My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ConfigurationStore.cpp 21KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730
  1. /**
  2. * ConfigurationStore.cpp
  3. *
  4. * Configuration and EEPROM storage
  5. *
  6. * V16 EEPROM Layout:
  7. *
  8. * ver
  9. * axis_steps_per_unit (x4)
  10. * max_feedrate (x4)
  11. * max_acceleration_units_per_sq_second (x4)
  12. * acceleration
  13. * retract_acceleration
  14. * travel_aceeleration
  15. * minimumfeedrate
  16. * mintravelfeedrate
  17. * minsegmenttime
  18. * max_xy_jerk
  19. * max_z_jerk
  20. * max_e_jerk
  21. * add_homing (x3)
  22. *
  23. * Mesh bed leveling:
  24. * active
  25. * z_values[][]
  26. *
  27. * DELTA:
  28. * endstop_adj (x3)
  29. * delta_radius
  30. * delta_diagonal_rod
  31. * delta_segments_per_second
  32. *
  33. * ULTIPANEL:
  34. * plaPreheatHotendTemp
  35. * plaPreheatHPBTemp
  36. * plaPreheatFanSpeed
  37. * absPreheatHotendTemp
  38. * absPreheatHPBTemp
  39. * absPreheatFanSpeed
  40. * zprobe_zoffset
  41. *
  42. * PIDTEMP:
  43. * Kp[0], Ki[0], Kd[0], Kc[0]
  44. * Kp[1], Ki[1], Kd[1], Kc[1]
  45. * Kp[2], Ki[2], Kd[2], Kc[2]
  46. * Kp[3], Ki[3], Kd[3], Kc[3]
  47. *
  48. * DOGLCD:
  49. * lcd_contrast
  50. *
  51. * SCARA:
  52. * axis_scaling (x3)
  53. *
  54. * FWRETRACT:
  55. * autoretract_enabled
  56. * retract_length
  57. * retract_length_swap
  58. * retract_feedrate
  59. * retract_zlift
  60. * retract_recover_length
  61. * retract_recover_length_swap
  62. * retract_recover_feedrate
  63. *
  64. * volumetric_enabled
  65. *
  66. * filament_size (x4)
  67. *
  68. */
  69. #include "Marlin.h"
  70. #include "language.h"
  71. #include "planner.h"
  72. #include "temperature.h"
  73. #include "ultralcd.h"
  74. #include "ConfigurationStore.h"
  75. #if defined(MESH_BED_LEVELING)
  76. #include "mesh_bed_leveling.h"
  77. #endif // MESH_BED_LEVELING
  78. void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
  79. uint8_t c;
  80. while(size--) {
  81. eeprom_write_byte((unsigned char*)pos, *value);
  82. c = eeprom_read_byte((unsigned char*)pos);
  83. if (c != *value) {
  84. SERIAL_ECHO_START;
  85. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  86. }
  87. pos++;
  88. value++;
  89. };
  90. }
  91. void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
  92. do {
  93. *value = eeprom_read_byte((unsigned char*)pos);
  94. pos++;
  95. value++;
  96. } while (--size);
  97. }
  98. #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
  99. #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
  100. //======================================================================================
  101. #define DUMMY_PID_VALUE 3000.0f
  102. #define EEPROM_OFFSET 100
  103. // IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  104. // in the functions below, also increment the version number. This makes sure that
  105. // the default values are used whenever there is a change to the data, to prevent
  106. // wrong data being written to the variables.
  107. // ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
  108. #define EEPROM_VERSION "V17"
  109. #ifdef EEPROM_SETTINGS
  110. void Config_StoreSettings() {
  111. float dummy = 0.0f;
  112. char ver[4] = "000";
  113. int i = EEPROM_OFFSET;
  114. EEPROM_WRITE_VAR(i, ver); // invalidate data first
  115. EEPROM_WRITE_VAR(i, axis_steps_per_unit);
  116. EEPROM_WRITE_VAR(i, max_feedrate);
  117. EEPROM_WRITE_VAR(i, max_acceleration_units_per_sq_second);
  118. EEPROM_WRITE_VAR(i, acceleration);
  119. EEPROM_WRITE_VAR(i, retract_acceleration);
  120. EEPROM_WRITE_VAR(i, travel_acceleration);
  121. EEPROM_WRITE_VAR(i, minimumfeedrate);
  122. EEPROM_WRITE_VAR(i, mintravelfeedrate);
  123. EEPROM_WRITE_VAR(i, minsegmenttime);
  124. EEPROM_WRITE_VAR(i, max_xy_jerk);
  125. EEPROM_WRITE_VAR(i, max_z_jerk);
  126. EEPROM_WRITE_VAR(i, max_e_jerk);
  127. EEPROM_WRITE_VAR(i, add_homing);
  128. uint8_t mesh_num_x = 3;
  129. uint8_t mesh_num_y = 3;
  130. #if defined(MESH_BED_LEVELING)
  131. // Compile time test that sizeof(mbl.z_values) is as expected
  132. typedef char c_assert[(sizeof(mbl.z_values) == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS*sizeof(dummy)) ? 1 : -1];
  133. mesh_num_x = MESH_NUM_X_POINTS;
  134. mesh_num_y = MESH_NUM_Y_POINTS;
  135. EEPROM_WRITE_VAR(i, mbl.active);
  136. EEPROM_WRITE_VAR(i, mesh_num_x);
  137. EEPROM_WRITE_VAR(i, mesh_num_y);
  138. EEPROM_WRITE_VAR(i, mbl.z_values);
  139. #else
  140. uint8_t dummy_uint8 = 0;
  141. EEPROM_WRITE_VAR(i, dummy_uint8);
  142. EEPROM_WRITE_VAR(i, mesh_num_x);
  143. EEPROM_WRITE_VAR(i, mesh_num_y);
  144. dummy = 0.0f;
  145. for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
  146. EEPROM_WRITE_VAR(i, dummy);
  147. }
  148. #endif // MESH_BED_LEVELING
  149. #ifdef DELTA
  150. EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
  151. EEPROM_WRITE_VAR(i, delta_radius); // 1 float
  152. EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float
  153. EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
  154. #else
  155. dummy = 0.0f;
  156. for (int q=6; q--;) EEPROM_WRITE_VAR(i, dummy);
  157. #endif
  158. #ifndef ULTIPANEL
  159. int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
  160. absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  161. #endif // !ULTIPANEL
  162. EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
  163. EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
  164. EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
  165. EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
  166. EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
  167. EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
  168. EEPROM_WRITE_VAR(i, zprobe_zoffset);
  169. for (int e = 0; e < 4; e++) {
  170. #ifdef PIDTEMP
  171. if (e < EXTRUDERS) {
  172. EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
  173. EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
  174. EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
  175. #ifdef PID_ADD_EXTRUSION_RATE
  176. EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
  177. #else
  178. dummy = 1.0f; // 1.0 = default kc
  179. EEPROM_WRITE_VAR(i, dummy);
  180. #endif
  181. }
  182. else {
  183. #else // !PIDTEMP
  184. {
  185. #endif // !PIDTEMP
  186. dummy = DUMMY_PID_VALUE;
  187. EEPROM_WRITE_VAR(i, dummy);
  188. dummy = 0.0f;
  189. for (int q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
  190. }
  191. } // Extruders Loop
  192. #ifndef DOGLCD
  193. int lcd_contrast = 32;
  194. #endif
  195. EEPROM_WRITE_VAR(i, lcd_contrast);
  196. #ifdef SCARA
  197. EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
  198. #else
  199. dummy = 1.0f;
  200. EEPROM_WRITE_VAR(i, dummy);
  201. #endif
  202. #ifdef FWRETRACT
  203. EEPROM_WRITE_VAR(i, autoretract_enabled);
  204. EEPROM_WRITE_VAR(i, retract_length);
  205. #if EXTRUDERS > 1
  206. EEPROM_WRITE_VAR(i, retract_length_swap);
  207. #else
  208. dummy = 0.0f;
  209. EEPROM_WRITE_VAR(i, dummy);
  210. #endif
  211. EEPROM_WRITE_VAR(i, retract_feedrate);
  212. EEPROM_WRITE_VAR(i, retract_zlift);
  213. EEPROM_WRITE_VAR(i, retract_recover_length);
  214. #if EXTRUDERS > 1
  215. EEPROM_WRITE_VAR(i, retract_recover_length_swap);
  216. #else
  217. dummy = 0.0f;
  218. EEPROM_WRITE_VAR(i, dummy);
  219. #endif
  220. EEPROM_WRITE_VAR(i, retract_recover_feedrate);
  221. #endif // FWRETRACT
  222. EEPROM_WRITE_VAR(i, volumetric_enabled);
  223. // Save filament sizes
  224. for (int q = 0; q < 4; q++) {
  225. if (q < EXTRUDERS) dummy = filament_size[q];
  226. EEPROM_WRITE_VAR(i, dummy);
  227. }
  228. int storageSize = i;
  229. char ver2[4] = EEPROM_VERSION;
  230. int j = EEPROM_OFFSET;
  231. EEPROM_WRITE_VAR(j, ver2); // validate data
  232. // Report storage size
  233. SERIAL_ECHO_START;
  234. SERIAL_ECHOPAIR("Settings Stored (", (unsigned long)i);
  235. SERIAL_ECHOLNPGM(" bytes)");
  236. }
  237. void Config_RetrieveSettings() {
  238. int i = EEPROM_OFFSET;
  239. char stored_ver[4];
  240. char ver[4] = EEPROM_VERSION;
  241. EEPROM_READ_VAR(i, stored_ver); //read stored version
  242. // SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
  243. if (strncmp(ver, stored_ver, 3) != 0) {
  244. Config_ResetDefault();
  245. }
  246. else {
  247. float dummy = 0;
  248. // version number match
  249. EEPROM_READ_VAR(i, axis_steps_per_unit);
  250. EEPROM_READ_VAR(i, max_feedrate);
  251. EEPROM_READ_VAR(i, max_acceleration_units_per_sq_second);
  252. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  253. reset_acceleration_rates();
  254. EEPROM_READ_VAR(i, acceleration);
  255. EEPROM_READ_VAR(i, retract_acceleration);
  256. EEPROM_READ_VAR(i, travel_acceleration);
  257. EEPROM_READ_VAR(i, minimumfeedrate);
  258. EEPROM_READ_VAR(i, mintravelfeedrate);
  259. EEPROM_READ_VAR(i, minsegmenttime);
  260. EEPROM_READ_VAR(i, max_xy_jerk);
  261. EEPROM_READ_VAR(i, max_z_jerk);
  262. EEPROM_READ_VAR(i, max_e_jerk);
  263. EEPROM_READ_VAR(i, add_homing);
  264. uint8_t mesh_num_x = 0;
  265. uint8_t mesh_num_y = 0;
  266. #if defined(MESH_BED_LEVELING)
  267. EEPROM_READ_VAR(i, mbl.active);
  268. EEPROM_READ_VAR(i, mesh_num_x);
  269. EEPROM_READ_VAR(i, mesh_num_y);
  270. if (mesh_num_x != MESH_NUM_X_POINTS ||
  271. mesh_num_y != MESH_NUM_Y_POINTS) {
  272. mbl.reset();
  273. for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
  274. EEPROM_READ_VAR(i, dummy);
  275. }
  276. } else {
  277. EEPROM_READ_VAR(i, mbl.z_values);
  278. }
  279. #else
  280. uint8_t dummy_uint8 = 0;
  281. EEPROM_READ_VAR(i, dummy_uint8);
  282. EEPROM_READ_VAR(i, mesh_num_x);
  283. EEPROM_READ_VAR(i, mesh_num_y);
  284. for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
  285. EEPROM_READ_VAR(i, dummy);
  286. }
  287. #endif // MESH_BED_LEVELING
  288. #ifdef DELTA
  289. EEPROM_READ_VAR(i, endstop_adj); // 3 floats
  290. EEPROM_READ_VAR(i, delta_radius); // 1 float
  291. EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float
  292. EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float
  293. #else
  294. for (int q=6; q--;) EEPROM_READ_VAR(i, dummy);
  295. #endif
  296. #ifndef ULTIPANEL
  297. int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
  298. absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
  299. #endif
  300. EEPROM_READ_VAR(i, plaPreheatHotendTemp);
  301. EEPROM_READ_VAR(i, plaPreheatHPBTemp);
  302. EEPROM_READ_VAR(i, plaPreheatFanSpeed);
  303. EEPROM_READ_VAR(i, absPreheatHotendTemp);
  304. EEPROM_READ_VAR(i, absPreheatHPBTemp);
  305. EEPROM_READ_VAR(i, absPreheatFanSpeed);
  306. EEPROM_READ_VAR(i, zprobe_zoffset);
  307. #ifdef PIDTEMP
  308. for (int e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
  309. EEPROM_READ_VAR(i, dummy);
  310. if (e < EXTRUDERS && dummy != DUMMY_PID_VALUE) {
  311. // do not need to scale PID values as the values in EEPROM are already scaled
  312. PID_PARAM(Kp, e) = dummy;
  313. EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
  314. EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
  315. #ifdef PID_ADD_EXTRUSION_RATE
  316. EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
  317. #else
  318. EEPROM_READ_VAR(i, dummy);
  319. #endif
  320. }
  321. else {
  322. for (int q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
  323. }
  324. }
  325. #else // !PIDTEMP
  326. // 4 x 4 = 16 slots for PID parameters
  327. for (int q=16; q--;) EEPROM_READ_VAR(i, dummy); // 4x Kp, Ki, Kd, Kc
  328. #endif // !PIDTEMP
  329. #ifndef DOGLCD
  330. int lcd_contrast;
  331. #endif
  332. EEPROM_READ_VAR(i, lcd_contrast);
  333. #ifdef SCARA
  334. EEPROM_READ_VAR(i, axis_scaling); // 3 floats
  335. #else
  336. EEPROM_READ_VAR(i, dummy);
  337. #endif
  338. #ifdef FWRETRACT
  339. EEPROM_READ_VAR(i, autoretract_enabled);
  340. EEPROM_READ_VAR(i, retract_length);
  341. #if EXTRUDERS > 1
  342. EEPROM_READ_VAR(i, retract_length_swap);
  343. #else
  344. EEPROM_READ_VAR(i, dummy);
  345. #endif
  346. EEPROM_READ_VAR(i, retract_feedrate);
  347. EEPROM_READ_VAR(i, retract_zlift);
  348. EEPROM_READ_VAR(i, retract_recover_length);
  349. #if EXTRUDERS > 1
  350. EEPROM_READ_VAR(i, retract_recover_length_swap);
  351. #else
  352. EEPROM_READ_VAR(i, dummy);
  353. #endif
  354. EEPROM_READ_VAR(i, retract_recover_feedrate);
  355. #endif // FWRETRACT
  356. EEPROM_READ_VAR(i, volumetric_enabled);
  357. for (int q = 0; q < 4; q++) {
  358. EEPROM_READ_VAR(i, dummy);
  359. if (q < EXTRUDERS) filament_size[q] = dummy;
  360. }
  361. calculate_volumetric_multipliers();
  362. // Call updatePID (similar to when we have processed M301)
  363. updatePID();
  364. // Report settings retrieved and length
  365. SERIAL_ECHO_START;
  366. SERIAL_ECHO(ver);
  367. SERIAL_ECHOPAIR(" stored settings retrieved (", (unsigned long)i);
  368. SERIAL_ECHOLNPGM(" bytes)");
  369. }
  370. #ifdef EEPROM_CHITCHAT
  371. Config_PrintSettings();
  372. #endif
  373. }
  374. #endif // EEPROM_SETTINGS
  375. void Config_ResetDefault() {
  376. float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
  377. float tmp2[] = DEFAULT_MAX_FEEDRATE;
  378. long tmp3[] = DEFAULT_MAX_ACCELERATION;
  379. for (int i = 0; i < NUM_AXIS; i++) {
  380. axis_steps_per_unit[i] = tmp1[i];
  381. max_feedrate[i] = tmp2[i];
  382. max_acceleration_units_per_sq_second[i] = tmp3[i];
  383. #ifdef SCARA
  384. if (i < sizeof(axis_scaling) / sizeof(*axis_scaling))
  385. axis_scaling[i] = 1;
  386. #endif
  387. }
  388. // steps per sq second need to be updated to agree with the units per sq second
  389. reset_acceleration_rates();
  390. acceleration = DEFAULT_ACCELERATION;
  391. retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  392. travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  393. minimumfeedrate = DEFAULT_MINIMUMFEEDRATE;
  394. minsegmenttime = DEFAULT_MINSEGMENTTIME;
  395. mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE;
  396. max_xy_jerk = DEFAULT_XYJERK;
  397. max_z_jerk = DEFAULT_ZJERK;
  398. max_e_jerk = DEFAULT_EJERK;
  399. add_homing[X_AXIS] = add_homing[Y_AXIS] = add_homing[Z_AXIS] = 0;
  400. #if defined(MESH_BED_LEVELING)
  401. mbl.active = 0;
  402. #endif // MESH_BED_LEVELING
  403. #ifdef DELTA
  404. endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
  405. delta_radius = DELTA_RADIUS;
  406. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  407. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  408. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  409. #endif
  410. #ifdef ULTIPANEL
  411. plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
  412. plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
  413. plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
  414. absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
  415. absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
  416. absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
  417. #endif
  418. #ifdef ENABLE_AUTO_BED_LEVELING
  419. zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  420. #endif
  421. #ifdef DOGLCD
  422. lcd_contrast = DEFAULT_LCD_CONTRAST;
  423. #endif
  424. #ifdef PIDTEMP
  425. #ifdef PID_PARAMS_PER_EXTRUDER
  426. for (int e = 0; e < EXTRUDERS; e++)
  427. #else
  428. int e = 0; // only need to write once
  429. #endif
  430. {
  431. PID_PARAM(Kp, e) = DEFAULT_Kp;
  432. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  433. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  434. #ifdef PID_ADD_EXTRUSION_RATE
  435. PID_PARAM(Kc, e) = DEFAULT_Kc;
  436. #endif
  437. }
  438. // call updatePID (similar to when we have processed M301)
  439. updatePID();
  440. #endif // PIDTEMP
  441. #ifdef FWRETRACT
  442. autoretract_enabled = false;
  443. retract_length = RETRACT_LENGTH;
  444. #if EXTRUDERS > 1
  445. retract_length_swap = RETRACT_LENGTH_SWAP;
  446. #endif
  447. retract_feedrate = RETRACT_FEEDRATE;
  448. retract_zlift = RETRACT_ZLIFT;
  449. retract_recover_length = RETRACT_RECOVER_LENGTH;
  450. #if EXTRUDERS > 1
  451. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  452. #endif
  453. retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  454. #endif
  455. volumetric_enabled = false;
  456. filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA;
  457. #if EXTRUDERS > 1
  458. filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA;
  459. #if EXTRUDERS > 2
  460. filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA;
  461. #if EXTRUDERS > 3
  462. filament_size[3] = DEFAULT_NOMINAL_FILAMENT_DIA;
  463. #endif
  464. #endif
  465. #endif
  466. calculate_volumetric_multipliers();
  467. SERIAL_ECHO_START;
  468. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  469. }
  470. #ifndef DISABLE_M503
  471. void Config_PrintSettings(bool forReplay) {
  472. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  473. SERIAL_ECHO_START;
  474. if (!forReplay) {
  475. SERIAL_ECHOLNPGM("Steps per unit:");
  476. SERIAL_ECHO_START;
  477. }
  478. SERIAL_ECHOPAIR(" M92 X", axis_steps_per_unit[X_AXIS]);
  479. SERIAL_ECHOPAIR(" Y", axis_steps_per_unit[Y_AXIS]);
  480. SERIAL_ECHOPAIR(" Z", axis_steps_per_unit[Z_AXIS]);
  481. SERIAL_ECHOPAIR(" E", axis_steps_per_unit[E_AXIS]);
  482. SERIAL_EOL;
  483. SERIAL_ECHO_START;
  484. #ifdef SCARA
  485. if (!forReplay) {
  486. SERIAL_ECHOLNPGM("Scaling factors:");
  487. SERIAL_ECHO_START;
  488. }
  489. SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]);
  490. SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
  491. SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
  492. SERIAL_EOL;
  493. SERIAL_ECHO_START;
  494. #endif // SCARA
  495. if (!forReplay) {
  496. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  497. SERIAL_ECHO_START;
  498. }
  499. SERIAL_ECHOPAIR(" M203 X", max_feedrate[X_AXIS]);
  500. SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]);
  501. SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]);
  502. SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]);
  503. SERIAL_EOL;
  504. SERIAL_ECHO_START;
  505. if (!forReplay) {
  506. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  507. SERIAL_ECHO_START;
  508. }
  509. SERIAL_ECHOPAIR(" M201 X", max_acceleration_units_per_sq_second[X_AXIS] );
  510. SERIAL_ECHOPAIR(" Y", max_acceleration_units_per_sq_second[Y_AXIS] );
  511. SERIAL_ECHOPAIR(" Z", max_acceleration_units_per_sq_second[Z_AXIS] );
  512. SERIAL_ECHOPAIR(" E", max_acceleration_units_per_sq_second[E_AXIS]);
  513. SERIAL_EOL;
  514. SERIAL_ECHO_START;
  515. if (!forReplay) {
  516. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  517. SERIAL_ECHO_START;
  518. }
  519. SERIAL_ECHOPAIR(" M204 P", acceleration );
  520. SERIAL_ECHOPAIR(" R", retract_acceleration);
  521. SERIAL_ECHOPAIR(" T", travel_acceleration);
  522. SERIAL_EOL;
  523. SERIAL_ECHO_START;
  524. if (!forReplay) {
  525. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  526. SERIAL_ECHO_START;
  527. }
  528. SERIAL_ECHOPAIR(" M205 S", minimumfeedrate );
  529. SERIAL_ECHOPAIR(" T", mintravelfeedrate );
  530. SERIAL_ECHOPAIR(" B", minsegmenttime );
  531. SERIAL_ECHOPAIR(" X", max_xy_jerk );
  532. SERIAL_ECHOPAIR(" Z", max_z_jerk);
  533. SERIAL_ECHOPAIR(" E", max_e_jerk);
  534. SERIAL_EOL;
  535. SERIAL_ECHO_START;
  536. if (!forReplay) {
  537. SERIAL_ECHOLNPGM("Home offset (mm):");
  538. SERIAL_ECHO_START;
  539. }
  540. SERIAL_ECHOPAIR(" M206 X", add_homing[X_AXIS] );
  541. SERIAL_ECHOPAIR(" Y", add_homing[Y_AXIS] );
  542. SERIAL_ECHOPAIR(" Z", add_homing[Z_AXIS] );
  543. SERIAL_EOL;
  544. #ifdef DELTA
  545. SERIAL_ECHO_START;
  546. if (!forReplay) {
  547. SERIAL_ECHOLNPGM("Endstop adjustement (mm):");
  548. SERIAL_ECHO_START;
  549. }
  550. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS] );
  551. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS] );
  552. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS] );
  553. SERIAL_EOL;
  554. SERIAL_ECHO_START;
  555. SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second");
  556. SERIAL_ECHO_START;
  557. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod );
  558. SERIAL_ECHOPAIR(" R", delta_radius );
  559. SERIAL_ECHOPAIR(" S", delta_segments_per_second );
  560. SERIAL_EOL;
  561. #endif // DELTA
  562. #ifdef PIDTEMP
  563. SERIAL_ECHO_START;
  564. if (!forReplay) {
  565. SERIAL_ECHOLNPGM("PID settings:");
  566. SERIAL_ECHO_START;
  567. }
  568. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echos values for E0
  569. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  570. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  571. SERIAL_EOL;
  572. #endif // PIDTEMP
  573. #ifdef FWRETRACT
  574. SERIAL_ECHO_START;
  575. if (!forReplay) {
  576. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  577. SERIAL_ECHO_START;
  578. }
  579. SERIAL_ECHOPAIR(" M207 S", retract_length);
  580. SERIAL_ECHOPAIR(" F", retract_feedrate*60);
  581. SERIAL_ECHOPAIR(" Z", retract_zlift);
  582. SERIAL_EOL;
  583. SERIAL_ECHO_START;
  584. if (!forReplay) {
  585. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  586. SERIAL_ECHO_START;
  587. }
  588. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  589. SERIAL_ECHOPAIR(" F", retract_recover_feedrate*60);
  590. SERIAL_EOL;
  591. SERIAL_ECHO_START;
  592. if (!forReplay) {
  593. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  594. SERIAL_ECHO_START;
  595. }
  596. SERIAL_ECHOPAIR(" M209 S", (unsigned long)(autoretract_enabled ? 1 : 0));
  597. SERIAL_EOL;
  598. #if EXTRUDERS > 1
  599. if (!forReplay) {
  600. SERIAL_ECHO_START;
  601. SERIAL_ECHOLNPGM("Multi-extruder settings:");
  602. SERIAL_ECHO_START;
  603. SERIAL_ECHOPAIR(" Swap retract length (mm): ", retract_length_swap);
  604. SERIAL_EOL;
  605. SERIAL_ECHO_START;
  606. SERIAL_ECHOPAIR(" Swap rec. addl. length (mm): ", retract_recover_length_swap);
  607. SERIAL_EOL;
  608. }
  609. #endif // EXTRUDERS > 1
  610. #endif // FWRETRACT
  611. SERIAL_ECHO_START;
  612. if (volumetric_enabled) {
  613. if (!forReplay) {
  614. SERIAL_ECHOLNPGM("Filament settings:");
  615. SERIAL_ECHO_START;
  616. }
  617. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  618. SERIAL_EOL;
  619. #if EXTRUDERS > 1
  620. SERIAL_ECHO_START;
  621. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  622. SERIAL_EOL;
  623. #if EXTRUDERS > 2
  624. SERIAL_ECHO_START;
  625. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  626. SERIAL_EOL;
  627. #if EXTRUDERS > 3
  628. SERIAL_ECHO_START;
  629. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  630. SERIAL_EOL;
  631. #endif
  632. #endif
  633. #endif
  634. } else {
  635. if (!forReplay) {
  636. SERIAL_ECHOLNPGM("Filament settings: Disabled");
  637. }
  638. }
  639. #ifdef CUSTOM_M_CODES
  640. SERIAL_ECHO_START;
  641. if (!forReplay) {
  642. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  643. SERIAL_ECHO_START;
  644. }
  645. SERIAL_ECHO(" M");
  646. SERIAL_ECHO(CUSTOM_M_CODE_SET_Z_PROBE_OFFSET);
  647. SERIAL_ECHOPAIR(" Z", -zprobe_zoffset);
  648. SERIAL_EOL;
  649. #endif
  650. }
  651. #endif // !DISABLE_M503