My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

Marlin_main.cpp 121KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to coordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  106. // M114 - Output current position to serial port
  107. // M115 - Capabilities string
  108. // M117 - display message
  109. // M119 - Output Endstop status to serial port
  110. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  111. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  112. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  114. // M140 - Set bed target temp
  115. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  116. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  117. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  118. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  119. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  120. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  121. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  122. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  123. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  124. // M206 - set additional homing offset
  125. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  126. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  127. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  128. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  129. // M220 S<factor in percent>- set speed factor override percentage
  130. // M221 S<factor in percent>- set extrude factor override percentage
  131. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  132. // M240 - Trigger a camera to take a photograph
  133. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  134. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  135. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  136. // M301 - Set PID parameters P I and D
  137. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  138. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  139. // M304 - Set bed PID parameters P I and D
  140. // M400 - Finish all moves
  141. // M401 - Lower z-probe if present
  142. // M402 - Raise z-probe if present
  143. // M500 - stores parameters in EEPROM
  144. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  145. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  146. // M503 - print the current settings (from memory not from EEPROM)
  147. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  148. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  149. // M665 - set delta configurations
  150. // M666 - set delta endstop adjustment
  151. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  152. // M907 - Set digital trimpot motor current using axis codes.
  153. // M908 - Control digital trimpot directly.
  154. // M350 - Set microstepping mode.
  155. // M351 - Toggle MS1 MS2 pins directly.
  156. // M928 - Start SD logging (M928 filename.g) - ended by M29
  157. // M999 - Restart after being stopped by error
  158. //Stepper Movement Variables
  159. //===========================================================================
  160. //=============================imported variables============================
  161. //===========================================================================
  162. //===========================================================================
  163. //=============================public variables=============================
  164. //===========================================================================
  165. #ifdef SDSUPPORT
  166. CardReader card;
  167. #endif
  168. float homing_feedrate[] = HOMING_FEEDRATE;
  169. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  170. int feedmultiply=100; //100->1 200->2
  171. int saved_feedmultiply;
  172. int extrudemultiply=100; //100->1 200->2
  173. int extruder_multiply[EXTRUDERS] = {100
  174. #if EXTRUDERS > 1
  175. , 100
  176. #if EXTRUDERS > 2
  177. , 100
  178. #endif
  179. #endif
  180. };
  181. float volumetric_multiplier[EXTRUDERS] = {1.0
  182. #if EXTRUDERS > 1
  183. , 1.0
  184. #if EXTRUDERS > 2
  185. , 1.0
  186. #endif
  187. #endif
  188. };
  189. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  190. float add_homeing[3]={0,0,0};
  191. #ifdef DELTA
  192. float endstop_adj[3]={0,0,0};
  193. #endif
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = {false, false, false};
  197. float zprobe_zoffset;
  198. // Extruder offset
  199. #if EXTRUDERS > 1
  200. #ifndef DUAL_X_CARRIAGE
  201. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  202. #else
  203. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  204. #endif
  205. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  206. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  207. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  208. #endif
  209. };
  210. #endif
  211. uint8_t active_extruder = 0;
  212. int fanSpeed=0;
  213. #ifdef SERVO_ENDSTOPS
  214. int servo_endstops[] = SERVO_ENDSTOPS;
  215. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  216. #endif
  217. #ifdef BARICUDA
  218. int ValvePressure=0;
  219. int EtoPPressure=0;
  220. #endif
  221. #ifdef FWRETRACT
  222. bool autoretract_enabled=false;
  223. bool retracted=false;
  224. float retract_length = RETRACT_LENGTH;
  225. float retract_feedrate = RETRACT_FEEDRATE;
  226. float retract_zlift = RETRACT_ZLIFT;
  227. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  228. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  229. #endif
  230. #ifdef ULTIPANEL
  231. #ifdef PS_DEFAULT_OFF
  232. bool powersupply = false;
  233. #else
  234. bool powersupply = true;
  235. #endif
  236. #endif
  237. #ifdef DELTA
  238. float delta[3] = {0.0, 0.0, 0.0};
  239. #define SIN_60 0.8660254037844386
  240. #define COS_60 0.5
  241. // these are the default values, can be overriden with M665
  242. float delta_radius= DELTA_RADIUS;
  243. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  244. float delta_tower1_y= -COS_60*delta_radius;
  245. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  246. float delta_tower2_y= -COS_60*delta_radius;
  247. float delta_tower3_x= 0.0; // back middle tower
  248. float delta_tower3_y= delta_radius;
  249. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  250. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  251. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  252. #endif
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. static float offset[3] = {0.0, 0.0, 0.0};
  259. static bool home_all_axis = true;
  260. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  261. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  262. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  263. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  264. static bool fromsd[BUFSIZE];
  265. static int bufindr = 0;
  266. static int bufindw = 0;
  267. static int buflen = 0;
  268. //static int i = 0;
  269. static char serial_char;
  270. static int serial_count = 0;
  271. static boolean comment_mode = false;
  272. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  273. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  274. //static float tt = 0;
  275. //static float bt = 0;
  276. //Inactivity shutdown variables
  277. static unsigned long previous_millis_cmd = 0;
  278. static unsigned long max_inactive_time = 0;
  279. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  280. unsigned long starttime=0;
  281. unsigned long stoptime=0;
  282. static uint8_t tmp_extruder;
  283. bool Stopped=false;
  284. #if NUM_SERVOS > 0
  285. Servo servos[NUM_SERVOS];
  286. #endif
  287. bool CooldownNoWait = true;
  288. bool target_direction;
  289. //Insert variables if CHDK is defined
  290. #ifdef CHDK
  291. unsigned long chdkHigh = 0;
  292. boolean chdkActive = false;
  293. #endif
  294. //===========================================================================
  295. //=============================Routines======================================
  296. //===========================================================================
  297. void get_arc_coordinates();
  298. bool setTargetedHotend(int code);
  299. void serial_echopair_P(const char *s_P, float v)
  300. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  301. void serial_echopair_P(const char *s_P, double v)
  302. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  303. void serial_echopair_P(const char *s_P, unsigned long v)
  304. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  305. extern "C"{
  306. extern unsigned int __bss_end;
  307. extern unsigned int __heap_start;
  308. extern void *__brkval;
  309. int freeMemory() {
  310. int free_memory;
  311. if((int)__brkval == 0)
  312. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  313. else
  314. free_memory = ((int)&free_memory) - ((int)__brkval);
  315. return free_memory;
  316. }
  317. }
  318. //adds an command to the main command buffer
  319. //thats really done in a non-safe way.
  320. //needs overworking someday
  321. void enquecommand(const char *cmd)
  322. {
  323. if(buflen < BUFSIZE)
  324. {
  325. //this is dangerous if a mixing of serial and this happens
  326. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  327. SERIAL_ECHO_START;
  328. SERIAL_ECHOPGM("enqueing \"");
  329. SERIAL_ECHO(cmdbuffer[bufindw]);
  330. SERIAL_ECHOLNPGM("\"");
  331. bufindw= (bufindw + 1)%BUFSIZE;
  332. buflen += 1;
  333. }
  334. }
  335. void enquecommand_P(const char *cmd)
  336. {
  337. if(buflen < BUFSIZE)
  338. {
  339. //this is dangerous if a mixing of serial and this happens
  340. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  341. SERIAL_ECHO_START;
  342. SERIAL_ECHOPGM("enqueing \"");
  343. SERIAL_ECHO(cmdbuffer[bufindw]);
  344. SERIAL_ECHOLNPGM("\"");
  345. bufindw= (bufindw + 1)%BUFSIZE;
  346. buflen += 1;
  347. }
  348. }
  349. void setup_killpin()
  350. {
  351. #if defined(KILL_PIN) && KILL_PIN > -1
  352. pinMode(KILL_PIN,INPUT);
  353. WRITE(KILL_PIN,HIGH);
  354. #endif
  355. }
  356. void setup_photpin()
  357. {
  358. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  359. SET_OUTPUT(PHOTOGRAPH_PIN);
  360. WRITE(PHOTOGRAPH_PIN, LOW);
  361. #endif
  362. }
  363. void setup_powerhold()
  364. {
  365. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  366. SET_OUTPUT(SUICIDE_PIN);
  367. WRITE(SUICIDE_PIN, HIGH);
  368. #endif
  369. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  370. SET_OUTPUT(PS_ON_PIN);
  371. #if defined(PS_DEFAULT_OFF)
  372. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  373. #else
  374. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  375. #endif
  376. #endif
  377. }
  378. void suicide()
  379. {
  380. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  381. SET_OUTPUT(SUICIDE_PIN);
  382. WRITE(SUICIDE_PIN, LOW);
  383. #endif
  384. }
  385. void servo_init()
  386. {
  387. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  388. servos[0].attach(SERVO0_PIN);
  389. #endif
  390. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  391. servos[1].attach(SERVO1_PIN);
  392. #endif
  393. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  394. servos[2].attach(SERVO2_PIN);
  395. #endif
  396. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  397. servos[3].attach(SERVO3_PIN);
  398. #endif
  399. #if (NUM_SERVOS >= 5)
  400. #error "TODO: enter initalisation code for more servos"
  401. #endif
  402. // Set position of Servo Endstops that are defined
  403. #ifdef SERVO_ENDSTOPS
  404. for(int8_t i = 0; i < 3; i++)
  405. {
  406. if(servo_endstops[i] > -1) {
  407. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  408. }
  409. }
  410. #endif
  411. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  412. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  413. servos[servo_endstops[Z_AXIS]].detach();
  414. #endif
  415. }
  416. void setup()
  417. {
  418. setup_killpin();
  419. setup_powerhold();
  420. MYSERIAL.begin(BAUDRATE);
  421. SERIAL_PROTOCOLLNPGM("start");
  422. SERIAL_ECHO_START;
  423. // Check startup - does nothing if bootloader sets MCUSR to 0
  424. byte mcu = MCUSR;
  425. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  426. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  427. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  428. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  429. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  430. MCUSR=0;
  431. SERIAL_ECHOPGM(MSG_MARLIN);
  432. SERIAL_ECHOLNPGM(VERSION_STRING);
  433. #ifdef STRING_VERSION_CONFIG_H
  434. #ifdef STRING_CONFIG_H_AUTHOR
  435. SERIAL_ECHO_START;
  436. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  437. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  438. SERIAL_ECHOPGM(MSG_AUTHOR);
  439. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  440. SERIAL_ECHOPGM("Compiled: ");
  441. SERIAL_ECHOLNPGM(__DATE__);
  442. #endif
  443. #endif
  444. SERIAL_ECHO_START;
  445. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  446. SERIAL_ECHO(freeMemory());
  447. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  448. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  449. for(int8_t i = 0; i < BUFSIZE; i++)
  450. {
  451. fromsd[i] = false;
  452. }
  453. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  454. Config_RetrieveSettings();
  455. tp_init(); // Initialize temperature loop
  456. plan_init(); // Initialize planner;
  457. watchdog_init();
  458. st_init(); // Initialize stepper, this enables interrupts!
  459. setup_photpin();
  460. servo_init();
  461. lcd_init();
  462. _delay_ms(1000); // wait 1sec to display the splash screen
  463. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  464. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  465. #endif
  466. #ifdef DIGIPOT_I2C
  467. digipot_i2c_init();
  468. #endif
  469. }
  470. void loop()
  471. {
  472. if(buflen < (BUFSIZE-1))
  473. get_command();
  474. #ifdef SDSUPPORT
  475. card.checkautostart(false);
  476. #endif
  477. if(buflen)
  478. {
  479. #ifdef SDSUPPORT
  480. if(card.saving)
  481. {
  482. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  483. {
  484. card.write_command(cmdbuffer[bufindr]);
  485. if(card.logging)
  486. {
  487. process_commands();
  488. }
  489. else
  490. {
  491. SERIAL_PROTOCOLLNPGM(MSG_OK);
  492. }
  493. }
  494. else
  495. {
  496. card.closefile();
  497. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  498. }
  499. }
  500. else
  501. {
  502. process_commands();
  503. }
  504. #else
  505. process_commands();
  506. #endif //SDSUPPORT
  507. buflen = (buflen-1);
  508. bufindr = (bufindr + 1)%BUFSIZE;
  509. }
  510. //check heater every n milliseconds
  511. manage_heater();
  512. manage_inactivity();
  513. checkHitEndstops();
  514. lcd_update();
  515. }
  516. void get_command()
  517. {
  518. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  519. serial_char = MYSERIAL.read();
  520. if(serial_char == '\n' ||
  521. serial_char == '\r' ||
  522. (serial_char == ':' && comment_mode == false) ||
  523. serial_count >= (MAX_CMD_SIZE - 1) )
  524. {
  525. if(!serial_count) { //if empty line
  526. comment_mode = false; //for new command
  527. return;
  528. }
  529. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  530. if(!comment_mode){
  531. comment_mode = false; //for new command
  532. fromsd[bufindw] = false;
  533. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  534. {
  535. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  536. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  537. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  538. SERIAL_ERROR_START;
  539. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  540. SERIAL_ERRORLN(gcode_LastN);
  541. //Serial.println(gcode_N);
  542. FlushSerialRequestResend();
  543. serial_count = 0;
  544. return;
  545. }
  546. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  547. {
  548. byte checksum = 0;
  549. byte count = 0;
  550. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  551. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  552. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  553. SERIAL_ERROR_START;
  554. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  555. SERIAL_ERRORLN(gcode_LastN);
  556. FlushSerialRequestResend();
  557. serial_count = 0;
  558. return;
  559. }
  560. //if no errors, continue parsing
  561. }
  562. else
  563. {
  564. SERIAL_ERROR_START;
  565. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  566. SERIAL_ERRORLN(gcode_LastN);
  567. FlushSerialRequestResend();
  568. serial_count = 0;
  569. return;
  570. }
  571. gcode_LastN = gcode_N;
  572. //if no errors, continue parsing
  573. }
  574. else // if we don't receive 'N' but still see '*'
  575. {
  576. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  577. {
  578. SERIAL_ERROR_START;
  579. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  580. SERIAL_ERRORLN(gcode_LastN);
  581. serial_count = 0;
  582. return;
  583. }
  584. }
  585. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  586. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  587. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  588. case 0:
  589. case 1:
  590. case 2:
  591. case 3:
  592. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  593. #ifdef SDSUPPORT
  594. if(card.saving)
  595. break;
  596. #endif //SDSUPPORT
  597. SERIAL_PROTOCOLLNPGM(MSG_OK);
  598. }
  599. else {
  600. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  601. LCD_MESSAGEPGM(MSG_STOPPED);
  602. }
  603. break;
  604. default:
  605. break;
  606. }
  607. }
  608. bufindw = (bufindw + 1)%BUFSIZE;
  609. buflen += 1;
  610. }
  611. serial_count = 0; //clear buffer
  612. }
  613. else
  614. {
  615. if(serial_char == ';') comment_mode = true;
  616. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  617. }
  618. }
  619. #ifdef SDSUPPORT
  620. if(!card.sdprinting || serial_count!=0){
  621. return;
  622. }
  623. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  624. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  625. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  626. static bool stop_buffering=false;
  627. if(buflen==0) stop_buffering=false;
  628. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  629. int16_t n=card.get();
  630. serial_char = (char)n;
  631. if(serial_char == '\n' ||
  632. serial_char == '\r' ||
  633. (serial_char == '#' && comment_mode == false) ||
  634. (serial_char == ':' && comment_mode == false) ||
  635. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  636. {
  637. if(card.eof()){
  638. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  639. stoptime=millis();
  640. char time[30];
  641. unsigned long t=(stoptime-starttime)/1000;
  642. int hours, minutes;
  643. minutes=(t/60)%60;
  644. hours=t/60/60;
  645. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  646. SERIAL_ECHO_START;
  647. SERIAL_ECHOLN(time);
  648. lcd_setstatus(time);
  649. card.printingHasFinished();
  650. card.checkautostart(true);
  651. }
  652. if(serial_char=='#')
  653. stop_buffering=true;
  654. if(!serial_count)
  655. {
  656. comment_mode = false; //for new command
  657. return; //if empty line
  658. }
  659. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  660. // if(!comment_mode){
  661. fromsd[bufindw] = true;
  662. buflen += 1;
  663. bufindw = (bufindw + 1)%BUFSIZE;
  664. // }
  665. comment_mode = false; //for new command
  666. serial_count = 0; //clear buffer
  667. }
  668. else
  669. {
  670. if(serial_char == ';') comment_mode = true;
  671. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  672. }
  673. }
  674. #endif //SDSUPPORT
  675. }
  676. float code_value()
  677. {
  678. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  679. }
  680. long code_value_long()
  681. {
  682. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  683. }
  684. bool code_seen(char code)
  685. {
  686. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  687. return (strchr_pointer != NULL); //Return True if a character was found
  688. }
  689. #define DEFINE_PGM_READ_ANY(type, reader) \
  690. static inline type pgm_read_any(const type *p) \
  691. { return pgm_read_##reader##_near(p); }
  692. DEFINE_PGM_READ_ANY(float, float);
  693. DEFINE_PGM_READ_ANY(signed char, byte);
  694. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  695. static const PROGMEM type array##_P[3] = \
  696. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  697. static inline type array(int axis) \
  698. { return pgm_read_any(&array##_P[axis]); }
  699. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  700. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  701. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  702. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  703. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  704. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  705. #ifdef DUAL_X_CARRIAGE
  706. #if EXTRUDERS == 1 || defined(COREXY) \
  707. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  708. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  709. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  710. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  711. #endif
  712. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  713. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  714. #endif
  715. #define DXC_FULL_CONTROL_MODE 0
  716. #define DXC_AUTO_PARK_MODE 1
  717. #define DXC_DUPLICATION_MODE 2
  718. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  719. static float x_home_pos(int extruder) {
  720. if (extruder == 0)
  721. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  722. else
  723. // In dual carriage mode the extruder offset provides an override of the
  724. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  725. // This allow soft recalibration of the second extruder offset position without firmware reflash
  726. // (through the M218 command).
  727. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  728. }
  729. static int x_home_dir(int extruder) {
  730. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  731. }
  732. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  733. static bool active_extruder_parked = false; // used in mode 1 & 2
  734. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  735. static unsigned long delayed_move_time = 0; // used in mode 1
  736. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  737. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  738. bool extruder_duplication_enabled = false; // used in mode 2
  739. #endif //DUAL_X_CARRIAGE
  740. static void axis_is_at_home(int axis) {
  741. #ifdef DUAL_X_CARRIAGE
  742. if (axis == X_AXIS) {
  743. if (active_extruder != 0) {
  744. current_position[X_AXIS] = x_home_pos(active_extruder);
  745. min_pos[X_AXIS] = X2_MIN_POS;
  746. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  747. return;
  748. }
  749. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  750. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  751. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  752. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  753. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  754. return;
  755. }
  756. }
  757. #endif
  758. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  759. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  760. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  761. }
  762. #ifdef ENABLE_AUTO_BED_LEVELING
  763. #ifdef AUTO_BED_LEVELING_GRID
  764. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  765. {
  766. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  767. planeNormal.debug("planeNormal");
  768. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  769. //bedLevel.debug("bedLevel");
  770. //plan_bed_level_matrix.debug("bed level before");
  771. //vector_3 uncorrected_position = plan_get_position_mm();
  772. //uncorrected_position.debug("position before");
  773. vector_3 corrected_position = plan_get_position();
  774. // corrected_position.debug("position after");
  775. current_position[X_AXIS] = corrected_position.x;
  776. current_position[Y_AXIS] = corrected_position.y;
  777. current_position[Z_AXIS] = corrected_position.z;
  778. // but the bed at 0 so we don't go below it.
  779. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  780. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  781. }
  782. #else // not AUTO_BED_LEVELING_GRID
  783. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  784. plan_bed_level_matrix.set_to_identity();
  785. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  786. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  787. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  788. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  789. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  790. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  791. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  792. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  793. vector_3 corrected_position = plan_get_position();
  794. current_position[X_AXIS] = corrected_position.x;
  795. current_position[Y_AXIS] = corrected_position.y;
  796. current_position[Z_AXIS] = corrected_position.z;
  797. // put the bed at 0 so we don't go below it.
  798. current_position[Z_AXIS] = zprobe_zoffset;
  799. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  800. }
  801. #endif // AUTO_BED_LEVELING_GRID
  802. static void run_z_probe() {
  803. plan_bed_level_matrix.set_to_identity();
  804. feedrate = homing_feedrate[Z_AXIS];
  805. // move down until you find the bed
  806. float zPosition = -10;
  807. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  808. st_synchronize();
  809. // we have to let the planner know where we are right now as it is not where we said to go.
  810. zPosition = st_get_position_mm(Z_AXIS);
  811. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  812. // move up the retract distance
  813. zPosition += home_retract_mm(Z_AXIS);
  814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  815. st_synchronize();
  816. // move back down slowly to find bed
  817. feedrate = homing_feedrate[Z_AXIS]/4;
  818. zPosition -= home_retract_mm(Z_AXIS) * 2;
  819. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  820. st_synchronize();
  821. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  822. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  823. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  824. }
  825. static void do_blocking_move_to(float x, float y, float z) {
  826. float oldFeedRate = feedrate;
  827. feedrate = XY_TRAVEL_SPEED;
  828. current_position[X_AXIS] = x;
  829. current_position[Y_AXIS] = y;
  830. current_position[Z_AXIS] = z;
  831. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  832. st_synchronize();
  833. feedrate = oldFeedRate;
  834. }
  835. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  836. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  837. }
  838. static void setup_for_endstop_move() {
  839. saved_feedrate = feedrate;
  840. saved_feedmultiply = feedmultiply;
  841. feedmultiply = 100;
  842. previous_millis_cmd = millis();
  843. enable_endstops(true);
  844. }
  845. static void clean_up_after_endstop_move() {
  846. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  847. enable_endstops(false);
  848. #endif
  849. feedrate = saved_feedrate;
  850. feedmultiply = saved_feedmultiply;
  851. previous_millis_cmd = millis();
  852. }
  853. static void engage_z_probe() {
  854. // Engage Z Servo endstop if enabled
  855. #ifdef SERVO_ENDSTOPS
  856. if (servo_endstops[Z_AXIS] > -1) {
  857. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  858. servos[servo_endstops[Z_AXIS]].attach(0);
  859. #endif
  860. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  861. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  862. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  863. servos[servo_endstops[Z_AXIS]].detach();
  864. #endif
  865. }
  866. #endif
  867. }
  868. static void retract_z_probe() {
  869. // Retract Z Servo endstop if enabled
  870. #ifdef SERVO_ENDSTOPS
  871. if (servo_endstops[Z_AXIS] > -1) {
  872. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  873. servos[servo_endstops[Z_AXIS]].attach(0);
  874. #endif
  875. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  876. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  877. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  878. servos[servo_endstops[Z_AXIS]].detach();
  879. #endif
  880. }
  881. #endif
  882. }
  883. /// Probe bed height at position (x,y), returns the measured z value
  884. static float probe_pt(float x, float y, float z_before) {
  885. // move to right place
  886. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  887. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  888. engage_z_probe(); // Engage Z Servo endstop if available
  889. run_z_probe();
  890. float measured_z = current_position[Z_AXIS];
  891. retract_z_probe();
  892. SERIAL_PROTOCOLPGM(MSG_BED);
  893. SERIAL_PROTOCOLPGM(" x: ");
  894. SERIAL_PROTOCOL(x);
  895. SERIAL_PROTOCOLPGM(" y: ");
  896. SERIAL_PROTOCOL(y);
  897. SERIAL_PROTOCOLPGM(" z: ");
  898. SERIAL_PROTOCOL(measured_z);
  899. SERIAL_PROTOCOLPGM("\n");
  900. return measured_z;
  901. }
  902. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  903. static void homeaxis(int axis) {
  904. #define HOMEAXIS_DO(LETTER) \
  905. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  906. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  907. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  908. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  909. 0) {
  910. int axis_home_dir = home_dir(axis);
  911. #ifdef DUAL_X_CARRIAGE
  912. if (axis == X_AXIS)
  913. axis_home_dir = x_home_dir(active_extruder);
  914. #endif
  915. current_position[axis] = 0;
  916. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  917. // Engage Servo endstop if enabled
  918. #ifdef SERVO_ENDSTOPS
  919. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  920. if (axis==Z_AXIS) {
  921. engage_z_probe();
  922. }
  923. else
  924. #endif
  925. if (servo_endstops[axis] > -1) {
  926. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  927. }
  928. #endif
  929. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  930. feedrate = homing_feedrate[axis];
  931. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  932. st_synchronize();
  933. current_position[axis] = 0;
  934. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  935. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  936. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  937. st_synchronize();
  938. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  939. #ifdef DELTA
  940. feedrate = homing_feedrate[axis]/10;
  941. #else
  942. feedrate = homing_feedrate[axis]/2 ;
  943. #endif
  944. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  945. st_synchronize();
  946. #ifdef DELTA
  947. // retrace by the amount specified in endstop_adj
  948. if (endstop_adj[axis] * axis_home_dir < 0) {
  949. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  950. destination[axis] = endstop_adj[axis];
  951. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  952. st_synchronize();
  953. }
  954. #endif
  955. axis_is_at_home(axis);
  956. destination[axis] = current_position[axis];
  957. feedrate = 0.0;
  958. endstops_hit_on_purpose();
  959. axis_known_position[axis] = true;
  960. // Retract Servo endstop if enabled
  961. #ifdef SERVO_ENDSTOPS
  962. if (servo_endstops[axis] > -1) {
  963. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  964. }
  965. #endif
  966. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  967. if (axis==Z_AXIS) retract_z_probe();
  968. #endif
  969. }
  970. }
  971. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  972. void refresh_cmd_timeout(void)
  973. {
  974. previous_millis_cmd = millis();
  975. }
  976. #ifdef FWRETRACT
  977. void retract(bool retracting) {
  978. if(retracting && !retracted) {
  979. destination[X_AXIS]=current_position[X_AXIS];
  980. destination[Y_AXIS]=current_position[Y_AXIS];
  981. destination[Z_AXIS]=current_position[Z_AXIS];
  982. destination[E_AXIS]=current_position[E_AXIS];
  983. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  984. plan_set_e_position(current_position[E_AXIS]);
  985. float oldFeedrate = feedrate;
  986. feedrate=retract_feedrate*60;
  987. retracted=true;
  988. prepare_move();
  989. current_position[Z_AXIS]-=retract_zlift;
  990. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  991. prepare_move();
  992. feedrate = oldFeedrate;
  993. } else if(!retracting && retracted) {
  994. destination[X_AXIS]=current_position[X_AXIS];
  995. destination[Y_AXIS]=current_position[Y_AXIS];
  996. destination[Z_AXIS]=current_position[Z_AXIS];
  997. destination[E_AXIS]=current_position[E_AXIS];
  998. current_position[Z_AXIS]+=retract_zlift;
  999. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1000. //prepare_move();
  1001. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1002. plan_set_e_position(current_position[E_AXIS]);
  1003. float oldFeedrate = feedrate;
  1004. feedrate=retract_recover_feedrate*60;
  1005. retracted=false;
  1006. prepare_move();
  1007. feedrate = oldFeedrate;
  1008. }
  1009. } //retract
  1010. #endif //FWRETRACT
  1011. void process_commands()
  1012. {
  1013. unsigned long codenum; //throw away variable
  1014. char *starpos = NULL;
  1015. #ifdef ENABLE_AUTO_BED_LEVELING
  1016. float x_tmp, y_tmp, z_tmp, real_z;
  1017. #endif
  1018. if(code_seen('G'))
  1019. {
  1020. switch((int)code_value())
  1021. {
  1022. case 0: // G0 -> G1
  1023. case 1: // G1
  1024. if(Stopped == false) {
  1025. get_coordinates(); // For X Y Z E F
  1026. #ifdef FWRETRACT
  1027. if(autoretract_enabled)
  1028. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1029. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1030. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1031. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1032. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1033. retract(!retracted);
  1034. return;
  1035. }
  1036. }
  1037. #endif //FWRETRACT
  1038. prepare_move();
  1039. //ClearToSend();
  1040. return;
  1041. }
  1042. //break;
  1043. case 2: // G2 - CW ARC
  1044. if(Stopped == false) {
  1045. get_arc_coordinates();
  1046. prepare_arc_move(true);
  1047. return;
  1048. }
  1049. case 3: // G3 - CCW ARC
  1050. if(Stopped == false) {
  1051. get_arc_coordinates();
  1052. prepare_arc_move(false);
  1053. return;
  1054. }
  1055. case 4: // G4 dwell
  1056. LCD_MESSAGEPGM(MSG_DWELL);
  1057. codenum = 0;
  1058. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1059. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1060. st_synchronize();
  1061. codenum += millis(); // keep track of when we started waiting
  1062. previous_millis_cmd = millis();
  1063. while(millis() < codenum ){
  1064. manage_heater();
  1065. manage_inactivity();
  1066. lcd_update();
  1067. }
  1068. break;
  1069. #ifdef FWRETRACT
  1070. case 10: // G10 retract
  1071. retract(true);
  1072. break;
  1073. case 11: // G11 retract_recover
  1074. retract(false);
  1075. break;
  1076. #endif //FWRETRACT
  1077. case 28: //G28 Home all Axis one at a time
  1078. #ifdef ENABLE_AUTO_BED_LEVELING
  1079. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1080. #endif //ENABLE_AUTO_BED_LEVELING
  1081. saved_feedrate = feedrate;
  1082. saved_feedmultiply = feedmultiply;
  1083. feedmultiply = 100;
  1084. previous_millis_cmd = millis();
  1085. enable_endstops(true);
  1086. for(int8_t i=0; i < NUM_AXIS; i++) {
  1087. destination[i] = current_position[i];
  1088. }
  1089. feedrate = 0.0;
  1090. #ifdef DELTA
  1091. // A delta can only safely home all axis at the same time
  1092. // all axis have to home at the same time
  1093. // Move all carriages up together until the first endstop is hit.
  1094. current_position[X_AXIS] = 0;
  1095. current_position[Y_AXIS] = 0;
  1096. current_position[Z_AXIS] = 0;
  1097. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1098. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1099. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1100. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1101. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1102. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1103. st_synchronize();
  1104. endstops_hit_on_purpose();
  1105. current_position[X_AXIS] = destination[X_AXIS];
  1106. current_position[Y_AXIS] = destination[Y_AXIS];
  1107. current_position[Z_AXIS] = destination[Z_AXIS];
  1108. // take care of back off and rehome now we are all at the top
  1109. HOMEAXIS(X);
  1110. HOMEAXIS(Y);
  1111. HOMEAXIS(Z);
  1112. calculate_delta(current_position);
  1113. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1114. #else // NOT DELTA
  1115. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1116. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1117. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1118. HOMEAXIS(Z);
  1119. }
  1120. #endif
  1121. #ifdef QUICK_HOME
  1122. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1123. {
  1124. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1125. #ifndef DUAL_X_CARRIAGE
  1126. int x_axis_home_dir = home_dir(X_AXIS);
  1127. #else
  1128. int x_axis_home_dir = x_home_dir(active_extruder);
  1129. extruder_duplication_enabled = false;
  1130. #endif
  1131. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1132. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1133. feedrate = homing_feedrate[X_AXIS];
  1134. if(homing_feedrate[Y_AXIS]<feedrate)
  1135. feedrate = homing_feedrate[Y_AXIS];
  1136. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1137. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1138. } else {
  1139. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1140. }
  1141. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1142. st_synchronize();
  1143. axis_is_at_home(X_AXIS);
  1144. axis_is_at_home(Y_AXIS);
  1145. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1146. destination[X_AXIS] = current_position[X_AXIS];
  1147. destination[Y_AXIS] = current_position[Y_AXIS];
  1148. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1149. feedrate = 0.0;
  1150. st_synchronize();
  1151. endstops_hit_on_purpose();
  1152. current_position[X_AXIS] = destination[X_AXIS];
  1153. current_position[Y_AXIS] = destination[Y_AXIS];
  1154. current_position[Z_AXIS] = destination[Z_AXIS];
  1155. }
  1156. #endif
  1157. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1158. {
  1159. #ifdef DUAL_X_CARRIAGE
  1160. int tmp_extruder = active_extruder;
  1161. extruder_duplication_enabled = false;
  1162. active_extruder = !active_extruder;
  1163. HOMEAXIS(X);
  1164. inactive_extruder_x_pos = current_position[X_AXIS];
  1165. active_extruder = tmp_extruder;
  1166. HOMEAXIS(X);
  1167. // reset state used by the different modes
  1168. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1169. delayed_move_time = 0;
  1170. active_extruder_parked = true;
  1171. #else
  1172. HOMEAXIS(X);
  1173. #endif
  1174. }
  1175. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1176. HOMEAXIS(Y);
  1177. }
  1178. if(code_seen(axis_codes[X_AXIS]))
  1179. {
  1180. if(code_value_long() != 0) {
  1181. current_position[X_AXIS]=code_value()+add_homeing[0];
  1182. }
  1183. }
  1184. if(code_seen(axis_codes[Y_AXIS])) {
  1185. if(code_value_long() != 0) {
  1186. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1187. }
  1188. }
  1189. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1190. #ifndef Z_SAFE_HOMING
  1191. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1192. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1193. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1194. feedrate = max_feedrate[Z_AXIS];
  1195. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1196. st_synchronize();
  1197. #endif
  1198. HOMEAXIS(Z);
  1199. }
  1200. #else // Z Safe mode activated.
  1201. if(home_all_axis) {
  1202. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1203. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1204. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1205. feedrate = XY_TRAVEL_SPEED;
  1206. current_position[Z_AXIS] = 0;
  1207. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1208. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1209. st_synchronize();
  1210. current_position[X_AXIS] = destination[X_AXIS];
  1211. current_position[Y_AXIS] = destination[Y_AXIS];
  1212. HOMEAXIS(Z);
  1213. }
  1214. // Let's see if X and Y are homed and probe is inside bed area.
  1215. if(code_seen(axis_codes[Z_AXIS])) {
  1216. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1217. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1218. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1219. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1220. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1221. current_position[Z_AXIS] = 0;
  1222. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1223. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1224. feedrate = max_feedrate[Z_AXIS];
  1225. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1226. st_synchronize();
  1227. HOMEAXIS(Z);
  1228. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1229. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1230. SERIAL_ECHO_START;
  1231. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1232. } else {
  1233. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1234. SERIAL_ECHO_START;
  1235. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1236. }
  1237. }
  1238. #endif
  1239. #endif
  1240. if(code_seen(axis_codes[Z_AXIS])) {
  1241. if(code_value_long() != 0) {
  1242. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1243. }
  1244. }
  1245. #ifdef ENABLE_AUTO_BED_LEVELING
  1246. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1247. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1248. }
  1249. #endif
  1250. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1251. #endif // else DELTA
  1252. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1253. enable_endstops(false);
  1254. #endif
  1255. feedrate = saved_feedrate;
  1256. feedmultiply = saved_feedmultiply;
  1257. previous_millis_cmd = millis();
  1258. endstops_hit_on_purpose();
  1259. break;
  1260. #ifdef ENABLE_AUTO_BED_LEVELING
  1261. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1262. {
  1263. #if Z_MIN_PIN == -1
  1264. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1265. #endif
  1266. // Prevent user from running a G29 without first homing in X and Y
  1267. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1268. {
  1269. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1270. SERIAL_ECHO_START;
  1271. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1272. break; // abort G29, since we don't know where we are
  1273. }
  1274. st_synchronize();
  1275. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1276. //vector_3 corrected_position = plan_get_position_mm();
  1277. //corrected_position.debug("position before G29");
  1278. plan_bed_level_matrix.set_to_identity();
  1279. vector_3 uncorrected_position = plan_get_position();
  1280. //uncorrected_position.debug("position durring G29");
  1281. current_position[X_AXIS] = uncorrected_position.x;
  1282. current_position[Y_AXIS] = uncorrected_position.y;
  1283. current_position[Z_AXIS] = uncorrected_position.z;
  1284. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1285. setup_for_endstop_move();
  1286. feedrate = homing_feedrate[Z_AXIS];
  1287. #ifdef AUTO_BED_LEVELING_GRID
  1288. // probe at the points of a lattice grid
  1289. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1290. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1291. // solve the plane equation ax + by + d = z
  1292. // A is the matrix with rows [x y 1] for all the probed points
  1293. // B is the vector of the Z positions
  1294. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1295. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1296. // "A" matrix of the linear system of equations
  1297. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1298. // "B" vector of Z points
  1299. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1300. int probePointCounter = 0;
  1301. bool zig = true;
  1302. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1303. {
  1304. int xProbe, xInc;
  1305. if (zig)
  1306. {
  1307. xProbe = LEFT_PROBE_BED_POSITION;
  1308. //xEnd = RIGHT_PROBE_BED_POSITION;
  1309. xInc = xGridSpacing;
  1310. zig = false;
  1311. } else // zag
  1312. {
  1313. xProbe = RIGHT_PROBE_BED_POSITION;
  1314. //xEnd = LEFT_PROBE_BED_POSITION;
  1315. xInc = -xGridSpacing;
  1316. zig = true;
  1317. }
  1318. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1319. {
  1320. float z_before;
  1321. if (probePointCounter == 0)
  1322. {
  1323. // raise before probing
  1324. z_before = Z_RAISE_BEFORE_PROBING;
  1325. } else
  1326. {
  1327. // raise extruder
  1328. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1329. }
  1330. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1331. eqnBVector[probePointCounter] = measured_z;
  1332. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1333. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1334. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1335. probePointCounter++;
  1336. xProbe += xInc;
  1337. }
  1338. }
  1339. clean_up_after_endstop_move();
  1340. // solve lsq problem
  1341. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1342. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1343. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1344. SERIAL_PROTOCOLPGM(" b: ");
  1345. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1346. SERIAL_PROTOCOLPGM(" d: ");
  1347. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1348. set_bed_level_equation_lsq(plane_equation_coefficients);
  1349. free(plane_equation_coefficients);
  1350. #else // AUTO_BED_LEVELING_GRID not defined
  1351. // Probe at 3 arbitrary points
  1352. // probe 1
  1353. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1354. // probe 2
  1355. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1356. // probe 3
  1357. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1358. clean_up_after_endstop_move();
  1359. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1360. #endif // AUTO_BED_LEVELING_GRID
  1361. st_synchronize();
  1362. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1363. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1364. // When the bed is uneven, this height must be corrected.
  1365. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1366. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1367. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1368. z_tmp = current_position[Z_AXIS];
  1369. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1370. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1371. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1372. }
  1373. break;
  1374. case 30: // G30 Single Z Probe
  1375. {
  1376. engage_z_probe(); // Engage Z Servo endstop if available
  1377. st_synchronize();
  1378. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1379. setup_for_endstop_move();
  1380. feedrate = homing_feedrate[Z_AXIS];
  1381. run_z_probe();
  1382. SERIAL_PROTOCOLPGM(MSG_BED);
  1383. SERIAL_PROTOCOLPGM(" X: ");
  1384. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1385. SERIAL_PROTOCOLPGM(" Y: ");
  1386. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1387. SERIAL_PROTOCOLPGM(" Z: ");
  1388. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1389. SERIAL_PROTOCOLPGM("\n");
  1390. clean_up_after_endstop_move();
  1391. retract_z_probe(); // Retract Z Servo endstop if available
  1392. }
  1393. break;
  1394. #endif // ENABLE_AUTO_BED_LEVELING
  1395. case 90: // G90
  1396. relative_mode = false;
  1397. break;
  1398. case 91: // G91
  1399. relative_mode = true;
  1400. break;
  1401. case 92: // G92
  1402. if(!code_seen(axis_codes[E_AXIS]))
  1403. st_synchronize();
  1404. for(int8_t i=0; i < NUM_AXIS; i++) {
  1405. if(code_seen(axis_codes[i])) {
  1406. if(i == E_AXIS) {
  1407. current_position[i] = code_value();
  1408. plan_set_e_position(current_position[E_AXIS]);
  1409. }
  1410. else {
  1411. current_position[i] = code_value()+add_homeing[i];
  1412. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1413. }
  1414. }
  1415. }
  1416. break;
  1417. }
  1418. }
  1419. else if(code_seen('M'))
  1420. {
  1421. switch( (int)code_value() )
  1422. {
  1423. #ifdef ULTIPANEL
  1424. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1425. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1426. {
  1427. LCD_MESSAGEPGM(MSG_USERWAIT);
  1428. codenum = 0;
  1429. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1430. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1431. st_synchronize();
  1432. previous_millis_cmd = millis();
  1433. if (codenum > 0){
  1434. codenum += millis(); // keep track of when we started waiting
  1435. while(millis() < codenum && !lcd_clicked()){
  1436. manage_heater();
  1437. manage_inactivity();
  1438. lcd_update();
  1439. }
  1440. }else{
  1441. while(!lcd_clicked()){
  1442. manage_heater();
  1443. manage_inactivity();
  1444. lcd_update();
  1445. }
  1446. }
  1447. LCD_MESSAGEPGM(MSG_RESUMING);
  1448. }
  1449. break;
  1450. #endif
  1451. case 17:
  1452. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1453. enable_x();
  1454. enable_y();
  1455. enable_z();
  1456. enable_e0();
  1457. enable_e1();
  1458. enable_e2();
  1459. break;
  1460. #ifdef SDSUPPORT
  1461. case 20: // M20 - list SD card
  1462. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1463. card.ls();
  1464. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1465. break;
  1466. case 21: // M21 - init SD card
  1467. card.initsd();
  1468. break;
  1469. case 22: //M22 - release SD card
  1470. card.release();
  1471. break;
  1472. case 23: //M23 - Select file
  1473. starpos = (strchr(strchr_pointer + 4,'*'));
  1474. if(starpos!=NULL)
  1475. *(starpos-1)='\0';
  1476. card.openFile(strchr_pointer + 4,true);
  1477. break;
  1478. case 24: //M24 - Start SD print
  1479. card.startFileprint();
  1480. starttime=millis();
  1481. break;
  1482. case 25: //M25 - Pause SD print
  1483. card.pauseSDPrint();
  1484. break;
  1485. case 26: //M26 - Set SD index
  1486. if(card.cardOK && code_seen('S')) {
  1487. card.setIndex(code_value_long());
  1488. }
  1489. break;
  1490. case 27: //M27 - Get SD status
  1491. card.getStatus();
  1492. break;
  1493. case 28: //M28 - Start SD write
  1494. starpos = (strchr(strchr_pointer + 4,'*'));
  1495. if(starpos != NULL){
  1496. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1497. strchr_pointer = strchr(npos,' ') + 1;
  1498. *(starpos-1) = '\0';
  1499. }
  1500. card.openFile(strchr_pointer+4,false);
  1501. break;
  1502. case 29: //M29 - Stop SD write
  1503. //processed in write to file routine above
  1504. //card,saving = false;
  1505. break;
  1506. case 30: //M30 <filename> Delete File
  1507. if (card.cardOK){
  1508. card.closefile();
  1509. starpos = (strchr(strchr_pointer + 4,'*'));
  1510. if(starpos != NULL){
  1511. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1512. strchr_pointer = strchr(npos,' ') + 1;
  1513. *(starpos-1) = '\0';
  1514. }
  1515. card.removeFile(strchr_pointer + 4);
  1516. }
  1517. break;
  1518. case 32: //M32 - Select file and start SD print
  1519. {
  1520. if(card.sdprinting) {
  1521. st_synchronize();
  1522. }
  1523. starpos = (strchr(strchr_pointer + 4,'*'));
  1524. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1525. if(namestartpos==NULL)
  1526. {
  1527. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1528. }
  1529. else
  1530. namestartpos++; //to skip the '!'
  1531. if(starpos!=NULL)
  1532. *(starpos-1)='\0';
  1533. bool call_procedure=(code_seen('P'));
  1534. if(strchr_pointer>namestartpos)
  1535. call_procedure=false; //false alert, 'P' found within filename
  1536. if( card.cardOK )
  1537. {
  1538. card.openFile(namestartpos,true,!call_procedure);
  1539. if(code_seen('S'))
  1540. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1541. card.setIndex(code_value_long());
  1542. card.startFileprint();
  1543. if(!call_procedure)
  1544. starttime=millis(); //procedure calls count as normal print time.
  1545. }
  1546. } break;
  1547. case 928: //M928 - Start SD write
  1548. starpos = (strchr(strchr_pointer + 5,'*'));
  1549. if(starpos != NULL){
  1550. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1551. strchr_pointer = strchr(npos,' ') + 1;
  1552. *(starpos-1) = '\0';
  1553. }
  1554. card.openLogFile(strchr_pointer+5);
  1555. break;
  1556. #endif //SDSUPPORT
  1557. case 31: //M31 take time since the start of the SD print or an M109 command
  1558. {
  1559. stoptime=millis();
  1560. char time[30];
  1561. unsigned long t=(stoptime-starttime)/1000;
  1562. int sec,min;
  1563. min=t/60;
  1564. sec=t%60;
  1565. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1566. SERIAL_ECHO_START;
  1567. SERIAL_ECHOLN(time);
  1568. lcd_setstatus(time);
  1569. autotempShutdown();
  1570. }
  1571. break;
  1572. case 42: //M42 -Change pin status via gcode
  1573. if (code_seen('S'))
  1574. {
  1575. int pin_status = code_value();
  1576. int pin_number = LED_PIN;
  1577. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1578. pin_number = code_value();
  1579. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1580. {
  1581. if (sensitive_pins[i] == pin_number)
  1582. {
  1583. pin_number = -1;
  1584. break;
  1585. }
  1586. }
  1587. #if defined(FAN_PIN) && FAN_PIN > -1
  1588. if (pin_number == FAN_PIN)
  1589. fanSpeed = pin_status;
  1590. #endif
  1591. if (pin_number > -1)
  1592. {
  1593. pinMode(pin_number, OUTPUT);
  1594. digitalWrite(pin_number, pin_status);
  1595. analogWrite(pin_number, pin_status);
  1596. }
  1597. }
  1598. break;
  1599. case 104: // M104
  1600. if(setTargetedHotend(104)){
  1601. break;
  1602. }
  1603. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1604. #ifdef DUAL_X_CARRIAGE
  1605. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1606. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1607. #endif
  1608. setWatch();
  1609. break;
  1610. case 140: // M140 set bed temp
  1611. if (code_seen('S')) setTargetBed(code_value());
  1612. break;
  1613. case 105 : // M105
  1614. if(setTargetedHotend(105)){
  1615. break;
  1616. }
  1617. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1618. SERIAL_PROTOCOLPGM("ok T:");
  1619. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1620. SERIAL_PROTOCOLPGM(" /");
  1621. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1622. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1623. SERIAL_PROTOCOLPGM(" B:");
  1624. SERIAL_PROTOCOL_F(degBed(),1);
  1625. SERIAL_PROTOCOLPGM(" /");
  1626. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1627. #endif //TEMP_BED_PIN
  1628. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1629. SERIAL_PROTOCOLPGM(" T");
  1630. SERIAL_PROTOCOL(cur_extruder);
  1631. SERIAL_PROTOCOLPGM(":");
  1632. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1633. SERIAL_PROTOCOLPGM(" /");
  1634. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1635. }
  1636. #else
  1637. SERIAL_ERROR_START;
  1638. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1639. #endif
  1640. SERIAL_PROTOCOLPGM(" @:");
  1641. #ifdef EXTRUDER_WATTS
  1642. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1643. SERIAL_PROTOCOLPGM("W");
  1644. #else
  1645. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1646. #endif
  1647. SERIAL_PROTOCOLPGM(" B@:");
  1648. #ifdef BED_WATTS
  1649. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1650. SERIAL_PROTOCOLPGM("W");
  1651. #else
  1652. SERIAL_PROTOCOL(getHeaterPower(-1));
  1653. #endif
  1654. #ifdef SHOW_TEMP_ADC_VALUES
  1655. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1656. SERIAL_PROTOCOLPGM(" ADC B:");
  1657. SERIAL_PROTOCOL_F(degBed(),1);
  1658. SERIAL_PROTOCOLPGM("C->");
  1659. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1660. #endif
  1661. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1662. SERIAL_PROTOCOLPGM(" T");
  1663. SERIAL_PROTOCOL(cur_extruder);
  1664. SERIAL_PROTOCOLPGM(":");
  1665. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1666. SERIAL_PROTOCOLPGM("C->");
  1667. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1668. }
  1669. #endif
  1670. SERIAL_PROTOCOLLN("");
  1671. return;
  1672. break;
  1673. case 109:
  1674. {// M109 - Wait for extruder heater to reach target.
  1675. if(setTargetedHotend(109)){
  1676. break;
  1677. }
  1678. LCD_MESSAGEPGM(MSG_HEATING);
  1679. #ifdef AUTOTEMP
  1680. autotemp_enabled=false;
  1681. #endif
  1682. if (code_seen('S')) {
  1683. setTargetHotend(code_value(), tmp_extruder);
  1684. #ifdef DUAL_X_CARRIAGE
  1685. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1686. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1687. #endif
  1688. CooldownNoWait = true;
  1689. } else if (code_seen('R')) {
  1690. setTargetHotend(code_value(), tmp_extruder);
  1691. #ifdef DUAL_X_CARRIAGE
  1692. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1693. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1694. #endif
  1695. CooldownNoWait = false;
  1696. }
  1697. #ifdef AUTOTEMP
  1698. if (code_seen('S')) autotemp_min=code_value();
  1699. if (code_seen('B')) autotemp_max=code_value();
  1700. if (code_seen('F'))
  1701. {
  1702. autotemp_factor=code_value();
  1703. autotemp_enabled=true;
  1704. }
  1705. #endif
  1706. setWatch();
  1707. codenum = millis();
  1708. /* See if we are heating up or cooling down */
  1709. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1710. #ifdef TEMP_RESIDENCY_TIME
  1711. long residencyStart;
  1712. residencyStart = -1;
  1713. /* continue to loop until we have reached the target temp
  1714. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1715. while((residencyStart == -1) ||
  1716. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1717. #else
  1718. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1719. #endif //TEMP_RESIDENCY_TIME
  1720. if( (millis() - codenum) > 1000UL )
  1721. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1722. SERIAL_PROTOCOLPGM("T:");
  1723. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1724. SERIAL_PROTOCOLPGM(" E:");
  1725. SERIAL_PROTOCOL((int)tmp_extruder);
  1726. #ifdef TEMP_RESIDENCY_TIME
  1727. SERIAL_PROTOCOLPGM(" W:");
  1728. if(residencyStart > -1)
  1729. {
  1730. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1731. SERIAL_PROTOCOLLN( codenum );
  1732. }
  1733. else
  1734. {
  1735. SERIAL_PROTOCOLLN( "?" );
  1736. }
  1737. #else
  1738. SERIAL_PROTOCOLLN("");
  1739. #endif
  1740. codenum = millis();
  1741. }
  1742. manage_heater();
  1743. manage_inactivity();
  1744. lcd_update();
  1745. #ifdef TEMP_RESIDENCY_TIME
  1746. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1747. or when current temp falls outside the hysteresis after target temp was reached */
  1748. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1749. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1750. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1751. {
  1752. residencyStart = millis();
  1753. }
  1754. #endif //TEMP_RESIDENCY_TIME
  1755. }
  1756. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1757. starttime=millis();
  1758. previous_millis_cmd = millis();
  1759. }
  1760. break;
  1761. case 190: // M190 - Wait for bed heater to reach target.
  1762. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1763. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1764. if (code_seen('S')) {
  1765. setTargetBed(code_value());
  1766. CooldownNoWait = true;
  1767. } else if (code_seen('R')) {
  1768. setTargetBed(code_value());
  1769. CooldownNoWait = false;
  1770. }
  1771. codenum = millis();
  1772. target_direction = isHeatingBed(); // true if heating, false if cooling
  1773. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1774. {
  1775. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1776. {
  1777. float tt=degHotend(active_extruder);
  1778. SERIAL_PROTOCOLPGM("T:");
  1779. SERIAL_PROTOCOL(tt);
  1780. SERIAL_PROTOCOLPGM(" E:");
  1781. SERIAL_PROTOCOL((int)active_extruder);
  1782. SERIAL_PROTOCOLPGM(" B:");
  1783. SERIAL_PROTOCOL_F(degBed(),1);
  1784. SERIAL_PROTOCOLLN("");
  1785. codenum = millis();
  1786. }
  1787. manage_heater();
  1788. manage_inactivity();
  1789. lcd_update();
  1790. }
  1791. LCD_MESSAGEPGM(MSG_BED_DONE);
  1792. previous_millis_cmd = millis();
  1793. #endif
  1794. break;
  1795. #if defined(FAN_PIN) && FAN_PIN > -1
  1796. case 106: //M106 Fan On
  1797. if (code_seen('S')){
  1798. fanSpeed=constrain(code_value(),0,255);
  1799. }
  1800. else {
  1801. fanSpeed=255;
  1802. }
  1803. break;
  1804. case 107: //M107 Fan Off
  1805. fanSpeed = 0;
  1806. break;
  1807. #endif //FAN_PIN
  1808. #ifdef BARICUDA
  1809. // PWM for HEATER_1_PIN
  1810. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1811. case 126: //M126 valve open
  1812. if (code_seen('S')){
  1813. ValvePressure=constrain(code_value(),0,255);
  1814. }
  1815. else {
  1816. ValvePressure=255;
  1817. }
  1818. break;
  1819. case 127: //M127 valve closed
  1820. ValvePressure = 0;
  1821. break;
  1822. #endif //HEATER_1_PIN
  1823. // PWM for HEATER_2_PIN
  1824. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1825. case 128: //M128 valve open
  1826. if (code_seen('S')){
  1827. EtoPPressure=constrain(code_value(),0,255);
  1828. }
  1829. else {
  1830. EtoPPressure=255;
  1831. }
  1832. break;
  1833. case 129: //M129 valve closed
  1834. EtoPPressure = 0;
  1835. break;
  1836. #endif //HEATER_2_PIN
  1837. #endif
  1838. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1839. case 80: // M80 - Turn on Power Supply
  1840. SET_OUTPUT(PS_ON_PIN); //GND
  1841. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1842. // If you have a switch on suicide pin, this is useful
  1843. // if you want to start another print with suicide feature after
  1844. // a print without suicide...
  1845. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1846. SET_OUTPUT(SUICIDE_PIN);
  1847. WRITE(SUICIDE_PIN, HIGH);
  1848. #endif
  1849. #ifdef ULTIPANEL
  1850. powersupply = true;
  1851. LCD_MESSAGEPGM(WELCOME_MSG);
  1852. lcd_update();
  1853. #endif
  1854. break;
  1855. #endif
  1856. case 81: // M81 - Turn off Power Supply
  1857. disable_heater();
  1858. st_synchronize();
  1859. disable_e0();
  1860. disable_e1();
  1861. disable_e2();
  1862. finishAndDisableSteppers();
  1863. fanSpeed = 0;
  1864. delay(1000); // Wait a little before to switch off
  1865. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1866. st_synchronize();
  1867. suicide();
  1868. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1869. SET_OUTPUT(PS_ON_PIN);
  1870. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1871. #endif
  1872. #ifdef ULTIPANEL
  1873. powersupply = false;
  1874. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1875. lcd_update();
  1876. #endif
  1877. break;
  1878. case 82:
  1879. axis_relative_modes[3] = false;
  1880. break;
  1881. case 83:
  1882. axis_relative_modes[3] = true;
  1883. break;
  1884. case 18: //compatibility
  1885. case 84: // M84
  1886. if(code_seen('S')){
  1887. stepper_inactive_time = code_value() * 1000;
  1888. }
  1889. else
  1890. {
  1891. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  1892. if(all_axis)
  1893. {
  1894. st_synchronize();
  1895. disable_e0();
  1896. disable_e1();
  1897. disable_e2();
  1898. finishAndDisableSteppers();
  1899. }
  1900. else
  1901. {
  1902. st_synchronize();
  1903. if(code_seen('X')) disable_x();
  1904. if(code_seen('Y')) disable_y();
  1905. if(code_seen('Z')) disable_z();
  1906. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1907. if(code_seen('E')) {
  1908. disable_e0();
  1909. disable_e1();
  1910. disable_e2();
  1911. }
  1912. #endif
  1913. }
  1914. }
  1915. break;
  1916. case 85: // M85
  1917. code_seen('S');
  1918. max_inactive_time = code_value() * 1000;
  1919. break;
  1920. case 92: // M92
  1921. for(int8_t i=0; i < NUM_AXIS; i++)
  1922. {
  1923. if(code_seen(axis_codes[i]))
  1924. {
  1925. if(i == 3) { // E
  1926. float value = code_value();
  1927. if(value < 20.0) {
  1928. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1929. max_e_jerk *= factor;
  1930. max_feedrate[i] *= factor;
  1931. axis_steps_per_sqr_second[i] *= factor;
  1932. }
  1933. axis_steps_per_unit[i] = value;
  1934. }
  1935. else {
  1936. axis_steps_per_unit[i] = code_value();
  1937. }
  1938. }
  1939. }
  1940. break;
  1941. case 115: // M115
  1942. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1943. break;
  1944. case 117: // M117 display message
  1945. starpos = (strchr(strchr_pointer + 5,'*'));
  1946. if(starpos!=NULL)
  1947. *(starpos-1)='\0';
  1948. lcd_setstatus(strchr_pointer + 5);
  1949. break;
  1950. case 114: // M114
  1951. SERIAL_PROTOCOLPGM("X:");
  1952. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1953. SERIAL_PROTOCOLPGM(" Y:");
  1954. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1955. SERIAL_PROTOCOLPGM(" Z:");
  1956. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1957. SERIAL_PROTOCOLPGM(" E:");
  1958. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1959. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1960. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1961. SERIAL_PROTOCOLPGM(" Y:");
  1962. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1963. SERIAL_PROTOCOLPGM(" Z:");
  1964. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1965. SERIAL_PROTOCOLLN("");
  1966. break;
  1967. case 120: // M120
  1968. enable_endstops(false) ;
  1969. break;
  1970. case 121: // M121
  1971. enable_endstops(true) ;
  1972. break;
  1973. case 119: // M119
  1974. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1975. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1976. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1977. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1978. #endif
  1979. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1980. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1981. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1982. #endif
  1983. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1984. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1985. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1986. #endif
  1987. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1988. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1989. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1990. #endif
  1991. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1992. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1993. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1994. #endif
  1995. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1996. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1997. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1998. #endif
  1999. break;
  2000. //TODO: update for all axis, use for loop
  2001. #ifdef BLINKM
  2002. case 150: // M150
  2003. {
  2004. byte red;
  2005. byte grn;
  2006. byte blu;
  2007. if(code_seen('R')) red = code_value();
  2008. if(code_seen('U')) grn = code_value();
  2009. if(code_seen('B')) blu = code_value();
  2010. SendColors(red,grn,blu);
  2011. }
  2012. break;
  2013. #endif //BLINKM
  2014. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2015. {
  2016. float area = .0;
  2017. float radius = .0;
  2018. if(code_seen('D')) {
  2019. radius = (float)code_value() * .5;
  2020. if(radius == 0) {
  2021. area = 1;
  2022. } else {
  2023. area = M_PI * pow(radius, 2);
  2024. }
  2025. } else {
  2026. //reserved for setting filament diameter via UFID or filament measuring device
  2027. break;
  2028. }
  2029. tmp_extruder = active_extruder;
  2030. if(code_seen('T')) {
  2031. tmp_extruder = code_value();
  2032. if(tmp_extruder >= EXTRUDERS) {
  2033. SERIAL_ECHO_START;
  2034. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2035. }
  2036. }
  2037. volumetric_multiplier[tmp_extruder] = 1 / area;
  2038. }
  2039. break;
  2040. case 201: // M201
  2041. for(int8_t i=0; i < NUM_AXIS; i++)
  2042. {
  2043. if(code_seen(axis_codes[i]))
  2044. {
  2045. max_acceleration_units_per_sq_second[i] = code_value();
  2046. }
  2047. }
  2048. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2049. reset_acceleration_rates();
  2050. break;
  2051. #if 0 // Not used for Sprinter/grbl gen6
  2052. case 202: // M202
  2053. for(int8_t i=0; i < NUM_AXIS; i++) {
  2054. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2055. }
  2056. break;
  2057. #endif
  2058. case 203: // M203 max feedrate mm/sec
  2059. for(int8_t i=0; i < NUM_AXIS; i++) {
  2060. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2061. }
  2062. break;
  2063. case 204: // M204 acclereration S normal moves T filmanent only moves
  2064. {
  2065. if(code_seen('S')) acceleration = code_value() ;
  2066. if(code_seen('T')) retract_acceleration = code_value() ;
  2067. }
  2068. break;
  2069. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2070. {
  2071. if(code_seen('S')) minimumfeedrate = code_value();
  2072. if(code_seen('T')) mintravelfeedrate = code_value();
  2073. if(code_seen('B')) minsegmenttime = code_value() ;
  2074. if(code_seen('X')) max_xy_jerk = code_value() ;
  2075. if(code_seen('Z')) max_z_jerk = code_value() ;
  2076. if(code_seen('E')) max_e_jerk = code_value() ;
  2077. }
  2078. break;
  2079. case 206: // M206 additional homeing offset
  2080. for(int8_t i=0; i < 3; i++)
  2081. {
  2082. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2083. }
  2084. break;
  2085. #ifdef DELTA
  2086. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2087. if(code_seen('L')) {
  2088. delta_diagonal_rod= code_value();
  2089. }
  2090. if(code_seen('R')) {
  2091. delta_radius= code_value();
  2092. }
  2093. if(code_seen('S')) {
  2094. delta_segments_per_second= code_value();
  2095. }
  2096. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2097. break;
  2098. case 666: // M666 set delta endstop adjustemnt
  2099. for(int8_t i=0; i < 3; i++)
  2100. {
  2101. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2102. }
  2103. break;
  2104. #endif
  2105. #ifdef FWRETRACT
  2106. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2107. {
  2108. if(code_seen('S'))
  2109. {
  2110. retract_length = code_value() ;
  2111. }
  2112. if(code_seen('F'))
  2113. {
  2114. retract_feedrate = code_value()/60 ;
  2115. }
  2116. if(code_seen('Z'))
  2117. {
  2118. retract_zlift = code_value() ;
  2119. }
  2120. }break;
  2121. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2122. {
  2123. if(code_seen('S'))
  2124. {
  2125. retract_recover_length = code_value() ;
  2126. }
  2127. if(code_seen('F'))
  2128. {
  2129. retract_recover_feedrate = code_value()/60 ;
  2130. }
  2131. }break;
  2132. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2133. {
  2134. if(code_seen('S'))
  2135. {
  2136. int t= code_value() ;
  2137. switch(t)
  2138. {
  2139. case 0: autoretract_enabled=false;retracted=false;break;
  2140. case 1: autoretract_enabled=true;retracted=false;break;
  2141. default:
  2142. SERIAL_ECHO_START;
  2143. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2144. SERIAL_ECHO(cmdbuffer[bufindr]);
  2145. SERIAL_ECHOLNPGM("\"");
  2146. }
  2147. }
  2148. }break;
  2149. #endif // FWRETRACT
  2150. #if EXTRUDERS > 1
  2151. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2152. {
  2153. if(setTargetedHotend(218)){
  2154. break;
  2155. }
  2156. if(code_seen('X'))
  2157. {
  2158. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2159. }
  2160. if(code_seen('Y'))
  2161. {
  2162. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2163. }
  2164. #ifdef DUAL_X_CARRIAGE
  2165. if(code_seen('Z'))
  2166. {
  2167. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2168. }
  2169. #endif
  2170. SERIAL_ECHO_START;
  2171. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2172. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2173. {
  2174. SERIAL_ECHO(" ");
  2175. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2176. SERIAL_ECHO(",");
  2177. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2178. #ifdef DUAL_X_CARRIAGE
  2179. SERIAL_ECHO(",");
  2180. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2181. #endif
  2182. }
  2183. SERIAL_ECHOLN("");
  2184. }break;
  2185. #endif
  2186. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2187. {
  2188. if(code_seen('S'))
  2189. {
  2190. feedmultiply = code_value() ;
  2191. }
  2192. }
  2193. break;
  2194. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2195. {
  2196. if(code_seen('S'))
  2197. {
  2198. int tmp_code = code_value();
  2199. if (code_seen('T'))
  2200. {
  2201. if(setTargetedHotend(221)){
  2202. break;
  2203. }
  2204. extruder_multiply[tmp_extruder] = tmp_code;
  2205. }
  2206. else
  2207. {
  2208. extrudemultiply = tmp_code ;
  2209. }
  2210. }
  2211. }
  2212. break;
  2213. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2214. {
  2215. if(code_seen('P')){
  2216. int pin_number = code_value(); // pin number
  2217. int pin_state = -1; // required pin state - default is inverted
  2218. if(code_seen('S')) pin_state = code_value(); // required pin state
  2219. if(pin_state >= -1 && pin_state <= 1){
  2220. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2221. {
  2222. if (sensitive_pins[i] == pin_number)
  2223. {
  2224. pin_number = -1;
  2225. break;
  2226. }
  2227. }
  2228. if (pin_number > -1)
  2229. {
  2230. st_synchronize();
  2231. pinMode(pin_number, INPUT);
  2232. int target;
  2233. switch(pin_state){
  2234. case 1:
  2235. target = HIGH;
  2236. break;
  2237. case 0:
  2238. target = LOW;
  2239. break;
  2240. case -1:
  2241. target = !digitalRead(pin_number);
  2242. break;
  2243. }
  2244. while(digitalRead(pin_number) != target){
  2245. manage_heater();
  2246. manage_inactivity();
  2247. lcd_update();
  2248. }
  2249. }
  2250. }
  2251. }
  2252. }
  2253. break;
  2254. #if NUM_SERVOS > 0
  2255. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2256. {
  2257. int servo_index = -1;
  2258. int servo_position = 0;
  2259. if (code_seen('P'))
  2260. servo_index = code_value();
  2261. if (code_seen('S')) {
  2262. servo_position = code_value();
  2263. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2264. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2265. servos[servo_index].attach(0);
  2266. #endif
  2267. servos[servo_index].write(servo_position);
  2268. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2269. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2270. servos[servo_index].detach();
  2271. #endif
  2272. }
  2273. else {
  2274. SERIAL_ECHO_START;
  2275. SERIAL_ECHO("Servo ");
  2276. SERIAL_ECHO(servo_index);
  2277. SERIAL_ECHOLN(" out of range");
  2278. }
  2279. }
  2280. else if (servo_index >= 0) {
  2281. SERIAL_PROTOCOL(MSG_OK);
  2282. SERIAL_PROTOCOL(" Servo ");
  2283. SERIAL_PROTOCOL(servo_index);
  2284. SERIAL_PROTOCOL(": ");
  2285. SERIAL_PROTOCOL(servos[servo_index].read());
  2286. SERIAL_PROTOCOLLN("");
  2287. }
  2288. }
  2289. break;
  2290. #endif // NUM_SERVOS > 0
  2291. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2292. case 300: // M300
  2293. {
  2294. int beepS = code_seen('S') ? code_value() : 110;
  2295. int beepP = code_seen('P') ? code_value() : 1000;
  2296. if (beepS > 0)
  2297. {
  2298. #if BEEPER > 0
  2299. tone(BEEPER, beepS);
  2300. delay(beepP);
  2301. noTone(BEEPER);
  2302. #elif defined(ULTRALCD)
  2303. lcd_buzz(beepS, beepP);
  2304. #elif defined(LCD_USE_I2C_BUZZER)
  2305. lcd_buzz(beepP, beepS);
  2306. #endif
  2307. }
  2308. else
  2309. {
  2310. delay(beepP);
  2311. }
  2312. }
  2313. break;
  2314. #endif // M300
  2315. #ifdef PIDTEMP
  2316. case 301: // M301
  2317. {
  2318. if(code_seen('P')) Kp = code_value();
  2319. if(code_seen('I')) Ki = scalePID_i(code_value());
  2320. if(code_seen('D')) Kd = scalePID_d(code_value());
  2321. #ifdef PID_ADD_EXTRUSION_RATE
  2322. if(code_seen('C')) Kc = code_value();
  2323. #endif
  2324. updatePID();
  2325. SERIAL_PROTOCOL(MSG_OK);
  2326. SERIAL_PROTOCOL(" p:");
  2327. SERIAL_PROTOCOL(Kp);
  2328. SERIAL_PROTOCOL(" i:");
  2329. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2330. SERIAL_PROTOCOL(" d:");
  2331. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2332. #ifdef PID_ADD_EXTRUSION_RATE
  2333. SERIAL_PROTOCOL(" c:");
  2334. //Kc does not have scaling applied above, or in resetting defaults
  2335. SERIAL_PROTOCOL(Kc);
  2336. #endif
  2337. SERIAL_PROTOCOLLN("");
  2338. }
  2339. break;
  2340. #endif //PIDTEMP
  2341. #ifdef PIDTEMPBED
  2342. case 304: // M304
  2343. {
  2344. if(code_seen('P')) bedKp = code_value();
  2345. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2346. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2347. updatePID();
  2348. SERIAL_PROTOCOL(MSG_OK);
  2349. SERIAL_PROTOCOL(" p:");
  2350. SERIAL_PROTOCOL(bedKp);
  2351. SERIAL_PROTOCOL(" i:");
  2352. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2353. SERIAL_PROTOCOL(" d:");
  2354. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2355. SERIAL_PROTOCOLLN("");
  2356. }
  2357. break;
  2358. #endif //PIDTEMP
  2359. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2360. {
  2361. #ifdef CHDK
  2362. SET_OUTPUT(CHDK);
  2363. WRITE(CHDK, HIGH);
  2364. chdkHigh = millis();
  2365. chdkActive = true;
  2366. #else
  2367. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2368. const uint8_t NUM_PULSES=16;
  2369. const float PULSE_LENGTH=0.01524;
  2370. for(int i=0; i < NUM_PULSES; i++) {
  2371. WRITE(PHOTOGRAPH_PIN, HIGH);
  2372. _delay_ms(PULSE_LENGTH);
  2373. WRITE(PHOTOGRAPH_PIN, LOW);
  2374. _delay_ms(PULSE_LENGTH);
  2375. }
  2376. delay(7.33);
  2377. for(int i=0; i < NUM_PULSES; i++) {
  2378. WRITE(PHOTOGRAPH_PIN, HIGH);
  2379. _delay_ms(PULSE_LENGTH);
  2380. WRITE(PHOTOGRAPH_PIN, LOW);
  2381. _delay_ms(PULSE_LENGTH);
  2382. }
  2383. #endif
  2384. #endif //chdk end if
  2385. }
  2386. break;
  2387. #ifdef DOGLCD
  2388. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2389. {
  2390. if (code_seen('C')) {
  2391. lcd_setcontrast( ((int)code_value())&63 );
  2392. }
  2393. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2394. SERIAL_PROTOCOL(lcd_contrast);
  2395. SERIAL_PROTOCOLLN("");
  2396. }
  2397. break;
  2398. #endif
  2399. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2400. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2401. {
  2402. float temp = .0;
  2403. if (code_seen('S')) temp=code_value();
  2404. set_extrude_min_temp(temp);
  2405. }
  2406. break;
  2407. #endif
  2408. case 303: // M303 PID autotune
  2409. {
  2410. float temp = 150.0;
  2411. int e=0;
  2412. int c=5;
  2413. if (code_seen('E')) e=code_value();
  2414. if (e<0)
  2415. temp=70;
  2416. if (code_seen('S')) temp=code_value();
  2417. if (code_seen('C')) c=code_value();
  2418. PID_autotune(temp, e, c);
  2419. }
  2420. break;
  2421. case 400: // M400 finish all moves
  2422. {
  2423. st_synchronize();
  2424. }
  2425. break;
  2426. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2427. case 401:
  2428. {
  2429. engage_z_probe(); // Engage Z Servo endstop if available
  2430. }
  2431. break;
  2432. case 402:
  2433. {
  2434. retract_z_probe(); // Retract Z Servo endstop if enabled
  2435. }
  2436. break;
  2437. #endif
  2438. case 500: // M500 Store settings in EEPROM
  2439. {
  2440. Config_StoreSettings();
  2441. }
  2442. break;
  2443. case 501: // M501 Read settings from EEPROM
  2444. {
  2445. Config_RetrieveSettings();
  2446. }
  2447. break;
  2448. case 502: // M502 Revert to default settings
  2449. {
  2450. Config_ResetDefault();
  2451. }
  2452. break;
  2453. case 503: // M503 print settings currently in memory
  2454. {
  2455. Config_PrintSettings();
  2456. }
  2457. break;
  2458. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2459. case 540:
  2460. {
  2461. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2462. }
  2463. break;
  2464. #endif
  2465. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2466. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  2467. {
  2468. float value;
  2469. if (code_seen('Z'))
  2470. {
  2471. value = code_value();
  2472. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  2473. {
  2474. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  2475. SERIAL_ECHO_START;
  2476. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  2477. SERIAL_PROTOCOLLN("");
  2478. }
  2479. else
  2480. {
  2481. SERIAL_ECHO_START;
  2482. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  2483. SERIAL_ECHOPGM(MSG_Z_MIN);
  2484. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  2485. SERIAL_ECHOPGM(MSG_Z_MAX);
  2486. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  2487. SERIAL_PROTOCOLLN("");
  2488. }
  2489. }
  2490. else
  2491. {
  2492. SERIAL_ECHO_START;
  2493. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  2494. SERIAL_ECHO(-zprobe_zoffset);
  2495. SERIAL_PROTOCOLLN("");
  2496. }
  2497. break;
  2498. }
  2499. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2500. #ifdef FILAMENTCHANGEENABLE
  2501. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2502. {
  2503. float target[4];
  2504. float lastpos[4];
  2505. target[X_AXIS]=current_position[X_AXIS];
  2506. target[Y_AXIS]=current_position[Y_AXIS];
  2507. target[Z_AXIS]=current_position[Z_AXIS];
  2508. target[E_AXIS]=current_position[E_AXIS];
  2509. lastpos[X_AXIS]=current_position[X_AXIS];
  2510. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2511. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2512. lastpos[E_AXIS]=current_position[E_AXIS];
  2513. //retract by E
  2514. if(code_seen('E'))
  2515. {
  2516. target[E_AXIS]+= code_value();
  2517. }
  2518. else
  2519. {
  2520. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2521. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2522. #endif
  2523. }
  2524. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2525. //lift Z
  2526. if(code_seen('Z'))
  2527. {
  2528. target[Z_AXIS]+= code_value();
  2529. }
  2530. else
  2531. {
  2532. #ifdef FILAMENTCHANGE_ZADD
  2533. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2534. #endif
  2535. }
  2536. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2537. //move xy
  2538. if(code_seen('X'))
  2539. {
  2540. target[X_AXIS]+= code_value();
  2541. }
  2542. else
  2543. {
  2544. #ifdef FILAMENTCHANGE_XPOS
  2545. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2546. #endif
  2547. }
  2548. if(code_seen('Y'))
  2549. {
  2550. target[Y_AXIS]= code_value();
  2551. }
  2552. else
  2553. {
  2554. #ifdef FILAMENTCHANGE_YPOS
  2555. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2556. #endif
  2557. }
  2558. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2559. if(code_seen('L'))
  2560. {
  2561. target[E_AXIS]+= code_value();
  2562. }
  2563. else
  2564. {
  2565. #ifdef FILAMENTCHANGE_FINALRETRACT
  2566. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2567. #endif
  2568. }
  2569. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2570. //finish moves
  2571. st_synchronize();
  2572. //disable extruder steppers so filament can be removed
  2573. disable_e0();
  2574. disable_e1();
  2575. disable_e2();
  2576. delay(100);
  2577. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2578. uint8_t cnt=0;
  2579. while(!lcd_clicked()){
  2580. cnt++;
  2581. manage_heater();
  2582. manage_inactivity();
  2583. lcd_update();
  2584. if(cnt==0)
  2585. {
  2586. #if BEEPER > 0
  2587. SET_OUTPUT(BEEPER);
  2588. WRITE(BEEPER,HIGH);
  2589. delay(3);
  2590. WRITE(BEEPER,LOW);
  2591. delay(3);
  2592. #else
  2593. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2594. lcd_buzz(1000/6,100);
  2595. #else
  2596. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2597. #endif
  2598. #endif
  2599. }
  2600. }
  2601. //return to normal
  2602. if(code_seen('L'))
  2603. {
  2604. target[E_AXIS]+= -code_value();
  2605. }
  2606. else
  2607. {
  2608. #ifdef FILAMENTCHANGE_FINALRETRACT
  2609. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2610. #endif
  2611. }
  2612. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2613. plan_set_e_position(current_position[E_AXIS]);
  2614. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2615. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2616. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2617. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2618. }
  2619. break;
  2620. #endif //FILAMENTCHANGEENABLE
  2621. #ifdef DUAL_X_CARRIAGE
  2622. case 605: // Set dual x-carriage movement mode:
  2623. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2624. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2625. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2626. // millimeters x-offset and an optional differential hotend temperature of
  2627. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2628. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2629. //
  2630. // Note: the X axis should be homed after changing dual x-carriage mode.
  2631. {
  2632. st_synchronize();
  2633. if (code_seen('S'))
  2634. dual_x_carriage_mode = code_value();
  2635. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2636. {
  2637. if (code_seen('X'))
  2638. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2639. if (code_seen('R'))
  2640. duplicate_extruder_temp_offset = code_value();
  2641. SERIAL_ECHO_START;
  2642. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2643. SERIAL_ECHO(" ");
  2644. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2645. SERIAL_ECHO(",");
  2646. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2647. SERIAL_ECHO(" ");
  2648. SERIAL_ECHO(duplicate_extruder_x_offset);
  2649. SERIAL_ECHO(",");
  2650. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2651. }
  2652. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2653. {
  2654. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2655. }
  2656. active_extruder_parked = false;
  2657. extruder_duplication_enabled = false;
  2658. delayed_move_time = 0;
  2659. }
  2660. break;
  2661. #endif //DUAL_X_CARRIAGE
  2662. case 907: // M907 Set digital trimpot motor current using axis codes.
  2663. {
  2664. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2665. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2666. if(code_seen('B')) digipot_current(4,code_value());
  2667. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2668. #endif
  2669. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2670. if(code_seen('X')) digipot_current(0, code_value());
  2671. #endif
  2672. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2673. if(code_seen('Z')) digipot_current(1, code_value());
  2674. #endif
  2675. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2676. if(code_seen('E')) digipot_current(2, code_value());
  2677. #endif
  2678. #ifdef DIGIPOT_I2C
  2679. // this one uses actual amps in floating point
  2680. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2681. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2682. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2683. #endif
  2684. }
  2685. break;
  2686. case 908: // M908 Control digital trimpot directly.
  2687. {
  2688. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2689. uint8_t channel,current;
  2690. if(code_seen('P')) channel=code_value();
  2691. if(code_seen('S')) current=code_value();
  2692. digitalPotWrite(channel, current);
  2693. #endif
  2694. }
  2695. break;
  2696. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2697. {
  2698. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2699. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2700. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2701. if(code_seen('B')) microstep_mode(4,code_value());
  2702. microstep_readings();
  2703. #endif
  2704. }
  2705. break;
  2706. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2707. {
  2708. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2709. if(code_seen('S')) switch((int)code_value())
  2710. {
  2711. case 1:
  2712. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2713. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2714. break;
  2715. case 2:
  2716. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2717. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2718. break;
  2719. }
  2720. microstep_readings();
  2721. #endif
  2722. }
  2723. break;
  2724. case 999: // M999: Restart after being stopped
  2725. Stopped = false;
  2726. lcd_reset_alert_level();
  2727. gcode_LastN = Stopped_gcode_LastN;
  2728. FlushSerialRequestResend();
  2729. break;
  2730. }
  2731. }
  2732. else if(code_seen('T'))
  2733. {
  2734. tmp_extruder = code_value();
  2735. if(tmp_extruder >= EXTRUDERS) {
  2736. SERIAL_ECHO_START;
  2737. SERIAL_ECHO("T");
  2738. SERIAL_ECHO(tmp_extruder);
  2739. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2740. }
  2741. else {
  2742. boolean make_move = false;
  2743. if(code_seen('F')) {
  2744. make_move = true;
  2745. next_feedrate = code_value();
  2746. if(next_feedrate > 0.0) {
  2747. feedrate = next_feedrate;
  2748. }
  2749. }
  2750. #if EXTRUDERS > 1
  2751. if(tmp_extruder != active_extruder) {
  2752. // Save current position to return to after applying extruder offset
  2753. memcpy(destination, current_position, sizeof(destination));
  2754. #ifdef DUAL_X_CARRIAGE
  2755. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2756. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2757. {
  2758. // Park old head: 1) raise 2) move to park position 3) lower
  2759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2760. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2761. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2762. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2763. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2764. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2765. st_synchronize();
  2766. }
  2767. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2768. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2769. extruder_offset[Y_AXIS][active_extruder] +
  2770. extruder_offset[Y_AXIS][tmp_extruder];
  2771. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2772. extruder_offset[Z_AXIS][active_extruder] +
  2773. extruder_offset[Z_AXIS][tmp_extruder];
  2774. active_extruder = tmp_extruder;
  2775. // This function resets the max/min values - the current position may be overwritten below.
  2776. axis_is_at_home(X_AXIS);
  2777. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2778. {
  2779. current_position[X_AXIS] = inactive_extruder_x_pos;
  2780. inactive_extruder_x_pos = destination[X_AXIS];
  2781. }
  2782. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2783. {
  2784. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2785. if (active_extruder == 0 || active_extruder_parked)
  2786. current_position[X_AXIS] = inactive_extruder_x_pos;
  2787. else
  2788. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2789. inactive_extruder_x_pos = destination[X_AXIS];
  2790. extruder_duplication_enabled = false;
  2791. }
  2792. else
  2793. {
  2794. // record raised toolhead position for use by unpark
  2795. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2796. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2797. active_extruder_parked = true;
  2798. delayed_move_time = 0;
  2799. }
  2800. #else
  2801. // Offset extruder (only by XY)
  2802. int i;
  2803. for(i = 0; i < 2; i++) {
  2804. current_position[i] = current_position[i] -
  2805. extruder_offset[i][active_extruder] +
  2806. extruder_offset[i][tmp_extruder];
  2807. }
  2808. // Set the new active extruder and position
  2809. active_extruder = tmp_extruder;
  2810. #endif //else DUAL_X_CARRIAGE
  2811. #ifdef DELTA
  2812. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  2813. //sent position to plan_set_position();
  2814. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  2815. #else
  2816. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2817. #endif
  2818. // Move to the old position if 'F' was in the parameters
  2819. if(make_move && Stopped == false) {
  2820. prepare_move();
  2821. }
  2822. }
  2823. #endif
  2824. SERIAL_ECHO_START;
  2825. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2826. SERIAL_PROTOCOLLN((int)active_extruder);
  2827. }
  2828. }
  2829. else
  2830. {
  2831. SERIAL_ECHO_START;
  2832. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2833. SERIAL_ECHO(cmdbuffer[bufindr]);
  2834. SERIAL_ECHOLNPGM("\"");
  2835. }
  2836. ClearToSend();
  2837. }
  2838. void FlushSerialRequestResend()
  2839. {
  2840. //char cmdbuffer[bufindr][100]="Resend:";
  2841. MYSERIAL.flush();
  2842. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2843. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2844. ClearToSend();
  2845. }
  2846. void ClearToSend()
  2847. {
  2848. previous_millis_cmd = millis();
  2849. #ifdef SDSUPPORT
  2850. if(fromsd[bufindr])
  2851. return;
  2852. #endif //SDSUPPORT
  2853. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2854. }
  2855. void get_coordinates()
  2856. {
  2857. bool seen[4]={false,false,false,false};
  2858. for(int8_t i=0; i < NUM_AXIS; i++) {
  2859. if(code_seen(axis_codes[i]))
  2860. {
  2861. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2862. seen[i]=true;
  2863. }
  2864. else destination[i] = current_position[i]; //Are these else lines really needed?
  2865. }
  2866. if(code_seen('F')) {
  2867. next_feedrate = code_value();
  2868. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2869. }
  2870. }
  2871. void get_arc_coordinates()
  2872. {
  2873. #ifdef SF_ARC_FIX
  2874. bool relative_mode_backup = relative_mode;
  2875. relative_mode = true;
  2876. #endif
  2877. get_coordinates();
  2878. #ifdef SF_ARC_FIX
  2879. relative_mode=relative_mode_backup;
  2880. #endif
  2881. if(code_seen('I')) {
  2882. offset[0] = code_value();
  2883. }
  2884. else {
  2885. offset[0] = 0.0;
  2886. }
  2887. if(code_seen('J')) {
  2888. offset[1] = code_value();
  2889. }
  2890. else {
  2891. offset[1] = 0.0;
  2892. }
  2893. }
  2894. void clamp_to_software_endstops(float target[3])
  2895. {
  2896. if (min_software_endstops) {
  2897. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2898. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2899. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2900. }
  2901. if (max_software_endstops) {
  2902. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2903. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2904. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2905. }
  2906. }
  2907. #ifdef DELTA
  2908. void recalc_delta_settings(float radius, float diagonal_rod)
  2909. {
  2910. delta_tower1_x= -SIN_60*radius; // front left tower
  2911. delta_tower1_y= -COS_60*radius;
  2912. delta_tower2_x= SIN_60*radius; // front right tower
  2913. delta_tower2_y= -COS_60*radius;
  2914. delta_tower3_x= 0.0; // back middle tower
  2915. delta_tower3_y= radius;
  2916. delta_diagonal_rod_2= sq(diagonal_rod);
  2917. }
  2918. void calculate_delta(float cartesian[3])
  2919. {
  2920. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  2921. - sq(delta_tower1_x-cartesian[X_AXIS])
  2922. - sq(delta_tower1_y-cartesian[Y_AXIS])
  2923. ) + cartesian[Z_AXIS];
  2924. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  2925. - sq(delta_tower2_x-cartesian[X_AXIS])
  2926. - sq(delta_tower2_y-cartesian[Y_AXIS])
  2927. ) + cartesian[Z_AXIS];
  2928. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  2929. - sq(delta_tower3_x-cartesian[X_AXIS])
  2930. - sq(delta_tower3_y-cartesian[Y_AXIS])
  2931. ) + cartesian[Z_AXIS];
  2932. /*
  2933. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2934. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2935. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2936. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2937. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2938. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2939. */
  2940. }
  2941. #endif
  2942. void prepare_move()
  2943. {
  2944. clamp_to_software_endstops(destination);
  2945. previous_millis_cmd = millis();
  2946. #ifdef DELTA
  2947. float difference[NUM_AXIS];
  2948. for (int8_t i=0; i < NUM_AXIS; i++) {
  2949. difference[i] = destination[i] - current_position[i];
  2950. }
  2951. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2952. sq(difference[Y_AXIS]) +
  2953. sq(difference[Z_AXIS]));
  2954. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2955. if (cartesian_mm < 0.000001) { return; }
  2956. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2957. int steps = max(1, int(delta_segments_per_second * seconds));
  2958. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2959. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2960. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2961. for (int s = 1; s <= steps; s++) {
  2962. float fraction = float(s) / float(steps);
  2963. for(int8_t i=0; i < NUM_AXIS; i++) {
  2964. destination[i] = current_position[i] + difference[i] * fraction;
  2965. }
  2966. calculate_delta(destination);
  2967. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2968. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2969. active_extruder);
  2970. }
  2971. #else
  2972. #ifdef DUAL_X_CARRIAGE
  2973. if (active_extruder_parked)
  2974. {
  2975. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2976. {
  2977. // move duplicate extruder into correct duplication position.
  2978. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2979. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2980. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2981. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2982. st_synchronize();
  2983. extruder_duplication_enabled = true;
  2984. active_extruder_parked = false;
  2985. }
  2986. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2987. {
  2988. if (current_position[E_AXIS] == destination[E_AXIS])
  2989. {
  2990. // this is a travel move - skit it but keep track of current position (so that it can later
  2991. // be used as start of first non-travel move)
  2992. if (delayed_move_time != 0xFFFFFFFFUL)
  2993. {
  2994. memcpy(current_position, destination, sizeof(current_position));
  2995. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2996. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2997. delayed_move_time = millis();
  2998. return;
  2999. }
  3000. }
  3001. delayed_move_time = 0;
  3002. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3003. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3005. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3007. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3008. active_extruder_parked = false;
  3009. }
  3010. }
  3011. #endif //DUAL_X_CARRIAGE
  3012. // Do not use feedmultiply for E or Z only moves
  3013. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3014. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3015. }
  3016. else {
  3017. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3018. }
  3019. #endif //else DELTA
  3020. for(int8_t i=0; i < NUM_AXIS; i++) {
  3021. current_position[i] = destination[i];
  3022. }
  3023. }
  3024. void prepare_arc_move(char isclockwise) {
  3025. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3026. // Trace the arc
  3027. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3028. // As far as the parser is concerned, the position is now == target. In reality the
  3029. // motion control system might still be processing the action and the real tool position
  3030. // in any intermediate location.
  3031. for(int8_t i=0; i < NUM_AXIS; i++) {
  3032. current_position[i] = destination[i];
  3033. }
  3034. previous_millis_cmd = millis();
  3035. }
  3036. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3037. #if defined(FAN_PIN)
  3038. #if CONTROLLERFAN_PIN == FAN_PIN
  3039. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3040. #endif
  3041. #endif
  3042. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3043. unsigned long lastMotorCheck = 0;
  3044. void controllerFan()
  3045. {
  3046. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3047. {
  3048. lastMotorCheck = millis();
  3049. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3050. #if EXTRUDERS > 2
  3051. || !READ(E2_ENABLE_PIN)
  3052. #endif
  3053. #if EXTRUDER > 1
  3054. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3055. || !READ(X2_ENABLE_PIN)
  3056. #endif
  3057. || !READ(E1_ENABLE_PIN)
  3058. #endif
  3059. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3060. {
  3061. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3062. }
  3063. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3064. {
  3065. digitalWrite(CONTROLLERFAN_PIN, 0);
  3066. analogWrite(CONTROLLERFAN_PIN, 0);
  3067. }
  3068. else
  3069. {
  3070. // allows digital or PWM fan output to be used (see M42 handling)
  3071. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3072. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3073. }
  3074. }
  3075. }
  3076. #endif
  3077. #ifdef TEMP_STAT_LEDS
  3078. static bool blue_led = false;
  3079. static bool red_led = false;
  3080. static uint32_t stat_update = 0;
  3081. void handle_status_leds(void) {
  3082. float max_temp = 0.0;
  3083. if(millis() > stat_update) {
  3084. stat_update += 500; // Update every 0.5s
  3085. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3086. max_temp = max(max_temp, degHotend(cur_extruder));
  3087. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3088. }
  3089. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3090. max_temp = max(max_temp, degTargetBed());
  3091. max_temp = max(max_temp, degBed());
  3092. #endif
  3093. if((max_temp > 55.0) && (red_led == false)) {
  3094. digitalWrite(STAT_LED_RED, 1);
  3095. digitalWrite(STAT_LED_BLUE, 0);
  3096. red_led = true;
  3097. blue_led = false;
  3098. }
  3099. if((max_temp < 54.0) && (blue_led == false)) {
  3100. digitalWrite(STAT_LED_RED, 0);
  3101. digitalWrite(STAT_LED_BLUE, 1);
  3102. red_led = false;
  3103. blue_led = true;
  3104. }
  3105. }
  3106. }
  3107. #endif
  3108. void manage_inactivity()
  3109. {
  3110. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3111. if(max_inactive_time)
  3112. kill();
  3113. if(stepper_inactive_time) {
  3114. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3115. {
  3116. if(blocks_queued() == false) {
  3117. disable_x();
  3118. disable_y();
  3119. disable_z();
  3120. disable_e0();
  3121. disable_e1();
  3122. disable_e2();
  3123. }
  3124. }
  3125. }
  3126. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3127. if (chdkActive)
  3128. {
  3129. chdkActive = false;
  3130. if (millis()-chdkHigh < CHDK_DELAY) return;
  3131. WRITE(CHDK, LOW);
  3132. }
  3133. #endif
  3134. #if defined(KILL_PIN) && KILL_PIN > -1
  3135. if( 0 == READ(KILL_PIN) )
  3136. kill();
  3137. #endif
  3138. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3139. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3140. #endif
  3141. #ifdef EXTRUDER_RUNOUT_PREVENT
  3142. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3143. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3144. {
  3145. bool oldstatus=READ(E0_ENABLE_PIN);
  3146. enable_e0();
  3147. float oldepos=current_position[E_AXIS];
  3148. float oldedes=destination[E_AXIS];
  3149. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3150. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3151. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3152. current_position[E_AXIS]=oldepos;
  3153. destination[E_AXIS]=oldedes;
  3154. plan_set_e_position(oldepos);
  3155. previous_millis_cmd=millis();
  3156. st_synchronize();
  3157. WRITE(E0_ENABLE_PIN,oldstatus);
  3158. }
  3159. #endif
  3160. #if defined(DUAL_X_CARRIAGE)
  3161. // handle delayed move timeout
  3162. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3163. {
  3164. // travel moves have been received so enact them
  3165. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3166. memcpy(destination,current_position,sizeof(destination));
  3167. prepare_move();
  3168. }
  3169. #endif
  3170. #ifdef TEMP_STAT_LEDS
  3171. handle_status_leds();
  3172. #endif
  3173. check_axes_activity();
  3174. }
  3175. void kill()
  3176. {
  3177. cli(); // Stop interrupts
  3178. disable_heater();
  3179. disable_x();
  3180. disable_y();
  3181. disable_z();
  3182. disable_e0();
  3183. disable_e1();
  3184. disable_e2();
  3185. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3186. pinMode(PS_ON_PIN,INPUT);
  3187. #endif
  3188. SERIAL_ERROR_START;
  3189. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3190. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3191. suicide();
  3192. while(1) { /* Intentionally left empty */ } // Wait for reset
  3193. }
  3194. void Stop()
  3195. {
  3196. disable_heater();
  3197. if(Stopped == false) {
  3198. Stopped = true;
  3199. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3200. SERIAL_ERROR_START;
  3201. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3202. LCD_MESSAGEPGM(MSG_STOPPED);
  3203. }
  3204. }
  3205. bool IsStopped() { return Stopped; };
  3206. #ifdef FAST_PWM_FAN
  3207. void setPwmFrequency(uint8_t pin, int val)
  3208. {
  3209. val &= 0x07;
  3210. switch(digitalPinToTimer(pin))
  3211. {
  3212. #if defined(TCCR0A)
  3213. case TIMER0A:
  3214. case TIMER0B:
  3215. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3216. // TCCR0B |= val;
  3217. break;
  3218. #endif
  3219. #if defined(TCCR1A)
  3220. case TIMER1A:
  3221. case TIMER1B:
  3222. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3223. // TCCR1B |= val;
  3224. break;
  3225. #endif
  3226. #if defined(TCCR2)
  3227. case TIMER2:
  3228. case TIMER2:
  3229. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3230. TCCR2 |= val;
  3231. break;
  3232. #endif
  3233. #if defined(TCCR2A)
  3234. case TIMER2A:
  3235. case TIMER2B:
  3236. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3237. TCCR2B |= val;
  3238. break;
  3239. #endif
  3240. #if defined(TCCR3A)
  3241. case TIMER3A:
  3242. case TIMER3B:
  3243. case TIMER3C:
  3244. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3245. TCCR3B |= val;
  3246. break;
  3247. #endif
  3248. #if defined(TCCR4A)
  3249. case TIMER4A:
  3250. case TIMER4B:
  3251. case TIMER4C:
  3252. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3253. TCCR4B |= val;
  3254. break;
  3255. #endif
  3256. #if defined(TCCR5A)
  3257. case TIMER5A:
  3258. case TIMER5B:
  3259. case TIMER5C:
  3260. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3261. TCCR5B |= val;
  3262. break;
  3263. #endif
  3264. }
  3265. }
  3266. #endif //FAST_PWM_FAN
  3267. bool setTargetedHotend(int code){
  3268. tmp_extruder = active_extruder;
  3269. if(code_seen('T')) {
  3270. tmp_extruder = code_value();
  3271. if(tmp_extruder >= EXTRUDERS) {
  3272. SERIAL_ECHO_START;
  3273. switch(code){
  3274. case 104:
  3275. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3276. break;
  3277. case 105:
  3278. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3279. break;
  3280. case 109:
  3281. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3282. break;
  3283. case 218:
  3284. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3285. break;
  3286. case 221:
  3287. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3288. break;
  3289. }
  3290. SERIAL_ECHOLN(tmp_extruder);
  3291. return true;
  3292. }
  3293. }
  3294. return false;
  3295. }