My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

ubl_G29.cpp 71KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. //#include "vector_3.h"
  25. //#include "qr_solve.h"
  26. #include "ubl.h"
  27. #include "Marlin.h"
  28. #include "hex_print_routines.h"
  29. #include "configuration_store.h"
  30. #include "ultralcd.h"
  31. #include "stepper.h"
  32. #include <math.h>
  33. #include "least_squares_fit.h"
  34. extern float destination[XYZE];
  35. extern float current_position[XYZE];
  36. void lcd_return_to_status();
  37. bool lcd_clicked();
  38. void lcd_implementation_clear();
  39. void lcd_mesh_edit_setup(float initial);
  40. float lcd_mesh_edit();
  41. void lcd_z_offset_edit_setup(float);
  42. float lcd_z_offset_edit();
  43. extern float meshedit_done;
  44. extern long babysteps_done;
  45. extern float code_value_float();
  46. extern uint8_t code_value_byte();
  47. extern bool code_value_bool();
  48. extern bool code_has_value();
  49. extern float probe_pt(float x, float y, bool, int);
  50. extern bool set_probe_deployed(bool);
  51. void smart_fill_mesh();
  52. float measure_business_card_thickness(float &in_height);
  53. void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  54. bool ProbeStay = true;
  55. #define SIZE_OF_LITTLE_RAISE 1
  56. #define BIG_RAISE_NOT_NEEDED 0
  57. extern void lcd_status_screen();
  58. typedef void (*screenFunc_t)();
  59. extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0);
  60. /**
  61. * G29: Unified Bed Leveling by Roxy
  62. *
  63. * Parameters understood by this leveling system:
  64. *
  65. * A Activate Activate the Unified Bed Leveling system.
  66. *
  67. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
  68. * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
  69. * as a shim that the nozzle will pinch as it is lowered. The idea is that you
  70. * can easily feel the nozzle getting to the same height by the amount of resistance
  71. * the business card exhibits to movement. You should try to achieve the same amount
  72. * of resistance on each probed point to facilitate accurate and repeatable measurements.
  73. * You should be very careful not to drive the nozzle into the bussiness card with a
  74. * lot of force as it is very possible to cause damage to your printer if your are
  75. * careless. If you use the B option with G29 P2 B you can leave the number parameter off
  76. * on its first use to enable measurement of the business card thickness. Subsequent usage
  77. * of the B parameter can have the number previously measured supplied to the command.
  78. * Incidently, you are much better off using something like a Spark Gap feeler gauge than
  79. * something that compresses like a Business Card.
  80. *
  81. * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
  82. * further refine the behaviour of several other commands. Issuing a G29 P1 C will
  83. * continue the generation of a partially constructed Mesh without invalidating what has
  84. * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
  85. * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
  86. * it indicates to use the current location instead of defaulting to the center of the print bed.
  87. *
  88. * D Disable Disable the Unified Bed Leveling system.
  89. *
  90. * E Stow_probe Stow the probe after each sampled point.
  91. *
  92. * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the
  93. * specified height, no correction is applied and natural printer kenimatics take over. If no
  94. * number is specified for the command, 10mm is assumed to be reasonable.
  95. *
  96. * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
  97. * default is 5mm.
  98. *
  99. * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
  100. * the X and Y parameter are used. If no number is specified, only the closest Mesh
  101. * point to the location is invalidated. The M parameter is available as well to produce
  102. * a map after the operation. This command is useful to invalidate a portion of the
  103. * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
  104. * attempting to invalidate an isolated bad point in the mesh, the M option will indicate
  105. * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
  106. * the bed and use this feature to select the center of the area (or cell) you want to
  107. * invalidate.
  108. *
  109. * J # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  110. * Not specifying a grid size will invoke the 3-Point leveling function.
  111. *
  112. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  113. * command literally performs a diff between two Meshes.
  114. *
  115. * L Load * Load Mesh from the previously activated location in the EEPROM.
  116. *
  117. * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
  118. * for subsequent Load and Store operations.
  119. *
  120. * O Map * Display the Mesh Map Topology.
  121. * The parameter can be specified alone (ie. G29 O) or in combination with many of the
  122. * other commands. The Mesh Map option works with all of the Phase
  123. * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O) The Map parameter can also of a Map Type
  124. * specified. A map type of 0 is the default is user readable. A map type of 1 can
  125. * be specified and is suitable to Cut & Paste into Excel to allow graphing of the user's
  126. * mesh.
  127. *
  128. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  129. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  130. * each additional Phase that processes it.
  131. *
  132. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  133. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  134. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  135. * a subsequent G or T leveling operation for backward compatibility.
  136. *
  137. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  138. * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
  139. * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
  140. * generated. This will be handled in Phase 2. If the Phase 1 command is given the
  141. * C (Continue) parameter it does not invalidate the Mesh prior to automatically
  142. * probing needed locations. This allows you to invalidate portions of the Mesh but still
  143. * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
  144. * parameter can be given to prioritize where the command should be trying to measure points.
  145. * If the X and Y parameters are not specified the current probe position is used. Phase 1
  146. * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
  147. * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
  148. * It will suspend generation of the Mesh if it sees the user request that. (This check is
  149. * only done between probe points. You will need to press and hold the switch until the
  150. * Phase 1 command can detect it.)
  151. *
  152. * P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
  153. * parameter to control the height between Mesh points. The default height for movement
  154. * between Mesh points is 5mm. A smaller number can be used to make this part of the
  155. * calibration less time consuming. You will be running the nozzle down until it just barely
  156. * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
  157. * Use caution and move slowly. It is possible to damage your printer if you are careless.
  158. * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
  159. * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
  160. *
  161. * The H parameter can be set negative if your Mesh dips in a large area. You can press
  162. * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
  163. * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
  164. * area you are manually probing. Note that the command tries to start you in a corner
  165. * of the bed where movement will be predictable. You can force the location to be used in
  166. * the distance calculations by using the X and Y parameters. You may find it is helpful to
  167. * print out a Mesh Map (G29 O) to understand where the mesh is invalidated and where
  168. * the nozzle will need to move in order to complete the command. The C parameter is
  169. * available on the Phase 2 command also and indicates the search for points to measure should
  170. * be done based on the current location of the nozzle.
  171. *
  172. * A B parameter is also available for this command and described up above. It places the
  173. * manual probe subsystem into Business Card mode where the thickness of a business care is
  174. * measured and then used to accurately set the nozzle height in all manual probing for the
  175. * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
  176. * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
  177. * better results if you use a flexible Shim that does not compress very much. That makes it
  178. * easier for you to get the nozzle to press with similar amounts of force against the shim so you
  179. * can get accurate measurements. As you are starting to touch the nozzle against the shim try
  180. * to get it to grasp the shim with the same force as when you measured the thickness of the
  181. * shim at the start of the command.
  182. *
  183. * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
  184. * of the Mesh being built.
  185. *
  186. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths the
  187. * user can go down. If the user specifies the value using the C parameter, the closest invalid
  188. * mesh points to the nozzle will be filled. The user can specify a repeat count using the R
  189. * parameter with the C version of the command.
  190. *
  191. * A second version of the fill command is available if no C constant is specified. Not
  192. * specifying a C constant will invoke the 'Smart Fill' algorithm. The G29 P3 command will search
  193. * from the edges of the mesh inward looking for invalid mesh points. It will look at the next
  194. * several mesh points to determine if the print bed is sloped up or down. If the bed is sloped
  195. * upward from the invalid mesh point, it will be replaced with the value of the nearest mesh point.
  196. * If the bed is sloped downward from the invalid mesh point, it will be replaced with a value that
  197. * puts all three points in a line. The second version of the G29 P3 command is a quick, easy and
  198. * usually safe way to populate the unprobed regions of your mesh so you can continue to the G26
  199. * Mesh Validation Pattern phase. Please note that you are populating your mesh with unverified
  200. * numbers. You should use some scrutiny and caution.
  201. *
  202. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existence of
  203. * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
  204. * (More work and details on doing this later!)
  205. * The System will search for the closest Mesh Point to the nozzle. It will move the
  206. * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
  207. * so it is just barely touching the bed. When the user clicks the control, the System
  208. * will lock in that height for that point in the Mesh Compensation System.
  209. *
  210. * Phase 4 has several additional parameters that the user may find helpful. Phase 4
  211. * can be started at a specific location by specifying an X and Y parameter. Phase 4
  212. * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
  213. * parameter. If the Repetition count is not specified, it is assumed the user wishes
  214. * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
  215. * The command can be terminated early (or after the area of interest has been edited) by
  216. * pressing and holding the encoder wheel until the system recognizes the exit request.
  217. * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
  218. *
  219. * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
  220. * information left on the printer's bed from the G26 command it is very straight forward
  221. * and easy to fine tune the Mesh. One concept that is important to remember and that
  222. * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
  223. * If you have too little clearance and not much plastic was extruded in an area, you want to
  224. * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
  225. * RAISE the Mesh Point at that location.
  226. *
  227. *
  228. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  229. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  230. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  231. * execute a G29 P6 C <mean height>.
  232. *
  233. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  234. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  235. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  236. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  237. * 0.000 at the Z Home location.
  238. *
  239. * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
  240. * command is not anticipated to be of much value to the typical user. It is intended
  241. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  242. *
  243. * R # Repeat Repeat this command the specified number of times. If no number is specified the
  244. * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
  245. *
  246. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  247. * current state of the Unified Bed Leveling system in the EEPROM.
  248. *
  249. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  250. * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
  251. * extend to a limit related to the available EEPROM storage.
  252. *
  253. * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system
  254. * at a later date. The GCode output can be saved and later replayed by the host software
  255. * to reconstruct the current mesh on another machine.
  256. *
  257. * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
  258. * Only used for G29 P1 O U It will speed up the probing of the edge of the bed. This
  259. * is useful when the entire bed does not need to be probed because it will be adjusted.
  260. *
  261. * W What? Display valuable data the Unified Bed Leveling System knows.
  262. *
  263. * X # * * X Location for this line of commands
  264. *
  265. * Y # * * Y Location for this line of commands
  266. *
  267. *
  268. * Release Notes:
  269. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  270. * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
  271. * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
  272. * respectively.)
  273. *
  274. * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
  275. * the Unified Bed Leveling probes points further and further away from the starting location. (The
  276. * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
  277. * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
  278. * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
  279. * perform a small print and check out your settings quicker. You do not need to populate the
  280. * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
  281. * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
  282. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
  283. *
  284. * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
  285. * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
  286. * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
  287. * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
  288. * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
  289. * this is going to be helpful to the users!)
  290. *
  291. * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
  292. * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
  293. * we now have the functionality and features of all three systems combined.
  294. */
  295. // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
  296. static int g29_verbose_level, phase_value, repetition_cnt,
  297. storage_slot = 0, map_type, grid_size;
  298. static bool repeat_flag, c_flag, x_flag, y_flag;
  299. static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
  300. extern void lcd_setstatus(const char* message, const bool persist);
  301. extern void lcd_setstatuspgm(const char* message, const uint8_t level);
  302. void __attribute__((optimize("O0"))) gcode_G29() {
  303. if (ubl.eeprom_start < 0) {
  304. SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
  305. SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
  306. return;
  307. }
  308. // Don't allow auto-leveling without homing first
  309. if (axis_unhomed_error())
  310. home_all_axes();
  311. if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
  312. // Invalidate Mesh Points. This command is a little bit asymetrical because
  313. // it directly specifies the repetition count and does not use the 'R' parameter.
  314. if (code_seen('I')) {
  315. uint8_t cnt = 0;
  316. repetition_cnt = code_has_value() ? code_value_int() : 1;
  317. while (repetition_cnt--) {
  318. if (cnt > 20) { cnt = 0; idle(); }
  319. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
  320. if (location.x_index < 0) {
  321. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  322. break; // No more invalid Mesh Points to populate
  323. }
  324. ubl.z_values[location.x_index][location.y_index] = NAN;
  325. cnt++;
  326. }
  327. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  328. }
  329. if (code_seen('Q')) {
  330. const int test_pattern = code_has_value() ? code_value_int() : -99;
  331. if (!WITHIN(test_pattern, -1, 2)) {
  332. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
  333. return;
  334. }
  335. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  336. switch (test_pattern) {
  337. case -1:
  338. g29_eeprom_dump();
  339. break;
  340. case 0:
  341. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
  342. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
  343. const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
  344. p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
  345. ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
  346. }
  347. }
  348. break;
  349. case 1:
  350. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
  351. ubl.z_values[x][x] += 9.999;
  352. ubl.z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
  353. }
  354. break;
  355. case 2:
  356. // Allow the user to specify the height because 10mm is a little extreme in some cases.
  357. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
  358. for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
  359. ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
  360. break;
  361. }
  362. }
  363. if (code_seen('J')) {
  364. if (grid_size!=0) { // if not 0 it is a normal n x n grid being probed
  365. ubl.save_ubl_active_state_and_disable();
  366. ubl.tilt_mesh_based_on_probed_grid(code_seen('O'));
  367. ubl.restore_ubl_active_state_and_leave();
  368. } else { // grid_size==0 which means a 3-Point leveling has been requested
  369. float z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level),
  370. z2 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level),
  371. z3 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
  372. if ( isnan(z1) || isnan(z2) || isnan(z3)) { // probe_pt will return NAN if unreachable
  373. SERIAL_ERROR_START;
  374. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  375. goto LEAVE;
  376. }
  377. // We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
  378. // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
  379. ubl.save_ubl_active_state_and_disable();
  380. z1 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ;
  381. z2 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
  382. z3 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
  383. do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
  384. ubl.tilt_mesh_based_on_3pts(z1, z2, z3);
  385. ubl.restore_ubl_active_state_and_leave();
  386. }
  387. }
  388. if (code_seen('P')) {
  389. if (WITHIN(phase_value, 0, 1) && ubl.state.eeprom_storage_slot == -1) {
  390. ubl.state.eeprom_storage_slot = 0;
  391. SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.\n");
  392. }
  393. switch (phase_value) {
  394. case 0:
  395. //
  396. // Zero Mesh Data
  397. //
  398. ubl.reset();
  399. SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
  400. break;
  401. case 1:
  402. //
  403. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  404. //
  405. if (!code_seen('C')) {
  406. ubl.invalidate();
  407. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
  408. }
  409. if (g29_verbose_level > 1) {
  410. SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", x_pos);
  411. SERIAL_PROTOCOLCHAR(',');
  412. SERIAL_PROTOCOL(y_pos);
  413. SERIAL_PROTOCOLLNPGM(").\n");
  414. }
  415. ubl.probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  416. code_seen('O'), code_seen('E'), code_seen('U'));
  417. break;
  418. case 2: {
  419. //
  420. // Manually Probe Mesh in areas that can't be reached by the probe
  421. //
  422. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
  423. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  424. if (!x_flag && !y_flag) {
  425. /**
  426. * Use a good default location for the path.
  427. * The flipped > and < operators in these comparisons is intentional.
  428. * It should cause the probed points to follow a nice path on Cartesian printers.
  429. * It may make sense to have Delta printers default to the center of the bed.
  430. * Until that is decided, this can be forced with the X and Y parameters.
  431. */
  432. #if IS_KINEMATIC
  433. x_pos = X_HOME_POS;
  434. y_pos = Y_HOME_POS;
  435. #else // cartesian
  436. x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
  437. y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
  438. #endif
  439. }
  440. if (code_seen('C')) {
  441. x_pos = current_position[X_AXIS];
  442. y_pos = current_position[Y_AXIS];
  443. }
  444. float height = Z_CLEARANCE_BETWEEN_PROBES;
  445. if (code_seen('B')) {
  446. card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
  447. if (fabs(card_thickness) > 1.5) {
  448. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n");
  449. return;
  450. }
  451. }
  452. if (code_seen('H') && code_has_value()) height = code_value_float();
  453. if ( !position_is_reachable_xy( x_pos, y_pos )) {
  454. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  455. return;
  456. }
  457. manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O'));
  458. SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
  459. } break;
  460. case 3: {
  461. /**
  462. * Populate invalid mesh areas. Proceed with caution.
  463. * Two choices are available:
  464. * - Specify a constant with the 'C' parameter.
  465. * - Allow 'G29 P3' to choose a 'reasonable' constant.
  466. */
  467. if (c_flag) {
  468. if (repetition_cnt >= GRID_MAX_POINTS) {
  469. for ( uint8_t x = 0; x < GRID_MAX_POINTS_X; x++ ) {
  470. for ( uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++ ) {
  471. ubl.z_values[x][y] = ubl_constant;
  472. }
  473. }
  474. } else {
  475. while (repetition_cnt--) { // this only populates reachable mesh points near
  476. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
  477. if (location.x_index < 0) break; // No more reachable invalid Mesh Points to populate
  478. ubl.z_values[location.x_index][location.y_index] = ubl_constant;
  479. }
  480. }
  481. } else {
  482. smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
  483. }
  484. break;
  485. }
  486. case 4:
  487. //
  488. // Fine Tune (i.e., Edit) the Mesh
  489. //
  490. fine_tune_mesh(x_pos, y_pos, code_seen('O'));
  491. break;
  492. case 5: ubl.find_mean_mesh_height(); break;
  493. case 6: ubl.shift_mesh_height(); break;
  494. }
  495. }
  496. //
  497. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  498. // good to have the extra information. Soon... we prune this to just a few items
  499. //
  500. if (code_seen('W')) ubl.g29_what_command();
  501. //
  502. // When we are fully debugged, this may go away. But there are some valid
  503. // use cases for the users. So we can wait and see what to do with it.
  504. //
  505. if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  506. g29_compare_current_mesh_to_stored_mesh();
  507. //
  508. // Load a Mesh from the EEPROM
  509. //
  510. if (code_seen('L')) { // Load Current Mesh Data
  511. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  512. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  513. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  514. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  515. return;
  516. }
  517. ubl.load_mesh(storage_slot);
  518. ubl.state.eeprom_storage_slot = storage_slot;
  519. SERIAL_PROTOCOLLNPGM("Done.\n");
  520. }
  521. //
  522. // Store a Mesh in the EEPROM
  523. //
  524. if (code_seen('S')) { // Store (or Save) Current Mesh Data
  525. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  526. if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
  527. SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
  528. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  529. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  530. if (!isnan(ubl.z_values[x][y])) {
  531. SERIAL_ECHOPAIR("M421 I ", x);
  532. SERIAL_ECHOPAIR(" J ", y);
  533. SERIAL_ECHOPGM(" Z ");
  534. SERIAL_ECHO_F(ubl.z_values[x][y], 6);
  535. SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[x])));
  536. SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[y])));
  537. SERIAL_EOL;
  538. }
  539. return;
  540. }
  541. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  542. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  543. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  544. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
  545. goto LEAVE;
  546. }
  547. ubl.store_mesh(storage_slot);
  548. ubl.state.eeprom_storage_slot = storage_slot;
  549. SERIAL_PROTOCOLLNPGM("Done.\n");
  550. }
  551. if (code_seen('O'))
  552. ubl.display_map(code_has_value() ? code_value_int() : 0);
  553. /*
  554. * This code may not be needed... Prepare for its removal...
  555. *
  556. if (code_seen('Z')) {
  557. if (code_has_value())
  558. ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
  559. else {
  560. ubl.save_ubl_active_state_and_disable();
  561. //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
  562. ubl.has_control_of_lcd_panel = true; // Grab the LCD Hardware
  563. measured_z = 1.5;
  564. do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
  565. // The user is not going to be locking in a new Z-Offset very often so
  566. // it won't be that painful to spin the Encoder Wheel for 1.5mm
  567. lcd_implementation_clear();
  568. lcd_z_offset_edit_setup(measured_z);
  569. KEEPALIVE_STATE(PAUSED_FOR_USER);
  570. do {
  571. measured_z = lcd_z_offset_edit();
  572. idle();
  573. do_blocking_move_to_z(measured_z);
  574. } while (!ubl_lcd_clicked());
  575. ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
  576. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  577. // or here. So, until we are done looking for a long Encoder Wheel Press,
  578. // we need to take control of the panel
  579. KEEPALIVE_STATE(IN_HANDLER);
  580. lcd_return_to_status();
  581. const millis_t nxt = millis() + 1500UL;
  582. while (ubl_lcd_clicked()) { // debounce and watch for abort
  583. idle();
  584. if (ELAPSED(millis(), nxt)) {
  585. SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
  586. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  587. LCD_MESSAGEPGM("Z-Offset Stopped");
  588. ubl.restore_ubl_active_state_and_leave();
  589. goto LEAVE;
  590. }
  591. }
  592. ubl.has_control_of_lcd_panel = false;
  593. safe_delay(20); // We don't want any switch noise.
  594. ubl.state.z_offset = measured_z;
  595. lcd_implementation_clear();
  596. ubl.restore_ubl_active_state_and_leave();
  597. }
  598. }
  599. */
  600. LEAVE:
  601. lcd_reset_alert_level();
  602. LCD_MESSAGEPGM("");
  603. lcd_quick_feedback();
  604. ubl.has_control_of_lcd_panel = false;
  605. }
  606. void unified_bed_leveling::find_mean_mesh_height() {
  607. float sum = 0.0;
  608. int n = 0;
  609. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  610. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  611. if (!isnan(ubl.z_values[x][y])) {
  612. sum += ubl.z_values[x][y];
  613. n++;
  614. }
  615. const float mean = sum / n;
  616. //
  617. // Now do the sumation of the squares of difference from mean
  618. //
  619. float sum_of_diff_squared = 0.0;
  620. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  621. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  622. if (!isnan(ubl.z_values[x][y]))
  623. sum_of_diff_squared += sq(ubl.z_values[x][y] - mean);
  624. SERIAL_ECHOLNPAIR("# of samples: ", n);
  625. SERIAL_ECHOPGM("Mean Mesh Height: ");
  626. SERIAL_ECHO_F(mean, 6);
  627. SERIAL_EOL;
  628. const float sigma = sqrt(sum_of_diff_squared / (n + 1));
  629. SERIAL_ECHOPGM("Standard Deviation: ");
  630. SERIAL_ECHO_F(sigma, 6);
  631. SERIAL_EOL;
  632. if (c_flag)
  633. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  634. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  635. if (!isnan(ubl.z_values[x][y]))
  636. ubl.z_values[x][y] -= mean + ubl_constant;
  637. }
  638. void unified_bed_leveling::shift_mesh_height() {
  639. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  640. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  641. if (!isnan(ubl.z_values[x][y]))
  642. ubl.z_values[x][y] += ubl_constant;
  643. }
  644. /**
  645. * Probe all invalidated locations of the mesh that can be reached by the probe.
  646. * This attempts to fill in locations closest to the nozzle's start location first.
  647. */
  648. void unified_bed_leveling::probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
  649. mesh_index_pair location;
  650. ubl.has_control_of_lcd_panel = true;
  651. ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  652. DEPLOY_PROBE();
  653. uint16_t max_iterations = GRID_MAX_POINTS;
  654. do {
  655. if (ubl_lcd_clicked()) {
  656. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
  657. lcd_quick_feedback();
  658. STOW_PROBE();
  659. while (ubl_lcd_clicked()) idle();
  660. ubl.has_control_of_lcd_panel = false;
  661. ubl.restore_ubl_active_state_and_leave();
  662. safe_delay(50); // Debounce the Encoder wheel
  663. return;
  664. }
  665. location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, do_furthest);
  666. if (location.x_index >= 0) { // mesh point found and is reachable by probe
  667. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  668. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  669. const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
  670. ubl.z_values[location.x_index][location.y_index] = measured_z;
  671. }
  672. if (do_ubl_mesh_map) ubl.display_map(map_type);
  673. } while ((location.x_index >= 0) && (--max_iterations));
  674. STOW_PROBE();
  675. ubl.restore_ubl_active_state_and_leave();
  676. do_blocking_move_to_xy(
  677. constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_X, UBL_MESH_MAX_X),
  678. constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)
  679. );
  680. }
  681. void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
  682. matrix_3x3 rotation;
  683. vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X),
  684. (UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y),
  685. (z1 - z2) ),
  686. v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X),
  687. (UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y),
  688. (z3 - z2) ),
  689. normal = vector_3::cross(v1, v2);
  690. normal = normal.get_normal();
  691. /**
  692. * This vector is normal to the tilted plane.
  693. * However, we don't know its direction. We need it to point up. So if
  694. * Z is negative, we need to invert the sign of all components of the vector
  695. */
  696. if (normal.z < 0.0) {
  697. normal.x = -normal.x;
  698. normal.y = -normal.y;
  699. normal.z = -normal.z;
  700. }
  701. rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
  702. if (g29_verbose_level > 2) {
  703. SERIAL_ECHOPGM("bed plane normal = [");
  704. SERIAL_PROTOCOL_F(normal.x, 7);
  705. SERIAL_PROTOCOLCHAR(',');
  706. SERIAL_PROTOCOL_F(normal.y, 7);
  707. SERIAL_PROTOCOLCHAR(',');
  708. SERIAL_PROTOCOL_F(normal.z, 7);
  709. SERIAL_ECHOLNPGM("]");
  710. rotation.debug(PSTR("rotation matrix:"));
  711. }
  712. //
  713. // All of 3 of these points should give us the same d constant
  714. //
  715. float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
  716. d = t + normal.z * z1;
  717. if (g29_verbose_level>2) {
  718. SERIAL_ECHOPGM("D constant: ");
  719. SERIAL_PROTOCOL_F(d, 7);
  720. SERIAL_ECHOLNPGM(" ");
  721. }
  722. #if ENABLED(DEBUG_LEVELING_FEATURE)
  723. if (DEBUGGING(LEVELING)) {
  724. SERIAL_ECHOPGM("d from 1st point: ");
  725. SERIAL_ECHO_F(d, 6);
  726. SERIAL_EOL;
  727. t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
  728. d = t + normal.z * z2;
  729. SERIAL_ECHOPGM("d from 2nd point: ");
  730. SERIAL_ECHO_F(d, 6);
  731. SERIAL_EOL;
  732. t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
  733. d = t + normal.z * z3;
  734. SERIAL_ECHOPGM("d from 3rd point: ");
  735. SERIAL_ECHO_F(d, 6);
  736. SERIAL_EOL;
  737. }
  738. #endif
  739. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  740. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  741. float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
  742. y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
  743. z_tmp = ubl.z_values[i][j];
  744. #if ENABLED(DEBUG_LEVELING_FEATURE)
  745. if (DEBUGGING(LEVELING)) {
  746. SERIAL_ECHOPGM("before rotation = [");
  747. SERIAL_PROTOCOL_F(x_tmp, 7);
  748. SERIAL_PROTOCOLCHAR(',');
  749. SERIAL_PROTOCOL_F(y_tmp, 7);
  750. SERIAL_PROTOCOLCHAR(',');
  751. SERIAL_PROTOCOL_F(z_tmp, 7);
  752. SERIAL_ECHOPGM("] ---> ");
  753. safe_delay(20);
  754. }
  755. #endif
  756. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  757. #if ENABLED(DEBUG_LEVELING_FEATURE)
  758. if (DEBUGGING(LEVELING)) {
  759. SERIAL_ECHOPGM("after rotation = [");
  760. SERIAL_PROTOCOL_F(x_tmp, 7);
  761. SERIAL_PROTOCOLCHAR(',');
  762. SERIAL_PROTOCOL_F(y_tmp, 7);
  763. SERIAL_PROTOCOLCHAR(',');
  764. SERIAL_PROTOCOL_F(z_tmp, 7);
  765. SERIAL_ECHOLNPGM("]");
  766. safe_delay(55);
  767. }
  768. #endif
  769. ubl.z_values[i][j] += z_tmp - d;
  770. }
  771. }
  772. }
  773. float use_encoder_wheel_to_measure_point() {
  774. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  775. delay(50); // debounce
  776. KEEPALIVE_STATE(PAUSED_FOR_USER);
  777. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  778. idle();
  779. if (ubl.encoder_diff) {
  780. do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
  781. ubl.encoder_diff = 0;
  782. }
  783. }
  784. KEEPALIVE_STATE(IN_HANDLER);
  785. return current_position[Z_AXIS];
  786. }
  787. static void say_and_take_a_measurement() {
  788. SERIAL_PROTOCOLLNPGM(" and take a measurement.");
  789. }
  790. float measure_business_card_thickness(float &in_height) {
  791. ubl.has_control_of_lcd_panel = true;
  792. ubl.save_ubl_active_state_and_disable(); // Disable bed level correction for probing
  793. do_blocking_move_to_z(in_height);
  794. do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
  795. //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
  796. stepper.synchronize();
  797. SERIAL_PROTOCOLPGM("Place shim under nozzle");
  798. LCD_MESSAGEPGM("Place shim & measure");
  799. lcd_goto_screen(lcd_status_screen);
  800. say_and_take_a_measurement();
  801. const float z1 = use_encoder_wheel_to_measure_point();
  802. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  803. stepper.synchronize();
  804. SERIAL_PROTOCOLPGM("Remove shim");
  805. LCD_MESSAGEPGM("Remove & measure bed");
  806. say_and_take_a_measurement();
  807. const float z2 = use_encoder_wheel_to_measure_point();
  808. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
  809. const float thickness = abs(z1 - z2);
  810. if (g29_verbose_level > 1) {
  811. SERIAL_PROTOCOLPGM("Business Card is ");
  812. SERIAL_PROTOCOL_F(thickness, 4);
  813. SERIAL_PROTOCOLLNPGM("mm thick.");
  814. }
  815. in_height = current_position[Z_AXIS]; // do manual probing at lower height
  816. ubl.has_control_of_lcd_panel = false;
  817. ubl.restore_ubl_active_state_and_leave();
  818. return thickness;
  819. }
  820. void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
  821. ubl.has_control_of_lcd_panel = true;
  822. ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  823. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  824. do_blocking_move_to_xy(lx, ly);
  825. lcd_goto_screen(lcd_status_screen);
  826. mesh_index_pair location;
  827. do {
  828. location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
  829. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
  830. if (location.x_index < 0 && location.y_index < 0) continue;
  831. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  832. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]),
  833. xProbe = LOGICAL_X_POSITION(rawx),
  834. yProbe = LOGICAL_Y_POSITION(rawy);
  835. if (!position_is_reachable_raw_xy(rawx, rawy)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
  836. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  837. LCD_MESSAGEPGM("Moving to next");
  838. do_blocking_move_to_xy(xProbe, yProbe);
  839. do_blocking_move_to_z(z_clearance);
  840. KEEPALIVE_STATE(PAUSED_FOR_USER);
  841. ubl.has_control_of_lcd_panel = true;
  842. if (do_ubl_mesh_map) ubl.display_map(map_type); // show user where we're probing
  843. if (code_seen('B')) {LCD_MESSAGEPGM("Place shim & measure");}
  844. else {LCD_MESSAGEPGM("Measure");}
  845. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  846. delay(50); // debounce
  847. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  848. idle();
  849. if (ubl.encoder_diff) {
  850. do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
  851. ubl.encoder_diff = 0;
  852. }
  853. }
  854. const millis_t nxt = millis() + 1500L;
  855. while (ubl_lcd_clicked()) { // debounce and watch for abort
  856. idle();
  857. if (ELAPSED(millis(), nxt)) {
  858. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  859. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  860. lcd_quick_feedback();
  861. while (ubl_lcd_clicked()) idle();
  862. ubl.has_control_of_lcd_panel = false;
  863. KEEPALIVE_STATE(IN_HANDLER);
  864. ubl.restore_ubl_active_state_and_leave();
  865. return;
  866. }
  867. }
  868. ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
  869. if (g29_verbose_level > 2) {
  870. SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
  871. SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
  872. SERIAL_EOL;
  873. }
  874. } while (location.x_index >= 0 && location.y_index >= 0);
  875. if (do_ubl_mesh_map) ubl.display_map(map_type);
  876. LEAVE:
  877. ubl.restore_ubl_active_state_and_leave();
  878. KEEPALIVE_STATE(IN_HANDLER);
  879. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  880. do_blocking_move_to_xy(lx, ly);
  881. }
  882. static void say_ubl_name() {
  883. SERIAL_PROTOCOLPGM("Unified Bed Leveling ");
  884. }
  885. static void report_ubl_state() {
  886. say_ubl_name();
  887. SERIAL_PROTOCOLPGM("System ");
  888. if (!ubl.state.active) SERIAL_PROTOCOLPGM("de");
  889. SERIAL_PROTOCOLLNPGM("activated.\n");
  890. }
  891. bool g29_parameter_parsing() {
  892. bool err_flag = false;
  893. LCD_MESSAGEPGM("Doing G29 UBL!");
  894. lcd_quick_feedback();
  895. ubl_constant = 0.0;
  896. repetition_cnt = 0;
  897. x_flag = code_seen('X') && code_has_value();
  898. x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
  899. y_flag = code_seen('Y') && code_has_value();
  900. y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
  901. repeat_flag = code_seen('R');
  902. if (repeat_flag) {
  903. repetition_cnt = code_has_value() ? code_value_int() : GRID_MAX_POINTS;
  904. NOMORE(repetition_cnt, GRID_MAX_POINTS);
  905. if (repetition_cnt < 1) {
  906. SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
  907. return UBL_ERR;
  908. }
  909. }
  910. g29_verbose_level = code_seen('V') ? code_value_int() : 0;
  911. if (!WITHIN(g29_verbose_level, 0, 4)) {
  912. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
  913. err_flag = true;
  914. }
  915. if (code_seen('P')) {
  916. phase_value = code_value_int();
  917. if (!WITHIN(phase_value, 0, 6)) {
  918. SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
  919. err_flag = true;
  920. }
  921. }
  922. if (code_seen('J')) {
  923. grid_size = code_has_value() ? code_value_int() : 0;
  924. if (grid_size!=0 && !WITHIN(grid_size, 2, 9)) {
  925. SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
  926. err_flag = true;
  927. }
  928. }
  929. if (x_flag != y_flag) {
  930. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  931. err_flag = true;
  932. }
  933. if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
  934. SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
  935. err_flag = true;
  936. }
  937. if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
  938. SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
  939. err_flag = true;
  940. }
  941. if (err_flag) return UBL_ERR;
  942. // Activate or deactivate UBL
  943. if (code_seen('A')) {
  944. if (code_seen('D')) {
  945. SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
  946. return UBL_ERR;
  947. }
  948. ubl.state.active = 1;
  949. report_ubl_state();
  950. }
  951. else if (code_seen('D')) {
  952. ubl.state.active = 0;
  953. report_ubl_state();
  954. }
  955. // Set global 'C' flag and its value
  956. if ((c_flag = code_seen('C')))
  957. ubl_constant = code_value_float();
  958. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  959. if (code_seen('F') && code_has_value()) {
  960. const float fh = code_value_float();
  961. if (!WITHIN(fh, 0.0, 100.0)) {
  962. SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
  963. return UBL_ERR;
  964. }
  965. set_z_fade_height(fh);
  966. }
  967. #endif
  968. map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
  969. if (!WITHIN(map_type, 0, 1)) {
  970. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  971. return UBL_ERR;
  972. }
  973. return UBL_OK;
  974. }
  975. static int ubl_state_at_invocation = 0,
  976. ubl_state_recursion_chk = 0;
  977. void unified_bed_leveling::save_ubl_active_state_and_disable() {
  978. ubl_state_recursion_chk++;
  979. if (ubl_state_recursion_chk != 1) {
  980. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  981. LCD_MESSAGEPGM("save_UBL_active() error");
  982. lcd_quick_feedback();
  983. return;
  984. }
  985. ubl_state_at_invocation = ubl.state.active;
  986. ubl.state.active = 0;
  987. }
  988. void unified_bed_leveling::restore_ubl_active_state_and_leave() {
  989. if (--ubl_state_recursion_chk) {
  990. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  991. LCD_MESSAGEPGM("restore_UBL_active() error");
  992. lcd_quick_feedback();
  993. return;
  994. }
  995. ubl.state.active = ubl_state_at_invocation;
  996. }
  997. /**
  998. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  999. * good to have the extra information. Soon... we prune this to just a few items
  1000. */
  1001. void unified_bed_leveling::g29_what_command() {
  1002. const uint16_t k = E2END - ubl.eeprom_start;
  1003. say_ubl_name();
  1004. SERIAL_PROTOCOLPGM("System Version " UBL_VERSION " ");
  1005. if (ubl.state.active)
  1006. SERIAL_PROTOCOLCHAR('A');
  1007. else
  1008. SERIAL_PROTOCOLPGM("Ina");
  1009. SERIAL_PROTOCOLLNPGM("ctive.\n");
  1010. safe_delay(50);
  1011. if (ubl.state.eeprom_storage_slot == -1)
  1012. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  1013. else {
  1014. SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot);
  1015. SERIAL_PROTOCOLPGM(" Loaded.");
  1016. }
  1017. SERIAL_EOL;
  1018. safe_delay(50);
  1019. SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
  1020. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1021. SERIAL_PROTOCOL("planner.z_fade_height : ");
  1022. SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
  1023. SERIAL_EOL;
  1024. #endif
  1025. SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
  1026. SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
  1027. SERIAL_EOL;
  1028. SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", hex_address((void*)ubl.eeprom_start));
  1029. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1030. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1031. safe_delay(25);
  1032. SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
  1033. SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
  1034. safe_delay(25);
  1035. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  1036. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1037. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[i])), 3);
  1038. SERIAL_PROTOCOLPGM(" ");
  1039. safe_delay(25);
  1040. }
  1041. SERIAL_EOL;
  1042. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  1043. for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
  1044. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[i])), 3);
  1045. SERIAL_PROTOCOLPGM(" ");
  1046. safe_delay(25);
  1047. }
  1048. SERIAL_EOL;
  1049. SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: ", hex_address((void*)ubl.eeprom_start));
  1050. SERIAL_PROTOCOLLNPAIR("end of EEPROM: ", hex_address((void*)E2END));
  1051. safe_delay(25);
  1052. SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state));
  1053. SERIAL_EOL;
  1054. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values));
  1055. SERIAL_EOL;
  1056. safe_delay(25);
  1057. SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)k));
  1058. safe_delay(25);
  1059. SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values));
  1060. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  1061. safe_delay(25);
  1062. SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1063. SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1064. safe_delay(25);
  1065. SERIAL_EOL;
  1066. SERIAL_ECHOPGM("UBL_MESH_MIN_X " STRINGIFY(UBL_MESH_MIN_X));
  1067. SERIAL_ECHOLNPAIR("=", UBL_MESH_MIN_X );
  1068. SERIAL_ECHOPGM("UBL_MESH_MIN_Y " STRINGIFY(UBL_MESH_MIN_Y));
  1069. SERIAL_ECHOLNPAIR("=", UBL_MESH_MIN_Y );
  1070. safe_delay(25);
  1071. SERIAL_ECHOPGM("UBL_MESH_MAX_X " STRINGIFY(UBL_MESH_MAX_X));
  1072. SERIAL_ECHOLNPAIR("=", UBL_MESH_MAX_X);
  1073. SERIAL_ECHOPGM("UBL_MESH_MAX_Y " STRINGIFY(UBL_MESH_MAX_Y));
  1074. SERIAL_ECHOLNPAIR("=", UBL_MESH_MAX_Y);
  1075. safe_delay(25);
  1076. if (!ubl.sanity_check()) {
  1077. say_ubl_name();
  1078. SERIAL_PROTOCOLLNPGM("sanity checks passed.");
  1079. }
  1080. }
  1081. /**
  1082. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  1083. * right now, it is good to have the extra information. Soon... we prune this.
  1084. */
  1085. void g29_eeprom_dump() {
  1086. unsigned char cccc;
  1087. uint16_t kkkk;
  1088. SERIAL_ECHO_START;
  1089. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1090. for (uint16_t i = 0; i < E2END + 1; i += 16) {
  1091. if (!(i & 0x3)) idle();
  1092. print_hex_word(i);
  1093. SERIAL_ECHOPGM(": ");
  1094. for (uint16_t j = 0; j < 16; j++) {
  1095. kkkk = i + j;
  1096. eeprom_read_block(&cccc, (void *)kkkk, 1);
  1097. print_hex_byte(cccc);
  1098. SERIAL_ECHO(' ');
  1099. }
  1100. SERIAL_EOL;
  1101. }
  1102. SERIAL_EOL;
  1103. }
  1104. /**
  1105. * When we are fully debugged, this may go away. But there are some valid
  1106. * use cases for the users. So we can wait and see what to do with it.
  1107. */
  1108. void g29_compare_current_mesh_to_stored_mesh() {
  1109. float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  1110. if (!code_has_value()) {
  1111. SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
  1112. return;
  1113. }
  1114. storage_slot = code_value_int();
  1115. int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values);
  1116. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  1117. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  1118. return;
  1119. }
  1120. j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values);
  1121. eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
  1122. SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
  1123. SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_address((void*)j)); // Soon, we can remove the extra clutter of printing
  1124. // the address in the EEPROM where the Mesh is stored.
  1125. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  1126. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  1127. ubl.z_values[x][y] -= tmp_z_values[x][y];
  1128. }
  1129. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) {
  1130. mesh_index_pair out_mesh;
  1131. out_mesh.x_index = out_mesh.y_index = -1;
  1132. const float current_x = current_position[X_AXIS],
  1133. current_y = current_position[Y_AXIS];
  1134. // Get our reference position. Either the nozzle or probe location.
  1135. const float px = lx - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1136. py = ly - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
  1137. float closest = far_flag ? -99999.99 : 99999.99;
  1138. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1139. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1140. if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing
  1141. || (type == REAL && !isnan(ubl.z_values[i][j]))
  1142. || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
  1143. ) {
  1144. // We only get here if we found a Mesh Point of the specified type
  1145. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // Check if we can probe this mesh location
  1146. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
  1147. // If using the probe as the reference there are some unreachable locations.
  1148. // Also for round beds, there are grid points outside the bed that nozzle can't reach.
  1149. // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
  1150. bool reachable = probe_as_reference ?
  1151. position_is_reachable_by_probe_raw_xy( rawx, rawy ) :
  1152. position_is_reachable_raw_xy( rawx, rawy );
  1153. if ( ! reachable )
  1154. continue;
  1155. // Reachable. Check if it's the closest location to the nozzle.
  1156. // Add in a weighting factor that considers the current location of the nozzle.
  1157. const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
  1158. my = LOGICAL_Y_POSITION(rawy);
  1159. float distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
  1160. /**
  1161. * If doing the far_flag action, we want to be as far as possible
  1162. * from the starting point and from any other probed points. We
  1163. * want the next point spread out and filling in any blank spaces
  1164. * in the mesh. So we add in some of the distance to every probed
  1165. * point we can find.
  1166. */
  1167. if (far_flag) {
  1168. for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
  1169. for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
  1170. if (!isnan(ubl.z_values[k][l])) {
  1171. distance += sq(i - k) * (MESH_X_DIST) * .05
  1172. + sq(j - l) * (MESH_Y_DIST) * .05;
  1173. }
  1174. }
  1175. }
  1176. }
  1177. // if far_flag, look for farthest point
  1178. if (far_flag == (distance > closest) && distance != closest) {
  1179. closest = distance; // We found a closer/farther location with
  1180. out_mesh.x_index = i; // the specified type of mesh value.
  1181. out_mesh.y_index = j;
  1182. out_mesh.distance = closest;
  1183. }
  1184. }
  1185. } // for j
  1186. } // for i
  1187. return out_mesh;
  1188. }
  1189. void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
  1190. if (!code_seen('R')) // fine_tune_mesh() is special. If no repetion count flag is specified
  1191. repetition_cnt = 1; // we know to do exactly one mesh location. Otherwise we use what the parser decided.
  1192. mesh_index_pair location;
  1193. uint16_t not_done[16];
  1194. int32_t round_off;
  1195. if ( ! position_is_reachable_xy( lx, ly )) {
  1196. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  1197. return;
  1198. }
  1199. ubl.save_ubl_active_state_and_disable();
  1200. memset(not_done, 0xFF, sizeof(not_done));
  1201. LCD_MESSAGEPGM("Fine Tuning Mesh");
  1202. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1203. do_blocking_move_to_xy(lx, ly);
  1204. do {
  1205. location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
  1206. if (location.x_index < 0 ) break; // stop when we can't find any more reachable points.
  1207. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
  1208. // different location the next time through the loop
  1209. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  1210. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  1211. if ( ! position_is_reachable_raw_xy( rawx, rawy )) { // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
  1212. break;
  1213. }
  1214. float new_z = ubl.z_values[location.x_index][location.y_index];
  1215. if (!isnan(new_z)) { //can't fine tune a point that hasn't been probed
  1216. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
  1217. do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
  1218. round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
  1219. new_z = float(round_off) / 1000.0;
  1220. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1221. ubl.has_control_of_lcd_panel = true;
  1222. if (do_ubl_mesh_map) ubl.display_map(map_type); // show the user which point is being adjusted
  1223. lcd_implementation_clear();
  1224. lcd_mesh_edit_setup(new_z);
  1225. do {
  1226. new_z = lcd_mesh_edit();
  1227. idle();
  1228. } while (!ubl_lcd_clicked());
  1229. lcd_return_to_status();
  1230. // There is a race condition for the Encoder Wheel getting clicked.
  1231. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  1232. // or here.
  1233. ubl.has_control_of_lcd_panel = true;
  1234. }
  1235. const millis_t nxt = millis() + 1500UL;
  1236. while (ubl_lcd_clicked()) { // debounce and watch for abort
  1237. idle();
  1238. if (ELAPSED(millis(), nxt)) {
  1239. lcd_return_to_status();
  1240. //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
  1241. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1242. LCD_MESSAGEPGM("Mesh Editing Stopped");
  1243. while (ubl_lcd_clicked()) idle();
  1244. goto FINE_TUNE_EXIT;
  1245. }
  1246. }
  1247. safe_delay(20); // We don't want any switch noise.
  1248. ubl.z_values[location.x_index][location.y_index] = new_z;
  1249. lcd_implementation_clear();
  1250. } while (( location.x_index >= 0 ) && (--repetition_cnt>0));
  1251. FINE_TUNE_EXIT:
  1252. ubl.has_control_of_lcd_panel = false;
  1253. KEEPALIVE_STATE(IN_HANDLER);
  1254. if (do_ubl_mesh_map) ubl.display_map(map_type);
  1255. ubl.restore_ubl_active_state_and_leave();
  1256. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1257. do_blocking_move_to_xy(lx, ly);
  1258. LCD_MESSAGEPGM("Done Editing Mesh");
  1259. SERIAL_ECHOLNPGM("Done Editing Mesh");
  1260. }
  1261. /**
  1262. * 'Smart Fill': Scan from the outward edges of the mesh towards the center.
  1263. * If an invalid location is found, use the next two points (if valid) to
  1264. * calculate a 'reasonable' value for the unprobed mesh point.
  1265. */
  1266. bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  1267. const int8_t x1 = x + xdir, x2 = x1 + xdir,
  1268. y1 = y + ydir, y2 = y1 + ydir;
  1269. // A NAN next to a pair of real values?
  1270. if (isnan(ubl.z_values[x][y]) && !isnan(ubl.z_values[x1][y1]) && !isnan(ubl.z_values[x2][y2])) {
  1271. if (ubl.z_values[x1][y1] < ubl.z_values[x2][y2]) // Angled downward?
  1272. ubl.z_values[x][y] = ubl.z_values[x1][y1]; // Use nearest (maybe a little too high.)
  1273. else
  1274. ubl.z_values[x][y] = 2.0 * ubl.z_values[x1][y1] - ubl.z_values[x2][y2]; // Angled upward...
  1275. return true;
  1276. }
  1277. return false;
  1278. }
  1279. typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
  1280. void smart_fill_mesh() {
  1281. const smart_fill_info info[] = {
  1282. { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
  1283. { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
  1284. { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
  1285. { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true } // Right side of the mesh looking left
  1286. };
  1287. for (uint8_t i = 0; i < COUNT(info); ++i) {
  1288. const smart_fill_info &f = info[i];
  1289. if (f.yfirst) {
  1290. const int8_t dir = f.ex > f.sx ? 1 : -1;
  1291. for (uint8_t y = f.sy; y != f.ey; ++y)
  1292. for (uint8_t x = f.sx; x != f.ex; x += dir)
  1293. if (smart_fill_one(x, y, dir, 0)) break;
  1294. }
  1295. else {
  1296. const int8_t dir = f.ey > f.sy ? 1 : -1;
  1297. for (uint8_t x = f.sx; x != f.ex; ++x)
  1298. for (uint8_t y = f.sy; y != f.ey; y += dir)
  1299. if (smart_fill_one(x, y, 0, dir)) break;
  1300. }
  1301. }
  1302. }
  1303. void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
  1304. constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X),
  1305. x_max = min(MAX_PROBE_X, UBL_MESH_MAX_X),
  1306. y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y),
  1307. y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y);
  1308. const float dx = float(x_max - x_min) / (grid_size - 1.0),
  1309. dy = float(y_max - y_min) / (grid_size - 1.0);
  1310. struct linear_fit_data lsf_results;
  1311. incremental_LSF_reset(&lsf_results);
  1312. bool zig_zag = false;
  1313. for (uint8_t ix = 0; ix < grid_size; ix++) {
  1314. const float x = float(x_min) + ix * dx;
  1315. for (int8_t iy = 0; iy < grid_size; iy++) {
  1316. const float y = float(y_min) + dy * (zig_zag ? grid_size - 1 - iy : iy);
  1317. float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level);
  1318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1319. if (DEBUGGING(LEVELING)) {
  1320. SERIAL_CHAR('(');
  1321. SERIAL_PROTOCOL_F(x, 7);
  1322. SERIAL_CHAR(',');
  1323. SERIAL_PROTOCOL_F(y, 7);
  1324. SERIAL_ECHOPGM(") logical: ");
  1325. SERIAL_CHAR('(');
  1326. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(x), 7);
  1327. SERIAL_CHAR(',');
  1328. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(y), 7);
  1329. SERIAL_ECHOPGM(") measured: ");
  1330. SERIAL_PROTOCOL_F(measured_z, 7);
  1331. SERIAL_ECHOPGM(" correction: ");
  1332. SERIAL_PROTOCOL_F(ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
  1333. }
  1334. #endif
  1335. measured_z -= ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ;
  1336. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1337. if (DEBUGGING(LEVELING)) {
  1338. SERIAL_ECHOPGM(" final >>>---> ");
  1339. SERIAL_PROTOCOL_F(measured_z, 7);
  1340. SERIAL_EOL;
  1341. }
  1342. #endif
  1343. incremental_LSF(&lsf_results, x, y, measured_z);
  1344. }
  1345. zig_zag ^= true;
  1346. }
  1347. if (finish_incremental_LSF(&lsf_results)) {
  1348. SERIAL_ECHOPGM("Could not complete LSF!");
  1349. return;
  1350. }
  1351. if (g29_verbose_level > 3) {
  1352. SERIAL_ECHOPGM("LSF Results A=");
  1353. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1354. SERIAL_ECHOPGM(" B=");
  1355. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1356. SERIAL_ECHOPGM(" D=");
  1357. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1358. SERIAL_EOL;
  1359. }
  1360. vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
  1361. if (g29_verbose_level > 2) {
  1362. SERIAL_ECHOPGM("bed plane normal = [");
  1363. SERIAL_PROTOCOL_F(normal.x, 7);
  1364. SERIAL_PROTOCOLCHAR(',');
  1365. SERIAL_PROTOCOL_F(normal.y, 7);
  1366. SERIAL_PROTOCOLCHAR(',');
  1367. SERIAL_PROTOCOL_F(normal.z, 7);
  1368. SERIAL_ECHOLNPGM("]");
  1369. }
  1370. matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
  1371. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1372. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1373. float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
  1374. y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
  1375. z_tmp = ubl.z_values[i][j];
  1376. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1377. if (DEBUGGING(LEVELING)) {
  1378. SERIAL_ECHOPGM("before rotation = [");
  1379. SERIAL_PROTOCOL_F(x_tmp, 7);
  1380. SERIAL_PROTOCOLCHAR(',');
  1381. SERIAL_PROTOCOL_F(y_tmp, 7);
  1382. SERIAL_PROTOCOLCHAR(',');
  1383. SERIAL_PROTOCOL_F(z_tmp, 7);
  1384. SERIAL_ECHOPGM("] ---> ");
  1385. safe_delay(20);
  1386. }
  1387. #endif
  1388. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  1389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1390. if (DEBUGGING(LEVELING)) {
  1391. SERIAL_ECHOPGM("after rotation = [");
  1392. SERIAL_PROTOCOL_F(x_tmp, 7);
  1393. SERIAL_PROTOCOLCHAR(',');
  1394. SERIAL_PROTOCOL_F(y_tmp, 7);
  1395. SERIAL_PROTOCOLCHAR(',');
  1396. SERIAL_PROTOCOL_F(z_tmp, 7);
  1397. SERIAL_ECHOLNPGM("]");
  1398. safe_delay(55);
  1399. }
  1400. #endif
  1401. ubl.z_values[i][j] += z_tmp - lsf_results.D;
  1402. }
  1403. }
  1404. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1405. if (DEBUGGING(LEVELING)) {
  1406. rotation.debug(PSTR("rotation matrix:"));
  1407. SERIAL_ECHOPGM("LSF Results A=");
  1408. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1409. SERIAL_ECHOPGM(" B=");
  1410. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1411. SERIAL_ECHOPGM(" D=");
  1412. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1413. SERIAL_EOL;
  1414. safe_delay(55);
  1415. SERIAL_ECHOPGM("bed plane normal = [");
  1416. SERIAL_PROTOCOL_F(normal.x, 7);
  1417. SERIAL_PROTOCOLCHAR(',');
  1418. SERIAL_PROTOCOL_F(normal.y, 7);
  1419. SERIAL_PROTOCOLCHAR(',');
  1420. SERIAL_PROTOCOL_F(normal.z, 7);
  1421. SERIAL_ECHOPGM("]\n");
  1422. SERIAL_EOL;
  1423. }
  1424. #endif
  1425. }
  1426. #endif // AUTO_BED_LEVELING_UBL