My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 171KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #if Z_MIN_PIN == -1
  26. #error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
  27. #endif
  28. #include "vector_3.h"
  29. #ifdef AUTO_BED_LEVELING_GRID
  30. #include "qr_solve.h"
  31. #endif
  32. #endif // ENABLE_AUTO_BED_LEVELING
  33. #include "ultralcd.h"
  34. #include "planner.h"
  35. #include "stepper.h"
  36. #include "temperature.h"
  37. #include "motion_control.h"
  38. #include "cardreader.h"
  39. #include "watchdog.h"
  40. #include "ConfigurationStore.h"
  41. #include "language.h"
  42. #include "pins_arduino.h"
  43. #include "math.h"
  44. #ifdef BLINKM
  45. #include "BlinkM.h"
  46. #include "Wire.h"
  47. #endif
  48. #if NUM_SERVOS > 0
  49. #include "Servo.h"
  50. #endif
  51. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  52. #include <SPI.h>
  53. #endif
  54. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  55. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  56. //Implemented Codes
  57. //-------------------
  58. // G0 -> G1
  59. // G1 - Coordinated Movement X Y Z E
  60. // G2 - CW ARC
  61. // G3 - CCW ARC
  62. // G4 - Dwell S<seconds> or P<milliseconds>
  63. // G10 - retract filament according to settings of M207
  64. // G11 - retract recover filament according to settings of M208
  65. // G28 - Home all Axis
  66. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  67. // G30 - Single Z Probe, probes bed at current XY location.
  68. // G31 - Dock sled (Z_PROBE_SLED only)
  69. // G32 - Undock sled (Z_PROBE_SLED only)
  70. // G90 - Use Absolute Coordinates
  71. // G91 - Use Relative Coordinates
  72. // G92 - Set current position to coordinates given
  73. // M Codes
  74. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  75. // M1 - Same as M0
  76. // M17 - Enable/Power all stepper motors
  77. // M18 - Disable all stepper motors; same as M84
  78. // M20 - List SD card
  79. // M21 - Init SD card
  80. // M22 - Release SD card
  81. // M23 - Select SD file (M23 filename.g)
  82. // M24 - Start/resume SD print
  83. // M25 - Pause SD print
  84. // M26 - Set SD position in bytes (M26 S12345)
  85. // M27 - Report SD print status
  86. // M28 - Start SD write (M28 filename.g)
  87. // M29 - Stop SD write
  88. // M30 - Delete file from SD (M30 filename.g)
  89. // M31 - Output time since last M109 or SD card start to serial
  90. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  91. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  92. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  93. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  94. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  95. // M80 - Turn on Power Supply
  96. // M81 - Turn off Power Supply
  97. // M82 - Set E codes absolute (default)
  98. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  99. // M84 - Disable steppers until next move,
  100. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  101. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  102. // M92 - Set axis_steps_per_unit - same syntax as G92
  103. // M104 - Set extruder target temp
  104. // M105 - Read current temp
  105. // M106 - Fan on
  106. // M107 - Fan off
  107. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  108. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  109. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  110. // M112 - Emergency stop
  111. // M114 - Output current position to serial port
  112. // M115 - Capabilities string
  113. // M117 - display message
  114. // M119 - Output Endstop status to serial port
  115. // M120 - Enable endstop detection
  116. // M121 - Disable endstop detection
  117. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  118. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  119. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  120. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M140 - Set bed target temp
  122. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  123. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  124. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  125. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  126. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  127. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  128. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  129. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  130. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  131. // M206 - Set additional homing offset
  132. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  133. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  134. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  135. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  136. // M220 S<factor in percent>- set speed factor override percentage
  137. // M221 S<factor in percent>- set extrude factor override percentage
  138. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  139. // M240 - Trigger a camera to take a photograph
  140. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  141. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  142. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  143. // M301 - Set PID parameters P I and D
  144. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  145. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  146. // M304 - Set bed PID parameters P I and D
  147. // M380 - Activate solenoid on active extruder
  148. // M381 - Disable all solenoids
  149. // M400 - Finish all moves
  150. // M401 - Lower z-probe if present
  151. // M402 - Raise z-probe if present
  152. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  153. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  154. // M406 - Turn off Filament Sensor extrusion control
  155. // M407 - Displays measured filament diameter
  156. // M500 - Store parameters in EEPROM
  157. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  158. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  159. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  160. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  161. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  162. // M665 - Set delta configurations
  163. // M666 - Set delta endstop adjustment
  164. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  165. // M907 - Set digital trimpot motor current using axis codes.
  166. // M908 - Control digital trimpot directly.
  167. // M350 - Set microstepping mode.
  168. // M351 - Toggle MS1 MS2 pins directly.
  169. // ************ SCARA Specific - This can change to suit future G-code regulations
  170. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  171. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  172. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  173. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  174. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  175. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  176. //************* SCARA End ***************
  177. // M928 - Start SD logging (M928 filename.g) - ended by M29
  178. // M999 - Restart after being stopped by error
  179. #ifdef SDSUPPORT
  180. CardReader card;
  181. #endif
  182. float homing_feedrate[] = HOMING_FEEDRATE;
  183. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  184. int feedmultiply = 100; //100->1 200->2
  185. int saved_feedmultiply;
  186. int extrudemultiply = 100; //100->1 200->2
  187. int extruder_multiply[EXTRUDERS] = { 100
  188. #if EXTRUDERS > 1
  189. , 100
  190. #if EXTRUDERS > 2
  191. , 100
  192. #if EXTRUDERS > 3
  193. , 100
  194. #endif
  195. #endif
  196. #endif
  197. };
  198. bool volumetric_enabled = false;
  199. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  200. #if EXTRUDERS > 1
  201. , DEFAULT_NOMINAL_FILAMENT_DIA
  202. #if EXTRUDERS > 2
  203. , DEFAULT_NOMINAL_FILAMENT_DIA
  204. #if EXTRUDERS > 3
  205. , DEFAULT_NOMINAL_FILAMENT_DIA
  206. #endif
  207. #endif
  208. #endif
  209. };
  210. float volumetric_multiplier[EXTRUDERS] = {1.0
  211. #if EXTRUDERS > 1
  212. , 1.0
  213. #if EXTRUDERS > 2
  214. , 1.0
  215. #if EXTRUDERS > 3
  216. , 1.0
  217. #endif
  218. #endif
  219. #endif
  220. };
  221. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  222. float add_homing[3] = { 0, 0, 0 };
  223. #ifdef DELTA
  224. float endstop_adj[3] = { 0, 0, 0 };
  225. #endif
  226. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  227. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  228. bool axis_known_position[3] = { false, false, false };
  229. float zprobe_zoffset;
  230. // Extruder offset
  231. #if EXTRUDERS > 1
  232. #ifndef DUAL_X_CARRIAGE
  233. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  234. #else
  235. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  236. #endif
  237. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  238. #if defined(EXTRUDER_OFFSET_X)
  239. EXTRUDER_OFFSET_X
  240. #else
  241. 0
  242. #endif
  243. ,
  244. #if defined(EXTRUDER_OFFSET_Y)
  245. EXTRUDER_OFFSET_Y
  246. #else
  247. 0
  248. #endif
  249. };
  250. #endif
  251. uint8_t active_extruder = 0;
  252. int fanSpeed = 0;
  253. #ifdef SERVO_ENDSTOPS
  254. int servo_endstops[] = SERVO_ENDSTOPS;
  255. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  256. #endif
  257. #ifdef BARICUDA
  258. int ValvePressure = 0;
  259. int EtoPPressure = 0;
  260. #endif
  261. #ifdef FWRETRACT
  262. bool autoretract_enabled = false;
  263. bool retracted[EXTRUDERS] = { false
  264. #if EXTRUDERS > 1
  265. , false
  266. #if EXTRUDERS > 2
  267. , false
  268. #if EXTRUDERS > 3
  269. , false
  270. #endif
  271. #endif
  272. #endif
  273. };
  274. bool retracted_swap[EXTRUDERS] = { false
  275. #if EXTRUDERS > 1
  276. , false
  277. #if EXTRUDERS > 2
  278. , false
  279. #if EXTRUDERS > 3
  280. , false
  281. #endif
  282. #endif
  283. #endif
  284. };
  285. float retract_length = RETRACT_LENGTH;
  286. float retract_length_swap = RETRACT_LENGTH_SWAP;
  287. float retract_feedrate = RETRACT_FEEDRATE;
  288. float retract_zlift = RETRACT_ZLIFT;
  289. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  290. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  291. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  292. #endif // FWRETRACT
  293. #ifdef ULTIPANEL
  294. bool powersupply =
  295. #ifdef PS_DEFAULT_OFF
  296. false
  297. #else
  298. true
  299. #endif
  300. ;
  301. #endif
  302. #ifdef DELTA
  303. float delta[3] = { 0, 0, 0 };
  304. #define SIN_60 0.8660254037844386
  305. #define COS_60 0.5
  306. // these are the default values, can be overriden with M665
  307. float delta_radius = DELTA_RADIUS;
  308. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  309. float delta_tower1_y = -COS_60 * delta_radius;
  310. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  311. float delta_tower2_y = -COS_60 * delta_radius;
  312. float delta_tower3_x = 0; // back middle tower
  313. float delta_tower3_y = delta_radius;
  314. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  315. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  316. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  317. #endif
  318. #ifdef SCARA
  319. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  320. #endif
  321. bool cancel_heatup = false;
  322. #ifdef FILAMENT_SENSOR
  323. //Variables for Filament Sensor input
  324. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  325. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  326. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  327. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  328. int delay_index1=0; //index into ring buffer
  329. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  330. float delay_dist=0; //delay distance counter
  331. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  332. #endif
  333. const char errormagic[] PROGMEM = "Error:";
  334. const char echomagic[] PROGMEM = "echo:";
  335. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  336. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  337. #ifndef DELTA
  338. static float delta[3] = { 0, 0, 0 };
  339. #endif
  340. static float offset[3] = { 0, 0, 0 };
  341. static bool home_all_axis = true;
  342. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  343. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  344. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  345. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  346. static bool fromsd[BUFSIZE];
  347. static int bufindr = 0;
  348. static int bufindw = 0;
  349. static int buflen = 0;
  350. static char serial_char;
  351. static int serial_count = 0;
  352. static boolean comment_mode = false;
  353. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  354. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  355. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  356. // Inactivity shutdown
  357. static unsigned long previous_millis_cmd = 0;
  358. static unsigned long max_inactive_time = 0;
  359. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  360. unsigned long starttime = 0; ///< Print job start time
  361. unsigned long stoptime = 0; ///< Print job stop time
  362. static uint8_t tmp_extruder;
  363. bool Stopped = false;
  364. #if NUM_SERVOS > 0
  365. Servo servos[NUM_SERVOS];
  366. #endif
  367. bool CooldownNoWait = true;
  368. bool target_direction;
  369. #ifdef CHDK
  370. unsigned long chdkHigh = 0;
  371. boolean chdkActive = false;
  372. #endif
  373. //===========================================================================
  374. //=============================Routines======================================
  375. //===========================================================================
  376. void get_arc_coordinates();
  377. bool setTargetedHotend(int code);
  378. void serial_echopair_P(const char *s_P, float v)
  379. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  380. void serial_echopair_P(const char *s_P, double v)
  381. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  382. void serial_echopair_P(const char *s_P, unsigned long v)
  383. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  384. #ifdef SDSUPPORT
  385. #include "SdFatUtil.h"
  386. int freeMemory() { return SdFatUtil::FreeRam(); }
  387. #else
  388. extern "C" {
  389. extern unsigned int __bss_end;
  390. extern unsigned int __heap_start;
  391. extern void *__brkval;
  392. int freeMemory() {
  393. int free_memory;
  394. if ((int)__brkval == 0)
  395. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  396. else
  397. free_memory = ((int)&free_memory) - ((int)__brkval);
  398. return free_memory;
  399. }
  400. }
  401. #endif //!SDSUPPORT
  402. //Injects the next command from the pending sequence of commands, when possible
  403. //Return false if and only if no command was pending
  404. static bool drain_queued_commands_P()
  405. {
  406. char cmd[30];
  407. if(!queued_commands_P)
  408. return false;
  409. // Get the next 30 chars from the sequence of gcodes to run
  410. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  411. cmd[sizeof(cmd)-1]= 0;
  412. // Look for the end of line, or the end of sequence
  413. size_t i= 0;
  414. char c;
  415. while( (c= cmd[i]) && c!='\n' )
  416. ++i; // look for the end of this gcode command
  417. cmd[i]= 0;
  418. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  419. {
  420. if(c)
  421. queued_commands_P+= i+1; // move to next command
  422. else
  423. queued_commands_P= NULL; // will have no more commands in the sequence
  424. }
  425. return true;
  426. }
  427. //Record one or many commands to run from program memory.
  428. //Aborts the current queue, if any.
  429. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  430. void enquecommands_P(const char* pgcode)
  431. {
  432. queued_commands_P= pgcode;
  433. drain_queued_commands_P(); // first command exectuted asap (when possible)
  434. }
  435. //adds a single command to the main command buffer, from RAM
  436. //that is really done in a non-safe way.
  437. //needs overworking someday
  438. //Returns false if it failed to do so
  439. bool enquecommand(const char *cmd)
  440. {
  441. if(*cmd==';')
  442. return false;
  443. if(buflen >= BUFSIZE)
  444. return false;
  445. //this is dangerous if a mixing of serial and this happens
  446. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  447. SERIAL_ECHO_START;
  448. SERIAL_ECHOPGM(MSG_Enqueing);
  449. SERIAL_ECHO(cmdbuffer[bufindw]);
  450. SERIAL_ECHOLNPGM("\"");
  451. bufindw= (bufindw + 1)%BUFSIZE;
  452. buflen += 1;
  453. return true;
  454. }
  455. void setup_killpin()
  456. {
  457. #if defined(KILL_PIN) && KILL_PIN > -1
  458. SET_INPUT(KILL_PIN);
  459. WRITE(KILL_PIN,HIGH);
  460. #endif
  461. }
  462. // Set home pin
  463. void setup_homepin(void)
  464. {
  465. #if defined(HOME_PIN) && HOME_PIN > -1
  466. SET_INPUT(HOME_PIN);
  467. WRITE(HOME_PIN,HIGH);
  468. #endif
  469. }
  470. void setup_photpin()
  471. {
  472. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  473. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  474. #endif
  475. }
  476. void setup_powerhold()
  477. {
  478. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  479. OUT_WRITE(SUICIDE_PIN, HIGH);
  480. #endif
  481. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  482. #if defined(PS_DEFAULT_OFF)
  483. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  484. #else
  485. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  486. #endif
  487. #endif
  488. }
  489. void suicide()
  490. {
  491. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  492. OUT_WRITE(SUICIDE_PIN, LOW);
  493. #endif
  494. }
  495. void servo_init()
  496. {
  497. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  498. servos[0].attach(SERVO0_PIN);
  499. #endif
  500. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  501. servos[1].attach(SERVO1_PIN);
  502. #endif
  503. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  504. servos[2].attach(SERVO2_PIN);
  505. #endif
  506. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  507. servos[3].attach(SERVO3_PIN);
  508. #endif
  509. #if (NUM_SERVOS >= 5)
  510. #error "TODO: enter initalisation code for more servos"
  511. #endif
  512. // Set position of Servo Endstops that are defined
  513. #ifdef SERVO_ENDSTOPS
  514. for(int8_t i = 0; i < 3; i++)
  515. {
  516. if(servo_endstops[i] > -1) {
  517. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  518. }
  519. }
  520. #endif
  521. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  522. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  523. servos[servo_endstops[Z_AXIS]].detach();
  524. #endif
  525. }
  526. void setup()
  527. {
  528. setup_killpin();
  529. setup_powerhold();
  530. MYSERIAL.begin(BAUDRATE);
  531. SERIAL_PROTOCOLLNPGM("start");
  532. SERIAL_ECHO_START;
  533. // Check startup - does nothing if bootloader sets MCUSR to 0
  534. byte mcu = MCUSR;
  535. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  536. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  537. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  538. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  539. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  540. MCUSR=0;
  541. SERIAL_ECHOPGM(MSG_MARLIN);
  542. SERIAL_ECHOLNPGM(STRING_VERSION);
  543. #ifdef STRING_VERSION_CONFIG_H
  544. #ifdef STRING_CONFIG_H_AUTHOR
  545. SERIAL_ECHO_START;
  546. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  547. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  548. SERIAL_ECHOPGM(MSG_AUTHOR);
  549. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  550. SERIAL_ECHOPGM("Compiled: ");
  551. SERIAL_ECHOLNPGM(__DATE__);
  552. #endif // STRING_CONFIG_H_AUTHOR
  553. #endif // STRING_VERSION_CONFIG_H
  554. SERIAL_ECHO_START;
  555. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  556. SERIAL_ECHO(freeMemory());
  557. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  558. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  559. for(int8_t i = 0; i < BUFSIZE; i++)
  560. {
  561. fromsd[i] = false;
  562. }
  563. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  564. Config_RetrieveSettings();
  565. tp_init(); // Initialize temperature loop
  566. plan_init(); // Initialize planner;
  567. watchdog_init();
  568. st_init(); // Initialize stepper, this enables interrupts!
  569. setup_photpin();
  570. servo_init();
  571. lcd_init();
  572. _delay_ms(1000); // wait 1sec to display the splash screen
  573. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  574. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  575. #endif
  576. #ifdef DIGIPOT_I2C
  577. digipot_i2c_init();
  578. #endif
  579. #ifdef Z_PROBE_SLED
  580. pinMode(SERVO0_PIN, OUTPUT);
  581. digitalWrite(SERVO0_PIN, LOW); // turn it off
  582. #endif // Z_PROBE_SLED
  583. setup_homepin();
  584. #ifdef STAT_LED_RED
  585. pinMode(STAT_LED_RED, OUTPUT);
  586. digitalWrite(STAT_LED_RED, LOW); // turn it off
  587. #endif
  588. #ifdef STAT_LED_BLUE
  589. pinMode(STAT_LED_BLUE, OUTPUT);
  590. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  591. #endif
  592. }
  593. void loop()
  594. {
  595. if(buflen < (BUFSIZE-1))
  596. get_command();
  597. #ifdef SDSUPPORT
  598. card.checkautostart(false);
  599. #endif
  600. if(buflen)
  601. {
  602. #ifdef SDSUPPORT
  603. if(card.saving)
  604. {
  605. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  606. {
  607. card.write_command(cmdbuffer[bufindr]);
  608. if(card.logging)
  609. {
  610. process_commands();
  611. }
  612. else
  613. {
  614. SERIAL_PROTOCOLLNPGM(MSG_OK);
  615. }
  616. }
  617. else
  618. {
  619. card.closefile();
  620. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  621. }
  622. }
  623. else
  624. {
  625. process_commands();
  626. }
  627. #else
  628. process_commands();
  629. #endif //SDSUPPORT
  630. buflen = (buflen-1);
  631. bufindr = (bufindr + 1)%BUFSIZE;
  632. }
  633. //check heater every n milliseconds
  634. manage_heater();
  635. manage_inactivity();
  636. checkHitEndstops();
  637. lcd_update();
  638. }
  639. void get_command()
  640. {
  641. if(drain_queued_commands_P()) // priority is given to non-serial commands
  642. return;
  643. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  644. serial_char = MYSERIAL.read();
  645. if(serial_char == '\n' ||
  646. serial_char == '\r' ||
  647. (serial_char == ':' && comment_mode == false) ||
  648. serial_count >= (MAX_CMD_SIZE - 1) )
  649. {
  650. if(!serial_count) { //if empty line
  651. comment_mode = false; //for new command
  652. return;
  653. }
  654. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  655. if(!comment_mode){
  656. comment_mode = false; //for new command
  657. fromsd[bufindw] = false;
  658. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  659. {
  660. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  661. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  662. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  663. SERIAL_ERROR_START;
  664. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  665. SERIAL_ERRORLN(gcode_LastN);
  666. //Serial.println(gcode_N);
  667. FlushSerialRequestResend();
  668. serial_count = 0;
  669. return;
  670. }
  671. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  672. {
  673. byte checksum = 0;
  674. byte count = 0;
  675. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  676. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  677. if( (int)(strtod(strchr_pointer + 1, NULL)) != checksum) {
  678. SERIAL_ERROR_START;
  679. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  680. SERIAL_ERRORLN(gcode_LastN);
  681. FlushSerialRequestResend();
  682. serial_count = 0;
  683. return;
  684. }
  685. //if no errors, continue parsing
  686. }
  687. else
  688. {
  689. SERIAL_ERROR_START;
  690. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  691. SERIAL_ERRORLN(gcode_LastN);
  692. FlushSerialRequestResend();
  693. serial_count = 0;
  694. return;
  695. }
  696. gcode_LastN = gcode_N;
  697. //if no errors, continue parsing
  698. }
  699. else // if we don't receive 'N' but still see '*'
  700. {
  701. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  702. {
  703. SERIAL_ERROR_START;
  704. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  705. SERIAL_ERRORLN(gcode_LastN);
  706. serial_count = 0;
  707. return;
  708. }
  709. }
  710. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  711. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  712. switch((int)((strtod(strchr_pointer + 1, NULL)))){
  713. case 0:
  714. case 1:
  715. case 2:
  716. case 3:
  717. if (Stopped == true) {
  718. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  719. LCD_MESSAGEPGM(MSG_STOPPED);
  720. }
  721. break;
  722. default:
  723. break;
  724. }
  725. }
  726. //If command was e-stop process now
  727. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  728. kill();
  729. bufindw = (bufindw + 1)%BUFSIZE;
  730. buflen += 1;
  731. }
  732. serial_count = 0; //clear buffer
  733. }
  734. else
  735. {
  736. if(serial_char == ';') comment_mode = true;
  737. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  738. }
  739. }
  740. #ifdef SDSUPPORT
  741. if(!card.sdprinting || serial_count!=0){
  742. return;
  743. }
  744. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  745. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  746. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  747. static bool stop_buffering=false;
  748. if(buflen==0) stop_buffering=false;
  749. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  750. int16_t n=card.get();
  751. serial_char = (char)n;
  752. if(serial_char == '\n' ||
  753. serial_char == '\r' ||
  754. (serial_char == '#' && comment_mode == false) ||
  755. (serial_char == ':' && comment_mode == false) ||
  756. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  757. {
  758. if(card.eof()){
  759. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  760. stoptime=millis();
  761. char time[30];
  762. unsigned long t=(stoptime-starttime)/1000;
  763. int hours, minutes;
  764. minutes=(t/60)%60;
  765. hours=t/60/60;
  766. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  767. SERIAL_ECHO_START;
  768. SERIAL_ECHOLN(time);
  769. lcd_setstatus(time);
  770. card.printingHasFinished();
  771. card.checkautostart(true);
  772. }
  773. if(serial_char=='#')
  774. stop_buffering=true;
  775. if(!serial_count)
  776. {
  777. comment_mode = false; //for new command
  778. return; //if empty line
  779. }
  780. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  781. // if(!comment_mode){
  782. fromsd[bufindw] = true;
  783. buflen += 1;
  784. bufindw = (bufindw + 1)%BUFSIZE;
  785. // }
  786. comment_mode = false; //for new command
  787. serial_count = 0; //clear buffer
  788. }
  789. else
  790. {
  791. if(serial_char == ';') comment_mode = true;
  792. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  793. }
  794. }
  795. #endif //SDSUPPORT
  796. }
  797. float code_value()
  798. {
  799. return (strtod(strchr_pointer + 1, NULL));
  800. }
  801. long code_value_long()
  802. {
  803. return (strtol(strchr_pointer + 1, NULL, 10));
  804. }
  805. bool code_seen(char code)
  806. {
  807. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  808. return (strchr_pointer != NULL); //Return True if a character was found
  809. }
  810. #define DEFINE_PGM_READ_ANY(type, reader) \
  811. static inline type pgm_read_any(const type *p) \
  812. { return pgm_read_##reader##_near(p); }
  813. DEFINE_PGM_READ_ANY(float, float);
  814. DEFINE_PGM_READ_ANY(signed char, byte);
  815. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  816. static const PROGMEM type array##_P[3] = \
  817. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  818. static inline type array(int axis) \
  819. { return pgm_read_any(&array##_P[axis]); }
  820. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  821. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  822. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  823. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  824. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  825. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  826. #ifdef DUAL_X_CARRIAGE
  827. #if EXTRUDERS == 1 || defined(COREXY) \
  828. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  829. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  830. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  831. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  832. #endif
  833. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  834. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  835. #endif
  836. #define DXC_FULL_CONTROL_MODE 0
  837. #define DXC_AUTO_PARK_MODE 1
  838. #define DXC_DUPLICATION_MODE 2
  839. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  840. static float x_home_pos(int extruder) {
  841. if (extruder == 0)
  842. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  843. else
  844. // In dual carriage mode the extruder offset provides an override of the
  845. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  846. // This allow soft recalibration of the second extruder offset position without firmware reflash
  847. // (through the M218 command).
  848. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  849. }
  850. static int x_home_dir(int extruder) {
  851. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  852. }
  853. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  854. static bool active_extruder_parked = false; // used in mode 1 & 2
  855. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  856. static unsigned long delayed_move_time = 0; // used in mode 1
  857. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  858. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  859. bool extruder_duplication_enabled = false; // used in mode 2
  860. #endif //DUAL_X_CARRIAGE
  861. static void axis_is_at_home(int axis) {
  862. #ifdef DUAL_X_CARRIAGE
  863. if (axis == X_AXIS) {
  864. if (active_extruder != 0) {
  865. current_position[X_AXIS] = x_home_pos(active_extruder);
  866. min_pos[X_AXIS] = X2_MIN_POS;
  867. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  868. return;
  869. }
  870. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  871. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  872. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  873. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  874. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  875. return;
  876. }
  877. }
  878. #endif
  879. #ifdef SCARA
  880. float homeposition[3];
  881. char i;
  882. if (axis < 2)
  883. {
  884. for (i=0; i<3; i++)
  885. {
  886. homeposition[i] = base_home_pos(i);
  887. }
  888. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  889. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  890. // Works out real Homeposition angles using inverse kinematics,
  891. // and calculates homing offset using forward kinematics
  892. calculate_delta(homeposition);
  893. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  894. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  895. for (i=0; i<2; i++)
  896. {
  897. delta[i] -= add_homing[i];
  898. }
  899. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  900. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  901. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  902. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  903. calculate_SCARA_forward_Transform(delta);
  904. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  905. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  906. current_position[axis] = delta[axis];
  907. // SCARA home positions are based on configuration since the actual limits are determined by the
  908. // inverse kinematic transform.
  909. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  910. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  911. }
  912. else
  913. {
  914. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  915. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  916. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  917. }
  918. #else
  919. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  920. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  921. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  922. #endif
  923. }
  924. #ifdef ENABLE_AUTO_BED_LEVELING
  925. #ifdef AUTO_BED_LEVELING_GRID
  926. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  927. {
  928. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  929. planeNormal.debug("planeNormal");
  930. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  931. //bedLevel.debug("bedLevel");
  932. //plan_bed_level_matrix.debug("bed level before");
  933. //vector_3 uncorrected_position = plan_get_position_mm();
  934. //uncorrected_position.debug("position before");
  935. vector_3 corrected_position = plan_get_position();
  936. // corrected_position.debug("position after");
  937. current_position[X_AXIS] = corrected_position.x;
  938. current_position[Y_AXIS] = corrected_position.y;
  939. current_position[Z_AXIS] = corrected_position.z;
  940. // put the bed at 0 so we don't go below it.
  941. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  942. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  943. }
  944. #else // not AUTO_BED_LEVELING_GRID
  945. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  946. plan_bed_level_matrix.set_to_identity();
  947. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  948. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  949. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  950. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  951. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  952. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  953. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  954. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  955. vector_3 corrected_position = plan_get_position();
  956. current_position[X_AXIS] = corrected_position.x;
  957. current_position[Y_AXIS] = corrected_position.y;
  958. current_position[Z_AXIS] = corrected_position.z;
  959. // put the bed at 0 so we don't go below it.
  960. current_position[Z_AXIS] = zprobe_zoffset;
  961. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  962. }
  963. #endif // AUTO_BED_LEVELING_GRID
  964. static void run_z_probe() {
  965. plan_bed_level_matrix.set_to_identity();
  966. feedrate = homing_feedrate[Z_AXIS];
  967. // move down until you find the bed
  968. float zPosition = -10;
  969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  970. st_synchronize();
  971. // we have to let the planner know where we are right now as it is not where we said to go.
  972. zPosition = st_get_position_mm(Z_AXIS);
  973. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  974. // move up the retract distance
  975. zPosition += home_retract_mm(Z_AXIS);
  976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  977. st_synchronize();
  978. // move back down slowly to find bed
  979. feedrate = homing_feedrate[Z_AXIS]/4;
  980. zPosition -= home_retract_mm(Z_AXIS) * 2;
  981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  982. st_synchronize();
  983. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  984. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  985. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  986. }
  987. static void do_blocking_move_to(float x, float y, float z) {
  988. float oldFeedRate = feedrate;
  989. feedrate = homing_feedrate[Z_AXIS];
  990. current_position[Z_AXIS] = z;
  991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  992. st_synchronize();
  993. feedrate = XY_TRAVEL_SPEED;
  994. current_position[X_AXIS] = x;
  995. current_position[Y_AXIS] = y;
  996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  997. st_synchronize();
  998. feedrate = oldFeedRate;
  999. }
  1000. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1001. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1002. }
  1003. static void setup_for_endstop_move() {
  1004. saved_feedrate = feedrate;
  1005. saved_feedmultiply = feedmultiply;
  1006. feedmultiply = 100;
  1007. previous_millis_cmd = millis();
  1008. enable_endstops(true);
  1009. }
  1010. static void clean_up_after_endstop_move() {
  1011. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1012. enable_endstops(false);
  1013. #endif
  1014. feedrate = saved_feedrate;
  1015. feedmultiply = saved_feedmultiply;
  1016. previous_millis_cmd = millis();
  1017. }
  1018. static void engage_z_probe() {
  1019. // Engage Z Servo endstop if enabled
  1020. #ifdef SERVO_ENDSTOPS
  1021. if (servo_endstops[Z_AXIS] > -1) {
  1022. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1023. servos[servo_endstops[Z_AXIS]].attach(0);
  1024. #endif
  1025. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1026. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1027. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1028. servos[servo_endstops[Z_AXIS]].detach();
  1029. #endif
  1030. }
  1031. #endif
  1032. }
  1033. static void retract_z_probe() {
  1034. // Retract Z Servo endstop if enabled
  1035. #ifdef SERVO_ENDSTOPS
  1036. if (servo_endstops[Z_AXIS] > -1) {
  1037. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1038. servos[servo_endstops[Z_AXIS]].attach(0);
  1039. #endif
  1040. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1041. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1042. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1043. servos[servo_endstops[Z_AXIS]].detach();
  1044. #endif
  1045. }
  1046. #endif
  1047. }
  1048. enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
  1049. /// Probe bed height at position (x,y), returns the measured z value
  1050. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract) {
  1051. // move to right place
  1052. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1053. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1054. #ifndef Z_PROBE_SLED
  1055. if (retract_action & ProbeEngage) engage_z_probe();
  1056. #endif
  1057. run_z_probe();
  1058. float measured_z = current_position[Z_AXIS];
  1059. #ifndef Z_PROBE_SLED
  1060. if (retract_action & ProbeRetract) retract_z_probe();
  1061. #endif
  1062. SERIAL_PROTOCOLPGM(MSG_BED);
  1063. SERIAL_PROTOCOLPGM(" x: ");
  1064. SERIAL_PROTOCOL(x);
  1065. SERIAL_PROTOCOLPGM(" y: ");
  1066. SERIAL_PROTOCOL(y);
  1067. SERIAL_PROTOCOLPGM(" z: ");
  1068. SERIAL_PROTOCOL(measured_z);
  1069. SERIAL_PROTOCOLPGM("\n");
  1070. return measured_z;
  1071. }
  1072. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1073. static void homeaxis(int axis) {
  1074. #define HOMEAXIS_DO(LETTER) \
  1075. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1076. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1077. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1078. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1079. 0) {
  1080. int axis_home_dir = home_dir(axis);
  1081. #ifdef DUAL_X_CARRIAGE
  1082. if (axis == X_AXIS)
  1083. axis_home_dir = x_home_dir(active_extruder);
  1084. #endif
  1085. current_position[axis] = 0;
  1086. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1087. #ifndef Z_PROBE_SLED
  1088. // Engage Servo endstop if enabled
  1089. #ifdef SERVO_ENDSTOPS
  1090. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1091. if (axis==Z_AXIS) {
  1092. engage_z_probe();
  1093. }
  1094. else
  1095. #endif
  1096. if (servo_endstops[axis] > -1) {
  1097. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1098. }
  1099. #endif
  1100. #endif // Z_PROBE_SLED
  1101. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1102. feedrate = homing_feedrate[axis];
  1103. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1104. st_synchronize();
  1105. current_position[axis] = 0;
  1106. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1107. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1108. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1109. st_synchronize();
  1110. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1111. #ifdef DELTA
  1112. feedrate = homing_feedrate[axis]/10;
  1113. #else
  1114. feedrate = homing_feedrate[axis]/2 ;
  1115. #endif
  1116. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1117. st_synchronize();
  1118. #ifdef DELTA
  1119. // retrace by the amount specified in endstop_adj
  1120. if (endstop_adj[axis] * axis_home_dir < 0) {
  1121. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1122. destination[axis] = endstop_adj[axis];
  1123. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1124. st_synchronize();
  1125. }
  1126. #endif
  1127. axis_is_at_home(axis);
  1128. destination[axis] = current_position[axis];
  1129. feedrate = 0.0;
  1130. endstops_hit_on_purpose();
  1131. axis_known_position[axis] = true;
  1132. // Retract Servo endstop if enabled
  1133. #ifdef SERVO_ENDSTOPS
  1134. if (servo_endstops[axis] > -1) {
  1135. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1136. }
  1137. #endif
  1138. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1139. #ifndef Z_PROBE_SLED
  1140. if (axis==Z_AXIS) retract_z_probe();
  1141. #endif
  1142. #endif
  1143. }
  1144. }
  1145. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1146. void refresh_cmd_timeout(void)
  1147. {
  1148. previous_millis_cmd = millis();
  1149. }
  1150. #ifdef FWRETRACT
  1151. void retract(bool retracting, bool swapretract = false) {
  1152. if(retracting && !retracted[active_extruder]) {
  1153. destination[X_AXIS]=current_position[X_AXIS];
  1154. destination[Y_AXIS]=current_position[Y_AXIS];
  1155. destination[Z_AXIS]=current_position[Z_AXIS];
  1156. destination[E_AXIS]=current_position[E_AXIS];
  1157. if (swapretract) {
  1158. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1159. } else {
  1160. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1161. }
  1162. plan_set_e_position(current_position[E_AXIS]);
  1163. float oldFeedrate = feedrate;
  1164. feedrate=retract_feedrate*60;
  1165. retracted[active_extruder]=true;
  1166. prepare_move();
  1167. if(retract_zlift > 0.01) {
  1168. current_position[Z_AXIS]-=retract_zlift;
  1169. #ifdef DELTA
  1170. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1171. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1172. #else
  1173. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1174. #endif
  1175. prepare_move();
  1176. }
  1177. feedrate = oldFeedrate;
  1178. } else if(!retracting && retracted[active_extruder]) {
  1179. destination[X_AXIS]=current_position[X_AXIS];
  1180. destination[Y_AXIS]=current_position[Y_AXIS];
  1181. destination[Z_AXIS]=current_position[Z_AXIS];
  1182. destination[E_AXIS]=current_position[E_AXIS];
  1183. if(retract_zlift > 0.01) {
  1184. current_position[Z_AXIS]+=retract_zlift;
  1185. #ifdef DELTA
  1186. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1187. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1188. #else
  1189. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1190. #endif
  1191. //prepare_move();
  1192. }
  1193. if (swapretract) {
  1194. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1195. } else {
  1196. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1197. }
  1198. plan_set_e_position(current_position[E_AXIS]);
  1199. float oldFeedrate = feedrate;
  1200. feedrate=retract_recover_feedrate*60;
  1201. retracted[active_extruder]=false;
  1202. prepare_move();
  1203. feedrate = oldFeedrate;
  1204. }
  1205. } //retract
  1206. #endif //FWRETRACT
  1207. #ifdef Z_PROBE_SLED
  1208. #ifndef SLED_DOCKING_OFFSET
  1209. #define SLED_DOCKING_OFFSET 0
  1210. #endif
  1211. //
  1212. // Method to dock/undock a sled designed by Charles Bell.
  1213. //
  1214. // dock[in] If true, move to MAX_X and engage the electromagnet
  1215. // offset[in] The additional distance to move to adjust docking location
  1216. //
  1217. static void dock_sled(bool dock, int offset=0) {
  1218. int z_loc;
  1219. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1220. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1221. SERIAL_ECHO_START;
  1222. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1223. return;
  1224. }
  1225. if (dock) {
  1226. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1227. current_position[Y_AXIS],
  1228. current_position[Z_AXIS]);
  1229. // turn off magnet
  1230. digitalWrite(SERVO0_PIN, LOW);
  1231. } else {
  1232. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1233. z_loc = Z_RAISE_BEFORE_PROBING;
  1234. else
  1235. z_loc = current_position[Z_AXIS];
  1236. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1237. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1238. // turn on magnet
  1239. digitalWrite(SERVO0_PIN, HIGH);
  1240. }
  1241. }
  1242. #endif
  1243. /**
  1244. *
  1245. * G-Code Handler functions
  1246. *
  1247. */
  1248. /**
  1249. * G0, G1: Coordinated movement of X Y Z E axes
  1250. */
  1251. inline void gcode_G0_G1() {
  1252. if (!Stopped) {
  1253. get_coordinates(); // For X Y Z E F
  1254. #ifdef FWRETRACT
  1255. if (autoretract_enabled)
  1256. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1257. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1258. // Is this move an attempt to retract or recover?
  1259. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1260. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1261. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1262. retract(!retracted[active_extruder]);
  1263. return;
  1264. }
  1265. }
  1266. #endif //FWRETRACT
  1267. prepare_move();
  1268. //ClearToSend();
  1269. }
  1270. }
  1271. /**
  1272. * G2: Clockwise Arc
  1273. * G3: Counterclockwise Arc
  1274. */
  1275. inline void gcode_G2_G3(bool clockwise) {
  1276. if (!Stopped) {
  1277. get_arc_coordinates();
  1278. prepare_arc_move(clockwise);
  1279. }
  1280. }
  1281. /**
  1282. * G4: Dwell S<seconds> or P<milliseconds>
  1283. */
  1284. inline void gcode_G4() {
  1285. unsigned long codenum;
  1286. LCD_MESSAGEPGM(MSG_DWELL);
  1287. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1288. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1289. st_synchronize();
  1290. previous_millis_cmd = millis();
  1291. codenum += previous_millis_cmd; // keep track of when we started waiting
  1292. while(millis() < codenum) {
  1293. manage_heater();
  1294. manage_inactivity();
  1295. lcd_update();
  1296. }
  1297. }
  1298. #ifdef FWRETRACT
  1299. /**
  1300. * G10 - Retract filament according to settings of M207
  1301. * G11 - Recover filament according to settings of M208
  1302. */
  1303. inline void gcode_G10_G11(bool doRetract=false) {
  1304. #if EXTRUDERS > 1
  1305. if (doRetract) {
  1306. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1307. }
  1308. #endif
  1309. retract(doRetract
  1310. #if EXTRUDERS > 1
  1311. , retracted_swap[active_extruder]
  1312. #endif
  1313. );
  1314. }
  1315. #endif //FWRETRACT
  1316. /**
  1317. * G28: Home all axes, one at a time
  1318. */
  1319. inline void gcode_G28() {
  1320. #ifdef ENABLE_AUTO_BED_LEVELING
  1321. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1322. #endif
  1323. saved_feedrate = feedrate;
  1324. saved_feedmultiply = feedmultiply;
  1325. feedmultiply = 100;
  1326. previous_millis_cmd = millis();
  1327. enable_endstops(true);
  1328. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
  1329. feedrate = 0.0;
  1330. #ifdef DELTA
  1331. // A delta can only safely home all axis at the same time
  1332. // all axis have to home at the same time
  1333. // Move all carriages up together until the first endstop is hit.
  1334. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1335. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1336. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1337. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1338. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1339. st_synchronize();
  1340. endstops_hit_on_purpose();
  1341. // Destination reached
  1342. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1343. // take care of back off and rehome now we are all at the top
  1344. HOMEAXIS(X);
  1345. HOMEAXIS(Y);
  1346. HOMEAXIS(Z);
  1347. calculate_delta(current_position);
  1348. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1349. #else // NOT DELTA
  1350. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1351. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1352. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1353. HOMEAXIS(Z);
  1354. }
  1355. #endif
  1356. #ifdef QUICK_HOME
  1357. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1358. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1359. #ifndef DUAL_X_CARRIAGE
  1360. int x_axis_home_dir = home_dir(X_AXIS);
  1361. #else
  1362. int x_axis_home_dir = x_home_dir(active_extruder);
  1363. extruder_duplication_enabled = false;
  1364. #endif
  1365. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1366. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1367. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1368. feedrate = homing_feedrate[X_AXIS];
  1369. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1370. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1371. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1372. } else {
  1373. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1374. }
  1375. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1376. st_synchronize();
  1377. axis_is_at_home(X_AXIS);
  1378. axis_is_at_home(Y_AXIS);
  1379. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1380. destination[X_AXIS] = current_position[X_AXIS];
  1381. destination[Y_AXIS] = current_position[Y_AXIS];
  1382. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1383. feedrate = 0.0;
  1384. st_synchronize();
  1385. endstops_hit_on_purpose();
  1386. current_position[X_AXIS] = destination[X_AXIS];
  1387. current_position[Y_AXIS] = destination[Y_AXIS];
  1388. #ifndef SCARA
  1389. current_position[Z_AXIS] = destination[Z_AXIS];
  1390. #endif
  1391. }
  1392. #endif //QUICK_HOME
  1393. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1394. #ifdef DUAL_X_CARRIAGE
  1395. int tmp_extruder = active_extruder;
  1396. extruder_duplication_enabled = false;
  1397. active_extruder = !active_extruder;
  1398. HOMEAXIS(X);
  1399. inactive_extruder_x_pos = current_position[X_AXIS];
  1400. active_extruder = tmp_extruder;
  1401. HOMEAXIS(X);
  1402. // reset state used by the different modes
  1403. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1404. delayed_move_time = 0;
  1405. active_extruder_parked = true;
  1406. #else
  1407. HOMEAXIS(X);
  1408. #endif
  1409. }
  1410. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1411. if (code_seen(axis_codes[X_AXIS])) {
  1412. if (code_value_long() != 0) {
  1413. current_position[X_AXIS] = code_value()
  1414. #ifndef SCARA
  1415. + add_homing[X_AXIS]
  1416. #endif
  1417. ;
  1418. }
  1419. }
  1420. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1421. current_position[Y_AXIS] = code_value()
  1422. #ifndef SCARA
  1423. + add_homing[Y_AXIS]
  1424. #endif
  1425. ;
  1426. }
  1427. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1428. #ifndef Z_SAFE_HOMING
  1429. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1430. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1431. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1432. feedrate = max_feedrate[Z_AXIS];
  1433. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1434. st_synchronize();
  1435. #endif
  1436. HOMEAXIS(Z);
  1437. }
  1438. #else // Z_SAFE_HOMING
  1439. if (home_all_axis) {
  1440. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1441. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1442. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1443. feedrate = XY_TRAVEL_SPEED / 60;
  1444. current_position[Z_AXIS] = 0;
  1445. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1446. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1447. st_synchronize();
  1448. current_position[X_AXIS] = destination[X_AXIS];
  1449. current_position[Y_AXIS] = destination[Y_AXIS];
  1450. HOMEAXIS(Z);
  1451. }
  1452. // Let's see if X and Y are homed and probe is inside bed area.
  1453. if (code_seen(axis_codes[Z_AXIS])) {
  1454. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1455. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1456. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1457. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1458. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1459. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1460. current_position[Z_AXIS] = 0;
  1461. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1462. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1463. feedrate = max_feedrate[Z_AXIS];
  1464. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1465. st_synchronize();
  1466. HOMEAXIS(Z);
  1467. }
  1468. else {
  1469. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1470. SERIAL_ECHO_START;
  1471. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1472. }
  1473. }
  1474. else {
  1475. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1476. SERIAL_ECHO_START;
  1477. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1478. }
  1479. }
  1480. #endif // Z_SAFE_HOMING
  1481. #endif // Z_HOME_DIR < 0
  1482. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1483. current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
  1484. #ifdef ENABLE_AUTO_BED_LEVELING
  1485. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1486. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1487. #endif
  1488. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1489. #endif // else DELTA
  1490. #ifdef SCARA
  1491. calculate_delta(current_position);
  1492. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1493. #endif
  1494. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1495. enable_endstops(false);
  1496. #endif
  1497. feedrate = saved_feedrate;
  1498. feedmultiply = saved_feedmultiply;
  1499. previous_millis_cmd = millis();
  1500. endstops_hit_on_purpose();
  1501. }
  1502. #ifdef ENABLE_AUTO_BED_LEVELING
  1503. /**
  1504. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1505. * Will fail if the printer has not been homed with G28.
  1506. *
  1507. * Enhanced G29 Auto Bed Leveling Probe Routine
  1508. *
  1509. * Parameters With AUTO_BED_LEVELING_GRID:
  1510. *
  1511. * P Set the size of the grid that will be probed (P x P points).
  1512. * Example: "G29 P4"
  1513. *
  1514. * V Set the verbose level (0-4). Example: "G29 V3"
  1515. *
  1516. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1517. * This is useful for manual bed leveling and finding flaws in the bed (to
  1518. * assist with part placement).
  1519. *
  1520. * F Set the Front limit of the probing grid
  1521. * B Set the Back limit of the probing grid
  1522. * L Set the Left limit of the probing grid
  1523. * R Set the Right limit of the probing grid
  1524. *
  1525. * Global Parameters:
  1526. *
  1527. * E/e By default G29 engages / disengages the probe for each point.
  1528. * Include "E" to engage and disengage the probe just once.
  1529. * There's no extra effect if you have a fixed probe.
  1530. * Usage: "G29 E" or "G29 e"
  1531. *
  1532. */
  1533. // Use one of these defines to specify the origin
  1534. // for a topographical map to be printed for your bed.
  1535. enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
  1536. #define TOPO_ORIGIN OriginFrontLeft
  1537. inline void gcode_G29() {
  1538. // Prevent user from running a G29 without first homing in X and Y
  1539. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1540. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1541. SERIAL_ECHO_START;
  1542. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1543. return;
  1544. }
  1545. int verbose_level = 1;
  1546. float x_tmp, y_tmp, z_tmp, real_z;
  1547. if (code_seen('V') || code_seen('v')) {
  1548. verbose_level = code_value_long();
  1549. if (verbose_level < 0 || verbose_level > 4) {
  1550. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1551. return;
  1552. }
  1553. }
  1554. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1555. #ifdef AUTO_BED_LEVELING_GRID
  1556. bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
  1557. if (verbose_level > 0)
  1558. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1559. int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
  1560. if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
  1561. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1562. return;
  1563. }
  1564. // Define the possible boundaries for probing based on the set limits.
  1565. // Code above (in G28) might have these limits wrong, or I am wrong here.
  1566. #define MIN_PROBE_EDGE 10 // Edges of the probe square can be no less
  1567. const int min_probe_x = max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
  1568. max_probe_x = min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
  1569. min_probe_y = max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER),
  1570. max_probe_y = min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER);
  1571. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1572. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1573. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1574. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1575. bool left_out_l = left_probe_bed_position < min_probe_x,
  1576. left_out_r = left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1577. left_out = left_out_l || left_out_r,
  1578. right_out_r = right_probe_bed_position > max_probe_x,
  1579. right_out_l =right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1580. right_out = right_out_l || right_out_r,
  1581. front_out_f = front_probe_bed_position < min_probe_y,
  1582. front_out_b = front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1583. front_out = front_out_f || front_out_b,
  1584. back_out_b = back_probe_bed_position > max_probe_y,
  1585. back_out_f = back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE,
  1586. back_out = back_out_f || back_out_b;
  1587. if (left_out || right_out || front_out || back_out) {
  1588. if (left_out) {
  1589. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1590. left_probe_bed_position = left_out_l ? min_probe_x : right_probe_bed_position - MIN_PROBE_EDGE;
  1591. }
  1592. if (right_out) {
  1593. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1594. right_probe_bed_position = right_out_r ? max_probe_x : left_probe_bed_position + MIN_PROBE_EDGE;
  1595. }
  1596. if (front_out) {
  1597. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1598. front_probe_bed_position = front_out_f ? min_probe_y : back_probe_bed_position - MIN_PROBE_EDGE;
  1599. }
  1600. if (back_out) {
  1601. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1602. back_probe_bed_position = back_out_b ? max_probe_y : front_probe_bed_position + MIN_PROBE_EDGE;
  1603. }
  1604. return;
  1605. }
  1606. #endif // AUTO_BED_LEVELING_GRID
  1607. #ifdef Z_PROBE_SLED
  1608. dock_sled(false); // engage (un-dock) the probe
  1609. #endif
  1610. st_synchronize();
  1611. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1612. //vector_3 corrected_position = plan_get_position_mm();
  1613. //corrected_position.debug("position before G29");
  1614. plan_bed_level_matrix.set_to_identity();
  1615. vector_3 uncorrected_position = plan_get_position();
  1616. //uncorrected_position.debug("position durring G29");
  1617. current_position[X_AXIS] = uncorrected_position.x;
  1618. current_position[Y_AXIS] = uncorrected_position.y;
  1619. current_position[Z_AXIS] = uncorrected_position.z;
  1620. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1621. setup_for_endstop_move();
  1622. feedrate = homing_feedrate[Z_AXIS];
  1623. #ifdef AUTO_BED_LEVELING_GRID
  1624. // probe at the points of a lattice grid
  1625. int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1626. int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1627. // solve the plane equation ax + by + d = z
  1628. // A is the matrix with rows [x y 1] for all the probed points
  1629. // B is the vector of the Z positions
  1630. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1631. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1632. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1633. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1634. eqnBVector[abl2], // "B" vector of Z points
  1635. mean = 0.0;
  1636. int probePointCounter = 0;
  1637. bool zig = true;
  1638. for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
  1639. int xProbe, xInc;
  1640. if (zig)
  1641. xProbe = left_probe_bed_position, xInc = xGridSpacing;
  1642. else
  1643. xProbe = right_probe_bed_position, xInc = -xGridSpacing;
  1644. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1645. // This gets the probe points in more readable order.
  1646. if (!topo_flag) zig = !zig;
  1647. for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
  1648. // raise extruder
  1649. float measured_z,
  1650. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1651. // Enhanced G29 - Do not retract servo between probes
  1652. ProbeAction act;
  1653. if (enhanced_g29) {
  1654. if (yProbe == front_probe_bed_position && xCount == 0)
  1655. act = ProbeEngage;
  1656. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1657. act = ProbeRetract;
  1658. else
  1659. act = ProbeStay;
  1660. }
  1661. else
  1662. act = ProbeEngageRetract;
  1663. measured_z = probe_pt(xProbe, yProbe, z_before, act);
  1664. mean += measured_z;
  1665. eqnBVector[probePointCounter] = measured_z;
  1666. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1667. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1668. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1669. probePointCounter++;
  1670. xProbe += xInc;
  1671. } //xProbe
  1672. } //yProbe
  1673. clean_up_after_endstop_move();
  1674. // solve lsq problem
  1675. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1676. mean /= abl2;
  1677. if (verbose_level) {
  1678. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1679. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1680. SERIAL_PROTOCOLPGM(" b: ");
  1681. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1682. SERIAL_PROTOCOLPGM(" d: ");
  1683. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1684. if (verbose_level > 2) {
  1685. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1686. SERIAL_PROTOCOL_F(mean, 6);
  1687. SERIAL_PROTOCOLPGM(" \n");
  1688. }
  1689. }
  1690. if (topo_flag) {
  1691. int xx, yy;
  1692. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1693. #if TOPO_ORIGIN == OriginFrontLeft
  1694. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  1695. #else
  1696. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  1697. #endif
  1698. {
  1699. #if TOPO_ORIGIN == OriginBackRight
  1700. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  1701. #else
  1702. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  1703. #endif
  1704. {
  1705. int ind =
  1706. #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
  1707. yy * auto_bed_leveling_grid_points + xx
  1708. #elif TOPO_ORIGIN == OriginBackLeft
  1709. xx * auto_bed_leveling_grid_points + yy
  1710. #elif TOPO_ORIGIN == OriginFrontRight
  1711. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  1712. #endif
  1713. ;
  1714. float diff = eqnBVector[ind] - mean;
  1715. if (diff >= 0.0)
  1716. SERIAL_PROTOCOLPGM(" +"); // Watch column alignment in Pronterface
  1717. else
  1718. SERIAL_PROTOCOLPGM(" -");
  1719. SERIAL_PROTOCOL_F(diff, 5);
  1720. } // xx
  1721. SERIAL_PROTOCOLPGM("\n");
  1722. } // yy
  1723. SERIAL_PROTOCOLPGM("\n");
  1724. } //topo_flag
  1725. set_bed_level_equation_lsq(plane_equation_coefficients);
  1726. free(plane_equation_coefficients);
  1727. #else // !AUTO_BED_LEVELING_GRID
  1728. // Probe at 3 arbitrary points
  1729. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  1730. if (enhanced_g29) {
  1731. // Basic Enhanced G29
  1732. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage);
  1733. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay);
  1734. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract);
  1735. }
  1736. else {
  1737. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1738. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1739. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1740. }
  1741. clean_up_after_endstop_move();
  1742. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1743. #endif // !AUTO_BED_LEVELING_GRID
  1744. st_synchronize();
  1745. if (verbose_level > 0)
  1746. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  1747. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1748. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1749. // When the bed is uneven, this height must be corrected.
  1750. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1751. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1752. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1753. z_tmp = current_position[Z_AXIS];
  1754. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1755. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1756. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1757. #ifdef Z_PROBE_SLED
  1758. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  1759. #endif
  1760. }
  1761. #ifndef Z_PROBE_SLED
  1762. inline void gcode_G30() {
  1763. engage_z_probe(); // Engage Z Servo endstop if available
  1764. st_synchronize();
  1765. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1766. setup_for_endstop_move();
  1767. feedrate = homing_feedrate[Z_AXIS];
  1768. run_z_probe();
  1769. SERIAL_PROTOCOLPGM(MSG_BED);
  1770. SERIAL_PROTOCOLPGM(" X: ");
  1771. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1772. SERIAL_PROTOCOLPGM(" Y: ");
  1773. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1774. SERIAL_PROTOCOLPGM(" Z: ");
  1775. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1776. SERIAL_PROTOCOLPGM("\n");
  1777. clean_up_after_endstop_move();
  1778. retract_z_probe(); // Retract Z Servo endstop if available
  1779. }
  1780. #endif //!Z_PROBE_SLED
  1781. #endif //ENABLE_AUTO_BED_LEVELING
  1782. /**
  1783. * G92: Set current position to given X Y Z E
  1784. */
  1785. inline void gcode_G92() {
  1786. if (!code_seen(axis_codes[E_AXIS]))
  1787. st_synchronize();
  1788. for (int i=0;i<NUM_AXIS;i++) {
  1789. if (code_seen(axis_codes[i])) {
  1790. if (i == E_AXIS) {
  1791. current_position[i] = code_value();
  1792. plan_set_e_position(current_position[E_AXIS]);
  1793. }
  1794. else {
  1795. current_position[i] = code_value() +
  1796. #ifdef SCARA
  1797. ((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
  1798. #else
  1799. add_homing[i]
  1800. #endif
  1801. ;
  1802. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1803. }
  1804. }
  1805. }
  1806. }
  1807. #ifdef ULTIPANEL
  1808. /**
  1809. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  1810. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  1811. */
  1812. inline void gcode_M0_M1() {
  1813. char *src = strchr_pointer + 2;
  1814. unsigned long codenum = 0;
  1815. bool hasP = false, hasS = false;
  1816. if (code_seen('P')) {
  1817. codenum = code_value(); // milliseconds to wait
  1818. hasP = codenum > 0;
  1819. }
  1820. if (code_seen('S')) {
  1821. codenum = code_value() * 1000; // seconds to wait
  1822. hasS = codenum > 0;
  1823. }
  1824. char* starpos = strchr(src, '*');
  1825. if (starpos != NULL) *(starpos) = '\0';
  1826. while (*src == ' ') ++src;
  1827. if (!hasP && !hasS && *src != '\0')
  1828. lcd_setstatus(src);
  1829. else
  1830. LCD_MESSAGEPGM(MSG_USERWAIT);
  1831. lcd_ignore_click();
  1832. st_synchronize();
  1833. previous_millis_cmd = millis();
  1834. if (codenum > 0) {
  1835. codenum += previous_millis_cmd; // keep track of when we started waiting
  1836. while(millis() < codenum && !lcd_clicked()) {
  1837. manage_heater();
  1838. manage_inactivity();
  1839. lcd_update();
  1840. }
  1841. lcd_ignore_click(false);
  1842. }
  1843. else {
  1844. if (!lcd_detected()) return;
  1845. while (!lcd_clicked()) {
  1846. manage_heater();
  1847. manage_inactivity();
  1848. lcd_update();
  1849. }
  1850. }
  1851. if (IS_SD_PRINTING)
  1852. LCD_MESSAGEPGM(MSG_RESUMING);
  1853. else
  1854. LCD_MESSAGEPGM(WELCOME_MSG);
  1855. }
  1856. #endif // ULTIPANEL
  1857. /**
  1858. * M17: Enable power on all stepper motors
  1859. */
  1860. inline void gcode_M17() {
  1861. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1862. enable_x();
  1863. enable_y();
  1864. enable_z();
  1865. enable_e0();
  1866. enable_e1();
  1867. enable_e2();
  1868. enable_e3();
  1869. }
  1870. #ifdef SDSUPPORT
  1871. /**
  1872. * M20: List SD card to serial output
  1873. */
  1874. inline void gcode_M20() {
  1875. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1876. card.ls();
  1877. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1878. }
  1879. /**
  1880. * M21: Init SD Card
  1881. */
  1882. inline void gcode_M21() {
  1883. card.initsd();
  1884. }
  1885. /**
  1886. * M22: Release SD Card
  1887. */
  1888. inline void gcode_M22() {
  1889. card.release();
  1890. }
  1891. /**
  1892. * M23: Select a file
  1893. */
  1894. inline void gcode_M23() {
  1895. char* codepos = strchr_pointer + 4;
  1896. char* starpos = strchr(codepos, '*');
  1897. if (starpos) *starpos = '\0';
  1898. card.openFile(codepos, true);
  1899. }
  1900. /**
  1901. * M24: Start SD Print
  1902. */
  1903. inline void gcode_M24() {
  1904. card.startFileprint();
  1905. starttime = millis();
  1906. }
  1907. /**
  1908. * M25: Pause SD Print
  1909. */
  1910. inline void gcode_M25() {
  1911. card.pauseSDPrint();
  1912. }
  1913. /**
  1914. * M26: Set SD Card file index
  1915. */
  1916. inline void gcode_M26() {
  1917. if (card.cardOK && code_seen('S'))
  1918. card.setIndex(code_value_long());
  1919. }
  1920. /**
  1921. * M27: Get SD Card status
  1922. */
  1923. inline void gcode_M27() {
  1924. card.getStatus();
  1925. }
  1926. /**
  1927. * M28: Start SD Write
  1928. */
  1929. inline void gcode_M28() {
  1930. char* codepos = strchr_pointer + 4;
  1931. char* starpos = strchr(strchr_pointer + 4, '*');
  1932. if (starpos) {
  1933. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1934. strchr_pointer = strchr(npos, ' ') + 1;
  1935. *(starpos) = '\0';
  1936. }
  1937. card.openFile(strchr_pointer + 4, false);
  1938. }
  1939. /**
  1940. * M29: Stop SD Write
  1941. * Processed in write to file routine above
  1942. */
  1943. inline void gcode_M29() {
  1944. // card.saving = false;
  1945. }
  1946. /**
  1947. * M30 <filename>: Delete SD Card file
  1948. */
  1949. inline void gcode_M30() {
  1950. if (card.cardOK) {
  1951. card.closefile();
  1952. char* starpos = strchr(strchr_pointer + 4, '*');
  1953. if (starpos) {
  1954. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1955. strchr_pointer = strchr(npos, ' ') + 1;
  1956. *(starpos) = '\0';
  1957. }
  1958. card.removeFile(strchr_pointer + 4);
  1959. }
  1960. }
  1961. #endif
  1962. /**
  1963. * M31: Get the time since the start of SD Print (or last M109)
  1964. */
  1965. inline void gcode_M31() {
  1966. stoptime = millis();
  1967. unsigned long t = (stoptime - starttime) / 1000;
  1968. int min = t / 60, sec = t % 60;
  1969. char time[30];
  1970. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1971. SERIAL_ECHO_START;
  1972. SERIAL_ECHOLN(time);
  1973. lcd_setstatus(time);
  1974. autotempShutdown();
  1975. }
  1976. #ifdef SDSUPPORT
  1977. /**
  1978. * M32: Select file and start SD Print
  1979. */
  1980. inline void gcode_M32() {
  1981. if (card.sdprinting)
  1982. st_synchronize();
  1983. char* codepos = strchr_pointer + 4;
  1984. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  1985. if (! namestartpos)
  1986. namestartpos = codepos; //default name position, 4 letters after the M
  1987. else
  1988. namestartpos++; //to skip the '!'
  1989. char* starpos = strchr(codepos, '*');
  1990. if (starpos) *(starpos) = '\0';
  1991. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  1992. if (card.cardOK) {
  1993. card.openFile(namestartpos, true, !call_procedure);
  1994. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  1995. card.setIndex(code_value_long());
  1996. card.startFileprint();
  1997. if (!call_procedure)
  1998. starttime = millis(); //procedure calls count as normal print time.
  1999. }
  2000. }
  2001. /**
  2002. * M928: Start SD Write
  2003. */
  2004. inline void gcode_M928() {
  2005. char* starpos = strchr(strchr_pointer + 5, '*');
  2006. if (starpos) {
  2007. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2008. strchr_pointer = strchr(npos, ' ') + 1;
  2009. *(starpos) = '\0';
  2010. }
  2011. card.openLogFile(strchr_pointer + 5);
  2012. }
  2013. #endif // SDSUPPORT
  2014. /**
  2015. * M42: Change pin status via GCode
  2016. */
  2017. inline void gcode_M42() {
  2018. if (code_seen('S')) {
  2019. int pin_status = code_value(),
  2020. pin_number = LED_PIN;
  2021. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2022. pin_number = code_value();
  2023. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2024. if (sensitive_pins[i] == pin_number) {
  2025. pin_number = -1;
  2026. break;
  2027. }
  2028. }
  2029. #if defined(FAN_PIN) && FAN_PIN > -1
  2030. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2031. #endif
  2032. if (pin_number > -1) {
  2033. pinMode(pin_number, OUTPUT);
  2034. digitalWrite(pin_number, pin_status);
  2035. analogWrite(pin_number, pin_status);
  2036. }
  2037. } // code_seen('S')
  2038. }
  2039. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2040. #if Z_MIN_PIN == -1
  2041. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2042. #endif
  2043. /**
  2044. * M48: Z-Probe repeatability measurement function.
  2045. *
  2046. * Usage:
  2047. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2048. * n = Number of samples (4-50, default 10)
  2049. * X = Sample X position
  2050. * Y = Sample Y position
  2051. * V = Verbose level (0-4, default=1)
  2052. * E = Engage probe for each reading
  2053. * L = Number of legs of movement before probe
  2054. *
  2055. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2056. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2057. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2058. * regenerated.
  2059. *
  2060. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2061. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2062. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2063. */
  2064. inline void gcode_M48() {
  2065. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2066. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2067. double X_current, Y_current, Z_current;
  2068. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2069. if (code_seen('V') || code_seen('v')) {
  2070. verbose_level = code_value();
  2071. if (verbose_level < 0 || verbose_level > 4 ) {
  2072. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2073. return;
  2074. }
  2075. }
  2076. if (verbose_level > 0)
  2077. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2078. if (code_seen('n')) {
  2079. n_samples = code_value();
  2080. if (n_samples < 4 || n_samples > 50) {
  2081. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2082. return;
  2083. }
  2084. }
  2085. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2086. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2087. Z_current = st_get_position_mm(Z_AXIS);
  2088. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2089. ext_position = st_get_position_mm(E_AXIS);
  2090. if (code_seen('E') || code_seen('e'))
  2091. engage_probe_for_each_reading++;
  2092. if (code_seen('X') || code_seen('x')) {
  2093. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2094. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2095. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2096. return;
  2097. }
  2098. }
  2099. if (code_seen('Y') || code_seen('y')) {
  2100. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2101. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2102. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2103. return;
  2104. }
  2105. }
  2106. if (code_seen('L') || code_seen('l')) {
  2107. n_legs = code_value();
  2108. if (n_legs == 1) n_legs = 2;
  2109. if (n_legs < 0 || n_legs > 15) {
  2110. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2111. return;
  2112. }
  2113. }
  2114. //
  2115. // Do all the preliminary setup work. First raise the probe.
  2116. //
  2117. st_synchronize();
  2118. plan_bed_level_matrix.set_to_identity();
  2119. plan_buffer_line(X_current, Y_current, Z_start_location,
  2120. ext_position,
  2121. homing_feedrate[Z_AXIS] / 60,
  2122. active_extruder);
  2123. st_synchronize();
  2124. //
  2125. // Now get everything to the specified probe point So we can safely do a probe to
  2126. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2127. // use that as a starting point for each probe.
  2128. //
  2129. if (verbose_level > 2)
  2130. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2131. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2132. ext_position,
  2133. homing_feedrate[X_AXIS]/60,
  2134. active_extruder);
  2135. st_synchronize();
  2136. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2137. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2138. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2139. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2140. //
  2141. // OK, do the inital probe to get us close to the bed.
  2142. // Then retrace the right amount and use that in subsequent probes
  2143. //
  2144. engage_z_probe();
  2145. setup_for_endstop_move();
  2146. run_z_probe();
  2147. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2148. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2149. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2150. ext_position,
  2151. homing_feedrate[X_AXIS]/60,
  2152. active_extruder);
  2153. st_synchronize();
  2154. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2155. if (engage_probe_for_each_reading) retract_z_probe();
  2156. for (n=0; n < n_samples; n++) {
  2157. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2158. if (n_legs) {
  2159. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2160. int l;
  2161. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2162. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2163. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2164. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2165. //SERIAL_ECHOPAIR(" theta: ",theta);
  2166. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2167. //SERIAL_PROTOCOLLNPGM("");
  2168. float dir = rotational_direction ? 1 : -1;
  2169. for (l = 0; l < n_legs - 1; l++) {
  2170. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2171. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2172. if (radius < 0.0) radius = -radius;
  2173. X_current = X_probe_location + cos(theta) * radius;
  2174. Y_current = Y_probe_location + sin(theta) * radius;
  2175. // Make sure our X & Y are sane
  2176. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2177. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2178. if (verbose_level > 3) {
  2179. SERIAL_ECHOPAIR("x: ", X_current);
  2180. SERIAL_ECHOPAIR("y: ", Y_current);
  2181. SERIAL_PROTOCOLLNPGM("");
  2182. }
  2183. do_blocking_move_to( X_current, Y_current, Z_current );
  2184. }
  2185. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2186. }
  2187. if (engage_probe_for_each_reading) {
  2188. engage_z_probe();
  2189. delay(1000);
  2190. }
  2191. setup_for_endstop_move();
  2192. run_z_probe();
  2193. sample_set[n] = current_position[Z_AXIS];
  2194. //
  2195. // Get the current mean for the data points we have so far
  2196. //
  2197. sum = 0.0;
  2198. for (j=0; j<=n; j++) sum += sample_set[j];
  2199. mean = sum / (double (n+1));
  2200. //
  2201. // Now, use that mean to calculate the standard deviation for the
  2202. // data points we have so far
  2203. //
  2204. sum = 0.0;
  2205. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2206. sigma = sqrt( sum / (double (n+1)) );
  2207. if (verbose_level > 1) {
  2208. SERIAL_PROTOCOL(n+1);
  2209. SERIAL_PROTOCOL(" of ");
  2210. SERIAL_PROTOCOL(n_samples);
  2211. SERIAL_PROTOCOLPGM(" z: ");
  2212. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2213. }
  2214. if (verbose_level > 2) {
  2215. SERIAL_PROTOCOL(" mean: ");
  2216. SERIAL_PROTOCOL_F(mean,6);
  2217. SERIAL_PROTOCOL(" sigma: ");
  2218. SERIAL_PROTOCOL_F(sigma,6);
  2219. }
  2220. if (verbose_level > 0)
  2221. SERIAL_PROTOCOLPGM("\n");
  2222. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2223. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2224. st_synchronize();
  2225. if (engage_probe_for_each_reading) {
  2226. retract_z_probe();
  2227. delay(1000);
  2228. }
  2229. }
  2230. retract_z_probe();
  2231. delay(1000);
  2232. clean_up_after_endstop_move();
  2233. // enable_endstops(true);
  2234. if (verbose_level > 0) {
  2235. SERIAL_PROTOCOLPGM("Mean: ");
  2236. SERIAL_PROTOCOL_F(mean, 6);
  2237. SERIAL_PROTOCOLPGM("\n");
  2238. }
  2239. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2240. SERIAL_PROTOCOL_F(sigma, 6);
  2241. SERIAL_PROTOCOLPGM("\n\n");
  2242. }
  2243. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2244. /**
  2245. * M104: Set hot end temperature
  2246. */
  2247. inline void gcode_M104() {
  2248. if (setTargetedHotend(104)) return;
  2249. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2250. #ifdef DUAL_X_CARRIAGE
  2251. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2252. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2253. #endif
  2254. setWatch();
  2255. }
  2256. /**
  2257. * M105: Read hot end and bed temperature
  2258. */
  2259. inline void gcode_M105() {
  2260. if (setTargetedHotend(105)) return;
  2261. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2262. SERIAL_PROTOCOLPGM("ok T:");
  2263. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2264. SERIAL_PROTOCOLPGM(" /");
  2265. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2266. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2267. SERIAL_PROTOCOLPGM(" B:");
  2268. SERIAL_PROTOCOL_F(degBed(),1);
  2269. SERIAL_PROTOCOLPGM(" /");
  2270. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2271. #endif //TEMP_BED_PIN
  2272. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2273. SERIAL_PROTOCOLPGM(" T");
  2274. SERIAL_PROTOCOL(cur_extruder);
  2275. SERIAL_PROTOCOLPGM(":");
  2276. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2277. SERIAL_PROTOCOLPGM(" /");
  2278. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2279. }
  2280. #else
  2281. SERIAL_ERROR_START;
  2282. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2283. #endif
  2284. SERIAL_PROTOCOLPGM(" @:");
  2285. #ifdef EXTRUDER_WATTS
  2286. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2287. SERIAL_PROTOCOLPGM("W");
  2288. #else
  2289. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2290. #endif
  2291. SERIAL_PROTOCOLPGM(" B@:");
  2292. #ifdef BED_WATTS
  2293. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2294. SERIAL_PROTOCOLPGM("W");
  2295. #else
  2296. SERIAL_PROTOCOL(getHeaterPower(-1));
  2297. #endif
  2298. #ifdef SHOW_TEMP_ADC_VALUES
  2299. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2300. SERIAL_PROTOCOLPGM(" ADC B:");
  2301. SERIAL_PROTOCOL_F(degBed(),1);
  2302. SERIAL_PROTOCOLPGM("C->");
  2303. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2304. #endif
  2305. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2306. SERIAL_PROTOCOLPGM(" T");
  2307. SERIAL_PROTOCOL(cur_extruder);
  2308. SERIAL_PROTOCOLPGM(":");
  2309. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2310. SERIAL_PROTOCOLPGM("C->");
  2311. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2312. }
  2313. #endif
  2314. SERIAL_PROTOCOLLN("");
  2315. }
  2316. #if defined(FAN_PIN) && FAN_PIN > -1
  2317. /**
  2318. * M106: Set Fan Speed
  2319. */
  2320. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2321. /**
  2322. * M107: Fan Off
  2323. */
  2324. inline void gcode_M107() { fanSpeed = 0; }
  2325. #endif //FAN_PIN
  2326. /**
  2327. * M109: Wait for extruder(s) to reach temperature
  2328. */
  2329. inline void gcode_M109() {
  2330. if (setTargetedHotend(109)) return;
  2331. LCD_MESSAGEPGM(MSG_HEATING);
  2332. CooldownNoWait = code_seen('S');
  2333. if (CooldownNoWait || code_seen('R')) {
  2334. setTargetHotend(code_value(), tmp_extruder);
  2335. #ifdef DUAL_X_CARRIAGE
  2336. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2337. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2338. #endif
  2339. }
  2340. #ifdef AUTOTEMP
  2341. autotemp_enabled = code_seen('F');
  2342. if (autotemp_enabled) autotemp_factor = code_value();
  2343. if (code_seen('S')) autotemp_min = code_value();
  2344. if (code_seen('B')) autotemp_max = code_value();
  2345. #endif
  2346. setWatch();
  2347. unsigned long timetemp = millis();
  2348. /* See if we are heating up or cooling down */
  2349. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2350. cancel_heatup = false;
  2351. #ifdef TEMP_RESIDENCY_TIME
  2352. long residencyStart = -1;
  2353. /* continue to loop until we have reached the target temp
  2354. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2355. while((!cancel_heatup)&&((residencyStart == -1) ||
  2356. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2357. #else
  2358. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2359. #endif //TEMP_RESIDENCY_TIME
  2360. { // while loop
  2361. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2362. SERIAL_PROTOCOLPGM("T:");
  2363. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2364. SERIAL_PROTOCOLPGM(" E:");
  2365. SERIAL_PROTOCOL((int)tmp_extruder);
  2366. #ifdef TEMP_RESIDENCY_TIME
  2367. SERIAL_PROTOCOLPGM(" W:");
  2368. if (residencyStart > -1) {
  2369. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2370. SERIAL_PROTOCOLLN( timetemp );
  2371. }
  2372. else {
  2373. SERIAL_PROTOCOLLN( "?" );
  2374. }
  2375. #else
  2376. SERIAL_PROTOCOLLN("");
  2377. #endif
  2378. timetemp = millis();
  2379. }
  2380. manage_heater();
  2381. manage_inactivity();
  2382. lcd_update();
  2383. #ifdef TEMP_RESIDENCY_TIME
  2384. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2385. // or when current temp falls outside the hysteresis after target temp was reached
  2386. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2387. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2388. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2389. {
  2390. residencyStart = millis();
  2391. }
  2392. #endif //TEMP_RESIDENCY_TIME
  2393. }
  2394. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2395. starttime = previous_millis_cmd = millis();
  2396. }
  2397. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2398. /**
  2399. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2400. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2401. */
  2402. inline void gcode_M190() {
  2403. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2404. CooldownNoWait = code_seen('S');
  2405. if (CooldownNoWait || code_seen('R'))
  2406. setTargetBed(code_value());
  2407. unsigned long timetemp = millis();
  2408. cancel_heatup = false;
  2409. target_direction = isHeatingBed(); // true if heating, false if cooling
  2410. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2411. unsigned long ms = millis();
  2412. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2413. timetemp = ms;
  2414. float tt = degHotend(active_extruder);
  2415. SERIAL_PROTOCOLPGM("T:");
  2416. SERIAL_PROTOCOL(tt);
  2417. SERIAL_PROTOCOLPGM(" E:");
  2418. SERIAL_PROTOCOL((int)active_extruder);
  2419. SERIAL_PROTOCOLPGM(" B:");
  2420. SERIAL_PROTOCOL_F(degBed(), 1);
  2421. SERIAL_PROTOCOLLN("");
  2422. }
  2423. manage_heater();
  2424. manage_inactivity();
  2425. lcd_update();
  2426. }
  2427. LCD_MESSAGEPGM(MSG_BED_DONE);
  2428. previous_millis_cmd = millis();
  2429. }
  2430. #endif // TEMP_BED_PIN > -1
  2431. /**
  2432. * M112: Emergency Stop
  2433. */
  2434. inline void gcode_M112() {
  2435. kill();
  2436. }
  2437. #ifdef BARICUDA
  2438. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2439. /**
  2440. * M126: Heater 1 valve open
  2441. */
  2442. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2443. /**
  2444. * M127: Heater 1 valve close
  2445. */
  2446. inline void gcode_M127() { ValvePressure = 0; }
  2447. #endif
  2448. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2449. /**
  2450. * M128: Heater 2 valve open
  2451. */
  2452. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2453. /**
  2454. * M129: Heater 2 valve close
  2455. */
  2456. inline void gcode_M129() { EtoPPressure = 0; }
  2457. #endif
  2458. #endif //BARICUDA
  2459. /**
  2460. * M140: Set bed temperature
  2461. */
  2462. inline void gcode_M140() {
  2463. if (code_seen('S')) setTargetBed(code_value());
  2464. }
  2465. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2466. /**
  2467. * M80: Turn on Power Supply
  2468. */
  2469. inline void gcode_M80() {
  2470. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2471. // If you have a switch on suicide pin, this is useful
  2472. // if you want to start another print with suicide feature after
  2473. // a print without suicide...
  2474. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2475. OUT_WRITE(SUICIDE_PIN, HIGH);
  2476. #endif
  2477. #ifdef ULTIPANEL
  2478. powersupply = true;
  2479. LCD_MESSAGEPGM(WELCOME_MSG);
  2480. lcd_update();
  2481. #endif
  2482. }
  2483. #endif // PS_ON_PIN
  2484. /**
  2485. * M81: Turn off Power Supply
  2486. */
  2487. inline void gcode_M81() {
  2488. disable_heater();
  2489. st_synchronize();
  2490. disable_e0();
  2491. disable_e1();
  2492. disable_e2();
  2493. disable_e3();
  2494. finishAndDisableSteppers();
  2495. fanSpeed = 0;
  2496. delay(1000); // Wait 1 second before switching off
  2497. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2498. st_synchronize();
  2499. suicide();
  2500. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2501. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2502. #endif
  2503. #ifdef ULTIPANEL
  2504. powersupply = false;
  2505. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2506. lcd_update();
  2507. #endif
  2508. }
  2509. /**
  2510. * M82: Set E codes absolute (default)
  2511. */
  2512. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2513. /**
  2514. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2515. */
  2516. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2517. /**
  2518. * M18, M84: Disable all stepper motors
  2519. */
  2520. inline void gcode_M18_M84() {
  2521. if (code_seen('S')) {
  2522. stepper_inactive_time = code_value() * 1000;
  2523. }
  2524. else {
  2525. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2526. if (all_axis) {
  2527. st_synchronize();
  2528. disable_e0();
  2529. disable_e1();
  2530. disable_e2();
  2531. disable_e3();
  2532. finishAndDisableSteppers();
  2533. }
  2534. else {
  2535. st_synchronize();
  2536. if (code_seen('X')) disable_x();
  2537. if (code_seen('Y')) disable_y();
  2538. if (code_seen('Z')) disable_z();
  2539. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2540. if (code_seen('E')) {
  2541. disable_e0();
  2542. disable_e1();
  2543. disable_e2();
  2544. disable_e3();
  2545. }
  2546. #endif
  2547. }
  2548. }
  2549. }
  2550. /**
  2551. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2552. */
  2553. inline void gcode_M85() {
  2554. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2555. }
  2556. /**
  2557. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2558. */
  2559. inline void gcode_M92() {
  2560. for(int8_t i=0; i < NUM_AXIS; i++) {
  2561. if (code_seen(axis_codes[i])) {
  2562. if (i == E_AXIS) {
  2563. float value = code_value();
  2564. if (value < 20.0) {
  2565. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2566. max_e_jerk *= factor;
  2567. max_feedrate[i] *= factor;
  2568. axis_steps_per_sqr_second[i] *= factor;
  2569. }
  2570. axis_steps_per_unit[i] = value;
  2571. }
  2572. else {
  2573. axis_steps_per_unit[i] = code_value();
  2574. }
  2575. }
  2576. }
  2577. }
  2578. /**
  2579. * M114: Output current position to serial port
  2580. */
  2581. inline void gcode_M114() {
  2582. SERIAL_PROTOCOLPGM("X:");
  2583. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2584. SERIAL_PROTOCOLPGM(" Y:");
  2585. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2586. SERIAL_PROTOCOLPGM(" Z:");
  2587. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2588. SERIAL_PROTOCOLPGM(" E:");
  2589. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2590. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2591. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2592. SERIAL_PROTOCOLPGM(" Y:");
  2593. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2594. SERIAL_PROTOCOLPGM(" Z:");
  2595. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2596. SERIAL_PROTOCOLLN("");
  2597. #ifdef SCARA
  2598. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2599. SERIAL_PROTOCOL(delta[X_AXIS]);
  2600. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2601. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2602. SERIAL_PROTOCOLLN("");
  2603. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2604. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2605. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2606. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2607. SERIAL_PROTOCOLLN("");
  2608. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2609. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2610. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2611. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2612. SERIAL_PROTOCOLLN("");
  2613. SERIAL_PROTOCOLLN("");
  2614. #endif
  2615. }
  2616. /**
  2617. * M115: Capabilities string
  2618. */
  2619. inline void gcode_M115() {
  2620. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2621. }
  2622. /**
  2623. * M117: Set LCD Status Message
  2624. */
  2625. inline void gcode_M117() {
  2626. char* codepos = strchr_pointer + 5;
  2627. char* starpos = strchr(codepos, '*');
  2628. if (starpos) *starpos = '\0';
  2629. lcd_setstatus(codepos);
  2630. }
  2631. /**
  2632. * M119: Output endstop states to serial output
  2633. */
  2634. inline void gcode_M119() {
  2635. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2636. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2637. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2638. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2639. #endif
  2640. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2641. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2642. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2643. #endif
  2644. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2645. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2646. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2647. #endif
  2648. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2649. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2650. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2651. #endif
  2652. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2653. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2654. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2655. #endif
  2656. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2657. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2658. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2659. #endif
  2660. }
  2661. /**
  2662. * M120: Enable endstops
  2663. */
  2664. inline void gcode_M120() { enable_endstops(false); }
  2665. /**
  2666. * M121: Disable endstops
  2667. */
  2668. inline void gcode_M121() { enable_endstops(true); }
  2669. #ifdef BLINKM
  2670. /**
  2671. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2672. */
  2673. inline void gcode_M150() {
  2674. SendColors(
  2675. code_seen('R') ? (byte)code_value() : 0,
  2676. code_seen('U') ? (byte)code_value() : 0,
  2677. code_seen('B') ? (byte)code_value() : 0
  2678. );
  2679. }
  2680. #endif // BLINKM
  2681. /**
  2682. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2683. * T<extruder>
  2684. * D<millimeters>
  2685. */
  2686. inline void gcode_M200() {
  2687. tmp_extruder = active_extruder;
  2688. if (code_seen('T')) {
  2689. tmp_extruder = code_value();
  2690. if (tmp_extruder >= EXTRUDERS) {
  2691. SERIAL_ECHO_START;
  2692. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2693. return;
  2694. }
  2695. }
  2696. float area = .0;
  2697. if (code_seen('D')) {
  2698. float diameter = code_value();
  2699. // setting any extruder filament size disables volumetric on the assumption that
  2700. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2701. // for all extruders
  2702. volumetric_enabled = (diameter != 0.0);
  2703. if (volumetric_enabled) {
  2704. filament_size[tmp_extruder] = diameter;
  2705. // make sure all extruders have some sane value for the filament size
  2706. for (int i=0; i<EXTRUDERS; i++)
  2707. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2708. }
  2709. }
  2710. else {
  2711. //reserved for setting filament diameter via UFID or filament measuring device
  2712. return;
  2713. }
  2714. calculate_volumetric_multipliers();
  2715. }
  2716. /**
  2717. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2718. */
  2719. inline void gcode_M201() {
  2720. for (int8_t i=0; i < NUM_AXIS; i++) {
  2721. if (code_seen(axis_codes[i])) {
  2722. max_acceleration_units_per_sq_second[i] = code_value();
  2723. }
  2724. }
  2725. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2726. reset_acceleration_rates();
  2727. }
  2728. #if 0 // Not used for Sprinter/grbl gen6
  2729. inline void gcode_M202() {
  2730. for(int8_t i=0; i < NUM_AXIS; i++) {
  2731. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2732. }
  2733. }
  2734. #endif
  2735. /**
  2736. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2737. */
  2738. inline void gcode_M203() {
  2739. for (int8_t i=0; i < NUM_AXIS; i++) {
  2740. if (code_seen(axis_codes[i])) {
  2741. max_feedrate[i] = code_value();
  2742. }
  2743. }
  2744. }
  2745. /**
  2746. * M204: Set Default Acceleration and/or Default Filament Acceleration in mm/sec^2 (M204 S3000 T7000)
  2747. *
  2748. * S = normal moves
  2749. * T = filament only moves
  2750. *
  2751. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2752. */
  2753. inline void gcode_M204() {
  2754. if (code_seen('S')) acceleration = code_value();
  2755. if (code_seen('T')) retract_acceleration = code_value();
  2756. }
  2757. /**
  2758. * M205: Set Advanced Settings
  2759. *
  2760. * S = Min Feed Rate (mm/s)
  2761. * T = Min Travel Feed Rate (mm/s)
  2762. * B = Min Segment Time (µs)
  2763. * X = Max XY Jerk (mm/s/s)
  2764. * Z = Max Z Jerk (mm/s/s)
  2765. * E = Max E Jerk (mm/s/s)
  2766. */
  2767. inline void gcode_M205() {
  2768. if (code_seen('S')) minimumfeedrate = code_value();
  2769. if (code_seen('T')) mintravelfeedrate = code_value();
  2770. if (code_seen('B')) minsegmenttime = code_value();
  2771. if (code_seen('X')) max_xy_jerk = code_value();
  2772. if (code_seen('Z')) max_z_jerk = code_value();
  2773. if (code_seen('E')) max_e_jerk = code_value();
  2774. }
  2775. /**
  2776. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  2777. */
  2778. inline void gcode_M206() {
  2779. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  2780. if (code_seen(axis_codes[i])) {
  2781. add_homing[i] = code_value();
  2782. }
  2783. }
  2784. #ifdef SCARA
  2785. if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
  2786. if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
  2787. #endif
  2788. }
  2789. #ifdef DELTA
  2790. /**
  2791. * M665: Set delta configurations
  2792. *
  2793. * L = diagonal rod
  2794. * R = delta radius
  2795. * S = segments per second
  2796. */
  2797. inline void gcode_M665() {
  2798. if (code_seen('L')) delta_diagonal_rod = code_value();
  2799. if (code_seen('R')) delta_radius = code_value();
  2800. if (code_seen('S')) delta_segments_per_second = code_value();
  2801. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2802. }
  2803. /**
  2804. * M666: Set delta endstop adjustment
  2805. */
  2806. inline void gcode_M666() {
  2807. for (int8_t i = 0; i < 3; i++) {
  2808. if (code_seen(axis_codes[i])) {
  2809. endstop_adj[i] = code_value();
  2810. }
  2811. }
  2812. }
  2813. #endif // DELTA
  2814. #ifdef FWRETRACT
  2815. /**
  2816. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2817. */
  2818. inline void gcode_M207() {
  2819. if (code_seen('S')) retract_length = code_value();
  2820. if (code_seen('F')) retract_feedrate = code_value() / 60;
  2821. if (code_seen('Z')) retract_zlift = code_value();
  2822. }
  2823. /**
  2824. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2825. */
  2826. inline void gcode_M208() {
  2827. if (code_seen('S')) retract_recover_length = code_value();
  2828. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  2829. }
  2830. /**
  2831. * M209: Enable automatic retract (M209 S1)
  2832. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2833. */
  2834. inline void gcode_M209() {
  2835. if (code_seen('S')) {
  2836. int t = code_value();
  2837. switch(t) {
  2838. case 0:
  2839. autoretract_enabled = false;
  2840. break;
  2841. case 1:
  2842. autoretract_enabled = true;
  2843. break;
  2844. default:
  2845. SERIAL_ECHO_START;
  2846. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2847. SERIAL_ECHO(cmdbuffer[bufindr]);
  2848. SERIAL_ECHOLNPGM("\"");
  2849. return;
  2850. }
  2851. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  2852. }
  2853. }
  2854. #endif // FWRETRACT
  2855. #if EXTRUDERS > 1
  2856. /**
  2857. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2858. */
  2859. inline void gcode_M218() {
  2860. if (setTargetedHotend(218)) return;
  2861. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2862. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2863. #ifdef DUAL_X_CARRIAGE
  2864. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2865. #endif
  2866. SERIAL_ECHO_START;
  2867. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2868. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  2869. SERIAL_ECHO(" ");
  2870. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2871. SERIAL_ECHO(",");
  2872. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2873. #ifdef DUAL_X_CARRIAGE
  2874. SERIAL_ECHO(",");
  2875. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2876. #endif
  2877. }
  2878. SERIAL_EOL;
  2879. }
  2880. #endif // EXTRUDERS > 1
  2881. /**
  2882. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  2883. */
  2884. inline void gcode_M220() {
  2885. if (code_seen('S')) feedmultiply = code_value();
  2886. }
  2887. /**
  2888. * M221: Set extrusion percentage (M221 T0 S95)
  2889. */
  2890. inline void gcode_M221() {
  2891. if (code_seen('S')) {
  2892. int sval = code_value();
  2893. if (code_seen('T')) {
  2894. if (setTargetedHotend(221)) return;
  2895. extruder_multiply[tmp_extruder] = sval;
  2896. }
  2897. else {
  2898. extrudemultiply = sval;
  2899. }
  2900. }
  2901. }
  2902. /**
  2903. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  2904. */
  2905. inline void gcode_M226() {
  2906. if (code_seen('P')) {
  2907. int pin_number = code_value();
  2908. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  2909. if (pin_state >= -1 && pin_state <= 1) {
  2910. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  2911. if (sensitive_pins[i] == pin_number) {
  2912. pin_number = -1;
  2913. break;
  2914. }
  2915. }
  2916. if (pin_number > -1) {
  2917. int target = LOW;
  2918. st_synchronize();
  2919. pinMode(pin_number, INPUT);
  2920. switch(pin_state){
  2921. case 1:
  2922. target = HIGH;
  2923. break;
  2924. case 0:
  2925. target = LOW;
  2926. break;
  2927. case -1:
  2928. target = !digitalRead(pin_number);
  2929. break;
  2930. }
  2931. while(digitalRead(pin_number) != target) {
  2932. manage_heater();
  2933. manage_inactivity();
  2934. lcd_update();
  2935. }
  2936. } // pin_number > -1
  2937. } // pin_state -1 0 1
  2938. } // code_seen('P')
  2939. }
  2940. #if NUM_SERVOS > 0
  2941. /**
  2942. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  2943. */
  2944. inline void gcode_M280() {
  2945. int servo_index = code_seen('P') ? code_value() : -1;
  2946. int servo_position = 0;
  2947. if (code_seen('S')) {
  2948. servo_position = code_value();
  2949. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2950. #if defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  2951. servos[servo_index].attach(0);
  2952. #endif
  2953. servos[servo_index].write(servo_position);
  2954. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2955. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2956. servos[servo_index].detach();
  2957. #endif
  2958. }
  2959. else {
  2960. SERIAL_ECHO_START;
  2961. SERIAL_ECHO("Servo ");
  2962. SERIAL_ECHO(servo_index);
  2963. SERIAL_ECHOLN(" out of range");
  2964. }
  2965. }
  2966. else if (servo_index >= 0) {
  2967. SERIAL_PROTOCOL(MSG_OK);
  2968. SERIAL_PROTOCOL(" Servo ");
  2969. SERIAL_PROTOCOL(servo_index);
  2970. SERIAL_PROTOCOL(": ");
  2971. SERIAL_PROTOCOL(servos[servo_index].read());
  2972. SERIAL_PROTOCOLLN("");
  2973. }
  2974. }
  2975. #endif // NUM_SERVOS > 0
  2976. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  2977. /**
  2978. * M300: Play beep sound S<frequency Hz> P<duration ms>
  2979. */
  2980. inline void gcode_M300() {
  2981. int beepS = code_seen('S') ? code_value() : 110;
  2982. int beepP = code_seen('P') ? code_value() : 1000;
  2983. if (beepS > 0) {
  2984. #if BEEPER > 0
  2985. tone(BEEPER, beepS);
  2986. delay(beepP);
  2987. noTone(BEEPER);
  2988. #elif defined(ULTRALCD)
  2989. lcd_buzz(beepS, beepP);
  2990. #elif defined(LCD_USE_I2C_BUZZER)
  2991. lcd_buzz(beepP, beepS);
  2992. #endif
  2993. }
  2994. else {
  2995. delay(beepP);
  2996. }
  2997. }
  2998. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  2999. #ifdef PIDTEMP
  3000. /**
  3001. * M301: Set PID parameters P I D (and optionally C)
  3002. */
  3003. inline void gcode_M301() {
  3004. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3005. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3006. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3007. if (e < EXTRUDERS) { // catch bad input value
  3008. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3009. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3010. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3011. #ifdef PID_ADD_EXTRUSION_RATE
  3012. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3013. #endif
  3014. updatePID();
  3015. SERIAL_PROTOCOL(MSG_OK);
  3016. #ifdef PID_PARAMS_PER_EXTRUDER
  3017. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3018. SERIAL_PROTOCOL(e);
  3019. #endif // PID_PARAMS_PER_EXTRUDER
  3020. SERIAL_PROTOCOL(" p:");
  3021. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3022. SERIAL_PROTOCOL(" i:");
  3023. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3024. SERIAL_PROTOCOL(" d:");
  3025. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3026. #ifdef PID_ADD_EXTRUSION_RATE
  3027. SERIAL_PROTOCOL(" c:");
  3028. //Kc does not have scaling applied above, or in resetting defaults
  3029. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3030. #endif
  3031. SERIAL_PROTOCOLLN("");
  3032. }
  3033. else {
  3034. SERIAL_ECHO_START;
  3035. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3036. }
  3037. }
  3038. #endif // PIDTEMP
  3039. #ifdef PIDTEMPBED
  3040. inline void gcode_M304() {
  3041. if (code_seen('P')) bedKp = code_value();
  3042. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3043. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3044. updatePID();
  3045. SERIAL_PROTOCOL(MSG_OK);
  3046. SERIAL_PROTOCOL(" p:");
  3047. SERIAL_PROTOCOL(bedKp);
  3048. SERIAL_PROTOCOL(" i:");
  3049. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3050. SERIAL_PROTOCOL(" d:");
  3051. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3052. SERIAL_PROTOCOLLN("");
  3053. }
  3054. #endif // PIDTEMPBED
  3055. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3056. /**
  3057. * M240: Trigger a camera by emulating a Canon RC-1
  3058. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3059. */
  3060. inline void gcode_M240() {
  3061. #ifdef CHDK
  3062. OUT_WRITE(CHDK, HIGH);
  3063. chdkHigh = millis();
  3064. chdkActive = true;
  3065. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3066. const uint8_t NUM_PULSES = 16;
  3067. const float PULSE_LENGTH = 0.01524;
  3068. for (int i = 0; i < NUM_PULSES; i++) {
  3069. WRITE(PHOTOGRAPH_PIN, HIGH);
  3070. _delay_ms(PULSE_LENGTH);
  3071. WRITE(PHOTOGRAPH_PIN, LOW);
  3072. _delay_ms(PULSE_LENGTH);
  3073. }
  3074. delay(7.33);
  3075. for (int i = 0; i < NUM_PULSES; i++) {
  3076. WRITE(PHOTOGRAPH_PIN, HIGH);
  3077. _delay_ms(PULSE_LENGTH);
  3078. WRITE(PHOTOGRAPH_PIN, LOW);
  3079. _delay_ms(PULSE_LENGTH);
  3080. }
  3081. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3082. }
  3083. #endif // CHDK || PHOTOGRAPH_PIN
  3084. #ifdef DOGLCD
  3085. /**
  3086. * M250: Read and optionally set the LCD contrast
  3087. */
  3088. inline void gcode_M250() {
  3089. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3090. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3091. SERIAL_PROTOCOL(lcd_contrast);
  3092. SERIAL_PROTOCOLLN("");
  3093. }
  3094. #endif // DOGLCD
  3095. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3096. /**
  3097. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3098. */
  3099. inline void gcode_M302() {
  3100. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3101. }
  3102. #endif // PREVENT_DANGEROUS_EXTRUDE
  3103. /**
  3104. * M303: PID relay autotune
  3105. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3106. * E<extruder> (-1 for the bed)
  3107. * C<cycles>
  3108. */
  3109. inline void gcode_M303() {
  3110. int e = code_seen('E') ? code_value_long() : 0;
  3111. int c = code_seen('C') ? code_value_long() : 5;
  3112. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3113. PID_autotune(temp, e, c);
  3114. }
  3115. #ifdef SCARA
  3116. /**
  3117. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3118. */
  3119. inline bool gcode_M360() {
  3120. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3121. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3122. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3123. if (! Stopped) {
  3124. //get_coordinates(); // For X Y Z E F
  3125. delta[X_AXIS] = 0;
  3126. delta[Y_AXIS] = 120;
  3127. calculate_SCARA_forward_Transform(delta);
  3128. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3129. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3130. prepare_move();
  3131. //ClearToSend();
  3132. return true;
  3133. }
  3134. return false;
  3135. }
  3136. /**
  3137. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3138. */
  3139. inline bool gcode_M361() {
  3140. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3141. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3142. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3143. if (! Stopped) {
  3144. //get_coordinates(); // For X Y Z E F
  3145. delta[X_AXIS] = 90;
  3146. delta[Y_AXIS] = 130;
  3147. calculate_SCARA_forward_Transform(delta);
  3148. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3149. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3150. prepare_move();
  3151. //ClearToSend();
  3152. return true;
  3153. }
  3154. return false;
  3155. }
  3156. /**
  3157. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3158. */
  3159. inline bool gcode_M362() {
  3160. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3161. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3162. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3163. if (! Stopped) {
  3164. //get_coordinates(); // For X Y Z E F
  3165. delta[X_AXIS] = 60;
  3166. delta[Y_AXIS] = 180;
  3167. calculate_SCARA_forward_Transform(delta);
  3168. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3169. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3170. prepare_move();
  3171. //ClearToSend();
  3172. return true;
  3173. }
  3174. return false;
  3175. }
  3176. /**
  3177. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3178. */
  3179. inline bool gcode_M363() {
  3180. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3181. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3182. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3183. if (! Stopped) {
  3184. //get_coordinates(); // For X Y Z E F
  3185. delta[X_AXIS] = 50;
  3186. delta[Y_AXIS] = 90;
  3187. calculate_SCARA_forward_Transform(delta);
  3188. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3189. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3190. prepare_move();
  3191. //ClearToSend();
  3192. return true;
  3193. }
  3194. return false;
  3195. }
  3196. /**
  3197. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3198. */
  3199. inline bool gcode_M364() {
  3200. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3201. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3202. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3203. if (! Stopped) {
  3204. //get_coordinates(); // For X Y Z E F
  3205. delta[X_AXIS] = 45;
  3206. delta[Y_AXIS] = 135;
  3207. calculate_SCARA_forward_Transform(delta);
  3208. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  3209. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  3210. prepare_move();
  3211. //ClearToSend();
  3212. return true;
  3213. }
  3214. return false;
  3215. }
  3216. /**
  3217. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3218. */
  3219. inline void gcode_M365() {
  3220. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3221. if (code_seen(axis_codes[i])) {
  3222. axis_scaling[i] = code_value();
  3223. }
  3224. }
  3225. }
  3226. #endif // SCARA
  3227. #ifdef EXT_SOLENOID
  3228. void enable_solenoid(uint8_t num) {
  3229. switch(num) {
  3230. case 0:
  3231. OUT_WRITE(SOL0_PIN, HIGH);
  3232. break;
  3233. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3234. case 1:
  3235. OUT_WRITE(SOL1_PIN, HIGH);
  3236. break;
  3237. #endif
  3238. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3239. case 2:
  3240. OUT_WRITE(SOL2_PIN, HIGH);
  3241. break;
  3242. #endif
  3243. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3244. case 3:
  3245. OUT_WRITE(SOL3_PIN, HIGH);
  3246. break;
  3247. #endif
  3248. default:
  3249. SERIAL_ECHO_START;
  3250. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3251. break;
  3252. }
  3253. }
  3254. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3255. void disable_all_solenoids() {
  3256. OUT_WRITE(SOL0_PIN, LOW);
  3257. OUT_WRITE(SOL1_PIN, LOW);
  3258. OUT_WRITE(SOL2_PIN, LOW);
  3259. OUT_WRITE(SOL3_PIN, LOW);
  3260. }
  3261. /**
  3262. * M380: Enable solenoid on the active extruder
  3263. */
  3264. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3265. /**
  3266. * M381: Disable all solenoids
  3267. */
  3268. inline void gcode_M381() { disable_all_solenoids(); }
  3269. #endif // EXT_SOLENOID
  3270. /**
  3271. * M400: Finish all moves
  3272. */
  3273. inline void gcode_M400() { st_synchronize(); }
  3274. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3275. /**
  3276. * M401: Engage Z Servo endstop if available
  3277. */
  3278. inline void gcode_M401() { engage_z_probe(); }
  3279. /**
  3280. * M402: Retract Z Servo endstop if enabled
  3281. */
  3282. inline void gcode_M402() { retract_z_probe(); }
  3283. #endif
  3284. #ifdef FILAMENT_SENSOR
  3285. /**
  3286. * M404: Display or set the nominal filament width (3mm, 1.75mm ) N<3.0>
  3287. */
  3288. inline void gcode_M404() {
  3289. #if FILWIDTH_PIN > -1
  3290. if (code_seen('N')) {
  3291. filament_width_nominal = code_value();
  3292. }
  3293. else {
  3294. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3295. SERIAL_PROTOCOLLN(filament_width_nominal);
  3296. }
  3297. #endif
  3298. }
  3299. /**
  3300. * M405: Turn on filament sensor for control
  3301. */
  3302. inline void gcode_M405() {
  3303. if (code_seen('D')) meas_delay_cm = code_value();
  3304. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3305. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3306. int temp_ratio = widthFil_to_size_ratio();
  3307. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3308. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3309. delay_index1 = delay_index2 = 0;
  3310. }
  3311. filament_sensor = true;
  3312. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3313. //SERIAL_PROTOCOL(filament_width_meas);
  3314. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3315. //SERIAL_PROTOCOL(extrudemultiply);
  3316. }
  3317. /**
  3318. * M406: Turn off filament sensor for control
  3319. */
  3320. inline void gcode_M406() { filament_sensor = false; }
  3321. /**
  3322. * M407: Get measured filament diameter on serial output
  3323. */
  3324. inline void gcode_M407() {
  3325. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3326. SERIAL_PROTOCOLLN(filament_width_meas);
  3327. }
  3328. #endif // FILAMENT_SENSOR
  3329. /**
  3330. * M500: Store settings in EEPROM
  3331. */
  3332. inline void gcode_M500() {
  3333. Config_StoreSettings();
  3334. }
  3335. /**
  3336. * M501: Read settings from EEPROM
  3337. */
  3338. inline void gcode_M501() {
  3339. Config_RetrieveSettings();
  3340. }
  3341. /**
  3342. * M502: Revert to default settings
  3343. */
  3344. inline void gcode_M502() {
  3345. Config_ResetDefault();
  3346. }
  3347. /**
  3348. * M503: print settings currently in memory
  3349. */
  3350. inline void gcode_M503() {
  3351. Config_PrintSettings(code_seen('S') && code_value == 0);
  3352. }
  3353. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3354. /**
  3355. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3356. */
  3357. inline void gcode_M540() {
  3358. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3359. }
  3360. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3361. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3362. inline void gcode_SET_Z_PROBE_OFFSET() {
  3363. float value;
  3364. if (code_seen('Z')) {
  3365. value = code_value();
  3366. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3367. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3368. SERIAL_ECHO_START;
  3369. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3370. SERIAL_PROTOCOLLN("");
  3371. }
  3372. else {
  3373. SERIAL_ECHO_START;
  3374. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3375. SERIAL_ECHOPGM(MSG_Z_MIN);
  3376. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3377. SERIAL_ECHOPGM(MSG_Z_MAX);
  3378. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3379. SERIAL_PROTOCOLLN("");
  3380. }
  3381. }
  3382. else {
  3383. SERIAL_ECHO_START;
  3384. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3385. SERIAL_ECHO(-zprobe_zoffset);
  3386. SERIAL_PROTOCOLLN("");
  3387. }
  3388. }
  3389. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3390. #ifdef FILAMENTCHANGEENABLE
  3391. /**
  3392. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3393. */
  3394. inline void gcode_M600() {
  3395. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3396. for (int i=0; i<NUM_AXIS; i++)
  3397. target[i] = lastpos[i] = current_position[i];
  3398. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3399. #ifdef DELTA
  3400. #define RUNPLAN calculate_delta(target); BASICPLAN
  3401. #else
  3402. #define RUNPLAN BASICPLAN
  3403. #endif
  3404. //retract by E
  3405. if (code_seen('E')) target[E_AXIS] += code_value();
  3406. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3407. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3408. #endif
  3409. RUNPLAN;
  3410. //lift Z
  3411. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3412. #ifdef FILAMENTCHANGE_ZADD
  3413. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3414. #endif
  3415. RUNPLAN;
  3416. //move xy
  3417. if (code_seen('X')) target[X_AXIS] = code_value();
  3418. #ifdef FILAMENTCHANGE_XPOS
  3419. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3420. #endif
  3421. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3422. #ifdef FILAMENTCHANGE_YPOS
  3423. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3424. #endif
  3425. RUNPLAN;
  3426. if (code_seen('L')) target[E_AXIS] += code_value();
  3427. #ifdef FILAMENTCHANGE_FINALRETRACT
  3428. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3429. #endif
  3430. RUNPLAN;
  3431. //finish moves
  3432. st_synchronize();
  3433. //disable extruder steppers so filament can be removed
  3434. disable_e0();
  3435. disable_e1();
  3436. disable_e2();
  3437. disable_e3();
  3438. delay(100);
  3439. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3440. uint8_t cnt = 0;
  3441. while (!lcd_clicked()) {
  3442. cnt++;
  3443. manage_heater();
  3444. manage_inactivity(true);
  3445. lcd_update();
  3446. if (cnt == 0) {
  3447. #if BEEPER > 0
  3448. OUT_WRITE(BEEPER,HIGH);
  3449. delay(3);
  3450. WRITE(BEEPER,LOW);
  3451. delay(3);
  3452. #else
  3453. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3454. lcd_buzz(1000/6, 100);
  3455. #else
  3456. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3457. #endif
  3458. #endif
  3459. }
  3460. } // while(!lcd_clicked)
  3461. //return to normal
  3462. if (code_seen('L')) target[E_AXIS] -= code_value();
  3463. #ifdef FILAMENTCHANGE_FINALRETRACT
  3464. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3465. #endif
  3466. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3467. plan_set_e_position(current_position[E_AXIS]);
  3468. RUNPLAN; //should do nothing
  3469. lcd_reset_alert_level();
  3470. #ifdef DELTA
  3471. calculate_delta(lastpos);
  3472. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3473. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3474. #else
  3475. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3476. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3477. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3478. #endif
  3479. }
  3480. #endif // FILAMENTCHANGEENABLE
  3481. #ifdef DUAL_X_CARRIAGE
  3482. /**
  3483. * M605: Set dual x-carriage movement mode
  3484. *
  3485. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3486. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3487. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3488. * millimeters x-offset and an optional differential hotend temperature of
  3489. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3490. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3491. *
  3492. * Note: the X axis should be homed after changing dual x-carriage mode.
  3493. */
  3494. inline void gcode_M605() {
  3495. st_synchronize();
  3496. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3497. switch(dual_x_carriage_mode) {
  3498. case DXC_DUPLICATION_MODE:
  3499. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3500. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3501. SERIAL_ECHO_START;
  3502. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3503. SERIAL_ECHO(" ");
  3504. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3505. SERIAL_ECHO(",");
  3506. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3507. SERIAL_ECHO(" ");
  3508. SERIAL_ECHO(duplicate_extruder_x_offset);
  3509. SERIAL_ECHO(",");
  3510. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3511. break;
  3512. case DXC_FULL_CONTROL_MODE:
  3513. case DXC_AUTO_PARK_MODE:
  3514. break;
  3515. default:
  3516. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3517. break;
  3518. }
  3519. active_extruder_parked = false;
  3520. extruder_duplication_enabled = false;
  3521. delayed_move_time = 0;
  3522. }
  3523. #endif // DUAL_X_CARRIAGE
  3524. /**
  3525. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3526. */
  3527. inline void gcode_M907() {
  3528. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3529. for (int i=0;i<NUM_AXIS;i++)
  3530. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3531. if (code_seen('B')) digipot_current(4, code_value());
  3532. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3533. #endif
  3534. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3535. if (code_seen('X')) digipot_current(0, code_value());
  3536. #endif
  3537. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3538. if (code_seen('Z')) digipot_current(1, code_value());
  3539. #endif
  3540. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3541. if (code_seen('E')) digipot_current(2, code_value());
  3542. #endif
  3543. #ifdef DIGIPOT_I2C
  3544. // this one uses actual amps in floating point
  3545. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3546. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3547. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3548. #endif
  3549. }
  3550. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3551. /**
  3552. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3553. */
  3554. inline void gcode_M908() {
  3555. digitalPotWrite(
  3556. code_seen('P') ? code_value() : 0,
  3557. code_seen('S') ? code_value() : 0
  3558. );
  3559. }
  3560. #endif // DIGIPOTSS_PIN
  3561. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3562. inline void gcode_M350() {
  3563. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3564. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3565. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3566. if(code_seen('B')) microstep_mode(4,code_value());
  3567. microstep_readings();
  3568. #endif
  3569. }
  3570. /**
  3571. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3572. * S# determines MS1 or MS2, X# sets the pin high/low.
  3573. */
  3574. inline void gcode_M351() {
  3575. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3576. if (code_seen('S')) switch((int)code_value()) {
  3577. case 1:
  3578. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3579. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3580. break;
  3581. case 2:
  3582. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3583. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3584. break;
  3585. }
  3586. microstep_readings();
  3587. #endif
  3588. }
  3589. /**
  3590. * M999: Restart after being stopped
  3591. */
  3592. inline void gcode_M999() {
  3593. Stopped = false;
  3594. lcd_reset_alert_level();
  3595. gcode_LastN = Stopped_gcode_LastN;
  3596. FlushSerialRequestResend();
  3597. }
  3598. inline void gcode_T() {
  3599. tmp_extruder = code_value();
  3600. if (tmp_extruder >= EXTRUDERS) {
  3601. SERIAL_ECHO_START;
  3602. SERIAL_ECHO("T");
  3603. SERIAL_ECHO(tmp_extruder);
  3604. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3605. }
  3606. else {
  3607. boolean make_move = false;
  3608. if (code_seen('F')) {
  3609. make_move = true;
  3610. next_feedrate = code_value();
  3611. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3612. }
  3613. #if EXTRUDERS > 1
  3614. if (tmp_extruder != active_extruder) {
  3615. // Save current position to return to after applying extruder offset
  3616. memcpy(destination, current_position, sizeof(destination));
  3617. #ifdef DUAL_X_CARRIAGE
  3618. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3619. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3620. // Park old head: 1) raise 2) move to park position 3) lower
  3621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3622. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3623. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3624. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3625. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3626. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3627. st_synchronize();
  3628. }
  3629. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3630. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3631. extruder_offset[Y_AXIS][active_extruder] +
  3632. extruder_offset[Y_AXIS][tmp_extruder];
  3633. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3634. extruder_offset[Z_AXIS][active_extruder] +
  3635. extruder_offset[Z_AXIS][tmp_extruder];
  3636. active_extruder = tmp_extruder;
  3637. // This function resets the max/min values - the current position may be overwritten below.
  3638. axis_is_at_home(X_AXIS);
  3639. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3640. current_position[X_AXIS] = inactive_extruder_x_pos;
  3641. inactive_extruder_x_pos = destination[X_AXIS];
  3642. }
  3643. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3644. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3645. if (active_extruder == 0 || active_extruder_parked)
  3646. current_position[X_AXIS] = inactive_extruder_x_pos;
  3647. else
  3648. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3649. inactive_extruder_x_pos = destination[X_AXIS];
  3650. extruder_duplication_enabled = false;
  3651. }
  3652. else {
  3653. // record raised toolhead position for use by unpark
  3654. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3655. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3656. active_extruder_parked = true;
  3657. delayed_move_time = 0;
  3658. }
  3659. #else // !DUAL_X_CARRIAGE
  3660. // Offset extruder (only by XY)
  3661. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3662. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3663. // Set the new active extruder and position
  3664. active_extruder = tmp_extruder;
  3665. #endif // !DUAL_X_CARRIAGE
  3666. #ifdef DELTA
  3667. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3668. //sent position to plan_set_position();
  3669. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3670. #else
  3671. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3672. #endif
  3673. // Move to the old position if 'F' was in the parameters
  3674. if (make_move && !Stopped) prepare_move();
  3675. }
  3676. #ifdef EXT_SOLENOID
  3677. st_synchronize();
  3678. disable_all_solenoids();
  3679. enable_solenoid_on_active_extruder();
  3680. #endif // EXT_SOLENOID
  3681. #endif // EXTRUDERS > 1
  3682. SERIAL_ECHO_START;
  3683. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3684. SERIAL_PROTOCOLLN((int)active_extruder);
  3685. }
  3686. }
  3687. /**
  3688. * Process Commands and dispatch them to handlers
  3689. */
  3690. void process_commands() {
  3691. if (code_seen('G')) {
  3692. int gCode = code_value_long();
  3693. switch(gCode) {
  3694. // G0, G1
  3695. case 0:
  3696. case 1:
  3697. gcode_G0_G1();
  3698. break;
  3699. // G2, G3
  3700. #ifndef SCARA
  3701. case 2: // G2 - CW ARC
  3702. case 3: // G3 - CCW ARC
  3703. gcode_G2_G3(gCode == 2);
  3704. break;
  3705. #endif
  3706. // G4 Dwell
  3707. case 4:
  3708. gcode_G4();
  3709. break;
  3710. #ifdef FWRETRACT
  3711. case 10: // G10: retract
  3712. case 11: // G11: retract_recover
  3713. gcode_G10_G11(gCode == 10);
  3714. break;
  3715. #endif //FWRETRACT
  3716. case 28: // G28: Home all axes, one at a time
  3717. gcode_G28();
  3718. break;
  3719. #ifdef ENABLE_AUTO_BED_LEVELING
  3720. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3721. gcode_G29();
  3722. break;
  3723. #ifndef Z_PROBE_SLED
  3724. case 30: // G30 Single Z Probe
  3725. gcode_G30();
  3726. break;
  3727. #else // Z_PROBE_SLED
  3728. case 31: // G31: dock the sled
  3729. case 32: // G32: undock the sled
  3730. dock_sled(gCode == 31);
  3731. break;
  3732. #endif // Z_PROBE_SLED
  3733. #endif // ENABLE_AUTO_BED_LEVELING
  3734. case 90: // G90
  3735. relative_mode = false;
  3736. break;
  3737. case 91: // G91
  3738. relative_mode = true;
  3739. break;
  3740. case 92: // G92
  3741. gcode_G92();
  3742. break;
  3743. }
  3744. }
  3745. else if (code_seen('M')) {
  3746. switch( (int)code_value() ) {
  3747. #ifdef ULTIPANEL
  3748. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3749. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3750. gcode_M0_M1();
  3751. break;
  3752. #endif // ULTIPANEL
  3753. case 17:
  3754. gcode_M17();
  3755. break;
  3756. #ifdef SDSUPPORT
  3757. case 20: // M20 - list SD card
  3758. gcode_M20(); break;
  3759. case 21: // M21 - init SD card
  3760. gcode_M21(); break;
  3761. case 22: //M22 - release SD card
  3762. gcode_M22(); break;
  3763. case 23: //M23 - Select file
  3764. gcode_M23(); break;
  3765. case 24: //M24 - Start SD print
  3766. gcode_M24(); break;
  3767. case 25: //M25 - Pause SD print
  3768. gcode_M25(); break;
  3769. case 26: //M26 - Set SD index
  3770. gcode_M26(); break;
  3771. case 27: //M27 - Get SD status
  3772. gcode_M27(); break;
  3773. case 28: //M28 - Start SD write
  3774. gcode_M28(); break;
  3775. case 29: //M29 - Stop SD write
  3776. gcode_M29(); break;
  3777. case 30: //M30 <filename> Delete File
  3778. gcode_M30(); break;
  3779. case 32: //M32 - Select file and start SD print
  3780. gcode_M32(); break;
  3781. case 928: //M928 - Start SD write
  3782. gcode_M928(); break;
  3783. #endif //SDSUPPORT
  3784. case 31: //M31 take time since the start of the SD print or an M109 command
  3785. gcode_M31();
  3786. break;
  3787. case 42: //M42 -Change pin status via gcode
  3788. gcode_M42();
  3789. break;
  3790. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  3791. case 48: // M48 Z-Probe repeatability
  3792. gcode_M48();
  3793. break;
  3794. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  3795. case 104: // M104
  3796. gcode_M104();
  3797. break;
  3798. case 112: // M112 Emergency Stop
  3799. gcode_M112();
  3800. break;
  3801. case 140: // M140 Set bed temp
  3802. gcode_M140();
  3803. break;
  3804. case 105: // M105 Read current temperature
  3805. gcode_M105();
  3806. return;
  3807. break;
  3808. case 109: // M109 Wait for temperature
  3809. gcode_M109();
  3810. break;
  3811. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3812. case 190: // M190 - Wait for bed heater to reach target.
  3813. gcode_M190();
  3814. break;
  3815. #endif //TEMP_BED_PIN
  3816. #if defined(FAN_PIN) && FAN_PIN > -1
  3817. case 106: //M106 Fan On
  3818. gcode_M106();
  3819. break;
  3820. case 107: //M107 Fan Off
  3821. gcode_M107();
  3822. break;
  3823. #endif //FAN_PIN
  3824. #ifdef BARICUDA
  3825. // PWM for HEATER_1_PIN
  3826. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  3827. case 126: // M126 valve open
  3828. gcode_M126();
  3829. break;
  3830. case 127: // M127 valve closed
  3831. gcode_M127();
  3832. break;
  3833. #endif //HEATER_1_PIN
  3834. // PWM for HEATER_2_PIN
  3835. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  3836. case 128: // M128 valve open
  3837. gcode_M128();
  3838. break;
  3839. case 129: // M129 valve closed
  3840. gcode_M129();
  3841. break;
  3842. #endif //HEATER_2_PIN
  3843. #endif //BARICUDA
  3844. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3845. case 80: // M80 - Turn on Power Supply
  3846. gcode_M80();
  3847. break;
  3848. #endif // PS_ON_PIN
  3849. case 81: // M81 - Turn off Power Supply
  3850. gcode_M81();
  3851. break;
  3852. case 82:
  3853. gcode_M82();
  3854. break;
  3855. case 83:
  3856. gcode_M83();
  3857. break;
  3858. case 18: //compatibility
  3859. case 84: // M84
  3860. gcode_M18_M84();
  3861. break;
  3862. case 85: // M85
  3863. gcode_M85();
  3864. break;
  3865. case 92: // M92
  3866. gcode_M92();
  3867. break;
  3868. case 115: // M115
  3869. gcode_M115();
  3870. break;
  3871. case 117: // M117 display message
  3872. gcode_M117();
  3873. break;
  3874. case 114: // M114
  3875. gcode_M114();
  3876. break;
  3877. case 120: // M120
  3878. gcode_M120();
  3879. break;
  3880. case 121: // M121
  3881. gcode_M121();
  3882. break;
  3883. case 119: // M119
  3884. gcode_M119();
  3885. break;
  3886. //TODO: update for all axis, use for loop
  3887. #ifdef BLINKM
  3888. case 150: // M150
  3889. gcode_M150();
  3890. break;
  3891. #endif //BLINKM
  3892. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3893. gcode_M200();
  3894. break;
  3895. case 201: // M201
  3896. gcode_M201();
  3897. break;
  3898. #if 0 // Not used for Sprinter/grbl gen6
  3899. case 202: // M202
  3900. gcode_M202();
  3901. break;
  3902. #endif
  3903. case 203: // M203 max feedrate mm/sec
  3904. gcode_M203();
  3905. break;
  3906. case 204: // M204 acclereration S normal moves T filmanent only moves
  3907. gcode_M204();
  3908. break;
  3909. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3910. gcode_M205();
  3911. break;
  3912. case 206: // M206 additional homing offset
  3913. gcode_M206();
  3914. break;
  3915. #ifdef DELTA
  3916. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  3917. gcode_M665();
  3918. break;
  3919. case 666: // M666 set delta endstop adjustment
  3920. gcode_M666();
  3921. break;
  3922. #endif // DELTA
  3923. #ifdef FWRETRACT
  3924. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3925. gcode_M207();
  3926. break;
  3927. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3928. gcode_M208();
  3929. break;
  3930. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3931. gcode_M209();
  3932. break;
  3933. #endif // FWRETRACT
  3934. #if EXTRUDERS > 1
  3935. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3936. gcode_M218();
  3937. break;
  3938. #endif
  3939. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3940. gcode_M220();
  3941. break;
  3942. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3943. gcode_M221();
  3944. break;
  3945. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3946. gcode_M226();
  3947. break;
  3948. #if NUM_SERVOS > 0
  3949. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3950. gcode_M280();
  3951. break;
  3952. #endif // NUM_SERVOS > 0
  3953. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3954. case 300: // M300 - Play beep tone
  3955. gcode_M300();
  3956. break;
  3957. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3958. #ifdef PIDTEMP
  3959. case 301: // M301
  3960. gcode_M301();
  3961. break;
  3962. #endif // PIDTEMP
  3963. #ifdef PIDTEMPBED
  3964. case 304: // M304
  3965. gcode_M304();
  3966. break;
  3967. #endif // PIDTEMPBED
  3968. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3969. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3970. gcode_M240();
  3971. break;
  3972. #endif // CHDK || PHOTOGRAPH_PIN
  3973. #ifdef DOGLCD
  3974. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3975. gcode_M250();
  3976. break;
  3977. #endif // DOGLCD
  3978. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3979. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3980. gcode_M302();
  3981. break;
  3982. #endif // PREVENT_DANGEROUS_EXTRUDE
  3983. case 303: // M303 PID autotune
  3984. gcode_M303();
  3985. break;
  3986. #ifdef SCARA
  3987. case 360: // M360 SCARA Theta pos1
  3988. if (gcode_M360()) return;
  3989. break;
  3990. case 361: // M361 SCARA Theta pos2
  3991. if (gcode_M361()) return;
  3992. break;
  3993. case 362: // M362 SCARA Psi pos1
  3994. if (gcode_M362()) return;
  3995. break;
  3996. case 363: // M363 SCARA Psi pos2
  3997. if (gcode_M363()) return;
  3998. break;
  3999. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4000. if (gcode_M364()) return;
  4001. break;
  4002. case 365: // M365 Set SCARA scaling for X Y Z
  4003. gcode_M365();
  4004. break;
  4005. #endif // SCARA
  4006. case 400: // M400 finish all moves
  4007. gcode_M400();
  4008. break;
  4009. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  4010. case 401:
  4011. gcode_M401();
  4012. break;
  4013. case 402:
  4014. gcode_M402();
  4015. break;
  4016. #endif
  4017. #ifdef FILAMENT_SENSOR
  4018. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4019. gcode_M404();
  4020. break;
  4021. case 405: //M405 Turn on filament sensor for control
  4022. gcode_M405();
  4023. break;
  4024. case 406: //M406 Turn off filament sensor for control
  4025. gcode_M406();
  4026. break;
  4027. case 407: //M407 Display measured filament diameter
  4028. gcode_M407();
  4029. break;
  4030. #endif // FILAMENT_SENSOR
  4031. case 500: // M500 Store settings in EEPROM
  4032. gcode_M500();
  4033. break;
  4034. case 501: // M501 Read settings from EEPROM
  4035. gcode_M501();
  4036. break;
  4037. case 502: // M502 Revert to default settings
  4038. gcode_M502();
  4039. break;
  4040. case 503: // M503 print settings currently in memory
  4041. gcode_M503();
  4042. break;
  4043. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4044. case 540:
  4045. gcode_M540();
  4046. break;
  4047. #endif
  4048. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4049. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4050. gcode_SET_Z_PROBE_OFFSET();
  4051. break;
  4052. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4053. #ifdef FILAMENTCHANGEENABLE
  4054. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4055. gcode_M600();
  4056. break;
  4057. #endif // FILAMENTCHANGEENABLE
  4058. #ifdef DUAL_X_CARRIAGE
  4059. case 605:
  4060. gcode_M605();
  4061. break;
  4062. #endif // DUAL_X_CARRIAGE
  4063. case 907: // M907 Set digital trimpot motor current using axis codes.
  4064. gcode_M907();
  4065. break;
  4066. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4067. case 908: // M908 Control digital trimpot directly.
  4068. gcode_M908();
  4069. break;
  4070. #endif // DIGIPOTSS_PIN
  4071. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4072. gcode_M350();
  4073. break;
  4074. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4075. gcode_M351();
  4076. break;
  4077. case 999: // M999: Restart after being Stopped
  4078. gcode_M999();
  4079. break;
  4080. }
  4081. }
  4082. else if (code_seen('T')) {
  4083. gcode_T();
  4084. }
  4085. else {
  4086. SERIAL_ECHO_START;
  4087. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4088. SERIAL_ECHO(cmdbuffer[bufindr]);
  4089. SERIAL_ECHOLNPGM("\"");
  4090. }
  4091. ClearToSend();
  4092. }
  4093. void FlushSerialRequestResend()
  4094. {
  4095. //char cmdbuffer[bufindr][100]="Resend:";
  4096. MYSERIAL.flush();
  4097. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4098. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4099. ClearToSend();
  4100. }
  4101. void ClearToSend()
  4102. {
  4103. previous_millis_cmd = millis();
  4104. #ifdef SDSUPPORT
  4105. if(fromsd[bufindr])
  4106. return;
  4107. #endif //SDSUPPORT
  4108. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4109. }
  4110. void get_coordinates()
  4111. {
  4112. bool seen[4]={false,false,false,false};
  4113. for(int8_t i=0; i < NUM_AXIS; i++) {
  4114. if(code_seen(axis_codes[i]))
  4115. {
  4116. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4117. seen[i]=true;
  4118. }
  4119. else destination[i] = current_position[i]; //Are these else lines really needed?
  4120. }
  4121. if(code_seen('F')) {
  4122. next_feedrate = code_value();
  4123. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4124. }
  4125. }
  4126. void get_arc_coordinates()
  4127. {
  4128. #ifdef SF_ARC_FIX
  4129. bool relative_mode_backup = relative_mode;
  4130. relative_mode = true;
  4131. #endif
  4132. get_coordinates();
  4133. #ifdef SF_ARC_FIX
  4134. relative_mode=relative_mode_backup;
  4135. #endif
  4136. if(code_seen('I')) {
  4137. offset[0] = code_value();
  4138. }
  4139. else {
  4140. offset[0] = 0.0;
  4141. }
  4142. if(code_seen('J')) {
  4143. offset[1] = code_value();
  4144. }
  4145. else {
  4146. offset[1] = 0.0;
  4147. }
  4148. }
  4149. void clamp_to_software_endstops(float target[3])
  4150. {
  4151. if (min_software_endstops) {
  4152. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4153. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4154. float negative_z_offset = 0;
  4155. #ifdef ENABLE_AUTO_BED_LEVELING
  4156. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4157. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4158. #endif
  4159. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4160. }
  4161. if (max_software_endstops) {
  4162. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4163. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4164. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4165. }
  4166. }
  4167. #ifdef DELTA
  4168. void recalc_delta_settings(float radius, float diagonal_rod)
  4169. {
  4170. delta_tower1_x= -SIN_60*radius; // front left tower
  4171. delta_tower1_y= -COS_60*radius;
  4172. delta_tower2_x= SIN_60*radius; // front right tower
  4173. delta_tower2_y= -COS_60*radius;
  4174. delta_tower3_x= 0.0; // back middle tower
  4175. delta_tower3_y= radius;
  4176. delta_diagonal_rod_2= sq(diagonal_rod);
  4177. }
  4178. void calculate_delta(float cartesian[3])
  4179. {
  4180. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4181. - sq(delta_tower1_x-cartesian[X_AXIS])
  4182. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4183. ) + cartesian[Z_AXIS];
  4184. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4185. - sq(delta_tower2_x-cartesian[X_AXIS])
  4186. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4187. ) + cartesian[Z_AXIS];
  4188. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4189. - sq(delta_tower3_x-cartesian[X_AXIS])
  4190. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4191. ) + cartesian[Z_AXIS];
  4192. /*
  4193. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4194. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4195. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4196. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4197. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4198. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4199. */
  4200. }
  4201. #endif
  4202. void prepare_move()
  4203. {
  4204. clamp_to_software_endstops(destination);
  4205. previous_millis_cmd = millis();
  4206. #ifdef SCARA //for now same as delta-code
  4207. float difference[NUM_AXIS];
  4208. for (int8_t i=0; i < NUM_AXIS; i++) {
  4209. difference[i] = destination[i] - current_position[i];
  4210. }
  4211. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4212. sq(difference[Y_AXIS]) +
  4213. sq(difference[Z_AXIS]));
  4214. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4215. if (cartesian_mm < 0.000001) { return; }
  4216. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4217. int steps = max(1, int(scara_segments_per_second * seconds));
  4218. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4219. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4220. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4221. for (int s = 1; s <= steps; s++) {
  4222. float fraction = float(s) / float(steps);
  4223. for(int8_t i=0; i < NUM_AXIS; i++) {
  4224. destination[i] = current_position[i] + difference[i] * fraction;
  4225. }
  4226. calculate_delta(destination);
  4227. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4228. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4229. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4230. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4231. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4232. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4233. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4234. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4235. active_extruder);
  4236. }
  4237. #endif // SCARA
  4238. #ifdef DELTA
  4239. float difference[NUM_AXIS];
  4240. for (int8_t i=0; i < NUM_AXIS; i++) {
  4241. difference[i] = destination[i] - current_position[i];
  4242. }
  4243. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4244. sq(difference[Y_AXIS]) +
  4245. sq(difference[Z_AXIS]));
  4246. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4247. if (cartesian_mm < 0.000001) { return; }
  4248. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4249. int steps = max(1, int(delta_segments_per_second * seconds));
  4250. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4251. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4252. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4253. for (int s = 1; s <= steps; s++) {
  4254. float fraction = float(s) / float(steps);
  4255. for(int8_t i=0; i < NUM_AXIS; i++) {
  4256. destination[i] = current_position[i] + difference[i] * fraction;
  4257. }
  4258. calculate_delta(destination);
  4259. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4260. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4261. active_extruder);
  4262. }
  4263. #endif // DELTA
  4264. #ifdef DUAL_X_CARRIAGE
  4265. if (active_extruder_parked)
  4266. {
  4267. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4268. {
  4269. // move duplicate extruder into correct duplication position.
  4270. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4271. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4272. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4273. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4274. st_synchronize();
  4275. extruder_duplication_enabled = true;
  4276. active_extruder_parked = false;
  4277. }
  4278. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4279. {
  4280. if (current_position[E_AXIS] == destination[E_AXIS])
  4281. {
  4282. // this is a travel move - skit it but keep track of current position (so that it can later
  4283. // be used as start of first non-travel move)
  4284. if (delayed_move_time != 0xFFFFFFFFUL)
  4285. {
  4286. memcpy(current_position, destination, sizeof(current_position));
  4287. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4288. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4289. delayed_move_time = millis();
  4290. return;
  4291. }
  4292. }
  4293. delayed_move_time = 0;
  4294. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4295. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4296. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4297. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4298. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4299. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4300. active_extruder_parked = false;
  4301. }
  4302. }
  4303. #endif //DUAL_X_CARRIAGE
  4304. #if ! (defined DELTA || defined SCARA)
  4305. // Do not use feedmultiply for E or Z only moves
  4306. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4307. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4308. }
  4309. else {
  4310. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4311. }
  4312. #endif // !(DELTA || SCARA)
  4313. for(int8_t i=0; i < NUM_AXIS; i++) {
  4314. current_position[i] = destination[i];
  4315. }
  4316. }
  4317. void prepare_arc_move(char isclockwise) {
  4318. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4319. // Trace the arc
  4320. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4321. // As far as the parser is concerned, the position is now == target. In reality the
  4322. // motion control system might still be processing the action and the real tool position
  4323. // in any intermediate location.
  4324. for(int8_t i=0; i < NUM_AXIS; i++) {
  4325. current_position[i] = destination[i];
  4326. }
  4327. previous_millis_cmd = millis();
  4328. }
  4329. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4330. #if defined(FAN_PIN)
  4331. #if CONTROLLERFAN_PIN == FAN_PIN
  4332. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4333. #endif
  4334. #endif
  4335. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4336. unsigned long lastMotorCheck = 0;
  4337. void controllerFan()
  4338. {
  4339. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4340. {
  4341. lastMotorCheck = millis();
  4342. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4343. #if EXTRUDERS > 2
  4344. || !READ(E2_ENABLE_PIN)
  4345. #endif
  4346. #if EXTRUDER > 1
  4347. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4348. || !READ(X2_ENABLE_PIN)
  4349. #endif
  4350. || !READ(E1_ENABLE_PIN)
  4351. #endif
  4352. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4353. {
  4354. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4355. }
  4356. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4357. {
  4358. digitalWrite(CONTROLLERFAN_PIN, 0);
  4359. analogWrite(CONTROLLERFAN_PIN, 0);
  4360. }
  4361. else
  4362. {
  4363. // allows digital or PWM fan output to be used (see M42 handling)
  4364. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4365. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4366. }
  4367. }
  4368. }
  4369. #endif
  4370. #ifdef SCARA
  4371. void calculate_SCARA_forward_Transform(float f_scara[3])
  4372. {
  4373. // Perform forward kinematics, and place results in delta[3]
  4374. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4375. float x_sin, x_cos, y_sin, y_cos;
  4376. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4377. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4378. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4379. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4380. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4381. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4382. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4383. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4384. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4385. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4386. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4387. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4388. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4389. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4390. }
  4391. void calculate_delta(float cartesian[3]){
  4392. //reverse kinematics.
  4393. // Perform reversed kinematics, and place results in delta[3]
  4394. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4395. float SCARA_pos[2];
  4396. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4397. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4398. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4399. #if (Linkage_1 == Linkage_2)
  4400. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4401. #else
  4402. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4403. #endif
  4404. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4405. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4406. SCARA_K2 = Linkage_2 * SCARA_S2;
  4407. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4408. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4409. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4410. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4411. delta[Z_AXIS] = cartesian[Z_AXIS];
  4412. /*
  4413. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4414. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4415. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4416. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4417. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4418. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4419. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4420. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4421. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4422. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4423. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4424. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4425. SERIAL_ECHOLN(" ");*/
  4426. }
  4427. #endif
  4428. #ifdef TEMP_STAT_LEDS
  4429. static bool blue_led = false;
  4430. static bool red_led = false;
  4431. static uint32_t stat_update = 0;
  4432. void handle_status_leds(void) {
  4433. float max_temp = 0.0;
  4434. if(millis() > stat_update) {
  4435. stat_update += 500; // Update every 0.5s
  4436. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4437. max_temp = max(max_temp, degHotend(cur_extruder));
  4438. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4439. }
  4440. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4441. max_temp = max(max_temp, degTargetBed());
  4442. max_temp = max(max_temp, degBed());
  4443. #endif
  4444. if((max_temp > 55.0) && (red_led == false)) {
  4445. digitalWrite(STAT_LED_RED, 1);
  4446. digitalWrite(STAT_LED_BLUE, 0);
  4447. red_led = true;
  4448. blue_led = false;
  4449. }
  4450. if((max_temp < 54.0) && (blue_led == false)) {
  4451. digitalWrite(STAT_LED_RED, 0);
  4452. digitalWrite(STAT_LED_BLUE, 1);
  4453. red_led = false;
  4454. blue_led = true;
  4455. }
  4456. }
  4457. }
  4458. #endif
  4459. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4460. {
  4461. #if defined(KILL_PIN) && KILL_PIN > -1
  4462. static int killCount = 0; // make the inactivity button a bit less responsive
  4463. const int KILL_DELAY = 10000;
  4464. #endif
  4465. #if defined(HOME_PIN) && HOME_PIN > -1
  4466. static int homeDebounceCount = 0; // poor man's debouncing count
  4467. const int HOME_DEBOUNCE_DELAY = 10000;
  4468. #endif
  4469. if(buflen < (BUFSIZE-1))
  4470. get_command();
  4471. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4472. if(max_inactive_time)
  4473. kill();
  4474. if(stepper_inactive_time) {
  4475. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4476. {
  4477. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4478. disable_x();
  4479. disable_y();
  4480. disable_z();
  4481. disable_e0();
  4482. disable_e1();
  4483. disable_e2();
  4484. disable_e3();
  4485. }
  4486. }
  4487. }
  4488. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4489. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4490. {
  4491. chdkActive = false;
  4492. WRITE(CHDK, LOW);
  4493. }
  4494. #endif
  4495. #if defined(KILL_PIN) && KILL_PIN > -1
  4496. // Check if the kill button was pressed and wait just in case it was an accidental
  4497. // key kill key press
  4498. // -------------------------------------------------------------------------------
  4499. if( 0 == READ(KILL_PIN) )
  4500. {
  4501. killCount++;
  4502. }
  4503. else if (killCount > 0)
  4504. {
  4505. killCount--;
  4506. }
  4507. // Exceeded threshold and we can confirm that it was not accidental
  4508. // KILL the machine
  4509. // ----------------------------------------------------------------
  4510. if ( killCount >= KILL_DELAY)
  4511. {
  4512. kill();
  4513. }
  4514. #endif
  4515. #if defined(HOME_PIN) && HOME_PIN > -1
  4516. // Check to see if we have to home, use poor man's debouncer
  4517. // ---------------------------------------------------------
  4518. if ( 0 == READ(HOME_PIN) )
  4519. {
  4520. if (homeDebounceCount == 0)
  4521. {
  4522. enquecommands_P((PSTR("G28")));
  4523. homeDebounceCount++;
  4524. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4525. }
  4526. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4527. {
  4528. homeDebounceCount++;
  4529. }
  4530. else
  4531. {
  4532. homeDebounceCount = 0;
  4533. }
  4534. }
  4535. #endif
  4536. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4537. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4538. #endif
  4539. #ifdef EXTRUDER_RUNOUT_PREVENT
  4540. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4541. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4542. {
  4543. bool oldstatus=READ(E0_ENABLE_PIN);
  4544. enable_e0();
  4545. float oldepos=current_position[E_AXIS];
  4546. float oldedes=destination[E_AXIS];
  4547. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4548. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4549. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4550. current_position[E_AXIS]=oldepos;
  4551. destination[E_AXIS]=oldedes;
  4552. plan_set_e_position(oldepos);
  4553. previous_millis_cmd=millis();
  4554. st_synchronize();
  4555. WRITE(E0_ENABLE_PIN,oldstatus);
  4556. }
  4557. #endif
  4558. #if defined(DUAL_X_CARRIAGE)
  4559. // handle delayed move timeout
  4560. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4561. {
  4562. // travel moves have been received so enact them
  4563. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4564. memcpy(destination,current_position,sizeof(destination));
  4565. prepare_move();
  4566. }
  4567. #endif
  4568. #ifdef TEMP_STAT_LEDS
  4569. handle_status_leds();
  4570. #endif
  4571. check_axes_activity();
  4572. }
  4573. void kill()
  4574. {
  4575. cli(); // Stop interrupts
  4576. disable_heater();
  4577. disable_x();
  4578. disable_y();
  4579. disable_z();
  4580. disable_e0();
  4581. disable_e1();
  4582. disable_e2();
  4583. disable_e3();
  4584. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4585. pinMode(PS_ON_PIN,INPUT);
  4586. #endif
  4587. SERIAL_ERROR_START;
  4588. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4589. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4590. // FMC small patch to update the LCD before ending
  4591. sei(); // enable interrupts
  4592. for ( int i=5; i--; lcd_update())
  4593. {
  4594. delay(200);
  4595. }
  4596. cli(); // disable interrupts
  4597. suicide();
  4598. while(1) { /* Intentionally left empty */ } // Wait for reset
  4599. }
  4600. void Stop()
  4601. {
  4602. disable_heater();
  4603. if(Stopped == false) {
  4604. Stopped = true;
  4605. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4606. SERIAL_ERROR_START;
  4607. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4608. LCD_MESSAGEPGM(MSG_STOPPED);
  4609. }
  4610. }
  4611. bool IsStopped() { return Stopped; };
  4612. #ifdef FAST_PWM_FAN
  4613. void setPwmFrequency(uint8_t pin, int val)
  4614. {
  4615. val &= 0x07;
  4616. switch(digitalPinToTimer(pin))
  4617. {
  4618. #if defined(TCCR0A)
  4619. case TIMER0A:
  4620. case TIMER0B:
  4621. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4622. // TCCR0B |= val;
  4623. break;
  4624. #endif
  4625. #if defined(TCCR1A)
  4626. case TIMER1A:
  4627. case TIMER1B:
  4628. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4629. // TCCR1B |= val;
  4630. break;
  4631. #endif
  4632. #if defined(TCCR2)
  4633. case TIMER2:
  4634. case TIMER2:
  4635. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4636. TCCR2 |= val;
  4637. break;
  4638. #endif
  4639. #if defined(TCCR2A)
  4640. case TIMER2A:
  4641. case TIMER2B:
  4642. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4643. TCCR2B |= val;
  4644. break;
  4645. #endif
  4646. #if defined(TCCR3A)
  4647. case TIMER3A:
  4648. case TIMER3B:
  4649. case TIMER3C:
  4650. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4651. TCCR3B |= val;
  4652. break;
  4653. #endif
  4654. #if defined(TCCR4A)
  4655. case TIMER4A:
  4656. case TIMER4B:
  4657. case TIMER4C:
  4658. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4659. TCCR4B |= val;
  4660. break;
  4661. #endif
  4662. #if defined(TCCR5A)
  4663. case TIMER5A:
  4664. case TIMER5B:
  4665. case TIMER5C:
  4666. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4667. TCCR5B |= val;
  4668. break;
  4669. #endif
  4670. }
  4671. }
  4672. #endif //FAST_PWM_FAN
  4673. bool setTargetedHotend(int code){
  4674. tmp_extruder = active_extruder;
  4675. if(code_seen('T')) {
  4676. tmp_extruder = code_value();
  4677. if(tmp_extruder >= EXTRUDERS) {
  4678. SERIAL_ECHO_START;
  4679. switch(code){
  4680. case 104:
  4681. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4682. break;
  4683. case 105:
  4684. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4685. break;
  4686. case 109:
  4687. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4688. break;
  4689. case 218:
  4690. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4691. break;
  4692. case 221:
  4693. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4694. break;
  4695. }
  4696. SERIAL_ECHOLN(tmp_extruder);
  4697. return true;
  4698. }
  4699. }
  4700. return false;
  4701. }
  4702. float calculate_volumetric_multiplier(float diameter) {
  4703. if (!volumetric_enabled || diameter == 0) return 1.0;
  4704. float d2 = diameter * 0.5;
  4705. return 1.0 / (M_PI * d2 * d2);
  4706. }
  4707. void calculate_volumetric_multipliers() {
  4708. for (int i=0; i<EXTRUDERS; i++)
  4709. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  4710. }