My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 119KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to coordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores parameters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from EEPROM)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M665 - set delta configurations
  149. // M666 - set delta endstop adjustment
  150. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  151. // M907 - Set digital trimpot motor current using axis codes.
  152. // M908 - Control digital trimpot directly.
  153. // M350 - Set microstepping mode.
  154. // M351 - Toggle MS1 MS2 pins directly.
  155. // M928 - Start SD logging (M928 filename.g) - ended by M29
  156. // M999 - Restart after being stopped by error
  157. //Stepper Movement Variables
  158. //===========================================================================
  159. //=============================imported variables============================
  160. //===========================================================================
  161. //===========================================================================
  162. //=============================public variables=============================
  163. //===========================================================================
  164. #ifdef SDSUPPORT
  165. CardReader card;
  166. #endif
  167. float homing_feedrate[] = HOMING_FEEDRATE;
  168. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  169. int feedmultiply=100; //100->1 200->2
  170. int saved_feedmultiply;
  171. int extrudemultiply=100; //100->1 200->2
  172. float volumetric_multiplier[EXTRUDERS] = {1.0
  173. #if EXTRUDERS > 1
  174. , 1.0
  175. #if EXTRUDERS > 2
  176. , 1.0
  177. #endif
  178. #endif
  179. };
  180. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  181. float add_homeing[3]={0,0,0};
  182. #ifdef DELTA
  183. float endstop_adj[3]={0,0,0};
  184. #endif
  185. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  186. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  187. bool axis_known_position[3] = {false, false, false};
  188. float zprobe_zoffset;
  189. // Extruder offset
  190. #if EXTRUDERS > 1
  191. #ifndef DUAL_X_CARRIAGE
  192. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  193. #else
  194. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  195. #endif
  196. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  197. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  198. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  199. #endif
  200. };
  201. #endif
  202. uint8_t active_extruder = 0;
  203. int fanSpeed=0;
  204. #ifdef SERVO_ENDSTOPS
  205. int servo_endstops[] = SERVO_ENDSTOPS;
  206. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  207. #endif
  208. #ifdef BARICUDA
  209. int ValvePressure=0;
  210. int EtoPPressure=0;
  211. #endif
  212. #ifdef FWRETRACT
  213. bool autoretract_enabled=false;
  214. bool retracted=false;
  215. float retract_length = RETRACT_LENGTH;
  216. float retract_feedrate = RETRACT_FEEDRATE;
  217. float retract_zlift = RETRACT_ZLIFT;
  218. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  219. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  220. #endif
  221. #ifdef ULTIPANEL
  222. #ifdef PS_DEFAULT_OFF
  223. bool powersupply = false;
  224. #else
  225. bool powersupply = true;
  226. #endif
  227. #endif
  228. #ifdef DELTA
  229. float delta[3] = {0.0, 0.0, 0.0};
  230. #define SIN_60 0.8660254037844386
  231. #define COS_60 0.5
  232. // these are the default values, can be overriden with M665
  233. float delta_radius= DELTA_RADIUS;
  234. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  235. float delta_tower1_y= -COS_60*delta_radius;
  236. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  237. float delta_tower2_y= -COS_60*delta_radius;
  238. float delta_tower3_x= 0.0; // back middle tower
  239. float delta_tower3_y= delta_radius;
  240. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  241. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  242. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  243. #endif
  244. //===========================================================================
  245. //=============================Private Variables=============================
  246. //===========================================================================
  247. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  248. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  249. static float offset[3] = {0.0, 0.0, 0.0};
  250. static bool home_all_axis = true;
  251. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  252. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  253. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  254. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  255. static bool fromsd[BUFSIZE];
  256. static int bufindr = 0;
  257. static int bufindw = 0;
  258. static int buflen = 0;
  259. //static int i = 0;
  260. static char serial_char;
  261. static int serial_count = 0;
  262. static boolean comment_mode = false;
  263. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  264. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  265. //static float tt = 0;
  266. //static float bt = 0;
  267. //Inactivity shutdown variables
  268. static unsigned long previous_millis_cmd = 0;
  269. static unsigned long max_inactive_time = 0;
  270. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  271. unsigned long starttime=0;
  272. unsigned long stoptime=0;
  273. static uint8_t tmp_extruder;
  274. bool Stopped=false;
  275. #if NUM_SERVOS > 0
  276. Servo servos[NUM_SERVOS];
  277. #endif
  278. bool CooldownNoWait = true;
  279. bool target_direction;
  280. //===========================================================================
  281. //=============================Routines======================================
  282. //===========================================================================
  283. void get_arc_coordinates();
  284. bool setTargetedHotend(int code);
  285. void serial_echopair_P(const char *s_P, float v)
  286. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  287. void serial_echopair_P(const char *s_P, double v)
  288. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  289. void serial_echopair_P(const char *s_P, unsigned long v)
  290. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  291. extern "C"{
  292. extern unsigned int __bss_end;
  293. extern unsigned int __heap_start;
  294. extern void *__brkval;
  295. int freeMemory() {
  296. int free_memory;
  297. if((int)__brkval == 0)
  298. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  299. else
  300. free_memory = ((int)&free_memory) - ((int)__brkval);
  301. return free_memory;
  302. }
  303. }
  304. //adds an command to the main command buffer
  305. //thats really done in a non-safe way.
  306. //needs overworking someday
  307. void enquecommand(const char *cmd)
  308. {
  309. if(buflen < BUFSIZE)
  310. {
  311. //this is dangerous if a mixing of serial and this happens
  312. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  313. SERIAL_ECHO_START;
  314. SERIAL_ECHOPGM("enqueing \"");
  315. SERIAL_ECHO(cmdbuffer[bufindw]);
  316. SERIAL_ECHOLNPGM("\"");
  317. bufindw= (bufindw + 1)%BUFSIZE;
  318. buflen += 1;
  319. }
  320. }
  321. void enquecommand_P(const char *cmd)
  322. {
  323. if(buflen < BUFSIZE)
  324. {
  325. //this is dangerous if a mixing of serial and this happens
  326. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  327. SERIAL_ECHO_START;
  328. SERIAL_ECHOPGM("enqueing \"");
  329. SERIAL_ECHO(cmdbuffer[bufindw]);
  330. SERIAL_ECHOLNPGM("\"");
  331. bufindw= (bufindw + 1)%BUFSIZE;
  332. buflen += 1;
  333. }
  334. }
  335. void setup_killpin()
  336. {
  337. #if defined(KILL_PIN) && KILL_PIN > -1
  338. pinMode(KILL_PIN,INPUT);
  339. WRITE(KILL_PIN,HIGH);
  340. #endif
  341. }
  342. void setup_photpin()
  343. {
  344. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  345. SET_OUTPUT(PHOTOGRAPH_PIN);
  346. WRITE(PHOTOGRAPH_PIN, LOW);
  347. #endif
  348. }
  349. void setup_powerhold()
  350. {
  351. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  352. SET_OUTPUT(SUICIDE_PIN);
  353. WRITE(SUICIDE_PIN, HIGH);
  354. #endif
  355. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  356. SET_OUTPUT(PS_ON_PIN);
  357. #if defined(PS_DEFAULT_OFF)
  358. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  359. #else
  360. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  361. #endif
  362. #endif
  363. }
  364. void suicide()
  365. {
  366. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  367. SET_OUTPUT(SUICIDE_PIN);
  368. WRITE(SUICIDE_PIN, LOW);
  369. #endif
  370. }
  371. void servo_init()
  372. {
  373. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  374. servos[0].attach(SERVO0_PIN);
  375. #endif
  376. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  377. servos[1].attach(SERVO1_PIN);
  378. #endif
  379. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  380. servos[2].attach(SERVO2_PIN);
  381. #endif
  382. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  383. servos[3].attach(SERVO3_PIN);
  384. #endif
  385. #if (NUM_SERVOS >= 5)
  386. #error "TODO: enter initalisation code for more servos"
  387. #endif
  388. // Set position of Servo Endstops that are defined
  389. #ifdef SERVO_ENDSTOPS
  390. for(int8_t i = 0; i < 3; i++)
  391. {
  392. if(servo_endstops[i] > -1) {
  393. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  394. }
  395. }
  396. #endif
  397. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  398. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  399. servos[servo_endstops[Z_AXIS]].detach();
  400. #endif
  401. }
  402. void setup()
  403. {
  404. setup_killpin();
  405. setup_powerhold();
  406. MYSERIAL.begin(BAUDRATE);
  407. SERIAL_PROTOCOLLNPGM("start");
  408. SERIAL_ECHO_START;
  409. // Check startup - does nothing if bootloader sets MCUSR to 0
  410. byte mcu = MCUSR;
  411. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  412. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  413. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  414. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  415. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  416. MCUSR=0;
  417. SERIAL_ECHOPGM(MSG_MARLIN);
  418. SERIAL_ECHOLNPGM(VERSION_STRING);
  419. #ifdef STRING_VERSION_CONFIG_H
  420. #ifdef STRING_CONFIG_H_AUTHOR
  421. SERIAL_ECHO_START;
  422. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  423. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  424. SERIAL_ECHOPGM(MSG_AUTHOR);
  425. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  426. SERIAL_ECHOPGM("Compiled: ");
  427. SERIAL_ECHOLNPGM(__DATE__);
  428. #endif
  429. #endif
  430. SERIAL_ECHO_START;
  431. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  432. SERIAL_ECHO(freeMemory());
  433. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  434. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  435. for(int8_t i = 0; i < BUFSIZE; i++)
  436. {
  437. fromsd[i] = false;
  438. }
  439. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  440. Config_RetrieveSettings();
  441. tp_init(); // Initialize temperature loop
  442. plan_init(); // Initialize planner;
  443. watchdog_init();
  444. st_init(); // Initialize stepper, this enables interrupts!
  445. setup_photpin();
  446. servo_init();
  447. lcd_init();
  448. _delay_ms(1000); // wait 1sec to display the splash screen
  449. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  450. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  451. #endif
  452. #ifdef DIGIPOT_I2C
  453. digipot_i2c_init();
  454. #endif
  455. }
  456. void loop()
  457. {
  458. if(buflen < (BUFSIZE-1))
  459. get_command();
  460. #ifdef SDSUPPORT
  461. card.checkautostart(false);
  462. #endif
  463. if(buflen)
  464. {
  465. #ifdef SDSUPPORT
  466. if(card.saving)
  467. {
  468. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  469. {
  470. card.write_command(cmdbuffer[bufindr]);
  471. if(card.logging)
  472. {
  473. process_commands();
  474. }
  475. else
  476. {
  477. SERIAL_PROTOCOLLNPGM(MSG_OK);
  478. }
  479. }
  480. else
  481. {
  482. card.closefile();
  483. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  484. }
  485. }
  486. else
  487. {
  488. process_commands();
  489. }
  490. #else
  491. process_commands();
  492. #endif //SDSUPPORT
  493. buflen = (buflen-1);
  494. bufindr = (bufindr + 1)%BUFSIZE;
  495. }
  496. //check heater every n milliseconds
  497. manage_heater();
  498. manage_inactivity();
  499. checkHitEndstops();
  500. lcd_update();
  501. }
  502. void get_command()
  503. {
  504. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  505. serial_char = MYSERIAL.read();
  506. if(serial_char == '\n' ||
  507. serial_char == '\r' ||
  508. (serial_char == ':' && comment_mode == false) ||
  509. serial_count >= (MAX_CMD_SIZE - 1) )
  510. {
  511. if(!serial_count) { //if empty line
  512. comment_mode = false; //for new command
  513. return;
  514. }
  515. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  516. if(!comment_mode){
  517. comment_mode = false; //for new command
  518. fromsd[bufindw] = false;
  519. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  520. {
  521. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  522. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  523. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  524. SERIAL_ERROR_START;
  525. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  526. SERIAL_ERRORLN(gcode_LastN);
  527. //Serial.println(gcode_N);
  528. FlushSerialRequestResend();
  529. serial_count = 0;
  530. return;
  531. }
  532. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  533. {
  534. byte checksum = 0;
  535. byte count = 0;
  536. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  537. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  538. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  539. SERIAL_ERROR_START;
  540. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  541. SERIAL_ERRORLN(gcode_LastN);
  542. FlushSerialRequestResend();
  543. serial_count = 0;
  544. return;
  545. }
  546. //if no errors, continue parsing
  547. }
  548. else
  549. {
  550. SERIAL_ERROR_START;
  551. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  552. SERIAL_ERRORLN(gcode_LastN);
  553. FlushSerialRequestResend();
  554. serial_count = 0;
  555. return;
  556. }
  557. gcode_LastN = gcode_N;
  558. //if no errors, continue parsing
  559. }
  560. else // if we don't receive 'N' but still see '*'
  561. {
  562. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  563. {
  564. SERIAL_ERROR_START;
  565. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  566. SERIAL_ERRORLN(gcode_LastN);
  567. serial_count = 0;
  568. return;
  569. }
  570. }
  571. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  572. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  573. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  574. case 0:
  575. case 1:
  576. case 2:
  577. case 3:
  578. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  579. #ifdef SDSUPPORT
  580. if(card.saving)
  581. break;
  582. #endif //SDSUPPORT
  583. SERIAL_PROTOCOLLNPGM(MSG_OK);
  584. }
  585. else {
  586. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  587. LCD_MESSAGEPGM(MSG_STOPPED);
  588. }
  589. break;
  590. default:
  591. break;
  592. }
  593. }
  594. bufindw = (bufindw + 1)%BUFSIZE;
  595. buflen += 1;
  596. }
  597. serial_count = 0; //clear buffer
  598. }
  599. else
  600. {
  601. if(serial_char == ';') comment_mode = true;
  602. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  603. }
  604. }
  605. #ifdef SDSUPPORT
  606. if(!card.sdprinting || serial_count!=0){
  607. return;
  608. }
  609. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  610. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  611. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  612. static bool stop_buffering=false;
  613. if(buflen==0) stop_buffering=false;
  614. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  615. int16_t n=card.get();
  616. serial_char = (char)n;
  617. if(serial_char == '\n' ||
  618. serial_char == '\r' ||
  619. (serial_char == '#' && comment_mode == false) ||
  620. (serial_char == ':' && comment_mode == false) ||
  621. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  622. {
  623. if(card.eof()){
  624. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  625. stoptime=millis();
  626. char time[30];
  627. unsigned long t=(stoptime-starttime)/1000;
  628. int hours, minutes;
  629. minutes=(t/60)%60;
  630. hours=t/60/60;
  631. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  632. SERIAL_ECHO_START;
  633. SERIAL_ECHOLN(time);
  634. lcd_setstatus(time);
  635. card.printingHasFinished();
  636. card.checkautostart(true);
  637. }
  638. if(serial_char=='#')
  639. stop_buffering=true;
  640. if(!serial_count)
  641. {
  642. comment_mode = false; //for new command
  643. return; //if empty line
  644. }
  645. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  646. // if(!comment_mode){
  647. fromsd[bufindw] = true;
  648. buflen += 1;
  649. bufindw = (bufindw + 1)%BUFSIZE;
  650. // }
  651. comment_mode = false; //for new command
  652. serial_count = 0; //clear buffer
  653. }
  654. else
  655. {
  656. if(serial_char == ';') comment_mode = true;
  657. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  658. }
  659. }
  660. #endif //SDSUPPORT
  661. }
  662. float code_value()
  663. {
  664. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  665. }
  666. long code_value_long()
  667. {
  668. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  669. }
  670. bool code_seen(char code)
  671. {
  672. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  673. return (strchr_pointer != NULL); //Return True if a character was found
  674. }
  675. #define DEFINE_PGM_READ_ANY(type, reader) \
  676. static inline type pgm_read_any(const type *p) \
  677. { return pgm_read_##reader##_near(p); }
  678. DEFINE_PGM_READ_ANY(float, float);
  679. DEFINE_PGM_READ_ANY(signed char, byte);
  680. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  681. static const PROGMEM type array##_P[3] = \
  682. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  683. static inline type array(int axis) \
  684. { return pgm_read_any(&array##_P[axis]); }
  685. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  686. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  687. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  688. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  689. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  690. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  691. #ifdef DUAL_X_CARRIAGE
  692. #if EXTRUDERS == 1 || defined(COREXY) \
  693. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  694. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  695. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  696. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  697. #endif
  698. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  699. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  700. #endif
  701. #define DXC_FULL_CONTROL_MODE 0
  702. #define DXC_AUTO_PARK_MODE 1
  703. #define DXC_DUPLICATION_MODE 2
  704. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  705. static float x_home_pos(int extruder) {
  706. if (extruder == 0)
  707. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  708. else
  709. // In dual carriage mode the extruder offset provides an override of the
  710. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  711. // This allow soft recalibration of the second extruder offset position without firmware reflash
  712. // (through the M218 command).
  713. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  714. }
  715. static int x_home_dir(int extruder) {
  716. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  717. }
  718. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  719. static bool active_extruder_parked = false; // used in mode 1 & 2
  720. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  721. static unsigned long delayed_move_time = 0; // used in mode 1
  722. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  723. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  724. bool extruder_duplication_enabled = false; // used in mode 2
  725. #endif //DUAL_X_CARRIAGE
  726. static void axis_is_at_home(int axis) {
  727. #ifdef DUAL_X_CARRIAGE
  728. if (axis == X_AXIS) {
  729. if (active_extruder != 0) {
  730. current_position[X_AXIS] = x_home_pos(active_extruder);
  731. min_pos[X_AXIS] = X2_MIN_POS;
  732. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  733. return;
  734. }
  735. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  736. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  737. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  738. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  739. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  740. return;
  741. }
  742. }
  743. #endif
  744. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  745. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  746. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  747. }
  748. #ifdef ENABLE_AUTO_BED_LEVELING
  749. #ifdef AUTO_BED_LEVELING_GRID
  750. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  751. {
  752. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  753. planeNormal.debug("planeNormal");
  754. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  755. //bedLevel.debug("bedLevel");
  756. //plan_bed_level_matrix.debug("bed level before");
  757. //vector_3 uncorrected_position = plan_get_position_mm();
  758. //uncorrected_position.debug("position before");
  759. vector_3 corrected_position = plan_get_position();
  760. // corrected_position.debug("position after");
  761. current_position[X_AXIS] = corrected_position.x;
  762. current_position[Y_AXIS] = corrected_position.y;
  763. current_position[Z_AXIS] = corrected_position.z;
  764. // but the bed at 0 so we don't go below it.
  765. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  766. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  767. }
  768. #else // not AUTO_BED_LEVELING_GRID
  769. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  770. plan_bed_level_matrix.set_to_identity();
  771. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  772. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  773. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  774. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  775. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  776. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  777. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  778. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  779. vector_3 corrected_position = plan_get_position();
  780. current_position[X_AXIS] = corrected_position.x;
  781. current_position[Y_AXIS] = corrected_position.y;
  782. current_position[Z_AXIS] = corrected_position.z;
  783. // put the bed at 0 so we don't go below it.
  784. current_position[Z_AXIS] = zprobe_zoffset;
  785. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  786. }
  787. #endif // AUTO_BED_LEVELING_GRID
  788. static void run_z_probe() {
  789. plan_bed_level_matrix.set_to_identity();
  790. feedrate = homing_feedrate[Z_AXIS];
  791. // move down until you find the bed
  792. float zPosition = -10;
  793. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  794. st_synchronize();
  795. // we have to let the planner know where we are right now as it is not where we said to go.
  796. zPosition = st_get_position_mm(Z_AXIS);
  797. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  798. // move up the retract distance
  799. zPosition += home_retract_mm(Z_AXIS);
  800. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  801. st_synchronize();
  802. // move back down slowly to find bed
  803. feedrate = homing_feedrate[Z_AXIS]/4;
  804. zPosition -= home_retract_mm(Z_AXIS) * 2;
  805. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  806. st_synchronize();
  807. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  808. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  809. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  810. }
  811. static void do_blocking_move_to(float x, float y, float z) {
  812. float oldFeedRate = feedrate;
  813. feedrate = XY_TRAVEL_SPEED;
  814. current_position[X_AXIS] = x;
  815. current_position[Y_AXIS] = y;
  816. current_position[Z_AXIS] = z;
  817. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  818. st_synchronize();
  819. feedrate = oldFeedRate;
  820. }
  821. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  822. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  823. }
  824. static void setup_for_endstop_move() {
  825. saved_feedrate = feedrate;
  826. saved_feedmultiply = feedmultiply;
  827. feedmultiply = 100;
  828. previous_millis_cmd = millis();
  829. enable_endstops(true);
  830. }
  831. static void clean_up_after_endstop_move() {
  832. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  833. enable_endstops(false);
  834. #endif
  835. feedrate = saved_feedrate;
  836. feedmultiply = saved_feedmultiply;
  837. previous_millis_cmd = millis();
  838. }
  839. static void engage_z_probe() {
  840. // Engage Z Servo endstop if enabled
  841. #ifdef SERVO_ENDSTOPS
  842. if (servo_endstops[Z_AXIS] > -1) {
  843. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  844. servos[servo_endstops[Z_AXIS]].attach(0);
  845. #endif
  846. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  847. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  848. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  849. servos[servo_endstops[Z_AXIS]].detach();
  850. #endif
  851. }
  852. #endif
  853. }
  854. static void retract_z_probe() {
  855. // Retract Z Servo endstop if enabled
  856. #ifdef SERVO_ENDSTOPS
  857. if (servo_endstops[Z_AXIS] > -1) {
  858. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  859. servos[servo_endstops[Z_AXIS]].attach(0);
  860. #endif
  861. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  862. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  863. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  864. servos[servo_endstops[Z_AXIS]].detach();
  865. #endif
  866. }
  867. #endif
  868. }
  869. /// Probe bed height at position (x,y), returns the measured z value
  870. static float probe_pt(float x, float y, float z_before) {
  871. // move to right place
  872. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  873. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  874. engage_z_probe(); // Engage Z Servo endstop if available
  875. run_z_probe();
  876. float measured_z = current_position[Z_AXIS];
  877. retract_z_probe();
  878. SERIAL_PROTOCOLPGM(MSG_BED);
  879. SERIAL_PROTOCOLPGM(" x: ");
  880. SERIAL_PROTOCOL(x);
  881. SERIAL_PROTOCOLPGM(" y: ");
  882. SERIAL_PROTOCOL(y);
  883. SERIAL_PROTOCOLPGM(" z: ");
  884. SERIAL_PROTOCOL(measured_z);
  885. SERIAL_PROTOCOLPGM("\n");
  886. return measured_z;
  887. }
  888. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  889. static void homeaxis(int axis) {
  890. #define HOMEAXIS_DO(LETTER) \
  891. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  892. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  893. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  894. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  895. 0) {
  896. int axis_home_dir = home_dir(axis);
  897. #ifdef DUAL_X_CARRIAGE
  898. if (axis == X_AXIS)
  899. axis_home_dir = x_home_dir(active_extruder);
  900. #endif
  901. current_position[axis] = 0;
  902. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  903. // Engage Servo endstop if enabled
  904. #ifdef SERVO_ENDSTOPS
  905. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  906. if (axis==Z_AXIS) {
  907. engage_z_probe();
  908. }
  909. else
  910. #endif
  911. if (servo_endstops[axis] > -1) {
  912. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  913. }
  914. #endif
  915. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  916. feedrate = homing_feedrate[axis];
  917. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  918. st_synchronize();
  919. current_position[axis] = 0;
  920. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  921. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  922. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  923. st_synchronize();
  924. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  925. #ifdef DELTA
  926. feedrate = homing_feedrate[axis]/10;
  927. #else
  928. feedrate = homing_feedrate[axis]/2 ;
  929. #endif
  930. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  931. st_synchronize();
  932. #ifdef DELTA
  933. // retrace by the amount specified in endstop_adj
  934. if (endstop_adj[axis] * axis_home_dir < 0) {
  935. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  936. destination[axis] = endstop_adj[axis];
  937. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  938. st_synchronize();
  939. }
  940. #endif
  941. axis_is_at_home(axis);
  942. destination[axis] = current_position[axis];
  943. feedrate = 0.0;
  944. endstops_hit_on_purpose();
  945. axis_known_position[axis] = true;
  946. // Retract Servo endstop if enabled
  947. #ifdef SERVO_ENDSTOPS
  948. if (servo_endstops[axis] > -1) {
  949. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  950. }
  951. #endif
  952. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  953. if (axis==Z_AXIS) retract_z_probe();
  954. #endif
  955. }
  956. }
  957. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  958. void refresh_cmd_timeout(void)
  959. {
  960. previous_millis_cmd = millis();
  961. }
  962. #ifdef FWRETRACT
  963. void retract(bool retracting) {
  964. if(retracting && !retracted) {
  965. destination[X_AXIS]=current_position[X_AXIS];
  966. destination[Y_AXIS]=current_position[Y_AXIS];
  967. destination[Z_AXIS]=current_position[Z_AXIS];
  968. destination[E_AXIS]=current_position[E_AXIS];
  969. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  970. plan_set_e_position(current_position[E_AXIS]);
  971. float oldFeedrate = feedrate;
  972. feedrate=retract_feedrate;
  973. retracted=true;
  974. prepare_move();
  975. current_position[Z_AXIS]-=retract_zlift;
  976. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  977. prepare_move();
  978. feedrate = oldFeedrate;
  979. } else if(!retracting && retracted) {
  980. destination[X_AXIS]=current_position[X_AXIS];
  981. destination[Y_AXIS]=current_position[Y_AXIS];
  982. destination[Z_AXIS]=current_position[Z_AXIS];
  983. destination[E_AXIS]=current_position[E_AXIS];
  984. current_position[Z_AXIS]+=retract_zlift;
  985. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  986. //prepare_move();
  987. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  988. plan_set_e_position(current_position[E_AXIS]);
  989. float oldFeedrate = feedrate;
  990. feedrate=retract_recover_feedrate;
  991. retracted=false;
  992. prepare_move();
  993. feedrate = oldFeedrate;
  994. }
  995. } //retract
  996. #endif //FWRETRACT
  997. void process_commands()
  998. {
  999. unsigned long codenum; //throw away variable
  1000. char *starpos = NULL;
  1001. #ifdef ENABLE_AUTO_BED_LEVELING
  1002. float x_tmp, y_tmp, z_tmp, real_z;
  1003. #endif
  1004. if(code_seen('G'))
  1005. {
  1006. switch((int)code_value())
  1007. {
  1008. case 0: // G0 -> G1
  1009. case 1: // G1
  1010. if(Stopped == false) {
  1011. get_coordinates(); // For X Y Z E F
  1012. #ifdef FWRETRACT
  1013. if(autoretract_enabled)
  1014. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1015. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1016. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1017. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1018. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1019. retract(!retracted);
  1020. return;
  1021. }
  1022. }
  1023. #endif //FWRETRACT
  1024. prepare_move();
  1025. //ClearToSend();
  1026. return;
  1027. }
  1028. //break;
  1029. case 2: // G2 - CW ARC
  1030. if(Stopped == false) {
  1031. get_arc_coordinates();
  1032. prepare_arc_move(true);
  1033. return;
  1034. }
  1035. case 3: // G3 - CCW ARC
  1036. if(Stopped == false) {
  1037. get_arc_coordinates();
  1038. prepare_arc_move(false);
  1039. return;
  1040. }
  1041. case 4: // G4 dwell
  1042. LCD_MESSAGEPGM(MSG_DWELL);
  1043. codenum = 0;
  1044. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1045. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1046. st_synchronize();
  1047. codenum += millis(); // keep track of when we started waiting
  1048. previous_millis_cmd = millis();
  1049. while(millis() < codenum ){
  1050. manage_heater();
  1051. manage_inactivity();
  1052. lcd_update();
  1053. }
  1054. break;
  1055. #ifdef FWRETRACT
  1056. case 10: // G10 retract
  1057. retract(true);
  1058. break;
  1059. case 11: // G11 retract_recover
  1060. retract(false);
  1061. break;
  1062. #endif //FWRETRACT
  1063. case 28: //G28 Home all Axis one at a time
  1064. #ifdef ENABLE_AUTO_BED_LEVELING
  1065. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1066. #endif //ENABLE_AUTO_BED_LEVELING
  1067. saved_feedrate = feedrate;
  1068. saved_feedmultiply = feedmultiply;
  1069. feedmultiply = 100;
  1070. previous_millis_cmd = millis();
  1071. enable_endstops(true);
  1072. for(int8_t i=0; i < NUM_AXIS; i++) {
  1073. destination[i] = current_position[i];
  1074. }
  1075. feedrate = 0.0;
  1076. #ifdef DELTA
  1077. // A delta can only safely home all axis at the same time
  1078. // all axis have to home at the same time
  1079. // Move all carriages up together until the first endstop is hit.
  1080. current_position[X_AXIS] = 0;
  1081. current_position[Y_AXIS] = 0;
  1082. current_position[Z_AXIS] = 0;
  1083. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1084. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1085. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1086. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1087. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1088. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1089. st_synchronize();
  1090. endstops_hit_on_purpose();
  1091. current_position[X_AXIS] = destination[X_AXIS];
  1092. current_position[Y_AXIS] = destination[Y_AXIS];
  1093. current_position[Z_AXIS] = destination[Z_AXIS];
  1094. // take care of back off and rehome now we are all at the top
  1095. HOMEAXIS(X);
  1096. HOMEAXIS(Y);
  1097. HOMEAXIS(Z);
  1098. calculate_delta(current_position);
  1099. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1100. #else // NOT DELTA
  1101. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1102. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1103. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1104. HOMEAXIS(Z);
  1105. }
  1106. #endif
  1107. #ifdef QUICK_HOME
  1108. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1109. {
  1110. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1111. #ifndef DUAL_X_CARRIAGE
  1112. int x_axis_home_dir = home_dir(X_AXIS);
  1113. #else
  1114. int x_axis_home_dir = x_home_dir(active_extruder);
  1115. extruder_duplication_enabled = false;
  1116. #endif
  1117. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1118. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1119. feedrate = homing_feedrate[X_AXIS];
  1120. if(homing_feedrate[Y_AXIS]<feedrate)
  1121. feedrate =homing_feedrate[Y_AXIS];
  1122. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1123. st_synchronize();
  1124. axis_is_at_home(X_AXIS);
  1125. axis_is_at_home(Y_AXIS);
  1126. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1127. destination[X_AXIS] = current_position[X_AXIS];
  1128. destination[Y_AXIS] = current_position[Y_AXIS];
  1129. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1130. feedrate = 0.0;
  1131. st_synchronize();
  1132. endstops_hit_on_purpose();
  1133. current_position[X_AXIS] = destination[X_AXIS];
  1134. current_position[Y_AXIS] = destination[Y_AXIS];
  1135. current_position[Z_AXIS] = destination[Z_AXIS];
  1136. }
  1137. #endif
  1138. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1139. {
  1140. #ifdef DUAL_X_CARRIAGE
  1141. int tmp_extruder = active_extruder;
  1142. extruder_duplication_enabled = false;
  1143. active_extruder = !active_extruder;
  1144. HOMEAXIS(X);
  1145. inactive_extruder_x_pos = current_position[X_AXIS];
  1146. active_extruder = tmp_extruder;
  1147. HOMEAXIS(X);
  1148. // reset state used by the different modes
  1149. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1150. delayed_move_time = 0;
  1151. active_extruder_parked = true;
  1152. #else
  1153. HOMEAXIS(X);
  1154. #endif
  1155. }
  1156. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1157. HOMEAXIS(Y);
  1158. }
  1159. if(code_seen(axis_codes[X_AXIS]))
  1160. {
  1161. if(code_value_long() != 0) {
  1162. current_position[X_AXIS]=code_value()+add_homeing[0];
  1163. }
  1164. }
  1165. if(code_seen(axis_codes[Y_AXIS])) {
  1166. if(code_value_long() != 0) {
  1167. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1168. }
  1169. }
  1170. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1171. #ifndef Z_SAFE_HOMING
  1172. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1173. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1174. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1175. feedrate = max_feedrate[Z_AXIS];
  1176. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1177. st_synchronize();
  1178. #endif
  1179. HOMEAXIS(Z);
  1180. }
  1181. #else // Z Safe mode activated.
  1182. if(home_all_axis) {
  1183. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1184. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1185. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1186. feedrate = XY_TRAVEL_SPEED;
  1187. current_position[Z_AXIS] = 0;
  1188. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1189. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1190. st_synchronize();
  1191. current_position[X_AXIS] = destination[X_AXIS];
  1192. current_position[Y_AXIS] = destination[Y_AXIS];
  1193. HOMEAXIS(Z);
  1194. }
  1195. // Let's see if X and Y are homed and probe is inside bed area.
  1196. if(code_seen(axis_codes[Z_AXIS])) {
  1197. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1198. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1199. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1200. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1201. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1202. current_position[Z_AXIS] = 0;
  1203. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1204. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1205. feedrate = max_feedrate[Z_AXIS];
  1206. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1207. st_synchronize();
  1208. HOMEAXIS(Z);
  1209. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1210. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1211. SERIAL_ECHO_START;
  1212. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1213. } else {
  1214. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1215. SERIAL_ECHO_START;
  1216. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1217. }
  1218. }
  1219. #endif
  1220. #endif
  1221. if(code_seen(axis_codes[Z_AXIS])) {
  1222. if(code_value_long() != 0) {
  1223. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1224. }
  1225. }
  1226. #ifdef ENABLE_AUTO_BED_LEVELING
  1227. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1228. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1229. }
  1230. #endif
  1231. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1232. #endif // else DELTA
  1233. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1234. enable_endstops(false);
  1235. #endif
  1236. feedrate = saved_feedrate;
  1237. feedmultiply = saved_feedmultiply;
  1238. previous_millis_cmd = millis();
  1239. endstops_hit_on_purpose();
  1240. break;
  1241. #ifdef ENABLE_AUTO_BED_LEVELING
  1242. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1243. {
  1244. #if Z_MIN_PIN == -1
  1245. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1246. #endif
  1247. // Prevent user from running a G29 without first homing in X and Y
  1248. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1249. {
  1250. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1251. SERIAL_ECHO_START;
  1252. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1253. break; // abort G29, since we don't know where we are
  1254. }
  1255. st_synchronize();
  1256. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1257. //vector_3 corrected_position = plan_get_position_mm();
  1258. //corrected_position.debug("position before G29");
  1259. plan_bed_level_matrix.set_to_identity();
  1260. vector_3 uncorrected_position = plan_get_position();
  1261. //uncorrected_position.debug("position durring G29");
  1262. current_position[X_AXIS] = uncorrected_position.x;
  1263. current_position[Y_AXIS] = uncorrected_position.y;
  1264. current_position[Z_AXIS] = uncorrected_position.z;
  1265. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1266. setup_for_endstop_move();
  1267. feedrate = homing_feedrate[Z_AXIS];
  1268. #ifdef AUTO_BED_LEVELING_GRID
  1269. // probe at the points of a lattice grid
  1270. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1271. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1272. // solve the plane equation ax + by + d = z
  1273. // A is the matrix with rows [x y 1] for all the probed points
  1274. // B is the vector of the Z positions
  1275. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1276. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1277. // "A" matrix of the linear system of equations
  1278. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1279. // "B" vector of Z points
  1280. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1281. int probePointCounter = 0;
  1282. bool zig = true;
  1283. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1284. {
  1285. int xProbe, xInc;
  1286. if (zig)
  1287. {
  1288. xProbe = LEFT_PROBE_BED_POSITION;
  1289. //xEnd = RIGHT_PROBE_BED_POSITION;
  1290. xInc = xGridSpacing;
  1291. zig = false;
  1292. } else // zag
  1293. {
  1294. xProbe = RIGHT_PROBE_BED_POSITION;
  1295. //xEnd = LEFT_PROBE_BED_POSITION;
  1296. xInc = -xGridSpacing;
  1297. zig = true;
  1298. }
  1299. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1300. {
  1301. float z_before;
  1302. if (probePointCounter == 0)
  1303. {
  1304. // raise before probing
  1305. z_before = Z_RAISE_BEFORE_PROBING;
  1306. } else
  1307. {
  1308. // raise extruder
  1309. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1310. }
  1311. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1312. eqnBVector[probePointCounter] = measured_z;
  1313. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1314. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1315. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1316. probePointCounter++;
  1317. xProbe += xInc;
  1318. }
  1319. }
  1320. clean_up_after_endstop_move();
  1321. // solve lsq problem
  1322. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1323. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1324. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1325. SERIAL_PROTOCOLPGM(" b: ");
  1326. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1327. SERIAL_PROTOCOLPGM(" d: ");
  1328. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1329. set_bed_level_equation_lsq(plane_equation_coefficients);
  1330. free(plane_equation_coefficients);
  1331. #else // AUTO_BED_LEVELING_GRID not defined
  1332. // Probe at 3 arbitrary points
  1333. // probe 1
  1334. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1335. // probe 2
  1336. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1337. // probe 3
  1338. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1339. clean_up_after_endstop_move();
  1340. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1341. #endif // AUTO_BED_LEVELING_GRID
  1342. st_synchronize();
  1343. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1344. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1345. // When the bed is uneven, this height must be corrected.
  1346. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1347. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1348. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1349. z_tmp = current_position[Z_AXIS];
  1350. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1351. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1352. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1353. }
  1354. break;
  1355. case 30: // G30 Single Z Probe
  1356. {
  1357. engage_z_probe(); // Engage Z Servo endstop if available
  1358. st_synchronize();
  1359. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1360. setup_for_endstop_move();
  1361. feedrate = homing_feedrate[Z_AXIS];
  1362. run_z_probe();
  1363. SERIAL_PROTOCOLPGM(MSG_BED);
  1364. SERIAL_PROTOCOLPGM(" X: ");
  1365. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1366. SERIAL_PROTOCOLPGM(" Y: ");
  1367. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1368. SERIAL_PROTOCOLPGM(" Z: ");
  1369. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1370. SERIAL_PROTOCOLPGM("\n");
  1371. clean_up_after_endstop_move();
  1372. retract_z_probe(); // Retract Z Servo endstop if available
  1373. }
  1374. break;
  1375. #endif // ENABLE_AUTO_BED_LEVELING
  1376. case 90: // G90
  1377. relative_mode = false;
  1378. break;
  1379. case 91: // G91
  1380. relative_mode = true;
  1381. break;
  1382. case 92: // G92
  1383. if(!code_seen(axis_codes[E_AXIS]))
  1384. st_synchronize();
  1385. for(int8_t i=0; i < NUM_AXIS; i++) {
  1386. if(code_seen(axis_codes[i])) {
  1387. if(i == E_AXIS) {
  1388. current_position[i] = code_value();
  1389. plan_set_e_position(current_position[E_AXIS]);
  1390. }
  1391. else {
  1392. current_position[i] = code_value()+add_homeing[i];
  1393. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1394. }
  1395. }
  1396. }
  1397. break;
  1398. }
  1399. }
  1400. else if(code_seen('M'))
  1401. {
  1402. switch( (int)code_value() )
  1403. {
  1404. #ifdef ULTIPANEL
  1405. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1406. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1407. {
  1408. LCD_MESSAGEPGM(MSG_USERWAIT);
  1409. codenum = 0;
  1410. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1411. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1412. st_synchronize();
  1413. previous_millis_cmd = millis();
  1414. if (codenum > 0){
  1415. codenum += millis(); // keep track of when we started waiting
  1416. while(millis() < codenum && !lcd_clicked()){
  1417. manage_heater();
  1418. manage_inactivity();
  1419. lcd_update();
  1420. }
  1421. }else{
  1422. while(!lcd_clicked()){
  1423. manage_heater();
  1424. manage_inactivity();
  1425. lcd_update();
  1426. }
  1427. }
  1428. LCD_MESSAGEPGM(MSG_RESUMING);
  1429. }
  1430. break;
  1431. #endif
  1432. case 17:
  1433. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1434. enable_x();
  1435. enable_y();
  1436. enable_z();
  1437. enable_e0();
  1438. enable_e1();
  1439. enable_e2();
  1440. break;
  1441. #ifdef SDSUPPORT
  1442. case 20: // M20 - list SD card
  1443. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1444. card.ls();
  1445. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1446. break;
  1447. case 21: // M21 - init SD card
  1448. card.initsd();
  1449. break;
  1450. case 22: //M22 - release SD card
  1451. card.release();
  1452. break;
  1453. case 23: //M23 - Select file
  1454. starpos = (strchr(strchr_pointer + 4,'*'));
  1455. if(starpos!=NULL)
  1456. *(starpos-1)='\0';
  1457. card.openFile(strchr_pointer + 4,true);
  1458. break;
  1459. case 24: //M24 - Start SD print
  1460. card.startFileprint();
  1461. starttime=millis();
  1462. break;
  1463. case 25: //M25 - Pause SD print
  1464. card.pauseSDPrint();
  1465. break;
  1466. case 26: //M26 - Set SD index
  1467. if(card.cardOK && code_seen('S')) {
  1468. card.setIndex(code_value_long());
  1469. }
  1470. break;
  1471. case 27: //M27 - Get SD status
  1472. card.getStatus();
  1473. break;
  1474. case 28: //M28 - Start SD write
  1475. starpos = (strchr(strchr_pointer + 4,'*'));
  1476. if(starpos != NULL){
  1477. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1478. strchr_pointer = strchr(npos,' ') + 1;
  1479. *(starpos-1) = '\0';
  1480. }
  1481. card.openFile(strchr_pointer+4,false);
  1482. break;
  1483. case 29: //M29 - Stop SD write
  1484. //processed in write to file routine above
  1485. //card,saving = false;
  1486. break;
  1487. case 30: //M30 <filename> Delete File
  1488. if (card.cardOK){
  1489. card.closefile();
  1490. starpos = (strchr(strchr_pointer + 4,'*'));
  1491. if(starpos != NULL){
  1492. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1493. strchr_pointer = strchr(npos,' ') + 1;
  1494. *(starpos-1) = '\0';
  1495. }
  1496. card.removeFile(strchr_pointer + 4);
  1497. }
  1498. break;
  1499. case 32: //M32 - Select file and start SD print
  1500. {
  1501. if(card.sdprinting) {
  1502. st_synchronize();
  1503. }
  1504. starpos = (strchr(strchr_pointer + 4,'*'));
  1505. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1506. if(namestartpos==NULL)
  1507. {
  1508. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1509. }
  1510. else
  1511. namestartpos++; //to skip the '!'
  1512. if(starpos!=NULL)
  1513. *(starpos-1)='\0';
  1514. bool call_procedure=(code_seen('P'));
  1515. if(strchr_pointer>namestartpos)
  1516. call_procedure=false; //false alert, 'P' found within filename
  1517. if( card.cardOK )
  1518. {
  1519. card.openFile(namestartpos,true,!call_procedure);
  1520. if(code_seen('S'))
  1521. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1522. card.setIndex(code_value_long());
  1523. card.startFileprint();
  1524. if(!call_procedure)
  1525. starttime=millis(); //procedure calls count as normal print time.
  1526. }
  1527. } break;
  1528. case 928: //M928 - Start SD write
  1529. starpos = (strchr(strchr_pointer + 5,'*'));
  1530. if(starpos != NULL){
  1531. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1532. strchr_pointer = strchr(npos,' ') + 1;
  1533. *(starpos-1) = '\0';
  1534. }
  1535. card.openLogFile(strchr_pointer+5);
  1536. break;
  1537. #endif //SDSUPPORT
  1538. case 31: //M31 take time since the start of the SD print or an M109 command
  1539. {
  1540. stoptime=millis();
  1541. char time[30];
  1542. unsigned long t=(stoptime-starttime)/1000;
  1543. int sec,min;
  1544. min=t/60;
  1545. sec=t%60;
  1546. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1547. SERIAL_ECHO_START;
  1548. SERIAL_ECHOLN(time);
  1549. lcd_setstatus(time);
  1550. autotempShutdown();
  1551. }
  1552. break;
  1553. case 42: //M42 -Change pin status via gcode
  1554. if (code_seen('S'))
  1555. {
  1556. int pin_status = code_value();
  1557. int pin_number = LED_PIN;
  1558. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1559. pin_number = code_value();
  1560. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1561. {
  1562. if (sensitive_pins[i] == pin_number)
  1563. {
  1564. pin_number = -1;
  1565. break;
  1566. }
  1567. }
  1568. #if defined(FAN_PIN) && FAN_PIN > -1
  1569. if (pin_number == FAN_PIN)
  1570. fanSpeed = pin_status;
  1571. #endif
  1572. if (pin_number > -1)
  1573. {
  1574. pinMode(pin_number, OUTPUT);
  1575. digitalWrite(pin_number, pin_status);
  1576. analogWrite(pin_number, pin_status);
  1577. }
  1578. }
  1579. break;
  1580. case 104: // M104
  1581. if(setTargetedHotend(104)){
  1582. break;
  1583. }
  1584. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1585. #ifdef DUAL_X_CARRIAGE
  1586. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1587. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1588. #endif
  1589. setWatch();
  1590. break;
  1591. case 112: // M112 -Emergency Stop
  1592. kill();
  1593. break;
  1594. case 140: // M140 set bed temp
  1595. if (code_seen('S')) setTargetBed(code_value());
  1596. break;
  1597. case 105 : // M105
  1598. if(setTargetedHotend(105)){
  1599. break;
  1600. }
  1601. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1602. SERIAL_PROTOCOLPGM("ok T:");
  1603. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1604. SERIAL_PROTOCOLPGM(" /");
  1605. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1606. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1607. SERIAL_PROTOCOLPGM(" B:");
  1608. SERIAL_PROTOCOL_F(degBed(),1);
  1609. SERIAL_PROTOCOLPGM(" /");
  1610. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1611. #endif //TEMP_BED_PIN
  1612. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1613. SERIAL_PROTOCOLPGM(" T");
  1614. SERIAL_PROTOCOL(cur_extruder);
  1615. SERIAL_PROTOCOLPGM(":");
  1616. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1617. SERIAL_PROTOCOLPGM(" /");
  1618. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1619. }
  1620. #else
  1621. SERIAL_ERROR_START;
  1622. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1623. #endif
  1624. SERIAL_PROTOCOLPGM(" @:");
  1625. #ifdef EXTRUDER_WATTS
  1626. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1627. SERIAL_PROTOCOLPGM("W");
  1628. #else
  1629. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1630. #endif
  1631. SERIAL_PROTOCOLPGM(" B@:");
  1632. #ifdef BED_WATTS
  1633. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1634. SERIAL_PROTOCOLPGM("W");
  1635. #else
  1636. SERIAL_PROTOCOL(getHeaterPower(-1));
  1637. #endif
  1638. #ifdef SHOW_TEMP_ADC_VALUES
  1639. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1640. SERIAL_PROTOCOLPGM(" ADC B:");
  1641. SERIAL_PROTOCOL_F(degBed(),1);
  1642. SERIAL_PROTOCOLPGM("C->");
  1643. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1644. #endif
  1645. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1646. SERIAL_PROTOCOLPGM(" T");
  1647. SERIAL_PROTOCOL(cur_extruder);
  1648. SERIAL_PROTOCOLPGM(":");
  1649. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1650. SERIAL_PROTOCOLPGM("C->");
  1651. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1652. }
  1653. #endif
  1654. SERIAL_PROTOCOLLN("");
  1655. return;
  1656. break;
  1657. case 109:
  1658. {// M109 - Wait for extruder heater to reach target.
  1659. if(setTargetedHotend(109)){
  1660. break;
  1661. }
  1662. LCD_MESSAGEPGM(MSG_HEATING);
  1663. #ifdef AUTOTEMP
  1664. autotemp_enabled=false;
  1665. #endif
  1666. if (code_seen('S')) {
  1667. setTargetHotend(code_value(), tmp_extruder);
  1668. #ifdef DUAL_X_CARRIAGE
  1669. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1670. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1671. #endif
  1672. CooldownNoWait = true;
  1673. } else if (code_seen('R')) {
  1674. setTargetHotend(code_value(), tmp_extruder);
  1675. #ifdef DUAL_X_CARRIAGE
  1676. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1677. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1678. #endif
  1679. CooldownNoWait = false;
  1680. }
  1681. #ifdef AUTOTEMP
  1682. if (code_seen('S')) autotemp_min=code_value();
  1683. if (code_seen('B')) autotemp_max=code_value();
  1684. if (code_seen('F'))
  1685. {
  1686. autotemp_factor=code_value();
  1687. autotemp_enabled=true;
  1688. }
  1689. #endif
  1690. setWatch();
  1691. codenum = millis();
  1692. /* See if we are heating up or cooling down */
  1693. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1694. #ifdef TEMP_RESIDENCY_TIME
  1695. long residencyStart;
  1696. residencyStart = -1;
  1697. /* continue to loop until we have reached the target temp
  1698. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1699. while((residencyStart == -1) ||
  1700. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1701. #else
  1702. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1703. #endif //TEMP_RESIDENCY_TIME
  1704. if( (millis() - codenum) > 1000UL )
  1705. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1706. SERIAL_PROTOCOLPGM("T:");
  1707. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1708. SERIAL_PROTOCOLPGM(" E:");
  1709. SERIAL_PROTOCOL((int)tmp_extruder);
  1710. #ifdef TEMP_RESIDENCY_TIME
  1711. SERIAL_PROTOCOLPGM(" W:");
  1712. if(residencyStart > -1)
  1713. {
  1714. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1715. SERIAL_PROTOCOLLN( codenum );
  1716. }
  1717. else
  1718. {
  1719. SERIAL_PROTOCOLLN( "?" );
  1720. }
  1721. #else
  1722. SERIAL_PROTOCOLLN("");
  1723. #endif
  1724. codenum = millis();
  1725. }
  1726. manage_heater();
  1727. manage_inactivity();
  1728. lcd_update();
  1729. #ifdef TEMP_RESIDENCY_TIME
  1730. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1731. or when current temp falls outside the hysteresis after target temp was reached */
  1732. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1733. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1734. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1735. {
  1736. residencyStart = millis();
  1737. }
  1738. #endif //TEMP_RESIDENCY_TIME
  1739. }
  1740. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1741. starttime=millis();
  1742. previous_millis_cmd = millis();
  1743. }
  1744. break;
  1745. case 190: // M190 - Wait for bed heater to reach target.
  1746. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1747. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1748. if (code_seen('S')) {
  1749. setTargetBed(code_value());
  1750. CooldownNoWait = true;
  1751. } else if (code_seen('R')) {
  1752. setTargetBed(code_value());
  1753. CooldownNoWait = false;
  1754. }
  1755. codenum = millis();
  1756. target_direction = isHeatingBed(); // true if heating, false if cooling
  1757. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1758. {
  1759. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1760. {
  1761. float tt=degHotend(active_extruder);
  1762. SERIAL_PROTOCOLPGM("T:");
  1763. SERIAL_PROTOCOL(tt);
  1764. SERIAL_PROTOCOLPGM(" E:");
  1765. SERIAL_PROTOCOL((int)active_extruder);
  1766. SERIAL_PROTOCOLPGM(" B:");
  1767. SERIAL_PROTOCOL_F(degBed(),1);
  1768. SERIAL_PROTOCOLLN("");
  1769. codenum = millis();
  1770. }
  1771. manage_heater();
  1772. manage_inactivity();
  1773. lcd_update();
  1774. }
  1775. LCD_MESSAGEPGM(MSG_BED_DONE);
  1776. previous_millis_cmd = millis();
  1777. #endif
  1778. break;
  1779. #if defined(FAN_PIN) && FAN_PIN > -1
  1780. case 106: //M106 Fan On
  1781. if (code_seen('S')){
  1782. fanSpeed=constrain(code_value(),0,255);
  1783. }
  1784. else {
  1785. fanSpeed=255;
  1786. }
  1787. break;
  1788. case 107: //M107 Fan Off
  1789. fanSpeed = 0;
  1790. break;
  1791. #endif //FAN_PIN
  1792. #ifdef BARICUDA
  1793. // PWM for HEATER_1_PIN
  1794. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1795. case 126: //M126 valve open
  1796. if (code_seen('S')){
  1797. ValvePressure=constrain(code_value(),0,255);
  1798. }
  1799. else {
  1800. ValvePressure=255;
  1801. }
  1802. break;
  1803. case 127: //M127 valve closed
  1804. ValvePressure = 0;
  1805. break;
  1806. #endif //HEATER_1_PIN
  1807. // PWM for HEATER_2_PIN
  1808. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1809. case 128: //M128 valve open
  1810. if (code_seen('S')){
  1811. EtoPPressure=constrain(code_value(),0,255);
  1812. }
  1813. else {
  1814. EtoPPressure=255;
  1815. }
  1816. break;
  1817. case 129: //M129 valve closed
  1818. EtoPPressure = 0;
  1819. break;
  1820. #endif //HEATER_2_PIN
  1821. #endif
  1822. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1823. case 80: // M80 - Turn on Power Supply
  1824. SET_OUTPUT(PS_ON_PIN); //GND
  1825. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1826. // If you have a switch on suicide pin, this is useful
  1827. // if you want to start another print with suicide feature after
  1828. // a print without suicide...
  1829. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1830. SET_OUTPUT(SUICIDE_PIN);
  1831. WRITE(SUICIDE_PIN, HIGH);
  1832. #endif
  1833. #ifdef ULTIPANEL
  1834. powersupply = true;
  1835. LCD_MESSAGEPGM(WELCOME_MSG);
  1836. lcd_update();
  1837. #endif
  1838. break;
  1839. #endif
  1840. case 81: // M81 - Turn off Power Supply
  1841. disable_heater();
  1842. st_synchronize();
  1843. disable_e0();
  1844. disable_e1();
  1845. disable_e2();
  1846. finishAndDisableSteppers();
  1847. fanSpeed = 0;
  1848. delay(1000); // Wait a little before to switch off
  1849. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1850. st_synchronize();
  1851. suicide();
  1852. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1853. SET_OUTPUT(PS_ON_PIN);
  1854. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1855. #endif
  1856. #ifdef ULTIPANEL
  1857. powersupply = false;
  1858. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1859. lcd_update();
  1860. #endif
  1861. break;
  1862. case 82:
  1863. axis_relative_modes[3] = false;
  1864. break;
  1865. case 83:
  1866. axis_relative_modes[3] = true;
  1867. break;
  1868. case 18: //compatibility
  1869. case 84: // M84
  1870. if(code_seen('S')){
  1871. stepper_inactive_time = code_value() * 1000;
  1872. }
  1873. else
  1874. {
  1875. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  1876. if(all_axis)
  1877. {
  1878. st_synchronize();
  1879. disable_e0();
  1880. disable_e1();
  1881. disable_e2();
  1882. finishAndDisableSteppers();
  1883. }
  1884. else
  1885. {
  1886. st_synchronize();
  1887. if(code_seen('X')) disable_x();
  1888. if(code_seen('Y')) disable_y();
  1889. if(code_seen('Z')) disable_z();
  1890. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1891. if(code_seen('E')) {
  1892. disable_e0();
  1893. disable_e1();
  1894. disable_e2();
  1895. }
  1896. #endif
  1897. }
  1898. }
  1899. break;
  1900. case 85: // M85
  1901. code_seen('S');
  1902. max_inactive_time = code_value() * 1000;
  1903. break;
  1904. case 92: // M92
  1905. for(int8_t i=0; i < NUM_AXIS; i++)
  1906. {
  1907. if(code_seen(axis_codes[i]))
  1908. {
  1909. if(i == 3) { // E
  1910. float value = code_value();
  1911. if(value < 20.0) {
  1912. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1913. max_e_jerk *= factor;
  1914. max_feedrate[i] *= factor;
  1915. axis_steps_per_sqr_second[i] *= factor;
  1916. }
  1917. axis_steps_per_unit[i] = value;
  1918. }
  1919. else {
  1920. axis_steps_per_unit[i] = code_value();
  1921. }
  1922. }
  1923. }
  1924. break;
  1925. case 115: // M115
  1926. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1927. break;
  1928. case 117: // M117 display message
  1929. starpos = (strchr(strchr_pointer + 5,'*'));
  1930. if(starpos!=NULL)
  1931. *(starpos-1)='\0';
  1932. lcd_setstatus(strchr_pointer + 5);
  1933. break;
  1934. case 114: // M114
  1935. SERIAL_PROTOCOLPGM("X:");
  1936. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1937. SERIAL_PROTOCOLPGM(" Y:");
  1938. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1939. SERIAL_PROTOCOLPGM(" Z:");
  1940. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1941. SERIAL_PROTOCOLPGM(" E:");
  1942. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1943. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1944. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1945. SERIAL_PROTOCOLPGM(" Y:");
  1946. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1947. SERIAL_PROTOCOLPGM(" Z:");
  1948. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1949. SERIAL_PROTOCOLLN("");
  1950. break;
  1951. case 120: // M120
  1952. enable_endstops(false) ;
  1953. break;
  1954. case 121: // M121
  1955. enable_endstops(true) ;
  1956. break;
  1957. case 119: // M119
  1958. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1959. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1960. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1961. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1962. #endif
  1963. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1964. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1965. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1966. #endif
  1967. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1968. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1969. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1970. #endif
  1971. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1972. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1973. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1974. #endif
  1975. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1976. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1977. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1978. #endif
  1979. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1980. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1981. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1982. #endif
  1983. break;
  1984. //TODO: update for all axis, use for loop
  1985. #ifdef BLINKM
  1986. case 150: // M150
  1987. {
  1988. byte red;
  1989. byte grn;
  1990. byte blu;
  1991. if(code_seen('R')) red = code_value();
  1992. if(code_seen('U')) grn = code_value();
  1993. if(code_seen('B')) blu = code_value();
  1994. SendColors(red,grn,blu);
  1995. }
  1996. break;
  1997. #endif //BLINKM
  1998. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  1999. {
  2000. float area = .0;
  2001. float radius = .0;
  2002. if(code_seen('D')) {
  2003. radius = (float)code_value() * .5;
  2004. if(radius == 0) {
  2005. area = 1;
  2006. } else {
  2007. area = M_PI * pow(radius, 2);
  2008. }
  2009. } else {
  2010. //reserved for setting filament diameter via UFID or filament measuring device
  2011. break;
  2012. }
  2013. tmp_extruder = active_extruder;
  2014. if(code_seen('T')) {
  2015. tmp_extruder = code_value();
  2016. if(tmp_extruder >= EXTRUDERS) {
  2017. SERIAL_ECHO_START;
  2018. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2019. }
  2020. SERIAL_ECHOLN(tmp_extruder);
  2021. break;
  2022. }
  2023. volumetric_multiplier[tmp_extruder] = 1 / area;
  2024. }
  2025. break;
  2026. case 201: // M201
  2027. for(int8_t i=0; i < NUM_AXIS; i++)
  2028. {
  2029. if(code_seen(axis_codes[i]))
  2030. {
  2031. max_acceleration_units_per_sq_second[i] = code_value();
  2032. }
  2033. }
  2034. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2035. reset_acceleration_rates();
  2036. break;
  2037. #if 0 // Not used for Sprinter/grbl gen6
  2038. case 202: // M202
  2039. for(int8_t i=0; i < NUM_AXIS; i++) {
  2040. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2041. }
  2042. break;
  2043. #endif
  2044. case 203: // M203 max feedrate mm/sec
  2045. for(int8_t i=0; i < NUM_AXIS; i++) {
  2046. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2047. }
  2048. break;
  2049. case 204: // M204 acclereration S normal moves T filmanent only moves
  2050. {
  2051. if(code_seen('S')) acceleration = code_value() ;
  2052. if(code_seen('T')) retract_acceleration = code_value() ;
  2053. }
  2054. break;
  2055. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2056. {
  2057. if(code_seen('S')) minimumfeedrate = code_value();
  2058. if(code_seen('T')) mintravelfeedrate = code_value();
  2059. if(code_seen('B')) minsegmenttime = code_value() ;
  2060. if(code_seen('X')) max_xy_jerk = code_value() ;
  2061. if(code_seen('Z')) max_z_jerk = code_value() ;
  2062. if(code_seen('E')) max_e_jerk = code_value() ;
  2063. }
  2064. break;
  2065. case 206: // M206 additional homeing offset
  2066. for(int8_t i=0; i < 3; i++)
  2067. {
  2068. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2069. }
  2070. break;
  2071. #ifdef DELTA
  2072. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2073. if(code_seen('L')) {
  2074. delta_diagonal_rod= code_value();
  2075. }
  2076. if(code_seen('R')) {
  2077. delta_radius= code_value();
  2078. }
  2079. if(code_seen('S')) {
  2080. delta_segments_per_second= code_value();
  2081. }
  2082. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2083. break;
  2084. case 666: // M666 set delta endstop adjustemnt
  2085. for(int8_t i=0; i < 3; i++)
  2086. {
  2087. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2088. }
  2089. break;
  2090. #endif
  2091. #ifdef FWRETRACT
  2092. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2093. {
  2094. if(code_seen('S'))
  2095. {
  2096. retract_length = code_value() ;
  2097. }
  2098. if(code_seen('F'))
  2099. {
  2100. retract_feedrate = code_value() ;
  2101. }
  2102. if(code_seen('Z'))
  2103. {
  2104. retract_zlift = code_value() ;
  2105. }
  2106. }break;
  2107. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2108. {
  2109. if(code_seen('S'))
  2110. {
  2111. retract_recover_length = code_value() ;
  2112. }
  2113. if(code_seen('F'))
  2114. {
  2115. retract_recover_feedrate = code_value() ;
  2116. }
  2117. }break;
  2118. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2119. {
  2120. if(code_seen('S'))
  2121. {
  2122. int t= code_value() ;
  2123. switch(t)
  2124. {
  2125. case 0: autoretract_enabled=false;retracted=false;break;
  2126. case 1: autoretract_enabled=true;retracted=false;break;
  2127. default:
  2128. SERIAL_ECHO_START;
  2129. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2130. SERIAL_ECHO(cmdbuffer[bufindr]);
  2131. SERIAL_ECHOLNPGM("\"");
  2132. }
  2133. }
  2134. }break;
  2135. #endif // FWRETRACT
  2136. #if EXTRUDERS > 1
  2137. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2138. {
  2139. if(setTargetedHotend(218)){
  2140. break;
  2141. }
  2142. if(code_seen('X'))
  2143. {
  2144. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2145. }
  2146. if(code_seen('Y'))
  2147. {
  2148. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2149. }
  2150. #ifdef DUAL_X_CARRIAGE
  2151. if(code_seen('Z'))
  2152. {
  2153. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2154. }
  2155. #endif
  2156. SERIAL_ECHO_START;
  2157. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2158. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2159. {
  2160. SERIAL_ECHO(" ");
  2161. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2162. SERIAL_ECHO(",");
  2163. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2164. #ifdef DUAL_X_CARRIAGE
  2165. SERIAL_ECHO(",");
  2166. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2167. #endif
  2168. }
  2169. SERIAL_ECHOLN("");
  2170. }break;
  2171. #endif
  2172. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2173. {
  2174. if(code_seen('S'))
  2175. {
  2176. feedmultiply = code_value() ;
  2177. }
  2178. }
  2179. break;
  2180. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2181. {
  2182. if(code_seen('S'))
  2183. {
  2184. extrudemultiply = code_value() ;
  2185. }
  2186. }
  2187. break;
  2188. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2189. {
  2190. if(code_seen('P')){
  2191. int pin_number = code_value(); // pin number
  2192. int pin_state = -1; // required pin state - default is inverted
  2193. if(code_seen('S')) pin_state = code_value(); // required pin state
  2194. if(pin_state >= -1 && pin_state <= 1){
  2195. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2196. {
  2197. if (sensitive_pins[i] == pin_number)
  2198. {
  2199. pin_number = -1;
  2200. break;
  2201. }
  2202. }
  2203. if (pin_number > -1)
  2204. {
  2205. st_synchronize();
  2206. pinMode(pin_number, INPUT);
  2207. int target;
  2208. switch(pin_state){
  2209. case 1:
  2210. target = HIGH;
  2211. break;
  2212. case 0:
  2213. target = LOW;
  2214. break;
  2215. case -1:
  2216. target = !digitalRead(pin_number);
  2217. break;
  2218. }
  2219. while(digitalRead(pin_number) != target){
  2220. manage_heater();
  2221. manage_inactivity();
  2222. lcd_update();
  2223. }
  2224. }
  2225. }
  2226. }
  2227. }
  2228. break;
  2229. #if NUM_SERVOS > 0
  2230. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2231. {
  2232. int servo_index = -1;
  2233. int servo_position = 0;
  2234. if (code_seen('P'))
  2235. servo_index = code_value();
  2236. if (code_seen('S')) {
  2237. servo_position = code_value();
  2238. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2239. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2240. servos[servo_index].attach(0);
  2241. #endif
  2242. servos[servo_index].write(servo_position);
  2243. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2244. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2245. servos[servo_index].detach();
  2246. #endif
  2247. }
  2248. else {
  2249. SERIAL_ECHO_START;
  2250. SERIAL_ECHO("Servo ");
  2251. SERIAL_ECHO(servo_index);
  2252. SERIAL_ECHOLN(" out of range");
  2253. }
  2254. }
  2255. else if (servo_index >= 0) {
  2256. SERIAL_PROTOCOL(MSG_OK);
  2257. SERIAL_PROTOCOL(" Servo ");
  2258. SERIAL_PROTOCOL(servo_index);
  2259. SERIAL_PROTOCOL(": ");
  2260. SERIAL_PROTOCOL(servos[servo_index].read());
  2261. SERIAL_PROTOCOLLN("");
  2262. }
  2263. }
  2264. break;
  2265. #endif // NUM_SERVOS > 0
  2266. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2267. case 300: // M300
  2268. {
  2269. int beepS = code_seen('S') ? code_value() : 110;
  2270. int beepP = code_seen('P') ? code_value() : 1000;
  2271. if (beepS > 0)
  2272. {
  2273. #if BEEPER > 0
  2274. tone(BEEPER, beepS);
  2275. delay(beepP);
  2276. noTone(BEEPER);
  2277. #elif defined(ULTRALCD)
  2278. lcd_buzz(beepS, beepP);
  2279. #elif defined(LCD_USE_I2C_BUZZER)
  2280. lcd_buzz(beepP, beepS);
  2281. #endif
  2282. }
  2283. else
  2284. {
  2285. delay(beepP);
  2286. }
  2287. }
  2288. break;
  2289. #endif // M300
  2290. #ifdef PIDTEMP
  2291. case 301: // M301
  2292. {
  2293. if(code_seen('P')) Kp = code_value();
  2294. if(code_seen('I')) Ki = scalePID_i(code_value());
  2295. if(code_seen('D')) Kd = scalePID_d(code_value());
  2296. #ifdef PID_ADD_EXTRUSION_RATE
  2297. if(code_seen('C')) Kc = code_value();
  2298. #endif
  2299. updatePID();
  2300. SERIAL_PROTOCOL(MSG_OK);
  2301. SERIAL_PROTOCOL(" p:");
  2302. SERIAL_PROTOCOL(Kp);
  2303. SERIAL_PROTOCOL(" i:");
  2304. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2305. SERIAL_PROTOCOL(" d:");
  2306. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2307. #ifdef PID_ADD_EXTRUSION_RATE
  2308. SERIAL_PROTOCOL(" c:");
  2309. //Kc does not have scaling applied above, or in resetting defaults
  2310. SERIAL_PROTOCOL(Kc);
  2311. #endif
  2312. SERIAL_PROTOCOLLN("");
  2313. }
  2314. break;
  2315. #endif //PIDTEMP
  2316. #ifdef PIDTEMPBED
  2317. case 304: // M304
  2318. {
  2319. if(code_seen('P')) bedKp = code_value();
  2320. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2321. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2322. updatePID();
  2323. SERIAL_PROTOCOL(MSG_OK);
  2324. SERIAL_PROTOCOL(" p:");
  2325. SERIAL_PROTOCOL(bedKp);
  2326. SERIAL_PROTOCOL(" i:");
  2327. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2328. SERIAL_PROTOCOL(" d:");
  2329. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2330. SERIAL_PROTOCOLLN("");
  2331. }
  2332. break;
  2333. #endif //PIDTEMP
  2334. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2335. {
  2336. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2337. const uint8_t NUM_PULSES=16;
  2338. const float PULSE_LENGTH=0.01524;
  2339. for(int i=0; i < NUM_PULSES; i++) {
  2340. WRITE(PHOTOGRAPH_PIN, HIGH);
  2341. _delay_ms(PULSE_LENGTH);
  2342. WRITE(PHOTOGRAPH_PIN, LOW);
  2343. _delay_ms(PULSE_LENGTH);
  2344. }
  2345. delay(7.33);
  2346. for(int i=0; i < NUM_PULSES; i++) {
  2347. WRITE(PHOTOGRAPH_PIN, HIGH);
  2348. _delay_ms(PULSE_LENGTH);
  2349. WRITE(PHOTOGRAPH_PIN, LOW);
  2350. _delay_ms(PULSE_LENGTH);
  2351. }
  2352. #endif
  2353. }
  2354. break;
  2355. #ifdef DOGLCD
  2356. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2357. {
  2358. if (code_seen('C')) {
  2359. lcd_setcontrast( ((int)code_value())&63 );
  2360. }
  2361. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2362. SERIAL_PROTOCOL(lcd_contrast);
  2363. SERIAL_PROTOCOLLN("");
  2364. }
  2365. break;
  2366. #endif
  2367. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2368. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2369. {
  2370. float temp = .0;
  2371. if (code_seen('S')) temp=code_value();
  2372. set_extrude_min_temp(temp);
  2373. }
  2374. break;
  2375. #endif
  2376. case 303: // M303 PID autotune
  2377. {
  2378. float temp = 150.0;
  2379. int e=0;
  2380. int c=5;
  2381. if (code_seen('E')) e=code_value();
  2382. if (e<0)
  2383. temp=70;
  2384. if (code_seen('S')) temp=code_value();
  2385. if (code_seen('C')) c=code_value();
  2386. PID_autotune(temp, e, c);
  2387. }
  2388. break;
  2389. case 400: // M400 finish all moves
  2390. {
  2391. st_synchronize();
  2392. }
  2393. break;
  2394. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2395. case 401:
  2396. {
  2397. engage_z_probe(); // Engage Z Servo endstop if available
  2398. }
  2399. break;
  2400. case 402:
  2401. {
  2402. retract_z_probe(); // Retract Z Servo endstop if enabled
  2403. }
  2404. break;
  2405. #endif
  2406. case 500: // M500 Store settings in EEPROM
  2407. {
  2408. Config_StoreSettings();
  2409. }
  2410. break;
  2411. case 501: // M501 Read settings from EEPROM
  2412. {
  2413. Config_RetrieveSettings();
  2414. }
  2415. break;
  2416. case 502: // M502 Revert to default settings
  2417. {
  2418. Config_ResetDefault();
  2419. }
  2420. break;
  2421. case 503: // M503 print settings currently in memory
  2422. {
  2423. Config_PrintSettings();
  2424. }
  2425. break;
  2426. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2427. case 540:
  2428. {
  2429. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2430. }
  2431. break;
  2432. #endif
  2433. #ifdef FILAMENTCHANGEENABLE
  2434. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2435. {
  2436. float target[4];
  2437. float lastpos[4];
  2438. target[X_AXIS]=current_position[X_AXIS];
  2439. target[Y_AXIS]=current_position[Y_AXIS];
  2440. target[Z_AXIS]=current_position[Z_AXIS];
  2441. target[E_AXIS]=current_position[E_AXIS];
  2442. lastpos[X_AXIS]=current_position[X_AXIS];
  2443. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2444. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2445. lastpos[E_AXIS]=current_position[E_AXIS];
  2446. //retract by E
  2447. if(code_seen('E'))
  2448. {
  2449. target[E_AXIS]+= code_value();
  2450. }
  2451. else
  2452. {
  2453. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2454. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2455. #endif
  2456. }
  2457. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2458. //lift Z
  2459. if(code_seen('Z'))
  2460. {
  2461. target[Z_AXIS]+= code_value();
  2462. }
  2463. else
  2464. {
  2465. #ifdef FILAMENTCHANGE_ZADD
  2466. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2467. #endif
  2468. }
  2469. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2470. //move xy
  2471. if(code_seen('X'))
  2472. {
  2473. target[X_AXIS]+= code_value();
  2474. }
  2475. else
  2476. {
  2477. #ifdef FILAMENTCHANGE_XPOS
  2478. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2479. #endif
  2480. }
  2481. if(code_seen('Y'))
  2482. {
  2483. target[Y_AXIS]= code_value();
  2484. }
  2485. else
  2486. {
  2487. #ifdef FILAMENTCHANGE_YPOS
  2488. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2489. #endif
  2490. }
  2491. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2492. if(code_seen('L'))
  2493. {
  2494. target[E_AXIS]+= code_value();
  2495. }
  2496. else
  2497. {
  2498. #ifdef FILAMENTCHANGE_FINALRETRACT
  2499. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2500. #endif
  2501. }
  2502. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2503. //finish moves
  2504. st_synchronize();
  2505. //disable extruder steppers so filament can be removed
  2506. disable_e0();
  2507. disable_e1();
  2508. disable_e2();
  2509. delay(100);
  2510. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2511. uint8_t cnt=0;
  2512. while(!lcd_clicked()){
  2513. cnt++;
  2514. manage_heater();
  2515. manage_inactivity();
  2516. lcd_update();
  2517. if(cnt==0)
  2518. {
  2519. #if BEEPER > 0
  2520. SET_OUTPUT(BEEPER);
  2521. WRITE(BEEPER,HIGH);
  2522. delay(3);
  2523. WRITE(BEEPER,LOW);
  2524. delay(3);
  2525. #else
  2526. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2527. lcd_buzz(1000/6,100);
  2528. #else
  2529. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2530. #endif
  2531. #endif
  2532. }
  2533. }
  2534. //return to normal
  2535. if(code_seen('L'))
  2536. {
  2537. target[E_AXIS]+= -code_value();
  2538. }
  2539. else
  2540. {
  2541. #ifdef FILAMENTCHANGE_FINALRETRACT
  2542. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2543. #endif
  2544. }
  2545. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2546. plan_set_e_position(current_position[E_AXIS]);
  2547. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2548. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2549. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2550. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2551. }
  2552. break;
  2553. #endif //FILAMENTCHANGEENABLE
  2554. #ifdef DUAL_X_CARRIAGE
  2555. case 605: // Set dual x-carriage movement mode:
  2556. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2557. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2558. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2559. // millimeters x-offset and an optional differential hotend temperature of
  2560. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2561. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2562. //
  2563. // Note: the X axis should be homed after changing dual x-carriage mode.
  2564. {
  2565. st_synchronize();
  2566. if (code_seen('S'))
  2567. dual_x_carriage_mode = code_value();
  2568. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2569. {
  2570. if (code_seen('X'))
  2571. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2572. if (code_seen('R'))
  2573. duplicate_extruder_temp_offset = code_value();
  2574. SERIAL_ECHO_START;
  2575. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2576. SERIAL_ECHO(" ");
  2577. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2578. SERIAL_ECHO(",");
  2579. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2580. SERIAL_ECHO(" ");
  2581. SERIAL_ECHO(duplicate_extruder_x_offset);
  2582. SERIAL_ECHO(",");
  2583. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2584. }
  2585. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2586. {
  2587. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2588. }
  2589. active_extruder_parked = false;
  2590. extruder_duplication_enabled = false;
  2591. delayed_move_time = 0;
  2592. }
  2593. break;
  2594. #endif //DUAL_X_CARRIAGE
  2595. case 907: // M907 Set digital trimpot motor current using axis codes.
  2596. {
  2597. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2598. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2599. if(code_seen('B')) digipot_current(4,code_value());
  2600. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2601. #endif
  2602. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2603. if(code_seen('X')) digipot_current(0, code_value());
  2604. #endif
  2605. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2606. if(code_seen('Z')) digipot_current(1, code_value());
  2607. #endif
  2608. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2609. if(code_seen('E')) digipot_current(2, code_value());
  2610. #endif
  2611. #ifdef DIGIPOT_I2C
  2612. // this one uses actual amps in floating point
  2613. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2614. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2615. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2616. #endif
  2617. }
  2618. break;
  2619. case 908: // M908 Control digital trimpot directly.
  2620. {
  2621. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2622. uint8_t channel,current;
  2623. if(code_seen('P')) channel=code_value();
  2624. if(code_seen('S')) current=code_value();
  2625. digitalPotWrite(channel, current);
  2626. #endif
  2627. }
  2628. break;
  2629. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2630. {
  2631. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2632. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2633. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2634. if(code_seen('B')) microstep_mode(4,code_value());
  2635. microstep_readings();
  2636. #endif
  2637. }
  2638. break;
  2639. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2640. {
  2641. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2642. if(code_seen('S')) switch((int)code_value())
  2643. {
  2644. case 1:
  2645. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2646. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2647. break;
  2648. case 2:
  2649. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2650. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2651. break;
  2652. }
  2653. microstep_readings();
  2654. #endif
  2655. }
  2656. break;
  2657. case 999: // M999: Restart after being stopped
  2658. Stopped = false;
  2659. lcd_reset_alert_level();
  2660. gcode_LastN = Stopped_gcode_LastN;
  2661. FlushSerialRequestResend();
  2662. break;
  2663. }
  2664. }
  2665. else if(code_seen('T'))
  2666. {
  2667. tmp_extruder = code_value();
  2668. if(tmp_extruder >= EXTRUDERS) {
  2669. SERIAL_ECHO_START;
  2670. SERIAL_ECHO("T");
  2671. SERIAL_ECHO(tmp_extruder);
  2672. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2673. }
  2674. else {
  2675. boolean make_move = false;
  2676. if(code_seen('F')) {
  2677. make_move = true;
  2678. next_feedrate = code_value();
  2679. if(next_feedrate > 0.0) {
  2680. feedrate = next_feedrate;
  2681. }
  2682. }
  2683. #if EXTRUDERS > 1
  2684. if(tmp_extruder != active_extruder) {
  2685. // Save current position to return to after applying extruder offset
  2686. memcpy(destination, current_position, sizeof(destination));
  2687. #ifdef DUAL_X_CARRIAGE
  2688. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2689. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2690. {
  2691. // Park old head: 1) raise 2) move to park position 3) lower
  2692. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2693. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2694. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2695. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2696. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2697. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2698. st_synchronize();
  2699. }
  2700. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2701. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2702. extruder_offset[Y_AXIS][active_extruder] +
  2703. extruder_offset[Y_AXIS][tmp_extruder];
  2704. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2705. extruder_offset[Z_AXIS][active_extruder] +
  2706. extruder_offset[Z_AXIS][tmp_extruder];
  2707. active_extruder = tmp_extruder;
  2708. // This function resets the max/min values - the current position may be overwritten below.
  2709. axis_is_at_home(X_AXIS);
  2710. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2711. {
  2712. current_position[X_AXIS] = inactive_extruder_x_pos;
  2713. inactive_extruder_x_pos = destination[X_AXIS];
  2714. }
  2715. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2716. {
  2717. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2718. if (active_extruder == 0 || active_extruder_parked)
  2719. current_position[X_AXIS] = inactive_extruder_x_pos;
  2720. else
  2721. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2722. inactive_extruder_x_pos = destination[X_AXIS];
  2723. extruder_duplication_enabled = false;
  2724. }
  2725. else
  2726. {
  2727. // record raised toolhead position for use by unpark
  2728. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2729. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2730. active_extruder_parked = true;
  2731. delayed_move_time = 0;
  2732. }
  2733. #else
  2734. // Offset extruder (only by XY)
  2735. int i;
  2736. for(i = 0; i < 2; i++) {
  2737. current_position[i] = current_position[i] -
  2738. extruder_offset[i][active_extruder] +
  2739. extruder_offset[i][tmp_extruder];
  2740. }
  2741. // Set the new active extruder and position
  2742. active_extruder = tmp_extruder;
  2743. #endif //else DUAL_X_CARRIAGE
  2744. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2745. // Move to the old position if 'F' was in the parameters
  2746. if(make_move && Stopped == false) {
  2747. prepare_move();
  2748. }
  2749. }
  2750. #endif
  2751. SERIAL_ECHO_START;
  2752. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2753. SERIAL_PROTOCOLLN((int)active_extruder);
  2754. }
  2755. }
  2756. else
  2757. {
  2758. SERIAL_ECHO_START;
  2759. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2760. SERIAL_ECHO(cmdbuffer[bufindr]);
  2761. SERIAL_ECHOLNPGM("\"");
  2762. }
  2763. ClearToSend();
  2764. }
  2765. void FlushSerialRequestResend()
  2766. {
  2767. //char cmdbuffer[bufindr][100]="Resend:";
  2768. MYSERIAL.flush();
  2769. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2770. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2771. ClearToSend();
  2772. }
  2773. void ClearToSend()
  2774. {
  2775. previous_millis_cmd = millis();
  2776. #ifdef SDSUPPORT
  2777. if(fromsd[bufindr])
  2778. return;
  2779. #endif //SDSUPPORT
  2780. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2781. }
  2782. void get_coordinates()
  2783. {
  2784. bool seen[4]={false,false,false,false};
  2785. for(int8_t i=0; i < NUM_AXIS; i++) {
  2786. if(code_seen(axis_codes[i]))
  2787. {
  2788. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2789. seen[i]=true;
  2790. }
  2791. else destination[i] = current_position[i]; //Are these else lines really needed?
  2792. }
  2793. if(code_seen('F')) {
  2794. next_feedrate = code_value();
  2795. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2796. }
  2797. }
  2798. void get_arc_coordinates()
  2799. {
  2800. #ifdef SF_ARC_FIX
  2801. bool relative_mode_backup = relative_mode;
  2802. relative_mode = true;
  2803. #endif
  2804. get_coordinates();
  2805. #ifdef SF_ARC_FIX
  2806. relative_mode=relative_mode_backup;
  2807. #endif
  2808. if(code_seen('I')) {
  2809. offset[0] = code_value();
  2810. }
  2811. else {
  2812. offset[0] = 0.0;
  2813. }
  2814. if(code_seen('J')) {
  2815. offset[1] = code_value();
  2816. }
  2817. else {
  2818. offset[1] = 0.0;
  2819. }
  2820. }
  2821. void clamp_to_software_endstops(float target[3])
  2822. {
  2823. if (min_software_endstops) {
  2824. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2825. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2826. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2827. }
  2828. if (max_software_endstops) {
  2829. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2830. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2831. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2832. }
  2833. }
  2834. #ifdef DELTA
  2835. void recalc_delta_settings(float radius, float diagonal_rod)
  2836. {
  2837. delta_tower1_x= -SIN_60*radius; // front left tower
  2838. delta_tower1_y= -COS_60*radius;
  2839. delta_tower2_x= SIN_60*radius; // front right tower
  2840. delta_tower2_y= -COS_60*radius;
  2841. delta_tower3_x= 0.0; // back middle tower
  2842. delta_tower3_y= radius;
  2843. delta_diagonal_rod_2= sq(diagonal_rod);
  2844. }
  2845. void calculate_delta(float cartesian[3])
  2846. {
  2847. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  2848. - sq(delta_tower1_x-cartesian[X_AXIS])
  2849. - sq(delta_tower1_y-cartesian[Y_AXIS])
  2850. ) + cartesian[Z_AXIS];
  2851. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  2852. - sq(delta_tower2_x-cartesian[X_AXIS])
  2853. - sq(delta_tower2_y-cartesian[Y_AXIS])
  2854. ) + cartesian[Z_AXIS];
  2855. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  2856. - sq(delta_tower3_x-cartesian[X_AXIS])
  2857. - sq(delta_tower3_y-cartesian[Y_AXIS])
  2858. ) + cartesian[Z_AXIS];
  2859. /*
  2860. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2861. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2862. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2863. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2864. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2865. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2866. */
  2867. }
  2868. #endif
  2869. void prepare_move()
  2870. {
  2871. clamp_to_software_endstops(destination);
  2872. previous_millis_cmd = millis();
  2873. #ifdef DELTA
  2874. float difference[NUM_AXIS];
  2875. for (int8_t i=0; i < NUM_AXIS; i++) {
  2876. difference[i] = destination[i] - current_position[i];
  2877. }
  2878. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2879. sq(difference[Y_AXIS]) +
  2880. sq(difference[Z_AXIS]));
  2881. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2882. if (cartesian_mm < 0.000001) { return; }
  2883. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2884. int steps = max(1, int(delta_segments_per_second * seconds));
  2885. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2886. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2887. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2888. for (int s = 1; s <= steps; s++) {
  2889. float fraction = float(s) / float(steps);
  2890. for(int8_t i=0; i < NUM_AXIS; i++) {
  2891. destination[i] = current_position[i] + difference[i] * fraction;
  2892. }
  2893. calculate_delta(destination);
  2894. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2895. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2896. active_extruder);
  2897. }
  2898. #else
  2899. #ifdef DUAL_X_CARRIAGE
  2900. if (active_extruder_parked)
  2901. {
  2902. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2903. {
  2904. // move duplicate extruder into correct duplication position.
  2905. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2906. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2907. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2908. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2909. st_synchronize();
  2910. extruder_duplication_enabled = true;
  2911. active_extruder_parked = false;
  2912. }
  2913. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2914. {
  2915. if (current_position[E_AXIS] == destination[E_AXIS])
  2916. {
  2917. // this is a travel move - skit it but keep track of current position (so that it can later
  2918. // be used as start of first non-travel move)
  2919. if (delayed_move_time != 0xFFFFFFFFUL)
  2920. {
  2921. memcpy(current_position, destination, sizeof(current_position));
  2922. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2923. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2924. delayed_move_time = millis();
  2925. return;
  2926. }
  2927. }
  2928. delayed_move_time = 0;
  2929. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2930. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2931. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2932. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2934. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2935. active_extruder_parked = false;
  2936. }
  2937. }
  2938. #endif //DUAL_X_CARRIAGE
  2939. // Do not use feedmultiply for E or Z only moves
  2940. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2941. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2942. }
  2943. else {
  2944. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2945. }
  2946. #endif //else DELTA
  2947. for(int8_t i=0; i < NUM_AXIS; i++) {
  2948. current_position[i] = destination[i];
  2949. }
  2950. }
  2951. void prepare_arc_move(char isclockwise) {
  2952. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2953. // Trace the arc
  2954. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2955. // As far as the parser is concerned, the position is now == target. In reality the
  2956. // motion control system might still be processing the action and the real tool position
  2957. // in any intermediate location.
  2958. for(int8_t i=0; i < NUM_AXIS; i++) {
  2959. current_position[i] = destination[i];
  2960. }
  2961. previous_millis_cmd = millis();
  2962. }
  2963. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2964. #if defined(FAN_PIN)
  2965. #if CONTROLLERFAN_PIN == FAN_PIN
  2966. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2967. #endif
  2968. #endif
  2969. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2970. unsigned long lastMotorCheck = 0;
  2971. void controllerFan()
  2972. {
  2973. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2974. {
  2975. lastMotorCheck = millis();
  2976. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2977. #if EXTRUDERS > 2
  2978. || !READ(E2_ENABLE_PIN)
  2979. #endif
  2980. #if EXTRUDER > 1
  2981. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2982. || !READ(X2_ENABLE_PIN)
  2983. #endif
  2984. || !READ(E1_ENABLE_PIN)
  2985. #endif
  2986. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2987. {
  2988. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2989. }
  2990. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2991. {
  2992. digitalWrite(CONTROLLERFAN_PIN, 0);
  2993. analogWrite(CONTROLLERFAN_PIN, 0);
  2994. }
  2995. else
  2996. {
  2997. // allows digital or PWM fan output to be used (see M42 handling)
  2998. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2999. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3000. }
  3001. }
  3002. }
  3003. #endif
  3004. #ifdef TEMP_STAT_LEDS
  3005. static bool blue_led = false;
  3006. static bool red_led = false;
  3007. static uint32_t stat_update = 0;
  3008. void handle_status_leds(void) {
  3009. float max_temp = 0.0;
  3010. if(millis() > stat_update) {
  3011. stat_update += 500; // Update every 0.5s
  3012. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3013. max_temp = max(max_temp, degHotend(cur_extruder));
  3014. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3015. }
  3016. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3017. max_temp = max(max_temp, degTargetBed());
  3018. max_temp = max(max_temp, degBed());
  3019. #endif
  3020. if((max_temp > 55.0) && (red_led == false)) {
  3021. digitalWrite(STAT_LED_RED, 1);
  3022. digitalWrite(STAT_LED_BLUE, 0);
  3023. red_led = true;
  3024. blue_led = false;
  3025. }
  3026. if((max_temp < 54.0) && (blue_led == false)) {
  3027. digitalWrite(STAT_LED_RED, 0);
  3028. digitalWrite(STAT_LED_BLUE, 1);
  3029. red_led = false;
  3030. blue_led = true;
  3031. }
  3032. }
  3033. }
  3034. #endif
  3035. void manage_inactivity()
  3036. {
  3037. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3038. if(max_inactive_time)
  3039. kill();
  3040. if(stepper_inactive_time) {
  3041. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3042. {
  3043. if(blocks_queued() == false) {
  3044. disable_x();
  3045. disable_y();
  3046. disable_z();
  3047. disable_e0();
  3048. disable_e1();
  3049. disable_e2();
  3050. }
  3051. }
  3052. }
  3053. #if defined(KILL_PIN) && KILL_PIN > -1
  3054. if( 0 == READ(KILL_PIN) )
  3055. kill();
  3056. #endif
  3057. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3058. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3059. #endif
  3060. #ifdef EXTRUDER_RUNOUT_PREVENT
  3061. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3062. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3063. {
  3064. bool oldstatus=READ(E0_ENABLE_PIN);
  3065. enable_e0();
  3066. float oldepos=current_position[E_AXIS];
  3067. float oldedes=destination[E_AXIS];
  3068. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3069. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3070. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3071. current_position[E_AXIS]=oldepos;
  3072. destination[E_AXIS]=oldedes;
  3073. plan_set_e_position(oldepos);
  3074. previous_millis_cmd=millis();
  3075. st_synchronize();
  3076. WRITE(E0_ENABLE_PIN,oldstatus);
  3077. }
  3078. #endif
  3079. #if defined(DUAL_X_CARRIAGE)
  3080. // handle delayed move timeout
  3081. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3082. {
  3083. // travel moves have been received so enact them
  3084. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3085. memcpy(destination,current_position,sizeof(destination));
  3086. prepare_move();
  3087. }
  3088. #endif
  3089. #ifdef TEMP_STAT_LEDS
  3090. handle_status_leds();
  3091. #endif
  3092. check_axes_activity();
  3093. }
  3094. void kill()
  3095. {
  3096. cli(); // Stop interrupts
  3097. disable_heater();
  3098. disable_x();
  3099. disable_y();
  3100. disable_z();
  3101. disable_e0();
  3102. disable_e1();
  3103. disable_e2();
  3104. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3105. pinMode(PS_ON_PIN,INPUT);
  3106. #endif
  3107. SERIAL_ERROR_START;
  3108. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3109. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3110. suicide();
  3111. while(1) { /* Intentionally left empty */ } // Wait for reset
  3112. }
  3113. void Stop()
  3114. {
  3115. disable_heater();
  3116. if(Stopped == false) {
  3117. Stopped = true;
  3118. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3119. SERIAL_ERROR_START;
  3120. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3121. LCD_MESSAGEPGM(MSG_STOPPED);
  3122. }
  3123. }
  3124. bool IsStopped() { return Stopped; };
  3125. #ifdef FAST_PWM_FAN
  3126. void setPwmFrequency(uint8_t pin, int val)
  3127. {
  3128. val &= 0x07;
  3129. switch(digitalPinToTimer(pin))
  3130. {
  3131. #if defined(TCCR0A)
  3132. case TIMER0A:
  3133. case TIMER0B:
  3134. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3135. // TCCR0B |= val;
  3136. break;
  3137. #endif
  3138. #if defined(TCCR1A)
  3139. case TIMER1A:
  3140. case TIMER1B:
  3141. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3142. // TCCR1B |= val;
  3143. break;
  3144. #endif
  3145. #if defined(TCCR2)
  3146. case TIMER2:
  3147. case TIMER2:
  3148. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3149. TCCR2 |= val;
  3150. break;
  3151. #endif
  3152. #if defined(TCCR2A)
  3153. case TIMER2A:
  3154. case TIMER2B:
  3155. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3156. TCCR2B |= val;
  3157. break;
  3158. #endif
  3159. #if defined(TCCR3A)
  3160. case TIMER3A:
  3161. case TIMER3B:
  3162. case TIMER3C:
  3163. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3164. TCCR3B |= val;
  3165. break;
  3166. #endif
  3167. #if defined(TCCR4A)
  3168. case TIMER4A:
  3169. case TIMER4B:
  3170. case TIMER4C:
  3171. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3172. TCCR4B |= val;
  3173. break;
  3174. #endif
  3175. #if defined(TCCR5A)
  3176. case TIMER5A:
  3177. case TIMER5B:
  3178. case TIMER5C:
  3179. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3180. TCCR5B |= val;
  3181. break;
  3182. #endif
  3183. }
  3184. }
  3185. #endif //FAST_PWM_FAN
  3186. bool setTargetedHotend(int code){
  3187. tmp_extruder = active_extruder;
  3188. if(code_seen('T')) {
  3189. tmp_extruder = code_value();
  3190. if(tmp_extruder >= EXTRUDERS) {
  3191. SERIAL_ECHO_START;
  3192. switch(code){
  3193. case 104:
  3194. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3195. break;
  3196. case 105:
  3197. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3198. break;
  3199. case 109:
  3200. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3201. break;
  3202. case 218:
  3203. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3204. break;
  3205. }
  3206. SERIAL_ECHOLN(tmp_extruder);
  3207. return true;
  3208. }
  3209. }
  3210. return false;
  3211. }