My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 111KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #endif // ENABLE_AUTO_BED_LEVELING
  27. #include "ultralcd.h"
  28. #include "planner.h"
  29. #include "stepper.h"
  30. #include "temperature.h"
  31. #include "motion_control.h"
  32. #include "cardreader.h"
  33. #include "watchdog.h"
  34. #include "ConfigurationStore.h"
  35. #include "language.h"
  36. #include "pins_arduino.h"
  37. #include "math.h"
  38. #ifdef BLINKM
  39. #include "BlinkM.h"
  40. #include "Wire.h"
  41. #endif
  42. #if NUM_SERVOS > 0
  43. #include "Servo.h"
  44. #endif
  45. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  46. #include <SPI.h>
  47. #endif
  48. #define VERSION_STRING "1.0.0"
  49. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  50. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  51. //Implemented Codes
  52. //-------------------
  53. // G0 -> G1
  54. // G1 - Coordinated Movement X Y Z E
  55. // G2 - CW ARC
  56. // G3 - CCW ARC
  57. // G4 - Dwell S<seconds> or P<milliseconds>
  58. // G10 - retract filament according to settings of M207
  59. // G11 - retract recover filament according to settings of M208
  60. // G28 - Home all Axis
  61. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  62. // G30 - Single Z Probe, probes bed at current XY location.
  63. // G90 - Use Absolute Coordinates
  64. // G91 - Use Relative Coordinates
  65. // G92 - Set current position to cordinates given
  66. // M Codes
  67. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  68. // M1 - Same as M0
  69. // M17 - Enable/Power all stepper motors
  70. // M18 - Disable all stepper motors; same as M84
  71. // M20 - List SD card
  72. // M21 - Init SD card
  73. // M22 - Release SD card
  74. // M23 - Select SD file (M23 filename.g)
  75. // M24 - Start/resume SD print
  76. // M25 - Pause SD print
  77. // M26 - Set SD position in bytes (M26 S12345)
  78. // M27 - Report SD print status
  79. // M28 - Start SD write (M28 filename.g)
  80. // M29 - Stop SD write
  81. // M30 - Delete file from SD (M30 filename.g)
  82. // M31 - Output time since last M109 or SD card start to serial
  83. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  84. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  85. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  86. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  87. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  88. // M80 - Turn on Power Supply
  89. // M81 - Turn off Power Supply
  90. // M82 - Set E codes absolute (default)
  91. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  92. // M84 - Disable steppers until next move,
  93. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  94. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  95. // M92 - Set axis_steps_per_unit - same syntax as G92
  96. // M104 - Set extruder target temp
  97. // M105 - Read current temp
  98. // M106 - Fan on
  99. // M107 - Fan off
  100. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  101. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  102. // M114 - Output current position to serial port
  103. // M115 - Capabilities string
  104. // M117 - display message
  105. // M119 - Output Endstop status to serial port
  106. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  107. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  108. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  109. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  110. // M140 - Set bed target temp
  111. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  112. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  113. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  114. // M200 - Set filament diameter
  115. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  116. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  117. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  118. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  119. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  120. // M206 - set additional homeing offset
  121. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  122. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  123. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  124. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  125. // M220 S<factor in percent>- set speed factor override percentage
  126. // M221 S<factor in percent>- set extrude factor override percentage
  127. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  128. // M240 - Trigger a camera to take a photograph
  129. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  130. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  131. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  132. // M301 - Set PID parameters P I and D
  133. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  134. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  135. // M304 - Set bed PID parameters P I and D
  136. // M400 - Finish all moves
  137. // M401 - Lower z-probe if present
  138. // M402 - Raise z-probe if present
  139. // M500 - stores paramters in EEPROM
  140. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  141. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  142. // M503 - print the current settings (from memory not from eeprom)
  143. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  144. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  145. // M666 - set delta endstop adjustemnt
  146. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  147. // M907 - Set digital trimpot motor current using axis codes.
  148. // M908 - Control digital trimpot directly.
  149. // M350 - Set microstepping mode.
  150. // M351 - Toggle MS1 MS2 pins directly.
  151. // M928 - Start SD logging (M928 filename.g) - ended by M29
  152. // M999 - Restart after being stopped by error
  153. //Stepper Movement Variables
  154. //===========================================================================
  155. //=============================imported variables============================
  156. //===========================================================================
  157. //===========================================================================
  158. //=============================public variables=============================
  159. //===========================================================================
  160. #ifdef SDSUPPORT
  161. CardReader card;
  162. #endif
  163. float homing_feedrate[] = HOMING_FEEDRATE;
  164. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  165. int feedmultiply=100; //100->1 200->2
  166. int saved_feedmultiply;
  167. int extrudemultiply=100; //100->1 200->2
  168. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  169. float add_homeing[3]={0,0,0};
  170. #ifdef DELTA
  171. float endstop_adj[3]={0,0,0};
  172. #endif
  173. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  174. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  175. bool axis_known_position[3] = {false, false, false};
  176. // Extruder offset
  177. #if EXTRUDERS > 1
  178. #ifndef DUAL_X_CARRIAGE
  179. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  180. #else
  181. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  182. #endif
  183. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  184. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  185. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  186. #endif
  187. };
  188. #endif
  189. uint8_t active_extruder = 0;
  190. int fanSpeed=0;
  191. #ifdef SERVO_ENDSTOPS
  192. int servo_endstops[] = SERVO_ENDSTOPS;
  193. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  194. #endif
  195. #ifdef BARICUDA
  196. int ValvePressure=0;
  197. int EtoPPressure=0;
  198. #endif
  199. #ifdef FWRETRACT
  200. bool autoretract_enabled=true;
  201. bool retracted=false;
  202. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  203. float retract_recover_length=0, retract_recover_feedrate=8*60;
  204. #endif
  205. #ifdef ULTIPANEL
  206. #ifdef PS_DEFAULT_OFF
  207. bool powersupply = false;
  208. #else
  209. bool powersupply = true;
  210. #endif
  211. #endif
  212. #ifdef DELTA
  213. float delta[3] = {0.0, 0.0, 0.0};
  214. #endif
  215. //===========================================================================
  216. //=============================private variables=============================
  217. //===========================================================================
  218. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  219. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  220. static float offset[3] = {0.0, 0.0, 0.0};
  221. static bool home_all_axis = true;
  222. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  223. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  224. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  225. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  226. static bool fromsd[BUFSIZE];
  227. static int bufindr = 0;
  228. static int bufindw = 0;
  229. static int buflen = 0;
  230. //static int i = 0;
  231. static char serial_char;
  232. static int serial_count = 0;
  233. static boolean comment_mode = false;
  234. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  235. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  236. //static float tt = 0;
  237. //static float bt = 0;
  238. //Inactivity shutdown variables
  239. static unsigned long previous_millis_cmd = 0;
  240. static unsigned long max_inactive_time = 0;
  241. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  242. unsigned long starttime=0;
  243. unsigned long stoptime=0;
  244. static uint8_t tmp_extruder;
  245. bool Stopped=false;
  246. #if NUM_SERVOS > 0
  247. Servo servos[NUM_SERVOS];
  248. #endif
  249. bool CooldownNoWait = true;
  250. bool target_direction;
  251. //===========================================================================
  252. //=============================ROUTINES=============================
  253. //===========================================================================
  254. void get_arc_coordinates();
  255. bool setTargetedHotend(int code);
  256. void serial_echopair_P(const char *s_P, float v)
  257. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  258. void serial_echopair_P(const char *s_P, double v)
  259. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  260. void serial_echopair_P(const char *s_P, unsigned long v)
  261. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  262. extern "C"{
  263. extern unsigned int __bss_end;
  264. extern unsigned int __heap_start;
  265. extern void *__brkval;
  266. int freeMemory() {
  267. int free_memory;
  268. if((int)__brkval == 0)
  269. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  270. else
  271. free_memory = ((int)&free_memory) - ((int)__brkval);
  272. return free_memory;
  273. }
  274. }
  275. //adds an command to the main command buffer
  276. //thats really done in a non-safe way.
  277. //needs overworking someday
  278. void enquecommand(const char *cmd)
  279. {
  280. if(buflen < BUFSIZE)
  281. {
  282. //this is dangerous if a mixing of serial and this happsens
  283. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  284. SERIAL_ECHO_START;
  285. SERIAL_ECHOPGM("enqueing \"");
  286. SERIAL_ECHO(cmdbuffer[bufindw]);
  287. SERIAL_ECHOLNPGM("\"");
  288. bufindw= (bufindw + 1)%BUFSIZE;
  289. buflen += 1;
  290. }
  291. }
  292. void enquecommand_P(const char *cmd)
  293. {
  294. if(buflen < BUFSIZE)
  295. {
  296. //this is dangerous if a mixing of serial and this happsens
  297. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  298. SERIAL_ECHO_START;
  299. SERIAL_ECHOPGM("enqueing \"");
  300. SERIAL_ECHO(cmdbuffer[bufindw]);
  301. SERIAL_ECHOLNPGM("\"");
  302. bufindw= (bufindw + 1)%BUFSIZE;
  303. buflen += 1;
  304. }
  305. }
  306. void setup_killpin()
  307. {
  308. #if defined(KILL_PIN) && KILL_PIN > -1
  309. pinMode(KILL_PIN,INPUT);
  310. WRITE(KILL_PIN,HIGH);
  311. #endif
  312. }
  313. void setup_photpin()
  314. {
  315. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  316. SET_OUTPUT(PHOTOGRAPH_PIN);
  317. WRITE(PHOTOGRAPH_PIN, LOW);
  318. #endif
  319. }
  320. void setup_powerhold()
  321. {
  322. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  323. SET_OUTPUT(SUICIDE_PIN);
  324. WRITE(SUICIDE_PIN, HIGH);
  325. #endif
  326. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  327. SET_OUTPUT(PS_ON_PIN);
  328. #if defined(PS_DEFAULT_OFF)
  329. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  330. #else
  331. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  332. #endif
  333. #endif
  334. }
  335. void suicide()
  336. {
  337. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  338. SET_OUTPUT(SUICIDE_PIN);
  339. WRITE(SUICIDE_PIN, LOW);
  340. #endif
  341. }
  342. void servo_init()
  343. {
  344. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  345. servos[0].attach(SERVO0_PIN);
  346. #endif
  347. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  348. servos[1].attach(SERVO1_PIN);
  349. #endif
  350. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  351. servos[2].attach(SERVO2_PIN);
  352. #endif
  353. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  354. servos[3].attach(SERVO3_PIN);
  355. #endif
  356. #if (NUM_SERVOS >= 5)
  357. #error "TODO: enter initalisation code for more servos"
  358. #endif
  359. // Set position of Servo Endstops that are defined
  360. #ifdef SERVO_ENDSTOPS
  361. for(int8_t i = 0; i < 3; i++)
  362. {
  363. if(servo_endstops[i] > -1) {
  364. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  365. }
  366. }
  367. #endif
  368. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  369. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  370. servos[servo_endstops[Z_AXIS]].detach();
  371. #endif
  372. }
  373. void setup()
  374. {
  375. setup_killpin();
  376. setup_powerhold();
  377. MYSERIAL.begin(BAUDRATE);
  378. SERIAL_PROTOCOLLNPGM("start");
  379. SERIAL_ECHO_START;
  380. // Check startup - does nothing if bootloader sets MCUSR to 0
  381. byte mcu = MCUSR;
  382. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  383. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  384. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  385. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  386. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  387. MCUSR=0;
  388. SERIAL_ECHOPGM(MSG_MARLIN);
  389. SERIAL_ECHOLNPGM(VERSION_STRING);
  390. #ifdef STRING_VERSION_CONFIG_H
  391. #ifdef STRING_CONFIG_H_AUTHOR
  392. SERIAL_ECHO_START;
  393. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  394. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  395. SERIAL_ECHOPGM(MSG_AUTHOR);
  396. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  397. SERIAL_ECHOPGM("Compiled: ");
  398. SERIAL_ECHOLNPGM(__DATE__);
  399. #endif
  400. #endif
  401. SERIAL_ECHO_START;
  402. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  403. SERIAL_ECHO(freeMemory());
  404. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  405. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  406. for(int8_t i = 0; i < BUFSIZE; i++)
  407. {
  408. fromsd[i] = false;
  409. }
  410. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  411. Config_RetrieveSettings();
  412. tp_init(); // Initialize temperature loop
  413. plan_init(); // Initialize planner;
  414. watchdog_init();
  415. st_init(); // Initialize stepper, this enables interrupts!
  416. setup_photpin();
  417. servo_init();
  418. lcd_init();
  419. _delay_ms(1000); // wait 1sec to display the splash screen
  420. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  421. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  422. #endif
  423. }
  424. void loop()
  425. {
  426. if(buflen < (BUFSIZE-1))
  427. get_command();
  428. #ifdef SDSUPPORT
  429. card.checkautostart(false);
  430. #endif
  431. if(buflen)
  432. {
  433. #ifdef SDSUPPORT
  434. if(card.saving)
  435. {
  436. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  437. {
  438. card.write_command(cmdbuffer[bufindr]);
  439. if(card.logging)
  440. {
  441. process_commands();
  442. }
  443. else
  444. {
  445. SERIAL_PROTOCOLLNPGM(MSG_OK);
  446. }
  447. }
  448. else
  449. {
  450. card.closefile();
  451. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  452. }
  453. }
  454. else
  455. {
  456. process_commands();
  457. }
  458. #else
  459. process_commands();
  460. #endif //SDSUPPORT
  461. buflen = (buflen-1);
  462. bufindr = (bufindr + 1)%BUFSIZE;
  463. }
  464. //check heater every n milliseconds
  465. manage_heater();
  466. manage_inactivity();
  467. checkHitEndstops();
  468. lcd_update();
  469. }
  470. void get_command()
  471. {
  472. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  473. serial_char = MYSERIAL.read();
  474. if(serial_char == '\n' ||
  475. serial_char == '\r' ||
  476. (serial_char == ':' && comment_mode == false) ||
  477. serial_count >= (MAX_CMD_SIZE - 1) )
  478. {
  479. if(!serial_count) { //if empty line
  480. comment_mode = false; //for new command
  481. return;
  482. }
  483. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  484. if(!comment_mode){
  485. comment_mode = false; //for new command
  486. fromsd[bufindw] = false;
  487. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  488. {
  489. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  490. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  491. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  492. SERIAL_ERROR_START;
  493. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  494. SERIAL_ERRORLN(gcode_LastN);
  495. //Serial.println(gcode_N);
  496. FlushSerialRequestResend();
  497. serial_count = 0;
  498. return;
  499. }
  500. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  501. {
  502. byte checksum = 0;
  503. byte count = 0;
  504. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  505. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  506. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  507. SERIAL_ERROR_START;
  508. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  509. SERIAL_ERRORLN(gcode_LastN);
  510. FlushSerialRequestResend();
  511. serial_count = 0;
  512. return;
  513. }
  514. //if no errors, continue parsing
  515. }
  516. else
  517. {
  518. SERIAL_ERROR_START;
  519. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  520. SERIAL_ERRORLN(gcode_LastN);
  521. FlushSerialRequestResend();
  522. serial_count = 0;
  523. return;
  524. }
  525. gcode_LastN = gcode_N;
  526. //if no errors, continue parsing
  527. }
  528. else // if we don't receive 'N' but still see '*'
  529. {
  530. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  531. {
  532. SERIAL_ERROR_START;
  533. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  534. SERIAL_ERRORLN(gcode_LastN);
  535. serial_count = 0;
  536. return;
  537. }
  538. }
  539. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  540. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  541. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  542. case 0:
  543. case 1:
  544. case 2:
  545. case 3:
  546. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  547. #ifdef SDSUPPORT
  548. if(card.saving)
  549. break;
  550. #endif //SDSUPPORT
  551. SERIAL_PROTOCOLLNPGM(MSG_OK);
  552. }
  553. else {
  554. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  555. LCD_MESSAGEPGM(MSG_STOPPED);
  556. }
  557. break;
  558. default:
  559. break;
  560. }
  561. }
  562. bufindw = (bufindw + 1)%BUFSIZE;
  563. buflen += 1;
  564. }
  565. serial_count = 0; //clear buffer
  566. }
  567. else
  568. {
  569. if(serial_char == ';') comment_mode = true;
  570. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  571. }
  572. }
  573. #ifdef SDSUPPORT
  574. if(!card.sdprinting || serial_count!=0){
  575. return;
  576. }
  577. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  578. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  579. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  580. static bool stop_buffering=false;
  581. if(buflen==0) stop_buffering=false;
  582. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  583. int16_t n=card.get();
  584. serial_char = (char)n;
  585. if(serial_char == '\n' ||
  586. serial_char == '\r' ||
  587. (serial_char == '#' && comment_mode == false) ||
  588. (serial_char == ':' && comment_mode == false) ||
  589. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  590. {
  591. if(card.eof()){
  592. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  593. stoptime=millis();
  594. char time[30];
  595. unsigned long t=(stoptime-starttime)/1000;
  596. int hours, minutes;
  597. minutes=(t/60)%60;
  598. hours=t/60/60;
  599. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  600. SERIAL_ECHO_START;
  601. SERIAL_ECHOLN(time);
  602. lcd_setstatus(time);
  603. card.printingHasFinished();
  604. card.checkautostart(true);
  605. }
  606. if(serial_char=='#')
  607. stop_buffering=true;
  608. if(!serial_count)
  609. {
  610. comment_mode = false; //for new command
  611. return; //if empty line
  612. }
  613. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  614. // if(!comment_mode){
  615. fromsd[bufindw] = true;
  616. buflen += 1;
  617. bufindw = (bufindw + 1)%BUFSIZE;
  618. // }
  619. comment_mode = false; //for new command
  620. serial_count = 0; //clear buffer
  621. }
  622. else
  623. {
  624. if(serial_char == ';') comment_mode = true;
  625. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  626. }
  627. }
  628. #endif //SDSUPPORT
  629. }
  630. float code_value()
  631. {
  632. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  633. }
  634. long code_value_long()
  635. {
  636. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  637. }
  638. bool code_seen(char code)
  639. {
  640. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  641. return (strchr_pointer != NULL); //Return True if a character was found
  642. }
  643. #define DEFINE_PGM_READ_ANY(type, reader) \
  644. static inline type pgm_read_any(const type *p) \
  645. { return pgm_read_##reader##_near(p); }
  646. DEFINE_PGM_READ_ANY(float, float);
  647. DEFINE_PGM_READ_ANY(signed char, byte);
  648. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  649. static const PROGMEM type array##_P[3] = \
  650. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  651. static inline type array(int axis) \
  652. { return pgm_read_any(&array##_P[axis]); }
  653. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  654. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  655. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  656. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  657. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  658. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  659. #ifdef DUAL_X_CARRIAGE
  660. #if EXTRUDERS == 1 || defined(COREXY) \
  661. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  662. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  663. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  664. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  665. #endif
  666. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  667. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  668. #endif
  669. #define DXC_FULL_CONTROL_MODE 0
  670. #define DXC_AUTO_PARK_MODE 1
  671. #define DXC_DUPLICATION_MODE 2
  672. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  673. static float x_home_pos(int extruder) {
  674. if (extruder == 0)
  675. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  676. else
  677. // In dual carriage mode the extruder offset provides an override of the
  678. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  679. // This allow soft recalibration of the second extruder offset position without firmware reflash
  680. // (through the M218 command).
  681. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  682. }
  683. static int x_home_dir(int extruder) {
  684. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  685. }
  686. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  687. static bool active_extruder_parked = false; // used in mode 1 & 2
  688. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  689. static unsigned long delayed_move_time = 0; // used in mode 1
  690. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  691. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  692. bool extruder_duplication_enabled = false; // used in mode 2
  693. #endif //DUAL_X_CARRIAGE
  694. static void axis_is_at_home(int axis) {
  695. #ifdef DUAL_X_CARRIAGE
  696. if (axis == X_AXIS) {
  697. if (active_extruder != 0) {
  698. current_position[X_AXIS] = x_home_pos(active_extruder);
  699. min_pos[X_AXIS] = X2_MIN_POS;
  700. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  701. return;
  702. }
  703. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  704. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  705. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  706. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  707. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  708. return;
  709. }
  710. }
  711. #endif
  712. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  713. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  714. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  715. }
  716. #ifdef ENABLE_AUTO_BED_LEVELING
  717. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  718. plan_bed_level_matrix.set_to_identity();
  719. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  720. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  721. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  722. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  723. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  724. vector_3 planeNormal = vector_3::cross(yPositive, xPositive).get_normal();
  725. //planeNormal.debug("planeNormal");
  726. //yPositive.debug("yPositive");
  727. matrix_3x3 bedLevel = matrix_3x3::create_look_at(planeNormal, yPositive);
  728. //bedLevel.debug("bedLevel");
  729. //plan_bed_level_matrix.debug("bed level before");
  730. //vector_3 uncorrected_position = plan_get_position_mm();
  731. //uncorrected_position.debug("position before");
  732. // and set our bed level equation to do the right thing
  733. plan_bed_level_matrix = matrix_3x3::create_inverse(bedLevel);
  734. //plan_bed_level_matrix.debug("bed level after");
  735. vector_3 corrected_position = plan_get_position();
  736. //corrected_position.debug("position after");
  737. current_position[X_AXIS] = corrected_position.x;
  738. current_position[Y_AXIS] = corrected_position.y;
  739. current_position[Z_AXIS] = corrected_position.z;
  740. // but the bed at 0 so we don't go below it.
  741. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  742. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  743. }
  744. static void run_z_probe() {
  745. plan_bed_level_matrix.set_to_identity();
  746. feedrate = homing_feedrate[Z_AXIS];
  747. // move down until you find the bed
  748. float zPosition = -10;
  749. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  750. st_synchronize();
  751. // we have to let the planner know where we are right now as it is not where we said to go.
  752. zPosition = st_get_position_mm(Z_AXIS);
  753. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  754. // move up the retract distance
  755. zPosition += home_retract_mm(Z_AXIS);
  756. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  757. st_synchronize();
  758. // move back down slowly to find bed
  759. feedrate = homing_feedrate[Z_AXIS]/4;
  760. zPosition -= home_retract_mm(Z_AXIS) * 2;
  761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  762. st_synchronize();
  763. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  764. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  765. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  766. }
  767. static void do_blocking_move_to(float x, float y, float z) {
  768. float oldFeedRate = feedrate;
  769. feedrate = XY_TRAVEL_SPEED;
  770. current_position[X_AXIS] = x;
  771. current_position[Y_AXIS] = y;
  772. current_position[Z_AXIS] = z;
  773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  774. st_synchronize();
  775. feedrate = oldFeedRate;
  776. }
  777. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  778. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  779. }
  780. static void setup_for_endstop_move() {
  781. saved_feedrate = feedrate;
  782. saved_feedmultiply = feedmultiply;
  783. feedmultiply = 100;
  784. previous_millis_cmd = millis();
  785. enable_endstops(true);
  786. }
  787. static void clean_up_after_endstop_move() {
  788. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  789. enable_endstops(false);
  790. #endif
  791. feedrate = saved_feedrate;
  792. feedmultiply = saved_feedmultiply;
  793. previous_millis_cmd = millis();
  794. }
  795. static void engage_z_probe() {
  796. // Engage Z Servo endstop if enabled
  797. #ifdef SERVO_ENDSTOPS
  798. if (servo_endstops[Z_AXIS] > -1) {
  799. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  800. servos[servo_endstops[Z_AXIS]].attach(0);
  801. #endif
  802. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  803. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  804. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  805. servos[servo_endstops[Z_AXIS]].detach();
  806. #endif
  807. }
  808. #endif
  809. }
  810. static void retract_z_probe() {
  811. // Retract Z Servo endstop if enabled
  812. #ifdef SERVO_ENDSTOPS
  813. if (servo_endstops[Z_AXIS] > -1) {
  814. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  815. servos[servo_endstops[Z_AXIS]].attach(0);
  816. #endif
  817. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  818. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  819. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  820. servos[servo_endstops[Z_AXIS]].detach();
  821. #endif
  822. }
  823. #endif
  824. }
  825. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  826. static void homeaxis(int axis) {
  827. #define HOMEAXIS_DO(LETTER) \
  828. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  829. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  830. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  831. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  832. 0) {
  833. int axis_home_dir = home_dir(axis);
  834. #ifdef DUAL_X_CARRIAGE
  835. if (axis == X_AXIS)
  836. axis_home_dir = x_home_dir(active_extruder);
  837. #endif
  838. current_position[axis] = 0;
  839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  840. // Engage Servo endstop if enabled
  841. #ifdef SERVO_ENDSTOPS
  842. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  843. if (axis==Z_AXIS) {
  844. engage_z_probe();
  845. }
  846. else
  847. #endif
  848. if (servo_endstops[axis] > -1) {
  849. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  850. }
  851. #endif
  852. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  853. feedrate = homing_feedrate[axis];
  854. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  855. st_synchronize();
  856. current_position[axis] = 0;
  857. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  858. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  859. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  860. st_synchronize();
  861. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  862. #ifdef DELTA
  863. feedrate = homing_feedrate[axis]/10;
  864. #else
  865. feedrate = homing_feedrate[axis]/2 ;
  866. #endif
  867. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  868. st_synchronize();
  869. #ifdef DELTA
  870. // retrace by the amount specified in endstop_adj
  871. if (endstop_adj[axis] * axis_home_dir < 0) {
  872. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  873. destination[axis] = endstop_adj[axis];
  874. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  875. st_synchronize();
  876. }
  877. #endif
  878. axis_is_at_home(axis);
  879. destination[axis] = current_position[axis];
  880. feedrate = 0.0;
  881. endstops_hit_on_purpose();
  882. axis_known_position[axis] = true;
  883. // Retract Servo endstop if enabled
  884. #ifdef SERVO_ENDSTOPS
  885. if (servo_endstops[axis] > -1) {
  886. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  887. }
  888. #endif
  889. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  890. if (axis==Z_AXIS) retract_z_probe();
  891. #endif
  892. }
  893. }
  894. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  895. void process_commands()
  896. {
  897. unsigned long codenum; //throw away variable
  898. char *starpos = NULL;
  899. #ifdef ENABLE_AUTO_BED_LEVELING
  900. float x_tmp, y_tmp, z_tmp, real_z;
  901. #endif
  902. if(code_seen('G'))
  903. {
  904. switch((int)code_value())
  905. {
  906. case 0: // G0 -> G1
  907. case 1: // G1
  908. if(Stopped == false) {
  909. get_coordinates(); // For X Y Z E F
  910. prepare_move();
  911. //ClearToSend();
  912. return;
  913. }
  914. //break;
  915. case 2: // G2 - CW ARC
  916. if(Stopped == false) {
  917. get_arc_coordinates();
  918. prepare_arc_move(true);
  919. return;
  920. }
  921. case 3: // G3 - CCW ARC
  922. if(Stopped == false) {
  923. get_arc_coordinates();
  924. prepare_arc_move(false);
  925. return;
  926. }
  927. case 4: // G4 dwell
  928. LCD_MESSAGEPGM(MSG_DWELL);
  929. codenum = 0;
  930. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  931. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  932. st_synchronize();
  933. codenum += millis(); // keep track of when we started waiting
  934. previous_millis_cmd = millis();
  935. while(millis() < codenum ){
  936. manage_heater();
  937. manage_inactivity();
  938. lcd_update();
  939. }
  940. break;
  941. #ifdef FWRETRACT
  942. case 10: // G10 retract
  943. if(!retracted)
  944. {
  945. destination[X_AXIS]=current_position[X_AXIS];
  946. destination[Y_AXIS]=current_position[Y_AXIS];
  947. destination[Z_AXIS]=current_position[Z_AXIS];
  948. current_position[Z_AXIS]+=-retract_zlift;
  949. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  950. feedrate=retract_feedrate;
  951. retracted=true;
  952. prepare_move();
  953. }
  954. break;
  955. case 11: // G11 retract_recover
  956. if(retracted)
  957. {
  958. destination[X_AXIS]=current_position[X_AXIS];
  959. destination[Y_AXIS]=current_position[Y_AXIS];
  960. destination[Z_AXIS]=current_position[Z_AXIS];
  961. current_position[Z_AXIS]+=retract_zlift;
  962. destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
  963. feedrate=retract_recover_feedrate;
  964. retracted=false;
  965. prepare_move();
  966. }
  967. break;
  968. #endif //FWRETRACT
  969. case 28: //G28 Home all Axis one at a time
  970. #ifdef ENABLE_AUTO_BED_LEVELING
  971. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  972. #endif //ENABLE_AUTO_BED_LEVELING
  973. saved_feedrate = feedrate;
  974. saved_feedmultiply = feedmultiply;
  975. feedmultiply = 100;
  976. previous_millis_cmd = millis();
  977. enable_endstops(true);
  978. for(int8_t i=0; i < NUM_AXIS; i++) {
  979. destination[i] = current_position[i];
  980. }
  981. feedrate = 0.0;
  982. #ifdef DELTA
  983. // A delta can only safely home all axis at the same time
  984. // all axis have to home at the same time
  985. // Move all carriages up together until the first endstop is hit.
  986. current_position[X_AXIS] = 0;
  987. current_position[Y_AXIS] = 0;
  988. current_position[Z_AXIS] = 0;
  989. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  990. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  991. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  992. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  993. feedrate = 1.732 * homing_feedrate[X_AXIS];
  994. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  995. st_synchronize();
  996. endstops_hit_on_purpose();
  997. current_position[X_AXIS] = destination[X_AXIS];
  998. current_position[Y_AXIS] = destination[Y_AXIS];
  999. current_position[Z_AXIS] = destination[Z_AXIS];
  1000. // take care of back off and rehome now we are all at the top
  1001. HOMEAXIS(X);
  1002. HOMEAXIS(Y);
  1003. HOMEAXIS(Z);
  1004. calculate_delta(current_position);
  1005. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1006. #else // NOT DELTA
  1007. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1008. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1009. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1010. HOMEAXIS(Z);
  1011. }
  1012. #endif
  1013. #ifdef QUICK_HOME
  1014. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1015. {
  1016. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1017. #ifndef DUAL_X_CARRIAGE
  1018. int x_axis_home_dir = home_dir(X_AXIS);
  1019. #else
  1020. int x_axis_home_dir = x_home_dir(active_extruder);
  1021. extruder_duplication_enabled = false;
  1022. #endif
  1023. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1024. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1025. feedrate = homing_feedrate[X_AXIS];
  1026. if(homing_feedrate[Y_AXIS]<feedrate)
  1027. feedrate =homing_feedrate[Y_AXIS];
  1028. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1029. st_synchronize();
  1030. axis_is_at_home(X_AXIS);
  1031. axis_is_at_home(Y_AXIS);
  1032. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1033. destination[X_AXIS] = current_position[X_AXIS];
  1034. destination[Y_AXIS] = current_position[Y_AXIS];
  1035. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1036. feedrate = 0.0;
  1037. st_synchronize();
  1038. endstops_hit_on_purpose();
  1039. current_position[X_AXIS] = destination[X_AXIS];
  1040. current_position[Y_AXIS] = destination[Y_AXIS];
  1041. current_position[Z_AXIS] = destination[Z_AXIS];
  1042. }
  1043. #endif
  1044. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1045. {
  1046. #ifdef DUAL_X_CARRIAGE
  1047. int tmp_extruder = active_extruder;
  1048. extruder_duplication_enabled = false;
  1049. active_extruder = !active_extruder;
  1050. HOMEAXIS(X);
  1051. inactive_extruder_x_pos = current_position[X_AXIS];
  1052. active_extruder = tmp_extruder;
  1053. HOMEAXIS(X);
  1054. // reset state used by the different modes
  1055. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1056. delayed_move_time = 0;
  1057. active_extruder_parked = true;
  1058. #else
  1059. HOMEAXIS(X);
  1060. #endif
  1061. }
  1062. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1063. HOMEAXIS(Y);
  1064. }
  1065. if(code_seen(axis_codes[X_AXIS]))
  1066. {
  1067. if(code_value_long() != 0) {
  1068. current_position[X_AXIS]=code_value()+add_homeing[0];
  1069. }
  1070. }
  1071. if(code_seen(axis_codes[Y_AXIS])) {
  1072. if(code_value_long() != 0) {
  1073. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1074. }
  1075. }
  1076. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1077. #ifndef Z_SAFE_HOMING
  1078. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1079. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1080. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1081. feedrate = max_feedrate[Z_AXIS];
  1082. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1083. st_synchronize();
  1084. #endif
  1085. HOMEAXIS(Z);
  1086. }
  1087. #else // Z Safe mode activated.
  1088. if(home_all_axis) {
  1089. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1090. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1091. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1092. feedrate = XY_TRAVEL_SPEED;
  1093. current_position[Z_AXIS] = 0;
  1094. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1095. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1096. st_synchronize();
  1097. current_position[X_AXIS] = destination[X_AXIS];
  1098. current_position[Y_AXIS] = destination[Y_AXIS];
  1099. HOMEAXIS(Z);
  1100. }
  1101. // Let's see if X and Y are homed and probe is inside bed area.
  1102. if(code_seen(axis_codes[Z_AXIS])) {
  1103. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1104. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1105. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1106. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1107. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1108. current_position[Z_AXIS] = 0;
  1109. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1110. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1111. feedrate = max_feedrate[Z_AXIS];
  1112. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1113. st_synchronize();
  1114. HOMEAXIS(Z);
  1115. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1116. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1117. SERIAL_ECHO_START;
  1118. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1119. } else {
  1120. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1121. SERIAL_ECHO_START;
  1122. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1123. }
  1124. }
  1125. #endif
  1126. #endif
  1127. if(code_seen(axis_codes[Z_AXIS])) {
  1128. if(code_value_long() != 0) {
  1129. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1130. }
  1131. }
  1132. #ifdef ENABLE_AUTO_BED_LEVELING
  1133. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1134. current_position[Z_AXIS] -= Z_PROBE_OFFSET_FROM_EXTRUDER; //Add Z_Probe offset (the distance is negative)
  1135. }
  1136. #endif
  1137. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1138. #endif // else DELTA
  1139. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1140. enable_endstops(false);
  1141. #endif
  1142. feedrate = saved_feedrate;
  1143. feedmultiply = saved_feedmultiply;
  1144. previous_millis_cmd = millis();
  1145. endstops_hit_on_purpose();
  1146. break;
  1147. #ifdef ENABLE_AUTO_BED_LEVELING
  1148. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1149. {
  1150. #if Z_MIN_PIN == -1
  1151. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1152. #endif
  1153. st_synchronize();
  1154. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1155. //vector_3 corrected_position = plan_get_position_mm();
  1156. //corrected_position.debug("position before G29");
  1157. plan_bed_level_matrix.set_to_identity();
  1158. vector_3 uncorrected_position = plan_get_position();
  1159. //uncorrected_position.debug("position durring G29");
  1160. current_position[X_AXIS] = uncorrected_position.x;
  1161. current_position[Y_AXIS] = uncorrected_position.y;
  1162. current_position[Z_AXIS] = uncorrected_position.z;
  1163. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1164. setup_for_endstop_move();
  1165. feedrate = homing_feedrate[Z_AXIS];
  1166. // prob 1
  1167. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1168. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1169. engage_z_probe(); // Engage Z Servo endstop if available
  1170. run_z_probe();
  1171. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1172. retract_z_probe();
  1173. SERIAL_PROTOCOLPGM("Bed x: ");
  1174. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1175. SERIAL_PROTOCOLPGM(" y: ");
  1176. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1177. SERIAL_PROTOCOLPGM(" z: ");
  1178. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1179. SERIAL_PROTOCOLPGM("\n");
  1180. // prob 2
  1181. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1182. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1183. engage_z_probe(); // Engage Z Servo endstop if available
  1184. run_z_probe();
  1185. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1186. retract_z_probe();
  1187. SERIAL_PROTOCOLPGM("Bed x: ");
  1188. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1189. SERIAL_PROTOCOLPGM(" y: ");
  1190. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1191. SERIAL_PROTOCOLPGM(" z: ");
  1192. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1193. SERIAL_PROTOCOLPGM("\n");
  1194. // prob 3
  1195. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1196. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1197. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1198. engage_z_probe(); // Engage Z Servo endstop if available
  1199. run_z_probe();
  1200. float z_at_xRight_yFront = current_position[Z_AXIS];
  1201. retract_z_probe(); // Retract Z Servo endstop if available
  1202. SERIAL_PROTOCOLPGM("Bed x: ");
  1203. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1204. SERIAL_PROTOCOLPGM(" y: ");
  1205. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1206. SERIAL_PROTOCOLPGM(" z: ");
  1207. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1208. SERIAL_PROTOCOLPGM("\n");
  1209. clean_up_after_endstop_move();
  1210. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1211. st_synchronize();
  1212. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1213. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1214. // When the bed is uneven, this height must be corrected.
  1215. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1216. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1217. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1218. z_tmp = current_position[Z_AXIS];
  1219. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1220. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1221. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1222. }
  1223. break;
  1224. case 30: // G30 Single Z Probe
  1225. {
  1226. engage_z_probe(); // Engage Z Servo endstop if available
  1227. st_synchronize();
  1228. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1229. setup_for_endstop_move();
  1230. feedrate = homing_feedrate[Z_AXIS];
  1231. run_z_probe();
  1232. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1233. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1234. SERIAL_PROTOCOLPGM(" Y: ");
  1235. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1236. SERIAL_PROTOCOLPGM(" Z: ");
  1237. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1238. SERIAL_PROTOCOLPGM("\n");
  1239. clean_up_after_endstop_move();
  1240. retract_z_probe(); // Retract Z Servo endstop if available
  1241. }
  1242. break;
  1243. #endif // ENABLE_AUTO_BED_LEVELING
  1244. case 90: // G90
  1245. relative_mode = false;
  1246. break;
  1247. case 91: // G91
  1248. relative_mode = true;
  1249. break;
  1250. case 92: // G92
  1251. if(!code_seen(axis_codes[E_AXIS]))
  1252. st_synchronize();
  1253. for(int8_t i=0; i < NUM_AXIS; i++) {
  1254. if(code_seen(axis_codes[i])) {
  1255. if(i == E_AXIS) {
  1256. current_position[i] = code_value();
  1257. plan_set_e_position(current_position[E_AXIS]);
  1258. }
  1259. else {
  1260. current_position[i] = code_value()+add_homeing[i];
  1261. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1262. }
  1263. }
  1264. }
  1265. break;
  1266. }
  1267. }
  1268. else if(code_seen('M'))
  1269. {
  1270. switch( (int)code_value() )
  1271. {
  1272. #ifdef ULTIPANEL
  1273. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1274. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1275. {
  1276. LCD_MESSAGEPGM(MSG_USERWAIT);
  1277. codenum = 0;
  1278. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1279. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1280. st_synchronize();
  1281. previous_millis_cmd = millis();
  1282. if (codenum > 0){
  1283. codenum += millis(); // keep track of when we started waiting
  1284. while(millis() < codenum && !lcd_clicked()){
  1285. manage_heater();
  1286. manage_inactivity();
  1287. lcd_update();
  1288. }
  1289. }else{
  1290. while(!lcd_clicked()){
  1291. manage_heater();
  1292. manage_inactivity();
  1293. lcd_update();
  1294. }
  1295. }
  1296. LCD_MESSAGEPGM(MSG_RESUMING);
  1297. }
  1298. break;
  1299. #endif
  1300. case 17:
  1301. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1302. enable_x();
  1303. enable_y();
  1304. enable_z();
  1305. enable_e0();
  1306. enable_e1();
  1307. enable_e2();
  1308. break;
  1309. #ifdef SDSUPPORT
  1310. case 20: // M20 - list SD card
  1311. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1312. card.ls();
  1313. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1314. break;
  1315. case 21: // M21 - init SD card
  1316. card.initsd();
  1317. break;
  1318. case 22: //M22 - release SD card
  1319. card.release();
  1320. break;
  1321. case 23: //M23 - Select file
  1322. starpos = (strchr(strchr_pointer + 4,'*'));
  1323. if(starpos!=NULL)
  1324. *(starpos-1)='\0';
  1325. card.openFile(strchr_pointer + 4,true);
  1326. break;
  1327. case 24: //M24 - Start SD print
  1328. card.startFileprint();
  1329. starttime=millis();
  1330. break;
  1331. case 25: //M25 - Pause SD print
  1332. card.pauseSDPrint();
  1333. break;
  1334. case 26: //M26 - Set SD index
  1335. if(card.cardOK && code_seen('S')) {
  1336. card.setIndex(code_value_long());
  1337. }
  1338. break;
  1339. case 27: //M27 - Get SD status
  1340. card.getStatus();
  1341. break;
  1342. case 28: //M28 - Start SD write
  1343. starpos = (strchr(strchr_pointer + 4,'*'));
  1344. if(starpos != NULL){
  1345. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1346. strchr_pointer = strchr(npos,' ') + 1;
  1347. *(starpos-1) = '\0';
  1348. }
  1349. card.openFile(strchr_pointer+4,false);
  1350. break;
  1351. case 29: //M29 - Stop SD write
  1352. //processed in write to file routine above
  1353. //card,saving = false;
  1354. break;
  1355. case 30: //M30 <filename> Delete File
  1356. if (card.cardOK){
  1357. card.closefile();
  1358. starpos = (strchr(strchr_pointer + 4,'*'));
  1359. if(starpos != NULL){
  1360. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1361. strchr_pointer = strchr(npos,' ') + 1;
  1362. *(starpos-1) = '\0';
  1363. }
  1364. card.removeFile(strchr_pointer + 4);
  1365. }
  1366. break;
  1367. case 32: //M32 - Select file and start SD print
  1368. {
  1369. if(card.sdprinting) {
  1370. st_synchronize();
  1371. }
  1372. starpos = (strchr(strchr_pointer + 4,'*'));
  1373. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1374. if(namestartpos==NULL)
  1375. {
  1376. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1377. }
  1378. else
  1379. namestartpos++; //to skip the '!'
  1380. if(starpos!=NULL)
  1381. *(starpos-1)='\0';
  1382. bool call_procedure=(code_seen('P'));
  1383. if(strchr_pointer>namestartpos)
  1384. call_procedure=false; //false alert, 'P' found within filename
  1385. if( card.cardOK )
  1386. {
  1387. card.openFile(namestartpos,true,!call_procedure);
  1388. if(code_seen('S'))
  1389. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1390. card.setIndex(code_value_long());
  1391. card.startFileprint();
  1392. if(!call_procedure)
  1393. starttime=millis(); //procedure calls count as normal print time.
  1394. }
  1395. } break;
  1396. case 928: //M928 - Start SD write
  1397. starpos = (strchr(strchr_pointer + 5,'*'));
  1398. if(starpos != NULL){
  1399. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1400. strchr_pointer = strchr(npos,' ') + 1;
  1401. *(starpos-1) = '\0';
  1402. }
  1403. card.openLogFile(strchr_pointer+5);
  1404. break;
  1405. #endif //SDSUPPORT
  1406. case 31: //M31 take time since the start of the SD print or an M109 command
  1407. {
  1408. stoptime=millis();
  1409. char time[30];
  1410. unsigned long t=(stoptime-starttime)/1000;
  1411. int sec,min;
  1412. min=t/60;
  1413. sec=t%60;
  1414. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1415. SERIAL_ECHO_START;
  1416. SERIAL_ECHOLN(time);
  1417. lcd_setstatus(time);
  1418. autotempShutdown();
  1419. }
  1420. break;
  1421. case 42: //M42 -Change pin status via gcode
  1422. if (code_seen('S'))
  1423. {
  1424. int pin_status = code_value();
  1425. int pin_number = LED_PIN;
  1426. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1427. pin_number = code_value();
  1428. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1429. {
  1430. if (sensitive_pins[i] == pin_number)
  1431. {
  1432. pin_number = -1;
  1433. break;
  1434. }
  1435. }
  1436. #if defined(FAN_PIN) && FAN_PIN > -1
  1437. if (pin_number == FAN_PIN)
  1438. fanSpeed = pin_status;
  1439. #endif
  1440. if (pin_number > -1)
  1441. {
  1442. pinMode(pin_number, OUTPUT);
  1443. digitalWrite(pin_number, pin_status);
  1444. analogWrite(pin_number, pin_status);
  1445. }
  1446. }
  1447. break;
  1448. case 104: // M104
  1449. if(setTargetedHotend(104)){
  1450. break;
  1451. }
  1452. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1453. #ifdef DUAL_X_CARRIAGE
  1454. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1455. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1456. #endif
  1457. setWatch();
  1458. break;
  1459. case 140: // M140 set bed temp
  1460. if (code_seen('S')) setTargetBed(code_value());
  1461. break;
  1462. case 105 : // M105
  1463. if(setTargetedHotend(105)){
  1464. break;
  1465. }
  1466. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1467. SERIAL_PROTOCOLPGM("ok T:");
  1468. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1469. SERIAL_PROTOCOLPGM(" /");
  1470. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1471. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1472. SERIAL_PROTOCOLPGM(" B:");
  1473. SERIAL_PROTOCOL_F(degBed(),1);
  1474. SERIAL_PROTOCOLPGM(" /");
  1475. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1476. #endif //TEMP_BED_PIN
  1477. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1478. SERIAL_PROTOCOLPGM(" T");
  1479. SERIAL_PROTOCOL(cur_extruder);
  1480. SERIAL_PROTOCOLPGM(":");
  1481. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1482. SERIAL_PROTOCOLPGM(" /");
  1483. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1484. }
  1485. #else
  1486. SERIAL_ERROR_START;
  1487. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1488. #endif
  1489. SERIAL_PROTOCOLPGM(" @:");
  1490. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1491. SERIAL_PROTOCOLPGM(" B@:");
  1492. SERIAL_PROTOCOL(getHeaterPower(-1));
  1493. #ifdef SHOW_TEMP_ADC_VALUES
  1494. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1495. SERIAL_PROTOCOLPGM(" ADC B:");
  1496. SERIAL_PROTOCOL_F(degBed(),1);
  1497. SERIAL_PROTOCOLPGM("C->");
  1498. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1499. #endif
  1500. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1501. SERIAL_PROTOCOLPGM(" T");
  1502. SERIAL_PROTOCOL(cur_extruder);
  1503. SERIAL_PROTOCOLPGM(":");
  1504. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1505. SERIAL_PROTOCOLPGM("C->");
  1506. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1507. }
  1508. #endif
  1509. SERIAL_PROTOCOLLN("");
  1510. return;
  1511. break;
  1512. case 109:
  1513. {// M109 - Wait for extruder heater to reach target.
  1514. if(setTargetedHotend(109)){
  1515. break;
  1516. }
  1517. LCD_MESSAGEPGM(MSG_HEATING);
  1518. #ifdef AUTOTEMP
  1519. autotemp_enabled=false;
  1520. #endif
  1521. if (code_seen('S')) {
  1522. setTargetHotend(code_value(), tmp_extruder);
  1523. #ifdef DUAL_X_CARRIAGE
  1524. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1525. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1526. #endif
  1527. CooldownNoWait = true;
  1528. } else if (code_seen('R')) {
  1529. setTargetHotend(code_value(), tmp_extruder);
  1530. #ifdef DUAL_X_CARRIAGE
  1531. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1532. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1533. #endif
  1534. CooldownNoWait = false;
  1535. }
  1536. #ifdef AUTOTEMP
  1537. if (code_seen('S')) autotemp_min=code_value();
  1538. if (code_seen('B')) autotemp_max=code_value();
  1539. if (code_seen('F'))
  1540. {
  1541. autotemp_factor=code_value();
  1542. autotemp_enabled=true;
  1543. }
  1544. #endif
  1545. setWatch();
  1546. codenum = millis();
  1547. /* See if we are heating up or cooling down */
  1548. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1549. #ifdef TEMP_RESIDENCY_TIME
  1550. long residencyStart;
  1551. residencyStart = -1;
  1552. /* continue to loop until we have reached the target temp
  1553. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1554. while((residencyStart == -1) ||
  1555. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1556. #else
  1557. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1558. #endif //TEMP_RESIDENCY_TIME
  1559. if( (millis() - codenum) > 1000UL )
  1560. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1561. SERIAL_PROTOCOLPGM("T:");
  1562. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1563. SERIAL_PROTOCOLPGM(" E:");
  1564. SERIAL_PROTOCOL((int)tmp_extruder);
  1565. #ifdef TEMP_RESIDENCY_TIME
  1566. SERIAL_PROTOCOLPGM(" W:");
  1567. if(residencyStart > -1)
  1568. {
  1569. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1570. SERIAL_PROTOCOLLN( codenum );
  1571. }
  1572. else
  1573. {
  1574. SERIAL_PROTOCOLLN( "?" );
  1575. }
  1576. #else
  1577. SERIAL_PROTOCOLLN("");
  1578. #endif
  1579. codenum = millis();
  1580. }
  1581. manage_heater();
  1582. manage_inactivity();
  1583. lcd_update();
  1584. #ifdef TEMP_RESIDENCY_TIME
  1585. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1586. or when current temp falls outside the hysteresis after target temp was reached */
  1587. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1588. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1589. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1590. {
  1591. residencyStart = millis();
  1592. }
  1593. #endif //TEMP_RESIDENCY_TIME
  1594. }
  1595. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1596. starttime=millis();
  1597. previous_millis_cmd = millis();
  1598. }
  1599. break;
  1600. case 190: // M190 - Wait for bed heater to reach target.
  1601. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1602. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1603. if (code_seen('S')) {
  1604. setTargetBed(code_value());
  1605. CooldownNoWait = true;
  1606. } else if (code_seen('R')) {
  1607. setTargetBed(code_value());
  1608. CooldownNoWait = false;
  1609. }
  1610. codenum = millis();
  1611. target_direction = isHeatingBed(); // true if heating, false if cooling
  1612. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1613. {
  1614. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1615. {
  1616. float tt=degHotend(active_extruder);
  1617. SERIAL_PROTOCOLPGM("T:");
  1618. SERIAL_PROTOCOL(tt);
  1619. SERIAL_PROTOCOLPGM(" E:");
  1620. SERIAL_PROTOCOL((int)active_extruder);
  1621. SERIAL_PROTOCOLPGM(" B:");
  1622. SERIAL_PROTOCOL_F(degBed(),1);
  1623. SERIAL_PROTOCOLLN("");
  1624. codenum = millis();
  1625. }
  1626. manage_heater();
  1627. manage_inactivity();
  1628. lcd_update();
  1629. }
  1630. LCD_MESSAGEPGM(MSG_BED_DONE);
  1631. previous_millis_cmd = millis();
  1632. #endif
  1633. break;
  1634. #if defined(FAN_PIN) && FAN_PIN > -1
  1635. case 106: //M106 Fan On
  1636. if (code_seen('S')){
  1637. fanSpeed=constrain(code_value(),0,255);
  1638. }
  1639. else {
  1640. fanSpeed=255;
  1641. }
  1642. break;
  1643. case 107: //M107 Fan Off
  1644. fanSpeed = 0;
  1645. break;
  1646. #endif //FAN_PIN
  1647. #ifdef BARICUDA
  1648. // PWM for HEATER_1_PIN
  1649. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1650. case 126: //M126 valve open
  1651. if (code_seen('S')){
  1652. ValvePressure=constrain(code_value(),0,255);
  1653. }
  1654. else {
  1655. ValvePressure=255;
  1656. }
  1657. break;
  1658. case 127: //M127 valve closed
  1659. ValvePressure = 0;
  1660. break;
  1661. #endif //HEATER_1_PIN
  1662. // PWM for HEATER_2_PIN
  1663. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1664. case 128: //M128 valve open
  1665. if (code_seen('S')){
  1666. EtoPPressure=constrain(code_value(),0,255);
  1667. }
  1668. else {
  1669. EtoPPressure=255;
  1670. }
  1671. break;
  1672. case 129: //M129 valve closed
  1673. EtoPPressure = 0;
  1674. break;
  1675. #endif //HEATER_2_PIN
  1676. #endif
  1677. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1678. case 80: // M80 - Turn on Power Supply
  1679. SET_OUTPUT(PS_ON_PIN); //GND
  1680. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1681. // If you have a switch on suicide pin, this is useful
  1682. // if you want to start another print with suicide feature after
  1683. // a print without suicide...
  1684. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1685. SET_OUTPUT(SUICIDE_PIN);
  1686. WRITE(SUICIDE_PIN, HIGH);
  1687. #endif
  1688. #ifdef ULTIPANEL
  1689. powersupply = true;
  1690. LCD_MESSAGEPGM(WELCOME_MSG);
  1691. lcd_update();
  1692. #endif
  1693. break;
  1694. #endif
  1695. case 81: // M81 - Turn off Power Supply
  1696. disable_heater();
  1697. st_synchronize();
  1698. disable_e0();
  1699. disable_e1();
  1700. disable_e2();
  1701. finishAndDisableSteppers();
  1702. fanSpeed = 0;
  1703. delay(1000); // Wait a little before to switch off
  1704. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1705. st_synchronize();
  1706. suicide();
  1707. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1708. SET_OUTPUT(PS_ON_PIN);
  1709. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1710. #endif
  1711. #ifdef ULTIPANEL
  1712. powersupply = false;
  1713. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1714. lcd_update();
  1715. #endif
  1716. break;
  1717. case 82:
  1718. axis_relative_modes[3] = false;
  1719. break;
  1720. case 83:
  1721. axis_relative_modes[3] = true;
  1722. break;
  1723. case 18: //compatibility
  1724. case 84: // M84
  1725. if(code_seen('S')){
  1726. stepper_inactive_time = code_value() * 1000;
  1727. }
  1728. else
  1729. {
  1730. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1731. if(all_axis)
  1732. {
  1733. st_synchronize();
  1734. disable_e0();
  1735. disable_e1();
  1736. disable_e2();
  1737. finishAndDisableSteppers();
  1738. }
  1739. else
  1740. {
  1741. st_synchronize();
  1742. if(code_seen('X')) disable_x();
  1743. if(code_seen('Y')) disable_y();
  1744. if(code_seen('Z')) disable_z();
  1745. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1746. if(code_seen('E')) {
  1747. disable_e0();
  1748. disable_e1();
  1749. disable_e2();
  1750. }
  1751. #endif
  1752. }
  1753. }
  1754. break;
  1755. case 85: // M85
  1756. code_seen('S');
  1757. max_inactive_time = code_value() * 1000;
  1758. break;
  1759. case 92: // M92
  1760. for(int8_t i=0; i < NUM_AXIS; i++)
  1761. {
  1762. if(code_seen(axis_codes[i]))
  1763. {
  1764. if(i == 3) { // E
  1765. float value = code_value();
  1766. if(value < 20.0) {
  1767. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1768. max_e_jerk *= factor;
  1769. max_feedrate[i] *= factor;
  1770. axis_steps_per_sqr_second[i] *= factor;
  1771. }
  1772. axis_steps_per_unit[i] = value;
  1773. }
  1774. else {
  1775. axis_steps_per_unit[i] = code_value();
  1776. }
  1777. }
  1778. }
  1779. break;
  1780. case 115: // M115
  1781. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1782. break;
  1783. case 117: // M117 display message
  1784. starpos = (strchr(strchr_pointer + 5,'*'));
  1785. if(starpos!=NULL)
  1786. *(starpos-1)='\0';
  1787. lcd_setstatus(strchr_pointer + 5);
  1788. break;
  1789. case 114: // M114
  1790. SERIAL_PROTOCOLPGM("X:");
  1791. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1792. SERIAL_PROTOCOLPGM("Y:");
  1793. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1794. SERIAL_PROTOCOLPGM("Z:");
  1795. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1796. SERIAL_PROTOCOLPGM("E:");
  1797. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1798. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1799. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1800. SERIAL_PROTOCOLPGM("Y:");
  1801. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1802. SERIAL_PROTOCOLPGM("Z:");
  1803. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1804. SERIAL_PROTOCOLLN("");
  1805. break;
  1806. case 120: // M120
  1807. enable_endstops(false) ;
  1808. break;
  1809. case 121: // M121
  1810. enable_endstops(true) ;
  1811. break;
  1812. case 119: // M119
  1813. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1814. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1815. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1816. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1817. #endif
  1818. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1819. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1820. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1821. #endif
  1822. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1823. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1824. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1825. #endif
  1826. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1827. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1828. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1829. #endif
  1830. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1831. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1832. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1833. #endif
  1834. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1835. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1836. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1837. #endif
  1838. break;
  1839. //TODO: update for all axis, use for loop
  1840. #ifdef BLINKM
  1841. case 150: // M150
  1842. {
  1843. byte red;
  1844. byte grn;
  1845. byte blu;
  1846. if(code_seen('R')) red = code_value();
  1847. if(code_seen('U')) grn = code_value();
  1848. if(code_seen('B')) blu = code_value();
  1849. SendColors(red,grn,blu);
  1850. }
  1851. break;
  1852. #endif //BLINKM
  1853. case 201: // M201
  1854. for(int8_t i=0; i < NUM_AXIS; i++)
  1855. {
  1856. if(code_seen(axis_codes[i]))
  1857. {
  1858. max_acceleration_units_per_sq_second[i] = code_value();
  1859. }
  1860. }
  1861. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1862. reset_acceleration_rates();
  1863. break;
  1864. #if 0 // Not used for Sprinter/grbl gen6
  1865. case 202: // M202
  1866. for(int8_t i=0; i < NUM_AXIS; i++) {
  1867. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1868. }
  1869. break;
  1870. #endif
  1871. case 203: // M203 max feedrate mm/sec
  1872. for(int8_t i=0; i < NUM_AXIS; i++) {
  1873. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1874. }
  1875. break;
  1876. case 204: // M204 acclereration S normal moves T filmanent only moves
  1877. {
  1878. if(code_seen('S')) acceleration = code_value() ;
  1879. if(code_seen('T')) retract_acceleration = code_value() ;
  1880. }
  1881. break;
  1882. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1883. {
  1884. if(code_seen('S')) minimumfeedrate = code_value();
  1885. if(code_seen('T')) mintravelfeedrate = code_value();
  1886. if(code_seen('B')) minsegmenttime = code_value() ;
  1887. if(code_seen('X')) max_xy_jerk = code_value() ;
  1888. if(code_seen('Z')) max_z_jerk = code_value() ;
  1889. if(code_seen('E')) max_e_jerk = code_value() ;
  1890. }
  1891. break;
  1892. case 206: // M206 additional homeing offset
  1893. for(int8_t i=0; i < 3; i++)
  1894. {
  1895. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1896. }
  1897. break;
  1898. #ifdef DELTA
  1899. case 666: // M666 set delta endstop adjustemnt
  1900. for(int8_t i=0; i < 3; i++)
  1901. {
  1902. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  1903. }
  1904. break;
  1905. #endif
  1906. #ifdef FWRETRACT
  1907. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1908. {
  1909. if(code_seen('S'))
  1910. {
  1911. retract_length = code_value() ;
  1912. }
  1913. if(code_seen('F'))
  1914. {
  1915. retract_feedrate = code_value() ;
  1916. }
  1917. if(code_seen('Z'))
  1918. {
  1919. retract_zlift = code_value() ;
  1920. }
  1921. }break;
  1922. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1923. {
  1924. if(code_seen('S'))
  1925. {
  1926. retract_recover_length = code_value() ;
  1927. }
  1928. if(code_seen('F'))
  1929. {
  1930. retract_recover_feedrate = code_value() ;
  1931. }
  1932. }break;
  1933. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1934. {
  1935. if(code_seen('S'))
  1936. {
  1937. int t= code_value() ;
  1938. switch(t)
  1939. {
  1940. case 0: autoretract_enabled=false;retracted=false;break;
  1941. case 1: autoretract_enabled=true;retracted=false;break;
  1942. default:
  1943. SERIAL_ECHO_START;
  1944. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1945. SERIAL_ECHO(cmdbuffer[bufindr]);
  1946. SERIAL_ECHOLNPGM("\"");
  1947. }
  1948. }
  1949. }break;
  1950. #endif // FWRETRACT
  1951. #if EXTRUDERS > 1
  1952. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  1953. {
  1954. if(setTargetedHotend(218)){
  1955. break;
  1956. }
  1957. if(code_seen('X'))
  1958. {
  1959. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  1960. }
  1961. if(code_seen('Y'))
  1962. {
  1963. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  1964. }
  1965. #ifdef DUAL_X_CARRIAGE
  1966. if(code_seen('Z'))
  1967. {
  1968. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  1969. }
  1970. #endif
  1971. SERIAL_ECHO_START;
  1972. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  1973. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  1974. {
  1975. SERIAL_ECHO(" ");
  1976. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  1977. SERIAL_ECHO(",");
  1978. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  1979. #ifdef DUAL_X_CARRIAGE
  1980. SERIAL_ECHO(",");
  1981. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  1982. #endif
  1983. }
  1984. SERIAL_ECHOLN("");
  1985. }break;
  1986. #endif
  1987. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1988. {
  1989. if(code_seen('S'))
  1990. {
  1991. feedmultiply = code_value() ;
  1992. }
  1993. }
  1994. break;
  1995. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1996. {
  1997. if(code_seen('S'))
  1998. {
  1999. extrudemultiply = code_value() ;
  2000. }
  2001. }
  2002. break;
  2003. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2004. {
  2005. if(code_seen('P')){
  2006. int pin_number = code_value(); // pin number
  2007. int pin_state = -1; // required pin state - default is inverted
  2008. if(code_seen('S')) pin_state = code_value(); // required pin state
  2009. if(pin_state >= -1 && pin_state <= 1){
  2010. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2011. {
  2012. if (sensitive_pins[i] == pin_number)
  2013. {
  2014. pin_number = -1;
  2015. break;
  2016. }
  2017. }
  2018. if (pin_number > -1)
  2019. {
  2020. st_synchronize();
  2021. pinMode(pin_number, INPUT);
  2022. int target;
  2023. switch(pin_state){
  2024. case 1:
  2025. target = HIGH;
  2026. break;
  2027. case 0:
  2028. target = LOW;
  2029. break;
  2030. case -1:
  2031. target = !digitalRead(pin_number);
  2032. break;
  2033. }
  2034. while(digitalRead(pin_number) != target){
  2035. manage_heater();
  2036. manage_inactivity();
  2037. lcd_update();
  2038. }
  2039. }
  2040. }
  2041. }
  2042. }
  2043. break;
  2044. #if NUM_SERVOS > 0
  2045. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2046. {
  2047. int servo_index = -1;
  2048. int servo_position = 0;
  2049. if (code_seen('P'))
  2050. servo_index = code_value();
  2051. if (code_seen('S')) {
  2052. servo_position = code_value();
  2053. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2054. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2055. servos[servo_index].attach(0);
  2056. #endif
  2057. servos[servo_index].write(servo_position);
  2058. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2059. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2060. servos[servo_index].detach();
  2061. #endif
  2062. }
  2063. else {
  2064. SERIAL_ECHO_START;
  2065. SERIAL_ECHO("Servo ");
  2066. SERIAL_ECHO(servo_index);
  2067. SERIAL_ECHOLN(" out of range");
  2068. }
  2069. }
  2070. else if (servo_index >= 0) {
  2071. SERIAL_PROTOCOL(MSG_OK);
  2072. SERIAL_PROTOCOL(" Servo ");
  2073. SERIAL_PROTOCOL(servo_index);
  2074. SERIAL_PROTOCOL(": ");
  2075. SERIAL_PROTOCOL(servos[servo_index].read());
  2076. SERIAL_PROTOCOLLN("");
  2077. }
  2078. }
  2079. break;
  2080. #endif // NUM_SERVOS > 0
  2081. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  2082. case 300: // M300
  2083. {
  2084. int beepS = code_seen('S') ? code_value() : 110;
  2085. int beepP = code_seen('P') ? code_value() : 1000;
  2086. if (beepS > 0)
  2087. {
  2088. #if BEEPER > 0
  2089. tone(BEEPER, beepS);
  2090. delay(beepP);
  2091. noTone(BEEPER);
  2092. #elif defined(ULTRALCD)
  2093. lcd_buzz(beepS, beepP);
  2094. #endif
  2095. }
  2096. else
  2097. {
  2098. delay(beepP);
  2099. }
  2100. }
  2101. break;
  2102. #endif // M300
  2103. #ifdef PIDTEMP
  2104. case 301: // M301
  2105. {
  2106. if(code_seen('P')) Kp = code_value();
  2107. if(code_seen('I')) Ki = scalePID_i(code_value());
  2108. if(code_seen('D')) Kd = scalePID_d(code_value());
  2109. #ifdef PID_ADD_EXTRUSION_RATE
  2110. if(code_seen('C')) Kc = code_value();
  2111. #endif
  2112. updatePID();
  2113. SERIAL_PROTOCOL(MSG_OK);
  2114. SERIAL_PROTOCOL(" p:");
  2115. SERIAL_PROTOCOL(Kp);
  2116. SERIAL_PROTOCOL(" i:");
  2117. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2118. SERIAL_PROTOCOL(" d:");
  2119. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2120. #ifdef PID_ADD_EXTRUSION_RATE
  2121. SERIAL_PROTOCOL(" c:");
  2122. //Kc does not have scaling applied above, or in resetting defaults
  2123. SERIAL_PROTOCOL(Kc);
  2124. #endif
  2125. SERIAL_PROTOCOLLN("");
  2126. }
  2127. break;
  2128. #endif //PIDTEMP
  2129. #ifdef PIDTEMPBED
  2130. case 304: // M304
  2131. {
  2132. if(code_seen('P')) bedKp = code_value();
  2133. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2134. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2135. updatePID();
  2136. SERIAL_PROTOCOL(MSG_OK);
  2137. SERIAL_PROTOCOL(" p:");
  2138. SERIAL_PROTOCOL(bedKp);
  2139. SERIAL_PROTOCOL(" i:");
  2140. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2141. SERIAL_PROTOCOL(" d:");
  2142. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2143. SERIAL_PROTOCOLLN("");
  2144. }
  2145. break;
  2146. #endif //PIDTEMP
  2147. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2148. {
  2149. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2150. const uint8_t NUM_PULSES=16;
  2151. const float PULSE_LENGTH=0.01524;
  2152. for(int i=0; i < NUM_PULSES; i++) {
  2153. WRITE(PHOTOGRAPH_PIN, HIGH);
  2154. _delay_ms(PULSE_LENGTH);
  2155. WRITE(PHOTOGRAPH_PIN, LOW);
  2156. _delay_ms(PULSE_LENGTH);
  2157. }
  2158. delay(7.33);
  2159. for(int i=0; i < NUM_PULSES; i++) {
  2160. WRITE(PHOTOGRAPH_PIN, HIGH);
  2161. _delay_ms(PULSE_LENGTH);
  2162. WRITE(PHOTOGRAPH_PIN, LOW);
  2163. _delay_ms(PULSE_LENGTH);
  2164. }
  2165. #endif
  2166. }
  2167. break;
  2168. #ifdef DOGLCD
  2169. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2170. {
  2171. if (code_seen('C')) {
  2172. lcd_setcontrast( ((int)code_value())&63 );
  2173. }
  2174. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2175. SERIAL_PROTOCOL(lcd_contrast);
  2176. SERIAL_PROTOCOLLN("");
  2177. }
  2178. break;
  2179. #endif
  2180. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2181. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2182. {
  2183. float temp = .0;
  2184. if (code_seen('S')) temp=code_value();
  2185. set_extrude_min_temp(temp);
  2186. }
  2187. break;
  2188. #endif
  2189. case 303: // M303 PID autotune
  2190. {
  2191. float temp = 150.0;
  2192. int e=0;
  2193. int c=5;
  2194. if (code_seen('E')) e=code_value();
  2195. if (e<0)
  2196. temp=70;
  2197. if (code_seen('S')) temp=code_value();
  2198. if (code_seen('C')) c=code_value();
  2199. PID_autotune(temp, e, c);
  2200. }
  2201. break;
  2202. case 400: // M400 finish all moves
  2203. {
  2204. st_synchronize();
  2205. }
  2206. break;
  2207. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2208. case 401:
  2209. {
  2210. engage_z_probe(); // Engage Z Servo endstop if available
  2211. }
  2212. break;
  2213. case 402:
  2214. {
  2215. retract_z_probe(); // Retract Z Servo endstop if enabled
  2216. }
  2217. break;
  2218. #endif
  2219. case 500: // M500 Store settings in EEPROM
  2220. {
  2221. Config_StoreSettings();
  2222. }
  2223. break;
  2224. case 501: // M501 Read settings from EEPROM
  2225. {
  2226. Config_RetrieveSettings();
  2227. }
  2228. break;
  2229. case 502: // M502 Revert to default settings
  2230. {
  2231. Config_ResetDefault();
  2232. }
  2233. break;
  2234. case 503: // M503 print settings currently in memory
  2235. {
  2236. Config_PrintSettings();
  2237. }
  2238. break;
  2239. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2240. case 540:
  2241. {
  2242. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2243. }
  2244. break;
  2245. #endif
  2246. #ifdef FILAMENTCHANGEENABLE
  2247. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2248. {
  2249. float target[4];
  2250. float lastpos[4];
  2251. target[X_AXIS]=current_position[X_AXIS];
  2252. target[Y_AXIS]=current_position[Y_AXIS];
  2253. target[Z_AXIS]=current_position[Z_AXIS];
  2254. target[E_AXIS]=current_position[E_AXIS];
  2255. lastpos[X_AXIS]=current_position[X_AXIS];
  2256. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2257. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2258. lastpos[E_AXIS]=current_position[E_AXIS];
  2259. //retract by E
  2260. if(code_seen('E'))
  2261. {
  2262. target[E_AXIS]+= code_value();
  2263. }
  2264. else
  2265. {
  2266. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2267. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2268. #endif
  2269. }
  2270. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2271. //lift Z
  2272. if(code_seen('Z'))
  2273. {
  2274. target[Z_AXIS]+= code_value();
  2275. }
  2276. else
  2277. {
  2278. #ifdef FILAMENTCHANGE_ZADD
  2279. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2280. #endif
  2281. }
  2282. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2283. //move xy
  2284. if(code_seen('X'))
  2285. {
  2286. target[X_AXIS]+= code_value();
  2287. }
  2288. else
  2289. {
  2290. #ifdef FILAMENTCHANGE_XPOS
  2291. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2292. #endif
  2293. }
  2294. if(code_seen('Y'))
  2295. {
  2296. target[Y_AXIS]= code_value();
  2297. }
  2298. else
  2299. {
  2300. #ifdef FILAMENTCHANGE_YPOS
  2301. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2302. #endif
  2303. }
  2304. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2305. if(code_seen('L'))
  2306. {
  2307. target[E_AXIS]+= code_value();
  2308. }
  2309. else
  2310. {
  2311. #ifdef FILAMENTCHANGE_FINALRETRACT
  2312. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2313. #endif
  2314. }
  2315. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2316. //finish moves
  2317. st_synchronize();
  2318. //disable extruder steppers so filament can be removed
  2319. disable_e0();
  2320. disable_e1();
  2321. disable_e2();
  2322. delay(100);
  2323. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2324. uint8_t cnt=0;
  2325. while(!lcd_clicked()){
  2326. cnt++;
  2327. manage_heater();
  2328. manage_inactivity();
  2329. lcd_update();
  2330. if(cnt==0)
  2331. {
  2332. #if BEEPER > 0
  2333. SET_OUTPUT(BEEPER);
  2334. WRITE(BEEPER,HIGH);
  2335. delay(3);
  2336. WRITE(BEEPER,LOW);
  2337. delay(3);
  2338. #else
  2339. lcd_buzz(1000/6,100);
  2340. #endif
  2341. }
  2342. }
  2343. //return to normal
  2344. if(code_seen('L'))
  2345. {
  2346. target[E_AXIS]+= -code_value();
  2347. }
  2348. else
  2349. {
  2350. #ifdef FILAMENTCHANGE_FINALRETRACT
  2351. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2352. #endif
  2353. }
  2354. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2355. plan_set_e_position(current_position[E_AXIS]);
  2356. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2357. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2358. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2359. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2360. }
  2361. break;
  2362. #endif //FILAMENTCHANGEENABLE
  2363. #ifdef DUAL_X_CARRIAGE
  2364. case 605: // Set dual x-carriage movement mode:
  2365. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2366. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2367. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2368. // millimeters x-offset and an optional differential hotend temperature of
  2369. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2370. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2371. //
  2372. // Note: the X axis should be homed after changing dual x-carriage mode.
  2373. {
  2374. st_synchronize();
  2375. if (code_seen('S'))
  2376. dual_x_carriage_mode = code_value();
  2377. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2378. {
  2379. if (code_seen('X'))
  2380. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2381. if (code_seen('R'))
  2382. duplicate_extruder_temp_offset = code_value();
  2383. SERIAL_ECHO_START;
  2384. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2385. SERIAL_ECHO(" ");
  2386. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2387. SERIAL_ECHO(",");
  2388. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2389. SERIAL_ECHO(" ");
  2390. SERIAL_ECHO(duplicate_extruder_x_offset);
  2391. SERIAL_ECHO(",");
  2392. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2393. }
  2394. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2395. {
  2396. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2397. }
  2398. active_extruder_parked = false;
  2399. extruder_duplication_enabled = false;
  2400. delayed_move_time = 0;
  2401. }
  2402. break;
  2403. #endif //DUAL_X_CARRIAGE
  2404. case 907: // M907 Set digital trimpot motor current using axis codes.
  2405. {
  2406. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2407. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2408. if(code_seen('B')) digipot_current(4,code_value());
  2409. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2410. #endif
  2411. }
  2412. break;
  2413. case 908: // M908 Control digital trimpot directly.
  2414. {
  2415. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2416. uint8_t channel,current;
  2417. if(code_seen('P')) channel=code_value();
  2418. if(code_seen('S')) current=code_value();
  2419. digitalPotWrite(channel, current);
  2420. #endif
  2421. }
  2422. break;
  2423. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2424. {
  2425. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2426. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2427. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2428. if(code_seen('B')) microstep_mode(4,code_value());
  2429. microstep_readings();
  2430. #endif
  2431. }
  2432. break;
  2433. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2434. {
  2435. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2436. if(code_seen('S')) switch((int)code_value())
  2437. {
  2438. case 1:
  2439. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2440. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2441. break;
  2442. case 2:
  2443. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2444. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2445. break;
  2446. }
  2447. microstep_readings();
  2448. #endif
  2449. }
  2450. break;
  2451. case 999: // M999: Restart after being stopped
  2452. Stopped = false;
  2453. lcd_reset_alert_level();
  2454. gcode_LastN = Stopped_gcode_LastN;
  2455. FlushSerialRequestResend();
  2456. break;
  2457. }
  2458. }
  2459. else if(code_seen('T'))
  2460. {
  2461. tmp_extruder = code_value();
  2462. if(tmp_extruder >= EXTRUDERS) {
  2463. SERIAL_ECHO_START;
  2464. SERIAL_ECHO("T");
  2465. SERIAL_ECHO(tmp_extruder);
  2466. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2467. }
  2468. else {
  2469. boolean make_move = false;
  2470. if(code_seen('F')) {
  2471. make_move = true;
  2472. next_feedrate = code_value();
  2473. if(next_feedrate > 0.0) {
  2474. feedrate = next_feedrate;
  2475. }
  2476. }
  2477. #if EXTRUDERS > 1
  2478. if(tmp_extruder != active_extruder) {
  2479. // Save current position to return to after applying extruder offset
  2480. memcpy(destination, current_position, sizeof(destination));
  2481. #ifdef DUAL_X_CARRIAGE
  2482. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2483. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2484. {
  2485. // Park old head: 1) raise 2) move to park position 3) lower
  2486. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2487. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2488. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2489. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2490. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2491. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2492. st_synchronize();
  2493. }
  2494. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2495. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2496. extruder_offset[Y_AXIS][active_extruder] +
  2497. extruder_offset[Y_AXIS][tmp_extruder];
  2498. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2499. extruder_offset[Z_AXIS][active_extruder] +
  2500. extruder_offset[Z_AXIS][tmp_extruder];
  2501. active_extruder = tmp_extruder;
  2502. // This function resets the max/min values - the current position may be overwritten below.
  2503. axis_is_at_home(X_AXIS);
  2504. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2505. {
  2506. current_position[X_AXIS] = inactive_extruder_x_pos;
  2507. inactive_extruder_x_pos = destination[X_AXIS];
  2508. }
  2509. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2510. {
  2511. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2512. if (active_extruder == 0 || active_extruder_parked)
  2513. current_position[X_AXIS] = inactive_extruder_x_pos;
  2514. else
  2515. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2516. inactive_extruder_x_pos = destination[X_AXIS];
  2517. extruder_duplication_enabled = false;
  2518. }
  2519. else
  2520. {
  2521. // record raised toolhead position for use by unpark
  2522. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2523. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2524. active_extruder_parked = true;
  2525. delayed_move_time = 0;
  2526. }
  2527. #else
  2528. // Offset extruder (only by XY)
  2529. int i;
  2530. for(i = 0; i < 2; i++) {
  2531. current_position[i] = current_position[i] -
  2532. extruder_offset[i][active_extruder] +
  2533. extruder_offset[i][tmp_extruder];
  2534. }
  2535. // Set the new active extruder and position
  2536. active_extruder = tmp_extruder;
  2537. #endif //else DUAL_X_CARRIAGE
  2538. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2539. // Move to the old position if 'F' was in the parameters
  2540. if(make_move && Stopped == false) {
  2541. prepare_move();
  2542. }
  2543. }
  2544. #endif
  2545. SERIAL_ECHO_START;
  2546. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2547. SERIAL_PROTOCOLLN((int)active_extruder);
  2548. }
  2549. }
  2550. else
  2551. {
  2552. SERIAL_ECHO_START;
  2553. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2554. SERIAL_ECHO(cmdbuffer[bufindr]);
  2555. SERIAL_ECHOLNPGM("\"");
  2556. }
  2557. ClearToSend();
  2558. }
  2559. void FlushSerialRequestResend()
  2560. {
  2561. //char cmdbuffer[bufindr][100]="Resend:";
  2562. MYSERIAL.flush();
  2563. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2564. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2565. ClearToSend();
  2566. }
  2567. void ClearToSend()
  2568. {
  2569. previous_millis_cmd = millis();
  2570. #ifdef SDSUPPORT
  2571. if(fromsd[bufindr])
  2572. return;
  2573. #endif //SDSUPPORT
  2574. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2575. }
  2576. void get_coordinates()
  2577. {
  2578. bool seen[4]={false,false,false,false};
  2579. for(int8_t i=0; i < NUM_AXIS; i++) {
  2580. if(code_seen(axis_codes[i]))
  2581. {
  2582. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2583. seen[i]=true;
  2584. }
  2585. else destination[i] = current_position[i]; //Are these else lines really needed?
  2586. }
  2587. if(code_seen('F')) {
  2588. next_feedrate = code_value();
  2589. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2590. }
  2591. #ifdef FWRETRACT
  2592. if(autoretract_enabled)
  2593. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2594. {
  2595. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2596. if(echange<-MIN_RETRACT) //retract
  2597. {
  2598. if(!retracted)
  2599. {
  2600. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2601. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2602. float correctede=-echange-retract_length;
  2603. //to generate the additional steps, not the destination is changed, but inversely the current position
  2604. current_position[E_AXIS]+=-correctede;
  2605. feedrate=retract_feedrate;
  2606. retracted=true;
  2607. }
  2608. }
  2609. else
  2610. if(echange>MIN_RETRACT) //retract_recover
  2611. {
  2612. if(retracted)
  2613. {
  2614. //current_position[Z_AXIS]+=-retract_zlift;
  2615. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2616. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2617. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2618. feedrate=retract_recover_feedrate;
  2619. retracted=false;
  2620. }
  2621. }
  2622. }
  2623. #endif //FWRETRACT
  2624. }
  2625. void get_arc_coordinates()
  2626. {
  2627. #ifdef SF_ARC_FIX
  2628. bool relative_mode_backup = relative_mode;
  2629. relative_mode = true;
  2630. #endif
  2631. get_coordinates();
  2632. #ifdef SF_ARC_FIX
  2633. relative_mode=relative_mode_backup;
  2634. #endif
  2635. if(code_seen('I')) {
  2636. offset[0] = code_value();
  2637. }
  2638. else {
  2639. offset[0] = 0.0;
  2640. }
  2641. if(code_seen('J')) {
  2642. offset[1] = code_value();
  2643. }
  2644. else {
  2645. offset[1] = 0.0;
  2646. }
  2647. }
  2648. void clamp_to_software_endstops(float target[3])
  2649. {
  2650. if (min_software_endstops) {
  2651. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2652. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2653. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2654. }
  2655. if (max_software_endstops) {
  2656. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2657. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2658. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2659. }
  2660. }
  2661. #ifdef DELTA
  2662. void calculate_delta(float cartesian[3])
  2663. {
  2664. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2665. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2666. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2667. ) + cartesian[Z_AXIS];
  2668. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2669. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2670. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2671. ) + cartesian[Z_AXIS];
  2672. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2673. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2674. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2675. ) + cartesian[Z_AXIS];
  2676. /*
  2677. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2678. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2679. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2680. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2681. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2682. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2683. */
  2684. }
  2685. #endif
  2686. void prepare_move()
  2687. {
  2688. clamp_to_software_endstops(destination);
  2689. previous_millis_cmd = millis();
  2690. #ifdef DELTA
  2691. float difference[NUM_AXIS];
  2692. for (int8_t i=0; i < NUM_AXIS; i++) {
  2693. difference[i] = destination[i] - current_position[i];
  2694. }
  2695. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2696. sq(difference[Y_AXIS]) +
  2697. sq(difference[Z_AXIS]));
  2698. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2699. if (cartesian_mm < 0.000001) { return; }
  2700. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2701. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2702. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2703. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2704. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2705. for (int s = 1; s <= steps; s++) {
  2706. float fraction = float(s) / float(steps);
  2707. for(int8_t i=0; i < NUM_AXIS; i++) {
  2708. destination[i] = current_position[i] + difference[i] * fraction;
  2709. }
  2710. calculate_delta(destination);
  2711. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2712. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2713. active_extruder);
  2714. }
  2715. #else
  2716. #ifdef DUAL_X_CARRIAGE
  2717. if (active_extruder_parked)
  2718. {
  2719. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2720. {
  2721. // move duplicate extruder into correct duplication position.
  2722. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2723. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2724. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2725. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2726. st_synchronize();
  2727. extruder_duplication_enabled = true;
  2728. active_extruder_parked = false;
  2729. }
  2730. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2731. {
  2732. if (current_position[E_AXIS] == destination[E_AXIS])
  2733. {
  2734. // this is a travel move - skit it but keep track of current position (so that it can later
  2735. // be used as start of first non-travel move)
  2736. if (delayed_move_time != 0xFFFFFFFFUL)
  2737. {
  2738. memcpy(current_position, destination, sizeof(current_position));
  2739. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2740. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2741. delayed_move_time = millis();
  2742. return;
  2743. }
  2744. }
  2745. delayed_move_time = 0;
  2746. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2747. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2749. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2750. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2751. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2752. active_extruder_parked = false;
  2753. }
  2754. }
  2755. #endif //DUAL_X_CARRIAGE
  2756. // Do not use feedmultiply for E or Z only moves
  2757. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2758. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2759. }
  2760. else {
  2761. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2762. }
  2763. #endif //else DELTA
  2764. for(int8_t i=0; i < NUM_AXIS; i++) {
  2765. current_position[i] = destination[i];
  2766. }
  2767. }
  2768. void prepare_arc_move(char isclockwise) {
  2769. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2770. // Trace the arc
  2771. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2772. // As far as the parser is concerned, the position is now == target. In reality the
  2773. // motion control system might still be processing the action and the real tool position
  2774. // in any intermediate location.
  2775. for(int8_t i=0; i < NUM_AXIS; i++) {
  2776. current_position[i] = destination[i];
  2777. }
  2778. previous_millis_cmd = millis();
  2779. }
  2780. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2781. #if defined(FAN_PIN)
  2782. #if CONTROLLERFAN_PIN == FAN_PIN
  2783. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2784. #endif
  2785. #endif
  2786. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2787. unsigned long lastMotorCheck = 0;
  2788. void controllerFan()
  2789. {
  2790. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2791. {
  2792. lastMotorCheck = millis();
  2793. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2794. #if EXTRUDERS > 2
  2795. || !READ(E2_ENABLE_PIN)
  2796. #endif
  2797. #if EXTRUDER > 1
  2798. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2799. || !READ(X2_ENABLE_PIN)
  2800. #endif
  2801. || !READ(E1_ENABLE_PIN)
  2802. #endif
  2803. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2804. {
  2805. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2806. }
  2807. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2808. {
  2809. digitalWrite(CONTROLLERFAN_PIN, 0);
  2810. analogWrite(CONTROLLERFAN_PIN, 0);
  2811. }
  2812. else
  2813. {
  2814. // allows digital or PWM fan output to be used (see M42 handling)
  2815. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2816. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2817. }
  2818. }
  2819. }
  2820. #endif
  2821. #ifdef TEMP_STAT_LEDS
  2822. static bool blue_led = false;
  2823. static bool red_led = false;
  2824. static uint32_t stat_update = 0;
  2825. void handle_status_leds(void) {
  2826. float max_temp = 0.0;
  2827. if(millis() > stat_update) {
  2828. stat_update += 500; // Update every 0.5s
  2829. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2830. max_temp = max(max_temp, degHotend(cur_extruder));
  2831. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2832. }
  2833. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2834. max_temp = max(max_temp, degTargetBed());
  2835. max_temp = max(max_temp, degBed());
  2836. #endif
  2837. if((max_temp > 55.0) && (red_led == false)) {
  2838. digitalWrite(STAT_LED_RED, 1);
  2839. digitalWrite(STAT_LED_BLUE, 0);
  2840. red_led = true;
  2841. blue_led = false;
  2842. }
  2843. if((max_temp < 54.0) && (blue_led == false)) {
  2844. digitalWrite(STAT_LED_RED, 0);
  2845. digitalWrite(STAT_LED_BLUE, 1);
  2846. red_led = false;
  2847. blue_led = true;
  2848. }
  2849. }
  2850. }
  2851. #endif
  2852. void manage_inactivity()
  2853. {
  2854. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2855. if(max_inactive_time)
  2856. kill();
  2857. if(stepper_inactive_time) {
  2858. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2859. {
  2860. if(blocks_queued() == false) {
  2861. disable_x();
  2862. disable_y();
  2863. disable_z();
  2864. disable_e0();
  2865. disable_e1();
  2866. disable_e2();
  2867. }
  2868. }
  2869. }
  2870. #if defined(KILL_PIN) && KILL_PIN > -1
  2871. if( 0 == READ(KILL_PIN) )
  2872. kill();
  2873. #endif
  2874. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2875. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2876. #endif
  2877. #ifdef EXTRUDER_RUNOUT_PREVENT
  2878. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2879. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2880. {
  2881. bool oldstatus=READ(E0_ENABLE_PIN);
  2882. enable_e0();
  2883. float oldepos=current_position[E_AXIS];
  2884. float oldedes=destination[E_AXIS];
  2885. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2886. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2887. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2888. current_position[E_AXIS]=oldepos;
  2889. destination[E_AXIS]=oldedes;
  2890. plan_set_e_position(oldepos);
  2891. previous_millis_cmd=millis();
  2892. st_synchronize();
  2893. WRITE(E0_ENABLE_PIN,oldstatus);
  2894. }
  2895. #endif
  2896. #if defined(DUAL_X_CARRIAGE)
  2897. // handle delayed move timeout
  2898. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  2899. {
  2900. // travel moves have been received so enact them
  2901. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  2902. memcpy(destination,current_position,sizeof(destination));
  2903. prepare_move();
  2904. }
  2905. #endif
  2906. #ifdef TEMP_STAT_LEDS
  2907. handle_status_leds();
  2908. #endif
  2909. check_axes_activity();
  2910. }
  2911. void kill()
  2912. {
  2913. cli(); // Stop interrupts
  2914. disable_heater();
  2915. disable_x();
  2916. disable_y();
  2917. disable_z();
  2918. disable_e0();
  2919. disable_e1();
  2920. disable_e2();
  2921. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2922. pinMode(PS_ON_PIN,INPUT);
  2923. #endif
  2924. SERIAL_ERROR_START;
  2925. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  2926. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  2927. suicide();
  2928. while(1) { /* Intentionally left empty */ } // Wait for reset
  2929. }
  2930. void Stop()
  2931. {
  2932. disable_heater();
  2933. if(Stopped == false) {
  2934. Stopped = true;
  2935. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  2936. SERIAL_ERROR_START;
  2937. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  2938. LCD_MESSAGEPGM(MSG_STOPPED);
  2939. }
  2940. }
  2941. bool IsStopped() { return Stopped; };
  2942. #ifdef FAST_PWM_FAN
  2943. void setPwmFrequency(uint8_t pin, int val)
  2944. {
  2945. val &= 0x07;
  2946. switch(digitalPinToTimer(pin))
  2947. {
  2948. #if defined(TCCR0A)
  2949. case TIMER0A:
  2950. case TIMER0B:
  2951. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  2952. // TCCR0B |= val;
  2953. break;
  2954. #endif
  2955. #if defined(TCCR1A)
  2956. case TIMER1A:
  2957. case TIMER1B:
  2958. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2959. // TCCR1B |= val;
  2960. break;
  2961. #endif
  2962. #if defined(TCCR2)
  2963. case TIMER2:
  2964. case TIMER2:
  2965. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2966. TCCR2 |= val;
  2967. break;
  2968. #endif
  2969. #if defined(TCCR2A)
  2970. case TIMER2A:
  2971. case TIMER2B:
  2972. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  2973. TCCR2B |= val;
  2974. break;
  2975. #endif
  2976. #if defined(TCCR3A)
  2977. case TIMER3A:
  2978. case TIMER3B:
  2979. case TIMER3C:
  2980. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  2981. TCCR3B |= val;
  2982. break;
  2983. #endif
  2984. #if defined(TCCR4A)
  2985. case TIMER4A:
  2986. case TIMER4B:
  2987. case TIMER4C:
  2988. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  2989. TCCR4B |= val;
  2990. break;
  2991. #endif
  2992. #if defined(TCCR5A)
  2993. case TIMER5A:
  2994. case TIMER5B:
  2995. case TIMER5C:
  2996. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  2997. TCCR5B |= val;
  2998. break;
  2999. #endif
  3000. }
  3001. }
  3002. #endif //FAST_PWM_FAN
  3003. bool setTargetedHotend(int code){
  3004. tmp_extruder = active_extruder;
  3005. if(code_seen('T')) {
  3006. tmp_extruder = code_value();
  3007. if(tmp_extruder >= EXTRUDERS) {
  3008. SERIAL_ECHO_START;
  3009. switch(code){
  3010. case 104:
  3011. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3012. break;
  3013. case 105:
  3014. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3015. break;
  3016. case 109:
  3017. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3018. break;
  3019. case 218:
  3020. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3021. break;
  3022. }
  3023. SERIAL_ECHOLN(tmp_extruder);
  3024. return true;
  3025. }
  3026. }
  3027. return false;
  3028. }