  4605. // Get the range of pins to test or watch
  4606. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  4607. if (code_seen('P')) {
  4608. first_pin = last_pin = code_value_byte();
  4609. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  4610. }
  4611. bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  4612. // Watch until click, M108, or reset
  4613. if (code_seen('W') && code_value_bool()) { // watch digital pins
  4614. SERIAL_PROTOCOLLNPGM("Watching pins");
  4615. byte pin_state[last_pin - first_pin + 1];
  4616. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4617. if (pin_is_protected(pin) && !ignore_protection) continue;
  4618. pinMode(pin, INPUT_PULLUP);
  4619. // if (IS_ANALOG(pin))
  4620. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4621. // else
  4622. pin_state[pin - first_pin] = digitalRead(pin);
  4623. }
  4624. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4625. wait_for_user = true;
  4626. #endif
  4627. for(;;) {
  4628. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4629. if (pin_is_protected(pin)) continue;
  4630. byte val;
  4631. // if (IS_ANALOG(pin))
  4632. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4633. // else
  4634. val = digitalRead(pin);
  4635. if (val != pin_state[pin - first_pin]) {
  4636. report_pin_state(pin);
  4637. pin_state[pin - first_pin] = val;
  4638. }
  4639. }
  4640. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4641. if (!wait_for_user) break;
  4642. #endif
  4643. safe_delay(500);
  4644. }
  4645. return;
  4646. }
  4647. // Report current state of selected pin(s)
  4648. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4649. report_pin_state_extended(pin, ignore_protection);
  4650. }
  4651. #endif // PINS_DEBUGGING
  4652. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4653. /**
  4654. * M48: Z probe repeatability measurement function.
  4655. *
  4656. * Usage:
  4657. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4658. * P = Number of sampled points (4-50, default 10)
  4659. * X = Sample X position
  4660. * Y = Sample Y position
  4661. * V = Verbose level (0-4, default=1)
  4662. * E = Engage Z probe for each reading
  4663. * L = Number of legs of movement before probe
  4664. * S = Schizoid (Or Star if you prefer)
  4665. *
  4666. * This function assumes the bed has been homed. Specifically, that a G28 command
  4667. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4668. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4669. * regenerated.
  4670. */
  4671. inline void gcode_M48() {
  4672. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4673. bool bed_leveling_state_at_entry=0;
  4674. bed_leveling_state_at_entry = ubl.state.active;
  4675. #endif
  4676. if (axis_unhomed_error(true, true, true)) return;
  4677. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4678. if (!WITHIN(verbose_level, 0, 4)) {
  4679. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4680. return;
  4681. }
  4682. if (verbose_level > 0)
  4683. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4684. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4685. if (!WITHIN(n_samples, 4, 50)) {
  4686. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4687. return;
  4688. }
  4689. float X_current = current_position[X_AXIS],
  4690. Y_current = current_position[Y_AXIS];
  4691. bool stow_probe_after_each = code_seen('E');
  4692. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4693. #if DISABLED(DELTA)
  4694. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  4695. out_of_range_error(PSTR("X"));
  4696. return;
  4697. }
  4698. #endif
  4699. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4700. #if DISABLED(DELTA)
  4701. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  4702. out_of_range_error(PSTR("Y"));
  4703. return;
  4704. }
  4705. #else
  4706. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4707. if (!position_is_reachable(pos, true)) {
  4708. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4709. return;
  4710. }
  4711. #endif
  4712. bool seen_L = code_seen('L');
  4713. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4714. if (n_legs > 15) {
  4715. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4716. return;
  4717. }
  4718. if (n_legs == 1) n_legs = 2;
  4719. bool schizoid_flag = code_seen('S');
  4720. if (schizoid_flag && !seen_L) n_legs = 7;
  4721. /**
  4722. * Now get everything to the specified probe point So we can safely do a
  4723. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4724. * we don't want to use that as a starting point for each probe.
  4725. */
  4726. if (verbose_level > 2)
  4727. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4728. // Disable bed level correction in M48 because we want the raw data when we probe
  4729. #if HAS_ABL
  4730. const bool abl_was_enabled = planner.abl_enabled;
  4731. set_bed_leveling_enabled(false);
  4732. #endif
  4733. setup_for_endstop_or_probe_move();
  4734. // Move to the first point, deploy, and probe
  4735. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4736. randomSeed(millis());
  4737. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4738. for (uint8_t n = 0; n < n_samples; n++) {
  4739. if (n_legs) {
  4740. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4741. float angle = random(0.0, 360.0),
  4742. radius = random(
  4743. #if ENABLED(DELTA)
  4744. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4745. #else
  4746. 5, X_MAX_LENGTH / 8
  4747. #endif
  4748. );
  4749. if (verbose_level > 3) {
  4750. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4751. SERIAL_ECHOPAIR(" angle: ", angle);
  4752. SERIAL_ECHOPGM(" Direction: ");
  4753. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4754. SERIAL_ECHOLNPGM("Clockwise");
  4755. }
  4756. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4757. double delta_angle;
  4758. if (schizoid_flag)
  4759. // The points of a 5 point star are 72 degrees apart. We need to
  4760. // skip a point and go to the next one on the star.
  4761. delta_angle = dir * 2.0 * 72.0;
  4762. else
  4763. // If we do this line, we are just trying to move further
  4764. // around the circle.
  4765. delta_angle = dir * (float) random(25, 45);
  4766. angle += delta_angle;
  4767. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4768. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4769. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4770. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4771. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4772. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4773. #if DISABLED(DELTA)
  4774. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4775. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4776. #else
  4777. // If we have gone out too far, we can do a simple fix and scale the numbers
  4778. // back in closer to the origin.
  4779. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4780. X_current /= 1.25;
  4781. Y_current /= 1.25;
  4782. if (verbose_level > 3) {
  4783. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4784. SERIAL_ECHOLNPAIR(", ", Y_current);
  4785. }
  4786. }
  4787. #endif
  4788. if (verbose_level > 3) {
  4789. SERIAL_PROTOCOLPGM("Going to:");
  4790. SERIAL_ECHOPAIR(" X", X_current);
  4791. SERIAL_ECHOPAIR(" Y", Y_current);
  4792. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4793. }
  4794. do_blocking_move_to_xy(X_current, Y_current);
  4795. } // n_legs loop
  4796. } // n_legs
  4797. // Probe a single point
  4798. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4799. /**
  4800. * Get the current mean for the data points we have so far
  4801. */
  4802. double sum = 0.0;
  4803. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4804. mean = sum / (n + 1);
  4805. NOMORE(min, sample_set[n]);
  4806. NOLESS(max, sample_set[n]);
  4807. /**
  4808. * Now, use that mean to calculate the standard deviation for the
  4809. * data points we have so far
  4810. */
  4811. sum = 0.0;
  4812. for (uint8_t j = 0; j <= n; j++)
  4813. sum += sq(sample_set[j] - mean);
  4814. sigma = sqrt(sum / (n + 1));
  4815. if (verbose_level > 0) {
  4816. if (verbose_level > 1) {
  4817. SERIAL_PROTOCOL(n + 1);
  4818. SERIAL_PROTOCOLPGM(" of ");
  4819. SERIAL_PROTOCOL((int)n_samples);
  4820. SERIAL_PROTOCOLPGM(": z: ");
  4821. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4822. if (verbose_level > 2) {
  4823. SERIAL_PROTOCOLPGM(" mean: ");
  4824. SERIAL_PROTOCOL_F(mean, 4);
  4825. SERIAL_PROTOCOLPGM(" sigma: ");
  4826. SERIAL_PROTOCOL_F(sigma, 6);
  4827. SERIAL_PROTOCOLPGM(" min: ");
  4828. SERIAL_PROTOCOL_F(min, 3);
  4829. SERIAL_PROTOCOLPGM(" max: ");
  4830. SERIAL_PROTOCOL_F(max, 3);
  4831. SERIAL_PROTOCOLPGM(" range: ");
  4832. SERIAL_PROTOCOL_F(max-min, 3);
  4833. }
  4834. SERIAL_EOL;
  4835. }
  4836. }
  4837. } // End of probe loop
  4838. if (STOW_PROBE()) return;
  4839. SERIAL_PROTOCOLPGM("Finished!");
  4840. SERIAL_EOL;
  4841. if (verbose_level > 0) {
  4842. SERIAL_PROTOCOLPGM("Mean: ");
  4843. SERIAL_PROTOCOL_F(mean, 6);
  4844. SERIAL_PROTOCOLPGM(" Min: ");
  4845. SERIAL_PROTOCOL_F(min, 3);
  4846. SERIAL_PROTOCOLPGM(" Max: ");
  4847. SERIAL_PROTOCOL_F(max, 3);
  4848. SERIAL_PROTOCOLPGM(" Range: ");
  4849. SERIAL_PROTOCOL_F(max-min, 3);
  4850. SERIAL_EOL;
  4851. }
  4852. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4853. SERIAL_PROTOCOL_F(sigma, 6);
  4854. SERIAL_EOL;
  4855. SERIAL_EOL;
  4856. clean_up_after_endstop_or_probe_move();
  4857. // Re-enable bed level correction if it has been on
  4858. #if HAS_ABL
  4859. set_bed_leveling_enabled(abl_was_enabled);
  4860. #endif
  4861. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4862. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  4863. ubl.state.active = bed_leveling_state_at_entry;
  4864. #endif
  4865. report_current_position();
  4866. }
  4867. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4868. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  4869. inline void gcode_M49() {
  4870. ubl.g26_debug_flag = !ubl.g26_debug_flag;
  4871. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  4872. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  4873. }
  4874. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  4875. /**
  4876. * M75: Start print timer
  4877. */
  4878. inline void gcode_M75() { print_job_timer.start(); }
  4879. /**
  4880. * M76: Pause print timer
  4881. */
  4882. inline void gcode_M76() { print_job_timer.pause(); }
  4883. /**
  4884. * M77: Stop print timer
  4885. */
  4886. inline void gcode_M77() { print_job_timer.stop(); }
  4887. #if ENABLED(PRINTCOUNTER)
  4888. /**
  4889. * M78: Show print statistics
  4890. */
  4891. inline void gcode_M78() {
  4892. // "M78 S78" will reset the statistics
  4893. if (code_seen('S') && code_value_int() == 78)
  4894. print_job_timer.initStats();
  4895. else
  4896. print_job_timer.showStats();
  4897. }
  4898. #endif
  4899. /**
  4900. * M104: Set hot end temperature
  4901. */
  4902. inline void gcode_M104() {
  4903. if (get_target_extruder_from_command(104)) return;
  4904. if (DEBUGGING(DRYRUN)) return;
  4905. #if ENABLED(SINGLENOZZLE)
  4906. if (target_extruder != active_extruder) return;
  4907. #endif
  4908. if (code_seen('S')) {
  4909. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4910. #if ENABLED(DUAL_X_CARRIAGE)
  4911. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4912. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4913. #endif
  4914. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4915. /**
  4916. * Stop the timer at the end of print, starting is managed by
  4917. * 'heat and wait' M109.
  4918. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4919. * stand by mode, for instance in a dual extruder setup, without affecting
  4920. * the running print timer.
  4921. */
  4922. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4923. print_job_timer.stop();
  4924. LCD_MESSAGEPGM(WELCOME_MSG);
  4925. }
  4926. #endif
  4927. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4928. }
  4929. #if ENABLED(AUTOTEMP)
  4930. planner.autotemp_M104_M109();
  4931. #endif
  4932. }
  4933. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4934. void print_heaterstates() {
  4935. #if HAS_TEMP_HOTEND
  4936. SERIAL_PROTOCOLPGM(" T:");
  4937. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4938. SERIAL_PROTOCOLPGM(" /");
  4939. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4940. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4941. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4942. SERIAL_PROTOCOLCHAR(')');
  4943. #endif
  4944. #endif
  4945. #if HAS_TEMP_BED
  4946. SERIAL_PROTOCOLPGM(" B:");
  4947. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4948. SERIAL_PROTOCOLPGM(" /");
  4949. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4950. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4951. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4952. SERIAL_PROTOCOLCHAR(')');
  4953. #endif
  4954. #endif
  4955. #if HOTENDS > 1
  4956. HOTEND_LOOP() {
  4957. SERIAL_PROTOCOLPAIR(" T", e);
  4958. SERIAL_PROTOCOLCHAR(':');
  4959. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4960. SERIAL_PROTOCOLPGM(" /");
  4961. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4962. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4963. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4964. SERIAL_PROTOCOLCHAR(')');
  4965. #endif
  4966. }
  4967. #endif
  4968. SERIAL_PROTOCOLPGM(" @:");
  4969. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4970. #if HAS_TEMP_BED
  4971. SERIAL_PROTOCOLPGM(" B@:");
  4972. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4973. #endif
  4974. #if HOTENDS > 1
  4975. HOTEND_LOOP() {
  4976. SERIAL_PROTOCOLPAIR(" @", e);
  4977. SERIAL_PROTOCOLCHAR(':');
  4978. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4979. }
  4980. #endif
  4981. }
  4982. #endif
  4983. /**
  4984. * M105: Read hot end and bed temperature
  4985. */
  4986. inline void gcode_M105() {
  4987. if (get_target_extruder_from_command(105)) return;
  4988. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4989. SERIAL_PROTOCOLPGM(MSG_OK);
  4990. print_heaterstates();
  4991. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4992. SERIAL_ERROR_START;
  4993. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4994. #endif
  4995. SERIAL_EOL;
  4996. }
  4997. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  4998. static uint8_t auto_report_temp_interval;
  4999. static millis_t next_temp_report_ms;
  5000. /**
  5001. * M155: Set temperature auto-report interval. M155 S<seconds>
  5002. */
  5003. inline void gcode_M155() {
  5004. if (code_seen('S')) {
  5005. auto_report_temp_interval = code_value_byte();
  5006. NOMORE(auto_report_temp_interval, 60);
  5007. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5008. }
  5009. }
  5010. inline void auto_report_temperatures() {
  5011. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5012. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5013. print_heaterstates();
  5014. SERIAL_EOL;
  5015. }
  5016. }
  5017. #endif // AUTO_REPORT_TEMPERATURES
  5018. #if FAN_COUNT > 0
  5019. /**
  5020. * M106: Set Fan Speed
  5021. *
  5022. * S<int> Speed between 0-255
  5023. * P<index> Fan index, if more than one fan
  5024. */
  5025. inline void gcode_M106() {
  5026. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5027. p = code_seen('P') ? code_value_ushort() : 0;
  5028. NOMORE(s, 255);
  5029. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5030. }
  5031. /**
  5032. * M107: Fan Off
  5033. */
  5034. inline void gcode_M107() {
  5035. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5036. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5037. }
  5038. #endif // FAN_COUNT > 0
  5039. #if DISABLED(EMERGENCY_PARSER)
  5040. /**
  5041. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5042. */
  5043. inline void gcode_M108() { wait_for_heatup = false; }
  5044. /**
  5045. * M112: Emergency Stop
  5046. */
  5047. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5048. /**
  5049. * M410: Quickstop - Abort all planned moves
  5050. *
  5051. * This will stop the carriages mid-move, so most likely they
  5052. * will be out of sync with the stepper position after this.
  5053. */
  5054. inline void gcode_M410() { quickstop_stepper(); }
  5055. #endif
  5056. /**
  5057. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5058. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5059. */
  5060. #ifndef MIN_COOLING_SLOPE_DEG
  5061. #define MIN_COOLING_SLOPE_DEG 1.50
  5062. #endif
  5063. #ifndef MIN_COOLING_SLOPE_TIME
  5064. #define MIN_COOLING_SLOPE_TIME 60
  5065. #endif
  5066. inline void gcode_M109() {
  5067. if (get_target_extruder_from_command(109)) return;
  5068. if (DEBUGGING(DRYRUN)) return;
  5069. #if ENABLED(SINGLENOZZLE)
  5070. if (target_extruder != active_extruder) return;
  5071. #endif
  5072. bool no_wait_for_cooling = code_seen('S');
  5073. if (no_wait_for_cooling || code_seen('R')) {
  5074. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5075. #if ENABLED(DUAL_X_CARRIAGE)
  5076. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5077. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5078. #endif
  5079. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5080. /**
  5081. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5082. * stand by mode, for instance in a dual extruder setup, without affecting
  5083. * the running print timer.
  5084. */
  5085. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  5086. print_job_timer.stop();
  5087. LCD_MESSAGEPGM(WELCOME_MSG);
  5088. }
  5089. /**
  5090. * We do not check if the timer is already running because this check will
  5091. * be done for us inside the Stopwatch::start() method thus a running timer
  5092. * will not restart.
  5093. */
  5094. else print_job_timer.start();
  5095. #endif
  5096. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5097. }
  5098. #if ENABLED(AUTOTEMP)
  5099. planner.autotemp_M104_M109();
  5100. #endif
  5101. #if TEMP_RESIDENCY_TIME > 0
  5102. millis_t residency_start_ms = 0;
  5103. // Loop until the temperature has stabilized
  5104. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5105. #else
  5106. // Loop until the temperature is very close target
  5107. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5108. #endif //TEMP_RESIDENCY_TIME > 0
  5109. float theTarget = -1.0, old_temp = 9999.0;
  5110. bool wants_to_cool = false;
  5111. wait_for_heatup = true;
  5112. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5113. KEEPALIVE_STATE(NOT_BUSY);
  5114. do {
  5115. // Target temperature might be changed during the loop
  5116. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  5117. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5118. theTarget = thermalManager.degTargetHotend(target_extruder);
  5119. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5120. if (no_wait_for_cooling && wants_to_cool) break;
  5121. }
  5122. now = millis();
  5123. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5124. next_temp_ms = now + 1000UL;
  5125. print_heaterstates();
  5126. #if TEMP_RESIDENCY_TIME > 0
  5127. SERIAL_PROTOCOLPGM(" W:");
  5128. if (residency_start_ms) {
  5129. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5130. SERIAL_PROTOCOLLN(rem);
  5131. }
  5132. else {
  5133. SERIAL_PROTOCOLLNPGM("?");
  5134. }
  5135. #else
  5136. SERIAL_EOL;
  5137. #endif
  5138. }
  5139. idle();
  5140. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5141. float temp = thermalManager.degHotend(target_extruder);
  5142. #if TEMP_RESIDENCY_TIME > 0
  5143. float temp_diff = fabs(theTarget - temp);
  5144. if (!residency_start_ms) {
  5145. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5146. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5147. }
  5148. else if (temp_diff > TEMP_HYSTERESIS) {
  5149. // Restart the timer whenever the temperature falls outside the hysteresis.
  5150. residency_start_ms = now;
  5151. }
  5152. #endif //TEMP_RESIDENCY_TIME > 0
  5153. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5154. if (wants_to_cool) {
  5155. // break after MIN_COOLING_SLOPE_TIME seconds
  5156. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5157. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5158. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5159. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5160. old_temp = temp;
  5161. }
  5162. }
  5163. } while (wait_for_heatup && TEMP_CONDITIONS);
  5164. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5165. KEEPALIVE_STATE(IN_HANDLER);
  5166. }
  5167. #if HAS_TEMP_BED
  5168. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5169. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5170. #endif
  5171. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5172. #define MIN_COOLING_SLOPE_TIME_BED 60
  5173. #endif
  5174. /**
  5175. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5176. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5177. */
  5178. inline void gcode_M190() {
  5179. if (DEBUGGING(DRYRUN)) return;
  5180. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5181. bool no_wait_for_cooling = code_seen('S');
  5182. if (no_wait_for_cooling || code_seen('R')) {
  5183. thermalManager.setTargetBed(code_value_temp_abs());
  5184. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5185. if (code_value_temp_abs() > BED_MINTEMP) {
  5186. /**
  5187. * We start the timer when 'heating and waiting' command arrives, LCD
  5188. * functions never wait. Cooling down managed by extruders.
  5189. *
  5190. * We do not check if the timer is already running because this check will
  5191. * be done for us inside the Stopwatch::start() method thus a running timer
  5192. * will not restart.
  5193. */
  5194. print_job_timer.start();
  5195. }
  5196. #endif
  5197. }
  5198. #if TEMP_BED_RESIDENCY_TIME > 0
  5199. millis_t residency_start_ms = 0;
  5200. // Loop until the temperature has stabilized
  5201. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5202. #else
  5203. // Loop until the temperature is very close target
  5204. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5205. #endif //TEMP_BED_RESIDENCY_TIME > 0
  5206. float theTarget = -1.0, old_temp = 9999.0;
  5207. bool wants_to_cool = false;
  5208. wait_for_heatup = true;
  5209. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5210. KEEPALIVE_STATE(NOT_BUSY);
  5211. target_extruder = active_extruder; // for print_heaterstates
  5212. do {
  5213. // Target temperature might be changed during the loop
  5214. if (theTarget != thermalManager.degTargetBed()) {
  5215. wants_to_cool = thermalManager.isCoolingBed();
  5216. theTarget = thermalManager.degTargetBed();
  5217. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5218. if (no_wait_for_cooling && wants_to_cool) break;
  5219. }
  5220. now = millis();
  5221. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5222. next_temp_ms = now + 1000UL;
  5223. print_heaterstates();
  5224. #if TEMP_BED_RESIDENCY_TIME > 0
  5225. SERIAL_PROTOCOLPGM(" W:");
  5226. if (residency_start_ms) {
  5227. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5228. SERIAL_PROTOCOLLN(rem);
  5229. }
  5230. else {
  5231. SERIAL_PROTOCOLLNPGM("?");
  5232. }
  5233. #else
  5234. SERIAL_EOL;
  5235. #endif
  5236. }
  5237. idle();
  5238. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5239. float temp = thermalManager.degBed();
  5240. #if TEMP_BED_RESIDENCY_TIME > 0
  5241. float temp_diff = fabs(theTarget - temp);
  5242. if (!residency_start_ms) {
  5243. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5244. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5245. }
  5246. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5247. // Restart the timer whenever the temperature falls outside the hysteresis.
  5248. residency_start_ms = now;
  5249. }
  5250. #endif // TEMP_BED_RESIDENCY_TIME > 0
  5251. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5252. if (wants_to_cool) {
  5253. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  5254. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5255. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5256. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5257. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5258. old_temp = temp;
  5259. }
  5260. }
  5261. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5262. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5263. KEEPALIVE_STATE(IN_HANDLER);
  5264. }
  5265. #endif // HAS_TEMP_BED
  5266. /**
  5267. * M110: Set Current Line Number
  5268. */
  5269. inline void gcode_M110() {
  5270. if (code_seen('N')) gcode_LastN = code_value_long();
  5271. }
  5272. /**
  5273. * M111: Set the debug level
  5274. */
  5275. inline void gcode_M111() {
  5276. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE;
  5277. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5278. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5279. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5280. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5281. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5282. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5283. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5284. #endif
  5285. const static char* const debug_strings[] PROGMEM = {
  5286. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5288. str_debug_32
  5289. #endif
  5290. };
  5291. SERIAL_ECHO_START;
  5292. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5293. if (marlin_debug_flags) {
  5294. uint8_t comma = 0;
  5295. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5296. if (TEST(marlin_debug_flags, i)) {
  5297. if (comma++) SERIAL_CHAR(',');
  5298. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5299. }
  5300. }
  5301. }
  5302. else {
  5303. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5304. }
  5305. SERIAL_EOL;
  5306. }
  5307. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5308. /**
  5309. * M113: Get or set Host Keepalive interval (0 to disable)
  5310. *
  5311. * S<seconds> Optional. Set the keepalive interval.
  5312. */
  5313. inline void gcode_M113() {
  5314. if (code_seen('S')) {
  5315. host_keepalive_interval = code_value_byte();
  5316. NOMORE(host_keepalive_interval, 60);
  5317. }
  5318. else {
  5319. SERIAL_ECHO_START;
  5320. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5321. }
  5322. }
  5323. #endif
  5324. #if ENABLED(BARICUDA)
  5325. #if HAS_HEATER_1
  5326. /**
  5327. * M126: Heater 1 valve open
  5328. */
  5329. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5330. /**
  5331. * M127: Heater 1 valve close
  5332. */
  5333. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5334. #endif
  5335. #if HAS_HEATER_2
  5336. /**
  5337. * M128: Heater 2 valve open
  5338. */
  5339. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5340. /**
  5341. * M129: Heater 2 valve close
  5342. */
  5343. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5344. #endif
  5345. #endif //BARICUDA
  5346. /**
  5347. * M140: Set bed temperature
  5348. */
  5349. inline void gcode_M140() {
  5350. if (DEBUGGING(DRYRUN)) return;
  5351. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5352. }
  5353. #if ENABLED(ULTIPANEL)
  5354. /**
  5355. * M145: Set the heatup state for a material in the LCD menu
  5356. * S<material> (0=PLA, 1=ABS)
  5357. * H<hotend temp>
  5358. * B<bed temp>
  5359. * F<fan speed>
  5360. */
  5361. inline void gcode_M145() {
  5362. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5363. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5364. SERIAL_ERROR_START;
  5365. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5366. }
  5367. else {
  5368. int v;
  5369. if (code_seen('H')) {
  5370. v = code_value_int();
  5371. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5372. }
  5373. if (code_seen('F')) {
  5374. v = code_value_int();
  5375. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5376. }
  5377. #if TEMP_SENSOR_BED != 0
  5378. if (code_seen('B')) {
  5379. v = code_value_int();
  5380. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5381. }
  5382. #endif
  5383. }
  5384. }
  5385. #endif // ULTIPANEL
  5386. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5387. /**
  5388. * M149: Set temperature units
  5389. */
  5390. inline void gcode_M149() {
  5391. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5392. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5393. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5394. }
  5395. #endif
  5396. #if HAS_POWER_SWITCH
  5397. /**
  5398. * M80: Turn on Power Supply
  5399. */
  5400. inline void gcode_M80() {
  5401. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5402. /**
  5403. * If you have a switch on suicide pin, this is useful
  5404. * if you want to start another print with suicide feature after
  5405. * a print without suicide...
  5406. */
  5407. #if HAS_SUICIDE
  5408. OUT_WRITE(SUICIDE_PIN, HIGH);
  5409. #endif
  5410. #if ENABLED(ULTIPANEL)
  5411. powersupply = true;
  5412. LCD_MESSAGEPGM(WELCOME_MSG);
  5413. #endif
  5414. }
  5415. #endif // HAS_POWER_SWITCH
  5416. /**
  5417. * M81: Turn off Power, including Power Supply, if there is one.
  5418. *
  5419. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5420. */
  5421. inline void gcode_M81() {
  5422. thermalManager.disable_all_heaters();
  5423. stepper.finish_and_disable();
  5424. #if FAN_COUNT > 0
  5425. #if FAN_COUNT > 1
  5426. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5427. #else
  5428. fanSpeeds[0] = 0;
  5429. #endif
  5430. #endif
  5431. safe_delay(1000); // Wait 1 second before switching off
  5432. #if HAS_SUICIDE
  5433. stepper.synchronize();
  5434. suicide();
  5435. #elif HAS_POWER_SWITCH
  5436. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5437. #endif
  5438. #if ENABLED(ULTIPANEL)
  5439. #if HAS_POWER_SWITCH
  5440. powersupply = false;
  5441. #endif
  5442. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5443. #endif
  5444. }
  5445. /**
  5446. * M82: Set E codes absolute (default)
  5447. */
  5448. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5449. /**
  5450. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5451. */
  5452. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5453. /**
  5454. * M18, M84: Disable all stepper motors
  5455. */
  5456. inline void gcode_M18_M84() {
  5457. if (code_seen('S')) {
  5458. stepper_inactive_time = code_value_millis_from_seconds();
  5459. }
  5460. else {
  5461. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5462. if (all_axis) {
  5463. stepper.finish_and_disable();
  5464. }
  5465. else {
  5466. stepper.synchronize();
  5467. if (code_seen('X')) disable_x();
  5468. if (code_seen('Y')) disable_y();
  5469. if (code_seen('Z')) disable_z();
  5470. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5471. if (code_seen('E')) disable_e_steppers();
  5472. #endif
  5473. }
  5474. }
  5475. }
  5476. /**
  5477. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  5478. */
  5479. inline void gcode_M85() {
  5480. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  5481. }
  5482. /**
  5483. * Multi-stepper support for M92, M201, M203
  5484. */
  5485. #if ENABLED(DISTINCT_E_FACTORS)
  5486. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  5487. #define TARGET_EXTRUDER target_extruder
  5488. #else
  5489. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5490. #define TARGET_EXTRUDER 0
  5491. #endif
  5492. /**
  5493. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5494. * (Follows the same syntax as G92)
  5495. *
  5496. * With multiple extruders use T to specify which one.
  5497. */
  5498. inline void gcode_M92() {
  5499. GET_TARGET_EXTRUDER(92);
  5500. LOOP_XYZE(i) {
  5501. if (code_seen(axis_codes[i])) {
  5502. if (i == E_AXIS) {
  5503. float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5504. if (value < 20.0) {
  5505. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5506. planner.max_jerk[E_AXIS] *= factor;
  5507. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5508. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5509. }
  5510. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5511. }
  5512. else {
  5513. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5514. }
  5515. }
  5516. }
  5517. planner.refresh_positioning();
  5518. }
  5519. /**
  5520. * Output the current position to serial
  5521. */
  5522. static void report_current_position() {
  5523. SERIAL_PROTOCOLPGM("X:");
  5524. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5525. SERIAL_PROTOCOLPGM(" Y:");
  5526. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5527. SERIAL_PROTOCOLPGM(" Z:");
  5528. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5529. SERIAL_PROTOCOLPGM(" E:");
  5530. SERIAL_PROTOCOL(current_position[E_AXIS]);
  5531. stepper.report_positions();
  5532. #if IS_SCARA
  5533. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  5534. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  5535. SERIAL_EOL;
  5536. #endif
  5537. }
  5538. /**
  5539. * M114: Output current position to serial port
  5540. */
  5541. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  5542. /**
  5543. * M115: Capabilities string
  5544. */
  5545. inline void gcode_M115() {
  5546. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  5547. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  5548. // EEPROM (M500, M501)
  5549. #if ENABLED(EEPROM_SETTINGS)
  5550. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  5551. #else
  5552. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  5553. #endif
  5554. // AUTOREPORT_TEMP (M155)
  5555. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  5556. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  5557. #else
  5558. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  5559. #endif
  5560. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  5561. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  5562. // AUTOLEVEL (G29)
  5563. #if HAS_ABL
  5564. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  5565. #else
  5566. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  5567. #endif
  5568. // Z_PROBE (G30)
  5569. #if HAS_BED_PROBE
  5570. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  5571. #else
  5572. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  5573. #endif
  5574. // MESH_REPORT (M420 V)
  5575. #if PLANNER_LEVELING
  5576. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  5577. #else
  5578. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  5579. #endif
  5580. // SOFTWARE_POWER (G30)
  5581. #if HAS_POWER_SWITCH
  5582. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  5583. #else
  5584. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  5585. #endif
  5586. // TOGGLE_LIGHTS (M355)
  5587. #if HAS_CASE_LIGHT
  5588. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  5589. #else
  5590. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  5591. #endif
  5592. // EMERGENCY_PARSER (M108, M112, M410)
  5593. #if ENABLED(EMERGENCY_PARSER)
  5594. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  5595. #else
  5596. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  5597. #endif
  5598. #endif // EXTENDED_CAPABILITIES_REPORT
  5599. }
  5600. /**
  5601. * M117: Set LCD Status Message
  5602. */
  5603. inline void gcode_M117() {
  5604. lcd_setstatus(current_command_args);
  5605. }
  5606. /**
  5607. * M119: Output endstop states to serial output
  5608. */
  5609. inline void gcode_M119() { endstops.M119(); }
  5610. /**
  5611. * M120: Enable endstops and set non-homing endstop state to "enabled"
  5612. */
  5613. inline void gcode_M120() { endstops.enable_globally(true); }
  5614. /**
  5615. * M121: Disable endstops and set non-homing endstop state to "disabled"
  5616. */
  5617. inline void gcode_M121() { endstops.enable_globally(false); }
  5618. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5619. /**
  5620. * M125: Store current position and move to filament change position.
  5621. * Called on pause (by M25) to prevent material leaking onto the
  5622. * object. On resume (M24) the head will be moved back and the
  5623. * print will resume.
  5624. *
  5625. * If Marlin is compiled without SD Card support, M125 can be
  5626. * used directly to pause the print and move to park position,
  5627. * resuming with a button click or M108.
  5628. *
  5629. * L = override retract length
  5630. * X = override X
  5631. * Y = override Y
  5632. * Z = override Z raise
  5633. */
  5634. inline void gcode_M125() {
  5635. if (move_away_flag) return; // already paused
  5636. const bool job_running = print_job_timer.isRunning();
  5637. // there are blocks after this one, or sd printing
  5638. move_away_flag = job_running || planner.blocks_queued()
  5639. #if ENABLED(SDSUPPORT)
  5640. || card.sdprinting
  5641. #endif
  5642. ;
  5643. if (!move_away_flag) return; // nothing to pause
  5644. // M125 can be used to pause a print too
  5645. #if ENABLED(SDSUPPORT)
  5646. card.pauseSDPrint();
  5647. #endif
  5648. print_job_timer.pause();
  5649. // Save current position
  5650. COPY(resume_position, current_position);
  5651. set_destination_to_current();
  5652. // Initial retract before move to filament change position
  5653. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  5654. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5655. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  5656. #endif
  5657. ;
  5658. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5659. // Lift Z axis
  5660. const float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5661. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5662. FILAMENT_CHANGE_Z_ADD
  5663. #else
  5664. 0
  5665. #endif
  5666. ;
  5667. if (z_lift > 0) {
  5668. destination[Z_AXIS] += z_lift;
  5669. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5670. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5671. }
  5672. // Move XY axes to filament change position or given position
  5673. destination[X_AXIS] = code_seen('X') ? code_value_axis_units(X_AXIS) : 0
  5674. #ifdef FILAMENT_CHANGE_X_POS
  5675. + FILAMENT_CHANGE_X_POS
  5676. #endif
  5677. ;
  5678. destination[Y_AXIS] = code_seen('Y') ? code_value_axis_units(Y_AXIS) : 0
  5679. #ifdef FILAMENT_CHANGE_Y_POS
  5680. + FILAMENT_CHANGE_Y_POS
  5681. #endif
  5682. ;
  5683. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  5684. if (active_extruder > 0) {
  5685. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  5686. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  5687. }
  5688. #endif
  5689. clamp_to_software_endstops(destination);
  5690. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5691. set_current_to_destination();
  5692. stepper.synchronize();
  5693. disable_e_steppers();
  5694. #if DISABLED(SDSUPPORT)
  5695. // Wait for lcd click or M108
  5696. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5697. wait_for_user = true;
  5698. while (wait_for_user) idle();
  5699. KEEPALIVE_STATE(IN_HANDLER);
  5700. // Return to print position and continue
  5701. move_back_on_resume();
  5702. if (job_running) print_job_timer.start();
  5703. move_away_flag = false;
  5704. #endif
  5705. }
  5706. #endif // PARK_HEAD_ON_PAUSE
  5707. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  5708. void set_led_color(const uint8_t r, const uint8_t g, const uint8_t b) {
  5709. #if ENABLED(BLINKM)
  5710. // This variant uses i2c to send the RGB components to the device.
  5711. SendColors(r, g, b);
  5712. #else
  5713. // This variant uses 3 separate pins for the RGB components.
  5714. // If the pins can do PWM then their intensity will be set.
  5715. digitalWrite(RGB_LED_R_PIN, r ? HIGH : LOW);
  5716. digitalWrite(RGB_LED_G_PIN, g ? HIGH : LOW);
  5717. digitalWrite(RGB_LED_B_PIN, b ? HIGH : LOW);
  5718. analogWrite(RGB_LED_R_PIN, r);
  5719. analogWrite(RGB_LED_G_PIN, g);
  5720. analogWrite(RGB_LED_B_PIN, b);
  5721. #endif
  5722. }
  5723. /**
  5724. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5725. *
  5726. * Always sets all 3 components. If a component is left out, set to 0.
  5727. *
  5728. * Examples:
  5729. *
  5730. * M150 R255 ; Turn LED red
  5731. * M150 R255 U127 ; Turn LED orange (PWM only)
  5732. * M150 ; Turn LED off
  5733. * M150 R U B ; Turn LED white
  5734. *
  5735. */
  5736. inline void gcode_M150() {
  5737. set_led_color(
  5738. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5739. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5740. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  5741. );
  5742. }
  5743. #endif // BLINKM || RGB_LED
  5744. /**
  5745. * M200: Set filament diameter and set E axis units to cubic units
  5746. *
  5747. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5748. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5749. */
  5750. inline void gcode_M200() {
  5751. if (get_target_extruder_from_command(200)) return;
  5752. if (code_seen('D')) {
  5753. // setting any extruder filament size disables volumetric on the assumption that
  5754. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5755. // for all extruders
  5756. volumetric_enabled = (code_value_linear_units() != 0.0);
  5757. if (volumetric_enabled) {
  5758. filament_size[target_extruder] = code_value_linear_units();
  5759. // make sure all extruders have some sane value for the filament size
  5760. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5761. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5762. }
  5763. }
  5764. else {
  5765. //reserved for setting filament diameter via UFID or filament measuring device
  5766. return;
  5767. }
  5768. calculate_volumetric_multipliers();
  5769. }
  5770. /**
  5771. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5772. *
  5773. * With multiple extruders use T to specify which one.
  5774. */
  5775. inline void gcode_M201() {
  5776. GET_TARGET_EXTRUDER(201);
  5777. LOOP_XYZE(i) {
  5778. if (code_seen(axis_codes[i])) {
  5779. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5780. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units(a);
  5781. }
  5782. }
  5783. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5784. planner.reset_acceleration_rates();
  5785. }
  5786. #if 0 // Not used for Sprinter/grbl gen6
  5787. inline void gcode_M202() {
  5788. LOOP_XYZE(i) {
  5789. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5790. }
  5791. }
  5792. #endif
  5793. /**
  5794. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5795. *
  5796. * With multiple extruders use T to specify which one.
  5797. */
  5798. inline void gcode_M203() {
  5799. GET_TARGET_EXTRUDER(203);
  5800. LOOP_XYZE(i)
  5801. if (code_seen(axis_codes[i])) {
  5802. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5803. planner.max_feedrate_mm_s[a] = code_value_axis_units(a);
  5804. }
  5805. }
  5806. /**
  5807. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5808. *
  5809. * P = Printing moves
  5810. * R = Retract only (no X, Y, Z) moves
  5811. * T = Travel (non printing) moves
  5812. *
  5813. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5814. */
  5815. inline void gcode_M204() {
  5816. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5817. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5818. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5819. }
  5820. if (code_seen('P')) {
  5821. planner.acceleration = code_value_linear_units();
  5822. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5823. }
  5824. if (code_seen('R')) {
  5825. planner.retract_acceleration = code_value_linear_units();
  5826. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5827. }
  5828. if (code_seen('T')) {
  5829. planner.travel_acceleration = code_value_linear_units();
  5830. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5831. }
  5832. }
  5833. /**
  5834. * M205: Set Advanced Settings
  5835. *
  5836. * S = Min Feed Rate (units/s)
  5837. * T = Min Travel Feed Rate (units/s)
  5838. * B = Min Segment Time (µs)
  5839. * X = Max X Jerk (units/sec^2)
  5840. * Y = Max Y Jerk (units/sec^2)
  5841. * Z = Max Z Jerk (units/sec^2)
  5842. * E = Max E Jerk (units/sec^2)
  5843. */
  5844. inline void gcode_M205() {
  5845. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5846. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5847. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5848. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5849. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5850. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5851. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5852. }
  5853. #if DISABLED(NO_WORKSPACE_OFFSETS)
  5854. /**
  5855. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5856. */
  5857. inline void gcode_M206() {
  5858. LOOP_XYZ(i)
  5859. if (code_seen(axis_codes[i]))
  5860. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5861. #if ENABLED(MORGAN_SCARA)
  5862. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5863. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5864. #endif
  5865. SYNC_PLAN_POSITION_KINEMATIC();
  5866. report_current_position();
  5867. }
  5868. #endif // NO_WORKSPACE_OFFSETS
  5869. #if ENABLED(DELTA)
  5870. /**
  5871. * M665: Set delta configurations
  5872. *
  5873. * L = diagonal rod
  5874. * R = delta radius
  5875. * S = segments per second
  5876. * A = Alpha (Tower 1) diagonal rod trim
  5877. * B = Beta (Tower 2) diagonal rod trim
  5878. * C = Gamma (Tower 3) diagonal rod trim
  5879. */
  5880. inline void gcode_M665() {
  5881. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5882. if (code_seen('R')) delta_radius = code_value_linear_units();
  5883. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5884. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  5885. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  5886. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  5887. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  5888. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  5889. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  5890. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5891. }
  5892. /**
  5893. * M666: Set delta endstop adjustment
  5894. */
  5895. inline void gcode_M666() {
  5896. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5897. if (DEBUGGING(LEVELING)) {
  5898. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5899. }
  5900. #endif
  5901. LOOP_XYZ(i) {
  5902. if (code_seen(axis_codes[i])) {
  5903. endstop_adj[i] = code_value_axis_units(i);
  5904. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5905. if (DEBUGGING(LEVELING)) {
  5906. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5907. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5908. }
  5909. #endif
  5910. }
  5911. }
  5912. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5913. if (DEBUGGING(LEVELING)) {
  5914. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5915. }
  5916. #endif
  5917. }
  5918. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5919. /**
  5920. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5921. */
  5922. inline void gcode_M666() {
  5923. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5924. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5925. }
  5926. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5927. #if ENABLED(FWRETRACT)
  5928. /**
  5929. * M207: Set firmware retraction values
  5930. *
  5931. * S[+units] retract_length
  5932. * W[+units] retract_length_swap (multi-extruder)
  5933. * F[units/min] retract_feedrate_mm_s
  5934. * Z[units] retract_zlift
  5935. */
  5936. inline void gcode_M207() {
  5937. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5938. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5939. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5940. #if EXTRUDERS > 1
  5941. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5942. #endif
  5943. }
  5944. /**
  5945. * M208: Set firmware un-retraction values
  5946. *
  5947. * S[+units] retract_recover_length (in addition to M207 S*)
  5948. * W[+units] retract_recover_length_swap (multi-extruder)
  5949. * F[units/min] retract_recover_feedrate_mm_s
  5950. */
  5951. inline void gcode_M208() {
  5952. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5953. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5954. #if EXTRUDERS > 1
  5955. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5956. #endif
  5957. }
  5958. /**
  5959. * M209: Enable automatic retract (M209 S1)
  5960. * For slicers that don't support G10/11, reversed extrude-only
  5961. * moves will be classified as retraction.
  5962. */
  5963. inline void gcode_M209() {
  5964. if (code_seen('S')) {
  5965. autoretract_enabled = code_value_bool();
  5966. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5967. }
  5968. }
  5969. #endif // FWRETRACT
  5970. /**
  5971. * M211: Enable, Disable, and/or Report software endstops
  5972. *
  5973. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5974. */
  5975. inline void gcode_M211() {
  5976. SERIAL_ECHO_START;
  5977. #if HAS_SOFTWARE_ENDSTOPS
  5978. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5979. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5980. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5981. #else
  5982. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5983. SERIAL_ECHOPGM(MSG_OFF);
  5984. #endif
  5985. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5986. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5987. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5988. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5989. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5990. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5991. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5992. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5993. }
  5994. #if HOTENDS > 1
  5995. /**
  5996. * M218 - set hotend offset (in linear units)
  5997. *
  5998. * T<tool>
  5999. * X<xoffset>
  6000. * Y<yoffset>
  6001. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  6002. */
  6003. inline void gcode_M218() {
  6004. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6005. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  6006. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  6007. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6008. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  6009. #endif
  6010. SERIAL_ECHO_START;
  6011. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6012. HOTEND_LOOP() {
  6013. SERIAL_CHAR(' ');
  6014. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6015. SERIAL_CHAR(',');
  6016. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6017. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6018. SERIAL_CHAR(',');
  6019. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6020. #endif
  6021. }
  6022. SERIAL_EOL;
  6023. }
  6024. #endif // HOTENDS > 1
  6025. /**
  6026. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6027. */
  6028. inline void gcode_M220() {
  6029. if (code_seen('S')) feedrate_percentage = code_value_int();
  6030. }
  6031. /**
  6032. * M221: Set extrusion percentage (M221 T0 S95)
  6033. */
  6034. inline void gcode_M221() {
  6035. if (get_target_extruder_from_command(221)) return;
  6036. if (code_seen('S'))
  6037. flow_percentage[target_extruder] = code_value_int();
  6038. }
  6039. /**
  6040. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6041. */
  6042. inline void gcode_M226() {
  6043. if (code_seen('P')) {
  6044. int pin_number = code_value_int(),
  6045. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6046. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6047. int target = LOW;
  6048. stepper.synchronize();
  6049. pinMode(pin_number, INPUT);
  6050. switch (pin_state) {
  6051. case 1:
  6052. target = HIGH;
  6053. break;
  6054. case 0:
  6055. target = LOW;
  6056. break;
  6057. case -1:
  6058. target = !digitalRead(pin_number);
  6059. break;
  6060. }
  6061. while (digitalRead(pin_number) != target) idle();
  6062. } // pin_state -1 0 1 && pin_number > -1
  6063. } // code_seen('P')
  6064. }
  6065. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6066. /**
  6067. * M260: Send data to a I2C slave device
  6068. *
  6069. * This is a PoC, the formating and arguments for the GCODE will
  6070. * change to be more compatible, the current proposal is:
  6071. *
  6072. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6073. *
  6074. * M260 B<byte-1 value in base 10>
  6075. * M260 B<byte-2 value in base 10>
  6076. * M260 B<byte-3 value in base 10>
  6077. *
  6078. * M260 S1 ; Send the buffered data and reset the buffer
  6079. * M260 R1 ; Reset the buffer without sending data
  6080. *
  6081. */
  6082. inline void gcode_M260() {
  6083. // Set the target address
  6084. if (code_seen('A')) i2c.address(code_value_byte());
  6085. // Add a new byte to the buffer
  6086. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6087. // Flush the buffer to the bus
  6088. if (code_seen('S')) i2c.send();
  6089. // Reset and rewind the buffer
  6090. else if (code_seen('R')) i2c.reset();
  6091. }
  6092. /**
  6093. * M261: Request X bytes from I2C slave device
  6094. *
  6095. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6096. */
  6097. inline void gcode_M261() {
  6098. if (code_seen('A')) i2c.address(code_value_byte());
  6099. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6100. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6101. i2c.relay(bytes);
  6102. }
  6103. else {
  6104. SERIAL_ERROR_START;
  6105. SERIAL_ERRORLN("Bad i2c request");
  6106. }
  6107. }
  6108. #endif // EXPERIMENTAL_I2CBUS
  6109. #if HAS_SERVOS
  6110. /**
  6111. * M280: Get or set servo position. P<index> [S<angle>]
  6112. */
  6113. inline void gcode_M280() {
  6114. if (!code_seen('P')) return;
  6115. int servo_index = code_value_int();
  6116. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6117. if (code_seen('S'))
  6118. MOVE_SERVO(servo_index, code_value_int());
  6119. else {
  6120. SERIAL_ECHO_START;
  6121. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6122. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6123. }
  6124. }
  6125. else {
  6126. SERIAL_ERROR_START;
  6127. SERIAL_ECHOPAIR("Servo ", servo_index);
  6128. SERIAL_ECHOLNPGM(" out of range");
  6129. }
  6130. }
  6131. #endif // HAS_SERVOS
  6132. #if HAS_BUZZER
  6133. /**
  6134. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6135. */
  6136. inline void gcode_M300() {
  6137. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6138. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6139. // Limits the tone duration to 0-5 seconds.
  6140. NOMORE(duration, 5000);
  6141. BUZZ(duration, frequency);
  6142. }
  6143. #endif // HAS_BUZZER
  6144. #if ENABLED(PIDTEMP)
  6145. /**
  6146. * M301: Set PID parameters P I D (and optionally C, L)
  6147. *
  6148. * P[float] Kp term
  6149. * I[float] Ki term (unscaled)
  6150. * D[float] Kd term (unscaled)
  6151. *
  6152. * With PID_EXTRUSION_SCALING:
  6153. *
  6154. * C[float] Kc term
  6155. * L[float] LPQ length
  6156. */
  6157. inline void gcode_M301() {
  6158. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6159. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6160. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6161. if (e < HOTENDS) { // catch bad input value
  6162. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6163. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6164. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6165. #if ENABLED(PID_EXTRUSION_SCALING)
  6166. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6167. if (code_seen('L')) lpq_len = code_value_float();
  6168. NOMORE(lpq_len, LPQ_MAX_LEN);
  6169. #endif
  6170. thermalManager.updatePID();
  6171. SERIAL_ECHO_START;
  6172. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6173. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6174. #endif // PID_PARAMS_PER_HOTEND
  6175. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6176. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6177. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6178. #if ENABLED(PID_EXTRUSION_SCALING)
  6179. //Kc does not have scaling applied above, or in resetting defaults
  6180. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6181. #endif
  6182. SERIAL_EOL;
  6183. }
  6184. else {
  6185. SERIAL_ERROR_START;
  6186. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6187. }
  6188. }
  6189. #endif // PIDTEMP
  6190. #if ENABLED(PIDTEMPBED)
  6191. inline void gcode_M304() {
  6192. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6193. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6194. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6195. thermalManager.updatePID();
  6196. SERIAL_ECHO_START;
  6197. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6198. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6199. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6200. }
  6201. #endif // PIDTEMPBED
  6202. #if defined(CHDK) || HAS_PHOTOGRAPH
  6203. /**
  6204. * M240: Trigger a camera by emulating a Canon RC-1
  6205. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6206. */
  6207. inline void gcode_M240() {
  6208. #ifdef CHDK
  6209. OUT_WRITE(CHDK, HIGH);
  6210. chdkHigh = millis();
  6211. chdkActive = true;
  6212. #elif HAS_PHOTOGRAPH
  6213. const uint8_t NUM_PULSES = 16;
  6214. const float PULSE_LENGTH = 0.01524;
  6215. for (int i = 0; i < NUM_PULSES; i++) {
  6216. WRITE(PHOTOGRAPH_PIN, HIGH);
  6217. _delay_ms(PULSE_LENGTH);
  6218. WRITE(PHOTOGRAPH_PIN, LOW);
  6219. _delay_ms(PULSE_LENGTH);
  6220. }
  6221. delay(7.33);
  6222. for (int i = 0; i < NUM_PULSES; i++) {
  6223. WRITE(PHOTOGRAPH_PIN, HIGH);
  6224. _delay_ms(PULSE_LENGTH);
  6225. WRITE(PHOTOGRAPH_PIN, LOW);
  6226. _delay_ms(PULSE_LENGTH);
  6227. }
  6228. #endif // !CHDK && HAS_PHOTOGRAPH
  6229. }
  6230. #endif // CHDK || PHOTOGRAPH_PIN
  6231. #if HAS_LCD_CONTRAST
  6232. /**
  6233. * M250: Read and optionally set the LCD contrast
  6234. */
  6235. inline void gcode_M250() {
  6236. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6237. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6238. SERIAL_PROTOCOL(lcd_contrast);
  6239. SERIAL_EOL;
  6240. }
  6241. #endif // HAS_LCD_CONTRAST
  6242. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6243. /**
  6244. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6245. *
  6246. * S<temperature> sets the minimum extrude temperature
  6247. * P<bool> enables (1) or disables (0) cold extrusion
  6248. *
  6249. * Examples:
  6250. *
  6251. * M302 ; report current cold extrusion state
  6252. * M302 P0 ; enable cold extrusion checking
  6253. * M302 P1 ; disables cold extrusion checking
  6254. * M302 S0 ; always allow extrusion (disables checking)
  6255. * M302 S170 ; only allow extrusion above 170
  6256. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6257. */
  6258. inline void gcode_M302() {
  6259. bool seen_S = code_seen('S');
  6260. if (seen_S) {
  6261. thermalManager.extrude_min_temp = code_value_temp_abs();
  6262. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6263. }
  6264. if (code_seen('P'))
  6265. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6266. else if (!seen_S) {
  6267. // Report current state
  6268. SERIAL_ECHO_START;
  6269. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6270. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6271. SERIAL_ECHOLNPGM("C)");
  6272. }
  6273. }
  6274. #endif // PREVENT_COLD_EXTRUSION
  6275. /**
  6276. * M303: PID relay autotune
  6277. *
  6278. * S<temperature> sets the target temperature. (default 150C)
  6279. * E<extruder> (-1 for the bed) (default 0)
  6280. * C<cycles>
  6281. * U<bool> with a non-zero value will apply the result to current settings
  6282. */
  6283. inline void gcode_M303() {
  6284. #if HAS_PID_HEATING
  6285. int e = code_seen('E') ? code_value_int() : 0;
  6286. int c = code_seen('C') ? code_value_int() : 5;
  6287. bool u = code_seen('U') && code_value_bool();
  6288. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6289. if (WITHIN(e, 0, HOTENDS - 1))
  6290. target_extruder = e;
  6291. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6292. thermalManager.PID_autotune(temp, e, c, u);
  6293. KEEPALIVE_STATE(IN_HANDLER);
  6294. #else
  6295. SERIAL_ERROR_START;
  6296. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6297. #endif
  6298. }
  6299. #if ENABLED(MORGAN_SCARA)
  6300. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6301. if (IsRunning()) {
  6302. forward_kinematics_SCARA(delta_a, delta_b);
  6303. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6304. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6305. destination[Z_AXIS] = current_position[Z_AXIS];
  6306. prepare_move_to_destination();
  6307. return true;
  6308. }
  6309. return false;
  6310. }
  6311. /**
  6312. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6313. */
  6314. inline bool gcode_M360() {
  6315. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6316. return SCARA_move_to_cal(0, 120);
  6317. }
  6318. /**
  6319. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6320. */
  6321. inline bool gcode_M361() {
  6322. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6323. return SCARA_move_to_cal(90, 130);
  6324. }
  6325. /**
  6326. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6327. */
  6328. inline bool gcode_M362() {
  6329. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6330. return SCARA_move_to_cal(60, 180);
  6331. }
  6332. /**
  6333. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6334. */
  6335. inline bool gcode_M363() {
  6336. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6337. return SCARA_move_to_cal(50, 90);
  6338. }
  6339. /**
  6340. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6341. */
  6342. inline bool gcode_M364() {
  6343. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6344. return SCARA_move_to_cal(45, 135);
  6345. }
  6346. #endif // SCARA
  6347. #if ENABLED(EXT_SOLENOID)
  6348. void enable_solenoid(uint8_t num) {
  6349. switch (num) {
  6350. case 0:
  6351. OUT_WRITE(SOL0_PIN, HIGH);
  6352. break;
  6353. #if HAS_SOLENOID_1
  6354. case 1:
  6355. OUT_WRITE(SOL1_PIN, HIGH);
  6356. break;
  6357. #endif
  6358. #if HAS_SOLENOID_2
  6359. case 2:
  6360. OUT_WRITE(SOL2_PIN, HIGH);
  6361. break;
  6362. #endif
  6363. #if HAS_SOLENOID_3
  6364. case 3:
  6365. OUT_WRITE(SOL3_PIN, HIGH);
  6366. break;
  6367. #endif
  6368. default:
  6369. SERIAL_ECHO_START;
  6370. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6371. break;
  6372. }
  6373. }
  6374. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6375. void disable_all_solenoids() {
  6376. OUT_WRITE(SOL0_PIN, LOW);
  6377. OUT_WRITE(SOL1_PIN, LOW);
  6378. OUT_WRITE(SOL2_PIN, LOW);
  6379. OUT_WRITE(SOL3_PIN, LOW);
  6380. }
  6381. /**
  6382. * M380: Enable solenoid on the active extruder
  6383. */
  6384. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6385. /**
  6386. * M381: Disable all solenoids
  6387. */
  6388. inline void gcode_M381() { disable_all_solenoids(); }
  6389. #endif // EXT_SOLENOID
  6390. /**
  6391. * M400: Finish all moves
  6392. */
  6393. inline void gcode_M400() { stepper.synchronize(); }
  6394. #if HAS_BED_PROBE
  6395. /**
  6396. * M401: Engage Z Servo endstop if available
  6397. */
  6398. inline void gcode_M401() { DEPLOY_PROBE(); }
  6399. /**
  6400. * M402: Retract Z Servo endstop if enabled
  6401. */
  6402. inline void gcode_M402() { STOW_PROBE(); }
  6403. #endif // HAS_BED_PROBE
  6404. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6405. /**
  6406. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6407. */
  6408. inline void gcode_M404() {
  6409. if (code_seen('W')) {
  6410. filament_width_nominal = code_value_linear_units();
  6411. }
  6412. else {
  6413. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6414. SERIAL_PROTOCOLLN(filament_width_nominal);
  6415. }
  6416. }
  6417. /**
  6418. * M405: Turn on filament sensor for control
  6419. */
  6420. inline void gcode_M405() {
  6421. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6422. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6423. if (code_seen('D')) meas_delay_cm = code_value_int();
  6424. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6425. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6426. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  6427. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6428. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  6429. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6430. }
  6431. filament_sensor = true;
  6432. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6433. //SERIAL_PROTOCOL(filament_width_meas);
  6434. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6435. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6436. }
  6437. /**
  6438. * M406: Turn off filament sensor for control
  6439. */
  6440. inline void gcode_M406() { filament_sensor = false; }
  6441. /**
  6442. * M407: Get measured filament diameter on serial output
  6443. */
  6444. inline void gcode_M407() {
  6445. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6446. SERIAL_PROTOCOLLN(filament_width_meas);
  6447. }
  6448. #endif // FILAMENT_WIDTH_SENSOR
  6449. void quickstop_stepper() {
  6450. stepper.quick_stop();
  6451. stepper.synchronize();
  6452. set_current_from_steppers_for_axis(ALL_AXES);
  6453. SYNC_PLAN_POSITION_KINEMATIC();
  6454. }
  6455. #if PLANNER_LEVELING
  6456. /**
  6457. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6458. *
  6459. * S[bool] Turns leveling on or off
  6460. * Z[height] Sets the Z fade height (0 or none to disable)
  6461. * V[bool] Verbose - Print the leveling grid
  6462. *
  6463. * With AUTO_BED_LEVELING_UBL only:
  6464. *
  6465. * L[index] Load UBL mesh from index (0 is default)
  6466. */
  6467. inline void gcode_M420() {
  6468. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6469. // L to load a mesh from the EEPROM
  6470. if (code_seen('L')) {
  6471. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  6472. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  6473. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  6474. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  6475. return;
  6476. }
  6477. ubl.load_mesh(storage_slot);
  6478. if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state();
  6479. ubl.state.eeprom_storage_slot = storage_slot;
  6480. }
  6481. #endif // AUTO_BED_LEVELING_UBL
  6482. // V to print the matrix or mesh
  6483. if (code_seen('V')) {
  6484. #if ABL_PLANAR
  6485. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  6486. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6487. if (bilinear_grid_spacing[X_AXIS]) {
  6488. print_bilinear_leveling_grid();
  6489. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6490. bed_level_virt_print();
  6491. #endif
  6492. }
  6493. #elif ENABLED(MESH_BED_LEVELING)
  6494. if (mbl.has_mesh()) {
  6495. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  6496. mbl_mesh_report();
  6497. }
  6498. #endif
  6499. }
  6500. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6501. // L to load a mesh from the EEPROM
  6502. if (code_seen('L') || code_seen('V')) {
  6503. ubl.display_map(0); // Currently only supports one map type
  6504. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  6505. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  6506. }
  6507. #endif
  6508. bool to_enable = false;
  6509. if (code_seen('S')) {
  6510. to_enable = code_value_bool();
  6511. set_bed_leveling_enabled(to_enable);
  6512. }
  6513. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  6514. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  6515. #endif
  6516. const bool new_status =
  6517. #if ENABLED(MESH_BED_LEVELING)
  6518. mbl.active()
  6519. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6520. ubl.state.active
  6521. #else
  6522. planner.abl_enabled
  6523. #endif
  6524. ;
  6525. if (to_enable && !new_status) {
  6526. SERIAL_ERROR_START;
  6527. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  6528. }
  6529. SERIAL_ECHO_START;
  6530. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  6531. }
  6532. #endif
  6533. #if ENABLED(MESH_BED_LEVELING)
  6534. /**
  6535. * M421: Set a single Mesh Bed Leveling Z coordinate
  6536. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  6537. */
  6538. inline void gcode_M421() {
  6539. int8_t px = 0, py = 0;
  6540. float z = 0;
  6541. bool hasX, hasY, hasZ, hasI, hasJ;
  6542. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  6543. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  6544. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6545. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6546. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6547. if (hasX && hasY && hasZ) {
  6548. if (px >= 0 && py >= 0)
  6549. mbl.set_z(px, py, z);
  6550. else {
  6551. SERIAL_ERROR_START;
  6552. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6553. }
  6554. }
  6555. else if (hasI && hasJ && hasZ) {
  6556. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1))
  6557. mbl.set_z(px, py, z);
  6558. else {
  6559. SERIAL_ERROR_START;
  6560. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6561. }
  6562. }
  6563. else {
  6564. SERIAL_ERROR_START;
  6565. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6566. }
  6567. }
  6568. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6569. /**
  6570. * M421: Set a single Mesh Bed Leveling Z coordinate
  6571. *
  6572. * M421 I<xindex> J<yindex> Z<linear>
  6573. */
  6574. inline void gcode_M421() {
  6575. int8_t px = 0, py = 0;
  6576. float z = 0;
  6577. bool hasI, hasJ, hasZ;
  6578. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6579. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6580. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6581. if (hasI && hasJ && hasZ) {
  6582. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) {
  6583. bed_level_grid[px][py] = z;
  6584. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6585. bed_level_virt_interpolate();
  6586. #endif
  6587. }
  6588. else {
  6589. SERIAL_ERROR_START;
  6590. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6591. }
  6592. }
  6593. else {
  6594. SERIAL_ERROR_START;
  6595. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6596. }
  6597. }
  6598. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6599. /**
  6600. * M421: Set a single Mesh Bed Leveling Z coordinate
  6601. *
  6602. * M421 I<xindex> J<yindex> Z<linear>
  6603. */
  6604. inline void gcode_M421() {
  6605. int8_t px = 0, py = 0;
  6606. float z = 0;
  6607. bool hasI, hasJ, hasZ;
  6608. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6609. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6610. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6611. if (hasI && hasJ && hasZ) {
  6612. if (WITHIN(px, 0, GRID_MAX_POINTS_Y - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  6613. ubl.z_values[px][py] = z;
  6614. }
  6615. else {
  6616. SERIAL_ERROR_START;
  6617. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6618. }
  6619. }
  6620. else {
  6621. SERIAL_ERROR_START;
  6622. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6623. }
  6624. }
  6625. #endif
  6626. #if DISABLED(NO_WORKSPACE_OFFSETS)
  6627. /**
  6628. * M428: Set home_offset based on the distance between the
  6629. * current_position and the nearest "reference point."
  6630. * If an axis is past center its endstop position
  6631. * is the reference-point. Otherwise it uses 0. This allows
  6632. * the Z offset to be set near the bed when using a max endstop.
  6633. *
  6634. * M428 can't be used more than 2cm away from 0 or an endstop.
  6635. *
  6636. * Use M206 to set these values directly.
  6637. */
  6638. inline void gcode_M428() {
  6639. bool err = false;
  6640. LOOP_XYZ(i) {
  6641. if (axis_homed[i]) {
  6642. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  6643. diff = current_position[i] - LOGICAL_POSITION(base, i);
  6644. if (WITHIN(diff, -20, 20)) {
  6645. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  6646. }
  6647. else {
  6648. SERIAL_ERROR_START;
  6649. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  6650. LCD_ALERTMESSAGEPGM("Err: Too far!");
  6651. BUZZ(200, 40);
  6652. err = true;
  6653. break;
  6654. }
  6655. }
  6656. }
  6657. if (!err) {
  6658. SYNC_PLAN_POSITION_KINEMATIC();
  6659. report_current_position();
  6660. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  6661. BUZZ(100, 659);
  6662. BUZZ(100, 698);
  6663. }
  6664. }
  6665. #endif // NO_WORKSPACE_OFFSETS
  6666. /**
  6667. * M500: Store settings in EEPROM
  6668. */
  6669. inline void gcode_M500() {
  6670. (void)Config_StoreSettings();
  6671. }
  6672. /**
  6673. * M501: Read settings from EEPROM
  6674. */
  6675. inline void gcode_M501() {
  6676. (void)Config_RetrieveSettings();
  6677. }
  6678. /**
  6679. * M502: Revert to default settings
  6680. */
  6681. inline void gcode_M502() {
  6682. (void)Config_ResetDefault();
  6683. }
  6684. /**
  6685. * M503: print settings currently in memory
  6686. */
  6687. inline void gcode_M503() {
  6688. (void)Config_PrintSettings(code_seen('S') && !code_value_bool());
  6689. }
  6690. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6691. /**
  6692. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  6693. */
  6694. inline void gcode_M540() {
  6695. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  6696. }
  6697. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6698. #if HAS_BED_PROBE
  6699. inline void gcode_M851() {
  6700. SERIAL_ECHO_START;
  6701. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  6702. SERIAL_CHAR(' ');
  6703. if (code_seen('Z')) {
  6704. float value = code_value_axis_units(Z_AXIS);
  6705. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  6706. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6707. // Correct bilinear grid for new probe offset
  6708. const float diff = value - zprobe_zoffset;
  6709. if (diff) {
  6710. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  6711. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  6712. bed_level_grid[x][y] += diff;
  6713. }
  6714. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6715. bed_level_virt_interpolate();
  6716. #endif
  6717. #endif
  6718. zprobe_zoffset = value;
  6719. SERIAL_ECHO(zprobe_zoffset);
  6720. }
  6721. else {
  6722. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  6723. SERIAL_CHAR(' ');
  6724. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  6725. }
  6726. }
  6727. else {
  6728. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  6729. }
  6730. SERIAL_EOL;
  6731. }
  6732. #endif // HAS_BED_PROBE
  6733. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6734. void filament_change_beep(const bool init=false) {
  6735. static millis_t next_buzz = 0;
  6736. static uint16_t runout_beep = 0;
  6737. if (init) next_buzz = runout_beep = 0;
  6738. const millis_t ms = millis();
  6739. if (ELAPSED(ms, next_buzz)) {
  6740. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  6741. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  6742. BUZZ(300, 2000);
  6743. runout_beep++;
  6744. }
  6745. }
  6746. }
  6747. static bool busy_doing_M600 = false;
  6748. /**
  6749. * M600: Pause for filament change
  6750. *
  6751. * E[distance] - Retract the filament this far (negative value)
  6752. * Z[distance] - Move the Z axis by this distance
  6753. * X[position] - Move to this X position, with Y
  6754. * Y[position] - Move to this Y position, with X
  6755. * L[distance] - Retract distance for removal (manual reload)
  6756. *
  6757. * Default values are used for omitted arguments.
  6758. *
  6759. */
  6760. inline void gcode_M600() {
  6761. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  6762. SERIAL_ERROR_START;
  6763. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  6764. return;
  6765. }
  6766. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  6767. // Pause the print job timer
  6768. const bool job_running = print_job_timer.isRunning();
  6769. print_job_timer.pause();
  6770. // Show initial message and wait for synchronize steppers
  6771. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  6772. stepper.synchronize();
  6773. // Save current position of all axes
  6774. float lastpos[XYZE];
  6775. COPY(lastpos, current_position);
  6776. set_destination_to_current();
  6777. // Initial retract before move to filament change position
  6778. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  6779. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6780. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6781. #endif
  6782. ;
  6783. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6784. // Lift Z axis
  6785. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  6786. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6787. FILAMENT_CHANGE_Z_ADD
  6788. #else
  6789. 0
  6790. #endif
  6791. ;
  6792. if (z_lift > 0) {
  6793. destination[Z_AXIS] += z_lift;
  6794. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6795. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6796. }
  6797. // Move XY axes to filament exchange position
  6798. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  6799. #ifdef FILAMENT_CHANGE_X_POS
  6800. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  6801. #endif
  6802. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  6803. #ifdef FILAMENT_CHANGE_Y_POS
  6804. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  6805. #endif
  6806. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6807. stepper.synchronize();
  6808. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  6809. idle();
  6810. // Unload filament
  6811. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6812. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  6813. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  6814. #endif
  6815. ;
  6816. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  6817. // Synchronize steppers and then disable extruders steppers for manual filament changing
  6818. stepper.synchronize();
  6819. disable_e_steppers();
  6820. safe_delay(100);
  6821. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  6822. bool nozzle_timed_out = false;
  6823. float temps[4];
  6824. // Wait for filament insert by user and press button
  6825. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6826. #if HAS_BUZZER
  6827. filament_change_beep(true);
  6828. #endif
  6829. idle();
  6830. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  6831. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6832. wait_for_user = true; // LCD click or M108 will clear this
  6833. while (wait_for_user) {
  6834. if (nozzle_timed_out)
  6835. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6836. #if HAS_BUZZER
  6837. filament_change_beep();
  6838. #endif
  6839. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  6840. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  6841. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  6842. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6843. }
  6844. idle(true);
  6845. }
  6846. KEEPALIVE_STATE(IN_HANDLER);
  6847. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  6848. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  6849. // Show "wait for heating"
  6850. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  6851. wait_for_heatup = true;
  6852. while (wait_for_heatup) {
  6853. idle();
  6854. wait_for_heatup = false;
  6855. HOTEND_LOOP() {
  6856. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  6857. wait_for_heatup = true;
  6858. break;
  6859. }
  6860. }
  6861. }
  6862. // Show "insert filament"
  6863. if (nozzle_timed_out)
  6864. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6865. #if HAS_BUZZER
  6866. filament_change_beep(true);
  6867. #endif
  6868. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6869. wait_for_user = true; // LCD click or M108 will clear this
  6870. while (wait_for_user && nozzle_timed_out) {
  6871. #if HAS_BUZZER
  6872. filament_change_beep();
  6873. #endif
  6874. idle(true);
  6875. }
  6876. KEEPALIVE_STATE(IN_HANDLER);
  6877. // Show "load" message
  6878. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  6879. // Load filament
  6880. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  6881. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  6882. + FILAMENT_CHANGE_LOAD_LENGTH
  6883. #endif
  6884. ;
  6885. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  6886. stepper.synchronize();
  6887. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  6888. do {
  6889. // "Wait for filament extrude"
  6890. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  6891. // Extrude filament to get into hotend
  6892. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  6893. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  6894. stepper.synchronize();
  6895. // Show "Extrude More" / "Resume" menu and wait for reply
  6896. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6897. wait_for_user = false;
  6898. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  6899. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  6900. KEEPALIVE_STATE(IN_HANDLER);
  6901. // Keep looping if "Extrude More" was selected
  6902. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  6903. #endif
  6904. // "Wait for print to resume"
  6905. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  6906. // Set extruder to saved position
  6907. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6908. planner.set_e_position_mm(current_position[E_AXIS]);
  6909. #if IS_KINEMATIC
  6910. // Move XYZ to starting position
  6911. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6912. #else
  6913. // Move XY to starting position, then Z
  6914. destination[X_AXIS] = lastpos[X_AXIS];
  6915. destination[Y_AXIS] = lastpos[Y_AXIS];
  6916. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6917. destination[Z_AXIS] = lastpos[Z_AXIS];
  6918. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6919. #endif
  6920. stepper.synchronize();
  6921. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6922. filament_ran_out = false;
  6923. #endif
  6924. // Show status screen
  6925. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6926. // Resume the print job timer if it was running
  6927. if (job_running) print_job_timer.start();
  6928. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  6929. }
  6930. #endif // FILAMENT_CHANGE_FEATURE
  6931. #if ENABLED(DUAL_X_CARRIAGE)
  6932. /**
  6933. * M605: Set dual x-carriage movement mode
  6934. *
  6935. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6936. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6937. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6938. * units x-offset and an optional differential hotend temperature of
  6939. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6940. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6941. *
  6942. * Note: the X axis should be homed after changing dual x-carriage mode.
  6943. */
  6944. inline void gcode_M605() {
  6945. stepper.synchronize();
  6946. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6947. switch (dual_x_carriage_mode) {
  6948. case DXC_FULL_CONTROL_MODE:
  6949. case DXC_AUTO_PARK_MODE:
  6950. break;
  6951. case DXC_DUPLICATION_MODE:
  6952. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6953. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6954. SERIAL_ECHO_START;
  6955. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6956. SERIAL_CHAR(' ');
  6957. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6958. SERIAL_CHAR(',');
  6959. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6960. SERIAL_CHAR(' ');
  6961. SERIAL_ECHO(duplicate_extruder_x_offset);
  6962. SERIAL_CHAR(',');
  6963. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6964. break;
  6965. default:
  6966. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6967. break;
  6968. }
  6969. active_extruder_parked = false;
  6970. extruder_duplication_enabled = false;
  6971. delayed_move_time = 0;
  6972. }
  6973. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  6974. inline void gcode_M605() {
  6975. stepper.synchronize();
  6976. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  6977. SERIAL_ECHO_START;
  6978. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  6979. }
  6980. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  6981. #if ENABLED(LIN_ADVANCE)
  6982. /**
  6983. * M905: Set advance factor
  6984. */
  6985. inline void gcode_M905() {
  6986. stepper.synchronize();
  6987. const float newK = code_seen('K') ? code_value_float() : -1,
  6988. newD = code_seen('D') ? code_value_float() : -1,
  6989. newW = code_seen('W') ? code_value_float() : -1,
  6990. newH = code_seen('H') ? code_value_float() : -1;
  6991. if (newK >= 0.0) planner.set_extruder_advance_k(newK);
  6992. SERIAL_ECHO_START;
  6993. SERIAL_ECHOLNPAIR("Advance factor: ", planner.get_extruder_advance_k());
  6994. if (newD >= 0 || newW >= 0 || newH >= 0) {
  6995. const float ratio = (!newD || !newW || !newH) ? 0 : (newW * newH) / (sq(newD * 0.5) * M_PI);
  6996. planner.set_advance_ed_ratio(ratio);
  6997. SERIAL_ECHO_START;
  6998. SERIAL_ECHOPGM("E/D ratio: ");
  6999. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Automatic");
  7000. }
  7001. }
  7002. #endif // LIN_ADVANCE
  7003. #if ENABLED(HAVE_TMC2130)
  7004. static void tmc2130_print_current(const int mA, const char name) {
  7005. SERIAL_CHAR(name);
  7006. SERIAL_ECHOPGM(" axis driver current: ");
  7007. SERIAL_ECHOLN(mA);
  7008. }
  7009. static void tmc2130_set_current(const int mA, TMC2130Stepper &st, const char name) {
  7010. tmc2130_print_current(mA, name);
  7011. st.setCurrent(mA, 0.11, 0.5);
  7012. }
  7013. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7014. tmc2130_print_current(st.getCurrent(), name);
  7015. }
  7016. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7017. SERIAL_CHAR(name);
  7018. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7019. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7020. }
  7021. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7022. st.clear_otpw();
  7023. SERIAL_CHAR(name);
  7024. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7025. }
  7026. /**
  7027. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7028. *
  7029. * Report driver currents when no axis specified
  7030. */
  7031. inline void gcode_M906() {
  7032. uint16_t values[XYZE];
  7033. LOOP_XYZE(i)
  7034. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7035. #if ENABLED(X_IS_TMC2130)
  7036. if (values[X_AXIS]) tmc2130_set_current(values[X_AXIS], stepperX, 'X');
  7037. else tmc2130_get_current(stepperX, 'X');
  7038. #endif
  7039. #if ENABLED(Y_IS_TMC2130)
  7040. if (values[Y_AXIS]) tmc2130_set_current(values[Y_AXIS], stepperY, 'Y');
  7041. else tmc2130_get_current(stepperY, 'Y');
  7042. #endif
  7043. #if ENABLED(Z_IS_TMC2130)
  7044. if (values[Z_AXIS]) tmc2130_set_current(values[Z_AXIS], stepperZ, 'Z');
  7045. else tmc2130_get_current(stepperZ, 'Z');
  7046. #endif
  7047. #if ENABLED(E0_IS_TMC2130)
  7048. if (values[E_AXIS]) tmc2130_set_current(values[E_AXIS], stepperE0, 'E');
  7049. else tmc2130_get_current(stepperE0, 'E');
  7050. #endif
  7051. }
  7052. /**
  7053. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7054. * The flag is held by the library and persist until manually cleared by M912
  7055. */
  7056. inline void gcode_M911() {
  7057. #if ENABLED(X_IS_TMC2130)
  7058. tmc2130_report_otpw(stepperX, 'X');
  7059. #endif
  7060. #if ENABLED(Y_IS_TMC2130)
  7061. tmc2130_report_otpw(stepperY, 'Y');
  7062. #endif
  7063. #if ENABLED(Z_IS_TMC2130)
  7064. tmc2130_report_otpw(stepperZ, 'Z');
  7065. #endif
  7066. #if ENABLED(E0_IS_TMC2130)
  7067. tmc2130_report_otpw(stepperE0, 'E');
  7068. #endif
  7069. }
  7070. /**
  7071. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7072. */
  7073. inline void gcode_M912() {
  7074. #if ENABLED(X_IS_TMC2130)
  7075. if (code_seen('X')) tmc2130_clear_otpw(stepperX, 'X');
  7076. #endif
  7077. #if ENABLED(Y_IS_TMC2130)
  7078. if (code_seen('Y')) tmc2130_clear_otpw(stepperY, 'Y');
  7079. #endif
  7080. #if ENABLED(Z_IS_TMC2130)
  7081. if (code_seen('Z')) tmc2130_clear_otpw(stepperZ, 'Z');
  7082. #endif
  7083. #if ENABLED(E0_IS_TMC2130)
  7084. if (code_seen('E')) tmc2130_clear_otpw(stepperE0, 'E');
  7085. #endif
  7086. }
  7087. #endif // HAVE_TMC2130
  7088. /**
  7089. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7090. */
  7091. inline void gcode_M907() {
  7092. #if HAS_DIGIPOTSS
  7093. LOOP_XYZE(i)
  7094. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7095. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7096. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7097. #elif HAS_MOTOR_CURRENT_PWM
  7098. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7099. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7100. #endif
  7101. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7102. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7103. #endif
  7104. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7105. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7106. #endif
  7107. #endif
  7108. #if ENABLED(DIGIPOT_I2C)
  7109. // this one uses actual amps in floating point
  7110. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7111. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7112. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7113. #endif
  7114. #if ENABLED(DAC_STEPPER_CURRENT)
  7115. if (code_seen('S')) {
  7116. float dac_percent = code_value_float();
  7117. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7118. }
  7119. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7120. #endif
  7121. }
  7122. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7123. /**
  7124. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7125. */
  7126. inline void gcode_M908() {
  7127. #if HAS_DIGIPOTSS
  7128. stepper.digitalPotWrite(
  7129. code_seen('P') ? code_value_int() : 0,
  7130. code_seen('S') ? code_value_int() : 0
  7131. );
  7132. #endif
  7133. #ifdef DAC_STEPPER_CURRENT
  7134. dac_current_raw(
  7135. code_seen('P') ? code_value_byte() : -1,
  7136. code_seen('S') ? code_value_ushort() : 0
  7137. );
  7138. #endif
  7139. }
  7140. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7141. inline void gcode_M909() { dac_print_values(); }
  7142. inline void gcode_M910() { dac_commit_eeprom(); }
  7143. #endif
  7144. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7145. #if HAS_MICROSTEPS
  7146. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7147. inline void gcode_M350() {
  7148. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7149. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7150. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7151. stepper.microstep_readings();
  7152. }
  7153. /**
  7154. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7155. * S# determines MS1 or MS2, X# sets the pin high/low.
  7156. */
  7157. inline void gcode_M351() {
  7158. if (code_seen('S')) switch (code_value_byte()) {
  7159. case 1:
  7160. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7161. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7162. break;
  7163. case 2:
  7164. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7165. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7166. break;
  7167. }
  7168. stepper.microstep_readings();
  7169. }
  7170. #endif // HAS_MICROSTEPS
  7171. #if HAS_CASE_LIGHT
  7172. uint8_t case_light_brightness = 255;
  7173. void update_case_light() {
  7174. digitalWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7175. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7176. }
  7177. #endif // HAS_CASE_LIGHT
  7178. /**
  7179. * M355: Turn case lights on/off and set brightness
  7180. *
  7181. * S<bool> Turn case light on or off
  7182. * P<byte> Set case light brightness (PWM pin required)
  7183. */
  7184. inline void gcode_M355() {
  7185. #if HAS_CASE_LIGHT
  7186. if (code_seen('P')) case_light_brightness = code_value_byte();
  7187. if (code_seen('S')) case_light_on = code_value_bool();
  7188. update_case_light();
  7189. SERIAL_ECHO_START;
  7190. SERIAL_ECHOPGM("Case lights ");
  7191. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7192. #else
  7193. SERIAL_ERROR_START;
  7194. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7195. #endif // HAS_CASE_LIGHT
  7196. }
  7197. #if ENABLED(MIXING_EXTRUDER)
  7198. /**
  7199. * M163: Set a single mix factor for a mixing extruder
  7200. * This is called "weight" by some systems.
  7201. *
  7202. * S[index] The channel index to set
  7203. * P[float] The mix value
  7204. *
  7205. */
  7206. inline void gcode_M163() {
  7207. int mix_index = code_seen('S') ? code_value_int() : 0;
  7208. if (mix_index < MIXING_STEPPERS) {
  7209. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7210. NOLESS(mix_value, 0.0);
  7211. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7212. }
  7213. }
  7214. #if MIXING_VIRTUAL_TOOLS > 1
  7215. /**
  7216. * M164: Store the current mix factors as a virtual tool.
  7217. *
  7218. * S[index] The virtual tool to store
  7219. *
  7220. */
  7221. inline void gcode_M164() {
  7222. int tool_index = code_seen('S') ? code_value_int() : 0;
  7223. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7224. normalize_mix();
  7225. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7226. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7227. }
  7228. }
  7229. #endif
  7230. #if ENABLED(DIRECT_MIXING_IN_G1)
  7231. /**
  7232. * M165: Set multiple mix factors for a mixing extruder.
  7233. * Factors that are left out will be set to 0.
  7234. * All factors together must add up to 1.0.
  7235. *
  7236. * A[factor] Mix factor for extruder stepper 1
  7237. * B[factor] Mix factor for extruder stepper 2
  7238. * C[factor] Mix factor for extruder stepper 3
  7239. * D[factor] Mix factor for extruder stepper 4
  7240. * H[factor] Mix factor for extruder stepper 5
  7241. * I[factor] Mix factor for extruder stepper 6
  7242. *
  7243. */
  7244. inline void gcode_M165() { gcode_get_mix(); }
  7245. #endif
  7246. #endif // MIXING_EXTRUDER
  7247. /**
  7248. * M999: Restart after being stopped
  7249. *
  7250. * Default behaviour is to flush the serial buffer and request
  7251. * a resend to the host starting on the last N line received.
  7252. *
  7253. * Sending "M999 S1" will resume printing without flushing the
  7254. * existing command buffer.
  7255. *
  7256. */
  7257. inline void gcode_M999() {
  7258. Running = true;
  7259. lcd_reset_alert_level();
  7260. if (code_seen('S') && code_value_bool()) return;
  7261. // gcode_LastN = Stopped_gcode_LastN;
  7262. FlushSerialRequestResend();
  7263. }
  7264. #if ENABLED(SWITCHING_EXTRUDER)
  7265. inline void move_extruder_servo(uint8_t e) {
  7266. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7267. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7268. safe_delay(500);
  7269. }
  7270. #endif
  7271. inline void invalid_extruder_error(const uint8_t &e) {
  7272. SERIAL_ECHO_START;
  7273. SERIAL_CHAR('T');
  7274. SERIAL_ECHO_F(e, DEC);
  7275. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7276. }
  7277. /**
  7278. * Perform a tool-change, which may result in moving the
  7279. * previous tool out of the way and the new tool into place.
  7280. */
  7281. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7282. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7283. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7284. return invalid_extruder_error(tmp_extruder);
  7285. // T0-Tnnn: Switch virtual tool by changing the mix
  7286. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7287. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7288. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7289. #if HOTENDS > 1
  7290. if (tmp_extruder >= EXTRUDERS)
  7291. return invalid_extruder_error(tmp_extruder);
  7292. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7293. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7294. if (tmp_extruder != active_extruder) {
  7295. if (!no_move && axis_unhomed_error(true, true, true)) {
  7296. SERIAL_ECHOLNPGM("No move on toolchange");
  7297. no_move = true;
  7298. }
  7299. // Save current position to destination, for use later
  7300. set_destination_to_current();
  7301. #if ENABLED(DUAL_X_CARRIAGE)
  7302. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7303. if (DEBUGGING(LEVELING)) {
  7304. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7305. switch (dual_x_carriage_mode) {
  7306. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7307. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7308. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7309. }
  7310. }
  7311. #endif
  7312. const float xhome = x_home_pos(active_extruder);
  7313. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7314. && IsRunning()
  7315. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7316. ) {
  7317. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7318. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7319. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7320. #endif
  7321. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7322. if (DEBUGGING(LEVELING)) {
  7323. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7324. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7325. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7326. }
  7327. #endif
  7328. // Park old head: 1) raise 2) move to park position 3) lower
  7329. for (uint8_t i = 0; i < 3; i++)
  7330. planner.buffer_line(
  7331. i == 0 ? current_position[X_AXIS] : xhome,
  7332. current_position[Y_AXIS],
  7333. i == 2 ? current_position[Z_AXIS] : raised_z,
  7334. current_position[E_AXIS],
  7335. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7336. active_extruder
  7337. );
  7338. stepper.synchronize();
  7339. }
  7340. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7341. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7342. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7343. // Activate the new extruder
  7344. active_extruder = tmp_extruder;
  7345. // This function resets the max/min values - the current position may be overwritten below.
  7346. set_axis_is_at_home(X_AXIS);
  7347. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7348. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7349. #endif
  7350. // Only when auto-parking are carriages safe to move
  7351. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7352. switch (dual_x_carriage_mode) {
  7353. case DXC_FULL_CONTROL_MODE:
  7354. // New current position is the position of the activated extruder
  7355. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7356. // Save the inactive extruder's position (from the old current_position)
  7357. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7358. break;
  7359. case DXC_AUTO_PARK_MODE:
  7360. // record raised toolhead position for use by unpark
  7361. COPY(raised_parked_position, current_position);
  7362. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7363. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7364. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7365. #endif
  7366. active_extruder_parked = true;
  7367. delayed_move_time = 0;
  7368. break;
  7369. case DXC_DUPLICATION_MODE:
  7370. // If the new extruder is the left one, set it "parked"
  7371. // This triggers the second extruder to move into the duplication position
  7372. active_extruder_parked = (active_extruder == 0);
  7373. if (active_extruder_parked)
  7374. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7375. else
  7376. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7377. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7378. extruder_duplication_enabled = false;
  7379. break;
  7380. }
  7381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7382. if (DEBUGGING(LEVELING)) {
  7383. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  7384. DEBUG_POS("New extruder (parked)", current_position);
  7385. }
  7386. #endif
  7387. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  7388. #else // !DUAL_X_CARRIAGE
  7389. #if ENABLED(SWITCHING_EXTRUDER)
  7390. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  7391. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  7392. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  7393. // Always raise by some amount (destination copied from current_position earlier)
  7394. current_position[Z_AXIS] += z_raise;
  7395. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7396. stepper.synchronize();
  7397. move_extruder_servo(active_extruder);
  7398. #endif
  7399. /**
  7400. * Set current_position to the position of the new nozzle.
  7401. * Offsets are based on linear distance, so we need to get
  7402. * the resulting position in coordinate space.
  7403. *
  7404. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  7405. * - With mesh leveling, update Z for the new position
  7406. * - Otherwise, just use the raw linear distance
  7407. *
  7408. * Software endstops are altered here too. Consider a case where:
  7409. * E0 at X=0 ... E1 at X=10
  7410. * When we switch to E1 now X=10, but E1 can't move left.
  7411. * To express this we apply the change in XY to the software endstops.
  7412. * E1 can move farther right than E0, so the right limit is extended.
  7413. *
  7414. * Note that we don't adjust the Z software endstops. Why not?
  7415. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  7416. * because the bed is 1mm lower at the new position. As long as
  7417. * the first nozzle is out of the way, the carriage should be
  7418. * allowed to move 1mm lower. This technically "breaks" the
  7419. * Z software endstop. But this is technically correct (and
  7420. * there is no viable alternative).
  7421. */
  7422. #if ABL_PLANAR
  7423. // Offset extruder, make sure to apply the bed level rotation matrix
  7424. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  7425. hotend_offset[Y_AXIS][tmp_extruder],
  7426. 0),
  7427. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  7428. hotend_offset[Y_AXIS][active_extruder],
  7429. 0),
  7430. offset_vec = tmp_offset_vec - act_offset_vec;
  7431. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7432. if (DEBUGGING(LEVELING)) {
  7433. tmp_offset_vec.debug("tmp_offset_vec");
  7434. act_offset_vec.debug("act_offset_vec");
  7435. offset_vec.debug("offset_vec (BEFORE)");
  7436. }
  7437. #endif
  7438. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  7439. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7440. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  7441. #endif
  7442. // Adjustments to the current position
  7443. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  7444. current_position[Z_AXIS] += offset_vec.z;
  7445. #else // !ABL_PLANAR
  7446. const float xydiff[2] = {
  7447. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  7448. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  7449. };
  7450. #if ENABLED(MESH_BED_LEVELING)
  7451. if (mbl.active()) {
  7452. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7453. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  7454. #endif
  7455. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  7456. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  7457. z1 = current_position[Z_AXIS], z2 = z1;
  7458. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  7459. planner.apply_leveling(x2, y2, z2);
  7460. current_position[Z_AXIS] += z2 - z1;
  7461. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7462. if (DEBUGGING(LEVELING))
  7463. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  7464. #endif
  7465. }
  7466. #endif // MESH_BED_LEVELING
  7467. #endif // !HAS_ABL
  7468. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7469. if (DEBUGGING(LEVELING)) {
  7470. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  7471. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  7472. SERIAL_ECHOLNPGM(" }");
  7473. }
  7474. #endif
  7475. // The newly-selected extruder XY is actually at...
  7476. current_position[X_AXIS] += xydiff[X_AXIS];
  7477. current_position[Y_AXIS] += xydiff[Y_AXIS];
  7478. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE)
  7479. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  7480. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7481. position_shift[i] += xydiff[i];
  7482. #endif
  7483. update_software_endstops((AxisEnum)i);
  7484. }
  7485. #endif
  7486. // Set the new active extruder
  7487. active_extruder = tmp_extruder;
  7488. #endif // !DUAL_X_CARRIAGE
  7489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7490. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  7491. #endif
  7492. // Tell the planner the new "current position"
  7493. SYNC_PLAN_POSITION_KINEMATIC();
  7494. // Move to the "old position" (move the extruder into place)
  7495. if (!no_move && IsRunning()) {
  7496. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7497. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  7498. #endif
  7499. prepare_move_to_destination();
  7500. }
  7501. #if ENABLED(SWITCHING_EXTRUDER)
  7502. // Move back down, if needed. (Including when the new tool is higher.)
  7503. if (z_raise != z_diff) {
  7504. destination[Z_AXIS] += z_diff;
  7505. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  7506. prepare_move_to_destination();
  7507. }
  7508. #endif
  7509. } // (tmp_extruder != active_extruder)
  7510. stepper.synchronize();
  7511. #if ENABLED(EXT_SOLENOID)
  7512. disable_all_solenoids();
  7513. enable_solenoid_on_active_extruder();
  7514. #endif // EXT_SOLENOID
  7515. feedrate_mm_s = old_feedrate_mm_s;
  7516. #else // HOTENDS <= 1
  7517. // Set the new active extruder
  7518. active_extruder = tmp_extruder;
  7519. UNUSED(fr_mm_s);
  7520. UNUSED(no_move);
  7521. #endif // HOTENDS <= 1
  7522. SERIAL_ECHO_START;
  7523. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  7524. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7525. }
  7526. /**
  7527. * T0-T3: Switch tool, usually switching extruders
  7528. *
  7529. * F[units/min] Set the movement feedrate
  7530. * S1 Don't move the tool in XY after change
  7531. */
  7532. inline void gcode_T(uint8_t tmp_extruder) {
  7533. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7534. if (DEBUGGING(LEVELING)) {
  7535. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  7536. SERIAL_CHAR(')');
  7537. SERIAL_EOL;
  7538. DEBUG_POS("BEFORE", current_position);
  7539. }
  7540. #endif
  7541. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  7542. tool_change(tmp_extruder);
  7543. #elif HOTENDS > 1
  7544. tool_change(
  7545. tmp_extruder,
  7546. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  7547. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  7548. );
  7549. #endif
  7550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7551. if (DEBUGGING(LEVELING)) {
  7552. DEBUG_POS("AFTER", current_position);
  7553. SERIAL_ECHOLNPGM("<<< gcode_T");
  7554. }
  7555. #endif
  7556. }
  7557. /**
  7558. * Process a single command and dispatch it to its handler
  7559. * This is called from the main loop()
  7560. */
  7561. void process_next_command() {
  7562. current_command = command_queue[cmd_queue_index_r];
  7563. if (DEBUGGING(ECHO)) {
  7564. SERIAL_ECHO_START;
  7565. SERIAL_ECHOLN(current_command);
  7566. }
  7567. // Sanitize the current command:
  7568. // - Skip leading spaces
  7569. // - Bypass N[-0-9][0-9]*[ ]*
  7570. // - Overwrite * with nul to mark the end
  7571. while (*current_command == ' ') ++current_command;
  7572. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  7573. current_command += 2; // skip N[-0-9]
  7574. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  7575. while (*current_command == ' ') ++current_command; // skip [ ]*
  7576. }
  7577. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  7578. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  7579. char *cmd_ptr = current_command;
  7580. // Get the command code, which must be G, M, or T
  7581. char command_code = *cmd_ptr++;
  7582. // Skip spaces to get the numeric part
  7583. while (*cmd_ptr == ' ') cmd_ptr++;
  7584. // Allow for decimal point in command
  7585. #if ENABLED(G38_PROBE_TARGET)
  7586. uint8_t subcode = 0;
  7587. #endif
  7588. uint16_t codenum = 0; // define ahead of goto
  7589. // Bail early if there's no code
  7590. bool code_is_good = NUMERIC(*cmd_ptr);
  7591. if (!code_is_good) goto ExitUnknownCommand;
  7592. // Get and skip the code number
  7593. do {
  7594. codenum = (codenum * 10) + (*cmd_ptr - '0');
  7595. cmd_ptr++;
  7596. } while (NUMERIC(*cmd_ptr));
  7597. // Allow for decimal point in command
  7598. #if ENABLED(G38_PROBE_TARGET)
  7599. if (*cmd_ptr == '.') {
  7600. cmd_ptr++;
  7601. while (NUMERIC(*cmd_ptr))
  7602. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  7603. }
  7604. #endif
  7605. // Skip all spaces to get to the first argument, or nul
  7606. while (*cmd_ptr == ' ') cmd_ptr++;
  7607. // The command's arguments (if any) start here, for sure!
  7608. current_command_args = cmd_ptr;
  7609. KEEPALIVE_STATE(IN_HANDLER);
  7610. // Handle a known G, M, or T
  7611. switch (command_code) {
  7612. case 'G': switch (codenum) {
  7613. // G0, G1
  7614. case 0:
  7615. case 1:
  7616. #if IS_SCARA
  7617. gcode_G0_G1(codenum == 0);
  7618. #else
  7619. gcode_G0_G1();
  7620. #endif
  7621. break;
  7622. // G2, G3
  7623. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  7624. case 2: // G2 - CW ARC
  7625. case 3: // G3 - CCW ARC
  7626. gcode_G2_G3(codenum == 2);
  7627. break;
  7628. #endif
  7629. // G4 Dwell
  7630. case 4:
  7631. gcode_G4();
  7632. break;
  7633. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7634. // G5
  7635. case 5: // G5 - Cubic B_spline
  7636. gcode_G5();
  7637. break;
  7638. #endif // BEZIER_CURVE_SUPPORT
  7639. #if ENABLED(FWRETRACT)
  7640. case 10: // G10: retract
  7641. case 11: // G11: retract_recover
  7642. gcode_G10_G11(codenum == 10);
  7643. break;
  7644. #endif // FWRETRACT
  7645. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  7646. case 12:
  7647. gcode_G12(); // G12: Nozzle Clean
  7648. break;
  7649. #endif // NOZZLE_CLEAN_FEATURE
  7650. #if ENABLED(INCH_MODE_SUPPORT)
  7651. case 20: //G20: Inch Mode
  7652. gcode_G20();
  7653. break;
  7654. case 21: //G21: MM Mode
  7655. gcode_G21();
  7656. break;
  7657. #endif // INCH_MODE_SUPPORT
  7658. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7659. case 26: // G26: Mesh Validation Pattern generation
  7660. gcode_G26();
  7661. break;
  7662. #endif // AUTO_BED_LEVELING_UBL
  7663. #if ENABLED(NOZZLE_PARK_FEATURE)
  7664. case 27: // G27: Nozzle Park
  7665. gcode_G27();
  7666. break;
  7667. #endif // NOZZLE_PARK_FEATURE
  7668. case 28: // G28: Home all axes, one at a time
  7669. gcode_G28();
  7670. break;
  7671. #if PLANNER_LEVELING || ENABLED(AUTO_BED_LEVELING_UBL)
  7672. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  7673. // or provides access to the UBL System if enabled.
  7674. gcode_G29();
  7675. break;
  7676. #endif // PLANNER_LEVELING
  7677. #if HAS_BED_PROBE
  7678. case 30: // G30 Single Z probe
  7679. gcode_G30();
  7680. break;
  7681. #if ENABLED(Z_PROBE_SLED)
  7682. case 31: // G31: dock the sled
  7683. gcode_G31();
  7684. break;
  7685. case 32: // G32: undock the sled
  7686. gcode_G32();
  7687. break;
  7688. #endif // Z_PROBE_SLED
  7689. #endif // HAS_BED_PROBE
  7690. #if ENABLED(G38_PROBE_TARGET)
  7691. case 38: // G38.2 & G38.3
  7692. if (subcode == 2 || subcode == 3)
  7693. gcode_G38(subcode == 2);
  7694. break;
  7695. #endif
  7696. case 90: // G90
  7697. relative_mode = false;
  7698. break;
  7699. case 91: // G91
  7700. relative_mode = true;
  7701. break;
  7702. case 92: // G92
  7703. gcode_G92();
  7704. break;
  7705. }
  7706. break;
  7707. case 'M': switch (codenum) {
  7708. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  7709. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  7710. case 1: // M1: Conditional stop - Wait for user button press on LCD
  7711. gcode_M0_M1();
  7712. break;
  7713. #endif // ULTIPANEL
  7714. case 17: // M17: Enable all stepper motors
  7715. gcode_M17();
  7716. break;
  7717. #if ENABLED(SDSUPPORT)
  7718. case 20: // M20: list SD card
  7719. gcode_M20(); break;
  7720. case 21: // M21: init SD card
  7721. gcode_M21(); break;
  7722. case 22: // M22: release SD card
  7723. gcode_M22(); break;
  7724. case 23: // M23: Select file
  7725. gcode_M23(); break;
  7726. case 24: // M24: Start SD print
  7727. gcode_M24(); break;
  7728. case 25: // M25: Pause SD print
  7729. gcode_M25(); break;
  7730. case 26: // M26: Set SD index
  7731. gcode_M26(); break;
  7732. case 27: // M27: Get SD status
  7733. gcode_M27(); break;
  7734. case 28: // M28: Start SD write
  7735. gcode_M28(); break;
  7736. case 29: // M29: Stop SD write
  7737. gcode_M29(); break;
  7738. case 30: // M30 <filename> Delete File
  7739. gcode_M30(); break;
  7740. case 32: // M32: Select file and start SD print
  7741. gcode_M32(); break;
  7742. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  7743. case 33: // M33: Get the long full path to a file or folder
  7744. gcode_M33(); break;
  7745. #endif
  7746. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  7747. case 34: //M34 - Set SD card sorting options
  7748. gcode_M34(); break;
  7749. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  7750. case 928: // M928: Start SD write
  7751. gcode_M928(); break;
  7752. #endif //SDSUPPORT
  7753. case 31: // M31: Report time since the start of SD print or last M109
  7754. gcode_M31(); break;
  7755. case 42: // M42: Change pin state
  7756. gcode_M42(); break;
  7757. #if ENABLED(PINS_DEBUGGING)
  7758. case 43: // M43: Read pin state
  7759. gcode_M43(); break;
  7760. #endif
  7761. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  7762. case 48: // M48: Z probe repeatability test
  7763. gcode_M48();
  7764. break;
  7765. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  7766. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7767. case 49: // M49: Turn on or off G26 debug flag for verbose output
  7768. gcode_M49();
  7769. break;
  7770. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  7771. case 75: // M75: Start print timer
  7772. gcode_M75(); break;
  7773. case 76: // M76: Pause print timer
  7774. gcode_M76(); break;
  7775. case 77: // M77: Stop print timer
  7776. gcode_M77(); break;
  7777. #if ENABLED(PRINTCOUNTER)
  7778. case 78: // M78: Show print statistics
  7779. gcode_M78(); break;
  7780. #endif
  7781. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  7782. case 100: // M100: Free Memory Report
  7783. gcode_M100();
  7784. break;
  7785. #endif
  7786. case 104: // M104: Set hot end temperature
  7787. gcode_M104();
  7788. break;
  7789. case 110: // M110: Set Current Line Number
  7790. gcode_M110();
  7791. break;
  7792. case 111: // M111: Set debug level
  7793. gcode_M111();
  7794. break;
  7795. #if DISABLED(EMERGENCY_PARSER)
  7796. case 108: // M108: Cancel Waiting
  7797. gcode_M108();
  7798. break;
  7799. case 112: // M112: Emergency Stop
  7800. gcode_M112();
  7801. break;
  7802. case 410: // M410 quickstop - Abort all the planned moves.
  7803. gcode_M410();
  7804. break;
  7805. #endif
  7806. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  7807. case 113: // M113: Set Host Keepalive interval
  7808. gcode_M113();
  7809. break;
  7810. #endif
  7811. case 140: // M140: Set bed temperature
  7812. gcode_M140();
  7813. break;
  7814. case 105: // M105: Report current temperature
  7815. gcode_M105();
  7816. KEEPALIVE_STATE(NOT_BUSY);
  7817. return; // "ok" already printed
  7818. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  7819. case 155: // M155: Set temperature auto-report interval
  7820. gcode_M155();
  7821. break;
  7822. #endif
  7823. case 109: // M109: Wait for hotend temperature to reach target
  7824. gcode_M109();
  7825. break;
  7826. #if HAS_TEMP_BED
  7827. case 190: // M190: Wait for bed temperature to reach target
  7828. gcode_M190();
  7829. break;
  7830. #endif // HAS_TEMP_BED
  7831. #if FAN_COUNT > 0
  7832. case 106: // M106: Fan On
  7833. gcode_M106();
  7834. break;
  7835. case 107: // M107: Fan Off
  7836. gcode_M107();
  7837. break;
  7838. #endif // FAN_COUNT > 0
  7839. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7840. case 125: // M125: Store current position and move to filament change position
  7841. gcode_M125(); break;
  7842. #endif
  7843. #if ENABLED(BARICUDA)
  7844. // PWM for HEATER_1_PIN
  7845. #if HAS_HEATER_1
  7846. case 126: // M126: valve open
  7847. gcode_M126();
  7848. break;
  7849. case 127: // M127: valve closed
  7850. gcode_M127();
  7851. break;
  7852. #endif // HAS_HEATER_1
  7853. // PWM for HEATER_2_PIN
  7854. #if HAS_HEATER_2
  7855. case 128: // M128: valve open
  7856. gcode_M128();
  7857. break;
  7858. case 129: // M129: valve closed
  7859. gcode_M129();
  7860. break;
  7861. #endif // HAS_HEATER_2
  7862. #endif // BARICUDA
  7863. #if HAS_POWER_SWITCH
  7864. case 80: // M80: Turn on Power Supply
  7865. gcode_M80();
  7866. break;
  7867. #endif // HAS_POWER_SWITCH
  7868. case 81: // M81: Turn off Power, including Power Supply, if possible
  7869. gcode_M81();
  7870. break;
  7871. case 82: // M83: Set E axis normal mode (same as other axes)
  7872. gcode_M82();
  7873. break;
  7874. case 83: // M83: Set E axis relative mode
  7875. gcode_M83();
  7876. break;
  7877. case 18: // M18 => M84
  7878. case 84: // M84: Disable all steppers or set timeout
  7879. gcode_M18_M84();
  7880. break;
  7881. case 85: // M85: Set inactivity stepper shutdown timeout
  7882. gcode_M85();
  7883. break;
  7884. case 92: // M92: Set the steps-per-unit for one or more axes
  7885. gcode_M92();
  7886. break;
  7887. case 114: // M114: Report current position
  7888. gcode_M114();
  7889. break;
  7890. case 115: // M115: Report capabilities
  7891. gcode_M115();
  7892. break;
  7893. case 117: // M117: Set LCD message text, if possible
  7894. gcode_M117();
  7895. break;
  7896. case 119: // M119: Report endstop states
  7897. gcode_M119();
  7898. break;
  7899. case 120: // M120: Enable endstops
  7900. gcode_M120();
  7901. break;
  7902. case 121: // M121: Disable endstops
  7903. gcode_M121();
  7904. break;
  7905. #if ENABLED(ULTIPANEL)
  7906. case 145: // M145: Set material heatup parameters
  7907. gcode_M145();
  7908. break;
  7909. #endif
  7910. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7911. case 149: // M149: Set temperature units
  7912. gcode_M149();
  7913. break;
  7914. #endif
  7915. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  7916. case 150: // M150: Set Status LED Color
  7917. gcode_M150();
  7918. break;
  7919. #endif // BLINKM
  7920. #if ENABLED(MIXING_EXTRUDER)
  7921. case 163: // M163: Set a component weight for mixing extruder
  7922. gcode_M163();
  7923. break;
  7924. #if MIXING_VIRTUAL_TOOLS > 1
  7925. case 164: // M164: Save current mix as a virtual extruder
  7926. gcode_M164();
  7927. break;
  7928. #endif
  7929. #if ENABLED(DIRECT_MIXING_IN_G1)
  7930. case 165: // M165: Set multiple mix weights
  7931. gcode_M165();
  7932. break;
  7933. #endif
  7934. #endif
  7935. case 200: // M200: Set filament diameter, E to cubic units
  7936. gcode_M200();
  7937. break;
  7938. case 201: // M201: Set max acceleration for print moves (units/s^2)
  7939. gcode_M201();
  7940. break;
  7941. #if 0 // Not used for Sprinter/grbl gen6
  7942. case 202: // M202
  7943. gcode_M202();
  7944. break;
  7945. #endif
  7946. case 203: // M203: Set max feedrate (units/sec)
  7947. gcode_M203();
  7948. break;
  7949. case 204: // M204: Set acceleration
  7950. gcode_M204();
  7951. break;
  7952. case 205: //M205: Set advanced settings
  7953. gcode_M205();
  7954. break;
  7955. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7956. case 206: // M206: Set home offsets
  7957. gcode_M206();
  7958. break;
  7959. #endif
  7960. #if ENABLED(DELTA)
  7961. case 665: // M665: Set delta configurations
  7962. gcode_M665();
  7963. break;
  7964. #endif
  7965. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  7966. case 666: // M666: Set delta or dual endstop adjustment
  7967. gcode_M666();
  7968. break;
  7969. #endif
  7970. #if ENABLED(FWRETRACT)
  7971. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  7972. gcode_M207();
  7973. break;
  7974. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  7975. gcode_M208();
  7976. break;
  7977. case 209: // M209: Turn Automatic Retract Detection on/off
  7978. gcode_M209();
  7979. break;
  7980. #endif // FWRETRACT
  7981. case 211: // M211: Enable, Disable, and/or Report software endstops
  7982. gcode_M211();
  7983. break;
  7984. #if HOTENDS > 1
  7985. case 218: // M218: Set a tool offset
  7986. gcode_M218();
  7987. break;
  7988. #endif
  7989. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  7990. gcode_M220();
  7991. break;
  7992. case 221: // M221: Set Flow Percentage
  7993. gcode_M221();
  7994. break;
  7995. case 226: // M226: Wait until a pin reaches a state
  7996. gcode_M226();
  7997. break;
  7998. #if HAS_SERVOS
  7999. case 280: // M280: Set servo position absolute
  8000. gcode_M280();
  8001. break;
  8002. #endif // HAS_SERVOS
  8003. #if HAS_BUZZER
  8004. case 300: // M300: Play beep tone
  8005. gcode_M300();
  8006. break;
  8007. #endif // HAS_BUZZER
  8008. #if ENABLED(PIDTEMP)
  8009. case 301: // M301: Set hotend PID parameters
  8010. gcode_M301();
  8011. break;
  8012. #endif // PIDTEMP
  8013. #if ENABLED(PIDTEMPBED)
  8014. case 304: // M304: Set bed PID parameters
  8015. gcode_M304();
  8016. break;
  8017. #endif // PIDTEMPBED
  8018. #if defined(CHDK) || HAS_PHOTOGRAPH
  8019. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8020. gcode_M240();
  8021. break;
  8022. #endif // CHDK || PHOTOGRAPH_PIN
  8023. #if HAS_LCD_CONTRAST
  8024. case 250: // M250: Set LCD contrast
  8025. gcode_M250();
  8026. break;
  8027. #endif // HAS_LCD_CONTRAST
  8028. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8029. case 260: // M260: Send data to an i2c slave
  8030. gcode_M260();
  8031. break;
  8032. case 261: // M261: Request data from an i2c slave
  8033. gcode_M261();
  8034. break;
  8035. #endif // EXPERIMENTAL_I2CBUS
  8036. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8037. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8038. gcode_M302();
  8039. break;
  8040. #endif // PREVENT_COLD_EXTRUSION
  8041. case 303: // M303: PID autotune
  8042. gcode_M303();
  8043. break;
  8044. #if ENABLED(MORGAN_SCARA)
  8045. case 360: // M360: SCARA Theta pos1
  8046. if (gcode_M360()) return;
  8047. break;
  8048. case 361: // M361: SCARA Theta pos2
  8049. if (gcode_M361()) return;
  8050. break;
  8051. case 362: // M362: SCARA Psi pos1
  8052. if (gcode_M362()) return;
  8053. break;
  8054. case 363: // M363: SCARA Psi pos2
  8055. if (gcode_M363()) return;
  8056. break;
  8057. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8058. if (gcode_M364()) return;
  8059. break;
  8060. #endif // SCARA
  8061. case 400: // M400: Finish all moves
  8062. gcode_M400();
  8063. break;
  8064. #if HAS_BED_PROBE
  8065. case 401: // M401: Deploy probe
  8066. gcode_M401();
  8067. break;
  8068. case 402: // M402: Stow probe
  8069. gcode_M402();
  8070. break;
  8071. #endif // HAS_BED_PROBE
  8072. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8073. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8074. gcode_M404();
  8075. break;
  8076. case 405: // M405: Turn on filament sensor for control
  8077. gcode_M405();
  8078. break;
  8079. case 406: // M406: Turn off filament sensor for control
  8080. gcode_M406();
  8081. break;
  8082. case 407: // M407: Display measured filament diameter
  8083. gcode_M407();
  8084. break;
  8085. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  8086. #if PLANNER_LEVELING
  8087. case 420: // M420: Enable/Disable Bed Leveling
  8088. gcode_M420();
  8089. break;
  8090. #endif
  8091. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8092. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8093. gcode_M421();
  8094. break;
  8095. #endif
  8096. #if DISABLED(NO_WORKSPACE_OFFSETS)
  8097. case 428: // M428: Apply current_position to home_offset
  8098. gcode_M428();
  8099. break;
  8100. #endif
  8101. case 500: // M500: Store settings in EEPROM
  8102. gcode_M500();
  8103. break;
  8104. case 501: // M501: Read settings from EEPROM
  8105. gcode_M501();
  8106. break;
  8107. case 502: // M502: Revert to default settings
  8108. gcode_M502();
  8109. break;
  8110. case 503: // M503: print settings currently in memory
  8111. gcode_M503();
  8112. break;
  8113. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8114. case 540: // M540: Set abort on endstop hit for SD printing
  8115. gcode_M540();
  8116. break;
  8117. #endif
  8118. #if HAS_BED_PROBE
  8119. case 851: // M851: Set Z Probe Z Offset
  8120. gcode_M851();
  8121. break;
  8122. #endif // HAS_BED_PROBE
  8123. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8124. case 600: // M600: Pause for filament change
  8125. gcode_M600();
  8126. break;
  8127. #endif // FILAMENT_CHANGE_FEATURE
  8128. #if ENABLED(DUAL_X_CARRIAGE)
  8129. case 605: // M605: Set Dual X Carriage movement mode
  8130. gcode_M605();
  8131. break;
  8132. #endif // DUAL_X_CARRIAGE
  8133. #if ENABLED(LIN_ADVANCE)
  8134. case 905: // M905: Set advance K factor.
  8135. gcode_M905();
  8136. break;
  8137. #endif
  8138. #if ENABLED(HAVE_TMC2130)
  8139. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8140. gcode_M906();
  8141. break;
  8142. #endif
  8143. case 907: // M907: Set digital trimpot motor current using axis codes.
  8144. gcode_M907();
  8145. break;
  8146. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8147. case 908: // M908: Control digital trimpot directly.
  8148. gcode_M908();
  8149. break;
  8150. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8151. case 909: // M909: Print digipot/DAC current value
  8152. gcode_M909();
  8153. break;
  8154. case 910: // M910: Commit digipot/DAC value to external EEPROM
  8155. gcode_M910();
  8156. break;
  8157. #endif
  8158. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8159. #if ENABLED(HAVE_TMC2130)
  8160. case 911: // M911: Report TMC2130 prewarn triggered flags
  8161. gcode_M911();
  8162. break;
  8163. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8164. gcode_M912();
  8165. break;
  8166. #endif
  8167. #if HAS_MICROSTEPS
  8168. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8169. gcode_M350();
  8170. break;
  8171. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8172. gcode_M351();
  8173. break;
  8174. #endif // HAS_MICROSTEPS
  8175. case 355: // M355 Turn case lights on/off
  8176. gcode_M355();
  8177. break;
  8178. case 999: // M999: Restart after being Stopped
  8179. gcode_M999();
  8180. break;
  8181. }
  8182. break;
  8183. case 'T':
  8184. gcode_T(codenum);
  8185. break;
  8186. default: code_is_good = false;
  8187. }
  8188. KEEPALIVE_STATE(NOT_BUSY);
  8189. ExitUnknownCommand:
  8190. // Still unknown command? Throw an error
  8191. if (!code_is_good) unknown_command_error();
  8192. ok_to_send();
  8193. }
  8194. /**
  8195. * Send a "Resend: nnn" message to the host to
  8196. * indicate that a command needs to be re-sent.
  8197. */
  8198. void FlushSerialRequestResend() {
  8199. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8200. MYSERIAL.flush();
  8201. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8202. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8203. ok_to_send();
  8204. }
  8205. /**
  8206. * Send an "ok" message to the host, indicating
  8207. * that a command was successfully processed.
  8208. *
  8209. * If ADVANCED_OK is enabled also include:
  8210. * N<int> Line number of the command, if any
  8211. * P<int> Planner space remaining
  8212. * B<int> Block queue space remaining
  8213. */
  8214. void ok_to_send() {
  8215. refresh_cmd_timeout();
  8216. if (!send_ok[cmd_queue_index_r]) return;
  8217. SERIAL_PROTOCOLPGM(MSG_OK);
  8218. #if ENABLED(ADVANCED_OK)
  8219. char* p = command_queue[cmd_queue_index_r];
  8220. if (*p == 'N') {
  8221. SERIAL_PROTOCOL(' ');
  8222. SERIAL_ECHO(*p++);
  8223. while (NUMERIC_SIGNED(*p))
  8224. SERIAL_ECHO(*p++);
  8225. }
  8226. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8227. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8228. #endif
  8229. SERIAL_EOL;
  8230. }
  8231. #if HAS_SOFTWARE_ENDSTOPS
  8232. /**
  8233. * Constrain the given coordinates to the software endstops.
  8234. */
  8235. void clamp_to_software_endstops(float target[XYZ]) {
  8236. if (!soft_endstops_enabled) return;
  8237. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8238. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8239. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8240. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8241. #endif
  8242. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8243. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8244. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8245. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8246. #endif
  8247. }
  8248. #endif
  8249. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8250. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8251. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8252. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8253. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8254. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  8255. #else
  8256. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8257. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  8258. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  8259. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  8260. #endif
  8261. // Get the Z adjustment for non-linear bed leveling
  8262. float bilinear_z_offset(float cartesian[XYZ]) {
  8263. // XY relative to the probed area
  8264. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  8265. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  8266. // Convert to grid box units
  8267. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  8268. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  8269. // Whole units for the grid line indices. Constrained within bounds.
  8270. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  8271. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  8272. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  8273. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8274. // Subtract whole to get the ratio within the grid box
  8275. ratio_x -= gridx; ratio_y -= gridy;
  8276. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  8277. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  8278. // Z at the box corners
  8279. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  8280. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  8281. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  8282. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  8283. // Bilinear interpolate
  8284. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  8285. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  8286. offset = L + ratio_x * (R - L);
  8287. /*
  8288. static float last_offset = 0;
  8289. if (fabs(last_offset - offset) > 0.2) {
  8290. SERIAL_ECHOPGM("Sudden Shift at ");
  8291. SERIAL_ECHOPAIR("x=", x);
  8292. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8293. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8294. SERIAL_ECHOPAIR(" y=", y);
  8295. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8296. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8297. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8298. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8299. SERIAL_ECHOPAIR(" z1=", z1);
  8300. SERIAL_ECHOPAIR(" z2=", z2);
  8301. SERIAL_ECHOPAIR(" z3=", z3);
  8302. SERIAL_ECHOLNPAIR(" z4=", z4);
  8303. SERIAL_ECHOPAIR(" L=", L);
  8304. SERIAL_ECHOPAIR(" R=", R);
  8305. SERIAL_ECHOLNPAIR(" offset=", offset);
  8306. }
  8307. last_offset = offset;
  8308. */
  8309. return offset;
  8310. }
  8311. #endif // AUTO_BED_LEVELING_BILINEAR
  8312. #if ENABLED(DELTA)
  8313. /**
  8314. * Recalculate factors used for delta kinematics whenever
  8315. * settings have been changed (e.g., by M665).
  8316. */
  8317. void recalc_delta_settings(float radius, float diagonal_rod) {
  8318. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  8319. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  8320. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  8321. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  8322. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower
  8323. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3);
  8324. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  8325. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  8326. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  8327. }
  8328. #if ENABLED(DELTA_FAST_SQRT)
  8329. /**
  8330. * Fast inverse sqrt from Quake III Arena
  8331. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  8332. */
  8333. float Q_rsqrt(float number) {
  8334. long i;
  8335. float x2, y;
  8336. const float threehalfs = 1.5f;
  8337. x2 = number * 0.5f;
  8338. y = number;
  8339. i = * ( long * ) &y; // evil floating point bit level hacking
  8340. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  8341. y = * ( float * ) &i;
  8342. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  8343. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  8344. return y;
  8345. }
  8346. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  8347. #else
  8348. #define _SQRT(n) sqrt(n)
  8349. #endif
  8350. /**
  8351. * Delta Inverse Kinematics
  8352. *
  8353. * Calculate the tower positions for a given logical
  8354. * position, storing the result in the delta[] array.
  8355. *
  8356. * This is an expensive calculation, requiring 3 square
  8357. * roots per segmented linear move, and strains the limits
  8358. * of a Mega2560 with a Graphical Display.
  8359. *
  8360. * Suggested optimizations include:
  8361. *
  8362. * - Disable the home_offset (M206) and/or position_shift (G92)
  8363. * features to remove up to 12 float additions.
  8364. *
  8365. * - Use a fast-inverse-sqrt function and add the reciprocal.
  8366. * (see above)
  8367. */
  8368. // Macro to obtain the Z position of an individual tower
  8369. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  8370. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  8371. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  8372. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  8373. ) \
  8374. )
  8375. #define DELTA_RAW_IK() do { \
  8376. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  8377. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  8378. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  8379. } while(0)
  8380. #define DELTA_LOGICAL_IK() do { \
  8381. const float raw[XYZ] = { \
  8382. RAW_X_POSITION(logical[X_AXIS]), \
  8383. RAW_Y_POSITION(logical[Y_AXIS]), \
  8384. RAW_Z_POSITION(logical[Z_AXIS]) \
  8385. }; \
  8386. DELTA_RAW_IK(); \
  8387. } while(0)
  8388. #define DELTA_DEBUG() do { \
  8389. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  8390. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  8391. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  8392. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  8393. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  8394. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  8395. } while(0)
  8396. void inverse_kinematics(const float logical[XYZ]) {
  8397. DELTA_LOGICAL_IK();
  8398. // DELTA_DEBUG();
  8399. }
  8400. /**
  8401. * Calculate the highest Z position where the
  8402. * effector has the full range of XY motion.
  8403. */
  8404. float delta_safe_distance_from_top() {
  8405. float cartesian[XYZ] = {
  8406. LOGICAL_X_POSITION(0),
  8407. LOGICAL_Y_POSITION(0),
  8408. LOGICAL_Z_POSITION(0)
  8409. };
  8410. inverse_kinematics(cartesian);
  8411. float distance = delta[A_AXIS];
  8412. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  8413. inverse_kinematics(cartesian);
  8414. return abs(distance - delta[A_AXIS]);
  8415. }
  8416. /**
  8417. * Delta Forward Kinematics
  8418. *
  8419. * See the Wikipedia article "Trilateration"
  8420. * https://en.wikipedia.org/wiki/Trilateration
  8421. *
  8422. * Establish a new coordinate system in the plane of the
  8423. * three carriage points. This system has its origin at
  8424. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  8425. * plane with a Z component of zero.
  8426. * We will define unit vectors in this coordinate system
  8427. * in our original coordinate system. Then when we calculate
  8428. * the Xnew, Ynew and Znew values, we can translate back into
  8429. * the original system by moving along those unit vectors
  8430. * by the corresponding values.
  8431. *
  8432. * Variable names matched to Marlin, c-version, and avoid the
  8433. * use of any vector library.
  8434. *
  8435. * by Andreas Hardtung 2016-06-07
  8436. * based on a Java function from "Delta Robot Kinematics V3"
  8437. * by Steve Graves
  8438. *
  8439. * The result is stored in the cartes[] array.
  8440. */
  8441. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  8442. // Create a vector in old coordinates along x axis of new coordinate
  8443. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  8444. // Get the Magnitude of vector.
  8445. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  8446. // Create unit vector by dividing by magnitude.
  8447. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  8448. // Get the vector from the origin of the new system to the third point.
  8449. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  8450. // Use the dot product to find the component of this vector on the X axis.
  8451. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  8452. // Create a vector along the x axis that represents the x component of p13.
  8453. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  8454. // Subtract the X component from the original vector leaving only Y. We use the
  8455. // variable that will be the unit vector after we scale it.
  8456. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  8457. // The magnitude of Y component
  8458. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  8459. // Convert to a unit vector
  8460. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  8461. // The cross product of the unit x and y is the unit z
  8462. // float[] ez = vectorCrossProd(ex, ey);
  8463. float ez[3] = {
  8464. ex[1] * ey[2] - ex[2] * ey[1],
  8465. ex[2] * ey[0] - ex[0] * ey[2],
  8466. ex[0] * ey[1] - ex[1] * ey[0]
  8467. };
  8468. // We now have the d, i and j values defined in Wikipedia.
  8469. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  8470. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  8471. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  8472. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  8473. // Start from the origin of the old coordinates and add vectors in the
  8474. // old coords that represent the Xnew, Ynew and Znew to find the point
  8475. // in the old system.
  8476. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  8477. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  8478. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  8479. }
  8480. void forward_kinematics_DELTA(float point[ABC]) {
  8481. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  8482. }
  8483. #endif // DELTA
  8484. /**
  8485. * Get the stepper positions in the cartes[] array.
  8486. * Forward kinematics are applied for DELTA and SCARA.
  8487. *
  8488. * The result is in the current coordinate space with
  8489. * leveling applied. The coordinates need to be run through
  8490. * unapply_leveling to obtain the "ideal" coordinates
  8491. * suitable for current_position, etc.
  8492. */
  8493. void get_cartesian_from_steppers() {
  8494. #if ENABLED(DELTA)
  8495. forward_kinematics_DELTA(
  8496. stepper.get_axis_position_mm(A_AXIS),
  8497. stepper.get_axis_position_mm(B_AXIS),
  8498. stepper.get_axis_position_mm(C_AXIS)
  8499. );
  8500. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8501. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8502. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  8503. #elif IS_SCARA
  8504. forward_kinematics_SCARA(
  8505. stepper.get_axis_position_degrees(A_AXIS),
  8506. stepper.get_axis_position_degrees(B_AXIS)
  8507. );
  8508. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8509. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8510. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8511. #else
  8512. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  8513. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  8514. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8515. #endif
  8516. }
  8517. /**
  8518. * Set the current_position for an axis based on
  8519. * the stepper positions, removing any leveling that
  8520. * may have been applied.
  8521. */
  8522. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  8523. get_cartesian_from_steppers();
  8524. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  8525. planner.unapply_leveling(cartes);
  8526. #endif
  8527. if (axis == ALL_AXES)
  8528. COPY(current_position, cartes);
  8529. else
  8530. current_position[axis] = cartes[axis];
  8531. }
  8532. #if ENABLED(MESH_BED_LEVELING)
  8533. /**
  8534. * Prepare a mesh-leveled linear move in a Cartesian setup,
  8535. * splitting the move where it crosses mesh borders.
  8536. */
  8537. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  8538. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  8539. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  8540. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  8541. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  8542. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  8543. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  8544. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  8545. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  8546. if (cx1 == cx2 && cy1 == cy2) {
  8547. // Start and end on same mesh square
  8548. line_to_destination(fr_mm_s);
  8549. set_current_to_destination();
  8550. return;
  8551. }
  8552. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8553. float normalized_dist, end[XYZE];
  8554. // Split at the left/front border of the right/top square
  8555. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8556. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8557. COPY(end, destination);
  8558. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  8559. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8560. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  8561. CBI(x_splits, gcx);
  8562. }
  8563. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8564. COPY(end, destination);
  8565. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  8566. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8567. destination[X_AXIS] = MBL_SEGMENT_END(X);
  8568. CBI(y_splits, gcy);
  8569. }
  8570. else {
  8571. // Already split on a border
  8572. line_to_destination(fr_mm_s);
  8573. set_current_to_destination();
  8574. return;
  8575. }
  8576. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  8577. destination[E_AXIS] = MBL_SEGMENT_END(E);
  8578. // Do the split and look for more borders
  8579. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8580. // Restore destination from stack
  8581. COPY(destination, end);
  8582. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8583. }
  8584. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  8585. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  8586. /**
  8587. * Prepare a bilinear-leveled linear move on Cartesian,
  8588. * splitting the move where it crosses grid borders.
  8589. */
  8590. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  8591. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  8592. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  8593. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  8594. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  8595. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  8596. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  8597. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  8598. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  8599. if (cx1 == cx2 && cy1 == cy2) {
  8600. // Start and end on same mesh square
  8601. line_to_destination(fr_mm_s);
  8602. set_current_to_destination();
  8603. return;
  8604. }
  8605. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8606. float normalized_dist, end[XYZE];
  8607. // Split at the left/front border of the right/top square
  8608. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8609. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8610. COPY(end, destination);
  8611. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  8612. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8613. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  8614. CBI(x_splits, gcx);
  8615. }
  8616. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8617. COPY(end, destination);
  8618. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  8619. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8620. destination[X_AXIS] = LINE_SEGMENT_END(X);
  8621. CBI(y_splits, gcy);
  8622. }
  8623. else {
  8624. // Already split on a border
  8625. line_to_destination(fr_mm_s);
  8626. set_current_to_destination();
  8627. return;
  8628. }
  8629. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  8630. destination[E_AXIS] = LINE_SEGMENT_END(E);
  8631. // Do the split and look for more borders
  8632. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8633. // Restore destination from stack
  8634. COPY(destination, end);
  8635. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8636. }
  8637. #endif // AUTO_BED_LEVELING_BILINEAR
  8638. #if IS_KINEMATIC
  8639. /**
  8640. * Prepare a linear move in a DELTA or SCARA setup.
  8641. *
  8642. * This calls planner.buffer_line several times, adding
  8643. * small incremental moves for DELTA or SCARA.
  8644. */
  8645. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  8646. // Get the top feedrate of the move in the XY plane
  8647. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  8648. // If the move is only in Z/E don't split up the move
  8649. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  8650. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8651. return true;
  8652. }
  8653. // Get the cartesian distances moved in XYZE
  8654. float difference[XYZE];
  8655. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  8656. // Get the linear distance in XYZ
  8657. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  8658. // If the move is very short, check the E move distance
  8659. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  8660. // No E move either? Game over.
  8661. if (UNEAR_ZERO(cartesian_mm)) return false;
  8662. // Minimum number of seconds to move the given distance
  8663. float seconds = cartesian_mm / _feedrate_mm_s;
  8664. // The number of segments-per-second times the duration
  8665. // gives the number of segments
  8666. uint16_t segments = delta_segments_per_second * seconds;
  8667. // For SCARA minimum segment size is 0.25mm
  8668. #if IS_SCARA
  8669. NOMORE(segments, cartesian_mm * 4);
  8670. #endif
  8671. // At least one segment is required
  8672. NOLESS(segments, 1);
  8673. // The approximate length of each segment
  8674. const float inv_segments = 1.0 / float(segments),
  8675. segment_distance[XYZE] = {
  8676. difference[X_AXIS] * inv_segments,
  8677. difference[Y_AXIS] * inv_segments,
  8678. difference[Z_AXIS] * inv_segments,
  8679. difference[E_AXIS] * inv_segments
  8680. };
  8681. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  8682. // SERIAL_ECHOPAIR(" seconds=", seconds);
  8683. // SERIAL_ECHOLNPAIR(" segments=", segments);
  8684. #if IS_SCARA
  8685. // SCARA needs to scale the feed rate from mm/s to degrees/s
  8686. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  8687. feed_factor = inv_segment_length * _feedrate_mm_s;
  8688. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  8689. oldB = stepper.get_axis_position_degrees(B_AXIS);
  8690. #endif
  8691. // Get the logical current position as starting point
  8692. float logical[XYZE];
  8693. COPY(logical, current_position);
  8694. // Drop one segment so the last move is to the exact target.
  8695. // If there's only 1 segment, loops will be skipped entirely.
  8696. --segments;
  8697. // Calculate and execute the segments
  8698. for (uint16_t s = segments + 1; --s;) {
  8699. LOOP_XYZE(i) logical[i] += segment_distance[i];
  8700. #if ENABLED(DELTA)
  8701. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  8702. #else
  8703. inverse_kinematics(logical);
  8704. #endif
  8705. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  8706. #if IS_SCARA
  8707. // For SCARA scale the feed rate from mm/s to degrees/s
  8708. // Use ratio between the length of the move and the larger angle change
  8709. const float adiff = abs(delta[A_AXIS] - oldA),
  8710. bdiff = abs(delta[B_AXIS] - oldB);
  8711. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8712. oldA = delta[A_AXIS];
  8713. oldB = delta[B_AXIS];
  8714. #else
  8715. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  8716. #endif
  8717. }
  8718. // Since segment_distance is only approximate,
  8719. // the final move must be to the exact destination.
  8720. #if IS_SCARA
  8721. // For SCARA scale the feed rate from mm/s to degrees/s
  8722. // With segments > 1 length is 1 segment, otherwise total length
  8723. inverse_kinematics(ltarget);
  8724. ADJUST_DELTA(logical);
  8725. const float adiff = abs(delta[A_AXIS] - oldA),
  8726. bdiff = abs(delta[B_AXIS] - oldB);
  8727. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8728. #else
  8729. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8730. #endif
  8731. return true;
  8732. }
  8733. #else // !IS_KINEMATIC
  8734. /**
  8735. * Prepare a linear move in a Cartesian setup.
  8736. * If Mesh Bed Leveling is enabled, perform a mesh move.
  8737. *
  8738. * Returns true if the caller didn't update current_position.
  8739. */
  8740. inline bool prepare_move_to_destination_cartesian() {
  8741. // Do not use feedrate_percentage for E or Z only moves
  8742. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  8743. line_to_destination();
  8744. }
  8745. else {
  8746. #if ENABLED(MESH_BED_LEVELING)
  8747. if (mbl.active()) {
  8748. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8749. return false;
  8750. }
  8751. else
  8752. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8753. if (ubl.state.active) {
  8754. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  8755. return false;
  8756. }
  8757. else
  8758. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8759. if (planner.abl_enabled) {
  8760. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8761. return false;
  8762. }
  8763. else
  8764. #endif
  8765. line_to_destination(MMS_SCALED(feedrate_mm_s));
  8766. }
  8767. return true;
  8768. }
  8769. #endif // !IS_KINEMATIC
  8770. #if ENABLED(DUAL_X_CARRIAGE)
  8771. /**
  8772. * Prepare a linear move in a dual X axis setup
  8773. */
  8774. inline bool prepare_move_to_destination_dualx() {
  8775. if (active_extruder_parked) {
  8776. switch (dual_x_carriage_mode) {
  8777. case DXC_FULL_CONTROL_MODE:
  8778. break;
  8779. case DXC_AUTO_PARK_MODE:
  8780. if (current_position[E_AXIS] == destination[E_AXIS]) {
  8781. // This is a travel move (with no extrusion)
  8782. // Skip it, but keep track of the current position
  8783. // (so it can be used as the start of the next non-travel move)
  8784. if (delayed_move_time != 0xFFFFFFFFUL) {
  8785. set_current_to_destination();
  8786. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  8787. delayed_move_time = millis();
  8788. return false;
  8789. }
  8790. }
  8791. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  8792. for (uint8_t i = 0; i < 3; i++)
  8793. planner.buffer_line(
  8794. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  8795. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  8796. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  8797. current_position[E_AXIS],
  8798. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  8799. active_extruder
  8800. );
  8801. delayed_move_time = 0;
  8802. active_extruder_parked = false;
  8803. break;
  8804. case DXC_DUPLICATION_MODE:
  8805. if (active_extruder == 0) {
  8806. // move duplicate extruder into correct duplication position.
  8807. planner.set_position_mm(
  8808. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  8809. current_position[Y_AXIS],
  8810. current_position[Z_AXIS],
  8811. current_position[E_AXIS]
  8812. );
  8813. planner.buffer_line(
  8814. current_position[X_AXIS] + duplicate_extruder_x_offset,
  8815. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  8816. planner.max_feedrate_mm_s[X_AXIS], 1
  8817. );
  8818. SYNC_PLAN_POSITION_KINEMATIC();
  8819. stepper.synchronize();
  8820. extruder_duplication_enabled = true;
  8821. active_extruder_parked = false;
  8822. }
  8823. break;
  8824. }
  8825. }
  8826. return true;
  8827. }
  8828. #endif // DUAL_X_CARRIAGE
  8829. /**
  8830. * Prepare a single move and get ready for the next one
  8831. *
  8832. * This may result in several calls to planner.buffer_line to
  8833. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  8834. */
  8835. void prepare_move_to_destination() {
  8836. clamp_to_software_endstops(destination);
  8837. refresh_cmd_timeout();
  8838. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8839. if (!DEBUGGING(DRYRUN)) {
  8840. if (destination[E_AXIS] != current_position[E_AXIS]) {
  8841. if (thermalManager.tooColdToExtrude(active_extruder)) {
  8842. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8843. SERIAL_ECHO_START;
  8844. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  8845. }
  8846. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  8847. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  8848. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8849. SERIAL_ECHO_START;
  8850. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  8851. }
  8852. #endif
  8853. }
  8854. }
  8855. #endif
  8856. #if IS_KINEMATIC
  8857. if (!prepare_kinematic_move_to(destination)) return;
  8858. #else
  8859. #if ENABLED(DUAL_X_CARRIAGE)
  8860. if (!prepare_move_to_destination_dualx()) return;
  8861. #endif
  8862. if (!prepare_move_to_destination_cartesian()) return;
  8863. #endif
  8864. set_current_to_destination();
  8865. }
  8866. #if ENABLED(ARC_SUPPORT)
  8867. /**
  8868. * Plan an arc in 2 dimensions
  8869. *
  8870. * The arc is approximated by generating many small linear segments.
  8871. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  8872. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  8873. * larger segments will tend to be more efficient. Your slicer should have
  8874. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  8875. */
  8876. void plan_arc(
  8877. float logical[XYZE], // Destination position
  8878. float* offset, // Center of rotation relative to current_position
  8879. uint8_t clockwise // Clockwise?
  8880. ) {
  8881. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  8882. center_X = current_position[X_AXIS] + offset[X_AXIS],
  8883. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  8884. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  8885. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  8886. r_X = -offset[X_AXIS], // Radius vector from center to current location
  8887. r_Y = -offset[Y_AXIS],
  8888. rt_X = logical[X_AXIS] - center_X,
  8889. rt_Y = logical[Y_AXIS] - center_Y;
  8890. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  8891. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  8892. if (angular_travel < 0) angular_travel += RADIANS(360);
  8893. if (clockwise) angular_travel -= RADIANS(360);
  8894. // Make a circle if the angular rotation is 0
  8895. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  8896. angular_travel += RADIANS(360);
  8897. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  8898. if (mm_of_travel < 0.001) return;
  8899. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  8900. if (segments == 0) segments = 1;
  8901. /**
  8902. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  8903. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  8904. * r_T = [cos(phi) -sin(phi);
  8905. * sin(phi) cos(phi)] * r ;
  8906. *
  8907. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  8908. * defined from the circle center to the initial position. Each line segment is formed by successive
  8909. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  8910. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  8911. * all double numbers are single precision on the Arduino. (True double precision will not have
  8912. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  8913. * tool precision in some cases. Therefore, arc path correction is implemented.
  8914. *
  8915. * Small angle approximation may be used to reduce computation overhead further. This approximation
  8916. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  8917. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  8918. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  8919. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  8920. * issue for CNC machines with the single precision Arduino calculations.
  8921. *
  8922. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  8923. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  8924. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  8925. * This is important when there are successive arc motions.
  8926. */
  8927. // Vector rotation matrix values
  8928. float arc_target[XYZE],
  8929. theta_per_segment = angular_travel / segments,
  8930. linear_per_segment = linear_travel / segments,
  8931. extruder_per_segment = extruder_travel / segments,
  8932. sin_T = theta_per_segment,
  8933. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  8934. // Initialize the linear axis
  8935. arc_target[Z_AXIS] = current_position[Z_AXIS];
  8936. // Initialize the extruder axis
  8937. arc_target[E_AXIS] = current_position[E_AXIS];
  8938. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  8939. millis_t next_idle_ms = millis() + 200UL;
  8940. int8_t count = 0;
  8941. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  8942. thermalManager.manage_heater();
  8943. if (ELAPSED(millis(), next_idle_ms)) {
  8944. next_idle_ms = millis() + 200UL;
  8945. idle();
  8946. }
  8947. if (++count < N_ARC_CORRECTION) {
  8948. // Apply vector rotation matrix to previous r_X / 1
  8949. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  8950. r_X = r_X * cos_T - r_Y * sin_T;
  8951. r_Y = r_new_Y;
  8952. }
  8953. else {
  8954. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  8955. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  8956. // To reduce stuttering, the sin and cos could be computed at different times.
  8957. // For now, compute both at the same time.
  8958. float cos_Ti = cos(i * theta_per_segment),
  8959. sin_Ti = sin(i * theta_per_segment);
  8960. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  8961. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  8962. count = 0;
  8963. }
  8964. // Update arc_target location
  8965. arc_target[X_AXIS] = center_X + r_X;
  8966. arc_target[Y_AXIS] = center_Y + r_Y;
  8967. arc_target[Z_AXIS] += linear_per_segment;
  8968. arc_target[E_AXIS] += extruder_per_segment;
  8969. clamp_to_software_endstops(arc_target);
  8970. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  8971. }
  8972. // Ensure last segment arrives at target location.
  8973. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  8974. // As far as the parser is concerned, the position is now == target. In reality the
  8975. // motion control system might still be processing the action and the real tool position
  8976. // in any intermediate location.
  8977. set_current_to_destination();
  8978. }
  8979. #endif
  8980. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8981. void plan_cubic_move(const float offset[4]) {
  8982. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  8983. // As far as the parser is concerned, the position is now == destination. In reality the
  8984. // motion control system might still be processing the action and the real tool position
  8985. // in any intermediate location.
  8986. set_current_to_destination();
  8987. }
  8988. #endif // BEZIER_CURVE_SUPPORT
  8989. #if HAS_CONTROLLERFAN
  8990. void controllerFan() {
  8991. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  8992. nextMotorCheck = 0; // Last time the state was checked
  8993. const millis_t ms = millis();
  8994. if (ELAPSED(ms, nextMotorCheck)) {
  8995. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  8996. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  8997. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  8998. #if E_STEPPERS > 1
  8999. || E1_ENABLE_READ == E_ENABLE_ON
  9000. #if HAS_X2_ENABLE
  9001. || X2_ENABLE_READ == X_ENABLE_ON
  9002. #endif
  9003. #if E_STEPPERS > 2
  9004. || E2_ENABLE_READ == E_ENABLE_ON
  9005. #if E_STEPPERS > 3
  9006. || E3_ENABLE_READ == E_ENABLE_ON
  9007. #if E_STEPPERS > 4
  9008. || E4_ENABLE_READ == E_ENABLE_ON
  9009. #endif // E_STEPPERS > 4
  9010. #endif // E_STEPPERS > 3
  9011. #endif // E_STEPPERS > 2
  9012. #endif // E_STEPPERS > 1
  9013. ) {
  9014. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9015. }
  9016. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9017. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9018. // allows digital or PWM fan output to be used (see M42 handling)
  9019. digitalWrite(CONTROLLERFAN_PIN, speed);
  9020. analogWrite(CONTROLLERFAN_PIN, speed);
  9021. }
  9022. }
  9023. #endif // HAS_CONTROLLERFAN
  9024. #if ENABLED(MORGAN_SCARA)
  9025. /**
  9026. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9027. * Maths and first version by QHARLEY.
  9028. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9029. */
  9030. void forward_kinematics_SCARA(const float &a, const float &b) {
  9031. float a_sin = sin(RADIANS(a)) * L1,
  9032. a_cos = cos(RADIANS(a)) * L1,
  9033. b_sin = sin(RADIANS(b)) * L2,
  9034. b_cos = cos(RADIANS(b)) * L2;
  9035. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9036. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9037. /*
  9038. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9039. SERIAL_ECHOPAIR(" b=", b);
  9040. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9041. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9042. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9043. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9044. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9045. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9046. //*/
  9047. }
  9048. /**
  9049. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9050. *
  9051. * See http://forums.reprap.org/read.php?185,283327
  9052. *
  9053. * Maths and first version by QHARLEY.
  9054. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9055. */
  9056. void inverse_kinematics(const float logical[XYZ]) {
  9057. static float C2, S2, SK1, SK2, THETA, PSI;
  9058. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  9059. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  9060. if (L1 == L2)
  9061. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  9062. else
  9063. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  9064. S2 = sqrt(sq(C2) - 1);
  9065. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  9066. SK1 = L1 + L2 * C2;
  9067. // Rotated Arm2 gives the distance from Arm1 to Arm2
  9068. SK2 = L2 * S2;
  9069. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  9070. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  9071. // Angle of Arm2
  9072. PSI = atan2(S2, C2);
  9073. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  9074. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  9075. delta[C_AXIS] = logical[Z_AXIS];
  9076. /*
  9077. DEBUG_POS("SCARA IK", logical);
  9078. DEBUG_POS("SCARA IK", delta);
  9079. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  9080. SERIAL_ECHOPAIR(",", sy);
  9081. SERIAL_ECHOPAIR(" C2=", C2);
  9082. SERIAL_ECHOPAIR(" S2=", S2);
  9083. SERIAL_ECHOPAIR(" Theta=", THETA);
  9084. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  9085. //*/
  9086. }
  9087. #endif // MORGAN_SCARA
  9088. #if ENABLED(TEMP_STAT_LEDS)
  9089. static bool red_led = false;
  9090. static millis_t next_status_led_update_ms = 0;
  9091. void handle_status_leds(void) {
  9092. if (ELAPSED(millis(), next_status_led_update_ms)) {
  9093. next_status_led_update_ms += 500; // Update every 0.5s
  9094. float max_temp = 0.0;
  9095. #if HAS_TEMP_BED
  9096. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  9097. #endif
  9098. HOTEND_LOOP() {
  9099. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  9100. }
  9101. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  9102. if (new_led != red_led) {
  9103. red_led = new_led;
  9104. #if PIN_EXISTS(STAT_LED_RED)
  9105. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  9106. #if PIN_EXISTS(STAT_LED_BLUE)
  9107. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  9108. #endif
  9109. #else
  9110. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  9111. #endif
  9112. }
  9113. }
  9114. }
  9115. #endif
  9116. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9117. void handle_filament_runout() {
  9118. if (!filament_ran_out) {
  9119. filament_ran_out = true;
  9120. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  9121. stepper.synchronize();
  9122. }
  9123. }
  9124. #endif // FILAMENT_RUNOUT_SENSOR
  9125. #if ENABLED(FAST_PWM_FAN)
  9126. void setPwmFrequency(uint8_t pin, int val) {
  9127. val &= 0x07;
  9128. switch (digitalPinToTimer(pin)) {
  9129. #ifdef TCCR0A
  9130. case TIMER0A:
  9131. case TIMER0B:
  9132. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  9133. // TCCR0B |= val;
  9134. break;
  9135. #endif
  9136. #ifdef TCCR1A
  9137. case TIMER1A:
  9138. case TIMER1B:
  9139. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  9140. // TCCR1B |= val;
  9141. break;
  9142. #endif
  9143. #ifdef TCCR2
  9144. case TIMER2:
  9145. case TIMER2:
  9146. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  9147. TCCR2 |= val;
  9148. break;
  9149. #endif
  9150. #ifdef TCCR2A
  9151. case TIMER2A:
  9152. case TIMER2B:
  9153. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  9154. TCCR2B |= val;
  9155. break;
  9156. #endif
  9157. #ifdef TCCR3A
  9158. case TIMER3A:
  9159. case TIMER3B:
  9160. case TIMER3C:
  9161. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  9162. TCCR3B |= val;
  9163. break;
  9164. #endif
  9165. #ifdef TCCR4A
  9166. case TIMER4A:
  9167. case TIMER4B:
  9168. case TIMER4C:
  9169. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  9170. TCCR4B |= val;
  9171. break;
  9172. #endif
  9173. #ifdef TCCR5A
  9174. case TIMER5A:
  9175. case TIMER5B:
  9176. case TIMER5C:
  9177. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  9178. TCCR5B |= val;
  9179. break;
  9180. #endif
  9181. }
  9182. }
  9183. #endif // FAST_PWM_FAN
  9184. float calculate_volumetric_multiplier(float diameter) {
  9185. if (!volumetric_enabled || diameter == 0) return 1.0;
  9186. return 1.0 / (M_PI * sq(diameter * 0.5));
  9187. }
  9188. void calculate_volumetric_multipliers() {
  9189. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9190. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9191. }
  9192. void enable_all_steppers() {
  9193. enable_x();
  9194. enable_y();
  9195. enable_z();
  9196. enable_e0();
  9197. enable_e1();
  9198. enable_e2();
  9199. enable_e3();
  9200. enable_e4();
  9201. }
  9202. void disable_e_steppers() {
  9203. disable_e0();
  9204. disable_e1();
  9205. disable_e2();
  9206. disable_e3();
  9207. disable_e4();
  9208. }
  9209. void disable_all_steppers() {
  9210. disable_x();
  9211. disable_y();
  9212. disable_z();
  9213. disable_e_steppers();
  9214. }
  9215. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9216. void automatic_current_control(const TMC2130Stepper &st) {
  9217. #if CURRENT_STEP > 0
  9218. const bool is_otpw = st.checkOT(), // Check otpw even if we don't adjust. Allows for flag inspection.
  9219. is_otpw_triggered = st.getOTPW();
  9220. if (!is_otpw && !is_otpw_triggered) {
  9221. // OTPW bit not triggered yet -> Increase current
  9222. const uint16_t current = st.getCurrent() + CURRENT_STEP;
  9223. if (current <= AUTO_ADJUST_MAX) st.SilentStepStick2130(current);
  9224. }
  9225. else if (is_otpw && is_otpw_triggered) {
  9226. // OTPW bit triggered, triggered flag raised -> Decrease current
  9227. st.SilentStepStick2130((float)st.getCurrent() - CURRENT_STEP);
  9228. }
  9229. // OTPW bit cleared (we've cooled down), triggered flag still raised until manually cleared -> Do nothing, we're good
  9230. #endif
  9231. }
  9232. void checkOverTemp() {
  9233. static millis_t next_cOT = 0;
  9234. if (ELAPSED(millis(), next_cOT)) {
  9235. next_cOT = millis() + 5000;
  9236. #if ENABLED(X_IS_TMC2130)
  9237. automatic_current_control(stepperX);
  9238. #endif
  9239. #if ENABLED(Y_IS_TMC2130)
  9240. automatic_current_control(stepperY);
  9241. #endif
  9242. #if ENABLED(Z_IS_TMC2130)
  9243. automatic_current_control(stepperZ);
  9244. #endif
  9245. #if ENABLED(X2_IS_TMC2130)
  9246. automatic_current_control(stepperX2);
  9247. #endif
  9248. #if ENABLED(Y2_IS_TMC2130)
  9249. automatic_current_control(stepperY2);
  9250. #endif
  9251. #if ENABLED(Z2_IS_TMC2130)
  9252. automatic_current_control(stepperZ2);
  9253. #endif
  9254. #if ENABLED(E0_IS_TMC2130)
  9255. automatic_current_control(stepperE0);
  9256. #endif
  9257. #if ENABLED(E1_IS_TMC2130)
  9258. automatic_current_control(stepperE1);
  9259. #endif
  9260. #if ENABLED(E2_IS_TMC2130)
  9261. automatic_current_control(stepperE2);
  9262. #endif
  9263. #if ENABLED(E3_IS_TMC2130)
  9264. automatic_current_control(stepperE3);
  9265. #endif
  9266. }
  9267. }
  9268. #endif // AUTOMATIC_CURRENT_CONTROL
  9269. /**
  9270. * Manage several activities:
  9271. * - Check for Filament Runout
  9272. * - Keep the command buffer full
  9273. * - Check for maximum inactive time between commands
  9274. * - Check for maximum inactive time between stepper commands
  9275. * - Check if pin CHDK needs to go LOW
  9276. * - Check for KILL button held down
  9277. * - Check for HOME button held down
  9278. * - Check if cooling fan needs to be switched on
  9279. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  9280. */
  9281. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  9282. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9283. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  9284. handle_filament_runout();
  9285. #endif
  9286. if (commands_in_queue < BUFSIZE) get_available_commands();
  9287. const millis_t ms = millis();
  9288. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  9289. SERIAL_ERROR_START;
  9290. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  9291. kill(PSTR(MSG_KILLED));
  9292. }
  9293. // Prevent steppers timing-out in the middle of M600
  9294. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  9295. #define M600_TEST !busy_doing_M600
  9296. #else
  9297. #define M600_TEST true
  9298. #endif
  9299. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  9300. && !ignore_stepper_queue && !planner.blocks_queued()) {
  9301. #if ENABLED(DISABLE_INACTIVE_X)
  9302. disable_x();
  9303. #endif
  9304. #if ENABLED(DISABLE_INACTIVE_Y)
  9305. disable_y();
  9306. #endif
  9307. #if ENABLED(DISABLE_INACTIVE_Z)
  9308. disable_z();
  9309. #endif
  9310. #if ENABLED(DISABLE_INACTIVE_E)
  9311. disable_e_steppers();
  9312. #endif
  9313. }
  9314. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  9315. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  9316. chdkActive = false;
  9317. WRITE(CHDK, LOW);
  9318. }
  9319. #endif
  9320. #if HAS_KILL
  9321. // Check if the kill button was pressed and wait just in case it was an accidental
  9322. // key kill key press
  9323. // -------------------------------------------------------------------------------
  9324. static int killCount = 0; // make the inactivity button a bit less responsive
  9325. const int KILL_DELAY = 750;
  9326. if (!READ(KILL_PIN))
  9327. killCount++;
  9328. else if (killCount > 0)
  9329. killCount--;
  9330. // Exceeded threshold and we can confirm that it was not accidental
  9331. // KILL the machine
  9332. // ----------------------------------------------------------------
  9333. if (killCount >= KILL_DELAY) {
  9334. SERIAL_ERROR_START;
  9335. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  9336. kill(PSTR(MSG_KILLED));
  9337. }
  9338. #endif
  9339. #if HAS_HOME
  9340. // Check to see if we have to home, use poor man's debouncer
  9341. // ---------------------------------------------------------
  9342. static int homeDebounceCount = 0; // poor man's debouncing count
  9343. const int HOME_DEBOUNCE_DELAY = 2500;
  9344. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  9345. if (!homeDebounceCount) {
  9346. enqueue_and_echo_commands_P(PSTR("G28"));
  9347. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  9348. }
  9349. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  9350. homeDebounceCount++;
  9351. else
  9352. homeDebounceCount = 0;
  9353. }
  9354. #endif
  9355. #if HAS_CONTROLLERFAN
  9356. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  9357. #endif
  9358. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  9359. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  9360. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  9361. bool oldstatus;
  9362. #if ENABLED(SWITCHING_EXTRUDER)
  9363. oldstatus = E0_ENABLE_READ;
  9364. enable_e0();
  9365. #else // !SWITCHING_EXTRUDER
  9366. switch (active_extruder) {
  9367. case 0:
  9368. oldstatus = E0_ENABLE_READ;
  9369. enable_e0();
  9370. break;
  9371. #if E_STEPPERS > 1
  9372. case 1:
  9373. oldstatus = E1_ENABLE_READ;
  9374. enable_e1();
  9375. break;
  9376. #if E_STEPPERS > 2
  9377. case 2:
  9378. oldstatus = E2_ENABLE_READ;
  9379. enable_e2();
  9380. break;
  9381. #if E_STEPPERS > 3
  9382. case 3:
  9383. oldstatus = E3_ENABLE_READ;
  9384. enable_e3();
  9385. break;
  9386. #if E_STEPPERS > 4
  9387. case 4:
  9388. oldstatus = E4_ENABLE_READ;
  9389. enable_e4();
  9390. break;
  9391. #endif // E_STEPPERS > 4
  9392. #endif // E_STEPPERS > 3
  9393. #endif // E_STEPPERS > 2
  9394. #endif // E_STEPPERS > 1
  9395. }
  9396. #endif // !SWITCHING_EXTRUDER
  9397. previous_cmd_ms = ms; // refresh_cmd_timeout()
  9398. const float olde = current_position[E_AXIS];
  9399. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  9400. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  9401. current_position[E_AXIS] = olde;
  9402. planner.set_e_position_mm(olde);
  9403. stepper.synchronize();
  9404. #if ENABLED(SWITCHING_EXTRUDER)
  9405. E0_ENABLE_WRITE(oldstatus);
  9406. #else
  9407. switch (active_extruder) {
  9408. case 0:
  9409. E0_ENABLE_WRITE(oldstatus);
  9410. break;
  9411. #if E_STEPPERS > 1
  9412. case 1:
  9413. E1_ENABLE_WRITE(oldstatus);
  9414. break;
  9415. #if E_STEPPERS > 2
  9416. case 2:
  9417. E2_ENABLE_WRITE(oldstatus);
  9418. break;
  9419. #if E_STEPPERS > 3
  9420. case 3:
  9421. E3_ENABLE_WRITE(oldstatus);
  9422. break;
  9423. #if E_STEPPERS > 4
  9424. case 4:
  9425. E4_ENABLE_WRITE(oldstatus);
  9426. break;
  9427. #endif // E_STEPPERS > 4
  9428. #endif // E_STEPPERS > 3
  9429. #endif // E_STEPPERS > 2
  9430. #endif // E_STEPPERS > 1
  9431. }
  9432. #endif // !SWITCHING_EXTRUDER
  9433. }
  9434. #endif // EXTRUDER_RUNOUT_PREVENT
  9435. #if ENABLED(DUAL_X_CARRIAGE)
  9436. // handle delayed move timeout
  9437. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  9438. // travel moves have been received so enact them
  9439. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  9440. set_destination_to_current();
  9441. prepare_move_to_destination();
  9442. }
  9443. #endif
  9444. #if ENABLED(TEMP_STAT_LEDS)
  9445. handle_status_leds();
  9446. #endif
  9447. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9448. checkOverTemp();
  9449. #endif
  9450. planner.check_axes_activity();
  9451. }
  9452. /**
  9453. * Standard idle routine keeps the machine alive
  9454. */
  9455. void idle(
  9456. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9457. bool no_stepper_sleep/*=false*/
  9458. #endif
  9459. ) {
  9460. lcd_update();
  9461. host_keepalive();
  9462. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9463. auto_report_temperatures();
  9464. #endif
  9465. manage_inactivity(
  9466. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9467. no_stepper_sleep
  9468. #endif
  9469. );
  9470. thermalManager.manage_heater();
  9471. #if ENABLED(PRINTCOUNTER)
  9472. print_job_timer.tick();
  9473. #endif
  9474. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  9475. buzzer.tick();
  9476. #endif
  9477. }
  9478. /**
  9479. * Kill all activity and lock the machine.
  9480. * After this the machine will need to be reset.
  9481. */
  9482. void kill(const char* lcd_msg) {
  9483. SERIAL_ERROR_START;
  9484. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  9485. thermalManager.disable_all_heaters();
  9486. disable_all_steppers();
  9487. #if ENABLED(ULTRA_LCD)
  9488. kill_screen(lcd_msg);
  9489. #else
  9490. UNUSED(lcd_msg);
  9491. #endif
  9492. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  9493. cli(); // Stop interrupts
  9494. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  9495. thermalManager.disable_all_heaters(); //turn off heaters again
  9496. #if HAS_POWER_SWITCH
  9497. SET_INPUT(PS_ON_PIN);
  9498. #endif
  9499. suicide();
  9500. while (1) {
  9501. #if ENABLED(USE_WATCHDOG)
  9502. watchdog_reset();
  9503. #endif
  9504. } // Wait for reset
  9505. }
  9506. /**
  9507. * Turn off heaters and stop the print in progress
  9508. * After a stop the machine may be resumed with M999
  9509. */
  9510. void stop() {
  9511. thermalManager.disable_all_heaters();
  9512. if (IsRunning()) {
  9513. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  9514. SERIAL_ERROR_START;
  9515. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  9516. LCD_MESSAGEPGM(MSG_STOPPED);
  9517. safe_delay(350); // allow enough time for messages to get out before stopping
  9518. Running = false;
  9519. }
  9520. }
  9521. /**
  9522. * Marlin entry-point: Set up before the program loop
  9523. * - Set up the kill pin, filament runout, power hold
  9524. * - Start the serial port
  9525. * - Print startup messages and diagnostics
  9526. * - Get EEPROM or default settings
  9527. * - Initialize managers for:
  9528. * • temperature
  9529. * • planner
  9530. * • watchdog
  9531. * • stepper
  9532. * • photo pin
  9533. * • servos
  9534. * • LCD controller
  9535. * • Digipot I2C
  9536. * • Z probe sled
  9537. * • status LEDs
  9538. */
  9539. void setup() {
  9540. #ifdef DISABLE_JTAG
  9541. // Disable JTAG on AT90USB chips to free up pins for IO
  9542. MCUCR = 0x80;
  9543. MCUCR = 0x80;
  9544. #endif
  9545. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9546. setup_filrunoutpin();
  9547. #endif
  9548. setup_killpin();
  9549. setup_powerhold();
  9550. #if HAS_STEPPER_RESET
  9551. disableStepperDrivers();
  9552. #endif
  9553. MYSERIAL.begin(BAUDRATE);
  9554. SERIAL_PROTOCOLLNPGM("start");
  9555. SERIAL_ECHO_START;
  9556. // Check startup - does nothing if bootloader sets MCUSR to 0
  9557. byte mcu = MCUSR;
  9558. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  9559. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  9560. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  9561. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  9562. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  9563. MCUSR = 0;
  9564. SERIAL_ECHOPGM(MSG_MARLIN);
  9565. SERIAL_CHAR(' ');
  9566. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  9567. SERIAL_EOL;
  9568. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  9569. SERIAL_ECHO_START;
  9570. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  9571. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  9572. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  9573. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  9574. #endif
  9575. SERIAL_ECHO_START;
  9576. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  9577. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  9578. // Send "ok" after commands by default
  9579. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  9580. // Load data from EEPROM if available (or use defaults)
  9581. // This also updates variables in the planner, elsewhere
  9582. (void)Config_RetrieveSettings();
  9583. #if DISABLED(NO_WORKSPACE_OFFSETS)
  9584. // Initialize current position based on home_offset
  9585. COPY(current_position, home_offset);
  9586. #else
  9587. ZERO(current_position);
  9588. #endif
  9589. // Vital to init stepper/planner equivalent for current_position
  9590. SYNC_PLAN_POSITION_KINEMATIC();
  9591. thermalManager.init(); // Initialize temperature loop
  9592. #if ENABLED(USE_WATCHDOG)
  9593. watchdog_init();
  9594. #endif
  9595. stepper.init(); // Initialize stepper, this enables interrupts!
  9596. servo_init();
  9597. #if HAS_PHOTOGRAPH
  9598. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  9599. #endif
  9600. #if HAS_CASE_LIGHT
  9601. update_case_light();
  9602. #endif
  9603. #if HAS_BED_PROBE
  9604. endstops.enable_z_probe(false);
  9605. #endif
  9606. #if HAS_CONTROLLERFAN
  9607. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  9608. #endif
  9609. #if HAS_STEPPER_RESET
  9610. enableStepperDrivers();
  9611. #endif
  9612. #if ENABLED(DIGIPOT_I2C)
  9613. digipot_i2c_init();
  9614. #endif
  9615. #if ENABLED(DAC_STEPPER_CURRENT)
  9616. dac_init();
  9617. #endif
  9618. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  9619. OUT_WRITE(SLED_PIN, LOW); // turn it off
  9620. #endif // Z_PROBE_SLED
  9621. setup_homepin();
  9622. #if PIN_EXISTS(STAT_LED_RED)
  9623. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  9624. #endif
  9625. #if PIN_EXISTS(STAT_LED_BLUE)
  9626. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  9627. #endif
  9628. #if ENABLED(RGB_LED)
  9629. SET_OUTPUT(RGB_LED_R_PIN);
  9630. SET_OUTPUT(RGB_LED_G_PIN);
  9631. SET_OUTPUT(RGB_LED_B_PIN);
  9632. #endif
  9633. lcd_init();
  9634. #if ENABLED(SHOW_BOOTSCREEN)
  9635. #if ENABLED(DOGLCD)
  9636. safe_delay(BOOTSCREEN_TIMEOUT);
  9637. #elif ENABLED(ULTRA_LCD)
  9638. bootscreen();
  9639. #if DISABLED(SDSUPPORT)
  9640. lcd_init();
  9641. #endif
  9642. #endif
  9643. #endif
  9644. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9645. // Initialize mixing to 100% color 1
  9646. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9647. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  9648. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  9649. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9650. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  9651. #endif
  9652. #if ENABLED(BLTOUCH)
  9653. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  9654. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  9655. set_bltouch_deployed(false); // error condition.
  9656. #endif
  9657. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  9658. i2c.onReceive(i2c_on_receive);
  9659. i2c.onRequest(i2c_on_request);
  9660. #endif
  9661. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  9662. setup_endstop_interrupts();
  9663. #endif
  9664. }
  9665. /**
  9666. * The main Marlin program loop
  9667. *
  9668. * - Save or log commands to SD
  9669. * - Process available commands (if not saving)
  9670. * - Call heater manager
  9671. * - Call inactivity manager
  9672. * - Call endstop manager
  9673. * - Call LCD update
  9674. */
  9675. void loop() {
  9676. if (commands_in_queue < BUFSIZE) get_available_commands();
  9677. #if ENABLED(SDSUPPORT)
  9678. card.checkautostart(false);
  9679. #endif
  9680. if (commands_in_queue) {
  9681. #if ENABLED(SDSUPPORT)
  9682. if (card.saving) {
  9683. char* command = command_queue[cmd_queue_index_r];
  9684. if (strstr_P(command, PSTR("M29"))) {
  9685. // M29 closes the file
  9686. card.closefile();
  9687. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  9688. ok_to_send();
  9689. }
  9690. else {
  9691. // Write the string from the read buffer to SD
  9692. card.write_command(command);
  9693. if (card.logging)
  9694. process_next_command(); // The card is saving because it's logging
  9695. else
  9696. ok_to_send();
  9697. }
  9698. }
  9699. else
  9700. process_next_command();
  9701. #else
  9702. process_next_command();
  9703. #endif // SDSUPPORT
  9704. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  9705. if (commands_in_queue) {
  9706. --commands_in_queue;
  9707. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  9708. }
  9709. }
  9710. endstops.report_state();
  9711. idle();
  9712. }