My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

Marlin_main.cpp 171KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #if Z_MIN_PIN == -1
  26. #error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
  27. #endif
  28. #include "vector_3.h"
  29. #ifdef AUTO_BED_LEVELING_GRID
  30. #include "qr_solve.h"
  31. #endif
  32. #endif // ENABLE_AUTO_BED_LEVELING
  33. #include "ultralcd.h"
  34. #include "planner.h"
  35. #include "stepper.h"
  36. #include "temperature.h"
  37. #include "motion_control.h"
  38. #include "cardreader.h"
  39. #include "watchdog.h"
  40. #include "ConfigurationStore.h"
  41. #include "language.h"
  42. #include "pins_arduino.h"
  43. #include "math.h"
  44. #ifdef BLINKM
  45. #include "BlinkM.h"
  46. #include "Wire.h"
  47. #endif
  48. #if NUM_SERVOS > 0
  49. #include "Servo.h"
  50. #endif
  51. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  52. #include <SPI.h>
  53. #endif
  54. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  55. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  56. //Implemented Codes
  57. //-------------------
  58. // G0 -> G1
  59. // G1 - Coordinated Movement X Y Z E
  60. // G2 - CW ARC
  61. // G3 - CCW ARC
  62. // G4 - Dwell S<seconds> or P<milliseconds>
  63. // G10 - retract filament according to settings of M207
  64. // G11 - retract recover filament according to settings of M208
  65. // G28 - Home all Axis
  66. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  67. // G30 - Single Z Probe, probes bed at current XY location.
  68. // G31 - Dock sled (Z_PROBE_SLED only)
  69. // G32 - Undock sled (Z_PROBE_SLED only)
  70. // G90 - Use Absolute Coordinates
  71. // G91 - Use Relative Coordinates
  72. // G92 - Set current position to coordinates given
  73. // M Codes
  74. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  75. // M1 - Same as M0
  76. // M17 - Enable/Power all stepper motors
  77. // M18 - Disable all stepper motors; same as M84
  78. // M20 - List SD card
  79. // M21 - Init SD card
  80. // M22 - Release SD card
  81. // M23 - Select SD file (M23 filename.g)
  82. // M24 - Start/resume SD print
  83. // M25 - Pause SD print
  84. // M26 - Set SD position in bytes (M26 S12345)
  85. // M27 - Report SD print status
  86. // M28 - Start SD write (M28 filename.g)
  87. // M29 - Stop SD write
  88. // M30 - Delete file from SD (M30 filename.g)
  89. // M31 - Output time since last M109 or SD card start to serial
  90. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  91. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  92. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  93. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  94. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  95. // M80 - Turn on Power Supply
  96. // M81 - Turn off Power Supply
  97. // M82 - Set E codes absolute (default)
  98. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  99. // M84 - Disable steppers until next move,
  100. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  101. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  102. // M92 - Set axis_steps_per_unit - same syntax as G92
  103. // M104 - Set extruder target temp
  104. // M105 - Read current temp
  105. // M106 - Fan on
  106. // M107 - Fan off
  107. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  108. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  109. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  110. // M112 - Emergency stop
  111. // M114 - Output current position to serial port
  112. // M115 - Capabilities string
  113. // M117 - display message
  114. // M119 - Output Endstop status to serial port
  115. // M120 - Enable endstop detection
  116. // M121 - Disable endstop detection
  117. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  118. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  119. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  120. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M140 - Set bed target temp
  122. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  123. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  124. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  125. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  126. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  127. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  128. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  129. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  130. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  131. // M206 - Set additional homing offset
  132. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  133. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  134. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  135. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  136. // M220 S<factor in percent>- set speed factor override percentage
  137. // M221 S<factor in percent>- set extrude factor override percentage
  138. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  139. // M240 - Trigger a camera to take a photograph
  140. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  141. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  142. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  143. // M301 - Set PID parameters P I and D
  144. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  145. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  146. // M304 - Set bed PID parameters P I and D
  147. // M380 - Activate solenoid on active extruder
  148. // M381 - Disable all solenoids
  149. // M400 - Finish all moves
  150. // M401 - Lower z-probe if present
  151. // M402 - Raise z-probe if present
  152. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  153. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  154. // M406 - Turn off Filament Sensor extrusion control
  155. // M407 - Displays measured filament diameter
  156. // M500 - Store parameters in EEPROM
  157. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  158. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  159. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  160. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  161. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  162. // M665 - Set delta configurations
  163. // M666 - Set delta endstop adjustment
  164. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  165. // M907 - Set digital trimpot motor current using axis codes.
  166. // M908 - Control digital trimpot directly.
  167. // M350 - Set microstepping mode.
  168. // M351 - Toggle MS1 MS2 pins directly.
  169. // ************ SCARA Specific - This can change to suit future G-code regulations
  170. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  171. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  172. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  173. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  174. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  175. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  176. //************* SCARA End ***************
  177. // M928 - Start SD logging (M928 filename.g) - ended by M29
  178. // M999 - Restart after being stopped by error
  179. #ifdef SDSUPPORT
  180. CardReader card;
  181. #endif
  182. float homing_feedrate[] = HOMING_FEEDRATE;
  183. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  184. int feedmultiply = 100; //100->1 200->2
  185. int saved_feedmultiply;
  186. int extrudemultiply = 100; //100->1 200->2
  187. int extruder_multiply[EXTRUDERS] = { 100
  188. #if EXTRUDERS > 1
  189. , 100
  190. #if EXTRUDERS > 2
  191. , 100
  192. #if EXTRUDERS > 3
  193. , 100
  194. #endif
  195. #endif
  196. #endif
  197. };
  198. bool volumetric_enabled = false;
  199. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  200. #if EXTRUDERS > 1
  201. , DEFAULT_NOMINAL_FILAMENT_DIA
  202. #if EXTRUDERS > 2
  203. , DEFAULT_NOMINAL_FILAMENT_DIA
  204. #if EXTRUDERS > 3
  205. , DEFAULT_NOMINAL_FILAMENT_DIA
  206. #endif
  207. #endif
  208. #endif
  209. };
  210. float volumetric_multiplier[EXTRUDERS] = {1.0
  211. #if EXTRUDERS > 1
  212. , 1.0
  213. #if EXTRUDERS > 2
  214. , 1.0
  215. #if EXTRUDERS > 3
  216. , 1.0
  217. #endif
  218. #endif
  219. #endif
  220. };
  221. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  222. float add_homing[3] = { 0, 0, 0 };
  223. #ifdef DELTA
  224. float endstop_adj[3] = { 0, 0, 0 };
  225. #endif
  226. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  227. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  228. bool axis_known_position[3] = { false, false, false };
  229. float zprobe_zoffset;
  230. // Extruder offset
  231. #if EXTRUDERS > 1
  232. #ifndef DUAL_X_CARRIAGE
  233. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  234. #else
  235. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  236. #endif
  237. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  238. #if defined(EXTRUDER_OFFSET_X)
  239. EXTRUDER_OFFSET_X
  240. #else
  241. 0
  242. #endif
  243. ,
  244. #if defined(EXTRUDER_OFFSET_Y)
  245. EXTRUDER_OFFSET_Y
  246. #else
  247. 0
  248. #endif
  249. };
  250. #endif
  251. uint8_t active_extruder = 0;
  252. int fanSpeed = 0;
  253. #ifdef SERVO_ENDSTOPS
  254. int servo_endstops[] = SERVO_ENDSTOPS;
  255. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  256. #endif
  257. #ifdef BARICUDA
  258. int ValvePressure = 0;
  259. int EtoPPressure = 0;
  260. #endif
  261. #ifdef FWRETRACT
  262. bool autoretract_enabled = false;
  263. bool retracted[EXTRUDERS] = { false
  264. #if EXTRUDERS > 1
  265. , false
  266. #if EXTRUDERS > 2
  267. , false
  268. #if EXTRUDERS > 3
  269. , false
  270. #endif
  271. #endif
  272. #endif
  273. };
  274. bool retracted_swap[EXTRUDERS] = { false
  275. #if EXTRUDERS > 1
  276. , false
  277. #if EXTRUDERS > 2
  278. , false
  279. #if EXTRUDERS > 3
  280. , false
  281. #endif
  282. #endif
  283. #endif
  284. };
  285. float retract_length = RETRACT_LENGTH;
  286. float retract_length_swap = RETRACT_LENGTH_SWAP;
  287. float retract_feedrate = RETRACT_FEEDRATE;
  288. float retract_zlift = RETRACT_ZLIFT;
  289. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  290. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  291. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  292. #endif // FWRETRACT
  293. #ifdef ULTIPANEL
  294. bool powersupply =
  295. #ifdef PS_DEFAULT_OFF
  296. false
  297. #else
  298. true
  299. #endif
  300. ;
  301. #endif
  302. #ifdef DELTA
  303. float delta[3] = { 0, 0, 0 };
  304. #define SIN_60 0.8660254037844386
  305. #define COS_60 0.5
  306. // these are the default values, can be overriden with M665
  307. float delta_radius = DELTA_RADIUS;
  308. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  309. float delta_tower1_y = -COS_60 * delta_radius;
  310. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  311. float delta_tower2_y = -COS_60 * delta_radius;
  312. float delta_tower3_x = 0; // back middle tower
  313. float delta_tower3_y = delta_radius;
  314. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  315. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  316. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  317. #endif
  318. #ifdef SCARA
  319. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  320. #endif
  321. bool cancel_heatup = false;
  322. #ifdef FILAMENT_SENSOR
  323. //Variables for Filament Sensor input
  324. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  325. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  326. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  327. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  328. int delay_index1=0; //index into ring buffer
  329. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  330. float delay_dist=0; //delay distance counter
  331. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  332. #endif
  333. const char errormagic[] PROGMEM = "Error:";
  334. const char echomagic[] PROGMEM = "echo:";
  335. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  336. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  337. #ifndef DELTA
  338. static float delta[3] = { 0, 0, 0 };
  339. #endif
  340. static float offset[3] = { 0, 0, 0 };
  341. static bool home_all_axis = true;
  342. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  343. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  344. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  345. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  346. static bool fromsd[BUFSIZE];
  347. static int bufindr = 0;
  348. static int bufindw = 0;
  349. static int buflen = 0;
  350. static char serial_char;
  351. static int serial_count = 0;
  352. static boolean comment_mode = false;
  353. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  354. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  355. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  356. // Inactivity shutdown
  357. static unsigned long previous_millis_cmd = 0;
  358. static unsigned long max_inactive_time = 0;
  359. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  360. unsigned long starttime = 0; ///< Print job start time
  361. unsigned long stoptime = 0; ///< Print job stop time
  362. static uint8_t tmp_extruder;
  363. bool Stopped = false;
  364. #if NUM_SERVOS > 0
  365. Servo servos[NUM_SERVOS];
  366. #endif
  367. bool CooldownNoWait = true;
  368. bool target_direction;
  369. #ifdef CHDK
  370. unsigned long chdkHigh = 0;
  371. boolean chdkActive = false;
  372. #endif
  373. //===========================================================================
  374. //=============================Routines======================================
  375. //===========================================================================
  376. void get_arc_coordinates();
  377. bool setTargetedHotend(int code);
  378. void serial_echopair_P(const char *s_P, float v)
  379. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  380. void serial_echopair_P(const char *s_P, double v)
  381. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  382. void serial_echopair_P(const char *s_P, unsigned long v)
  383. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  384. #ifdef SDSUPPORT
  385. #include "SdFatUtil.h"
  386. int freeMemory() { return SdFatUtil::FreeRam(); }
  387. #else
  388. extern "C" {
  389. extern unsigned int __bss_end;
  390. extern unsigned int __heap_start;
  391. extern void *__brkval;
  392. int freeMemory() {
  393. int free_memory;
  394. if ((int)__brkval == 0)
  395. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  396. else
  397. free_memory = ((int)&free_memory) - ((int)__brkval);
  398. return free_memory;
  399. }
  400. }
  401. #endif //!SDSUPPORT
  402. //Injects the next command from the pending sequence of commands, when possible
  403. //Return false if and only if no command was pending
  404. static bool drain_queued_commands_P()
  405. {
  406. char cmd[30];
  407. if(!queued_commands_P)
  408. return false;
  409. // Get the next 30 chars from the sequence of gcodes to run
  410. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  411. cmd[sizeof(cmd)-1]= 0;
  412. // Look for the end of line, or the end of sequence
  413. size_t i= 0;
  414. char c;
  415. while( (c= cmd[i]) && c!='\n' )
  416. ++i; // look for the end of this gcode command
  417. cmd[i]= 0;
  418. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  419. {
  420. if(c)
  421. queued_commands_P+= i+1; // move to next command
  422. else
  423. queued_commands_P= NULL; // will have no more commands in the sequence
  424. }
  425. return true;
  426. }
  427. //Record one or many commands to run from program memory.
  428. //Aborts the current queue, if any.
  429. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  430. void enquecommands_P(const char* pgcode)
  431. {
  432. queued_commands_P= pgcode;
  433. drain_queued_commands_P(); // first command exectuted asap (when possible)
  434. }
  435. //adds a single command to the main command buffer, from RAM
  436. //that is really done in a non-safe way.
  437. //needs overworking someday
  438. //Returns false if it failed to do so
  439. bool enquecommand(const char *cmd)
  440. {
  441. if(*cmd==';')
  442. return false;
  443. if(buflen >= BUFSIZE)
  444. return false;
  445. //this is dangerous if a mixing of serial and this happens
  446. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  447. SERIAL_ECHO_START;
  448. SERIAL_ECHOPGM(MSG_Enqueing);
  449. SERIAL_ECHO(cmdbuffer[bufindw]);
  450. SERIAL_ECHOLNPGM("\"");
  451. bufindw= (bufindw + 1)%BUFSIZE;
  452. buflen += 1;
  453. return true;
  454. }
  455. void setup_killpin()
  456. {
  457. #if defined(KILL_PIN) && KILL_PIN > -1
  458. SET_INPUT(KILL_PIN);
  459. WRITE(KILL_PIN,HIGH);
  460. #endif
  461. }
  462. // Set home pin
  463. void setup_homepin(void)
  464. {
  465. #if defined(HOME_PIN) && HOME_PIN > -1
  466. SET_INPUT(HOME_PIN);
  467. WRITE(HOME_PIN,HIGH);
  468. #endif
  469. }
  470. void setup_photpin()
  471. {
  472. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  473. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  474. #endif
  475. }
  476. void setup_powerhold()
  477. {
  478. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  479. OUT_WRITE(SUICIDE_PIN, HIGH);
  480. #endif
  481. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  482. #if defined(PS_DEFAULT_OFF)
  483. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  484. #else
  485. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  486. #endif
  487. #endif
  488. }
  489. void suicide()
  490. {
  491. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  492. OUT_WRITE(SUICIDE_PIN, LOW);
  493. #endif
  494. }
  495. void servo_init()
  496. {
  497. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  498. servos[0].attach(SERVO0_PIN);
  499. #endif
  500. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  501. servos[1].attach(SERVO1_PIN);
  502. #endif
  503. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  504. servos[2].attach(SERVO2_PIN);
  505. #endif
  506. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  507. servos[3].attach(SERVO3_PIN);
  508. #endif
  509. #if (NUM_SERVOS >= 5)
  510. #error "TODO: enter initalisation code for more servos"
  511. #endif
  512. // Set position of Servo Endstops that are defined
  513. #ifdef SERVO_ENDSTOPS
  514. for(int8_t i = 0; i < 3; i++)
  515. {
  516. if(servo_endstops[i] > -1) {
  517. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  518. }
  519. }
  520. #endif
  521. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  522. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  523. servos[servo_endstops[Z_AXIS]].detach();
  524. #endif
  525. }
  526. void setup()
  527. {
  528. setup_killpin();
  529. setup_powerhold();
  530. MYSERIAL.begin(BAUDRATE);
  531. SERIAL_PROTOCOLLNPGM("start");
  532. SERIAL_ECHO_START;
  533. // Check startup - does nothing if bootloader sets MCUSR to 0
  534. byte mcu = MCUSR;
  535. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  536. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  537. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  538. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  539. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  540. MCUSR=0;
  541. SERIAL_ECHOPGM(MSG_MARLIN);
  542. SERIAL_ECHOLNPGM(STRING_VERSION);
  543. #ifdef STRING_VERSION_CONFIG_H
  544. #ifdef STRING_CONFIG_H_AUTHOR
  545. SERIAL_ECHO_START;
  546. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  547. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  548. SERIAL_ECHOPGM(MSG_AUTHOR);
  549. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  550. SERIAL_ECHOPGM("Compiled: ");
  551. SERIAL_ECHOLNPGM(__DATE__);
  552. #endif // STRING_CONFIG_H_AUTHOR
  553. #endif // STRING_VERSION_CONFIG_H
  554. SERIAL_ECHO_START;
  555. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  556. SERIAL_ECHO(freeMemory());
  557. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  558. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  559. for(int8_t i = 0; i < BUFSIZE; i++)
  560. {
  561. fromsd[i] = false;
  562. }
  563. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  564. Config_RetrieveSettings();
  565. tp_init(); // Initialize temperature loop
  566. plan_init(); // Initialize planner;
  567. watchdog_init();
  568. st_init(); // Initialize stepper, this enables interrupts!
  569. setup_photpin();
  570. servo_init();
  571. lcd_init();
  572. _delay_ms(1000); // wait 1sec to display the splash screen
  573. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  574. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  575. #endif
  576. #ifdef DIGIPOT_I2C
  577. digipot_i2c_init();
  578. #endif
  579. #ifdef Z_PROBE_SLED
  580. pinMode(SERVO0_PIN, OUTPUT);
  581. digitalWrite(SERVO0_PIN, LOW); // turn it off
  582. #endif // Z_PROBE_SLED
  583. setup_homepin();
  584. #ifdef STAT_LED_RED
  585. pinMode(STAT_LED_RED, OUTPUT);
  586. digitalWrite(STAT_LED_RED, LOW); // turn it off
  587. #endif
  588. #ifdef STAT_LED_BLUE
  589. pinMode(STAT_LED_BLUE, OUTPUT);
  590. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  591. #endif
  592. }
  593. void loop()
  594. {
  595. if(buflen < (BUFSIZE-1))
  596. get_command();
  597. #ifdef SDSUPPORT
  598. card.checkautostart(false);
  599. #endif
  600. if(buflen)
  601. {
  602. #ifdef SDSUPPORT
  603. if(card.saving)
  604. {
  605. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  606. {
  607. card.write_command(cmdbuffer[bufindr]);
  608. if(card.logging)
  609. {
  610. process_commands();
  611. }
  612. else
  613. {
  614. SERIAL_PROTOCOLLNPGM(MSG_OK);
  615. }
  616. }
  617. else
  618. {
  619. card.closefile();
  620. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  621. }
  622. }
  623. else
  624. {
  625. process_commands();
  626. }
  627. #else
  628. process_commands();
  629. #endif //SDSUPPORT
  630. buflen = (buflen-1);
  631. bufindr = (bufindr + 1)%BUFSIZE;
  632. }
  633. //check heater every n milliseconds
  634. manage_heater();
  635. manage_inactivity();
  636. checkHitEndstops();
  637. lcd_update();
  638. }
  639. void get_command()
  640. {
  641. if(drain_queued_commands_P()) // priority is given to non-serial commands
  642. return;
  643. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  644. serial_char = MYSERIAL.read();
  645. if(serial_char == '\n' ||
  646. serial_char == '\r' ||
  647. serial_count >= (MAX_CMD_SIZE - 1) )
  648. {
  649. // end of line == end of comment
  650. comment_mode = false;
  651. if(!serial_count) {
  652. // short cut for empty lines
  653. return;
  654. }
  655. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  656. fromsd[bufindw] = false;
  657. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  658. {
  659. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  660. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  661. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  662. SERIAL_ERROR_START;
  663. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  664. SERIAL_ERRORLN(gcode_LastN);
  665. //Serial.println(gcode_N);
  666. FlushSerialRequestResend();
  667. serial_count = 0;
  668. return;
  669. }
  670. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  671. {
  672. byte checksum = 0;
  673. byte count = 0;
  674. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  675. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  676. if( (int)(strtod(strchr_pointer + 1, NULL)) != checksum) {
  677. SERIAL_ERROR_START;
  678. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  679. SERIAL_ERRORLN(gcode_LastN);
  680. FlushSerialRequestResend();
  681. serial_count = 0;
  682. return;
  683. }
  684. //if no errors, continue parsing
  685. }
  686. else
  687. {
  688. SERIAL_ERROR_START;
  689. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  690. SERIAL_ERRORLN(gcode_LastN);
  691. FlushSerialRequestResend();
  692. serial_count = 0;
  693. return;
  694. }
  695. gcode_LastN = gcode_N;
  696. //if no errors, continue parsing
  697. }
  698. else // if we don't receive 'N' but still see '*'
  699. {
  700. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  701. {
  702. SERIAL_ERROR_START;
  703. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  704. SERIAL_ERRORLN(gcode_LastN);
  705. serial_count = 0;
  706. return;
  707. }
  708. }
  709. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  710. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  711. switch((int)((strtod(strchr_pointer + 1, NULL)))){
  712. case 0:
  713. case 1:
  714. case 2:
  715. case 3:
  716. if (Stopped == true) {
  717. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  718. LCD_MESSAGEPGM(MSG_STOPPED);
  719. }
  720. break;
  721. default:
  722. break;
  723. }
  724. }
  725. //If command was e-stop process now
  726. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  727. kill();
  728. bufindw = (bufindw + 1)%BUFSIZE;
  729. buflen += 1;
  730. serial_count = 0; //clear buffer
  731. }
  732. else if(serial_char == '\\') { //Handle escapes
  733. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  734. // if we have one more character, copy it over
  735. serial_char = MYSERIAL.read();
  736. cmdbuffer[bufindw][serial_count++] = serial_char;
  737. }
  738. //otherwise do nothing
  739. }
  740. else { // its not a newline, carriage return or escape char
  741. if(serial_char == ';') comment_mode = true;
  742. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  743. }
  744. }
  745. #ifdef SDSUPPORT
  746. if(!card.sdprinting || serial_count!=0){
  747. return;
  748. }
  749. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  750. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  751. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  752. static bool stop_buffering=false;
  753. if(buflen==0) stop_buffering=false;
  754. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  755. int16_t n=card.get();
  756. serial_char = (char)n;
  757. if(serial_char == '\n' ||
  758. serial_char == '\r' ||
  759. (serial_char == '#' && comment_mode == false) ||
  760. (serial_char == ':' && comment_mode == false) ||
  761. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  762. {
  763. if(card.eof()){
  764. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  765. stoptime=millis();
  766. char time[30];
  767. unsigned long t=(stoptime-starttime)/1000;
  768. int hours, minutes;
  769. minutes=(t/60)%60;
  770. hours=t/60/60;
  771. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  772. SERIAL_ECHO_START;
  773. SERIAL_ECHOLN(time);
  774. lcd_setstatus(time);
  775. card.printingHasFinished();
  776. card.checkautostart(true);
  777. }
  778. if(serial_char=='#')
  779. stop_buffering=true;
  780. if(!serial_count)
  781. {
  782. comment_mode = false; //for new command
  783. return; //if empty line
  784. }
  785. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  786. // if(!comment_mode){
  787. fromsd[bufindw] = true;
  788. buflen += 1;
  789. bufindw = (bufindw + 1)%BUFSIZE;
  790. // }
  791. comment_mode = false; //for new command
  792. serial_count = 0; //clear buffer
  793. }
  794. else
  795. {
  796. if(serial_char == ';') comment_mode = true;
  797. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  798. }
  799. }
  800. #endif //SDSUPPORT
  801. }
  802. float code_value()
  803. {
  804. return (strtod(strchr_pointer + 1, NULL));
  805. }
  806. long code_value_long()
  807. {
  808. return (strtol(strchr_pointer + 1, NULL, 10));
  809. }
  810. bool code_seen(char code)
  811. {
  812. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  813. return (strchr_pointer != NULL); //Return True if a character was found
  814. }
  815. #define DEFINE_PGM_READ_ANY(type, reader) \
  816. static inline type pgm_read_any(const type *p) \
  817. { return pgm_read_##reader##_near(p); }
  818. DEFINE_PGM_READ_ANY(float, float);
  819. DEFINE_PGM_READ_ANY(signed char, byte);
  820. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  821. static const PROGMEM type array##_P[3] = \
  822. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  823. static inline type array(int axis) \
  824. { return pgm_read_any(&array##_P[axis]); }
  825. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  826. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  827. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  828. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  829. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  830. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  831. #ifdef DUAL_X_CARRIAGE
  832. #if EXTRUDERS == 1 || defined(COREXY) \
  833. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  834. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  835. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  836. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  837. #endif
  838. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  839. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  840. #endif
  841. #define DXC_FULL_CONTROL_MODE 0
  842. #define DXC_AUTO_PARK_MODE 1
  843. #define DXC_DUPLICATION_MODE 2
  844. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  845. static float x_home_pos(int extruder) {
  846. if (extruder == 0)
  847. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  848. else
  849. // In dual carriage mode the extruder offset provides an override of the
  850. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  851. // This allow soft recalibration of the second extruder offset position without firmware reflash
  852. // (through the M218 command).
  853. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  854. }
  855. static int x_home_dir(int extruder) {
  856. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  857. }
  858. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  859. static bool active_extruder_parked = false; // used in mode 1 & 2
  860. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  861. static unsigned long delayed_move_time = 0; // used in mode 1
  862. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  863. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  864. bool extruder_duplication_enabled = false; // used in mode 2
  865. #endif //DUAL_X_CARRIAGE
  866. static void axis_is_at_home(int axis) {
  867. #ifdef DUAL_X_CARRIAGE
  868. if (axis == X_AXIS) {
  869. if (active_extruder != 0) {
  870. current_position[X_AXIS] = x_home_pos(active_extruder);
  871. min_pos[X_AXIS] = X2_MIN_POS;
  872. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  873. return;
  874. }
  875. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  876. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  877. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  878. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  879. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  880. return;
  881. }
  882. }
  883. #endif
  884. #ifdef SCARA
  885. float homeposition[3];
  886. char i;
  887. if (axis < 2)
  888. {
  889. for (i=0; i<3; i++)
  890. {
  891. homeposition[i] = base_home_pos(i);
  892. }
  893. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  894. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  895. // Works out real Homeposition angles using inverse kinematics,
  896. // and calculates homing offset using forward kinematics
  897. calculate_delta(homeposition);
  898. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  899. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  900. for (i=0; i<2; i++)
  901. {
  902. delta[i] -= add_homing[i];
  903. }
  904. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  905. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  906. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  907. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  908. calculate_SCARA_forward_Transform(delta);
  909. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  910. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  911. current_position[axis] = delta[axis];
  912. // SCARA home positions are based on configuration since the actual limits are determined by the
  913. // inverse kinematic transform.
  914. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  915. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  916. }
  917. else
  918. {
  919. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  920. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  921. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  922. }
  923. #else
  924. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  925. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  926. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  927. #endif
  928. }
  929. #ifdef ENABLE_AUTO_BED_LEVELING
  930. #ifdef AUTO_BED_LEVELING_GRID
  931. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  932. {
  933. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  934. planeNormal.debug("planeNormal");
  935. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  936. //bedLevel.debug("bedLevel");
  937. //plan_bed_level_matrix.debug("bed level before");
  938. //vector_3 uncorrected_position = plan_get_position_mm();
  939. //uncorrected_position.debug("position before");
  940. vector_3 corrected_position = plan_get_position();
  941. // corrected_position.debug("position after");
  942. current_position[X_AXIS] = corrected_position.x;
  943. current_position[Y_AXIS] = corrected_position.y;
  944. current_position[Z_AXIS] = corrected_position.z;
  945. // put the bed at 0 so we don't go below it.
  946. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  947. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  948. }
  949. #else // not AUTO_BED_LEVELING_GRID
  950. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  951. plan_bed_level_matrix.set_to_identity();
  952. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  953. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  954. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  955. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  956. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  957. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  958. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  959. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  960. vector_3 corrected_position = plan_get_position();
  961. current_position[X_AXIS] = corrected_position.x;
  962. current_position[Y_AXIS] = corrected_position.y;
  963. current_position[Z_AXIS] = corrected_position.z;
  964. // put the bed at 0 so we don't go below it.
  965. current_position[Z_AXIS] = zprobe_zoffset;
  966. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  967. }
  968. #endif // AUTO_BED_LEVELING_GRID
  969. static void run_z_probe() {
  970. plan_bed_level_matrix.set_to_identity();
  971. feedrate = homing_feedrate[Z_AXIS];
  972. // move down until you find the bed
  973. float zPosition = -10;
  974. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  975. st_synchronize();
  976. // we have to let the planner know where we are right now as it is not where we said to go.
  977. zPosition = st_get_position_mm(Z_AXIS);
  978. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  979. // move up the retract distance
  980. zPosition += home_retract_mm(Z_AXIS);
  981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  982. st_synchronize();
  983. // move back down slowly to find bed
  984. feedrate = homing_feedrate[Z_AXIS]/4;
  985. zPosition -= home_retract_mm(Z_AXIS) * 2;
  986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  987. st_synchronize();
  988. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  989. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  990. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  991. }
  992. static void do_blocking_move_to(float x, float y, float z) {
  993. float oldFeedRate = feedrate;
  994. feedrate = homing_feedrate[Z_AXIS];
  995. current_position[Z_AXIS] = z;
  996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  997. st_synchronize();
  998. feedrate = XY_TRAVEL_SPEED;
  999. current_position[X_AXIS] = x;
  1000. current_position[Y_AXIS] = y;
  1001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1002. st_synchronize();
  1003. feedrate = oldFeedRate;
  1004. }
  1005. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1006. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1007. }
  1008. static void setup_for_endstop_move() {
  1009. saved_feedrate = feedrate;
  1010. saved_feedmultiply = feedmultiply;
  1011. feedmultiply = 100;
  1012. previous_millis_cmd = millis();
  1013. enable_endstops(true);
  1014. }
  1015. static void clean_up_after_endstop_move() {
  1016. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1017. enable_endstops(false);
  1018. #endif
  1019. feedrate = saved_feedrate;
  1020. feedmultiply = saved_feedmultiply;
  1021. previous_millis_cmd = millis();
  1022. }
  1023. static void engage_z_probe() {
  1024. // Engage Z Servo endstop if enabled
  1025. #ifdef SERVO_ENDSTOPS
  1026. if (servo_endstops[Z_AXIS] > -1) {
  1027. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1028. servos[servo_endstops[Z_AXIS]].attach(0);
  1029. #endif
  1030. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1031. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1032. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1033. servos[servo_endstops[Z_AXIS]].detach();
  1034. #endif
  1035. }
  1036. #endif
  1037. }
  1038. static void retract_z_probe() {
  1039. // Retract Z Servo endstop if enabled
  1040. #ifdef SERVO_ENDSTOPS
  1041. if (servo_endstops[Z_AXIS] > -1) {
  1042. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1043. servos[servo_endstops[Z_AXIS]].attach(0);
  1044. #endif
  1045. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1046. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1047. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1048. servos[servo_endstops[Z_AXIS]].detach();
  1049. #endif
  1050. }
  1051. #endif
  1052. }
  1053. enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
  1054. /// Probe bed height at position (x,y), returns the measured z value
  1055. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract) {
  1056. // move to right place
  1057. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1058. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1059. #ifndef Z_PROBE_SLED
  1060. if (retract_action & ProbeEngage) engage_z_probe();
  1061. #endif
  1062. run_z_probe();
  1063. float measured_z = current_position[Z_AXIS];
  1064. #ifndef Z_PROBE_SLED
  1065. if (retract_action & ProbeRetract) retract_z_probe();
  1066. #endif
  1067. SERIAL_PROTOCOLPGM(MSG_BED);
  1068. SERIAL_PROTOCOLPGM(" x: ");
  1069. SERIAL_PROTOCOL(x);
  1070. SERIAL_PROTOCOLPGM(" y: ");
  1071. SERIAL_PROTOCOL(y);
  1072. SERIAL_PROTOCOLPGM(" z: ");
  1073. SERIAL_PROTOCOL(measured_z);
  1074. SERIAL_PROTOCOLPGM("\n");
  1075. return measured_z;
  1076. }
  1077. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1078. static void homeaxis(int axis) {
  1079. #define HOMEAXIS_DO(LETTER) \
  1080. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1081. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1082. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1083. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1084. 0) {
  1085. int axis_home_dir = home_dir(axis);
  1086. #ifdef DUAL_X_CARRIAGE
  1087. if (axis == X_AXIS)
  1088. axis_home_dir = x_home_dir(active_extruder);
  1089. #endif
  1090. current_position[axis] = 0;
  1091. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1092. #ifndef Z_PROBE_SLED
  1093. // Engage Servo endstop if enabled
  1094. #ifdef SERVO_ENDSTOPS
  1095. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1096. if (axis==Z_AXIS) {
  1097. engage_z_probe();
  1098. }
  1099. else
  1100. #endif
  1101. if (servo_endstops[axis] > -1) {
  1102. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1103. }
  1104. #endif
  1105. #endif // Z_PROBE_SLED
  1106. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1107. feedrate = homing_feedrate[axis];
  1108. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1109. st_synchronize();
  1110. current_position[axis] = 0;
  1111. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1112. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1113. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1114. st_synchronize();
  1115. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1116. #ifdef DELTA
  1117. feedrate = homing_feedrate[axis]/10;
  1118. #else
  1119. feedrate = homing_feedrate[axis]/2 ;
  1120. #endif
  1121. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1122. st_synchronize();
  1123. #ifdef DELTA
  1124. // retrace by the amount specified in endstop_adj
  1125. if (endstop_adj[axis] * axis_home_dir < 0) {
  1126. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1127. destination[axis] = endstop_adj[axis];
  1128. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1129. st_synchronize();
  1130. }
  1131. #endif
  1132. axis_is_at_home(axis);
  1133. destination[axis] = current_position[axis];
  1134. feedrate = 0.0;
  1135. endstops_hit_on_purpose();
  1136. axis_known_position[axis] = true;
  1137. // Retract Servo endstop if enabled
  1138. #ifdef SERVO_ENDSTOPS
  1139. if (servo_endstops[axis] > -1) {
  1140. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1141. }
  1142. #endif
  1143. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1144. #ifndef Z_PROBE_SLED
  1145. if (axis==Z_AXIS) retract_z_probe();
  1146. #endif
  1147. #endif
  1148. }
  1149. }
  1150. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1151. void refresh_cmd_timeout(void)
  1152. {
  1153. previous_millis_cmd = millis();
  1154. }
  1155. #ifdef FWRETRACT
  1156. void retract(bool retracting, bool swapretract = false) {
  1157. if(retracting && !retracted[active_extruder]) {
  1158. destination[X_AXIS]=current_position[X_AXIS];
  1159. destination[Y_AXIS]=current_position[Y_AXIS];
  1160. destination[Z_AXIS]=current_position[Z_AXIS];
  1161. destination[E_AXIS]=current_position[E_AXIS];
  1162. if (swapretract) {
  1163. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1164. } else {
  1165. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1166. }
  1167. plan_set_e_position(current_position[E_AXIS]);
  1168. float oldFeedrate = feedrate;
  1169. feedrate=retract_feedrate*60;
  1170. retracted[active_extruder]=true;
  1171. prepare_move();
  1172. if(retract_zlift > 0.01) {
  1173. current_position[Z_AXIS]-=retract_zlift;
  1174. #ifdef DELTA
  1175. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1176. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1177. #else
  1178. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1179. #endif
  1180. prepare_move();
  1181. }
  1182. feedrate = oldFeedrate;
  1183. } else if(!retracting && retracted[active_extruder]) {
  1184. destination[X_AXIS]=current_position[X_AXIS];
  1185. destination[Y_AXIS]=current_position[Y_AXIS];
  1186. destination[Z_AXIS]=current_position[Z_AXIS];
  1187. destination[E_AXIS]=current_position[E_AXIS];
  1188. if(retract_zlift > 0.01) {
  1189. current_position[Z_AXIS]+=retract_zlift;
  1190. #ifdef DELTA
  1191. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1192. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1193. #else
  1194. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1195. #endif
  1196. //prepare_move();
  1197. }
  1198. if (swapretract) {
  1199. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1200. } else {
  1201. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1202. }
  1203. plan_set_e_position(current_position[E_AXIS]);
  1204. float oldFeedrate = feedrate;
  1205. feedrate=retract_recover_feedrate*60;
  1206. retracted[active_extruder]=false;
  1207. prepare_move();
  1208. feedrate = oldFeedrate;
  1209. }
  1210. } //retract
  1211. #endif //FWRETRACT
  1212. #ifdef Z_PROBE_SLED
  1213. #ifndef SLED_DOCKING_OFFSET
  1214. #define SLED_DOCKING_OFFSET 0
  1215. #endif
  1216. //
  1217. // Method to dock/undock a sled designed by Charles Bell.
  1218. //
  1219. // dock[in] If true, move to MAX_X and engage the electromagnet
  1220. // offset[in] The additional distance to move to adjust docking location
  1221. //
  1222. static void dock_sled(bool dock, int offset=0) {
  1223. int z_loc;
  1224. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1225. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1226. SERIAL_ECHO_START;
  1227. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1228. return;
  1229. }
  1230. if (dock) {
  1231. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1232. current_position[Y_AXIS],
  1233. current_position[Z_AXIS]);
  1234. // turn off magnet
  1235. digitalWrite(SERVO0_PIN, LOW);
  1236. } else {
  1237. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1238. z_loc = Z_RAISE_BEFORE_PROBING;
  1239. else
  1240. z_loc = current_position[Z_AXIS];
  1241. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1242. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1243. // turn on magnet
  1244. digitalWrite(SERVO0_PIN, HIGH);
  1245. }
  1246. }
  1247. #endif
  1248. /**
  1249. *
  1250. * G-Code Handler functions
  1251. *
  1252. */
  1253. /**
  1254. * G0, G1: Coordinated movement of X Y Z E axes
  1255. */
  1256. inline void gcode_G0_G1() {
  1257. if (!Stopped) {
  1258. get_coordinates(); // For X Y Z E F
  1259. #ifdef FWRETRACT
  1260. if (autoretract_enabled)
  1261. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1262. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1263. // Is this move an attempt to retract or recover?
  1264. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1265. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1266. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1267. retract(!retracted[active_extruder]);
  1268. return;
  1269. }
  1270. }
  1271. #endif //FWRETRACT
  1272. prepare_move();
  1273. //ClearToSend();
  1274. }
  1275. }
  1276. /**
  1277. * G2: Clockwise Arc
  1278. * G3: Counterclockwise Arc
  1279. */
  1280. inline void gcode_G2_G3(bool clockwise) {
  1281. if (!Stopped) {
  1282. get_arc_coordinates();
  1283. prepare_arc_move(clockwise);
  1284. }
  1285. }
  1286. /**
  1287. * G4: Dwell S<seconds> or P<milliseconds>
  1288. */
  1289. inline void gcode_G4() {
  1290. unsigned long codenum;
  1291. LCD_MESSAGEPGM(MSG_DWELL);
  1292. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1293. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1294. st_synchronize();
  1295. previous_millis_cmd = millis();
  1296. codenum += previous_millis_cmd; // keep track of when we started waiting
  1297. while(millis() < codenum) {
  1298. manage_heater();
  1299. manage_inactivity();
  1300. lcd_update();
  1301. }
  1302. }
  1303. #ifdef FWRETRACT
  1304. /**
  1305. * G10 - Retract filament according to settings of M207
  1306. * G11 - Recover filament according to settings of M208
  1307. */
  1308. inline void gcode_G10_G11(bool doRetract=false) {
  1309. #if EXTRUDERS > 1
  1310. if (doRetract) {
  1311. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1312. }
  1313. #endif
  1314. retract(doRetract
  1315. #if EXTRUDERS > 1
  1316. , retracted_swap[active_extruder]
  1317. #endif
  1318. );
  1319. }
  1320. #endif //FWRETRACT
  1321. /**
  1322. * G28: Home all axes, one at a time
  1323. */
  1324. inline void gcode_G28() {
  1325. #ifdef ENABLE_AUTO_BED_LEVELING
  1326. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1327. #endif
  1328. saved_feedrate = feedrate;
  1329. saved_feedmultiply = feedmultiply;
  1330. feedmultiply = 100;
  1331. previous_millis_cmd = millis();
  1332. enable_endstops(true);
  1333. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
  1334. feedrate = 0.0;
  1335. #ifdef DELTA
  1336. // A delta can only safely home all axis at the same time
  1337. // all axis have to home at the same time
  1338. // Move all carriages up together until the first endstop is hit.
  1339. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1340. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1341. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1342. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1343. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1344. st_synchronize();
  1345. endstops_hit_on_purpose();
  1346. // Destination reached
  1347. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1348. // take care of back off and rehome now we are all at the top
  1349. HOMEAXIS(X);
  1350. HOMEAXIS(Y);
  1351. HOMEAXIS(Z);
  1352. calculate_delta(current_position);
  1353. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1354. #else // NOT DELTA
  1355. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1356. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1357. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1358. HOMEAXIS(Z);
  1359. }
  1360. #endif
  1361. #ifdef QUICK_HOME
  1362. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1363. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1364. #ifndef DUAL_X_CARRIAGE
  1365. int x_axis_home_dir = home_dir(X_AXIS);
  1366. #else
  1367. int x_axis_home_dir = x_home_dir(active_extruder);
  1368. extruder_duplication_enabled = false;
  1369. #endif
  1370. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1371. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1372. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1373. feedrate = homing_feedrate[X_AXIS];
  1374. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1375. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1376. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1377. } else {
  1378. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1379. }
  1380. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1381. st_synchronize();
  1382. axis_is_at_home(X_AXIS);
  1383. axis_is_at_home(Y_AXIS);
  1384. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1385. destination[X_AXIS] = current_position[X_AXIS];
  1386. destination[Y_AXIS] = current_position[Y_AXIS];
  1387. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1388. feedrate = 0.0;
  1389. st_synchronize();
  1390. endstops_hit_on_purpose();
  1391. current_position[X_AXIS] = destination[X_AXIS];
  1392. current_position[Y_AXIS] = destination[Y_AXIS];
  1393. #ifndef SCARA
  1394. current_position[Z_AXIS] = destination[Z_AXIS];
  1395. #endif
  1396. }
  1397. #endif //QUICK_HOME
  1398. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1399. #ifdef DUAL_X_CARRIAGE
  1400. int tmp_extruder = active_extruder;
  1401. extruder_duplication_enabled = false;
  1402. active_extruder = !active_extruder;
  1403. HOMEAXIS(X);
  1404. inactive_extruder_x_pos = current_position[X_AXIS];
  1405. active_extruder = tmp_extruder;
  1406. HOMEAXIS(X);
  1407. // reset state used by the different modes
  1408. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1409. delayed_move_time = 0;
  1410. active_extruder_parked = true;
  1411. #else
  1412. HOMEAXIS(X);
  1413. #endif
  1414. }
  1415. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1416. if (code_seen(axis_codes[X_AXIS])) {
  1417. if (code_value_long() != 0) {
  1418. current_position[X_AXIS] = code_value()
  1419. #ifndef SCARA
  1420. + add_homing[X_AXIS]
  1421. #endif
  1422. ;
  1423. }
  1424. }
  1425. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1426. current_position[Y_AXIS] = code_value()
  1427. #ifndef SCARA
  1428. + add_homing[Y_AXIS]
  1429. #endif
  1430. ;
  1431. }
  1432. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1433. #ifndef Z_SAFE_HOMING
  1434. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1435. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1436. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1437. feedrate = max_feedrate[Z_AXIS];
  1438. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1439. st_synchronize();
  1440. #endif
  1441. HOMEAXIS(Z);
  1442. }
  1443. #else // Z_SAFE_HOMING
  1444. if (home_all_axis) {
  1445. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1446. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1447. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1448. feedrate = XY_TRAVEL_SPEED / 60;
  1449. current_position[Z_AXIS] = 0;
  1450. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1451. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1452. st_synchronize();
  1453. current_position[X_AXIS] = destination[X_AXIS];
  1454. current_position[Y_AXIS] = destination[Y_AXIS];
  1455. HOMEAXIS(Z);
  1456. }
  1457. // Let's see if X and Y are homed and probe is inside bed area.
  1458. if (code_seen(axis_codes[Z_AXIS])) {
  1459. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1460. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1461. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1462. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1463. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1464. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1465. current_position[Z_AXIS] = 0;
  1466. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1467. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1468. feedrate = max_feedrate[Z_AXIS];
  1469. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1470. st_synchronize();
  1471. HOMEAXIS(Z);
  1472. }
  1473. else {
  1474. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1475. SERIAL_ECHO_START;
  1476. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1477. }
  1478. }
  1479. else {
  1480. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1481. SERIAL_ECHO_START;
  1482. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1483. }
  1484. }
  1485. #endif // Z_SAFE_HOMING
  1486. #endif // Z_HOME_DIR < 0
  1487. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1488. current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
  1489. #ifdef ENABLE_AUTO_BED_LEVELING
  1490. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1491. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1492. #endif
  1493. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1494. #endif // else DELTA
  1495. #ifdef SCARA
  1496. calculate_delta(current_position);
  1497. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1498. #endif
  1499. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1500. enable_endstops(false);
  1501. #endif
  1502. feedrate = saved_feedrate;
  1503. feedmultiply = saved_feedmultiply;
  1504. previous_millis_cmd = millis();
  1505. endstops_hit_on_purpose();
  1506. }
  1507. #ifdef ENABLE_AUTO_BED_LEVELING
  1508. /**
  1509. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1510. * Will fail if the printer has not been homed with G28.
  1511. *
  1512. * Enhanced G29 Auto Bed Leveling Probe Routine
  1513. *
  1514. * Parameters With AUTO_BED_LEVELING_GRID:
  1515. *
  1516. * P Set the size of the grid that will be probed (P x P points).
  1517. * Example: "G29 P4"
  1518. *
  1519. * V Set the verbose level (0-4). Example: "G29 V3"
  1520. *
  1521. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1522. * This is useful for manual bed leveling and finding flaws in the bed (to
  1523. * assist with part placement).
  1524. *
  1525. * F Set the Front limit of the probing grid
  1526. * B Set the Back limit of the probing grid
  1527. * L Set the Left limit of the probing grid
  1528. * R Set the Right limit of the probing grid
  1529. *
  1530. * Global Parameters:
  1531. *
  1532. * E/e By default G29 engages / disengages the probe for each point.
  1533. * Include "E" to engage and disengage the probe just once.
  1534. * There's no extra effect if you have a fixed probe.
  1535. * Usage: "G29 E" or "G29 e"
  1536. *
  1537. */
  1538. // Use one of these defines to specify the origin
  1539. // for a topographical map to be printed for your bed.
  1540. enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
  1541. #define TOPO_ORIGIN OriginFrontLeft
  1542. inline void gcode_G29() {
  1543. // Prevent user from running a G29 without first homing in X and Y
  1544. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1545. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1546. SERIAL_ECHO_START;
  1547. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1548. return;
  1549. }
  1550. int verbose_level = 1;
  1551. float x_tmp, y_tmp, z_tmp, real_z;
  1552. if (code_seen('V') || code_seen('v')) {
  1553. verbose_level = code_value_long();
  1554. if (verbose_level < 0 || verbose_level > 4) {
  1555. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1556. return;
  1557. }
  1558. }
  1559. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1560. #ifdef AUTO_BED_LEVELING_GRID
  1561. bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
  1562. if (verbose_level > 0)
  1563. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1564. int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
  1565. if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
  1566. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1567. return;
  1568. }
  1569. // Define the possible boundaries for probing based on the set limits.
  1570. // Code above (in G28) might have these limits wrong, or I am wrong here.
  1571. #define MIN_PROBE_EDGE 10 // Edges of the probe square can be no less
  1572. const int min_probe_x = max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
  1573. max_probe_x = min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
  1574. min_probe_y = max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER),
  1575. max_probe_y = min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER);
  1576. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1577. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1578. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1579. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1580. bool left_out_l = left_probe_bed_position < min_probe_x,
  1581. left_out_r = left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1582. left_out = left_out_l || left_out_r,
  1583. right_out_r = right_probe_bed_position > max_probe_x,
  1584. right_out_l =right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1585. right_out = right_out_l || right_out_r,
  1586. front_out_f = front_probe_bed_position < min_probe_y,
  1587. front_out_b = front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1588. front_out = front_out_f || front_out_b,
  1589. back_out_b = back_probe_bed_position > max_probe_y,
  1590. back_out_f = back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE,
  1591. back_out = back_out_f || back_out_b;
  1592. if (left_out || right_out || front_out || back_out) {
  1593. if (left_out) {
  1594. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1595. left_probe_bed_position = left_out_l ? min_probe_x : right_probe_bed_position - MIN_PROBE_EDGE;
  1596. }
  1597. if (right_out) {
  1598. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1599. right_probe_bed_position = right_out_r ? max_probe_x : left_probe_bed_position + MIN_PROBE_EDGE;
  1600. }
  1601. if (front_out) {
  1602. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1603. front_probe_bed_position = front_out_f ? min_probe_y : back_probe_bed_position - MIN_PROBE_EDGE;
  1604. }
  1605. if (back_out) {
  1606. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1607. back_probe_bed_position = back_out_b ? max_probe_y : front_probe_bed_position + MIN_PROBE_EDGE;
  1608. }
  1609. return;
  1610. }
  1611. #endif // AUTO_BED_LEVELING_GRID
  1612. #ifdef Z_PROBE_SLED
  1613. dock_sled(false); // engage (un-dock) the probe
  1614. #endif
  1615. st_synchronize();
  1616. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1617. //vector_3 corrected_position = plan_get_position_mm();
  1618. //corrected_position.debug("position before G29");
  1619. plan_bed_level_matrix.set_to_identity();
  1620. vector_3 uncorrected_position = plan_get_position();
  1621. //uncorrected_position.debug("position durring G29");
  1622. current_position[X_AXIS] = uncorrected_position.x;
  1623. current_position[Y_AXIS] = uncorrected_position.y;
  1624. current_position[Z_AXIS] = uncorrected_position.z;
  1625. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1626. setup_for_endstop_move();
  1627. feedrate = homing_feedrate[Z_AXIS];
  1628. #ifdef AUTO_BED_LEVELING_GRID
  1629. // probe at the points of a lattice grid
  1630. int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1631. int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1632. // solve the plane equation ax + by + d = z
  1633. // A is the matrix with rows [x y 1] for all the probed points
  1634. // B is the vector of the Z positions
  1635. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1636. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1637. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1638. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1639. eqnBVector[abl2], // "B" vector of Z points
  1640. mean = 0.0;
  1641. int probePointCounter = 0;
  1642. bool zig = true;
  1643. for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
  1644. int xProbe, xInc;
  1645. if (zig)
  1646. xProbe = left_probe_bed_position, xInc = xGridSpacing;
  1647. else
  1648. xProbe = right_probe_bed_position, xInc = -xGridSpacing;
  1649. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1650. // This gets the probe points in more readable order.
  1651. if (!topo_flag) zig = !zig;
  1652. for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
  1653. // raise extruder
  1654. float measured_z,
  1655. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1656. // Enhanced G29 - Do not retract servo between probes
  1657. ProbeAction act;
  1658. if (enhanced_g29) {
  1659. if (yProbe == front_probe_bed_position && xCount == 0)
  1660. act = ProbeEngage;
  1661. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1662. act = ProbeRetract;
  1663. else
  1664. act = ProbeStay;
  1665. }
  1666. else
  1667. act = ProbeEngageRetract;
  1668. measured_z = probe_pt(xProbe, yProbe, z_before, act);
  1669. mean += measured_z;
  1670. eqnBVector[probePointCounter] = measured_z;
  1671. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1672. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1673. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1674. probePointCounter++;
  1675. xProbe += xInc;
  1676. } //xProbe
  1677. } //yProbe
  1678. clean_up_after_endstop_move();
  1679. // solve lsq problem
  1680. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1681. mean /= abl2;
  1682. if (verbose_level) {
  1683. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1684. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1685. SERIAL_PROTOCOLPGM(" b: ");
  1686. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1687. SERIAL_PROTOCOLPGM(" d: ");
  1688. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1689. if (verbose_level > 2) {
  1690. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1691. SERIAL_PROTOCOL_F(mean, 6);
  1692. SERIAL_PROTOCOLPGM(" \n");
  1693. }
  1694. }
  1695. if (topo_flag) {
  1696. int xx, yy;
  1697. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1698. #if TOPO_ORIGIN == OriginFrontLeft
  1699. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  1700. #else
  1701. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  1702. #endif
  1703. {
  1704. #if TOPO_ORIGIN == OriginBackRight
  1705. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  1706. #else
  1707. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  1708. #endif
  1709. {
  1710. int ind =
  1711. #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
  1712. yy * auto_bed_leveling_grid_points + xx
  1713. #elif TOPO_ORIGIN == OriginBackLeft
  1714. xx * auto_bed_leveling_grid_points + yy
  1715. #elif TOPO_ORIGIN == OriginFrontRight
  1716. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  1717. #endif
  1718. ;
  1719. float diff = eqnBVector[ind] - mean;
  1720. if (diff >= 0.0)
  1721. SERIAL_PROTOCOLPGM(" +"); // Watch column alignment in Pronterface
  1722. else
  1723. SERIAL_PROTOCOLPGM(" -");
  1724. SERIAL_PROTOCOL_F(diff, 5);
  1725. } // xx
  1726. SERIAL_PROTOCOLPGM("\n");
  1727. } // yy
  1728. SERIAL_PROTOCOLPGM("\n");
  1729. } //topo_flag
  1730. set_bed_level_equation_lsq(plane_equation_coefficients);
  1731. free(plane_equation_coefficients);
  1732. #else // !AUTO_BED_LEVELING_GRID
  1733. // Probe at 3 arbitrary points
  1734. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  1735. if (enhanced_g29) {
  1736. // Basic Enhanced G29
  1737. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage);
  1738. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay);
  1739. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract);
  1740. }
  1741. else {
  1742. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1743. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1744. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1745. }
  1746. clean_up_after_endstop_move();
  1747. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1748. #endif // !AUTO_BED_LEVELING_GRID
  1749. st_synchronize();
  1750. if (verbose_level > 0)
  1751. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  1752. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1753. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1754. // When the bed is uneven, this height must be corrected.
  1755. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1756. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1757. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1758. z_tmp = current_position[Z_AXIS];
  1759. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1760. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1761. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1762. #ifdef Z_PROBE_SLED
  1763. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  1764. #endif
  1765. }
  1766. #ifndef Z_PROBE_SLED
  1767. inline void gcode_G30() {
  1768. engage_z_probe(); // Engage Z Servo endstop if available
  1769. st_synchronize();
  1770. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1771. setup_for_endstop_move();
  1772. feedrate = homing_feedrate[Z_AXIS];
  1773. run_z_probe();
  1774. SERIAL_PROTOCOLPGM(MSG_BED);
  1775. SERIAL_PROTOCOLPGM(" X: ");
  1776. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1777. SERIAL_PROTOCOLPGM(" Y: ");
  1778. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1779. SERIAL_PROTOCOLPGM(" Z: ");
  1780. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1781. SERIAL_PROTOCOLPGM("\n");
  1782. clean_up_after_endstop_move();
  1783. retract_z_probe(); // Retract Z Servo endstop if available
  1784. }
  1785. #endif //!Z_PROBE_SLED
  1786. #endif //ENABLE_AUTO_BED_LEVELING
  1787. /**
  1788. * G92: Set current position to given X Y Z E
  1789. */
  1790. inline void gcode_G92() {
  1791. if (!code_seen(axis_codes[E_AXIS]))
  1792. st_synchronize();
  1793. for (int i=0;i<NUM_AXIS;i++) {
  1794. if (code_seen(axis_codes[i])) {
  1795. if (i == E_AXIS) {
  1796. current_position[i] = code_value();
  1797. plan_set_e_position(current_position[E_AXIS]);
  1798. }
  1799. else {
  1800. current_position[i] = code_value() +
  1801. #ifdef SCARA
  1802. ((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
  1803. #else
  1804. add_homing[i]
  1805. #endif
  1806. ;
  1807. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1808. }
  1809. }
  1810. }
  1811. }
  1812. #ifdef ULTIPANEL
  1813. /**
  1814. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  1815. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  1816. */
  1817. inline void gcode_M0_M1() {
  1818. char *src = strchr_pointer + 2;
  1819. unsigned long codenum = 0;
  1820. bool hasP = false, hasS = false;
  1821. if (code_seen('P')) {
  1822. codenum = code_value(); // milliseconds to wait
  1823. hasP = codenum > 0;
  1824. }
  1825. if (code_seen('S')) {
  1826. codenum = code_value() * 1000; // seconds to wait
  1827. hasS = codenum > 0;
  1828. }
  1829. char* starpos = strchr(src, '*');
  1830. if (starpos != NULL) *(starpos) = '\0';
  1831. while (*src == ' ') ++src;
  1832. if (!hasP && !hasS && *src != '\0')
  1833. lcd_setstatus(src);
  1834. else
  1835. LCD_MESSAGEPGM(MSG_USERWAIT);
  1836. lcd_ignore_click();
  1837. st_synchronize();
  1838. previous_millis_cmd = millis();
  1839. if (codenum > 0) {
  1840. codenum += previous_millis_cmd; // keep track of when we started waiting
  1841. while(millis() < codenum && !lcd_clicked()) {
  1842. manage_heater();
  1843. manage_inactivity();
  1844. lcd_update();
  1845. }
  1846. lcd_ignore_click(false);
  1847. }
  1848. else {
  1849. if (!lcd_detected()) return;
  1850. while (!lcd_clicked()) {
  1851. manage_heater();
  1852. manage_inactivity();
  1853. lcd_update();
  1854. }
  1855. }
  1856. if (IS_SD_PRINTING)
  1857. LCD_MESSAGEPGM(MSG_RESUMING);
  1858. else
  1859. LCD_MESSAGEPGM(WELCOME_MSG);
  1860. }
  1861. #endif // ULTIPANEL
  1862. /**
  1863. * M17: Enable power on all stepper motors
  1864. */
  1865. inline void gcode_M17() {
  1866. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1867. enable_x();
  1868. enable_y();
  1869. enable_z();
  1870. enable_e0();
  1871. enable_e1();
  1872. enable_e2();
  1873. enable_e3();
  1874. }
  1875. #ifdef SDSUPPORT
  1876. /**
  1877. * M20: List SD card to serial output
  1878. */
  1879. inline void gcode_M20() {
  1880. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1881. card.ls();
  1882. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1883. }
  1884. /**
  1885. * M21: Init SD Card
  1886. */
  1887. inline void gcode_M21() {
  1888. card.initsd();
  1889. }
  1890. /**
  1891. * M22: Release SD Card
  1892. */
  1893. inline void gcode_M22() {
  1894. card.release();
  1895. }
  1896. /**
  1897. * M23: Select a file
  1898. */
  1899. inline void gcode_M23() {
  1900. char* codepos = strchr_pointer + 4;
  1901. char* starpos = strchr(codepos, '*');
  1902. if (starpos) *starpos = '\0';
  1903. card.openFile(codepos, true);
  1904. }
  1905. /**
  1906. * M24: Start SD Print
  1907. */
  1908. inline void gcode_M24() {
  1909. card.startFileprint();
  1910. starttime = millis();
  1911. }
  1912. /**
  1913. * M25: Pause SD Print
  1914. */
  1915. inline void gcode_M25() {
  1916. card.pauseSDPrint();
  1917. }
  1918. /**
  1919. * M26: Set SD Card file index
  1920. */
  1921. inline void gcode_M26() {
  1922. if (card.cardOK && code_seen('S'))
  1923. card.setIndex(code_value_long());
  1924. }
  1925. /**
  1926. * M27: Get SD Card status
  1927. */
  1928. inline void gcode_M27() {
  1929. card.getStatus();
  1930. }
  1931. /**
  1932. * M28: Start SD Write
  1933. */
  1934. inline void gcode_M28() {
  1935. char* codepos = strchr_pointer + 4;
  1936. char* starpos = strchr(strchr_pointer + 4, '*');
  1937. if (starpos) {
  1938. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1939. strchr_pointer = strchr(npos, ' ') + 1;
  1940. *(starpos) = '\0';
  1941. }
  1942. card.openFile(strchr_pointer + 4, false);
  1943. }
  1944. /**
  1945. * M29: Stop SD Write
  1946. * Processed in write to file routine above
  1947. */
  1948. inline void gcode_M29() {
  1949. // card.saving = false;
  1950. }
  1951. /**
  1952. * M30 <filename>: Delete SD Card file
  1953. */
  1954. inline void gcode_M30() {
  1955. if (card.cardOK) {
  1956. card.closefile();
  1957. char* starpos = strchr(strchr_pointer + 4, '*');
  1958. if (starpos) {
  1959. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1960. strchr_pointer = strchr(npos, ' ') + 1;
  1961. *(starpos) = '\0';
  1962. }
  1963. card.removeFile(strchr_pointer + 4);
  1964. }
  1965. }
  1966. #endif
  1967. /**
  1968. * M31: Get the time since the start of SD Print (or last M109)
  1969. */
  1970. inline void gcode_M31() {
  1971. stoptime = millis();
  1972. unsigned long t = (stoptime - starttime) / 1000;
  1973. int min = t / 60, sec = t % 60;
  1974. char time[30];
  1975. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1976. SERIAL_ECHO_START;
  1977. SERIAL_ECHOLN(time);
  1978. lcd_setstatus(time);
  1979. autotempShutdown();
  1980. }
  1981. #ifdef SDSUPPORT
  1982. /**
  1983. * M32: Select file and start SD Print
  1984. */
  1985. inline void gcode_M32() {
  1986. if (card.sdprinting)
  1987. st_synchronize();
  1988. char* codepos = strchr_pointer + 4;
  1989. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  1990. if (! namestartpos)
  1991. namestartpos = codepos; //default name position, 4 letters after the M
  1992. else
  1993. namestartpos++; //to skip the '!'
  1994. char* starpos = strchr(codepos, '*');
  1995. if (starpos) *(starpos) = '\0';
  1996. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  1997. if (card.cardOK) {
  1998. card.openFile(namestartpos, true, !call_procedure);
  1999. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2000. card.setIndex(code_value_long());
  2001. card.startFileprint();
  2002. if (!call_procedure)
  2003. starttime = millis(); //procedure calls count as normal print time.
  2004. }
  2005. }
  2006. /**
  2007. * M928: Start SD Write
  2008. */
  2009. inline void gcode_M928() {
  2010. char* starpos = strchr(strchr_pointer + 5, '*');
  2011. if (starpos) {
  2012. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2013. strchr_pointer = strchr(npos, ' ') + 1;
  2014. *(starpos) = '\0';
  2015. }
  2016. card.openLogFile(strchr_pointer + 5);
  2017. }
  2018. #endif // SDSUPPORT
  2019. /**
  2020. * M42: Change pin status via GCode
  2021. */
  2022. inline void gcode_M42() {
  2023. if (code_seen('S')) {
  2024. int pin_status = code_value(),
  2025. pin_number = LED_PIN;
  2026. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2027. pin_number = code_value();
  2028. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2029. if (sensitive_pins[i] == pin_number) {
  2030. pin_number = -1;
  2031. break;
  2032. }
  2033. }
  2034. #if defined(FAN_PIN) && FAN_PIN > -1
  2035. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2036. #endif
  2037. if (pin_number > -1) {
  2038. pinMode(pin_number, OUTPUT);
  2039. digitalWrite(pin_number, pin_status);
  2040. analogWrite(pin_number, pin_status);
  2041. }
  2042. } // code_seen('S')
  2043. }
  2044. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2045. #if Z_MIN_PIN == -1
  2046. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2047. #endif
  2048. /**
  2049. * M48: Z-Probe repeatability measurement function.
  2050. *
  2051. * Usage:
  2052. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2053. * n = Number of samples (4-50, default 10)
  2054. * X = Sample X position
  2055. * Y = Sample Y position
  2056. * V = Verbose level (0-4, default=1)
  2057. * E = Engage probe for each reading
  2058. * L = Number of legs of movement before probe
  2059. *
  2060. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2061. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2062. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2063. * regenerated.
  2064. *
  2065. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2066. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2067. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2068. */
  2069. inline void gcode_M48() {
  2070. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2071. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2072. double X_current, Y_current, Z_current;
  2073. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2074. if (code_seen('V') || code_seen('v')) {
  2075. verbose_level = code_value();
  2076. if (verbose_level < 0 || verbose_level > 4 ) {
  2077. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2078. return;
  2079. }
  2080. }
  2081. if (verbose_level > 0)
  2082. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2083. if (code_seen('n')) {
  2084. n_samples = code_value();
  2085. if (n_samples < 4 || n_samples > 50) {
  2086. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2087. return;
  2088. }
  2089. }
  2090. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2091. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2092. Z_current = st_get_position_mm(Z_AXIS);
  2093. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2094. ext_position = st_get_position_mm(E_AXIS);
  2095. if (code_seen('E') || code_seen('e'))
  2096. engage_probe_for_each_reading++;
  2097. if (code_seen('X') || code_seen('x')) {
  2098. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2099. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2100. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2101. return;
  2102. }
  2103. }
  2104. if (code_seen('Y') || code_seen('y')) {
  2105. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2106. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2107. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2108. return;
  2109. }
  2110. }
  2111. if (code_seen('L') || code_seen('l')) {
  2112. n_legs = code_value();
  2113. if (n_legs == 1) n_legs = 2;
  2114. if (n_legs < 0 || n_legs > 15) {
  2115. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2116. return;
  2117. }
  2118. }
  2119. //
  2120. // Do all the preliminary setup work. First raise the probe.
  2121. //
  2122. st_synchronize();
  2123. plan_bed_level_matrix.set_to_identity();
  2124. plan_buffer_line(X_current, Y_current, Z_start_location,
  2125. ext_position,
  2126. homing_feedrate[Z_AXIS] / 60,
  2127. active_extruder);
  2128. st_synchronize();
  2129. //
  2130. // Now get everything to the specified probe point So we can safely do a probe to
  2131. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2132. // use that as a starting point for each probe.
  2133. //
  2134. if (verbose_level > 2)
  2135. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2136. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2137. ext_position,
  2138. homing_feedrate[X_AXIS]/60,
  2139. active_extruder);
  2140. st_synchronize();
  2141. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2142. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2143. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2144. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2145. //
  2146. // OK, do the inital probe to get us close to the bed.
  2147. // Then retrace the right amount and use that in subsequent probes
  2148. //
  2149. engage_z_probe();
  2150. setup_for_endstop_move();
  2151. run_z_probe();
  2152. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2153. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2154. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2155. ext_position,
  2156. homing_feedrate[X_AXIS]/60,
  2157. active_extruder);
  2158. st_synchronize();
  2159. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2160. if (engage_probe_for_each_reading) retract_z_probe();
  2161. for (n=0; n < n_samples; n++) {
  2162. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2163. if (n_legs) {
  2164. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2165. int l;
  2166. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2167. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2168. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2169. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2170. //SERIAL_ECHOPAIR(" theta: ",theta);
  2171. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2172. //SERIAL_PROTOCOLLNPGM("");
  2173. float dir = rotational_direction ? 1 : -1;
  2174. for (l = 0; l < n_legs - 1; l++) {
  2175. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2176. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2177. if (radius < 0.0) radius = -radius;
  2178. X_current = X_probe_location + cos(theta) * radius;
  2179. Y_current = Y_probe_location + sin(theta) * radius;
  2180. // Make sure our X & Y are sane
  2181. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2182. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2183. if (verbose_level > 3) {
  2184. SERIAL_ECHOPAIR("x: ", X_current);
  2185. SERIAL_ECHOPAIR("y: ", Y_current);
  2186. SERIAL_PROTOCOLLNPGM("");
  2187. }
  2188. do_blocking_move_to( X_current, Y_current, Z_current );
  2189. }
  2190. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2191. }
  2192. if (engage_probe_for_each_reading) {
  2193. engage_z_probe();
  2194. delay(1000);
  2195. }
  2196. setup_for_endstop_move();
  2197. run_z_probe();
  2198. sample_set[n] = current_position[Z_AXIS];
  2199. //
  2200. // Get the current mean for the data points we have so far
  2201. //
  2202. sum = 0.0;
  2203. for (j=0; j<=n; j++) sum += sample_set[j];
  2204. mean = sum / (double (n+1));
  2205. //
  2206. // Now, use that mean to calculate the standard deviation for the
  2207. // data points we have so far
  2208. //
  2209. sum = 0.0;
  2210. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2211. sigma = sqrt( sum / (double (n+1)) );
  2212. if (verbose_level > 1) {
  2213. SERIAL_PROTOCOL(n+1);
  2214. SERIAL_PROTOCOL(" of ");
  2215. SERIAL_PROTOCOL(n_samples);
  2216. SERIAL_PROTOCOLPGM(" z: ");
  2217. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2218. }
  2219. if (verbose_level > 2) {
  2220. SERIAL_PROTOCOL(" mean: ");
  2221. SERIAL_PROTOCOL_F(mean,6);
  2222. SERIAL_PROTOCOL(" sigma: ");
  2223. SERIAL_PROTOCOL_F(sigma,6);
  2224. }
  2225. if (verbose_level > 0)
  2226. SERIAL_PROTOCOLPGM("\n");
  2227. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2228. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2229. st_synchronize();
  2230. if (engage_probe_for_each_reading) {
  2231. retract_z_probe();
  2232. delay(1000);
  2233. }
  2234. }
  2235. retract_z_probe();
  2236. delay(1000);
  2237. clean_up_after_endstop_move();
  2238. // enable_endstops(true);
  2239. if (verbose_level > 0) {
  2240. SERIAL_PROTOCOLPGM("Mean: ");
  2241. SERIAL_PROTOCOL_F(mean, 6);
  2242. SERIAL_PROTOCOLPGM("\n");
  2243. }
  2244. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2245. SERIAL_PROTOCOL_F(sigma, 6);
  2246. SERIAL_PROTOCOLPGM("\n\n");
  2247. }
  2248. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2249. /**
  2250. * M104: Set hot end temperature
  2251. */
  2252. inline void gcode_M104() {
  2253. if (setTargetedHotend(104)) return;
  2254. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2255. #ifdef DUAL_X_CARRIAGE
  2256. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2257. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2258. #endif
  2259. setWatch();
  2260. }
  2261. /**
  2262. * M105: Read hot end and bed temperature
  2263. */
  2264. inline void gcode_M105() {
  2265. if (setTargetedHotend(105)) return;
  2266. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2267. SERIAL_PROTOCOLPGM("ok T:");
  2268. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2269. SERIAL_PROTOCOLPGM(" /");
  2270. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2271. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2272. SERIAL_PROTOCOLPGM(" B:");
  2273. SERIAL_PROTOCOL_F(degBed(),1);
  2274. SERIAL_PROTOCOLPGM(" /");
  2275. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2276. #endif //TEMP_BED_PIN
  2277. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2278. SERIAL_PROTOCOLPGM(" T");
  2279. SERIAL_PROTOCOL(cur_extruder);
  2280. SERIAL_PROTOCOLPGM(":");
  2281. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2282. SERIAL_PROTOCOLPGM(" /");
  2283. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2284. }
  2285. #else
  2286. SERIAL_ERROR_START;
  2287. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2288. #endif
  2289. SERIAL_PROTOCOLPGM(" @:");
  2290. #ifdef EXTRUDER_WATTS
  2291. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2292. SERIAL_PROTOCOLPGM("W");
  2293. #else
  2294. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2295. #endif
  2296. SERIAL_PROTOCOLPGM(" B@:");
  2297. #ifdef BED_WATTS
  2298. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2299. SERIAL_PROTOCOLPGM("W");
  2300. #else
  2301. SERIAL_PROTOCOL(getHeaterPower(-1));
  2302. #endif
  2303. #ifdef SHOW_TEMP_ADC_VALUES
  2304. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2305. SERIAL_PROTOCOLPGM(" ADC B:");
  2306. SERIAL_PROTOCOL_F(degBed(),1);
  2307. SERIAL_PROTOCOLPGM("C->");
  2308. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2309. #endif
  2310. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2311. SERIAL_PROTOCOLPGM(" T");
  2312. SERIAL_PROTOCOL(cur_extruder);
  2313. SERIAL_PROTOCOLPGM(":");
  2314. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2315. SERIAL_PROTOCOLPGM("C->");
  2316. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2317. }
  2318. #endif
  2319. SERIAL_PROTOCOLLN("");
  2320. }
  2321. #if defined(FAN_PIN) && FAN_PIN > -1
  2322. /**
  2323. * M106: Set Fan Speed
  2324. */
  2325. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2326. /**
  2327. * M107: Fan Off
  2328. */
  2329. inline void gcode_M107() { fanSpeed = 0; }
  2330. #endif //FAN_PIN
  2331. /**
  2332. * M109: Wait for extruder(s) to reach temperature
  2333. */
  2334. inline void gcode_M109() {
  2335. if (setTargetedHotend(109)) return;
  2336. LCD_MESSAGEPGM(MSG_HEATING);
  2337. CooldownNoWait = code_seen('S');
  2338. if (CooldownNoWait || code_seen('R')) {
  2339. setTargetHotend(code_value(), tmp_extruder);
  2340. #ifdef DUAL_X_CARRIAGE
  2341. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2342. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2343. #endif
  2344. }
  2345. #ifdef AUTOTEMP
  2346. autotemp_enabled = code_seen('F');
  2347. if (autotemp_enabled) autotemp_factor = code_value();
  2348. if (code_seen('S')) autotemp_min = code_value();
  2349. if (code_seen('B')) autotemp_max = code_value();
  2350. #endif
  2351. setWatch();
  2352. unsigned long timetemp = millis();
  2353. /* See if we are heating up or cooling down */
  2354. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2355. cancel_heatup = false;
  2356. #ifdef TEMP_RESIDENCY_TIME
  2357. long residencyStart = -1;
  2358. /* continue to loop until we have reached the target temp
  2359. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2360. while((!cancel_heatup)&&((residencyStart == -1) ||
  2361. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2362. #else
  2363. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2364. #endif //TEMP_RESIDENCY_TIME
  2365. { // while loop
  2366. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2367. SERIAL_PROTOCOLPGM("T:");
  2368. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2369. SERIAL_PROTOCOLPGM(" E:");
  2370. SERIAL_PROTOCOL((int)tmp_extruder);
  2371. #ifdef TEMP_RESIDENCY_TIME
  2372. SERIAL_PROTOCOLPGM(" W:");
  2373. if (residencyStart > -1) {
  2374. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2375. SERIAL_PROTOCOLLN( timetemp );
  2376. }
  2377. else {
  2378. SERIAL_PROTOCOLLN( "?" );
  2379. }
  2380. #else
  2381. SERIAL_PROTOCOLLN("");
  2382. #endif
  2383. timetemp = millis();
  2384. }
  2385. manage_heater();
  2386. manage_inactivity();
  2387. lcd_update();
  2388. #ifdef TEMP_RESIDENCY_TIME
  2389. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2390. // or when current temp falls outside the hysteresis after target temp was reached
  2391. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2392. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2393. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2394. {
  2395. residencyStart = millis();
  2396. }
  2397. #endif //TEMP_RESIDENCY_TIME
  2398. }
  2399. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2400. starttime = previous_millis_cmd = millis();
  2401. }
  2402. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2403. /**
  2404. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2405. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2406. */
  2407. inline void gcode_M190() {
  2408. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2409. CooldownNoWait = code_seen('S');
  2410. if (CooldownNoWait || code_seen('R'))
  2411. setTargetBed(code_value());
  2412. unsigned long timetemp = millis();
  2413. cancel_heatup = false;
  2414. target_direction = isHeatingBed(); // true if heating, false if cooling
  2415. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2416. unsigned long ms = millis();
  2417. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2418. timetemp = ms;
  2419. float tt = degHotend(active_extruder);
  2420. SERIAL_PROTOCOLPGM("T:");
  2421. SERIAL_PROTOCOL(tt);
  2422. SERIAL_PROTOCOLPGM(" E:");
  2423. SERIAL_PROTOCOL((int)active_extruder);
  2424. SERIAL_PROTOCOLPGM(" B:");
  2425. SERIAL_PROTOCOL_F(degBed(), 1);
  2426. SERIAL_PROTOCOLLN("");
  2427. }
  2428. manage_heater();
  2429. manage_inactivity();
  2430. lcd_update();
  2431. }
  2432. LCD_MESSAGEPGM(MSG_BED_DONE);
  2433. previous_millis_cmd = millis();
  2434. }
  2435. #endif // TEMP_BED_PIN > -1
  2436. /**
  2437. * M112: Emergency Stop
  2438. */
  2439. inline void gcode_M112() {
  2440. kill();
  2441. }
  2442. #ifdef BARICUDA
  2443. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2444. /**
  2445. * M126: Heater 1 valve open
  2446. */
  2447. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2448. /**
  2449. * M127: Heater 1 valve close
  2450. */
  2451. inline void gcode_M127() { ValvePressure = 0; }
  2452. #endif
  2453. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2454. /**
  2455. * M128: Heater 2 valve open
  2456. */
  2457. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2458. /**
  2459. * M129: Heater 2 valve close
  2460. */
  2461. inline void gcode_M129() { EtoPPressure = 0; }
  2462. #endif
  2463. #endif //BARICUDA
  2464. /**
  2465. * M140: Set bed temperature
  2466. */
  2467. inline void gcode_M140() {
  2468. if (code_seen('S')) setTargetBed(code_value());
  2469. }
  2470. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2471. /**
  2472. * M80: Turn on Power Supply
  2473. */
  2474. inline void gcode_M80() {
  2475. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2476. // If you have a switch on suicide pin, this is useful
  2477. // if you want to start another print with suicide feature after
  2478. // a print without suicide...
  2479. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2480. OUT_WRITE(SUICIDE_PIN, HIGH);
  2481. #endif
  2482. #ifdef ULTIPANEL
  2483. powersupply = true;
  2484. LCD_MESSAGEPGM(WELCOME_MSG);
  2485. lcd_update();
  2486. #endif
  2487. }
  2488. #endif // PS_ON_PIN
  2489. /**
  2490. * M81: Turn off Power Supply
  2491. */
  2492. inline void gcode_M81() {
  2493. disable_heater();
  2494. st_synchronize();
  2495. disable_e0();
  2496. disable_e1();
  2497. disable_e2();
  2498. disable_e3();
  2499. finishAndDisableSteppers();
  2500. fanSpeed = 0;
  2501. delay(1000); // Wait 1 second before switching off
  2502. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2503. st_synchronize();
  2504. suicide();
  2505. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2506. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2507. #endif
  2508. #ifdef ULTIPANEL
  2509. powersupply = false;
  2510. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2511. lcd_update();
  2512. #endif
  2513. }
  2514. /**
  2515. * M82: Set E codes absolute (default)
  2516. */
  2517. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2518. /**
  2519. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2520. */
  2521. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2522. /**
  2523. * M18, M84: Disable all stepper motors
  2524. */
  2525. inline void gcode_M18_M84() {
  2526. if (code_seen('S')) {
  2527. stepper_inactive_time = code_value() * 1000;
  2528. }
  2529. else {
  2530. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2531. if (all_axis) {
  2532. st_synchronize();
  2533. disable_e0();
  2534. disable_e1();
  2535. disable_e2();
  2536. disable_e3();
  2537. finishAndDisableSteppers();
  2538. }
  2539. else {
  2540. st_synchronize();
  2541. if (code_seen('X')) disable_x();
  2542. if (code_seen('Y')) disable_y();
  2543. if (code_seen('Z')) disable_z();
  2544. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2545. if (code_seen('E')) {
  2546. disable_e0();
  2547. disable_e1();
  2548. disable_e2();
  2549. disable_e3();
  2550. }
  2551. #endif
  2552. }
  2553. }
  2554. }
  2555. /**
  2556. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2557. */
  2558. inline void gcode_M85() {
  2559. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2560. }
  2561. /**
  2562. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2563. */
  2564. inline void gcode_M92() {
  2565. for(int8_t i=0; i < NUM_AXIS; i++) {
  2566. if (code_seen(axis_codes[i])) {
  2567. if (i == E_AXIS) {
  2568. float value = code_value();
  2569. if (value < 20.0) {
  2570. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2571. max_e_jerk *= factor;
  2572. max_feedrate[i] *= factor;
  2573. axis_steps_per_sqr_second[i] *= factor;
  2574. }
  2575. axis_steps_per_unit[i] = value;
  2576. }
  2577. else {
  2578. axis_steps_per_unit[i] = code_value();
  2579. }
  2580. }
  2581. }
  2582. }
  2583. /**
  2584. * M114: Output current position to serial port
  2585. */
  2586. inline void gcode_M114() {
  2587. SERIAL_PROTOCOLPGM("X:");
  2588. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2589. SERIAL_PROTOCOLPGM(" Y:");
  2590. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2591. SERIAL_PROTOCOLPGM(" Z:");
  2592. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2593. SERIAL_PROTOCOLPGM(" E:");
  2594. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2595. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2596. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2597. SERIAL_PROTOCOLPGM(" Y:");
  2598. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2599. SERIAL_PROTOCOLPGM(" Z:");
  2600. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2601. SERIAL_PROTOCOLLN("");
  2602. #ifdef SCARA
  2603. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2604. SERIAL_PROTOCOL(delta[X_AXIS]);
  2605. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2606. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2607. SERIAL_PROTOCOLLN("");
  2608. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2609. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2610. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2611. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2612. SERIAL_PROTOCOLLN("");
  2613. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2614. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2615. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2616. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2617. SERIAL_PROTOCOLLN("");
  2618. SERIAL_PROTOCOLLN("");
  2619. #endif
  2620. }
  2621. /**
  2622. * M115: Capabilities string
  2623. */
  2624. inline void gcode_M115() {
  2625. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2626. }
  2627. /**
  2628. * M117: Set LCD Status Message
  2629. */
  2630. inline void gcode_M117() {
  2631. char* codepos = strchr_pointer + 5;
  2632. char* starpos = strchr(codepos, '*');
  2633. if (starpos) *starpos = '\0';
  2634. lcd_setstatus(codepos);
  2635. }
  2636. /**
  2637. * M119: Output endstop states to serial output
  2638. */
  2639. inline void gcode_M119() {
  2640. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2641. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2642. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2643. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2644. #endif
  2645. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2646. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2647. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2648. #endif
  2649. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2650. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2651. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2652. #endif
  2653. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2654. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2655. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2656. #endif
  2657. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2658. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2659. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2660. #endif
  2661. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2662. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2663. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2664. #endif
  2665. }
  2666. /**
  2667. * M120: Enable endstops
  2668. */
  2669. inline void gcode_M120() { enable_endstops(false); }
  2670. /**
  2671. * M121: Disable endstops
  2672. */
  2673. inline void gcode_M121() { enable_endstops(true); }
  2674. #ifdef BLINKM
  2675. /**
  2676. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2677. */
  2678. inline void gcode_M150() {
  2679. SendColors(
  2680. code_seen('R') ? (byte)code_value() : 0,
  2681. code_seen('U') ? (byte)code_value() : 0,
  2682. code_seen('B') ? (byte)code_value() : 0
  2683. );
  2684. }
  2685. #endif // BLINKM
  2686. /**
  2687. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2688. * T<extruder>
  2689. * D<millimeters>
  2690. */
  2691. inline void gcode_M200() {
  2692. tmp_extruder = active_extruder;
  2693. if (code_seen('T')) {
  2694. tmp_extruder = code_value();
  2695. if (tmp_extruder >= EXTRUDERS) {
  2696. SERIAL_ECHO_START;
  2697. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2698. return;
  2699. }
  2700. }
  2701. float area = .0;
  2702. if (code_seen('D')) {
  2703. float diameter = code_value();
  2704. // setting any extruder filament size disables volumetric on the assumption that
  2705. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2706. // for all extruders
  2707. volumetric_enabled = (diameter != 0.0);
  2708. if (volumetric_enabled) {
  2709. filament_size[tmp_extruder] = diameter;
  2710. // make sure all extruders have some sane value for the filament size
  2711. for (int i=0; i<EXTRUDERS; i++)
  2712. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2713. }
  2714. }
  2715. else {
  2716. //reserved for setting filament diameter via UFID or filament measuring device
  2717. return;
  2718. }
  2719. calculate_volumetric_multipliers();
  2720. }
  2721. /**
  2722. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2723. */
  2724. inline void gcode_M201() {
  2725. for (int8_t i=0; i < NUM_AXIS; i++) {
  2726. if (code_seen(axis_codes[i])) {
  2727. max_acceleration_units_per_sq_second[i] = code_value();
  2728. }
  2729. }
  2730. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2731. reset_acceleration_rates();
  2732. }
  2733. #if 0 // Not used for Sprinter/grbl gen6
  2734. inline void gcode_M202() {
  2735. for(int8_t i=0; i < NUM_AXIS; i++) {
  2736. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2737. }
  2738. }
  2739. #endif
  2740. /**
  2741. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2742. */
  2743. inline void gcode_M203() {
  2744. for (int8_t i=0; i < NUM_AXIS; i++) {
  2745. if (code_seen(axis_codes[i])) {
  2746. max_feedrate[i] = code_value();
  2747. }
  2748. }
  2749. }
  2750. /**
  2751. * M204: Set Default Acceleration and/or Default Filament Acceleration in mm/sec^2 (M204 S3000 T7000)
  2752. *
  2753. * S = normal moves
  2754. * T = filament only moves
  2755. *
  2756. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2757. */
  2758. inline void gcode_M204() {
  2759. if (code_seen('S')) acceleration = code_value();
  2760. if (code_seen('T')) retract_acceleration = code_value();
  2761. }
  2762. /**
  2763. * M205: Set Advanced Settings
  2764. *
  2765. * S = Min Feed Rate (mm/s)
  2766. * T = Min Travel Feed Rate (mm/s)
  2767. * B = Min Segment Time (µs)
  2768. * X = Max XY Jerk (mm/s/s)
  2769. * Z = Max Z Jerk (mm/s/s)
  2770. * E = Max E Jerk (mm/s/s)
  2771. */
  2772. inline void gcode_M205() {
  2773. if (code_seen('S')) minimumfeedrate = code_value();
  2774. if (code_seen('T')) mintravelfeedrate = code_value();
  2775. if (code_seen('B')) minsegmenttime = code_value();
  2776. if (code_seen('X')) max_xy_jerk = code_value();
  2777. if (code_seen('Z')) max_z_jerk = code_value();
  2778. if (code_seen('E')) max_e_jerk = code_value();
  2779. }
  2780. /**
  2781. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  2782. */
  2783. inline void gcode_M206() {
  2784. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  2785. if (code_seen(axis_codes[i])) {
  2786. add_homing[i] = code_value();
  2787. }
  2788. }
  2789. #ifdef SCARA
  2790. if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
  2791. if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
  2792. #endif
  2793. }
  2794. #ifdef DELTA
  2795. /**
  2796. * M665: Set delta configurations
  2797. *
  2798. * L = diagonal rod
  2799. * R = delta radius
  2800. * S = segments per second
  2801. */
  2802. inline void gcode_M665() {
  2803. if (code_seen('L')) delta_diagonal_rod = code_value();
  2804. if (code_seen('R')) delta_radius = code_value();
  2805. if (code_seen('S')) delta_segments_per_second = code_value();
  2806. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2807. }
  2808. /**
  2809. * M666: Set delta endstop adjustment
  2810. */
  2811. inline void gcode_M666() {
  2812. for (int8_t i = 0; i < 3; i++) {
  2813. if (code_seen(axis_codes[i])) {
  2814. endstop_adj[i] = code_value();
  2815. }
  2816. }
  2817. }
  2818. #endif // DELTA
  2819. #ifdef FWRETRACT
  2820. /**
  2821. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2822. */
  2823. inline void gcode_M207() {
  2824. if (code_seen('S')) retract_length = code_value();
  2825. if (code_seen('F')) retract_feedrate = code_value() / 60;
  2826. if (code_seen('Z')) retract_zlift = code_value();
  2827. }
  2828. /**
  2829. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2830. */
  2831. inline void gcode_M208() {
  2832. if (code_seen('S')) retract_recover_length = code_value();
  2833. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  2834. }
  2835. /**
  2836. * M209: Enable automatic retract (M209 S1)
  2837. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2838. */
  2839. inline void gcode_M209() {
  2840. if (code_seen('S')) {
  2841. int t = code_value();
  2842. switch(t) {
  2843. case 0:
  2844. autoretract_enabled = false;
  2845. break;
  2846. case 1:
  2847. autoretract_enabled = true;
  2848. break;
  2849. default:
  2850. SERIAL_ECHO_START;
  2851. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2852. SERIAL_ECHO(cmdbuffer[bufindr]);
  2853. SERIAL_ECHOLNPGM("\"");
  2854. return;
  2855. }
  2856. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  2857. }
  2858. }
  2859. #endif // FWRETRACT
  2860. #if EXTRUDERS > 1
  2861. /**
  2862. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2863. */
  2864. inline void gcode_M218() {
  2865. if (setTargetedHotend(218)) return;
  2866. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2867. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2868. #ifdef DUAL_X_CARRIAGE
  2869. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2870. #endif
  2871. SERIAL_ECHO_START;
  2872. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2873. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  2874. SERIAL_ECHO(" ");
  2875. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2876. SERIAL_ECHO(",");
  2877. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2878. #ifdef DUAL_X_CARRIAGE
  2879. SERIAL_ECHO(",");
  2880. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2881. #endif
  2882. }
  2883. SERIAL_EOL;
  2884. }
  2885. #endif // EXTRUDERS > 1
  2886. /**
  2887. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  2888. */
  2889. inline void gcode_M220() {
  2890. if (code_seen('S')) feedmultiply = code_value();
  2891. }
  2892. /**
  2893. * M221: Set extrusion percentage (M221 T0 S95)
  2894. */
  2895. inline void gcode_M221() {
  2896. if (code_seen('S')) {
  2897. int sval = code_value();
  2898. if (code_seen('T')) {
  2899. if (setTargetedHotend(221)) return;
  2900. extruder_multiply[tmp_extruder] = sval;
  2901. }
  2902. else {
  2903. extrudemultiply = sval;
  2904. }
  2905. }
  2906. }
  2907. /**
  2908. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  2909. */
  2910. inline void gcode_M226() {
  2911. if (code_seen('P')) {
  2912. int pin_number = code_value();
  2913. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  2914. if (pin_state >= -1 && pin_state <= 1) {
  2915. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  2916. if (sensitive_pins[i] == pin_number) {
  2917. pin_number = -1;
  2918. break;
  2919. }
  2920. }
  2921. if (pin_number > -1) {
  2922. int target = LOW;
  2923. st_synchronize();
  2924. pinMode(pin_number, INPUT);
  2925. switch(pin_state){
  2926. case 1:
  2927. target = HIGH;
  2928. break;
  2929. case 0:
  2930. target = LOW;
  2931. break;
  2932. case -1:
  2933. target = !digitalRead(pin_number);
  2934. break;
  2935. }
  2936. while(digitalRead(pin_number) != target) {
  2937. manage_heater();
  2938. manage_inactivity();
  2939. lcd_update();
  2940. }
  2941. } // pin_number > -1
  2942. } // pin_state -1 0 1
  2943. } // code_seen('P')
  2944. }
  2945. #if NUM_SERVOS > 0
  2946. /**
  2947. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  2948. */
  2949. inline void gcode_M280() {
  2950. int servo_index = code_seen('P') ? code_value() : -1;
  2951. int servo_position = 0;
  2952. if (code_seen('S')) {
  2953. servo_position = code_value();
  2954. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2955. #if defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  2956. servos[servo_index].attach(0);
  2957. #endif
  2958. servos[servo_index].write(servo_position);
  2959. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2960. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2961. servos[servo_index].detach();
  2962. #endif
  2963. }
  2964. else {
  2965. SERIAL_ECHO_START;
  2966. SERIAL_ECHO("Servo ");
  2967. SERIAL_ECHO(servo_index);
  2968. SERIAL_ECHOLN(" out of range");
  2969. }
  2970. }
  2971. else if (servo_index >= 0) {
  2972. SERIAL_PROTOCOL(MSG_OK);
  2973. SERIAL_PROTOCOL(" Servo ");
  2974. SERIAL_PROTOCOL(servo_index);
  2975. SERIAL_PROTOCOL(": ");
  2976. SERIAL_PROTOCOL(servos[servo_index].read());
  2977. SERIAL_PROTOCOLLN("");
  2978. }
  2979. }
  2980. #endif // NUM_SERVOS > 0
  2981. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  2982. /**
  2983. * M300: Play beep sound S<frequency Hz> P<duration ms>
  2984. */
  2985. inline void gcode_M300() {
  2986. int beepS = code_seen('S') ? code_value() : 110;
  2987. int beepP = code_seen('P') ? code_value() : 1000;
  2988. if (beepS > 0) {
  2989. #if BEEPER > 0
  2990. tone(BEEPER, beepS);
  2991. delay(beepP);
  2992. noTone(BEEPER);
  2993. #elif defined(ULTRALCD)
  2994. lcd_buzz(beepS, beepP);
  2995. #elif defined(LCD_USE_I2C_BUZZER)
  2996. lcd_buzz(beepP, beepS);
  2997. #endif
  2998. }
  2999. else {
  3000. delay(beepP);
  3001. }
  3002. }
  3003. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3004. #ifdef PIDTEMP
  3005. /**
  3006. * M301: Set PID parameters P I D (and optionally C)
  3007. */
  3008. inline void gcode_M301() {
  3009. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3010. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3011. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3012. if (e < EXTRUDERS) { // catch bad input value
  3013. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3014. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3015. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3016. #ifdef PID_ADD_EXTRUSION_RATE
  3017. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3018. #endif
  3019. updatePID();
  3020. SERIAL_PROTOCOL(MSG_OK);
  3021. #ifdef PID_PARAMS_PER_EXTRUDER
  3022. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3023. SERIAL_PROTOCOL(e);
  3024. #endif // PID_PARAMS_PER_EXTRUDER
  3025. SERIAL_PROTOCOL(" p:");
  3026. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3027. SERIAL_PROTOCOL(" i:");
  3028. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3029. SERIAL_PROTOCOL(" d:");
  3030. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3031. #ifdef PID_ADD_EXTRUSION_RATE
  3032. SERIAL_PROTOCOL(" c:");
  3033. //Kc does not have scaling applied above, or in resetting defaults
  3034. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3035. #endif
  3036. SERIAL_PROTOCOLLN("");
  3037. }
  3038. else {
  3039. SERIAL_ECHO_START;
  3040. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3041. }
  3042. }
  3043. #endif // PIDTEMP
  3044. #ifdef PIDTEMPBED
  3045. inline void gcode_M304() {
  3046. if (code_seen('P')) bedKp = code_value();
  3047. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3048. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3049. updatePID();
  3050. SERIAL_PROTOCOL(MSG_OK);
  3051. SERIAL_PROTOCOL(" p:");
  3052. SERIAL_PROTOCOL(bedKp);
  3053. SERIAL_PROTOCOL(" i:");
  3054. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3055. SERIAL_PROTOCOL(" d:");
  3056. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3057. SERIAL_PROTOCOLLN("");
  3058. }
  3059. #endif // PIDTEMPBED
  3060. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3061. /**
  3062. * M240: Trigger a camera by emulating a Canon RC-1
  3063. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3064. */
  3065. inline void gcode_M240() {
  3066. #ifdef CHDK
  3067. OUT_WRITE(CHDK, HIGH);
  3068. chdkHigh = millis();
  3069. chdkActive = true;
  3070. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3071. const uint8_t NUM_PULSES = 16;
  3072. const float PULSE_LENGTH = 0.01524;
  3073. for (int i = 0; i < NUM_PULSES; i++) {
  3074. WRITE(PHOTOGRAPH_PIN, HIGH);
  3075. _delay_ms(PULSE_LENGTH);
  3076. WRITE(PHOTOGRAPH_PIN, LOW);
  3077. _delay_ms(PULSE_LENGTH);
  3078. }
  3079. delay(7.33);
  3080. for (int i = 0; i < NUM_PULSES; i++) {
  3081. WRITE(PHOTOGRAPH_PIN, HIGH);
  3082. _delay_ms(PULSE_LENGTH);
  3083. WRITE(PHOTOGRAPH_PIN, LOW);
  3084. _delay_ms(PULSE_LENGTH);
  3085. }
  3086. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3087. }
  3088. #endif // CHDK || PHOTOGRAPH_PIN
  3089. #ifdef DOGLCD
  3090. /**
  3091. * M250: Read and optionally set the LCD contrast
  3092. */
  3093. inline void gcode_M250() {
  3094. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3095. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3096. SERIAL_PROTOCOL(lcd_contrast);
  3097. SERIAL_PROTOCOLLN("");
  3098. }
  3099. #endif // DOGLCD
  3100. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3101. /**
  3102. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3103. */
  3104. inline void gcode_M302() {
  3105. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3106. }
  3107. #endif // PREVENT_DANGEROUS_EXTRUDE
  3108. /**
  3109. * M303: PID relay autotune
  3110. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3111. * E<extruder> (-1 for the bed)
  3112. * C<cycles>
  3113. */
  3114. inline void gcode_M303() {
  3115. int e = code_seen('E') ? code_value_long() : 0;
  3116. int c = code_seen('C') ? code_value_long() : 5;
  3117. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3118. PID_autotune(temp, e, c);
  3119. }
  3120. #ifdef SCARA
  3121. /**
  3122. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3123. */
  3124. inline bool gcode_M360() {
  3125. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3126. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3127. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3128. if (! Stopped) {
  3129. //get_coordinates(); // For X Y Z E F
  3130. delta[X_AXIS] = 0;
  3131. delta[Y_AXIS] = 120;
  3132. calculate_SCARA_forward_Transform(delta);
  3133. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3134. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3135. prepare_move();
  3136. //ClearToSend();
  3137. return true;
  3138. }
  3139. return false;
  3140. }
  3141. /**
  3142. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3143. */
  3144. inline bool gcode_M361() {
  3145. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3146. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3147. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3148. if (! Stopped) {
  3149. //get_coordinates(); // For X Y Z E F
  3150. delta[X_AXIS] = 90;
  3151. delta[Y_AXIS] = 130;
  3152. calculate_SCARA_forward_Transform(delta);
  3153. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3154. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3155. prepare_move();
  3156. //ClearToSend();
  3157. return true;
  3158. }
  3159. return false;
  3160. }
  3161. /**
  3162. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3163. */
  3164. inline bool gcode_M362() {
  3165. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3166. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3167. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3168. if (! Stopped) {
  3169. //get_coordinates(); // For X Y Z E F
  3170. delta[X_AXIS] = 60;
  3171. delta[Y_AXIS] = 180;
  3172. calculate_SCARA_forward_Transform(delta);
  3173. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3174. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3175. prepare_move();
  3176. //ClearToSend();
  3177. return true;
  3178. }
  3179. return false;
  3180. }
  3181. /**
  3182. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3183. */
  3184. inline bool gcode_M363() {
  3185. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3186. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3187. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3188. if (! Stopped) {
  3189. //get_coordinates(); // For X Y Z E F
  3190. delta[X_AXIS] = 50;
  3191. delta[Y_AXIS] = 90;
  3192. calculate_SCARA_forward_Transform(delta);
  3193. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3194. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3195. prepare_move();
  3196. //ClearToSend();
  3197. return true;
  3198. }
  3199. return false;
  3200. }
  3201. /**
  3202. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3203. */
  3204. inline bool gcode_M364() {
  3205. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3206. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3207. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3208. if (! Stopped) {
  3209. //get_coordinates(); // For X Y Z E F
  3210. delta[X_AXIS] = 45;
  3211. delta[Y_AXIS] = 135;
  3212. calculate_SCARA_forward_Transform(delta);
  3213. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  3214. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  3215. prepare_move();
  3216. //ClearToSend();
  3217. return true;
  3218. }
  3219. return false;
  3220. }
  3221. /**
  3222. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3223. */
  3224. inline void gcode_M365() {
  3225. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3226. if (code_seen(axis_codes[i])) {
  3227. axis_scaling[i] = code_value();
  3228. }
  3229. }
  3230. }
  3231. #endif // SCARA
  3232. #ifdef EXT_SOLENOID
  3233. void enable_solenoid(uint8_t num) {
  3234. switch(num) {
  3235. case 0:
  3236. OUT_WRITE(SOL0_PIN, HIGH);
  3237. break;
  3238. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3239. case 1:
  3240. OUT_WRITE(SOL1_PIN, HIGH);
  3241. break;
  3242. #endif
  3243. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3244. case 2:
  3245. OUT_WRITE(SOL2_PIN, HIGH);
  3246. break;
  3247. #endif
  3248. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3249. case 3:
  3250. OUT_WRITE(SOL3_PIN, HIGH);
  3251. break;
  3252. #endif
  3253. default:
  3254. SERIAL_ECHO_START;
  3255. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3256. break;
  3257. }
  3258. }
  3259. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3260. void disable_all_solenoids() {
  3261. OUT_WRITE(SOL0_PIN, LOW);
  3262. OUT_WRITE(SOL1_PIN, LOW);
  3263. OUT_WRITE(SOL2_PIN, LOW);
  3264. OUT_WRITE(SOL3_PIN, LOW);
  3265. }
  3266. /**
  3267. * M380: Enable solenoid on the active extruder
  3268. */
  3269. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3270. /**
  3271. * M381: Disable all solenoids
  3272. */
  3273. inline void gcode_M381() { disable_all_solenoids(); }
  3274. #endif // EXT_SOLENOID
  3275. /**
  3276. * M400: Finish all moves
  3277. */
  3278. inline void gcode_M400() { st_synchronize(); }
  3279. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3280. /**
  3281. * M401: Engage Z Servo endstop if available
  3282. */
  3283. inline void gcode_M401() { engage_z_probe(); }
  3284. /**
  3285. * M402: Retract Z Servo endstop if enabled
  3286. */
  3287. inline void gcode_M402() { retract_z_probe(); }
  3288. #endif
  3289. #ifdef FILAMENT_SENSOR
  3290. /**
  3291. * M404: Display or set the nominal filament width (3mm, 1.75mm ) N<3.0>
  3292. */
  3293. inline void gcode_M404() {
  3294. #if FILWIDTH_PIN > -1
  3295. if (code_seen('N')) {
  3296. filament_width_nominal = code_value();
  3297. }
  3298. else {
  3299. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3300. SERIAL_PROTOCOLLN(filament_width_nominal);
  3301. }
  3302. #endif
  3303. }
  3304. /**
  3305. * M405: Turn on filament sensor for control
  3306. */
  3307. inline void gcode_M405() {
  3308. if (code_seen('D')) meas_delay_cm = code_value();
  3309. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3310. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3311. int temp_ratio = widthFil_to_size_ratio();
  3312. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3313. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3314. delay_index1 = delay_index2 = 0;
  3315. }
  3316. filament_sensor = true;
  3317. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3318. //SERIAL_PROTOCOL(filament_width_meas);
  3319. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3320. //SERIAL_PROTOCOL(extrudemultiply);
  3321. }
  3322. /**
  3323. * M406: Turn off filament sensor for control
  3324. */
  3325. inline void gcode_M406() { filament_sensor = false; }
  3326. /**
  3327. * M407: Get measured filament diameter on serial output
  3328. */
  3329. inline void gcode_M407() {
  3330. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3331. SERIAL_PROTOCOLLN(filament_width_meas);
  3332. }
  3333. #endif // FILAMENT_SENSOR
  3334. /**
  3335. * M500: Store settings in EEPROM
  3336. */
  3337. inline void gcode_M500() {
  3338. Config_StoreSettings();
  3339. }
  3340. /**
  3341. * M501: Read settings from EEPROM
  3342. */
  3343. inline void gcode_M501() {
  3344. Config_RetrieveSettings();
  3345. }
  3346. /**
  3347. * M502: Revert to default settings
  3348. */
  3349. inline void gcode_M502() {
  3350. Config_ResetDefault();
  3351. }
  3352. /**
  3353. * M503: print settings currently in memory
  3354. */
  3355. inline void gcode_M503() {
  3356. Config_PrintSettings(code_seen('S') && code_value == 0);
  3357. }
  3358. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3359. /**
  3360. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3361. */
  3362. inline void gcode_M540() {
  3363. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3364. }
  3365. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3366. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3367. inline void gcode_SET_Z_PROBE_OFFSET() {
  3368. float value;
  3369. if (code_seen('Z')) {
  3370. value = code_value();
  3371. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3372. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3373. SERIAL_ECHO_START;
  3374. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3375. SERIAL_PROTOCOLLN("");
  3376. }
  3377. else {
  3378. SERIAL_ECHO_START;
  3379. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3380. SERIAL_ECHOPGM(MSG_Z_MIN);
  3381. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3382. SERIAL_ECHOPGM(MSG_Z_MAX);
  3383. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3384. SERIAL_PROTOCOLLN("");
  3385. }
  3386. }
  3387. else {
  3388. SERIAL_ECHO_START;
  3389. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3390. SERIAL_ECHO(-zprobe_zoffset);
  3391. SERIAL_PROTOCOLLN("");
  3392. }
  3393. }
  3394. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3395. #ifdef FILAMENTCHANGEENABLE
  3396. /**
  3397. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3398. */
  3399. inline void gcode_M600() {
  3400. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3401. for (int i=0; i<NUM_AXIS; i++)
  3402. target[i] = lastpos[i] = current_position[i];
  3403. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3404. #ifdef DELTA
  3405. #define RUNPLAN calculate_delta(target); BASICPLAN
  3406. #else
  3407. #define RUNPLAN BASICPLAN
  3408. #endif
  3409. //retract by E
  3410. if (code_seen('E')) target[E_AXIS] += code_value();
  3411. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3412. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3413. #endif
  3414. RUNPLAN;
  3415. //lift Z
  3416. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3417. #ifdef FILAMENTCHANGE_ZADD
  3418. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3419. #endif
  3420. RUNPLAN;
  3421. //move xy
  3422. if (code_seen('X')) target[X_AXIS] = code_value();
  3423. #ifdef FILAMENTCHANGE_XPOS
  3424. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3425. #endif
  3426. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3427. #ifdef FILAMENTCHANGE_YPOS
  3428. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3429. #endif
  3430. RUNPLAN;
  3431. if (code_seen('L')) target[E_AXIS] += code_value();
  3432. #ifdef FILAMENTCHANGE_FINALRETRACT
  3433. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3434. #endif
  3435. RUNPLAN;
  3436. //finish moves
  3437. st_synchronize();
  3438. //disable extruder steppers so filament can be removed
  3439. disable_e0();
  3440. disable_e1();
  3441. disable_e2();
  3442. disable_e3();
  3443. delay(100);
  3444. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3445. uint8_t cnt = 0;
  3446. while (!lcd_clicked()) {
  3447. cnt++;
  3448. manage_heater();
  3449. manage_inactivity(true);
  3450. lcd_update();
  3451. if (cnt == 0) {
  3452. #if BEEPER > 0
  3453. OUT_WRITE(BEEPER,HIGH);
  3454. delay(3);
  3455. WRITE(BEEPER,LOW);
  3456. delay(3);
  3457. #else
  3458. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3459. lcd_buzz(1000/6, 100);
  3460. #else
  3461. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3462. #endif
  3463. #endif
  3464. }
  3465. } // while(!lcd_clicked)
  3466. //return to normal
  3467. if (code_seen('L')) target[E_AXIS] -= code_value();
  3468. #ifdef FILAMENTCHANGE_FINALRETRACT
  3469. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3470. #endif
  3471. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3472. plan_set_e_position(current_position[E_AXIS]);
  3473. RUNPLAN; //should do nothing
  3474. lcd_reset_alert_level();
  3475. #ifdef DELTA
  3476. calculate_delta(lastpos);
  3477. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3478. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3479. #else
  3480. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3481. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3482. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3483. #endif
  3484. }
  3485. #endif // FILAMENTCHANGEENABLE
  3486. #ifdef DUAL_X_CARRIAGE
  3487. /**
  3488. * M605: Set dual x-carriage movement mode
  3489. *
  3490. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3491. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3492. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3493. * millimeters x-offset and an optional differential hotend temperature of
  3494. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3495. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3496. *
  3497. * Note: the X axis should be homed after changing dual x-carriage mode.
  3498. */
  3499. inline void gcode_M605() {
  3500. st_synchronize();
  3501. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3502. switch(dual_x_carriage_mode) {
  3503. case DXC_DUPLICATION_MODE:
  3504. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3505. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3506. SERIAL_ECHO_START;
  3507. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3508. SERIAL_ECHO(" ");
  3509. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3510. SERIAL_ECHO(",");
  3511. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3512. SERIAL_ECHO(" ");
  3513. SERIAL_ECHO(duplicate_extruder_x_offset);
  3514. SERIAL_ECHO(",");
  3515. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3516. break;
  3517. case DXC_FULL_CONTROL_MODE:
  3518. case DXC_AUTO_PARK_MODE:
  3519. break;
  3520. default:
  3521. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3522. break;
  3523. }
  3524. active_extruder_parked = false;
  3525. extruder_duplication_enabled = false;
  3526. delayed_move_time = 0;
  3527. }
  3528. #endif // DUAL_X_CARRIAGE
  3529. /**
  3530. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3531. */
  3532. inline void gcode_M907() {
  3533. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3534. for (int i=0;i<NUM_AXIS;i++)
  3535. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3536. if (code_seen('B')) digipot_current(4, code_value());
  3537. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3538. #endif
  3539. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3540. if (code_seen('X')) digipot_current(0, code_value());
  3541. #endif
  3542. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3543. if (code_seen('Z')) digipot_current(1, code_value());
  3544. #endif
  3545. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3546. if (code_seen('E')) digipot_current(2, code_value());
  3547. #endif
  3548. #ifdef DIGIPOT_I2C
  3549. // this one uses actual amps in floating point
  3550. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3551. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3552. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3553. #endif
  3554. }
  3555. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3556. /**
  3557. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3558. */
  3559. inline void gcode_M908() {
  3560. digitalPotWrite(
  3561. code_seen('P') ? code_value() : 0,
  3562. code_seen('S') ? code_value() : 0
  3563. );
  3564. }
  3565. #endif // DIGIPOTSS_PIN
  3566. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3567. inline void gcode_M350() {
  3568. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3569. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3570. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3571. if(code_seen('B')) microstep_mode(4,code_value());
  3572. microstep_readings();
  3573. #endif
  3574. }
  3575. /**
  3576. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3577. * S# determines MS1 or MS2, X# sets the pin high/low.
  3578. */
  3579. inline void gcode_M351() {
  3580. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3581. if (code_seen('S')) switch((int)code_value()) {
  3582. case 1:
  3583. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3584. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3585. break;
  3586. case 2:
  3587. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3588. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3589. break;
  3590. }
  3591. microstep_readings();
  3592. #endif
  3593. }
  3594. /**
  3595. * M999: Restart after being stopped
  3596. */
  3597. inline void gcode_M999() {
  3598. Stopped = false;
  3599. lcd_reset_alert_level();
  3600. gcode_LastN = Stopped_gcode_LastN;
  3601. FlushSerialRequestResend();
  3602. }
  3603. inline void gcode_T() {
  3604. tmp_extruder = code_value();
  3605. if (tmp_extruder >= EXTRUDERS) {
  3606. SERIAL_ECHO_START;
  3607. SERIAL_ECHO("T");
  3608. SERIAL_ECHO(tmp_extruder);
  3609. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3610. }
  3611. else {
  3612. boolean make_move = false;
  3613. if (code_seen('F')) {
  3614. make_move = true;
  3615. next_feedrate = code_value();
  3616. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3617. }
  3618. #if EXTRUDERS > 1
  3619. if (tmp_extruder != active_extruder) {
  3620. // Save current position to return to after applying extruder offset
  3621. memcpy(destination, current_position, sizeof(destination));
  3622. #ifdef DUAL_X_CARRIAGE
  3623. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3624. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3625. // Park old head: 1) raise 2) move to park position 3) lower
  3626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3627. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3628. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3629. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3630. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3631. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3632. st_synchronize();
  3633. }
  3634. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3635. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3636. extruder_offset[Y_AXIS][active_extruder] +
  3637. extruder_offset[Y_AXIS][tmp_extruder];
  3638. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3639. extruder_offset[Z_AXIS][active_extruder] +
  3640. extruder_offset[Z_AXIS][tmp_extruder];
  3641. active_extruder = tmp_extruder;
  3642. // This function resets the max/min values - the current position may be overwritten below.
  3643. axis_is_at_home(X_AXIS);
  3644. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3645. current_position[X_AXIS] = inactive_extruder_x_pos;
  3646. inactive_extruder_x_pos = destination[X_AXIS];
  3647. }
  3648. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3649. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3650. if (active_extruder == 0 || active_extruder_parked)
  3651. current_position[X_AXIS] = inactive_extruder_x_pos;
  3652. else
  3653. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3654. inactive_extruder_x_pos = destination[X_AXIS];
  3655. extruder_duplication_enabled = false;
  3656. }
  3657. else {
  3658. // record raised toolhead position for use by unpark
  3659. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3660. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3661. active_extruder_parked = true;
  3662. delayed_move_time = 0;
  3663. }
  3664. #else // !DUAL_X_CARRIAGE
  3665. // Offset extruder (only by XY)
  3666. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3667. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3668. // Set the new active extruder and position
  3669. active_extruder = tmp_extruder;
  3670. #endif // !DUAL_X_CARRIAGE
  3671. #ifdef DELTA
  3672. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3673. //sent position to plan_set_position();
  3674. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3675. #else
  3676. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3677. #endif
  3678. // Move to the old position if 'F' was in the parameters
  3679. if (make_move && !Stopped) prepare_move();
  3680. }
  3681. #ifdef EXT_SOLENOID
  3682. st_synchronize();
  3683. disable_all_solenoids();
  3684. enable_solenoid_on_active_extruder();
  3685. #endif // EXT_SOLENOID
  3686. #endif // EXTRUDERS > 1
  3687. SERIAL_ECHO_START;
  3688. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3689. SERIAL_PROTOCOLLN((int)active_extruder);
  3690. }
  3691. }
  3692. /**
  3693. * Process Commands and dispatch them to handlers
  3694. */
  3695. void process_commands() {
  3696. if (code_seen('G')) {
  3697. int gCode = code_value_long();
  3698. switch(gCode) {
  3699. // G0, G1
  3700. case 0:
  3701. case 1:
  3702. gcode_G0_G1();
  3703. break;
  3704. // G2, G3
  3705. #ifndef SCARA
  3706. case 2: // G2 - CW ARC
  3707. case 3: // G3 - CCW ARC
  3708. gcode_G2_G3(gCode == 2);
  3709. break;
  3710. #endif
  3711. // G4 Dwell
  3712. case 4:
  3713. gcode_G4();
  3714. break;
  3715. #ifdef FWRETRACT
  3716. case 10: // G10: retract
  3717. case 11: // G11: retract_recover
  3718. gcode_G10_G11(gCode == 10);
  3719. break;
  3720. #endif //FWRETRACT
  3721. case 28: // G28: Home all axes, one at a time
  3722. gcode_G28();
  3723. break;
  3724. #ifdef ENABLE_AUTO_BED_LEVELING
  3725. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3726. gcode_G29();
  3727. break;
  3728. #ifndef Z_PROBE_SLED
  3729. case 30: // G30 Single Z Probe
  3730. gcode_G30();
  3731. break;
  3732. #else // Z_PROBE_SLED
  3733. case 31: // G31: dock the sled
  3734. case 32: // G32: undock the sled
  3735. dock_sled(gCode == 31);
  3736. break;
  3737. #endif // Z_PROBE_SLED
  3738. #endif // ENABLE_AUTO_BED_LEVELING
  3739. case 90: // G90
  3740. relative_mode = false;
  3741. break;
  3742. case 91: // G91
  3743. relative_mode = true;
  3744. break;
  3745. case 92: // G92
  3746. gcode_G92();
  3747. break;
  3748. }
  3749. }
  3750. else if (code_seen('M')) {
  3751. switch( (int)code_value() ) {
  3752. #ifdef ULTIPANEL
  3753. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3754. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3755. gcode_M0_M1();
  3756. break;
  3757. #endif // ULTIPANEL
  3758. case 17:
  3759. gcode_M17();
  3760. break;
  3761. #ifdef SDSUPPORT
  3762. case 20: // M20 - list SD card
  3763. gcode_M20(); break;
  3764. case 21: // M21 - init SD card
  3765. gcode_M21(); break;
  3766. case 22: //M22 - release SD card
  3767. gcode_M22(); break;
  3768. case 23: //M23 - Select file
  3769. gcode_M23(); break;
  3770. case 24: //M24 - Start SD print
  3771. gcode_M24(); break;
  3772. case 25: //M25 - Pause SD print
  3773. gcode_M25(); break;
  3774. case 26: //M26 - Set SD index
  3775. gcode_M26(); break;
  3776. case 27: //M27 - Get SD status
  3777. gcode_M27(); break;
  3778. case 28: //M28 - Start SD write
  3779. gcode_M28(); break;
  3780. case 29: //M29 - Stop SD write
  3781. gcode_M29(); break;
  3782. case 30: //M30 <filename> Delete File
  3783. gcode_M30(); break;
  3784. case 32: //M32 - Select file and start SD print
  3785. gcode_M32(); break;
  3786. case 928: //M928 - Start SD write
  3787. gcode_M928(); break;
  3788. #endif //SDSUPPORT
  3789. case 31: //M31 take time since the start of the SD print or an M109 command
  3790. gcode_M31();
  3791. break;
  3792. case 42: //M42 -Change pin status via gcode
  3793. gcode_M42();
  3794. break;
  3795. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  3796. case 48: // M48 Z-Probe repeatability
  3797. gcode_M48();
  3798. break;
  3799. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  3800. case 104: // M104
  3801. gcode_M104();
  3802. break;
  3803. case 112: // M112 Emergency Stop
  3804. gcode_M112();
  3805. break;
  3806. case 140: // M140 Set bed temp
  3807. gcode_M140();
  3808. break;
  3809. case 105: // M105 Read current temperature
  3810. gcode_M105();
  3811. return;
  3812. break;
  3813. case 109: // M109 Wait for temperature
  3814. gcode_M109();
  3815. break;
  3816. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3817. case 190: // M190 - Wait for bed heater to reach target.
  3818. gcode_M190();
  3819. break;
  3820. #endif //TEMP_BED_PIN
  3821. #if defined(FAN_PIN) && FAN_PIN > -1
  3822. case 106: //M106 Fan On
  3823. gcode_M106();
  3824. break;
  3825. case 107: //M107 Fan Off
  3826. gcode_M107();
  3827. break;
  3828. #endif //FAN_PIN
  3829. #ifdef BARICUDA
  3830. // PWM for HEATER_1_PIN
  3831. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  3832. case 126: // M126 valve open
  3833. gcode_M126();
  3834. break;
  3835. case 127: // M127 valve closed
  3836. gcode_M127();
  3837. break;
  3838. #endif //HEATER_1_PIN
  3839. // PWM for HEATER_2_PIN
  3840. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  3841. case 128: // M128 valve open
  3842. gcode_M128();
  3843. break;
  3844. case 129: // M129 valve closed
  3845. gcode_M129();
  3846. break;
  3847. #endif //HEATER_2_PIN
  3848. #endif //BARICUDA
  3849. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3850. case 80: // M80 - Turn on Power Supply
  3851. gcode_M80();
  3852. break;
  3853. #endif // PS_ON_PIN
  3854. case 81: // M81 - Turn off Power Supply
  3855. gcode_M81();
  3856. break;
  3857. case 82:
  3858. gcode_M82();
  3859. break;
  3860. case 83:
  3861. gcode_M83();
  3862. break;
  3863. case 18: //compatibility
  3864. case 84: // M84
  3865. gcode_M18_M84();
  3866. break;
  3867. case 85: // M85
  3868. gcode_M85();
  3869. break;
  3870. case 92: // M92
  3871. gcode_M92();
  3872. break;
  3873. case 115: // M115
  3874. gcode_M115();
  3875. break;
  3876. case 117: // M117 display message
  3877. gcode_M117();
  3878. break;
  3879. case 114: // M114
  3880. gcode_M114();
  3881. break;
  3882. case 120: // M120
  3883. gcode_M120();
  3884. break;
  3885. case 121: // M121
  3886. gcode_M121();
  3887. break;
  3888. case 119: // M119
  3889. gcode_M119();
  3890. break;
  3891. //TODO: update for all axis, use for loop
  3892. #ifdef BLINKM
  3893. case 150: // M150
  3894. gcode_M150();
  3895. break;
  3896. #endif //BLINKM
  3897. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3898. gcode_M200();
  3899. break;
  3900. case 201: // M201
  3901. gcode_M201();
  3902. break;
  3903. #if 0 // Not used for Sprinter/grbl gen6
  3904. case 202: // M202
  3905. gcode_M202();
  3906. break;
  3907. #endif
  3908. case 203: // M203 max feedrate mm/sec
  3909. gcode_M203();
  3910. break;
  3911. case 204: // M204 acclereration S normal moves T filmanent only moves
  3912. gcode_M204();
  3913. break;
  3914. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3915. gcode_M205();
  3916. break;
  3917. case 206: // M206 additional homing offset
  3918. gcode_M206();
  3919. break;
  3920. #ifdef DELTA
  3921. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  3922. gcode_M665();
  3923. break;
  3924. case 666: // M666 set delta endstop adjustment
  3925. gcode_M666();
  3926. break;
  3927. #endif // DELTA
  3928. #ifdef FWRETRACT
  3929. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3930. gcode_M207();
  3931. break;
  3932. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3933. gcode_M208();
  3934. break;
  3935. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3936. gcode_M209();
  3937. break;
  3938. #endif // FWRETRACT
  3939. #if EXTRUDERS > 1
  3940. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3941. gcode_M218();
  3942. break;
  3943. #endif
  3944. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3945. gcode_M220();
  3946. break;
  3947. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3948. gcode_M221();
  3949. break;
  3950. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3951. gcode_M226();
  3952. break;
  3953. #if NUM_SERVOS > 0
  3954. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3955. gcode_M280();
  3956. break;
  3957. #endif // NUM_SERVOS > 0
  3958. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3959. case 300: // M300 - Play beep tone
  3960. gcode_M300();
  3961. break;
  3962. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3963. #ifdef PIDTEMP
  3964. case 301: // M301
  3965. gcode_M301();
  3966. break;
  3967. #endif // PIDTEMP
  3968. #ifdef PIDTEMPBED
  3969. case 304: // M304
  3970. gcode_M304();
  3971. break;
  3972. #endif // PIDTEMPBED
  3973. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3974. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3975. gcode_M240();
  3976. break;
  3977. #endif // CHDK || PHOTOGRAPH_PIN
  3978. #ifdef DOGLCD
  3979. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3980. gcode_M250();
  3981. break;
  3982. #endif // DOGLCD
  3983. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3984. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3985. gcode_M302();
  3986. break;
  3987. #endif // PREVENT_DANGEROUS_EXTRUDE
  3988. case 303: // M303 PID autotune
  3989. gcode_M303();
  3990. break;
  3991. #ifdef SCARA
  3992. case 360: // M360 SCARA Theta pos1
  3993. if (gcode_M360()) return;
  3994. break;
  3995. case 361: // M361 SCARA Theta pos2
  3996. if (gcode_M361()) return;
  3997. break;
  3998. case 362: // M362 SCARA Psi pos1
  3999. if (gcode_M362()) return;
  4000. break;
  4001. case 363: // M363 SCARA Psi pos2
  4002. if (gcode_M363()) return;
  4003. break;
  4004. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4005. if (gcode_M364()) return;
  4006. break;
  4007. case 365: // M365 Set SCARA scaling for X Y Z
  4008. gcode_M365();
  4009. break;
  4010. #endif // SCARA
  4011. case 400: // M400 finish all moves
  4012. gcode_M400();
  4013. break;
  4014. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  4015. case 401:
  4016. gcode_M401();
  4017. break;
  4018. case 402:
  4019. gcode_M402();
  4020. break;
  4021. #endif
  4022. #ifdef FILAMENT_SENSOR
  4023. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4024. gcode_M404();
  4025. break;
  4026. case 405: //M405 Turn on filament sensor for control
  4027. gcode_M405();
  4028. break;
  4029. case 406: //M406 Turn off filament sensor for control
  4030. gcode_M406();
  4031. break;
  4032. case 407: //M407 Display measured filament diameter
  4033. gcode_M407();
  4034. break;
  4035. #endif // FILAMENT_SENSOR
  4036. case 500: // M500 Store settings in EEPROM
  4037. gcode_M500();
  4038. break;
  4039. case 501: // M501 Read settings from EEPROM
  4040. gcode_M501();
  4041. break;
  4042. case 502: // M502 Revert to default settings
  4043. gcode_M502();
  4044. break;
  4045. case 503: // M503 print settings currently in memory
  4046. gcode_M503();
  4047. break;
  4048. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4049. case 540:
  4050. gcode_M540();
  4051. break;
  4052. #endif
  4053. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4054. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4055. gcode_SET_Z_PROBE_OFFSET();
  4056. break;
  4057. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4058. #ifdef FILAMENTCHANGEENABLE
  4059. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4060. gcode_M600();
  4061. break;
  4062. #endif // FILAMENTCHANGEENABLE
  4063. #ifdef DUAL_X_CARRIAGE
  4064. case 605:
  4065. gcode_M605();
  4066. break;
  4067. #endif // DUAL_X_CARRIAGE
  4068. case 907: // M907 Set digital trimpot motor current using axis codes.
  4069. gcode_M907();
  4070. break;
  4071. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4072. case 908: // M908 Control digital trimpot directly.
  4073. gcode_M908();
  4074. break;
  4075. #endif // DIGIPOTSS_PIN
  4076. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4077. gcode_M350();
  4078. break;
  4079. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4080. gcode_M351();
  4081. break;
  4082. case 999: // M999: Restart after being Stopped
  4083. gcode_M999();
  4084. break;
  4085. }
  4086. }
  4087. else if (code_seen('T')) {
  4088. gcode_T();
  4089. }
  4090. else {
  4091. SERIAL_ECHO_START;
  4092. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4093. SERIAL_ECHO(cmdbuffer[bufindr]);
  4094. SERIAL_ECHOLNPGM("\"");
  4095. }
  4096. ClearToSend();
  4097. }
  4098. void FlushSerialRequestResend()
  4099. {
  4100. //char cmdbuffer[bufindr][100]="Resend:";
  4101. MYSERIAL.flush();
  4102. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4103. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4104. ClearToSend();
  4105. }
  4106. void ClearToSend()
  4107. {
  4108. previous_millis_cmd = millis();
  4109. #ifdef SDSUPPORT
  4110. if(fromsd[bufindr])
  4111. return;
  4112. #endif //SDSUPPORT
  4113. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4114. }
  4115. void get_coordinates()
  4116. {
  4117. bool seen[4]={false,false,false,false};
  4118. for(int8_t i=0; i < NUM_AXIS; i++) {
  4119. if(code_seen(axis_codes[i]))
  4120. {
  4121. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4122. seen[i]=true;
  4123. }
  4124. else destination[i] = current_position[i]; //Are these else lines really needed?
  4125. }
  4126. if(code_seen('F')) {
  4127. next_feedrate = code_value();
  4128. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4129. }
  4130. }
  4131. void get_arc_coordinates()
  4132. {
  4133. #ifdef SF_ARC_FIX
  4134. bool relative_mode_backup = relative_mode;
  4135. relative_mode = true;
  4136. #endif
  4137. get_coordinates();
  4138. #ifdef SF_ARC_FIX
  4139. relative_mode=relative_mode_backup;
  4140. #endif
  4141. if(code_seen('I')) {
  4142. offset[0] = code_value();
  4143. }
  4144. else {
  4145. offset[0] = 0.0;
  4146. }
  4147. if(code_seen('J')) {
  4148. offset[1] = code_value();
  4149. }
  4150. else {
  4151. offset[1] = 0.0;
  4152. }
  4153. }
  4154. void clamp_to_software_endstops(float target[3])
  4155. {
  4156. if (min_software_endstops) {
  4157. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4158. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4159. float negative_z_offset = 0;
  4160. #ifdef ENABLE_AUTO_BED_LEVELING
  4161. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4162. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4163. #endif
  4164. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4165. }
  4166. if (max_software_endstops) {
  4167. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4168. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4169. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4170. }
  4171. }
  4172. #ifdef DELTA
  4173. void recalc_delta_settings(float radius, float diagonal_rod)
  4174. {
  4175. delta_tower1_x= -SIN_60*radius; // front left tower
  4176. delta_tower1_y= -COS_60*radius;
  4177. delta_tower2_x= SIN_60*radius; // front right tower
  4178. delta_tower2_y= -COS_60*radius;
  4179. delta_tower3_x= 0.0; // back middle tower
  4180. delta_tower3_y= radius;
  4181. delta_diagonal_rod_2= sq(diagonal_rod);
  4182. }
  4183. void calculate_delta(float cartesian[3])
  4184. {
  4185. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4186. - sq(delta_tower1_x-cartesian[X_AXIS])
  4187. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4188. ) + cartesian[Z_AXIS];
  4189. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4190. - sq(delta_tower2_x-cartesian[X_AXIS])
  4191. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4192. ) + cartesian[Z_AXIS];
  4193. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4194. - sq(delta_tower3_x-cartesian[X_AXIS])
  4195. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4196. ) + cartesian[Z_AXIS];
  4197. /*
  4198. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4199. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4200. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4201. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4202. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4203. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4204. */
  4205. }
  4206. #endif
  4207. void prepare_move()
  4208. {
  4209. clamp_to_software_endstops(destination);
  4210. previous_millis_cmd = millis();
  4211. #ifdef SCARA //for now same as delta-code
  4212. float difference[NUM_AXIS];
  4213. for (int8_t i=0; i < NUM_AXIS; i++) {
  4214. difference[i] = destination[i] - current_position[i];
  4215. }
  4216. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4217. sq(difference[Y_AXIS]) +
  4218. sq(difference[Z_AXIS]));
  4219. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4220. if (cartesian_mm < 0.000001) { return; }
  4221. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4222. int steps = max(1, int(scara_segments_per_second * seconds));
  4223. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4224. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4225. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4226. for (int s = 1; s <= steps; s++) {
  4227. float fraction = float(s) / float(steps);
  4228. for(int8_t i=0; i < NUM_AXIS; i++) {
  4229. destination[i] = current_position[i] + difference[i] * fraction;
  4230. }
  4231. calculate_delta(destination);
  4232. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4233. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4234. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4235. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4236. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4237. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4238. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4239. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4240. active_extruder);
  4241. }
  4242. #endif // SCARA
  4243. #ifdef DELTA
  4244. float difference[NUM_AXIS];
  4245. for (int8_t i=0; i < NUM_AXIS; i++) {
  4246. difference[i] = destination[i] - current_position[i];
  4247. }
  4248. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4249. sq(difference[Y_AXIS]) +
  4250. sq(difference[Z_AXIS]));
  4251. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4252. if (cartesian_mm < 0.000001) { return; }
  4253. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4254. int steps = max(1, int(delta_segments_per_second * seconds));
  4255. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4256. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4257. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4258. for (int s = 1; s <= steps; s++) {
  4259. float fraction = float(s) / float(steps);
  4260. for(int8_t i=0; i < NUM_AXIS; i++) {
  4261. destination[i] = current_position[i] + difference[i] * fraction;
  4262. }
  4263. calculate_delta(destination);
  4264. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4265. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4266. active_extruder);
  4267. }
  4268. #endif // DELTA
  4269. #ifdef DUAL_X_CARRIAGE
  4270. if (active_extruder_parked)
  4271. {
  4272. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4273. {
  4274. // move duplicate extruder into correct duplication position.
  4275. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4276. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4277. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4278. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4279. st_synchronize();
  4280. extruder_duplication_enabled = true;
  4281. active_extruder_parked = false;
  4282. }
  4283. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4284. {
  4285. if (current_position[E_AXIS] == destination[E_AXIS])
  4286. {
  4287. // this is a travel move - skit it but keep track of current position (so that it can later
  4288. // be used as start of first non-travel move)
  4289. if (delayed_move_time != 0xFFFFFFFFUL)
  4290. {
  4291. memcpy(current_position, destination, sizeof(current_position));
  4292. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4293. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4294. delayed_move_time = millis();
  4295. return;
  4296. }
  4297. }
  4298. delayed_move_time = 0;
  4299. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4300. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4301. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4302. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4303. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4304. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4305. active_extruder_parked = false;
  4306. }
  4307. }
  4308. #endif //DUAL_X_CARRIAGE
  4309. #if ! (defined DELTA || defined SCARA)
  4310. // Do not use feedmultiply for E or Z only moves
  4311. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4312. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4313. }
  4314. else {
  4315. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4316. }
  4317. #endif // !(DELTA || SCARA)
  4318. for(int8_t i=0; i < NUM_AXIS; i++) {
  4319. current_position[i] = destination[i];
  4320. }
  4321. }
  4322. void prepare_arc_move(char isclockwise) {
  4323. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4324. // Trace the arc
  4325. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4326. // As far as the parser is concerned, the position is now == target. In reality the
  4327. // motion control system might still be processing the action and the real tool position
  4328. // in any intermediate location.
  4329. for(int8_t i=0; i < NUM_AXIS; i++) {
  4330. current_position[i] = destination[i];
  4331. }
  4332. previous_millis_cmd = millis();
  4333. }
  4334. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4335. #if defined(FAN_PIN)
  4336. #if CONTROLLERFAN_PIN == FAN_PIN
  4337. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4338. #endif
  4339. #endif
  4340. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4341. unsigned long lastMotorCheck = 0;
  4342. void controllerFan()
  4343. {
  4344. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4345. {
  4346. lastMotorCheck = millis();
  4347. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4348. #if EXTRUDERS > 2
  4349. || !READ(E2_ENABLE_PIN)
  4350. #endif
  4351. #if EXTRUDER > 1
  4352. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4353. || !READ(X2_ENABLE_PIN)
  4354. #endif
  4355. || !READ(E1_ENABLE_PIN)
  4356. #endif
  4357. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4358. {
  4359. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4360. }
  4361. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4362. {
  4363. digitalWrite(CONTROLLERFAN_PIN, 0);
  4364. analogWrite(CONTROLLERFAN_PIN, 0);
  4365. }
  4366. else
  4367. {
  4368. // allows digital or PWM fan output to be used (see M42 handling)
  4369. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4370. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4371. }
  4372. }
  4373. }
  4374. #endif
  4375. #ifdef SCARA
  4376. void calculate_SCARA_forward_Transform(float f_scara[3])
  4377. {
  4378. // Perform forward kinematics, and place results in delta[3]
  4379. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4380. float x_sin, x_cos, y_sin, y_cos;
  4381. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4382. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4383. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4384. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4385. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4386. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4387. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4388. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4389. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4390. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4391. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4392. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4393. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4394. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4395. }
  4396. void calculate_delta(float cartesian[3]){
  4397. //reverse kinematics.
  4398. // Perform reversed kinematics, and place results in delta[3]
  4399. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4400. float SCARA_pos[2];
  4401. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4402. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4403. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4404. #if (Linkage_1 == Linkage_2)
  4405. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4406. #else
  4407. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4408. #endif
  4409. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4410. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4411. SCARA_K2 = Linkage_2 * SCARA_S2;
  4412. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4413. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4414. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4415. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4416. delta[Z_AXIS] = cartesian[Z_AXIS];
  4417. /*
  4418. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4419. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4420. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4421. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4422. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4423. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4424. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4425. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4426. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4427. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4428. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4429. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4430. SERIAL_ECHOLN(" ");*/
  4431. }
  4432. #endif
  4433. #ifdef TEMP_STAT_LEDS
  4434. static bool blue_led = false;
  4435. static bool red_led = false;
  4436. static uint32_t stat_update = 0;
  4437. void handle_status_leds(void) {
  4438. float max_temp = 0.0;
  4439. if(millis() > stat_update) {
  4440. stat_update += 500; // Update every 0.5s
  4441. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4442. max_temp = max(max_temp, degHotend(cur_extruder));
  4443. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4444. }
  4445. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4446. max_temp = max(max_temp, degTargetBed());
  4447. max_temp = max(max_temp, degBed());
  4448. #endif
  4449. if((max_temp > 55.0) && (red_led == false)) {
  4450. digitalWrite(STAT_LED_RED, 1);
  4451. digitalWrite(STAT_LED_BLUE, 0);
  4452. red_led = true;
  4453. blue_led = false;
  4454. }
  4455. if((max_temp < 54.0) && (blue_led == false)) {
  4456. digitalWrite(STAT_LED_RED, 0);
  4457. digitalWrite(STAT_LED_BLUE, 1);
  4458. red_led = false;
  4459. blue_led = true;
  4460. }
  4461. }
  4462. }
  4463. #endif
  4464. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4465. {
  4466. #if defined(KILL_PIN) && KILL_PIN > -1
  4467. static int killCount = 0; // make the inactivity button a bit less responsive
  4468. const int KILL_DELAY = 10000;
  4469. #endif
  4470. #if defined(HOME_PIN) && HOME_PIN > -1
  4471. static int homeDebounceCount = 0; // poor man's debouncing count
  4472. const int HOME_DEBOUNCE_DELAY = 10000;
  4473. #endif
  4474. if(buflen < (BUFSIZE-1))
  4475. get_command();
  4476. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4477. if(max_inactive_time)
  4478. kill();
  4479. if(stepper_inactive_time) {
  4480. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4481. {
  4482. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4483. disable_x();
  4484. disable_y();
  4485. disable_z();
  4486. disable_e0();
  4487. disable_e1();
  4488. disable_e2();
  4489. disable_e3();
  4490. }
  4491. }
  4492. }
  4493. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4494. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4495. {
  4496. chdkActive = false;
  4497. WRITE(CHDK, LOW);
  4498. }
  4499. #endif
  4500. #if defined(KILL_PIN) && KILL_PIN > -1
  4501. // Check if the kill button was pressed and wait just in case it was an accidental
  4502. // key kill key press
  4503. // -------------------------------------------------------------------------------
  4504. if( 0 == READ(KILL_PIN) )
  4505. {
  4506. killCount++;
  4507. }
  4508. else if (killCount > 0)
  4509. {
  4510. killCount--;
  4511. }
  4512. // Exceeded threshold and we can confirm that it was not accidental
  4513. // KILL the machine
  4514. // ----------------------------------------------------------------
  4515. if ( killCount >= KILL_DELAY)
  4516. {
  4517. kill();
  4518. }
  4519. #endif
  4520. #if defined(HOME_PIN) && HOME_PIN > -1
  4521. // Check to see if we have to home, use poor man's debouncer
  4522. // ---------------------------------------------------------
  4523. if ( 0 == READ(HOME_PIN) )
  4524. {
  4525. if (homeDebounceCount == 0)
  4526. {
  4527. enquecommands_P((PSTR("G28")));
  4528. homeDebounceCount++;
  4529. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4530. }
  4531. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4532. {
  4533. homeDebounceCount++;
  4534. }
  4535. else
  4536. {
  4537. homeDebounceCount = 0;
  4538. }
  4539. }
  4540. #endif
  4541. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4542. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4543. #endif
  4544. #ifdef EXTRUDER_RUNOUT_PREVENT
  4545. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4546. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4547. {
  4548. bool oldstatus=READ(E0_ENABLE_PIN);
  4549. enable_e0();
  4550. float oldepos=current_position[E_AXIS];
  4551. float oldedes=destination[E_AXIS];
  4552. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4553. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4554. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4555. current_position[E_AXIS]=oldepos;
  4556. destination[E_AXIS]=oldedes;
  4557. plan_set_e_position(oldepos);
  4558. previous_millis_cmd=millis();
  4559. st_synchronize();
  4560. WRITE(E0_ENABLE_PIN,oldstatus);
  4561. }
  4562. #endif
  4563. #if defined(DUAL_X_CARRIAGE)
  4564. // handle delayed move timeout
  4565. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4566. {
  4567. // travel moves have been received so enact them
  4568. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4569. memcpy(destination,current_position,sizeof(destination));
  4570. prepare_move();
  4571. }
  4572. #endif
  4573. #ifdef TEMP_STAT_LEDS
  4574. handle_status_leds();
  4575. #endif
  4576. check_axes_activity();
  4577. }
  4578. void kill()
  4579. {
  4580. cli(); // Stop interrupts
  4581. disable_heater();
  4582. disable_x();
  4583. disable_y();
  4584. disable_z();
  4585. disable_e0();
  4586. disable_e1();
  4587. disable_e2();
  4588. disable_e3();
  4589. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4590. pinMode(PS_ON_PIN,INPUT);
  4591. #endif
  4592. SERIAL_ERROR_START;
  4593. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4594. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4595. // FMC small patch to update the LCD before ending
  4596. sei(); // enable interrupts
  4597. for ( int i=5; i--; lcd_update())
  4598. {
  4599. delay(200);
  4600. }
  4601. cli(); // disable interrupts
  4602. suicide();
  4603. while(1) { /* Intentionally left empty */ } // Wait for reset
  4604. }
  4605. void Stop()
  4606. {
  4607. disable_heater();
  4608. if(Stopped == false) {
  4609. Stopped = true;
  4610. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4611. SERIAL_ERROR_START;
  4612. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4613. LCD_MESSAGEPGM(MSG_STOPPED);
  4614. }
  4615. }
  4616. bool IsStopped() { return Stopped; };
  4617. #ifdef FAST_PWM_FAN
  4618. void setPwmFrequency(uint8_t pin, int val)
  4619. {
  4620. val &= 0x07;
  4621. switch(digitalPinToTimer(pin))
  4622. {
  4623. #if defined(TCCR0A)
  4624. case TIMER0A:
  4625. case TIMER0B:
  4626. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4627. // TCCR0B |= val;
  4628. break;
  4629. #endif
  4630. #if defined(TCCR1A)
  4631. case TIMER1A:
  4632. case TIMER1B:
  4633. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4634. // TCCR1B |= val;
  4635. break;
  4636. #endif
  4637. #if defined(TCCR2)
  4638. case TIMER2:
  4639. case TIMER2:
  4640. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4641. TCCR2 |= val;
  4642. break;
  4643. #endif
  4644. #if defined(TCCR2A)
  4645. case TIMER2A:
  4646. case TIMER2B:
  4647. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4648. TCCR2B |= val;
  4649. break;
  4650. #endif
  4651. #if defined(TCCR3A)
  4652. case TIMER3A:
  4653. case TIMER3B:
  4654. case TIMER3C:
  4655. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4656. TCCR3B |= val;
  4657. break;
  4658. #endif
  4659. #if defined(TCCR4A)
  4660. case TIMER4A:
  4661. case TIMER4B:
  4662. case TIMER4C:
  4663. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4664. TCCR4B |= val;
  4665. break;
  4666. #endif
  4667. #if defined(TCCR5A)
  4668. case TIMER5A:
  4669. case TIMER5B:
  4670. case TIMER5C:
  4671. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4672. TCCR5B |= val;
  4673. break;
  4674. #endif
  4675. }
  4676. }
  4677. #endif //FAST_PWM_FAN
  4678. bool setTargetedHotend(int code){
  4679. tmp_extruder = active_extruder;
  4680. if(code_seen('T')) {
  4681. tmp_extruder = code_value();
  4682. if(tmp_extruder >= EXTRUDERS) {
  4683. SERIAL_ECHO_START;
  4684. switch(code){
  4685. case 104:
  4686. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4687. break;
  4688. case 105:
  4689. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4690. break;
  4691. case 109:
  4692. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4693. break;
  4694. case 218:
  4695. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4696. break;
  4697. case 221:
  4698. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4699. break;
  4700. }
  4701. SERIAL_ECHOLN(tmp_extruder);
  4702. return true;
  4703. }
  4704. }
  4705. return false;
  4706. }
  4707. float calculate_volumetric_multiplier(float diameter) {
  4708. if (!volumetric_enabled || diameter == 0) return 1.0;
  4709. float d2 = diameter * 0.5;
  4710. return 1.0 / (M_PI * d2 * d2);
  4711. }
  4712. void calculate_volumetric_multipliers() {
  4713. for (int i=0; i<EXTRUDERS; i++)
  4714. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  4715. }