My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 49KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  54. #include "ubl.h"
  55. #endif
  56. #if HAS_DIGIPOTSS
  57. #include <SPI.h>
  58. #endif
  59. Stepper stepper; // Singleton
  60. // public:
  61. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  62. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  63. bool Stepper::abort_on_endstop_hit = false;
  64. #endif
  65. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  66. bool Stepper::performing_homing = false;
  67. #endif
  68. #if HAS_MOTOR_CURRENT_PWM
  69. uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
  70. #endif
  71. // private:
  72. uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  73. uint16_t Stepper::cleaning_buffer_counter = 0;
  74. #if ENABLED(X_DUAL_ENDSTOPS)
  75. bool Stepper::locked_x_motor = false, Stepper::locked_x2_motor = false;
  76. #endif
  77. #if ENABLED(Y_DUAL_ENDSTOPS)
  78. bool Stepper::locked_y_motor = false, Stepper::locked_y2_motor = false;
  79. #endif
  80. #if ENABLED(Z_DUAL_ENDSTOPS)
  81. bool Stepper::locked_z_motor = false, Stepper::locked_z2_motor = false;
  82. #endif
  83. long Stepper::counter_X = 0,
  84. Stepper::counter_Y = 0,
  85. Stepper::counter_Z = 0,
  86. Stepper::counter_E = 0;
  87. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  88. #if ENABLED(LIN_ADVANCE)
  89. constexpr uint16_t ADV_NEVER = 65535;
  90. uint16_t Stepper::nextMainISR = 0,
  91. Stepper::nextAdvanceISR = ADV_NEVER,
  92. Stepper::eISR_Rate = ADV_NEVER;
  93. volatile int Stepper::e_steps[E_STEPPERS];
  94. int Stepper::final_estep_rate,
  95. Stepper::current_estep_rate[E_STEPPERS],
  96. Stepper::current_adv_steps[E_STEPPERS];
  97. /**
  98. * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
  99. *
  100. * This fix isn't perfect and may lose steps - but better than locking up completely
  101. * in future the planner should slow down if advance stepping rate would be too high
  102. */
  103. FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) {
  104. if (steps) {
  105. const uint16_t rate = (timer * loops) / abs(steps);
  106. //return constrain(rate, 1, ADV_NEVER - 1)
  107. return rate ? rate : 1;
  108. }
  109. return ADV_NEVER;
  110. }
  111. #endif // LIN_ADVANCE
  112. long Stepper::acceleration_time, Stepper::deceleration_time;
  113. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  114. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  115. #if ENABLED(MIXING_EXTRUDER)
  116. long Stepper::counter_m[MIXING_STEPPERS];
  117. #endif
  118. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  119. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  120. unsigned short Stepper::OCR1A_nominal;
  121. volatile long Stepper::endstops_trigsteps[XYZ];
  122. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  123. #define LOCKED_X_MOTOR locked_x_motor
  124. #define LOCKED_Y_MOTOR locked_y_motor
  125. #define LOCKED_Z_MOTOR locked_z_motor
  126. #define LOCKED_X2_MOTOR locked_x2_motor
  127. #define LOCKED_Y2_MOTOR locked_y2_motor
  128. #define LOCKED_Z2_MOTOR locked_z2_motor
  129. #define DUAL_ENDSTOP_APPLY_STEP(AXIS,v) \
  130. if (performing_homing) { \
  131. if (AXIS##_HOME_DIR < 0) { \
  132. if (!(TEST(endstops.old_endstop_bits, AXIS##_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  133. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  134. } \
  135. else { \
  136. if (!(TEST(endstops.old_endstop_bits, AXIS##_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  137. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  138. } \
  139. } \
  140. else { \
  141. AXIS##_STEP_WRITE(v); \
  142. AXIS##2_STEP_WRITE(v); \
  143. }
  144. #endif
  145. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  146. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  147. #if ENABLED(DUAL_X_CARRIAGE)
  148. #define X_APPLY_DIR(v,ALWAYS) \
  149. if (extruder_duplication_enabled || ALWAYS) { \
  150. X_DIR_WRITE(v); \
  151. X2_DIR_WRITE(v); \
  152. } \
  153. else { \
  154. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  155. }
  156. #define X_APPLY_STEP(v,ALWAYS) \
  157. if (extruder_duplication_enabled || ALWAYS) { \
  158. X_STEP_WRITE(v); \
  159. X2_STEP_WRITE(v); \
  160. } \
  161. else { \
  162. if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  163. }
  164. #elif ENABLED(X_DUAL_ENDSTOPS)
  165. #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
  166. #else
  167. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  168. #endif
  169. #else
  170. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  171. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  172. #endif
  173. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  174. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  175. #if ENABLED(Y_DUAL_ENDSTOPS)
  176. #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
  177. #else
  178. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  179. #endif
  180. #else
  181. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  182. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  183. #endif
  184. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  185. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  186. #if ENABLED(Z_DUAL_ENDSTOPS)
  187. #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
  188. #else
  189. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  190. #endif
  191. #else
  192. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  193. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  194. #endif
  195. #if DISABLED(MIXING_EXTRUDER)
  196. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  197. #endif
  198. // intRes = longIn1 * longIn2 >> 24
  199. // uses:
  200. // r26 to store 0
  201. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  202. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  203. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  204. // B0 A0 are bits 24-39 and are the returned value
  205. // C1 B1 A1 is longIn1
  206. // D2 C2 B2 A2 is longIn2
  207. //
  208. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  209. asm volatile ( \
  210. "clr r26 \n\t" \
  211. "mul %A1, %B2 \n\t" \
  212. "mov r27, r1 \n\t" \
  213. "mul %B1, %C2 \n\t" \
  214. "movw %A0, r0 \n\t" \
  215. "mul %C1, %C2 \n\t" \
  216. "add %B0, r0 \n\t" \
  217. "mul %C1, %B2 \n\t" \
  218. "add %A0, r0 \n\t" \
  219. "adc %B0, r1 \n\t" \
  220. "mul %A1, %C2 \n\t" \
  221. "add r27, r0 \n\t" \
  222. "adc %A0, r1 \n\t" \
  223. "adc %B0, r26 \n\t" \
  224. "mul %B1, %B2 \n\t" \
  225. "add r27, r0 \n\t" \
  226. "adc %A0, r1 \n\t" \
  227. "adc %B0, r26 \n\t" \
  228. "mul %C1, %A2 \n\t" \
  229. "add r27, r0 \n\t" \
  230. "adc %A0, r1 \n\t" \
  231. "adc %B0, r26 \n\t" \
  232. "mul %B1, %A2 \n\t" \
  233. "add r27, r1 \n\t" \
  234. "adc %A0, r26 \n\t" \
  235. "adc %B0, r26 \n\t" \
  236. "lsr r27 \n\t" \
  237. "adc %A0, r26 \n\t" \
  238. "adc %B0, r26 \n\t" \
  239. "mul %D2, %A1 \n\t" \
  240. "add %A0, r0 \n\t" \
  241. "adc %B0, r1 \n\t" \
  242. "mul %D2, %B1 \n\t" \
  243. "add %B0, r0 \n\t" \
  244. "clr r1 \n\t" \
  245. : \
  246. "=&r" (intRes) \
  247. : \
  248. "d" (longIn1), \
  249. "d" (longIn2) \
  250. : \
  251. "r26" , "r27" \
  252. )
  253. // Some useful constants
  254. /**
  255. * __________________________
  256. * /| |\ _________________ ^
  257. * / | | \ /| |\ |
  258. * / | | \ / | | \ s
  259. * / | | | | | \ p
  260. * / | | | | | \ e
  261. * +-----+------------------------+---+--+---------------+----+ e
  262. * | BLOCK 1 | BLOCK 2 | d
  263. *
  264. * time ----->
  265. *
  266. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  267. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  268. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  269. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  270. */
  271. void Stepper::wake_up() {
  272. // TCNT1 = 0;
  273. ENABLE_STEPPER_DRIVER_INTERRUPT();
  274. }
  275. /**
  276. * Set the stepper direction of each axis
  277. *
  278. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  279. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  280. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  281. */
  282. void Stepper::set_directions() {
  283. #define SET_STEP_DIR(AXIS) \
  284. if (motor_direction(AXIS ##_AXIS)) { \
  285. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  286. count_direction[AXIS ##_AXIS] = -1; \
  287. } \
  288. else { \
  289. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  290. count_direction[AXIS ##_AXIS] = 1; \
  291. }
  292. #if HAS_X_DIR
  293. SET_STEP_DIR(X); // A
  294. #endif
  295. #if HAS_Y_DIR
  296. SET_STEP_DIR(Y); // B
  297. #endif
  298. #if HAS_Z_DIR
  299. SET_STEP_DIR(Z); // C
  300. #endif
  301. #if DISABLED(LIN_ADVANCE)
  302. if (motor_direction(E_AXIS)) {
  303. REV_E_DIR();
  304. count_direction[E_AXIS] = -1;
  305. }
  306. else {
  307. NORM_E_DIR();
  308. count_direction[E_AXIS] = 1;
  309. }
  310. #endif // !LIN_ADVANCE
  311. }
  312. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  313. extern volatile uint8_t e_hit;
  314. #endif
  315. /**
  316. * Stepper Driver Interrupt
  317. *
  318. * Directly pulses the stepper motors at high frequency.
  319. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  320. *
  321. * OCR1A Frequency
  322. * 1 2 MHz
  323. * 50 40 KHz
  324. * 100 20 KHz - capped max rate
  325. * 200 10 KHz - nominal max rate
  326. * 2000 1 KHz - sleep rate
  327. * 4000 500 Hz - init rate
  328. */
  329. ISR(TIMER1_COMPA_vect) {
  330. #if ENABLED(LIN_ADVANCE)
  331. Stepper::advance_isr_scheduler();
  332. #else
  333. Stepper::isr();
  334. #endif
  335. }
  336. #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
  337. void Stepper::isr() {
  338. uint16_t ocr_val;
  339. #define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
  340. #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
  341. #if DISABLED(LIN_ADVANCE)
  342. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  343. CBI(TIMSK0, OCIE0B); // Temperature ISR
  344. DISABLE_STEPPER_DRIVER_INTERRUPT();
  345. sei();
  346. #endif
  347. #define _SPLIT(L) (ocr_val = (uint16_t)L)
  348. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  349. #define SPLIT(L) _SPLIT(L)
  350. #else // sample endstops in between step pulses
  351. static uint32_t step_remaining = 0;
  352. #define SPLIT(L) do { \
  353. _SPLIT(L); \
  354. if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
  355. const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
  356. ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
  357. step_remaining = (uint16_t)L - ocr_val; \
  358. } \
  359. }while(0)
  360. if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
  361. endstops.update();
  362. if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) {
  363. step_remaining -= ENDSTOP_NOMINAL_OCR_VAL;
  364. ocr_val = ENDSTOP_NOMINAL_OCR_VAL;
  365. }
  366. else {
  367. ocr_val = step_remaining;
  368. step_remaining = 0; // last one before the ISR that does the step
  369. }
  370. _NEXT_ISR(ocr_val);
  371. NOLESS(OCR1A, TCNT1 + 16);
  372. _ENABLE_ISRs(); // re-enable ISRs
  373. return;
  374. }
  375. #endif
  376. if (cleaning_buffer_counter) {
  377. --cleaning_buffer_counter;
  378. current_block = NULL;
  379. planner.discard_current_block();
  380. #ifdef SD_FINISHED_RELEASECOMMAND
  381. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  382. #endif
  383. _NEXT_ISR(200); // Run at max speed - 10 KHz
  384. _ENABLE_ISRs(); // re-enable ISRs
  385. return;
  386. }
  387. // If there is no current block, attempt to pop one from the buffer
  388. if (!current_block) {
  389. // Anything in the buffer?
  390. if ((current_block = planner.get_current_block())) {
  391. trapezoid_generator_reset();
  392. // Initialize Bresenham counters to 1/2 the ceiling
  393. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  394. #if ENABLED(MIXING_EXTRUDER)
  395. MIXING_STEPPERS_LOOP(i)
  396. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  397. #endif
  398. step_events_completed = 0;
  399. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  400. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  401. // No 'change' can be detected.
  402. #endif
  403. #if ENABLED(Z_LATE_ENABLE)
  404. if (current_block->steps[Z_AXIS] > 0) {
  405. enable_Z();
  406. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  407. _ENABLE_ISRs(); // re-enable ISRs
  408. return;
  409. }
  410. #endif
  411. }
  412. else {
  413. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  414. _ENABLE_ISRs(); // re-enable ISRs
  415. return;
  416. }
  417. }
  418. // Update endstops state, if enabled
  419. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  420. if (e_hit && ENDSTOPS_ENABLED) {
  421. endstops.update();
  422. e_hit--;
  423. }
  424. #else
  425. if (ENDSTOPS_ENABLED) endstops.update();
  426. #endif
  427. // Take multiple steps per interrupt (For high speed moves)
  428. bool all_steps_done = false;
  429. for (uint8_t i = step_loops; i--;) {
  430. #if ENABLED(LIN_ADVANCE)
  431. counter_E += current_block->steps[E_AXIS];
  432. if (counter_E > 0) {
  433. counter_E -= current_block->step_event_count;
  434. #if DISABLED(MIXING_EXTRUDER)
  435. // Don't step E here for mixing extruder
  436. count_position[E_AXIS] += count_direction[E_AXIS];
  437. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  438. #endif
  439. }
  440. #if ENABLED(MIXING_EXTRUDER)
  441. // Step mixing steppers proportionally
  442. const bool dir = motor_direction(E_AXIS);
  443. MIXING_STEPPERS_LOOP(j) {
  444. counter_m[j] += current_block->steps[E_AXIS];
  445. if (counter_m[j] > 0) {
  446. counter_m[j] -= current_block->mix_event_count[j];
  447. dir ? --e_steps[j] : ++e_steps[j];
  448. }
  449. }
  450. #endif
  451. #endif // LIN_ADVANCE
  452. #define _COUNTER(AXIS) counter_## AXIS
  453. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  454. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  455. // Advance the Bresenham counter; start a pulse if the axis needs a step
  456. #define PULSE_START(AXIS) \
  457. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  458. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  459. // Stop an active pulse, reset the Bresenham counter, update the position
  460. #define PULSE_STOP(AXIS) \
  461. if (_COUNTER(AXIS) > 0) { \
  462. _COUNTER(AXIS) -= current_block->step_event_count; \
  463. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  464. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  465. }
  466. /**
  467. * Estimate the number of cycles that the stepper logic already takes
  468. * up between the start and stop of the X stepper pulse.
  469. *
  470. * Currently this uses very modest estimates of around 5 cycles.
  471. * True values may be derived by careful testing.
  472. *
  473. * Once any delay is added, the cost of the delay code itself
  474. * may be subtracted from this value to get a more accurate delay.
  475. * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
  476. * Longer delays use a loop. The resolution is 8 cycles.
  477. */
  478. #if HAS_X_STEP
  479. #define _CYCLE_APPROX_1 5
  480. #else
  481. #define _CYCLE_APPROX_1 0
  482. #endif
  483. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  484. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
  485. #else
  486. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
  487. #endif
  488. #if HAS_Y_STEP
  489. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
  490. #else
  491. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
  492. #endif
  493. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  494. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
  495. #else
  496. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
  497. #endif
  498. #if HAS_Z_STEP
  499. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
  500. #else
  501. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
  502. #endif
  503. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  504. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
  505. #else
  506. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
  507. #endif
  508. #if DISABLED(LIN_ADVANCE)
  509. #if ENABLED(MIXING_EXTRUDER)
  510. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
  511. #else
  512. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
  513. #endif
  514. #else
  515. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
  516. #endif
  517. #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
  518. #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
  519. /**
  520. * If a minimum pulse time was specified get the timer 0 value.
  521. *
  522. * TCNT0 has an 8x prescaler, so it increments every 8 cycles.
  523. * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
  524. * 20 counts of TCNT0 -by itself- is a good pulse delay.
  525. * 10µs = 160 or 200 cycles.
  526. */
  527. #if EXTRA_CYCLES_XYZE > 20
  528. uint32_t pulse_start = TCNT0;
  529. #endif
  530. #if HAS_X_STEP
  531. PULSE_START(X);
  532. #endif
  533. #if HAS_Y_STEP
  534. PULSE_START(Y);
  535. #endif
  536. #if HAS_Z_STEP
  537. PULSE_START(Z);
  538. #endif
  539. // For non-advance use linear interpolation for E also
  540. #if DISABLED(LIN_ADVANCE)
  541. #if ENABLED(MIXING_EXTRUDER)
  542. // Keep updating the single E axis
  543. counter_E += current_block->steps[E_AXIS];
  544. // Tick the counters used for this mix
  545. MIXING_STEPPERS_LOOP(j) {
  546. // Step mixing steppers (proportionally)
  547. counter_m[j] += current_block->steps[E_AXIS];
  548. // Step when the counter goes over zero
  549. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  550. }
  551. #else // !MIXING_EXTRUDER
  552. PULSE_START(E);
  553. #endif
  554. #endif // !LIN_ADVANCE
  555. // For minimum pulse time wait before stopping pulses
  556. #if EXTRA_CYCLES_XYZE > 20
  557. while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  558. pulse_start = TCNT0;
  559. #elif EXTRA_CYCLES_XYZE > 0
  560. DELAY_NOPS(EXTRA_CYCLES_XYZE);
  561. #endif
  562. #if HAS_X_STEP
  563. PULSE_STOP(X);
  564. #endif
  565. #if HAS_Y_STEP
  566. PULSE_STOP(Y);
  567. #endif
  568. #if HAS_Z_STEP
  569. PULSE_STOP(Z);
  570. #endif
  571. #if DISABLED(LIN_ADVANCE)
  572. #if ENABLED(MIXING_EXTRUDER)
  573. // Always step the single E axis
  574. if (counter_E > 0) {
  575. counter_E -= current_block->step_event_count;
  576. count_position[E_AXIS] += count_direction[E_AXIS];
  577. }
  578. MIXING_STEPPERS_LOOP(j) {
  579. if (counter_m[j] > 0) {
  580. counter_m[j] -= current_block->mix_event_count[j];
  581. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  582. }
  583. }
  584. #else // !MIXING_EXTRUDER
  585. PULSE_STOP(E);
  586. #endif
  587. #endif // !LIN_ADVANCE
  588. if (++step_events_completed >= current_block->step_event_count) {
  589. all_steps_done = true;
  590. break;
  591. }
  592. // For minimum pulse time wait after stopping pulses also
  593. #if EXTRA_CYCLES_XYZE > 20
  594. if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  595. #elif EXTRA_CYCLES_XYZE > 0
  596. if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
  597. #endif
  598. } // steps_loop
  599. #if ENABLED(LIN_ADVANCE)
  600. if (current_block->use_advance_lead) {
  601. const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  602. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  603. #if ENABLED(MIXING_EXTRUDER)
  604. // Mixing extruders apply advance lead proportionally
  605. MIXING_STEPPERS_LOOP(j)
  606. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  607. #else
  608. // For most extruders, advance the single E stepper
  609. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  610. #endif
  611. }
  612. // If we have esteps to execute, fire the next advance_isr "now"
  613. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  614. #endif // LIN_ADVANCE
  615. // Calculate new timer value
  616. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  617. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  618. acc_step_rate += current_block->initial_rate;
  619. // upper limit
  620. NOMORE(acc_step_rate, current_block->nominal_rate);
  621. // step_rate to timer interval
  622. const uint16_t timer = calc_timer(acc_step_rate);
  623. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  624. _NEXT_ISR(ocr_val);
  625. acceleration_time += timer;
  626. #if ENABLED(LIN_ADVANCE)
  627. if (current_block->use_advance_lead) {
  628. #if ENABLED(MIXING_EXTRUDER)
  629. MIXING_STEPPERS_LOOP(j)
  630. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  631. #else
  632. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  633. #endif
  634. }
  635. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
  636. #endif // LIN_ADVANCE
  637. }
  638. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  639. uint16_t step_rate;
  640. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  641. if (step_rate < acc_step_rate) { // Still decelerating?
  642. step_rate = acc_step_rate - step_rate;
  643. NOLESS(step_rate, current_block->final_rate);
  644. }
  645. else
  646. step_rate = current_block->final_rate;
  647. // step_rate to timer interval
  648. const uint16_t timer = calc_timer(step_rate);
  649. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  650. _NEXT_ISR(ocr_val);
  651. deceleration_time += timer;
  652. #if ENABLED(LIN_ADVANCE)
  653. if (current_block->use_advance_lead) {
  654. #if ENABLED(MIXING_EXTRUDER)
  655. MIXING_STEPPERS_LOOP(j)
  656. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  657. #else
  658. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  659. #endif
  660. }
  661. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
  662. #endif // LIN_ADVANCE
  663. }
  664. else {
  665. #if ENABLED(LIN_ADVANCE)
  666. if (current_block->use_advance_lead)
  667. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  668. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal);
  669. #endif
  670. SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  671. _NEXT_ISR(ocr_val);
  672. // ensure we're running at the correct step rate, even if we just came off an acceleration
  673. step_loops = step_loops_nominal;
  674. }
  675. #if DISABLED(LIN_ADVANCE)
  676. NOLESS(OCR1A, TCNT1 + 16);
  677. #endif
  678. // If current block is finished, reset pointer
  679. if (all_steps_done) {
  680. current_block = NULL;
  681. planner.discard_current_block();
  682. }
  683. #if DISABLED(LIN_ADVANCE)
  684. _ENABLE_ISRs(); // re-enable ISRs
  685. #endif
  686. }
  687. #if ENABLED(LIN_ADVANCE)
  688. #define CYCLES_EATEN_E (E_STEPPERS * 5)
  689. #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
  690. // Timer interrupt for E. e_steps is set in the main routine;
  691. void Stepper::advance_isr() {
  692. nextAdvanceISR = eISR_Rate;
  693. #if ENABLED(MK2_MULTIPLEXER)
  694. // Even-numbered steppers are reversed
  695. #define SET_E_STEP_DIR(INDEX) \
  696. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0))
  697. #else
  698. #define SET_E_STEP_DIR(INDEX) \
  699. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  700. #endif
  701. #define START_E_PULSE(INDEX) \
  702. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  703. #define STOP_E_PULSE(INDEX) \
  704. if (e_steps[INDEX]) { \
  705. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  706. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  707. }
  708. SET_E_STEP_DIR(0);
  709. #if E_STEPPERS > 1
  710. SET_E_STEP_DIR(1);
  711. #if E_STEPPERS > 2
  712. SET_E_STEP_DIR(2);
  713. #if E_STEPPERS > 3
  714. SET_E_STEP_DIR(3);
  715. #if E_STEPPERS > 4
  716. SET_E_STEP_DIR(4);
  717. #endif
  718. #endif
  719. #endif
  720. #endif
  721. // Step all E steppers that have steps
  722. for (uint8_t i = step_loops; i--;) {
  723. #if EXTRA_CYCLES_E > 20
  724. uint32_t pulse_start = TCNT0;
  725. #endif
  726. START_E_PULSE(0);
  727. #if E_STEPPERS > 1
  728. START_E_PULSE(1);
  729. #if E_STEPPERS > 2
  730. START_E_PULSE(2);
  731. #if E_STEPPERS > 3
  732. START_E_PULSE(3);
  733. #if E_STEPPERS > 4
  734. START_E_PULSE(4);
  735. #endif
  736. #endif
  737. #endif
  738. #endif
  739. // For minimum pulse time wait before stopping pulses
  740. #if EXTRA_CYCLES_E > 20
  741. while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  742. pulse_start = TCNT0;
  743. #elif EXTRA_CYCLES_E > 0
  744. DELAY_NOPS(EXTRA_CYCLES_E);
  745. #endif
  746. STOP_E_PULSE(0);
  747. #if E_STEPPERS > 1
  748. STOP_E_PULSE(1);
  749. #if E_STEPPERS > 2
  750. STOP_E_PULSE(2);
  751. #if E_STEPPERS > 3
  752. STOP_E_PULSE(3);
  753. #if E_STEPPERS > 4
  754. STOP_E_PULSE(4);
  755. #endif
  756. #endif
  757. #endif
  758. #endif
  759. // For minimum pulse time wait before looping
  760. #if EXTRA_CYCLES_E > 20
  761. if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  762. #elif EXTRA_CYCLES_E > 0
  763. if (i) DELAY_NOPS(EXTRA_CYCLES_E);
  764. #endif
  765. } // steps_loop
  766. }
  767. void Stepper::advance_isr_scheduler() {
  768. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  769. CBI(TIMSK0, OCIE0B); // Temperature ISR
  770. DISABLE_STEPPER_DRIVER_INTERRUPT();
  771. sei();
  772. // Run main stepping ISR if flagged
  773. if (!nextMainISR) isr();
  774. // Run Advance stepping ISR if flagged
  775. if (!nextAdvanceISR) advance_isr();
  776. // Is the next advance ISR scheduled before the next main ISR?
  777. if (nextAdvanceISR <= nextMainISR) {
  778. // Set up the next interrupt
  779. OCR1A = nextAdvanceISR;
  780. // New interval for the next main ISR
  781. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  782. // Will call Stepper::advance_isr on the next interrupt
  783. nextAdvanceISR = 0;
  784. }
  785. else {
  786. // The next main ISR comes first
  787. OCR1A = nextMainISR;
  788. // New interval for the next advance ISR, if any
  789. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  790. nextAdvanceISR -= nextMainISR;
  791. // Will call Stepper::isr on the next interrupt
  792. nextMainISR = 0;
  793. }
  794. // Don't run the ISR faster than possible
  795. NOLESS(OCR1A, TCNT1 + 16);
  796. // Restore original ISR settings
  797. _ENABLE_ISRs();
  798. }
  799. #endif // LIN_ADVANCE
  800. void Stepper::init() {
  801. // Init Digipot Motor Current
  802. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  803. digipot_init();
  804. #endif
  805. // Init Microstepping Pins
  806. #if HAS_MICROSTEPS
  807. microstep_init();
  808. #endif
  809. // Init TMC Steppers
  810. #if ENABLED(HAVE_TMCDRIVER)
  811. tmc_init();
  812. #endif
  813. // Init TMC2130 Steppers
  814. #if ENABLED(HAVE_TMC2130)
  815. tmc2130_init();
  816. #endif
  817. // Init L6470 Steppers
  818. #if ENABLED(HAVE_L6470DRIVER)
  819. L6470_init();
  820. #endif
  821. // Init Dir Pins
  822. #if HAS_X_DIR
  823. X_DIR_INIT;
  824. #endif
  825. #if HAS_X2_DIR
  826. X2_DIR_INIT;
  827. #endif
  828. #if HAS_Y_DIR
  829. Y_DIR_INIT;
  830. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  831. Y2_DIR_INIT;
  832. #endif
  833. #endif
  834. #if HAS_Z_DIR
  835. Z_DIR_INIT;
  836. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  837. Z2_DIR_INIT;
  838. #endif
  839. #endif
  840. #if HAS_E0_DIR
  841. E0_DIR_INIT;
  842. #endif
  843. #if HAS_E1_DIR
  844. E1_DIR_INIT;
  845. #endif
  846. #if HAS_E2_DIR
  847. E2_DIR_INIT;
  848. #endif
  849. #if HAS_E3_DIR
  850. E3_DIR_INIT;
  851. #endif
  852. #if HAS_E4_DIR
  853. E4_DIR_INIT;
  854. #endif
  855. // Init Enable Pins - steppers default to disabled.
  856. #if HAS_X_ENABLE
  857. X_ENABLE_INIT;
  858. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  859. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  860. X2_ENABLE_INIT;
  861. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  862. #endif
  863. #endif
  864. #if HAS_Y_ENABLE
  865. Y_ENABLE_INIT;
  866. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  867. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  868. Y2_ENABLE_INIT;
  869. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  870. #endif
  871. #endif
  872. #if HAS_Z_ENABLE
  873. Z_ENABLE_INIT;
  874. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  875. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  876. Z2_ENABLE_INIT;
  877. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  878. #endif
  879. #endif
  880. #if HAS_E0_ENABLE
  881. E0_ENABLE_INIT;
  882. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  883. #endif
  884. #if HAS_E1_ENABLE
  885. E1_ENABLE_INIT;
  886. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  887. #endif
  888. #if HAS_E2_ENABLE
  889. E2_ENABLE_INIT;
  890. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  891. #endif
  892. #if HAS_E3_ENABLE
  893. E3_ENABLE_INIT;
  894. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  895. #endif
  896. #if HAS_E4_ENABLE
  897. E4_ENABLE_INIT;
  898. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  899. #endif
  900. // Init endstops and pullups
  901. endstops.init();
  902. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  903. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  904. #define _DISABLE(AXIS) disable_## AXIS()
  905. #define AXIS_INIT(AXIS, PIN) \
  906. _STEP_INIT(AXIS); \
  907. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  908. _DISABLE(AXIS)
  909. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  910. // Init Step Pins
  911. #if HAS_X_STEP
  912. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  913. X2_STEP_INIT;
  914. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  915. #endif
  916. AXIS_INIT(X, X);
  917. #endif
  918. #if HAS_Y_STEP
  919. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  920. Y2_STEP_INIT;
  921. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  922. #endif
  923. AXIS_INIT(Y, Y);
  924. #endif
  925. #if HAS_Z_STEP
  926. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  927. Z2_STEP_INIT;
  928. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  929. #endif
  930. AXIS_INIT(Z, Z);
  931. #endif
  932. #if HAS_E0_STEP
  933. E_AXIS_INIT(0);
  934. #endif
  935. #if HAS_E1_STEP
  936. E_AXIS_INIT(1);
  937. #endif
  938. #if HAS_E2_STEP
  939. E_AXIS_INIT(2);
  940. #endif
  941. #if HAS_E3_STEP
  942. E_AXIS_INIT(3);
  943. #endif
  944. #if HAS_E4_STEP
  945. E_AXIS_INIT(4);
  946. #endif
  947. // waveform generation = 0100 = CTC
  948. SET_WGM(1, CTC_OCRnA);
  949. // output mode = 00 (disconnected)
  950. SET_COMA(1, NORMAL);
  951. // Set the timer pre-scaler
  952. // Generally we use a divider of 8, resulting in a 2MHz timer
  953. // frequency on a 16MHz MCU. If you are going to change this, be
  954. // sure to regenerate speed_lookuptable.h with
  955. // create_speed_lookuptable.py
  956. SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
  957. // Init Stepper ISR to 122 Hz for quick starting
  958. OCR1A = 0x4000;
  959. TCNT1 = 0;
  960. ENABLE_STEPPER_DRIVER_INTERRUPT();
  961. #if ENABLED(LIN_ADVANCE)
  962. for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
  963. ZERO(current_adv_steps);
  964. #endif
  965. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  966. sei();
  967. set_directions(); // Init directions to last_direction_bits = 0
  968. }
  969. /**
  970. * Block until all buffered steps are executed
  971. */
  972. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  973. /**
  974. * Set the stepper positions directly in steps
  975. *
  976. * The input is based on the typical per-axis XYZ steps.
  977. * For CORE machines XYZ needs to be translated to ABC.
  978. *
  979. * This allows get_axis_position_mm to correctly
  980. * derive the current XYZ position later on.
  981. */
  982. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  983. synchronize(); // Bad to set stepper counts in the middle of a move
  984. CRITICAL_SECTION_START;
  985. #if CORE_IS_XY
  986. // corexy positioning
  987. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  988. count_position[A_AXIS] = a + b;
  989. count_position[B_AXIS] = CORESIGN(a - b);
  990. count_position[Z_AXIS] = c;
  991. #elif CORE_IS_XZ
  992. // corexz planning
  993. count_position[A_AXIS] = a + c;
  994. count_position[Y_AXIS] = b;
  995. count_position[C_AXIS] = CORESIGN(a - c);
  996. #elif CORE_IS_YZ
  997. // coreyz planning
  998. count_position[X_AXIS] = a;
  999. count_position[B_AXIS] = b + c;
  1000. count_position[C_AXIS] = CORESIGN(b - c);
  1001. #else
  1002. // default non-h-bot planning
  1003. count_position[X_AXIS] = a;
  1004. count_position[Y_AXIS] = b;
  1005. count_position[Z_AXIS] = c;
  1006. #endif
  1007. count_position[E_AXIS] = e;
  1008. CRITICAL_SECTION_END;
  1009. }
  1010. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  1011. CRITICAL_SECTION_START;
  1012. count_position[axis] = v;
  1013. CRITICAL_SECTION_END;
  1014. }
  1015. void Stepper::set_e_position(const long &e) {
  1016. CRITICAL_SECTION_START;
  1017. count_position[E_AXIS] = e;
  1018. CRITICAL_SECTION_END;
  1019. }
  1020. /**
  1021. * Get a stepper's position in steps.
  1022. */
  1023. long Stepper::position(AxisEnum axis) {
  1024. CRITICAL_SECTION_START;
  1025. const long count_pos = count_position[axis];
  1026. CRITICAL_SECTION_END;
  1027. return count_pos;
  1028. }
  1029. /**
  1030. * Get an axis position according to stepper position(s)
  1031. * For CORE machines apply translation from ABC to XYZ.
  1032. */
  1033. float Stepper::get_axis_position_mm(AxisEnum axis) {
  1034. float axis_steps;
  1035. #if IS_CORE
  1036. // Requesting one of the "core" axes?
  1037. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1038. CRITICAL_SECTION_START;
  1039. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1040. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1041. axis_steps = 0.5f * (
  1042. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1043. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1044. );
  1045. CRITICAL_SECTION_END;
  1046. }
  1047. else
  1048. axis_steps = position(axis);
  1049. #else
  1050. axis_steps = position(axis);
  1051. #endif
  1052. return axis_steps * planner.steps_to_mm[axis];
  1053. }
  1054. void Stepper::finish_and_disable() {
  1055. synchronize();
  1056. disable_all_steppers();
  1057. }
  1058. void Stepper::quick_stop() {
  1059. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  1060. if (!ubl.lcd_map_control)
  1061. cleaning_buffer_counter = 5000;
  1062. #else
  1063. cleaning_buffer_counter = 5000;
  1064. #endif
  1065. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1066. while (planner.blocks_queued()) planner.discard_current_block();
  1067. current_block = NULL;
  1068. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1069. #if ENABLED(ULTRA_LCD)
  1070. planner.clear_block_buffer_runtime();
  1071. #endif
  1072. }
  1073. void Stepper::endstop_triggered(AxisEnum axis) {
  1074. #if IS_CORE
  1075. endstops_trigsteps[axis] = 0.5f * (
  1076. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1077. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1078. );
  1079. #else // !COREXY && !COREXZ && !COREYZ
  1080. endstops_trigsteps[axis] = count_position[axis];
  1081. #endif // !COREXY && !COREXZ && !COREYZ
  1082. kill_current_block();
  1083. }
  1084. void Stepper::report_positions() {
  1085. CRITICAL_SECTION_START;
  1086. const long xpos = count_position[X_AXIS],
  1087. ypos = count_position[Y_AXIS],
  1088. zpos = count_position[Z_AXIS];
  1089. CRITICAL_SECTION_END;
  1090. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  1091. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  1092. #else
  1093. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1094. #endif
  1095. SERIAL_PROTOCOL(xpos);
  1096. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  1097. SERIAL_PROTOCOLPGM(" B:");
  1098. #else
  1099. SERIAL_PROTOCOLPGM(" Y:");
  1100. #endif
  1101. SERIAL_PROTOCOL(ypos);
  1102. #if CORE_IS_XZ || CORE_IS_YZ
  1103. SERIAL_PROTOCOLPGM(" C:");
  1104. #else
  1105. SERIAL_PROTOCOLPGM(" Z:");
  1106. #endif
  1107. SERIAL_PROTOCOL(zpos);
  1108. SERIAL_EOL();
  1109. }
  1110. #if ENABLED(BABYSTEPPING)
  1111. #if ENABLED(DELTA)
  1112. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  1113. #else
  1114. #define CYCLES_EATEN_BABYSTEP 0
  1115. #endif
  1116. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  1117. #define _ENABLE(AXIS) enable_## AXIS()
  1118. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1119. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1120. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1121. #if EXTRA_CYCLES_BABYSTEP > 20
  1122. #define _SAVE_START const uint32_t pulse_start = TCNT0
  1123. #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  1124. #else
  1125. #define _SAVE_START NOOP
  1126. #if EXTRA_CYCLES_BABYSTEP > 0
  1127. #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
  1128. #elif STEP_PULSE_CYCLES > 0
  1129. #define _PULSE_WAIT NOOP
  1130. #elif ENABLED(DELTA)
  1131. #define _PULSE_WAIT delayMicroseconds(2);
  1132. #else
  1133. #define _PULSE_WAIT delayMicroseconds(4);
  1134. #endif
  1135. #endif
  1136. #define BABYSTEP_AXIS(AXIS, INVERT) { \
  1137. const uint8_t old_dir = _READ_DIR(AXIS); \
  1138. _ENABLE(AXIS); \
  1139. _SAVE_START; \
  1140. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1141. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1142. _PULSE_WAIT; \
  1143. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1144. _APPLY_DIR(AXIS, old_dir); \
  1145. }
  1146. // MUST ONLY BE CALLED BY AN ISR,
  1147. // No other ISR should ever interrupt this!
  1148. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1149. cli();
  1150. switch (axis) {
  1151. #if ENABLED(BABYSTEP_XY)
  1152. case X_AXIS:
  1153. BABYSTEP_AXIS(X, false);
  1154. break;
  1155. case Y_AXIS:
  1156. BABYSTEP_AXIS(Y, false);
  1157. break;
  1158. #endif
  1159. case Z_AXIS: {
  1160. #if DISABLED(DELTA)
  1161. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
  1162. #else // DELTA
  1163. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1164. enable_X();
  1165. enable_Y();
  1166. enable_Z();
  1167. const uint8_t old_x_dir_pin = X_DIR_READ,
  1168. old_y_dir_pin = Y_DIR_READ,
  1169. old_z_dir_pin = Z_DIR_READ;
  1170. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1171. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1172. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1173. _SAVE_START;
  1174. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1175. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1176. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1177. _PULSE_WAIT;
  1178. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1179. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1180. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1181. // Restore direction bits
  1182. X_DIR_WRITE(old_x_dir_pin);
  1183. Y_DIR_WRITE(old_y_dir_pin);
  1184. Z_DIR_WRITE(old_z_dir_pin);
  1185. #endif
  1186. } break;
  1187. default: break;
  1188. }
  1189. sei();
  1190. }
  1191. #endif // BABYSTEPPING
  1192. /**
  1193. * Software-controlled Stepper Motor Current
  1194. */
  1195. #if HAS_DIGIPOTSS
  1196. // From Arduino DigitalPotControl example
  1197. void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
  1198. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  1199. SPI.transfer(address); // Send the address and value via SPI
  1200. SPI.transfer(value);
  1201. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  1202. //delay(10);
  1203. }
  1204. #endif // HAS_DIGIPOTSS
  1205. #if HAS_MOTOR_CURRENT_PWM
  1206. void Stepper::refresh_motor_power() {
  1207. for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
  1208. switch (i) {
  1209. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1210. case 0:
  1211. #endif
  1212. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1213. case 1:
  1214. #endif
  1215. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1216. case 2:
  1217. #endif
  1218. digipot_current(i, motor_current_setting[i]);
  1219. default: break;
  1220. }
  1221. }
  1222. }
  1223. #endif // HAS_MOTOR_CURRENT_PWM
  1224. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1225. void Stepper::digipot_current(const uint8_t driver, const int current) {
  1226. #if HAS_DIGIPOTSS
  1227. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1228. digitalPotWrite(digipot_ch[driver], current);
  1229. #elif HAS_MOTOR_CURRENT_PWM
  1230. if (WITHIN(driver, 0, 2))
  1231. motor_current_setting[driver] = current; // update motor_current_setting
  1232. #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1233. switch (driver) {
  1234. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1235. case 0: _WRITE_CURRENT_PWM(XY); break;
  1236. #endif
  1237. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1238. case 1: _WRITE_CURRENT_PWM(Z); break;
  1239. #endif
  1240. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1241. case 2: _WRITE_CURRENT_PWM(E); break;
  1242. #endif
  1243. }
  1244. #endif
  1245. }
  1246. void Stepper::digipot_init() {
  1247. #if HAS_DIGIPOTSS
  1248. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1249. SPI.begin();
  1250. SET_OUTPUT(DIGIPOTSS_PIN);
  1251. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1252. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1253. digipot_current(i, digipot_motor_current[i]);
  1254. }
  1255. #elif HAS_MOTOR_CURRENT_PWM
  1256. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1257. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1258. #endif
  1259. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1260. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1261. #endif
  1262. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1263. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1264. #endif
  1265. refresh_motor_power();
  1266. // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1267. SET_CS5(PRESCALER_1);
  1268. #endif
  1269. }
  1270. #endif
  1271. #if HAS_MICROSTEPS
  1272. /**
  1273. * Software-controlled Microstepping
  1274. */
  1275. void Stepper::microstep_init() {
  1276. SET_OUTPUT(X_MS1_PIN);
  1277. SET_OUTPUT(X_MS2_PIN);
  1278. #if HAS_Y_MICROSTEPS
  1279. SET_OUTPUT(Y_MS1_PIN);
  1280. SET_OUTPUT(Y_MS2_PIN);
  1281. #endif
  1282. #if HAS_Z_MICROSTEPS
  1283. SET_OUTPUT(Z_MS1_PIN);
  1284. SET_OUTPUT(Z_MS2_PIN);
  1285. #endif
  1286. #if HAS_E0_MICROSTEPS
  1287. SET_OUTPUT(E0_MS1_PIN);
  1288. SET_OUTPUT(E0_MS2_PIN);
  1289. #endif
  1290. #if HAS_E1_MICROSTEPS
  1291. SET_OUTPUT(E1_MS1_PIN);
  1292. SET_OUTPUT(E1_MS2_PIN);
  1293. #endif
  1294. #if HAS_E2_MICROSTEPS
  1295. SET_OUTPUT(E2_MS1_PIN);
  1296. SET_OUTPUT(E2_MS2_PIN);
  1297. #endif
  1298. #if HAS_E3_MICROSTEPS
  1299. SET_OUTPUT(E3_MS1_PIN);
  1300. SET_OUTPUT(E3_MS2_PIN);
  1301. #endif
  1302. #if HAS_E4_MICROSTEPS
  1303. SET_OUTPUT(E4_MS1_PIN);
  1304. SET_OUTPUT(E4_MS2_PIN);
  1305. #endif
  1306. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1307. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1308. microstep_mode(i, microstep_modes[i]);
  1309. }
  1310. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
  1311. if (ms1 >= 0) switch (driver) {
  1312. case 0: WRITE(X_MS1_PIN, ms1); break;
  1313. #if HAS_Y_MICROSTEPS
  1314. case 1: WRITE(Y_MS1_PIN, ms1); break;
  1315. #endif
  1316. #if HAS_Z_MICROSTEPS
  1317. case 2: WRITE(Z_MS1_PIN, ms1); break;
  1318. #endif
  1319. #if HAS_E0_MICROSTEPS
  1320. case 3: WRITE(E0_MS1_PIN, ms1); break;
  1321. #endif
  1322. #if HAS_E1_MICROSTEPS
  1323. case 4: WRITE(E1_MS1_PIN, ms1); break;
  1324. #endif
  1325. #if HAS_E2_MICROSTEPS
  1326. case 5: WRITE(E2_MS1_PIN, ms1); break;
  1327. #endif
  1328. #if HAS_E3_MICROSTEPS
  1329. case 6: WRITE(E3_MS1_PIN, ms1); break;
  1330. #endif
  1331. #if HAS_E4_MICROSTEPS
  1332. case 7: WRITE(E4_MS1_PIN, ms1); break;
  1333. #endif
  1334. }
  1335. if (ms2 >= 0) switch (driver) {
  1336. case 0: WRITE(X_MS2_PIN, ms2); break;
  1337. #if HAS_Y_MICROSTEPS
  1338. case 1: WRITE(Y_MS2_PIN, ms2); break;
  1339. #endif
  1340. #if HAS_Z_MICROSTEPS
  1341. case 2: WRITE(Z_MS2_PIN, ms2); break;
  1342. #endif
  1343. #if HAS_E0_MICROSTEPS
  1344. case 3: WRITE(E0_MS2_PIN, ms2); break;
  1345. #endif
  1346. #if HAS_E1_MICROSTEPS
  1347. case 4: WRITE(E1_MS2_PIN, ms2); break;
  1348. #endif
  1349. #if HAS_E2_MICROSTEPS
  1350. case 5: WRITE(E2_MS2_PIN, ms2); break;
  1351. #endif
  1352. #if HAS_E3_MICROSTEPS
  1353. case 6: WRITE(E3_MS2_PIN, ms2); break;
  1354. #endif
  1355. #if HAS_E4_MICROSTEPS
  1356. case 7: WRITE(E4_MS2_PIN, ms2); break;
  1357. #endif
  1358. }
  1359. }
  1360. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  1361. switch (stepping_mode) {
  1362. case 1: microstep_ms(driver, MICROSTEP1); break;
  1363. case 2: microstep_ms(driver, MICROSTEP2); break;
  1364. case 4: microstep_ms(driver, MICROSTEP4); break;
  1365. case 8: microstep_ms(driver, MICROSTEP8); break;
  1366. case 16: microstep_ms(driver, MICROSTEP16); break;
  1367. }
  1368. }
  1369. void Stepper::microstep_readings() {
  1370. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1371. SERIAL_PROTOCOLPGM("X: ");
  1372. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1373. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1374. #if HAS_Y_MICROSTEPS
  1375. SERIAL_PROTOCOLPGM("Y: ");
  1376. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1377. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1378. #endif
  1379. #if HAS_Z_MICROSTEPS
  1380. SERIAL_PROTOCOLPGM("Z: ");
  1381. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1382. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1383. #endif
  1384. #if HAS_E0_MICROSTEPS
  1385. SERIAL_PROTOCOLPGM("E0: ");
  1386. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1387. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1388. #endif
  1389. #if HAS_E1_MICROSTEPS
  1390. SERIAL_PROTOCOLPGM("E1: ");
  1391. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1392. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1393. #endif
  1394. #if HAS_E2_MICROSTEPS
  1395. SERIAL_PROTOCOLPGM("E2: ");
  1396. SERIAL_PROTOCOL(READ(E2_MS1_PIN));
  1397. SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
  1398. #endif
  1399. #if HAS_E3_MICROSTEPS
  1400. SERIAL_PROTOCOLPGM("E3: ");
  1401. SERIAL_PROTOCOL(READ(E3_MS1_PIN));
  1402. SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
  1403. #endif
  1404. #if HAS_E4_MICROSTEPS
  1405. SERIAL_PROTOCOLPGM("E4: ");
  1406. SERIAL_PROTOCOL(READ(E4_MS1_PIN));
  1407. SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
  1408. #endif
  1409. }
  1410. #endif // HAS_MICROSTEPS