My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

motion.cpp 56KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * motion.cpp
  24. */
  25. #include "motion.h"
  26. #include "endstops.h"
  27. #include "stepper.h"
  28. #include "planner.h"
  29. #include "temperature.h"
  30. #include "../gcode/gcode.h"
  31. #include "../inc/MarlinConfig.h"
  32. #if IS_SCARA
  33. #include "../libs/buzzer.h"
  34. #include "../lcd/ultralcd.h"
  35. #endif
  36. #if HAS_BED_PROBE
  37. #include "probe.h"
  38. #endif
  39. #if HAS_LEVELING
  40. #include "../feature/bedlevel/bedlevel.h"
  41. #endif
  42. #if ENABLED(BLTOUCH)
  43. #include "../feature/bltouch.h"
  44. #endif
  45. #if HAS_DISPLAY
  46. #include "../lcd/ultralcd.h"
  47. #endif
  48. #if ENABLED(SENSORLESS_HOMING)
  49. #include "../feature/tmc_util.h"
  50. #endif
  51. #if ENABLED(FWRETRACT)
  52. #include "../feature/fwretract.h"
  53. #endif
  54. #if ENABLED(BABYSTEP_DISPLAY_TOTAL)
  55. #include "../feature/babystep.h"
  56. #endif
  57. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  58. #include "../core/debug_out.h"
  59. #define XYZ_CONSTS(type, array, CONFIG) const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }
  60. XYZ_CONSTS(float, base_min_pos, MIN_POS);
  61. XYZ_CONSTS(float, base_max_pos, MAX_POS);
  62. XYZ_CONSTS(float, base_home_pos, HOME_POS);
  63. XYZ_CONSTS(float, max_length, MAX_LENGTH);
  64. XYZ_CONSTS(float, home_bump_mm, HOME_BUMP_MM);
  65. XYZ_CONSTS(signed char, home_dir, HOME_DIR);
  66. /**
  67. * axis_homed
  68. * Flags that each linear axis was homed.
  69. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  70. *
  71. * axis_known_position
  72. * Flags that the position is known in each linear axis. Set when homed.
  73. * Cleared whenever a stepper powers off, potentially losing its position.
  74. */
  75. uint8_t axis_homed, axis_known_position; // = 0
  76. // Relative Mode. Enable with G91, disable with G90.
  77. bool relative_mode; // = false;
  78. /**
  79. * Cartesian Current Position
  80. * Used to track the native machine position as moves are queued.
  81. * Used by 'line_to_current_position' to do a move after changing it.
  82. * Used by 'sync_plan_position' to update 'planner.position'.
  83. */
  84. float current_position[XYZE] = { X_HOME_POS, Y_HOME_POS, Z_HOME_POS };
  85. /**
  86. * Cartesian Destination
  87. * The destination for a move, filled in by G-code movement commands,
  88. * and expected by functions like 'prepare_move_to_destination'.
  89. * G-codes can set destination using 'get_destination_from_command'
  90. */
  91. float destination[XYZE]; // = { 0 }
  92. // The active extruder (tool). Set with T<extruder> command.
  93. #if EXTRUDERS > 1
  94. uint8_t active_extruder; // = 0
  95. #endif
  96. // Extruder offsets
  97. #if HAS_HOTEND_OFFSET
  98. float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
  99. void reset_hotend_offsets() {
  100. constexpr float tmp[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z };
  101. static_assert(
  102. tmp[X_AXIS][0] == 0 && tmp[Y_AXIS][0] == 0 && tmp[Z_AXIS][0] == 0,
  103. "Offsets for the first hotend must be 0.0."
  104. );
  105. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp[i][e];
  106. #if ENABLED(DUAL_X_CARRIAGE)
  107. hotend_offset[X_AXIS][1] = _MAX(X2_HOME_POS, X2_MAX_POS);
  108. #endif
  109. }
  110. #endif
  111. // The feedrate for the current move, often used as the default if
  112. // no other feedrate is specified. Overridden for special moves.
  113. // Set by the last G0 through G5 command's "F" parameter.
  114. // Functions that override this for custom moves *must always* restore it!
  115. feedRate_t feedrate_mm_s = MMM_TO_MMS(1500);
  116. int16_t feedrate_percentage = 100;
  117. // Homing feedrate is const progmem - compare to constexpr in the header
  118. const feedRate_t homing_feedrate_mm_s[XYZ] PROGMEM = {
  119. #if ENABLED(DELTA)
  120. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  121. #else
  122. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  123. #endif
  124. MMM_TO_MMS(HOMING_FEEDRATE_Z)
  125. };
  126. // Cartesian conversion result goes here:
  127. float cartes[XYZ];
  128. #if IS_KINEMATIC
  129. float delta[ABC];
  130. #if HAS_SCARA_OFFSET
  131. float scara_home_offset[ABC];
  132. #endif
  133. #if HAS_SOFTWARE_ENDSTOPS
  134. float delta_max_radius, delta_max_radius_2;
  135. #elif IS_SCARA
  136. constexpr float delta_max_radius = SCARA_PRINTABLE_RADIUS,
  137. delta_max_radius_2 = sq(SCARA_PRINTABLE_RADIUS);
  138. #else // DELTA
  139. constexpr float delta_max_radius = DELTA_PRINTABLE_RADIUS,
  140. delta_max_radius_2 = sq(DELTA_PRINTABLE_RADIUS);
  141. #endif
  142. #endif
  143. /**
  144. * The workspace can be offset by some commands, or
  145. * these offsets may be omitted to save on computation.
  146. */
  147. #if HAS_POSITION_SHIFT
  148. // The distance that XYZ has been offset by G92. Reset by G28.
  149. float position_shift[XYZ] = { 0 };
  150. #endif
  151. #if HAS_HOME_OFFSET
  152. // This offset is added to the configured home position.
  153. // Set by M206, M428, or menu item. Saved to EEPROM.
  154. float home_offset[XYZ] = { 0 };
  155. #endif
  156. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  157. // The above two are combined to save on computes
  158. float workspace_offset[XYZ] = { 0 };
  159. #endif
  160. #if HAS_ABL_NOT_UBL
  161. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  162. #endif
  163. /**
  164. * Output the current position to serial
  165. */
  166. void report_current_position() {
  167. SERIAL_ECHOPAIR("X:", LOGICAL_X_POSITION(current_position[X_AXIS]));
  168. SERIAL_ECHOPAIR(" Y:", LOGICAL_Y_POSITION(current_position[Y_AXIS]));
  169. SERIAL_ECHOPAIR(" Z:", LOGICAL_Z_POSITION(current_position[Z_AXIS]));
  170. SERIAL_ECHOPAIR(" E:", current_position[E_AXIS]);
  171. stepper.report_positions();
  172. #if IS_SCARA
  173. scara_report_positions();
  174. #endif
  175. }
  176. /**
  177. * sync_plan_position
  178. *
  179. * Set the planner/stepper positions directly from current_position with
  180. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  181. */
  182. void sync_plan_position() {
  183. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  184. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  185. }
  186. void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  187. /**
  188. * Get the stepper positions in the cartes[] array.
  189. * Forward kinematics are applied for DELTA and SCARA.
  190. *
  191. * The result is in the current coordinate space with
  192. * leveling applied. The coordinates need to be run through
  193. * unapply_leveling to obtain the "ideal" coordinates
  194. * suitable for current_position, etc.
  195. */
  196. void get_cartesian_from_steppers() {
  197. #if ENABLED(DELTA)
  198. forward_kinematics_DELTA(
  199. planner.get_axis_position_mm(A_AXIS),
  200. planner.get_axis_position_mm(B_AXIS),
  201. planner.get_axis_position_mm(C_AXIS)
  202. );
  203. #else
  204. #if IS_SCARA
  205. forward_kinematics_SCARA(
  206. planner.get_axis_position_degrees(A_AXIS),
  207. planner.get_axis_position_degrees(B_AXIS)
  208. );
  209. #else
  210. cartes[X_AXIS] = planner.get_axis_position_mm(X_AXIS);
  211. cartes[Y_AXIS] = planner.get_axis_position_mm(Y_AXIS);
  212. #endif
  213. cartes[Z_AXIS] = planner.get_axis_position_mm(Z_AXIS);
  214. #endif
  215. }
  216. /**
  217. * Set the current_position for an axis based on
  218. * the stepper positions, removing any leveling that
  219. * may have been applied.
  220. *
  221. * To prevent small shifts in axis position always call
  222. * sync_plan_position after updating axes with this.
  223. *
  224. * To keep hosts in sync, always call report_current_position
  225. * after updating the current_position.
  226. */
  227. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  228. get_cartesian_from_steppers();
  229. #if HAS_POSITION_MODIFIERS
  230. float pos[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], current_position[E_AXIS] };
  231. planner.unapply_modifiers(pos
  232. #if HAS_LEVELING
  233. , true
  234. #endif
  235. );
  236. const float (&cartes)[XYZE] = pos;
  237. #endif
  238. if (axis == ALL_AXES)
  239. COPY(current_position, cartes);
  240. else
  241. current_position[axis] = cartes[axis];
  242. }
  243. /**
  244. * Move the planner to the current position from wherever it last moved
  245. * (or from wherever it has been told it is located).
  246. */
  247. void line_to_current_position(const feedRate_t &fr_mm_s/*=feedrate_mm_s*/) {
  248. planner.buffer_line(current_position, fr_mm_s, active_extruder);
  249. }
  250. #if IS_KINEMATIC
  251. /**
  252. * Buffer a fast move without interpolation. Set current_position to destination
  253. */
  254. void prepare_fast_move_to_destination(const feedRate_t &scaled_fr_mm_s/*=MMS_SCALED(feedrate_mm_s)*/) {
  255. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_fast_move_to_destination", destination);
  256. #if UBL_SEGMENTED
  257. // UBL segmented line will do Z-only moves in single segment
  258. ubl.line_to_destination_segmented(scaled_fr_mm_s);
  259. #else
  260. if ( current_position[X_AXIS] == destination[X_AXIS]
  261. && current_position[Y_AXIS] == destination[Y_AXIS]
  262. && current_position[Z_AXIS] == destination[Z_AXIS]
  263. && current_position[E_AXIS] == destination[E_AXIS]
  264. ) return;
  265. planner.buffer_line(destination, scaled_fr_mm_s, active_extruder);
  266. #endif
  267. set_current_from_destination();
  268. }
  269. #endif // IS_KINEMATIC
  270. void _internal_move_to_destination(const feedRate_t &fr_mm_s/*=0.0f*/
  271. #if IS_KINEMATIC
  272. , const bool is_fast/*=false*/
  273. #endif
  274. ) {
  275. const feedRate_t old_feedrate = feedrate_mm_s;
  276. if (fr_mm_s) feedrate_mm_s = fr_mm_s;
  277. const uint16_t old_pct = feedrate_percentage;
  278. feedrate_percentage = 100;
  279. const float old_fac = planner.e_factor[active_extruder];
  280. planner.e_factor[active_extruder] = 1.0f;
  281. #if IS_KINEMATIC
  282. if (is_fast)
  283. prepare_fast_move_to_destination();
  284. else
  285. #endif
  286. prepare_move_to_destination();
  287. feedrate_mm_s = old_feedrate;
  288. feedrate_percentage = old_pct;
  289. planner.e_factor[active_extruder] = old_fac;
  290. }
  291. /**
  292. * Plan a move to (X, Y, Z) and set the current_position
  293. */
  294. void do_blocking_move_to(const float rx, const float ry, const float rz, const feedRate_t &fr_mm_s/*=0.0*/) {
  295. if (DEBUGGING(LEVELING)) DEBUG_XYZ(">>> do_blocking_move_to", rx, ry, rz);
  296. const feedRate_t z_feedrate = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS),
  297. xy_feedrate = fr_mm_s ? fr_mm_s : feedRate_t(XY_PROBE_FEEDRATE_MM_S);
  298. #if ENABLED(DELTA)
  299. if (!position_is_reachable(rx, ry)) return;
  300. REMEMBER(fr, feedrate_mm_s, xy_feedrate);
  301. set_destination_from_current(); // sync destination at the start
  302. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination);
  303. // when in the danger zone
  304. if (current_position[Z_AXIS] > delta_clip_start_height) {
  305. if (rz > delta_clip_start_height) { // staying in the danger zone
  306. destination[X_AXIS] = rx; // move directly (uninterpolated)
  307. destination[Y_AXIS] = ry;
  308. destination[Z_AXIS] = rz;
  309. prepare_internal_fast_move_to_destination(); // set_current_from_destination()
  310. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  311. return;
  312. }
  313. destination[Z_AXIS] = delta_clip_start_height;
  314. prepare_internal_fast_move_to_destination(); // set_current_from_destination()
  315. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  316. }
  317. if (rz > current_position[Z_AXIS]) { // raising?
  318. destination[Z_AXIS] = rz;
  319. prepare_internal_fast_move_to_destination(z_feedrate); // set_current_from_destination()
  320. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  321. }
  322. destination[X_AXIS] = rx;
  323. destination[Y_AXIS] = ry;
  324. prepare_internal_move_to_destination(); // set_current_from_destination()
  325. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  326. if (rz < current_position[Z_AXIS]) { // lowering?
  327. destination[Z_AXIS] = rz;
  328. prepare_fast_move_to_destination(z_feedrate); // set_current_from_destination()
  329. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  330. }
  331. #elif IS_SCARA
  332. if (!position_is_reachable(rx, ry)) return;
  333. set_destination_from_current();
  334. // If Z needs to raise, do it before moving XY
  335. if (destination[Z_AXIS] < rz) {
  336. destination[Z_AXIS] = rz;
  337. prepare_internal_fast_move_to_destination(z_feedrate);
  338. }
  339. destination[X_AXIS] = rx;
  340. destination[Y_AXIS] = ry;
  341. prepare_internal_fast_move_to_destination(xy_feedrate);
  342. // If Z needs to lower, do it after moving XY
  343. if (destination[Z_AXIS] > rz) {
  344. destination[Z_AXIS] = rz;
  345. prepare_internal_fast_move_to_destination(z_feedrate);
  346. }
  347. #else
  348. // If Z needs to raise, do it before moving XY
  349. if (current_position[Z_AXIS] < rz) {
  350. current_position[Z_AXIS] = rz;
  351. line_to_current_position(z_feedrate);
  352. }
  353. current_position[X_AXIS] = rx;
  354. current_position[Y_AXIS] = ry;
  355. line_to_current_position(xy_feedrate);
  356. // If Z needs to lower, do it after moving XY
  357. if (current_position[Z_AXIS] > rz) {
  358. current_position[Z_AXIS] = rz;
  359. line_to_current_position(z_feedrate);
  360. }
  361. #endif
  362. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< do_blocking_move_to");
  363. planner.synchronize();
  364. }
  365. void do_blocking_move_to_x(const float &rx, const feedRate_t &fr_mm_s/*=0.0*/) {
  366. do_blocking_move_to(rx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  367. }
  368. void do_blocking_move_to_y(const float &ry, const feedRate_t &fr_mm_s/*=0.0*/) {
  369. do_blocking_move_to(current_position[X_AXIS], ry, current_position[Z_AXIS], fr_mm_s);
  370. }
  371. void do_blocking_move_to_z(const float &rz, const feedRate_t &fr_mm_s/*=0.0*/) {
  372. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], rz, fr_mm_s);
  373. }
  374. void do_blocking_move_to_xy(const float &rx, const float &ry, const feedRate_t &fr_mm_s/*=0.0*/) {
  375. do_blocking_move_to(rx, ry, current_position[Z_AXIS], fr_mm_s);
  376. }
  377. //
  378. // Prepare to do endstop or probe moves with custom feedrates.
  379. // - Save / restore current feedrate and multiplier
  380. //
  381. static float saved_feedrate_mm_s;
  382. static int16_t saved_feedrate_percentage;
  383. void remember_feedrate_and_scaling() {
  384. saved_feedrate_mm_s = feedrate_mm_s;
  385. saved_feedrate_percentage = feedrate_percentage;
  386. }
  387. void remember_feedrate_scaling_off() {
  388. remember_feedrate_and_scaling();
  389. feedrate_percentage = 100;
  390. }
  391. void restore_feedrate_and_scaling() {
  392. feedrate_mm_s = saved_feedrate_mm_s;
  393. feedrate_percentage = saved_feedrate_percentage;
  394. }
  395. #if HAS_SOFTWARE_ENDSTOPS
  396. bool soft_endstops_enabled = true;
  397. // Software Endstops are based on the configured limits.
  398. axis_limits_t soft_endstop[XYZ] = { { X_MIN_BED, X_MAX_BED }, { Y_MIN_BED, Y_MAX_BED }, { Z_MIN_POS, Z_MAX_POS } };
  399. /**
  400. * Software endstops can be used to monitor the open end of
  401. * an axis that has a hardware endstop on the other end. Or
  402. * they can prevent axes from moving past endstops and grinding.
  403. *
  404. * To keep doing their job as the coordinate system changes,
  405. * the software endstop positions must be refreshed to remain
  406. * at the same positions relative to the machine.
  407. */
  408. void update_software_endstops(const AxisEnum axis
  409. #if HAS_HOTEND_OFFSET
  410. , const uint8_t old_tool_index/*=0*/, const uint8_t new_tool_index/*=0*/
  411. #endif
  412. ) {
  413. #if ENABLED(DUAL_X_CARRIAGE)
  414. if (axis == X_AXIS) {
  415. // In Dual X mode hotend_offset[X] is T1's home position
  416. const float dual_max_x = _MAX(hotend_offset[X_AXIS][1], X2_MAX_POS);
  417. if (new_tool_index != 0) {
  418. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  419. soft_endstop[X_AXIS].min = X2_MIN_POS;
  420. soft_endstop[X_AXIS].max = dual_max_x;
  421. }
  422. else if (dxc_is_duplicating()) {
  423. // In Duplication Mode, T0 can move as far left as X1_MIN_POS
  424. // but not so far to the right that T1 would move past the end
  425. soft_endstop[X_AXIS].min = X1_MIN_POS;
  426. soft_endstop[X_AXIS].max = _MIN(X1_MAX_POS, dual_max_x - duplicate_extruder_x_offset);
  427. }
  428. else {
  429. // In other modes, T0 can move from X1_MIN_POS to X1_MAX_POS
  430. soft_endstop[X_AXIS].min = X1_MIN_POS;
  431. soft_endstop[X_AXIS].max = X1_MAX_POS;
  432. }
  433. }
  434. #elif ENABLED(DELTA)
  435. soft_endstop[axis].min = base_min_pos(axis);
  436. soft_endstop[axis].max = (axis == Z_AXIS ? delta_height
  437. #if HAS_BED_PROBE
  438. - probe_offset[Z_AXIS]
  439. #endif
  440. : base_max_pos(axis));
  441. switch (axis) {
  442. case X_AXIS:
  443. case Y_AXIS:
  444. // Get a minimum radius for clamping
  445. delta_max_radius = _MIN(ABS(_MAX(soft_endstop[X_AXIS].min, soft_endstop[Y_AXIS].min)), soft_endstop[X_AXIS].max, soft_endstop[Y_AXIS].max);
  446. delta_max_radius_2 = sq(delta_max_radius);
  447. break;
  448. case Z_AXIS:
  449. delta_clip_start_height = soft_endstop[axis].max - delta_safe_distance_from_top();
  450. default: break;
  451. }
  452. #elif HAS_HOTEND_OFFSET
  453. // Software endstops are relative to the tool 0 workspace, so
  454. // the movement limits must be shifted by the tool offset to
  455. // retain the same physical limit when other tools are selected.
  456. if (old_tool_index != new_tool_index) {
  457. const float offs = hotend_offset[axis][new_tool_index] - hotend_offset[axis][old_tool_index];
  458. soft_endstop[axis].min += offs;
  459. soft_endstop[axis].max += offs;
  460. }
  461. else {
  462. const float offs = hotend_offset[axis][active_extruder];
  463. soft_endstop[axis].min = base_min_pos(axis) + offs;
  464. soft_endstop[axis].max = base_max_pos(axis) + offs;
  465. }
  466. #else
  467. soft_endstop[axis].min = base_min_pos(axis);
  468. soft_endstop[axis].max = base_max_pos(axis);
  469. #endif
  470. if (DEBUGGING(LEVELING))
  471. SERIAL_ECHOLNPAIR("Axis ", axis_codes[axis], " min:", soft_endstop[axis].min, " max:", soft_endstop[axis].max);
  472. }
  473. /**
  474. * Constrain the given coordinates to the software endstops.
  475. *
  476. * For DELTA/SCARA the XY constraint is based on the smallest
  477. * radius within the set software endstops.
  478. */
  479. void apply_motion_limits(float target[XYZ]) {
  480. if (!soft_endstops_enabled) return;
  481. #if IS_KINEMATIC
  482. #if HAS_HOTEND_OFFSET && ENABLED(DELTA)
  483. // The effector center position will be the target minus the hotend offset.
  484. const float offx = hotend_offset[X_AXIS][active_extruder], offy = hotend_offset[Y_AXIS][active_extruder];
  485. #else
  486. // SCARA needs to consider the angle of the arm through the entire move, so for now use no tool offset.
  487. constexpr float offx = 0, offy = 0;
  488. #endif
  489. const float dist_2 = HYPOT2(target[X_AXIS] - offx, target[Y_AXIS] - offy);
  490. if (dist_2 > delta_max_radius_2) {
  491. const float ratio = (delta_max_radius) / SQRT(dist_2); // 200 / 300 = 0.66
  492. target[X_AXIS] *= ratio;
  493. target[Y_AXIS] *= ratio;
  494. }
  495. #else
  496. #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_X)
  497. NOLESS(target[X_AXIS], soft_endstop[X_AXIS].min);
  498. #endif
  499. #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_X)
  500. NOMORE(target[X_AXIS], soft_endstop[X_AXIS].max);
  501. #endif
  502. #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
  503. NOLESS(target[Y_AXIS], soft_endstop[Y_AXIS].min);
  504. #endif
  505. #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
  506. NOMORE(target[Y_AXIS], soft_endstop[Y_AXIS].max);
  507. #endif
  508. #endif
  509. #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
  510. NOLESS(target[Z_AXIS], soft_endstop[Z_AXIS].min);
  511. #endif
  512. #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
  513. NOMORE(target[Z_AXIS], soft_endstop[Z_AXIS].max);
  514. #endif
  515. }
  516. #endif // HAS_SOFTWARE_ENDSTOPS
  517. #if !UBL_SEGMENTED
  518. #if IS_KINEMATIC
  519. #if IS_SCARA
  520. /**
  521. * Before raising this value, use M665 S[seg_per_sec] to decrease
  522. * the number of segments-per-second. Default is 200. Some deltas
  523. * do better with 160 or lower. It would be good to know how many
  524. * segments-per-second are actually possible for SCARA on AVR.
  525. *
  526. * Longer segments result in less kinematic overhead
  527. * but may produce jagged lines. Try 0.5mm, 1.0mm, and 2.0mm
  528. * and compare the difference.
  529. */
  530. #define SCARA_MIN_SEGMENT_LENGTH 0.5f
  531. #endif
  532. /**
  533. * Prepare a linear move in a DELTA or SCARA setup.
  534. *
  535. * Called from prepare_move_to_destination as the
  536. * default Delta/SCARA segmenter.
  537. *
  538. * This calls planner.buffer_line several times, adding
  539. * small incremental moves for DELTA or SCARA.
  540. *
  541. * For Unified Bed Leveling (Delta or Segmented Cartesian)
  542. * the ubl.line_to_destination_segmented method replaces this.
  543. *
  544. * For Auto Bed Leveling (Bilinear) with SEGMENT_LEVELED_MOVES
  545. * this is replaced by segmented_line_to_destination below.
  546. */
  547. inline bool line_to_destination_kinematic() {
  548. // Get the top feedrate of the move in the XY plane
  549. const float scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s);
  550. const float xdiff = destination[X_AXIS] - current_position[X_AXIS],
  551. ydiff = destination[Y_AXIS] - current_position[Y_AXIS];
  552. // If the move is only in Z/E don't split up the move
  553. if (!xdiff && !ydiff) {
  554. planner.buffer_line(destination, scaled_fr_mm_s, active_extruder);
  555. return false; // caller will update current_position
  556. }
  557. // Fail if attempting move outside printable radius
  558. if (!position_is_reachable(destination[X_AXIS], destination[Y_AXIS])) return true;
  559. // Remaining cartesian distances
  560. const float zdiff = destination[Z_AXIS] - current_position[Z_AXIS],
  561. ediff = destination[E_AXIS] - current_position[E_AXIS];
  562. // Get the linear distance in XYZ
  563. float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
  564. // If the move is very short, check the E move distance
  565. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(ediff);
  566. // No E move either? Game over.
  567. if (UNEAR_ZERO(cartesian_mm)) return true;
  568. // Minimum number of seconds to move the given distance
  569. const float seconds = cartesian_mm / scaled_fr_mm_s;
  570. // The number of segments-per-second times the duration
  571. // gives the number of segments
  572. uint16_t segments = delta_segments_per_second * seconds;
  573. // For SCARA enforce a minimum segment size
  574. #if IS_SCARA
  575. NOMORE(segments, cartesian_mm * RECIPROCAL(SCARA_MIN_SEGMENT_LENGTH));
  576. #endif
  577. // At least one segment is required
  578. NOLESS(segments, 1U);
  579. // The approximate length of each segment
  580. const float inv_segments = 1.0f / float(segments),
  581. segment_distance[XYZE] = {
  582. xdiff * inv_segments,
  583. ydiff * inv_segments,
  584. zdiff * inv_segments,
  585. ediff * inv_segments
  586. },
  587. cartesian_segment_mm = cartesian_mm * inv_segments;
  588. #if ENABLED(SCARA_FEEDRATE_SCALING)
  589. const float inv_duration = scaled_fr_mm_s / cartesian_segment_mm;
  590. #endif
  591. /*
  592. SERIAL_ECHOPAIR("mm=", cartesian_mm);
  593. SERIAL_ECHOPAIR(" seconds=", seconds);
  594. SERIAL_ECHOPAIR(" segments=", segments);
  595. SERIAL_ECHOPAIR(" segment_mm=", cartesian_segment_mm);
  596. SERIAL_EOL();
  597. //*/
  598. // Get the current position as starting point
  599. float raw[XYZE];
  600. COPY(raw, current_position);
  601. // Calculate and execute the segments
  602. while (--segments) {
  603. static millis_t next_idle_ms = millis() + 200UL;
  604. thermalManager.manage_heater(); // This returns immediately if not really needed.
  605. if (ELAPSED(millis(), next_idle_ms)) {
  606. next_idle_ms = millis() + 200UL;
  607. idle();
  608. }
  609. LOOP_XYZE(i) raw[i] += segment_distance[i];
  610. if (!planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, cartesian_segment_mm
  611. #if ENABLED(SCARA_FEEDRATE_SCALING)
  612. , inv_duration
  613. #endif
  614. ))
  615. break;
  616. }
  617. // Ensure last segment arrives at target location.
  618. planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, cartesian_segment_mm
  619. #if ENABLED(SCARA_FEEDRATE_SCALING)
  620. , inv_duration
  621. #endif
  622. );
  623. return false; // caller will update current_position
  624. }
  625. #else // !IS_KINEMATIC
  626. #if ENABLED(SEGMENT_LEVELED_MOVES)
  627. /**
  628. * Prepare a segmented move on a CARTESIAN setup.
  629. *
  630. * This calls planner.buffer_line several times, adding
  631. * small incremental moves. This allows the planner to
  632. * apply more detailed bed leveling to the full move.
  633. */
  634. inline void segmented_line_to_destination(const feedRate_t &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) {
  635. const float xdiff = destination[X_AXIS] - current_position[X_AXIS],
  636. ydiff = destination[Y_AXIS] - current_position[Y_AXIS];
  637. // If the move is only in Z/E don't split up the move
  638. if (!xdiff && !ydiff) {
  639. planner.buffer_line(destination, fr_mm_s, active_extruder);
  640. return;
  641. }
  642. // Remaining cartesian distances
  643. const float zdiff = destination[Z_AXIS] - current_position[Z_AXIS],
  644. ediff = destination[E_AXIS] - current_position[E_AXIS];
  645. // Get the linear distance in XYZ
  646. // If the move is very short, check the E move distance
  647. // No E move either? Game over.
  648. float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
  649. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(ediff);
  650. if (UNEAR_ZERO(cartesian_mm)) return;
  651. // The length divided by the segment size
  652. // At least one segment is required
  653. uint16_t segments = cartesian_mm / segment_size;
  654. NOLESS(segments, 1U);
  655. // The approximate length of each segment
  656. const float inv_segments = 1.0f / float(segments),
  657. cartesian_segment_mm = cartesian_mm * inv_segments,
  658. segment_distance[XYZE] = {
  659. xdiff * inv_segments,
  660. ydiff * inv_segments,
  661. zdiff * inv_segments,
  662. ediff * inv_segments
  663. };
  664. #if ENABLED(SCARA_FEEDRATE_SCALING)
  665. const float inv_duration = scaled_fr_mm_s / cartesian_segment_mm;
  666. #endif
  667. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  668. // SERIAL_ECHOLNPAIR(" segments=", segments);
  669. // SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);
  670. // Get the raw current position as starting point
  671. float raw[XYZE];
  672. COPY(raw, current_position);
  673. // Calculate and execute the segments
  674. while (--segments) {
  675. static millis_t next_idle_ms = millis() + 200UL;
  676. thermalManager.manage_heater(); // This returns immediately if not really needed.
  677. if (ELAPSED(millis(), next_idle_ms)) {
  678. next_idle_ms = millis() + 200UL;
  679. idle();
  680. }
  681. LOOP_XYZE(i) raw[i] += segment_distance[i];
  682. if (!planner.buffer_line(raw, fr_mm_s, active_extruder, cartesian_segment_mm
  683. #if ENABLED(SCARA_FEEDRATE_SCALING)
  684. , inv_duration
  685. #endif
  686. ))
  687. break;
  688. }
  689. // Since segment_distance is only approximate,
  690. // the final move must be to the exact destination.
  691. planner.buffer_line(destination, fr_mm_s, active_extruder, cartesian_segment_mm
  692. #if ENABLED(SCARA_FEEDRATE_SCALING)
  693. , inv_duration
  694. #endif
  695. );
  696. }
  697. #endif // SEGMENT_LEVELED_MOVES
  698. /**
  699. * Prepare a linear move in a Cartesian setup.
  700. *
  701. * When a mesh-based leveling system is active, moves are segmented
  702. * according to the configuration of the leveling system.
  703. *
  704. * Returns true if current_position[] was set to destination[]
  705. */
  706. inline bool prepare_move_to_destination_cartesian() {
  707. const float scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s);
  708. #if HAS_MESH
  709. if (planner.leveling_active && planner.leveling_active_at_z(destination[Z_AXIS])) {
  710. #if ENABLED(AUTO_BED_LEVELING_UBL)
  711. ubl.line_to_destination_cartesian(scaled_fr_mm_s, active_extruder); // UBL's motion routine needs to know about
  712. return true; // all moves, including Z-only moves.
  713. #elif ENABLED(SEGMENT_LEVELED_MOVES)
  714. segmented_line_to_destination(scaled_fr_mm_s);
  715. return false; // caller will update current_position
  716. #else
  717. /**
  718. * For MBL and ABL-BILINEAR only segment moves when X or Y are involved.
  719. * Otherwise fall through to do a direct single move.
  720. */
  721. if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
  722. #if ENABLED(MESH_BED_LEVELING)
  723. mbl.line_to_destination(scaled_fr_mm_s);
  724. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  725. bilinear_line_to_destination(scaled_fr_mm_s);
  726. #endif
  727. return true;
  728. }
  729. #endif
  730. }
  731. #endif // HAS_MESH
  732. planner.buffer_line(destination, scaled_fr_mm_s, active_extruder);
  733. return false; // caller will update current_position
  734. }
  735. #endif // !IS_KINEMATIC
  736. #endif // !UBL_SEGMENTED
  737. #if HAS_DUPLICATION_MODE
  738. bool extruder_duplication_enabled,
  739. mirrored_duplication_mode;
  740. #if ENABLED(MULTI_NOZZLE_DUPLICATION)
  741. uint8_t duplication_e_mask; // = 0
  742. #endif
  743. #endif
  744. #if ENABLED(DUAL_X_CARRIAGE)
  745. DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  746. float inactive_extruder_x_pos = X2_MAX_POS, // used in mode 0 & 1
  747. raised_parked_position[XYZE], // used in mode 1
  748. duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  749. bool active_extruder_parked = false; // used in mode 1 & 2
  750. millis_t delayed_move_time = 0; // used in mode 1
  751. int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  752. float x_home_pos(const int extruder) {
  753. if (extruder == 0)
  754. return base_home_pos(X_AXIS);
  755. else
  756. /**
  757. * In dual carriage mode the extruder offset provides an override of the
  758. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  759. * This allows soft recalibration of the second extruder home position
  760. * without firmware reflash (through the M218 command).
  761. */
  762. return hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  763. }
  764. /**
  765. * Prepare a linear move in a dual X axis setup
  766. *
  767. * Return true if current_position[] was set to destination[]
  768. */
  769. inline bool dual_x_carriage_unpark() {
  770. if (active_extruder_parked) {
  771. switch (dual_x_carriage_mode) {
  772. case DXC_FULL_CONTROL_MODE:
  773. break;
  774. case DXC_AUTO_PARK_MODE:
  775. if (current_position[E_AXIS] == destination[E_AXIS]) {
  776. // This is a travel move (with no extrusion)
  777. // Skip it, but keep track of the current position
  778. // (so it can be used as the start of the next non-travel move)
  779. if (delayed_move_time != 0xFFFFFFFFUL) {
  780. set_current_from_destination();
  781. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  782. delayed_move_time = millis();
  783. return true;
  784. }
  785. }
  786. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  787. #define CUR_X current_position[X_AXIS]
  788. #define CUR_Y current_position[Y_AXIS]
  789. #define CUR_Z current_position[Z_AXIS]
  790. #define CUR_E current_position[E_AXIS]
  791. #define RAISED_X raised_parked_position[X_AXIS]
  792. #define RAISED_Y raised_parked_position[Y_AXIS]
  793. #define RAISED_Z raised_parked_position[Z_AXIS]
  794. if ( planner.buffer_line(RAISED_X, RAISED_Y, RAISED_Z, CUR_E, planner.settings.max_feedrate_mm_s[Z_AXIS], active_extruder))
  795. if (planner.buffer_line( CUR_X, CUR_Y, RAISED_Z, CUR_E, PLANNER_XY_FEEDRATE(), active_extruder))
  796. planner.buffer_line( CUR_X, CUR_Y, CUR_Z, CUR_E, planner.settings.max_feedrate_mm_s[Z_AXIS], active_extruder);
  797. delayed_move_time = 0;
  798. active_extruder_parked = false;
  799. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Clear active_extruder_parked");
  800. break;
  801. case DXC_MIRRORED_MODE:
  802. case DXC_DUPLICATION_MODE:
  803. if (active_extruder == 0) {
  804. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Set planner X", inactive_extruder_x_pos, " ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  805. // move duplicate extruder into correct duplication position.
  806. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  807. if (!planner.buffer_line(
  808. dual_x_carriage_mode == DXC_DUPLICATION_MODE ? duplicate_extruder_x_offset + current_position[X_AXIS] : inactive_extruder_x_pos,
  809. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  810. planner.settings.max_feedrate_mm_s[X_AXIS], 1
  811. )
  812. ) break;
  813. planner.synchronize();
  814. sync_plan_position();
  815. extruder_duplication_enabled = true;
  816. active_extruder_parked = false;
  817. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  818. }
  819. else if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Active extruder not 0");
  820. break;
  821. }
  822. }
  823. stepper.set_directions();
  824. return false;
  825. }
  826. #endif // DUAL_X_CARRIAGE
  827. /**
  828. * Prepare a single move and get ready for the next one
  829. *
  830. * This may result in several calls to planner.buffer_line to
  831. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  832. *
  833. * Make sure current_position[E] and destination[E] are good
  834. * before calling or cold/lengthy extrusion may get missed.
  835. *
  836. * Before exit, current_position is set to destination.
  837. */
  838. void prepare_move_to_destination() {
  839. apply_motion_limits(destination);
  840. #if EITHER(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE)
  841. if (!DEBUGGING(DRYRUN)) {
  842. if (destination[E_AXIS] != current_position[E_AXIS]) {
  843. #if ENABLED(PREVENT_COLD_EXTRUSION)
  844. if (thermalManager.tooColdToExtrude(active_extruder)) {
  845. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  846. SERIAL_ECHO_MSG(MSG_ERR_COLD_EXTRUDE_STOP);
  847. }
  848. #endif // PREVENT_COLD_EXTRUSION
  849. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  850. const float e_delta = ABS(destination[E_AXIS] - current_position[E_AXIS]) * planner.e_factor[active_extruder];
  851. if (e_delta > (EXTRUDE_MAXLENGTH)) {
  852. #if ENABLED(MIXING_EXTRUDER)
  853. bool ignore_e = false;
  854. float collector[MIXING_STEPPERS];
  855. mixer.refresh_collector(1.0, mixer.get_current_vtool(), collector);
  856. MIXER_STEPPER_LOOP(e)
  857. if (e_delta * collector[e] > (EXTRUDE_MAXLENGTH)) { ignore_e = true; break; }
  858. #else
  859. constexpr bool ignore_e = true;
  860. #endif
  861. if (ignore_e) {
  862. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  863. SERIAL_ECHO_MSG(MSG_ERR_LONG_EXTRUDE_STOP);
  864. }
  865. }
  866. #endif // PREVENT_LENGTHY_EXTRUDE
  867. }
  868. }
  869. #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
  870. #if ENABLED(DUAL_X_CARRIAGE)
  871. if (dual_x_carriage_unpark()) return;
  872. #endif
  873. if (
  874. #if UBL_SEGMENTED
  875. #if IS_KINEMATIC // UBL using Kinematic / Cartesian cases as a workaround for now.
  876. ubl.line_to_destination_segmented(MMS_SCALED(feedrate_mm_s))
  877. #else
  878. prepare_move_to_destination_cartesian()
  879. #endif
  880. #elif IS_KINEMATIC
  881. line_to_destination_kinematic()
  882. #else
  883. prepare_move_to_destination_cartesian()
  884. #endif
  885. ) return;
  886. set_current_from_destination();
  887. }
  888. uint8_t axes_need_homing(uint8_t axis_bits/*=0x07*/) {
  889. #if ENABLED(HOME_AFTER_DEACTIVATE)
  890. #define HOMED_FLAGS axis_known_position
  891. #else
  892. #define HOMED_FLAGS axis_homed
  893. #endif
  894. // Clear test bits that are homed
  895. if (TEST(axis_bits, X_AXIS) && TEST(HOMED_FLAGS, X_AXIS)) CBI(axis_bits, X_AXIS);
  896. if (TEST(axis_bits, Y_AXIS) && TEST(HOMED_FLAGS, Y_AXIS)) CBI(axis_bits, Y_AXIS);
  897. if (TEST(axis_bits, Z_AXIS) && TEST(HOMED_FLAGS, Z_AXIS)) CBI(axis_bits, Z_AXIS);
  898. return axis_bits;
  899. }
  900. bool axis_unhomed_error(uint8_t axis_bits/*=0x07*/) {
  901. if ((axis_bits = axes_need_homing(axis_bits))) {
  902. static const char home_first[] PROGMEM = MSG_HOME_FIRST;
  903. char msg[sizeof(home_first)];
  904. sprintf_P(msg, home_first,
  905. TEST(axis_bits, X_AXIS) ? "X" : "",
  906. TEST(axis_bits, Y_AXIS) ? "Y" : "",
  907. TEST(axis_bits, Z_AXIS) ? "Z" : ""
  908. );
  909. SERIAL_ECHO_START();
  910. SERIAL_ECHOLN(msg);
  911. #if HAS_DISPLAY
  912. ui.set_status(msg);
  913. #endif
  914. return true;
  915. }
  916. return false;
  917. }
  918. /**
  919. * Homing bump feedrate (mm/s)
  920. */
  921. feedRate_t get_homing_bump_feedrate(const AxisEnum axis) {
  922. #if HOMING_Z_WITH_PROBE
  923. if (axis == Z_AXIS) return MMM_TO_MMS(Z_PROBE_SPEED_SLOW);
  924. #endif
  925. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  926. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  927. if (hbd < 1) {
  928. hbd = 10;
  929. SERIAL_ECHO_MSG("Warning: Homing Bump Divisor < 1");
  930. }
  931. return homing_feedrate(axis) / float(hbd);
  932. }
  933. #if ENABLED(SENSORLESS_HOMING)
  934. /**
  935. * Set sensorless homing if the axis has it, accounting for Core Kinematics.
  936. */
  937. sensorless_t start_sensorless_homing_per_axis(const AxisEnum axis) {
  938. sensorless_t stealth_states { false };
  939. switch (axis) {
  940. default: break;
  941. #if X_SENSORLESS
  942. case X_AXIS:
  943. stealth_states.x = tmc_enable_stallguard(stepperX);
  944. #if AXIS_HAS_STALLGUARD(X2)
  945. stealth_states.x2 = tmc_enable_stallguard(stepperX2);
  946. #endif
  947. #if CORE_IS_XY && Y_SENSORLESS
  948. stealth_states.y = tmc_enable_stallguard(stepperY);
  949. #elif CORE_IS_XZ && Z_SENSORLESS
  950. stealth_states.z = tmc_enable_stallguard(stepperZ);
  951. #endif
  952. break;
  953. #endif
  954. #if Y_SENSORLESS
  955. case Y_AXIS:
  956. stealth_states.y = tmc_enable_stallguard(stepperY);
  957. #if AXIS_HAS_STALLGUARD(Y2)
  958. stealth_states.y2 = tmc_enable_stallguard(stepperY2);
  959. #endif
  960. #if CORE_IS_XY && X_SENSORLESS
  961. stealth_states.x = tmc_enable_stallguard(stepperX);
  962. #elif CORE_IS_YZ && Z_SENSORLESS
  963. stealth_states.z = tmc_enable_stallguard(stepperZ);
  964. #endif
  965. break;
  966. #endif
  967. #if Z_SENSORLESS
  968. case Z_AXIS:
  969. stealth_states.z = tmc_enable_stallguard(stepperZ);
  970. #if AXIS_HAS_STALLGUARD(Z2)
  971. stealth_states.z2 = tmc_enable_stallguard(stepperZ2);
  972. #endif
  973. #if AXIS_HAS_STALLGUARD(Z3)
  974. stealth_states.z3 = tmc_enable_stallguard(stepperZ3);
  975. #endif
  976. #if CORE_IS_XZ && X_SENSORLESS
  977. stealth_states.x = tmc_enable_stallguard(stepperX);
  978. #elif CORE_IS_YZ && Y_SENSORLESS
  979. stealth_states.y = tmc_enable_stallguard(stepperY);
  980. #endif
  981. break;
  982. #endif
  983. }
  984. #if ENABLED(SPI_ENDSTOPS)
  985. switch (axis) {
  986. #if X_SPI_SENSORLESS
  987. case X_AXIS: endstops.tmc_spi_homing.x = true; break;
  988. #endif
  989. #if Y_SPI_SENSORLESS
  990. case Y_AXIS: endstops.tmc_spi_homing.y = true; break;
  991. #endif
  992. #if Z_SPI_SENSORLESS
  993. case Z_AXIS: endstops.tmc_spi_homing.z = true; break;
  994. #endif
  995. default: break;
  996. }
  997. #endif
  998. #if ENABLED(IMPROVE_HOMING_RELIABILITY)
  999. sg_guard_period = millis() + default_sg_guard_duration;
  1000. #endif
  1001. return stealth_states;
  1002. }
  1003. void end_sensorless_homing_per_axis(const AxisEnum axis, sensorless_t enable_stealth) {
  1004. switch (axis) {
  1005. default: break;
  1006. #if X_SENSORLESS
  1007. case X_AXIS:
  1008. tmc_disable_stallguard(stepperX, enable_stealth.x);
  1009. #if AXIS_HAS_STALLGUARD(X2)
  1010. tmc_disable_stallguard(stepperX2, enable_stealth.x2);
  1011. #endif
  1012. #if CORE_IS_XY && Y_SENSORLESS
  1013. tmc_disable_stallguard(stepperY, enable_stealth.y);
  1014. #elif CORE_IS_XZ && Z_SENSORLESS
  1015. tmc_disable_stallguard(stepperZ, enable_stealth.z);
  1016. #endif
  1017. break;
  1018. #endif
  1019. #if Y_SENSORLESS
  1020. case Y_AXIS:
  1021. tmc_disable_stallguard(stepperY, enable_stealth.y);
  1022. #if AXIS_HAS_STALLGUARD(Y2)
  1023. tmc_disable_stallguard(stepperY2, enable_stealth.y2);
  1024. #endif
  1025. #if CORE_IS_XY && X_SENSORLESS
  1026. tmc_disable_stallguard(stepperX, enable_stealth.x);
  1027. #elif CORE_IS_YZ && Z_SENSORLESS
  1028. tmc_disable_stallguard(stepperZ, enable_stealth.z);
  1029. #endif
  1030. break;
  1031. #endif
  1032. #if Z_SENSORLESS
  1033. case Z_AXIS:
  1034. tmc_disable_stallguard(stepperZ, enable_stealth.z);
  1035. #if AXIS_HAS_STALLGUARD(Z2)
  1036. tmc_disable_stallguard(stepperZ2, enable_stealth.z2);
  1037. #endif
  1038. #if AXIS_HAS_STALLGUARD(Z3)
  1039. tmc_disable_stallguard(stepperZ3, enable_stealth.z3);
  1040. #endif
  1041. #if CORE_IS_XZ && X_SENSORLESS
  1042. tmc_disable_stallguard(stepperX, enable_stealth.x);
  1043. #elif CORE_IS_YZ && Y_SENSORLESS
  1044. tmc_disable_stallguard(stepperY, enable_stealth.y);
  1045. #endif
  1046. break;
  1047. #endif
  1048. }
  1049. #if ENABLED(SPI_ENDSTOPS)
  1050. switch (axis) {
  1051. #if X_SPI_SENSORLESS
  1052. case X_AXIS: endstops.tmc_spi_homing.x = false; break;
  1053. #endif
  1054. #if Y_SPI_SENSORLESS
  1055. case Y_AXIS: endstops.tmc_spi_homing.y = false; break;
  1056. #endif
  1057. #if Z_SPI_SENSORLESS
  1058. case Z_AXIS: endstops.tmc_spi_homing.z = false; break;
  1059. #endif
  1060. default: break;
  1061. }
  1062. #endif
  1063. }
  1064. #endif // SENSORLESS_HOMING
  1065. /**
  1066. * Home an individual linear axis
  1067. */
  1068. void do_homing_move(const AxisEnum axis, const float distance, const feedRate_t fr_mm_s=0.0) {
  1069. if (DEBUGGING(LEVELING)) {
  1070. DEBUG_ECHOPAIR(">>> do_homing_move(", axis_codes[axis], ", ", distance, ", ");
  1071. if (fr_mm_s)
  1072. DEBUG_ECHO(fr_mm_s);
  1073. else
  1074. DEBUG_ECHOPAIR("[", homing_feedrate(axis), "]");
  1075. DEBUG_ECHOLNPGM(")");
  1076. }
  1077. #if HOMING_Z_WITH_PROBE && HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)
  1078. // Wait for bed to heat back up between probing points
  1079. if (axis == Z_AXIS && distance < 0 && thermalManager.isHeatingBed()) {
  1080. serialprintPGM(msg_wait_for_bed_heating);
  1081. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1082. thermalManager.wait_for_bed();
  1083. ui.reset_status();
  1084. }
  1085. #endif
  1086. // Only do some things when moving towards an endstop
  1087. const int8_t axis_home_dir =
  1088. #if ENABLED(DUAL_X_CARRIAGE)
  1089. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1090. #endif
  1091. home_dir(axis);
  1092. const bool is_home_dir = (axis_home_dir > 0) == (distance > 0);
  1093. #if ENABLED(SENSORLESS_HOMING)
  1094. sensorless_t stealth_states;
  1095. #endif
  1096. if (is_home_dir) {
  1097. #if HOMING_Z_WITH_PROBE && QUIET_PROBING
  1098. if (axis == Z_AXIS) probing_pause(true);
  1099. #endif
  1100. // Disable stealthChop if used. Enable diag1 pin on driver.
  1101. #if ENABLED(SENSORLESS_HOMING)
  1102. stealth_states = start_sensorless_homing_per_axis(axis);
  1103. #endif
  1104. }
  1105. const feedRate_t real_fr_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(axis);
  1106. #if IS_SCARA
  1107. // Tell the planner the axis is at 0
  1108. current_position[axis] = 0;
  1109. sync_plan_position();
  1110. current_position[axis] = distance;
  1111. line_to_current_position(real_fr_mm_s);
  1112. #else
  1113. float target[ABCE] = { planner.get_axis_position_mm(A_AXIS), planner.get_axis_position_mm(B_AXIS), planner.get_axis_position_mm(C_AXIS), planner.get_axis_position_mm(E_AXIS) };
  1114. target[axis] = 0;
  1115. planner.set_machine_position_mm(target);
  1116. target[axis] = distance;
  1117. #if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
  1118. const float delta_mm_cart[XYZE] = {0, 0, 0, 0};
  1119. #endif
  1120. // Set delta/cartesian axes directly
  1121. planner.buffer_segment(target
  1122. #if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
  1123. , delta_mm_cart
  1124. #endif
  1125. , real_fr_mm_s, active_extruder
  1126. );
  1127. #endif
  1128. planner.synchronize();
  1129. if (is_home_dir) {
  1130. #if HOMING_Z_WITH_PROBE && QUIET_PROBING
  1131. if (axis == Z_AXIS) probing_pause(false);
  1132. #endif
  1133. endstops.validate_homing_move();
  1134. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  1135. #if ENABLED(SENSORLESS_HOMING)
  1136. end_sensorless_homing_per_axis(axis, stealth_states);
  1137. #endif
  1138. }
  1139. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< do_homing_move(", axis_codes[axis], ")");
  1140. }
  1141. /**
  1142. * Set an axis' current position to its home position (after homing).
  1143. *
  1144. * For Core and Cartesian robots this applies one-to-one when an
  1145. * individual axis has been homed.
  1146. *
  1147. * DELTA should wait until all homing is done before setting the XYZ
  1148. * current_position to home, because homing is a single operation.
  1149. * In the case where the axis positions are already known and previously
  1150. * homed, DELTA could home to X or Y individually by moving either one
  1151. * to the center. However, homing Z always homes XY and Z.
  1152. *
  1153. * SCARA should wait until all XY homing is done before setting the XY
  1154. * current_position to home, because neither X nor Y is at home until
  1155. * both are at home. Z can however be homed individually.
  1156. *
  1157. * Callers must sync the planner position after calling this!
  1158. */
  1159. void set_axis_is_at_home(const AxisEnum axis) {
  1160. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_is_at_home(", axis_codes[axis], ")");
  1161. SBI(axis_known_position, axis);
  1162. SBI(axis_homed, axis);
  1163. #if ENABLED(DUAL_X_CARRIAGE)
  1164. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1165. current_position[X_AXIS] = x_home_pos(active_extruder);
  1166. return;
  1167. }
  1168. #endif
  1169. #if ENABLED(MORGAN_SCARA)
  1170. scara_set_axis_is_at_home(axis);
  1171. #elif ENABLED(DELTA)
  1172. current_position[axis] = (axis == Z_AXIS ? delta_height
  1173. #if HAS_BED_PROBE
  1174. - probe_offset[Z_AXIS]
  1175. #endif
  1176. : base_home_pos(axis));
  1177. #else
  1178. current_position[axis] = base_home_pos(axis);
  1179. #endif
  1180. /**
  1181. * Z Probe Z Homing? Account for the probe's Z offset.
  1182. */
  1183. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1184. if (axis == Z_AXIS) {
  1185. #if HOMING_Z_WITH_PROBE
  1186. current_position[Z_AXIS] -= probe_offset[Z_AXIS];
  1187. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***\n> probe_offset[Z_AXIS] = ", probe_offset[Z_AXIS]);
  1188. #else
  1189. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("*** Z HOMED TO ENDSTOP ***");
  1190. #endif
  1191. }
  1192. #endif
  1193. #if ENABLED(I2C_POSITION_ENCODERS)
  1194. I2CPEM.homed(axis);
  1195. #endif
  1196. #if ENABLED(BABYSTEP_DISPLAY_TOTAL)
  1197. babystep.reset_total(axis);
  1198. #endif
  1199. if (DEBUGGING(LEVELING)) {
  1200. #if HAS_HOME_OFFSET
  1201. DEBUG_ECHOLNPAIR("> home_offset[", axis_codes[axis], "] = ", home_offset[axis]);
  1202. #endif
  1203. DEBUG_POS("", current_position);
  1204. DEBUG_ECHOLNPAIR("<<< set_axis_is_at_home(", axis_codes[axis], ")");
  1205. }
  1206. }
  1207. /**
  1208. * Set an axis' to be unhomed.
  1209. */
  1210. void set_axis_is_not_at_home(const AxisEnum axis) {
  1211. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_is_not_at_home(", axis_codes[axis], ")");
  1212. CBI(axis_known_position, axis);
  1213. CBI(axis_homed, axis);
  1214. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< set_axis_is_not_at_home(", axis_codes[axis], ")");
  1215. #if ENABLED(I2C_POSITION_ENCODERS)
  1216. I2CPEM.unhomed(axis);
  1217. #endif
  1218. }
  1219. /**
  1220. * Home an individual "raw axis" to its endstop.
  1221. * This applies to XYZ on Cartesian and Core robots, and
  1222. * to the individual ABC steppers on DELTA and SCARA.
  1223. *
  1224. * At the end of the procedure the axis is marked as
  1225. * homed and the current position of that axis is updated.
  1226. * Kinematic robots should wait till all axes are homed
  1227. * before updating the current position.
  1228. */
  1229. void homeaxis(const AxisEnum axis) {
  1230. #if IS_SCARA
  1231. // Only Z homing (with probe) is permitted
  1232. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  1233. #else
  1234. #define _CAN_HOME(A) \
  1235. (axis == _AXIS(A) && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1236. #if X_SPI_SENSORLESS
  1237. #define CAN_HOME_X true
  1238. #else
  1239. #define CAN_HOME_X _CAN_HOME(X)
  1240. #endif
  1241. #if Y_SPI_SENSORLESS
  1242. #define CAN_HOME_Y true
  1243. #else
  1244. #define CAN_HOME_Y _CAN_HOME(Y)
  1245. #endif
  1246. #if Z_SPI_SENSORLESS
  1247. #define CAN_HOME_Z true
  1248. #else
  1249. #define CAN_HOME_Z _CAN_HOME(Z)
  1250. #endif
  1251. if (!CAN_HOME_X && !CAN_HOME_Y && !CAN_HOME_Z) return;
  1252. #endif
  1253. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> homeaxis(", axis_codes[axis], ")");
  1254. const int axis_home_dir = (
  1255. #if ENABLED(DUAL_X_CARRIAGE)
  1256. axis == X_AXIS ? x_home_dir(active_extruder) :
  1257. #endif
  1258. home_dir(axis)
  1259. );
  1260. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1261. #if HOMING_Z_WITH_PROBE
  1262. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  1263. #endif
  1264. // Set flags for X, Y, Z motor locking
  1265. #if HAS_EXTRA_ENDSTOPS
  1266. switch (axis) {
  1267. #if ENABLED(X_DUAL_ENDSTOPS)
  1268. case X_AXIS:
  1269. #endif
  1270. #if ENABLED(Y_DUAL_ENDSTOPS)
  1271. case Y_AXIS:
  1272. #endif
  1273. #if Z_MULTI_ENDSTOPS
  1274. case Z_AXIS:
  1275. #endif
  1276. stepper.set_separate_multi_axis(true);
  1277. default: break;
  1278. }
  1279. #endif
  1280. // Fast move towards endstop until triggered
  1281. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Home 1 Fast:");
  1282. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1283. if (axis == Z_AXIS && bltouch.deploy()) return; // The initial DEPLOY
  1284. #endif
  1285. do_homing_move(axis, 1.5f * max_length(
  1286. #if ENABLED(DELTA)
  1287. Z_AXIS
  1288. #else
  1289. axis
  1290. #endif
  1291. ) * axis_home_dir
  1292. );
  1293. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH) && DISABLED(BLTOUCH_HS_MODE)
  1294. if (axis == Z_AXIS) bltouch.stow(); // Intermediate STOW (in LOW SPEED MODE)
  1295. #endif
  1296. // When homing Z with probe respect probe clearance
  1297. const float bump = axis_home_dir * (
  1298. #if HOMING_Z_WITH_PROBE
  1299. (axis == Z_AXIS && (Z_HOME_BUMP_MM)) ? _MAX(Z_CLEARANCE_BETWEEN_PROBES, Z_HOME_BUMP_MM) :
  1300. #endif
  1301. home_bump_mm(axis)
  1302. );
  1303. // If a second homing move is configured...
  1304. if (bump) {
  1305. // Move away from the endstop by the axis HOME_BUMP_MM
  1306. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Move Away:");
  1307. do_homing_move(axis, -bump
  1308. #if HOMING_Z_WITH_PROBE
  1309. , MMM_TO_MMS(axis == Z_AXIS ? Z_PROBE_SPEED_FAST : 0)
  1310. #endif
  1311. );
  1312. // Slow move towards endstop until triggered
  1313. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Home 2 Slow:");
  1314. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH) && DISABLED(BLTOUCH_HS_MODE)
  1315. if (axis == Z_AXIS && bltouch.deploy()) return; // Intermediate DEPLOY (in LOW SPEED MODE)
  1316. #endif
  1317. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  1318. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1319. if (axis == Z_AXIS) bltouch.stow(); // The final STOW
  1320. #endif
  1321. }
  1322. #if HAS_EXTRA_ENDSTOPS
  1323. const bool pos_dir = axis_home_dir > 0;
  1324. #if ENABLED(X_DUAL_ENDSTOPS)
  1325. if (axis == X_AXIS) {
  1326. const float adj = ABS(endstops.x2_endstop_adj);
  1327. if (adj) {
  1328. if (pos_dir ? (endstops.x2_endstop_adj > 0) : (endstops.x2_endstop_adj < 0)) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
  1329. do_homing_move(axis, pos_dir ? -adj : adj);
  1330. stepper.set_x_lock(false);
  1331. stepper.set_x2_lock(false);
  1332. }
  1333. }
  1334. #endif
  1335. #if ENABLED(Y_DUAL_ENDSTOPS)
  1336. if (axis == Y_AXIS) {
  1337. const float adj = ABS(endstops.y2_endstop_adj);
  1338. if (adj) {
  1339. if (pos_dir ? (endstops.y2_endstop_adj > 0) : (endstops.y2_endstop_adj < 0)) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
  1340. do_homing_move(axis, pos_dir ? -adj : adj);
  1341. stepper.set_y_lock(false);
  1342. stepper.set_y2_lock(false);
  1343. }
  1344. }
  1345. #endif
  1346. #if ENABLED(Z_DUAL_ENDSTOPS)
  1347. if (axis == Z_AXIS) {
  1348. const float adj = ABS(endstops.z2_endstop_adj);
  1349. if (adj) {
  1350. if (pos_dir ? (endstops.z2_endstop_adj > 0) : (endstops.z2_endstop_adj < 0)) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1351. do_homing_move(axis, pos_dir ? -adj : adj);
  1352. stepper.set_z_lock(false);
  1353. stepper.set_z2_lock(false);
  1354. }
  1355. }
  1356. #endif
  1357. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  1358. if (axis == Z_AXIS) {
  1359. // we push the function pointers for the stepper lock function into an array
  1360. void (*lock[3]) (bool)= {&stepper.set_z_lock, &stepper.set_z2_lock, &stepper.set_z3_lock};
  1361. float adj[3] = {0, endstops.z2_endstop_adj, endstops.z3_endstop_adj};
  1362. void (*tempLock) (bool);
  1363. float tempAdj;
  1364. // manual bubble sort by adjust value
  1365. if (adj[1] < adj[0]) {
  1366. tempLock = lock[0], tempAdj = adj[0];
  1367. lock[0] = lock[1], adj[0] = adj[1];
  1368. lock[1] = tempLock, adj[1] = tempAdj;
  1369. }
  1370. if (adj[2] < adj[1]) {
  1371. tempLock = lock[1], tempAdj = adj[1];
  1372. lock[1] = lock[2], adj[1] = adj[2];
  1373. lock[2] = tempLock, adj[2] = tempAdj;
  1374. }
  1375. if (adj[1] < adj[0]) {
  1376. tempLock = lock[0], tempAdj = adj[0];
  1377. lock[0] = lock[1], adj[0] = adj[1];
  1378. lock[1] = tempLock, adj[1] = tempAdj;
  1379. }
  1380. if (pos_dir) {
  1381. // normalize adj to smallest value and do the first move
  1382. (*lock[0])(true);
  1383. do_homing_move(axis, adj[1] - adj[0]);
  1384. // lock the second stepper for the final correction
  1385. (*lock[1])(true);
  1386. do_homing_move(axis, adj[2] - adj[1]);
  1387. }
  1388. else {
  1389. (*lock[2])(true);
  1390. do_homing_move(axis, adj[1] - adj[2]);
  1391. (*lock[1])(true);
  1392. do_homing_move(axis, adj[0] - adj[1]);
  1393. }
  1394. stepper.set_z_lock(false);
  1395. stepper.set_z2_lock(false);
  1396. stepper.set_z3_lock(false);
  1397. }
  1398. #endif
  1399. // Reset flags for X, Y, Z motor locking
  1400. switch (axis) {
  1401. #if ENABLED(X_DUAL_ENDSTOPS)
  1402. case X_AXIS:
  1403. #endif
  1404. #if ENABLED(Y_DUAL_ENDSTOPS)
  1405. case Y_AXIS:
  1406. #endif
  1407. #if Z_MULTI_ENDSTOPS
  1408. case Z_AXIS:
  1409. #endif
  1410. stepper.set_separate_multi_axis(false);
  1411. default: break;
  1412. }
  1413. #endif
  1414. #if IS_SCARA
  1415. set_axis_is_at_home(axis);
  1416. sync_plan_position();
  1417. #elif ENABLED(DELTA)
  1418. // Delta has already moved all three towers up in G28
  1419. // so here it re-homes each tower in turn.
  1420. // Delta homing treats the axes as normal linear axes.
  1421. // retrace by the amount specified in delta_endstop_adj + additional dist in order to have minimum steps
  1422. if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
  1423. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("delta_endstop_adj:");
  1424. do_homing_move(axis, delta_endstop_adj[axis] - (MIN_STEPS_PER_SEGMENT + 1) * planner.steps_to_mm[axis] * Z_HOME_DIR);
  1425. }
  1426. #else // CARTESIAN / CORE
  1427. set_axis_is_at_home(axis);
  1428. sync_plan_position();
  1429. destination[axis] = current_position[axis];
  1430. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1431. #endif
  1432. // Put away the Z probe
  1433. #if HOMING_Z_WITH_PROBE
  1434. if (axis == Z_AXIS && STOW_PROBE()) return;
  1435. #endif
  1436. #ifdef HOMING_BACKOFF_MM
  1437. constexpr float endstop_backoff[XYZ] = HOMING_BACKOFF_MM;
  1438. const float backoff_mm = endstop_backoff[
  1439. #if ENABLED(DELTA)
  1440. Z_AXIS
  1441. #else
  1442. axis
  1443. #endif
  1444. ];
  1445. if (backoff_mm) {
  1446. current_position[axis] -= ABS(backoff_mm) * axis_home_dir;
  1447. line_to_current_position(
  1448. #if HOMING_Z_WITH_PROBE
  1449. (axis == Z_AXIS) ? MMM_TO_MMS(Z_PROBE_SPEED_FAST) :
  1450. #endif
  1451. homing_feedrate(axis)
  1452. );
  1453. }
  1454. #endif
  1455. // Clear retracted status if homing the Z axis
  1456. #if ENABLED(FWRETRACT)
  1457. if (axis == Z_AXIS) fwretract.current_hop = 0.0;
  1458. #endif
  1459. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< homeaxis(", axis_codes[axis], ")");
  1460. } // homeaxis()
  1461. #if HAS_WORKSPACE_OFFSET
  1462. void update_workspace_offset(const AxisEnum axis) {
  1463. workspace_offset[axis] = home_offset[axis] + position_shift[axis];
  1464. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Axis ", axis_codes[axis], " home_offset = ", home_offset[axis], " position_shift = ", position_shift[axis]);
  1465. }
  1466. #endif
  1467. #if HAS_M206_COMMAND
  1468. /**
  1469. * Change the home offset for an axis.
  1470. * Also refreshes the workspace offset.
  1471. */
  1472. void set_home_offset(const AxisEnum axis, const float v) {
  1473. home_offset[axis] = v;
  1474. update_workspace_offset(axis);
  1475. }
  1476. #endif // HAS_M206_COMMAND