My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

temperature.cpp 48KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616
  1. /*
  2. temperature.cpp - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "Marlin.h"
  17. #include "ultralcd.h"
  18. #include "temperature.h"
  19. #include "watchdog.h"
  20. #include "language.h"
  21. #include "Sd2PinMap.h"
  22. //===========================================================================
  23. //================================== macros =================================
  24. //===========================================================================
  25. #ifdef K1 // Defined in Configuration.h in the PID settings
  26. #define K2 (1.0-K1)
  27. #endif
  28. #if defined(PIDTEMPBED) || defined(PIDTEMP)
  29. #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
  30. #endif
  31. //===========================================================================
  32. //============================= public variables ============================
  33. //===========================================================================
  34. int target_temperature[4] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[4] = { 0 };
  37. float current_temperature[4] = { 0.0 };
  38. int current_temperature_bed_raw = 0;
  39. float current_temperature_bed = 0.0;
  40. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  41. int redundant_temperature_raw = 0;
  42. float redundant_temperature = 0.0;
  43. #endif
  44. #ifdef PIDTEMPBED
  45. float bedKp=DEFAULT_bedKp;
  46. float bedKi=(DEFAULT_bedKi*PID_dT);
  47. float bedKd=(DEFAULT_bedKd/PID_dT);
  48. #endif //PIDTEMPBED
  49. #ifdef FAN_SOFT_PWM
  50. unsigned char fanSpeedSoftPwm;
  51. #endif
  52. unsigned char soft_pwm_bed;
  53. #ifdef BABYSTEPPING
  54. volatile int babystepsTodo[3] = { 0 };
  55. #endif
  56. #ifdef FILAMENT_SENSOR
  57. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  58. #endif
  59. #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
  60. enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway };
  61. void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
  62. #ifdef THERMAL_PROTECTION_HOTENDS
  63. static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset };
  64. static millis_t thermal_runaway_timer[4]; // = {0,0,0,0};
  65. #endif
  66. #ifdef THERMAL_PROTECTION_BED
  67. static TRState thermal_runaway_bed_state_machine = TRReset;
  68. static millis_t thermal_runaway_bed_timer;
  69. #endif
  70. #endif
  71. //===========================================================================
  72. //============================ private variables ============================
  73. //===========================================================================
  74. static volatile bool temp_meas_ready = false;
  75. #ifdef PIDTEMP
  76. //static cannot be external:
  77. static float temp_iState[EXTRUDERS] = { 0 };
  78. static float temp_dState[EXTRUDERS] = { 0 };
  79. static float pTerm[EXTRUDERS];
  80. static float iTerm[EXTRUDERS];
  81. static float dTerm[EXTRUDERS];
  82. //int output;
  83. static float pid_error[EXTRUDERS];
  84. static float temp_iState_min[EXTRUDERS];
  85. static float temp_iState_max[EXTRUDERS];
  86. static bool pid_reset[EXTRUDERS];
  87. #endif //PIDTEMP
  88. #ifdef PIDTEMPBED
  89. //static cannot be external:
  90. static float temp_iState_bed = { 0 };
  91. static float temp_dState_bed = { 0 };
  92. static float pTerm_bed;
  93. static float iTerm_bed;
  94. static float dTerm_bed;
  95. //int output;
  96. static float pid_error_bed;
  97. static float temp_iState_min_bed;
  98. static float temp_iState_max_bed;
  99. #else //PIDTEMPBED
  100. static millis_t next_bed_check_ms;
  101. #endif //PIDTEMPBED
  102. static unsigned char soft_pwm[EXTRUDERS];
  103. #ifdef FAN_SOFT_PWM
  104. static unsigned char soft_pwm_fan;
  105. #endif
  106. #if HAS_AUTO_FAN
  107. static millis_t next_auto_fan_check_ms;
  108. #endif
  109. #ifdef PIDTEMP
  110. #ifdef PID_PARAMS_PER_EXTRUDER
  111. float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
  112. float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
  113. float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
  114. #ifdef PID_ADD_EXTRUSION_RATE
  115. float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
  116. #endif // PID_ADD_EXTRUSION_RATE
  117. #else //PID_PARAMS_PER_EXTRUDER
  118. float Kp = DEFAULT_Kp;
  119. float Ki = DEFAULT_Ki * PID_dT;
  120. float Kd = DEFAULT_Kd / PID_dT;
  121. #ifdef PID_ADD_EXTRUSION_RATE
  122. float Kc = DEFAULT_Kc;
  123. #endif // PID_ADD_EXTRUSION_RATE
  124. #endif // PID_PARAMS_PER_EXTRUDER
  125. #endif //PIDTEMP
  126. // Init min and max temp with extreme values to prevent false errors during startup
  127. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
  128. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
  129. static int minttemp[EXTRUDERS] = { 0 };
  130. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
  131. //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
  132. #ifdef BED_MAXTEMP
  133. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  134. #endif
  135. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  136. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  137. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  138. #else
  139. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
  140. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
  141. #endif
  142. static float analog2temp(int raw, uint8_t e);
  143. static float analog2tempBed(int raw);
  144. static void updateTemperaturesFromRawValues();
  145. #ifdef THERMAL_PROTECTION_HOTENDS
  146. int watch_target_temp[EXTRUDERS] = { 0 };
  147. millis_t watch_heater_next_ms[EXTRUDERS] = { 0 };
  148. #endif
  149. #ifndef SOFT_PWM_SCALE
  150. #define SOFT_PWM_SCALE 0
  151. #endif
  152. #ifdef FILAMENT_SENSOR
  153. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  154. #endif
  155. #ifdef HEATER_0_USES_MAX6675
  156. static int read_max6675();
  157. #endif
  158. //===========================================================================
  159. //================================ Functions ================================
  160. //===========================================================================
  161. void PID_autotune(float temp, int extruder, int ncycles)
  162. {
  163. float input = 0.0;
  164. int cycles = 0;
  165. bool heating = true;
  166. millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
  167. long t_high = 0, t_low = 0;
  168. long bias, d;
  169. float Ku, Tu;
  170. float Kp, Ki, Kd;
  171. float max = 0, min = 10000;
  172. #if HAS_AUTO_FAN
  173. millis_t next_auto_fan_check_ms = temp_ms + 2500;
  174. #endif
  175. if (extruder >= EXTRUDERS
  176. #if !HAS_TEMP_BED
  177. || extruder < 0
  178. #endif
  179. ) {
  180. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  181. return;
  182. }
  183. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  184. disable_all_heaters(); // switch off all heaters.
  185. if (extruder < 0)
  186. soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
  187. else
  188. soft_pwm[extruder] = bias = d = PID_MAX / 2;
  189. // PID Tuning loop
  190. for (;;) {
  191. millis_t ms = millis();
  192. if (temp_meas_ready) { // temp sample ready
  193. updateTemperaturesFromRawValues();
  194. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  195. max = max(max, input);
  196. min = min(min, input);
  197. #if HAS_AUTO_FAN
  198. if (ms > next_auto_fan_check_ms) {
  199. checkExtruderAutoFans();
  200. next_auto_fan_check_ms = ms + 2500;
  201. }
  202. #endif
  203. if (heating && input > temp) {
  204. if (ms > t2 + 5000) {
  205. heating = false;
  206. if (extruder < 0)
  207. soft_pwm_bed = (bias - d) >> 1;
  208. else
  209. soft_pwm[extruder] = (bias - d) >> 1;
  210. t1 = ms;
  211. t_high = t1 - t2;
  212. max = temp;
  213. }
  214. }
  215. if (!heating && input < temp) {
  216. if (ms > t1 + 5000) {
  217. heating = true;
  218. t2 = ms;
  219. t_low = t2 - t1;
  220. if (cycles > 0) {
  221. long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
  222. bias += (d*(t_high - t_low))/(t_low + t_high);
  223. bias = constrain(bias, 20, max_pow - 20);
  224. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  225. SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
  226. SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
  227. SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
  228. SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
  229. if (cycles > 2) {
  230. Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
  231. Tu = ((float)(t_low + t_high) / 1000.0);
  232. SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
  233. SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
  234. Kp = 0.6 * Ku;
  235. Ki = 2 * Kp / Tu;
  236. Kd = Kp * Tu / 8;
  237. SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
  238. SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
  239. SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
  240. SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
  241. /*
  242. Kp = 0.33*Ku;
  243. Ki = Kp/Tu;
  244. Kd = Kp*Tu/3;
  245. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  246. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  247. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  248. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  249. Kp = 0.2*Ku;
  250. Ki = 2*Kp/Tu;
  251. Kd = Kp*Tu/3;
  252. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  253. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  254. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  255. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  256. */
  257. }
  258. }
  259. if (extruder < 0)
  260. soft_pwm_bed = (bias + d) >> 1;
  261. else
  262. soft_pwm[extruder] = (bias + d) >> 1;
  263. cycles++;
  264. min = temp;
  265. }
  266. }
  267. }
  268. if (input > temp + 20) {
  269. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  270. return;
  271. }
  272. // Every 2 seconds...
  273. if (ms > temp_ms + 2000) {
  274. int p;
  275. if (extruder < 0) {
  276. p = soft_pwm_bed;
  277. SERIAL_PROTOCOLPGM(MSG_OK_B);
  278. }
  279. else {
  280. p = soft_pwm[extruder];
  281. SERIAL_PROTOCOLPGM(MSG_OK_T);
  282. }
  283. SERIAL_PROTOCOL(input);
  284. SERIAL_PROTOCOLPGM(MSG_AT);
  285. SERIAL_PROTOCOLLN(p);
  286. temp_ms = ms;
  287. } // every 2 seconds
  288. // Over 2 minutes?
  289. if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
  290. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  291. return;
  292. }
  293. if (cycles > ncycles) {
  294. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  295. const char *estring = extruder < 0 ? "bed" : "";
  296. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kp "); SERIAL_PROTOCOLLN(Kp);
  297. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Ki "); SERIAL_PROTOCOLLN(Ki);
  298. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kd "); SERIAL_PROTOCOLLN(Kd);
  299. return;
  300. }
  301. lcd_update();
  302. }
  303. }
  304. void updatePID() {
  305. #ifdef PIDTEMP
  306. for (int e = 0; e < EXTRUDERS; e++) {
  307. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  308. }
  309. #endif
  310. #ifdef PIDTEMPBED
  311. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  312. #endif
  313. }
  314. int getHeaterPower(int heater) {
  315. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  316. }
  317. #if HAS_AUTO_FAN
  318. void setExtruderAutoFanState(int pin, bool state)
  319. {
  320. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  321. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  322. pinMode(pin, OUTPUT);
  323. digitalWrite(pin, newFanSpeed);
  324. analogWrite(pin, newFanSpeed);
  325. }
  326. void checkExtruderAutoFans()
  327. {
  328. uint8_t fanState = 0;
  329. // which fan pins need to be turned on?
  330. #if HAS_AUTO_FAN_0
  331. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  332. fanState |= 1;
  333. #endif
  334. #if HAS_AUTO_FAN_1
  335. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  336. {
  337. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  338. fanState |= 1;
  339. else
  340. fanState |= 2;
  341. }
  342. #endif
  343. #if HAS_AUTO_FAN_2
  344. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  345. {
  346. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  347. fanState |= 1;
  348. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  349. fanState |= 2;
  350. else
  351. fanState |= 4;
  352. }
  353. #endif
  354. #if HAS_AUTO_FAN_3
  355. if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  356. {
  357. if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  358. fanState |= 1;
  359. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  360. fanState |= 2;
  361. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
  362. fanState |= 4;
  363. else
  364. fanState |= 8;
  365. }
  366. #endif
  367. // update extruder auto fan states
  368. #if HAS_AUTO_FAN_0
  369. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  370. #endif
  371. #if HAS_AUTO_FAN_1
  372. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  373. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  374. #endif
  375. #if HAS_AUTO_FAN_2
  376. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  377. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  378. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  379. #endif
  380. #if HAS_AUTO_FAN_3
  381. if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  382. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
  383. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
  384. setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
  385. #endif
  386. }
  387. #endif // any extruder auto fan pins set
  388. //
  389. // Temperature Error Handlers
  390. //
  391. inline void _temp_error(int e, const char *serial_msg, const char *lcd_msg) {
  392. if (IsRunning()) {
  393. SERIAL_ERROR_START;
  394. serialprintPGM(serial_msg);
  395. SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
  396. if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
  397. #ifdef ULTRA_LCD
  398. lcd_setalertstatuspgm(lcd_msg);
  399. #endif
  400. }
  401. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  402. kill_();
  403. #endif
  404. }
  405. void max_temp_error(uint8_t e) {
  406. disable_all_heaters();
  407. _temp_error(e, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
  408. }
  409. void min_temp_error(uint8_t e) {
  410. disable_all_heaters();
  411. _temp_error(e, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
  412. }
  413. void bed_max_temp_error(void) {
  414. #if HAS_HEATER_BED
  415. WRITE_HEATER_BED(0);
  416. #endif
  417. _temp_error(-1, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP_BED));
  418. }
  419. float get_pid_output(int e) {
  420. float pid_output;
  421. #ifdef PIDTEMP
  422. #ifndef PID_OPENLOOP
  423. pid_error[e] = target_temperature[e] - current_temperature[e];
  424. if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
  425. pid_output = BANG_MAX;
  426. pid_reset[e] = true;
  427. }
  428. else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  429. pid_output = 0;
  430. pid_reset[e] = true;
  431. }
  432. else {
  433. if (pid_reset[e]) {
  434. temp_iState[e] = 0.0;
  435. pid_reset[e] = false;
  436. }
  437. pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
  438. temp_iState[e] += pid_error[e];
  439. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  440. iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
  441. dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
  442. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  443. if (pid_output > PID_MAX) {
  444. if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  445. pid_output = PID_MAX;
  446. }
  447. else if (pid_output < 0) {
  448. if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  449. pid_output = 0;
  450. }
  451. }
  452. temp_dState[e] = current_temperature[e];
  453. #else
  454. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  455. #endif //PID_OPENLOOP
  456. #ifdef PID_DEBUG
  457. SERIAL_ECHO_START;
  458. SERIAL_ECHO(MSG_PID_DEBUG);
  459. SERIAL_ECHO(e);
  460. SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
  461. SERIAL_ECHO(current_temperature[e]);
  462. SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
  463. SERIAL_ECHO(pid_output);
  464. SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
  465. SERIAL_ECHO(pTerm[e]);
  466. SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
  467. SERIAL_ECHO(iTerm[e]);
  468. SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
  469. SERIAL_ECHOLN(dTerm[e]);
  470. #endif //PID_DEBUG
  471. #else /* PID off */
  472. pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
  473. #endif
  474. return pid_output;
  475. }
  476. #ifdef PIDTEMPBED
  477. float get_pid_output_bed() {
  478. float pid_output;
  479. #ifndef PID_OPENLOOP
  480. pid_error_bed = target_temperature_bed - current_temperature_bed;
  481. pTerm_bed = bedKp * pid_error_bed;
  482. temp_iState_bed += pid_error_bed;
  483. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  484. iTerm_bed = bedKi * temp_iState_bed;
  485. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  486. temp_dState_bed = current_temperature_bed;
  487. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  488. if (pid_output > MAX_BED_POWER) {
  489. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  490. pid_output = MAX_BED_POWER;
  491. }
  492. else if (pid_output < 0) {
  493. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  494. pid_output = 0;
  495. }
  496. #else
  497. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  498. #endif // PID_OPENLOOP
  499. #ifdef PID_BED_DEBUG
  500. SERIAL_ECHO_START;
  501. SERIAL_ECHO(" PID_BED_DEBUG ");
  502. SERIAL_ECHO(": Input ");
  503. SERIAL_ECHO(current_temperature_bed);
  504. SERIAL_ECHO(" Output ");
  505. SERIAL_ECHO(pid_output);
  506. SERIAL_ECHO(" pTerm ");
  507. SERIAL_ECHO(pTerm_bed);
  508. SERIAL_ECHO(" iTerm ");
  509. SERIAL_ECHO(iTerm_bed);
  510. SERIAL_ECHO(" dTerm ");
  511. SERIAL_ECHOLN(dTerm_bed);
  512. #endif //PID_BED_DEBUG
  513. return pid_output;
  514. }
  515. #endif
  516. /**
  517. * Manage heating activities for extruder hot-ends and a heated bed
  518. * - Acquire updated temperature readings
  519. * - Invoke thermal runaway protection
  520. * - Manage extruder auto-fan
  521. * - Apply filament width to the extrusion rate (may move)
  522. * - Update the heated bed PID output value
  523. */
  524. void manage_heater() {
  525. if (!temp_meas_ready) return;
  526. updateTemperaturesFromRawValues();
  527. #ifdef HEATER_0_USES_MAX6675
  528. float ct = current_temperature[0];
  529. if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
  530. if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
  531. #endif
  532. #if defined(THERMAL_PROTECTION_HOTENDS) || !defined(PIDTEMPBED) || HAS_AUTO_FAN
  533. millis_t ms = millis();
  534. #endif
  535. // Loop through all extruders
  536. for (int e = 0; e < EXTRUDERS; e++) {
  537. #ifdef THERMAL_PROTECTION_HOTENDS
  538. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  539. #endif
  540. float pid_output = get_pid_output(e);
  541. // Check if temperature is within the correct range
  542. soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  543. // Check if the temperature is failing to increase
  544. #ifdef THERMAL_PROTECTION_HOTENDS
  545. // Is it time to check this extruder's heater?
  546. if (watch_heater_next_ms[e] && ms > watch_heater_next_ms[e]) {
  547. // Has it failed to increase enough?
  548. if (degHotend(e) < watch_target_temp[e]) {
  549. // Stop!
  550. _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  551. }
  552. else {
  553. // Start again if the target is still far off
  554. start_watching_heater(e);
  555. }
  556. }
  557. #endif // THERMAL_PROTECTION_HOTENDS
  558. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  559. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  560. disable_all_heaters();
  561. _temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
  562. }
  563. #endif
  564. } // Extruders Loop
  565. #if HAS_AUTO_FAN
  566. if (ms > next_auto_fan_check_ms) { // only need to check fan state very infrequently
  567. checkExtruderAutoFans();
  568. next_auto_fan_check_ms = ms + 2500;
  569. }
  570. #endif
  571. // Control the extruder rate based on the width sensor
  572. #ifdef FILAMENT_SENSOR
  573. if (filament_sensor) {
  574. meas_shift_index = delay_index1 - meas_delay_cm;
  575. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  576. // Get the delayed info and add 100 to reconstitute to a percent of
  577. // the nominal filament diameter then square it to get an area
  578. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  579. float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
  580. if (vm < 0.01) vm = 0.01;
  581. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
  582. }
  583. #endif //FILAMENT_SENSOR
  584. #ifndef PIDTEMPBED
  585. if (ms < next_bed_check_ms) return;
  586. next_bed_check_ms = ms + BED_CHECK_INTERVAL;
  587. #endif
  588. #if TEMP_SENSOR_BED != 0
  589. #ifdef THERMAL_PROTECTION_BED
  590. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
  591. #endif
  592. #ifdef PIDTEMPBED
  593. float pid_output = get_pid_output_bed();
  594. soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
  595. #elif defined(BED_LIMIT_SWITCHING)
  596. // Check if temperature is within the correct band
  597. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  598. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  599. soft_pwm_bed = 0;
  600. else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  601. soft_pwm_bed = MAX_BED_POWER >> 1;
  602. }
  603. else {
  604. soft_pwm_bed = 0;
  605. WRITE_HEATER_BED(LOW);
  606. }
  607. #else // BED_LIMIT_SWITCHING
  608. // Check if temperature is within the correct range
  609. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  610. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  611. }
  612. else {
  613. soft_pwm_bed = 0;
  614. WRITE_HEATER_BED(LOW);
  615. }
  616. #endif
  617. #endif //TEMP_SENSOR_BED != 0
  618. }
  619. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  620. // Derived from RepRap FiveD extruder::getTemperature()
  621. // For hot end temperature measurement.
  622. static float analog2temp(int raw, uint8_t e) {
  623. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  624. if (e > EXTRUDERS)
  625. #else
  626. if (e >= EXTRUDERS)
  627. #endif
  628. {
  629. SERIAL_ERROR_START;
  630. SERIAL_ERROR((int)e);
  631. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  632. kill();
  633. return 0.0;
  634. }
  635. #ifdef HEATER_0_USES_MAX6675
  636. if (e == 0) return 0.25 * raw;
  637. #endif
  638. if (heater_ttbl_map[e] != NULL) {
  639. float celsius = 0;
  640. uint8_t i;
  641. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  642. for (i = 1; i < heater_ttbllen_map[e]; i++) {
  643. if (PGM_RD_W((*tt)[i][0]) > raw) {
  644. celsius = PGM_RD_W((*tt)[i-1][1]) +
  645. (raw - PGM_RD_W((*tt)[i-1][0])) *
  646. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  647. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  648. break;
  649. }
  650. }
  651. // Overflow: Set to last value in the table
  652. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  653. return celsius;
  654. }
  655. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  656. }
  657. // Derived from RepRap FiveD extruder::getTemperature()
  658. // For bed temperature measurement.
  659. static float analog2tempBed(int raw) {
  660. #ifdef BED_USES_THERMISTOR
  661. float celsius = 0;
  662. byte i;
  663. for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
  664. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
  665. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  666. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  667. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  668. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  669. break;
  670. }
  671. }
  672. // Overflow: Set to last value in the table
  673. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  674. return celsius;
  675. #elif defined BED_USES_AD595
  676. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  677. #else
  678. return 0;
  679. #endif
  680. }
  681. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  682. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  683. static void updateTemperaturesFromRawValues() {
  684. #ifdef HEATER_0_USES_MAX6675
  685. current_temperature_raw[0] = read_max6675();
  686. #endif
  687. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  688. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  689. }
  690. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  691. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  692. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  693. #endif
  694. #if HAS_FILAMENT_SENSOR
  695. filament_width_meas = analog2widthFil();
  696. #endif
  697. //Reset the watchdog after we know we have a temperature measurement.
  698. watchdog_reset();
  699. CRITICAL_SECTION_START;
  700. temp_meas_ready = false;
  701. CRITICAL_SECTION_END;
  702. }
  703. #ifdef FILAMENT_SENSOR
  704. // Convert raw Filament Width to millimeters
  705. float analog2widthFil() {
  706. return current_raw_filwidth / 16383.0 * 5.0;
  707. //return current_raw_filwidth;
  708. }
  709. // Convert raw Filament Width to a ratio
  710. int widthFil_to_size_ratio() {
  711. float temp = filament_width_meas;
  712. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  713. else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
  714. return filament_width_nominal / temp * 100;
  715. }
  716. #endif
  717. /**
  718. * Initialize the temperature manager
  719. * The manager is implemented by periodic calls to manage_heater()
  720. */
  721. void tp_init() {
  722. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  723. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  724. MCUCR=BIT(JTD);
  725. MCUCR=BIT(JTD);
  726. #endif
  727. // Finish init of mult extruder arrays
  728. for (int e = 0; e < EXTRUDERS; e++) {
  729. // populate with the first value
  730. maxttemp[e] = maxttemp[0];
  731. #ifdef PIDTEMP
  732. temp_iState_min[e] = 0.0;
  733. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  734. #endif //PIDTEMP
  735. #ifdef PIDTEMPBED
  736. temp_iState_min_bed = 0.0;
  737. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  738. #endif //PIDTEMPBED
  739. }
  740. #if HAS_HEATER_0
  741. SET_OUTPUT(HEATER_0_PIN);
  742. #endif
  743. #if HAS_HEATER_1
  744. SET_OUTPUT(HEATER_1_PIN);
  745. #endif
  746. #if HAS_HEATER_2
  747. SET_OUTPUT(HEATER_2_PIN);
  748. #endif
  749. #if HAS_HEATER_3
  750. SET_OUTPUT(HEATER_3_PIN);
  751. #endif
  752. #if HAS_HEATER_BED
  753. SET_OUTPUT(HEATER_BED_PIN);
  754. #endif
  755. #if HAS_FAN
  756. SET_OUTPUT(FAN_PIN);
  757. #ifdef FAST_PWM_FAN
  758. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  759. #endif
  760. #ifdef FAN_SOFT_PWM
  761. soft_pwm_fan = fanSpeedSoftPwm / 2;
  762. #endif
  763. #endif
  764. #ifdef HEATER_0_USES_MAX6675
  765. #ifndef SDSUPPORT
  766. OUT_WRITE(SCK_PIN, LOW);
  767. OUT_WRITE(MOSI_PIN, HIGH);
  768. OUT_WRITE(MISO_PIN, HIGH);
  769. #else
  770. pinMode(SS_PIN, OUTPUT);
  771. digitalWrite(SS_PIN, HIGH);
  772. #endif
  773. OUT_WRITE(MAX6675_SS,HIGH);
  774. #endif //HEATER_0_USES_MAX6675
  775. #ifdef DIDR2
  776. #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
  777. #else
  778. #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
  779. #endif
  780. // Set analog inputs
  781. ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
  782. DIDR0 = 0;
  783. #ifdef DIDR2
  784. DIDR2 = 0;
  785. #endif
  786. #if HAS_TEMP_0
  787. ANALOG_SELECT(TEMP_0_PIN);
  788. #endif
  789. #if HAS_TEMP_1
  790. ANALOG_SELECT(TEMP_1_PIN);
  791. #endif
  792. #if HAS_TEMP_2
  793. ANALOG_SELECT(TEMP_2_PIN);
  794. #endif
  795. #if HAS_TEMP_3
  796. ANALOG_SELECT(TEMP_3_PIN);
  797. #endif
  798. #if HAS_TEMP_BED
  799. ANALOG_SELECT(TEMP_BED_PIN);
  800. #endif
  801. #if HAS_FILAMENT_SENSOR
  802. ANALOG_SELECT(FILWIDTH_PIN);
  803. #endif
  804. // Use timer0 for temperature measurement
  805. // Interleave temperature interrupt with millies interrupt
  806. OCR0B = 128;
  807. TIMSK0 |= BIT(OCIE0B);
  808. // Wait for temperature measurement to settle
  809. delay(250);
  810. #define TEMP_MIN_ROUTINE(NR) \
  811. minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
  812. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
  813. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  814. minttemp_raw[NR] += OVERSAMPLENR; \
  815. else \
  816. minttemp_raw[NR] -= OVERSAMPLENR; \
  817. }
  818. #define TEMP_MAX_ROUTINE(NR) \
  819. maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
  820. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
  821. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  822. maxttemp_raw[NR] -= OVERSAMPLENR; \
  823. else \
  824. maxttemp_raw[NR] += OVERSAMPLENR; \
  825. }
  826. #ifdef HEATER_0_MINTEMP
  827. TEMP_MIN_ROUTINE(0);
  828. #endif
  829. #ifdef HEATER_0_MAXTEMP
  830. TEMP_MAX_ROUTINE(0);
  831. #endif
  832. #if EXTRUDERS > 1
  833. #ifdef HEATER_1_MINTEMP
  834. TEMP_MIN_ROUTINE(1);
  835. #endif
  836. #ifdef HEATER_1_MAXTEMP
  837. TEMP_MAX_ROUTINE(1);
  838. #endif
  839. #if EXTRUDERS > 2
  840. #ifdef HEATER_2_MINTEMP
  841. TEMP_MIN_ROUTINE(2);
  842. #endif
  843. #ifdef HEATER_2_MAXTEMP
  844. TEMP_MAX_ROUTINE(2);
  845. #endif
  846. #if EXTRUDERS > 3
  847. #ifdef HEATER_3_MINTEMP
  848. TEMP_MIN_ROUTINE(3);
  849. #endif
  850. #ifdef HEATER_3_MAXTEMP
  851. TEMP_MAX_ROUTINE(3);
  852. #endif
  853. #endif // EXTRUDERS > 3
  854. #endif // EXTRUDERS > 2
  855. #endif // EXTRUDERS > 1
  856. #ifdef BED_MINTEMP
  857. /* No bed MINTEMP error implemented?!? */ /*
  858. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  859. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  860. bed_minttemp_raw += OVERSAMPLENR;
  861. #else
  862. bed_minttemp_raw -= OVERSAMPLENR;
  863. #endif
  864. }
  865. */
  866. #endif //BED_MINTEMP
  867. #ifdef BED_MAXTEMP
  868. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  869. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  870. bed_maxttemp_raw -= OVERSAMPLENR;
  871. #else
  872. bed_maxttemp_raw += OVERSAMPLENR;
  873. #endif
  874. }
  875. #endif //BED_MAXTEMP
  876. }
  877. #ifdef THERMAL_PROTECTION_HOTENDS
  878. /**
  879. * Start Heating Sanity Check for hotends that are below
  880. * their target temperature by a configurable margin.
  881. * This is called when the temperature is set. (M104, M109)
  882. */
  883. void start_watching_heater(int e) {
  884. millis_t ms = millis() + WATCH_TEMP_PERIOD * 1000;
  885. if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
  886. watch_target_temp[e] = degHotend(e) + WATCH_TEMP_INCREASE;
  887. watch_heater_next_ms[e] = ms;
  888. }
  889. else
  890. watch_heater_next_ms[e] = 0;
  891. }
  892. #endif
  893. #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
  894. void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
  895. static float tr_target_temperature[EXTRUDERS+1] = { 0.0 };
  896. /*
  897. SERIAL_ECHO_START;
  898. SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
  899. if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHOPGM(heater_id);
  900. SERIAL_ECHOPGM(" ; State:");
  901. SERIAL_ECHOPGM(*state);
  902. SERIAL_ECHOPGM(" ; Timer:");
  903. SERIAL_ECHOPGM(*timer);
  904. SERIAL_ECHOPGM(" ; Temperature:");
  905. SERIAL_ECHOPGM(temperature);
  906. SERIAL_ECHOPGM(" ; Target Temp:");
  907. SERIAL_ECHOPGM(target_temperature);
  908. SERIAL_EOL;
  909. */
  910. int heater_index = heater_id >= 0 ? heater_id : EXTRUDERS;
  911. // If the target temperature changes, restart
  912. if (tr_target_temperature[heater_index] != target_temperature)
  913. *state = TRReset;
  914. switch (*state) {
  915. case TRReset:
  916. *timer = 0;
  917. *state = TRInactive;
  918. break;
  919. // Inactive state waits for a target temperature to be set
  920. case TRInactive:
  921. if (target_temperature > 0) {
  922. tr_target_temperature[heater_index] = target_temperature;
  923. *state = TRFirstHeating;
  924. }
  925. break;
  926. // When first heating, wait for the temperature to be reached then go to Stable state
  927. case TRFirstHeating:
  928. if (temperature >= tr_target_temperature[heater_index]) *state = TRStable;
  929. break;
  930. // While the temperature is stable watch for a bad temperature
  931. case TRStable:
  932. // If the temperature is over the target (-hysteresis) restart the timer
  933. if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc)
  934. *timer = millis();
  935. // If the timer goes too long without a reset, trigger shutdown
  936. else if (millis() > *timer + period_seconds * 1000UL)
  937. *state = TRRunaway;
  938. break;
  939. case TRRunaway:
  940. _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
  941. }
  942. }
  943. #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
  944. void disable_all_heaters() {
  945. for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
  946. setTargetBed(0);
  947. #define DISABLE_HEATER(NR) { \
  948. target_temperature[NR] = 0; \
  949. soft_pwm[NR] = 0; \
  950. WRITE_HEATER_ ## NR (LOW); \
  951. }
  952. #if HAS_TEMP_0
  953. target_temperature[0] = 0;
  954. soft_pwm[0] = 0;
  955. WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
  956. #endif
  957. #if EXTRUDERS > 1 && HAS_TEMP_1
  958. DISABLE_HEATER(1);
  959. #endif
  960. #if EXTRUDERS > 2 && HAS_TEMP_2
  961. DISABLE_HEATER(2);
  962. #endif
  963. #if EXTRUDERS > 3 && HAS_TEMP_3
  964. DISABLE_HEATER(3);
  965. #endif
  966. #if HAS_TEMP_BED
  967. target_temperature_bed = 0;
  968. soft_pwm_bed = 0;
  969. #if HAS_HEATER_BED
  970. WRITE_HEATER_BED(LOW);
  971. #endif
  972. #endif
  973. }
  974. #ifdef HEATER_0_USES_MAX6675
  975. #define MAX6675_HEAT_INTERVAL 250u
  976. static millis_t next_max6675_ms = 0;
  977. int max6675_temp = 2000;
  978. static int read_max6675() {
  979. millis_t ms = millis();
  980. if (ms < next_max6675_ms)
  981. return max6675_temp;
  982. next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
  983. max6675_temp = 0;
  984. #ifdef PRR
  985. PRR &= ~BIT(PRSPI);
  986. #elif defined(PRR0)
  987. PRR0 &= ~BIT(PRSPI);
  988. #endif
  989. SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
  990. // enable TT_MAX6675
  991. WRITE(MAX6675_SS, 0);
  992. // ensure 100ns delay - a bit extra is fine
  993. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  994. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  995. // read MSB
  996. SPDR = 0;
  997. for (;(SPSR & BIT(SPIF)) == 0;);
  998. max6675_temp = SPDR;
  999. max6675_temp <<= 8;
  1000. // read LSB
  1001. SPDR = 0;
  1002. for (;(SPSR & BIT(SPIF)) == 0;);
  1003. max6675_temp |= SPDR;
  1004. // disable TT_MAX6675
  1005. WRITE(MAX6675_SS, 1);
  1006. if (max6675_temp & 4) {
  1007. // thermocouple open
  1008. max6675_temp = 4000;
  1009. }
  1010. else {
  1011. max6675_temp = max6675_temp >> 3;
  1012. }
  1013. return max6675_temp;
  1014. }
  1015. #endif //HEATER_0_USES_MAX6675
  1016. /**
  1017. * Stages in the ISR loop
  1018. */
  1019. enum TempState {
  1020. PrepareTemp_0,
  1021. MeasureTemp_0,
  1022. PrepareTemp_BED,
  1023. MeasureTemp_BED,
  1024. PrepareTemp_1,
  1025. MeasureTemp_1,
  1026. PrepareTemp_2,
  1027. MeasureTemp_2,
  1028. PrepareTemp_3,
  1029. MeasureTemp_3,
  1030. Prepare_FILWIDTH,
  1031. Measure_FILWIDTH,
  1032. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  1033. };
  1034. static unsigned long raw_temp_value[4] = { 0 };
  1035. static unsigned long raw_temp_bed_value = 0;
  1036. static void set_current_temp_raw() {
  1037. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1038. current_temperature_raw[0] = raw_temp_value[0];
  1039. #endif
  1040. #if HAS_TEMP_1
  1041. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  1042. redundant_temperature_raw = raw_temp_value[1];
  1043. #else
  1044. current_temperature_raw[1] = raw_temp_value[1];
  1045. #endif
  1046. #if HAS_TEMP_2
  1047. current_temperature_raw[2] = raw_temp_value[2];
  1048. #if HAS_TEMP_3
  1049. current_temperature_raw[3] = raw_temp_value[3];
  1050. #endif
  1051. #endif
  1052. #endif
  1053. current_temperature_bed_raw = raw_temp_bed_value;
  1054. temp_meas_ready = true;
  1055. }
  1056. /**
  1057. * Timer 0 is shared with millies
  1058. * - Manage PWM to all the heaters and fan
  1059. * - Update the raw temperature values
  1060. * - Check new temperature values for MIN/MAX errors
  1061. * - Step the babysteps value for each axis towards 0
  1062. */
  1063. ISR(TIMER0_COMPB_vect) {
  1064. static unsigned char temp_count = 0;
  1065. static TempState temp_state = StartupDelay;
  1066. static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
  1067. // Static members for each heater
  1068. #ifdef SLOW_PWM_HEATERS
  1069. static unsigned char slow_pwm_count = 0;
  1070. #define ISR_STATICS(n) \
  1071. static unsigned char soft_pwm_ ## n; \
  1072. static unsigned char state_heater_ ## n = 0; \
  1073. static unsigned char state_timer_heater_ ## n = 0
  1074. #else
  1075. #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
  1076. #endif
  1077. // Statics per heater
  1078. ISR_STATICS(0);
  1079. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1080. ISR_STATICS(1);
  1081. #if EXTRUDERS > 2
  1082. ISR_STATICS(2);
  1083. #if EXTRUDERS > 3
  1084. ISR_STATICS(3);
  1085. #endif
  1086. #endif
  1087. #endif
  1088. #if HAS_HEATER_BED
  1089. ISR_STATICS(BED);
  1090. #endif
  1091. #if HAS_FILAMENT_SENSOR
  1092. static unsigned long raw_filwidth_value = 0;
  1093. #endif
  1094. #ifndef SLOW_PWM_HEATERS
  1095. /**
  1096. * standard PWM modulation
  1097. */
  1098. if (pwm_count == 0) {
  1099. soft_pwm_0 = soft_pwm[0];
  1100. if (soft_pwm_0 > 0) {
  1101. WRITE_HEATER_0(1);
  1102. }
  1103. else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
  1104. #if EXTRUDERS > 1
  1105. soft_pwm_1 = soft_pwm[1];
  1106. WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
  1107. #if EXTRUDERS > 2
  1108. soft_pwm_2 = soft_pwm[2];
  1109. WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
  1110. #if EXTRUDERS > 3
  1111. soft_pwm_3 = soft_pwm[3];
  1112. WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
  1113. #endif
  1114. #endif
  1115. #endif
  1116. #if HAS_HEATER_BED
  1117. soft_pwm_BED = soft_pwm_bed;
  1118. WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
  1119. #endif
  1120. #ifdef FAN_SOFT_PWM
  1121. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1122. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1123. #endif
  1124. }
  1125. if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
  1126. #if EXTRUDERS > 1
  1127. if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
  1128. #if EXTRUDERS > 2
  1129. if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
  1130. #if EXTRUDERS > 3
  1131. if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
  1132. #endif
  1133. #endif
  1134. #endif
  1135. #if HAS_HEATER_BED
  1136. if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
  1137. #endif
  1138. #ifdef FAN_SOFT_PWM
  1139. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1140. #endif
  1141. pwm_count += BIT(SOFT_PWM_SCALE);
  1142. pwm_count &= 0x7f;
  1143. #else // SLOW_PWM_HEATERS
  1144. /*
  1145. * SLOW PWM HEATERS
  1146. *
  1147. * for heaters drived by relay
  1148. */
  1149. #ifndef MIN_STATE_TIME
  1150. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1151. #endif
  1152. // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
  1153. #define _SLOW_PWM_ROUTINE(NR, src) \
  1154. soft_pwm_ ## NR = src; \
  1155. if (soft_pwm_ ## NR > 0) { \
  1156. if (state_timer_heater_ ## NR == 0) { \
  1157. if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1158. state_heater_ ## NR = 1; \
  1159. WRITE_HEATER_ ## NR(1); \
  1160. } \
  1161. } \
  1162. else { \
  1163. if (state_timer_heater_ ## NR == 0) { \
  1164. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1165. state_heater_ ## NR = 0; \
  1166. WRITE_HEATER_ ## NR(0); \
  1167. } \
  1168. }
  1169. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1170. #define PWM_OFF_ROUTINE(NR) \
  1171. if (soft_pwm_ ## NR < slow_pwm_count) { \
  1172. if (state_timer_heater_ ## NR == 0) { \
  1173. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1174. state_heater_ ## NR = 0; \
  1175. WRITE_HEATER_ ## NR (0); \
  1176. } \
  1177. }
  1178. if (slow_pwm_count == 0) {
  1179. SLOW_PWM_ROUTINE(0); // EXTRUDER 0
  1180. #if EXTRUDERS > 1
  1181. SLOW_PWM_ROUTINE(1); // EXTRUDER 1
  1182. #if EXTRUDERS > 2
  1183. SLOW_PWM_ROUTINE(2); // EXTRUDER 2
  1184. #if EXTRUDERS > 3
  1185. SLOW_PWM_ROUTINE(3); // EXTRUDER 3
  1186. #endif
  1187. #endif
  1188. #endif
  1189. #if HAS_HEATER_BED
  1190. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1191. #endif
  1192. } // slow_pwm_count == 0
  1193. PWM_OFF_ROUTINE(0); // EXTRUDER 0
  1194. #if EXTRUDERS > 1
  1195. PWM_OFF_ROUTINE(1); // EXTRUDER 1
  1196. #if EXTRUDERS > 2
  1197. PWM_OFF_ROUTINE(2); // EXTRUDER 2
  1198. #if EXTRUDERS > 3
  1199. PWM_OFF_ROUTINE(3); // EXTRUDER 3
  1200. #endif
  1201. #endif
  1202. #endif
  1203. #if HAS_HEATER_BED
  1204. PWM_OFF_ROUTINE(BED); // BED
  1205. #endif
  1206. #ifdef FAN_SOFT_PWM
  1207. if (pwm_count == 0) {
  1208. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1209. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1210. }
  1211. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1212. #endif //FAN_SOFT_PWM
  1213. pwm_count += BIT(SOFT_PWM_SCALE);
  1214. pwm_count &= 0x7f;
  1215. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1216. if ((pwm_count % 64) == 0) {
  1217. slow_pwm_count++;
  1218. slow_pwm_count &= 0x7f;
  1219. // EXTRUDER 0
  1220. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1221. #if EXTRUDERS > 1 // EXTRUDER 1
  1222. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1223. #if EXTRUDERS > 2 // EXTRUDER 2
  1224. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1225. #if EXTRUDERS > 3 // EXTRUDER 3
  1226. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1227. #endif
  1228. #endif
  1229. #endif
  1230. #if HAS_HEATER_BED
  1231. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1232. #endif
  1233. } // (pwm_count % 64) == 0
  1234. #endif // SLOW_PWM_HEATERS
  1235. #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
  1236. #ifdef MUX5
  1237. #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1238. #else
  1239. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1240. #endif
  1241. // Prepare or measure a sensor, each one every 12th frame
  1242. switch(temp_state) {
  1243. case PrepareTemp_0:
  1244. #if HAS_TEMP_0
  1245. START_ADC(TEMP_0_PIN);
  1246. #endif
  1247. lcd_buttons_update();
  1248. temp_state = MeasureTemp_0;
  1249. break;
  1250. case MeasureTemp_0:
  1251. #if HAS_TEMP_0
  1252. raw_temp_value[0] += ADC;
  1253. #endif
  1254. temp_state = PrepareTemp_BED;
  1255. break;
  1256. case PrepareTemp_BED:
  1257. #if HAS_TEMP_BED
  1258. START_ADC(TEMP_BED_PIN);
  1259. #endif
  1260. lcd_buttons_update();
  1261. temp_state = MeasureTemp_BED;
  1262. break;
  1263. case MeasureTemp_BED:
  1264. #if HAS_TEMP_BED
  1265. raw_temp_bed_value += ADC;
  1266. #endif
  1267. temp_state = PrepareTemp_1;
  1268. break;
  1269. case PrepareTemp_1:
  1270. #if HAS_TEMP_1
  1271. START_ADC(TEMP_1_PIN);
  1272. #endif
  1273. lcd_buttons_update();
  1274. temp_state = MeasureTemp_1;
  1275. break;
  1276. case MeasureTemp_1:
  1277. #if HAS_TEMP_1
  1278. raw_temp_value[1] += ADC;
  1279. #endif
  1280. temp_state = PrepareTemp_2;
  1281. break;
  1282. case PrepareTemp_2:
  1283. #if HAS_TEMP_2
  1284. START_ADC(TEMP_2_PIN);
  1285. #endif
  1286. lcd_buttons_update();
  1287. temp_state = MeasureTemp_2;
  1288. break;
  1289. case MeasureTemp_2:
  1290. #if HAS_TEMP_2
  1291. raw_temp_value[2] += ADC;
  1292. #endif
  1293. temp_state = PrepareTemp_3;
  1294. break;
  1295. case PrepareTemp_3:
  1296. #if HAS_TEMP_3
  1297. START_ADC(TEMP_3_PIN);
  1298. #endif
  1299. lcd_buttons_update();
  1300. temp_state = MeasureTemp_3;
  1301. break;
  1302. case MeasureTemp_3:
  1303. #if HAS_TEMP_3
  1304. raw_temp_value[3] += ADC;
  1305. #endif
  1306. temp_state = Prepare_FILWIDTH;
  1307. break;
  1308. case Prepare_FILWIDTH:
  1309. #if HAS_FILAMENT_SENSOR
  1310. START_ADC(FILWIDTH_PIN);
  1311. #endif
  1312. lcd_buttons_update();
  1313. temp_state = Measure_FILWIDTH;
  1314. break;
  1315. case Measure_FILWIDTH:
  1316. #if HAS_FILAMENT_SENSOR
  1317. // raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1318. if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1319. raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
  1320. raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
  1321. }
  1322. #endif
  1323. temp_state = PrepareTemp_0;
  1324. temp_count++;
  1325. break;
  1326. case StartupDelay:
  1327. temp_state = PrepareTemp_0;
  1328. break;
  1329. // default:
  1330. // SERIAL_ERROR_START;
  1331. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1332. // break;
  1333. } // switch(temp_state)
  1334. if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1335. // Update the raw values if they've been read. Else we could be updating them during reading.
  1336. if (!temp_meas_ready) set_current_temp_raw();
  1337. // Filament Sensor - can be read any time since IIR filtering is used
  1338. #if HAS_FILAMENT_SENSOR
  1339. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1340. #endif
  1341. temp_count = 0;
  1342. for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
  1343. raw_temp_bed_value = 0;
  1344. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1345. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1346. #define GE0 <=
  1347. #else
  1348. #define GE0 >=
  1349. #endif
  1350. if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
  1351. if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0);
  1352. #endif
  1353. #if HAS_TEMP_1
  1354. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1355. #define GE1 <=
  1356. #else
  1357. #define GE1 >=
  1358. #endif
  1359. if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
  1360. if (minttemp_raw[1] GE1 current_temperature_raw[1]) min_temp_error(1);
  1361. #endif // TEMP_SENSOR_1
  1362. #if HAS_TEMP_2
  1363. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1364. #define GE2 <=
  1365. #else
  1366. #define GE2 >=
  1367. #endif
  1368. if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
  1369. if (minttemp_raw[2] GE2 current_temperature_raw[2]) min_temp_error(2);
  1370. #endif // TEMP_SENSOR_2
  1371. #if HAS_TEMP_3
  1372. #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
  1373. #define GE3 <=
  1374. #else
  1375. #define GE3 >=
  1376. #endif
  1377. if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
  1378. if (minttemp_raw[3] GE3 current_temperature_raw[3]) min_temp_error(3);
  1379. #endif // TEMP_SENSOR_3
  1380. #if HAS_TEMP_BED
  1381. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1382. #define GEBED <=
  1383. #else
  1384. #define GEBED >=
  1385. #endif
  1386. if (current_temperature_bed_raw GEBED bed_maxttemp_raw) {
  1387. target_temperature_bed = 0;
  1388. bed_max_temp_error();
  1389. }
  1390. #endif
  1391. } // temp_count >= OVERSAMPLENR
  1392. #ifdef BABYSTEPPING
  1393. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) {
  1394. int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
  1395. if (curTodo > 0) {
  1396. babystep(axis,/*fwd*/true);
  1397. babystepsTodo[axis]--; //fewer to do next time
  1398. }
  1399. else if (curTodo < 0) {
  1400. babystep(axis,/*fwd*/false);
  1401. babystepsTodo[axis]++; //fewer to do next time
  1402. }
  1403. }
  1404. #endif //BABYSTEPPING
  1405. }
  1406. #ifdef PIDTEMP
  1407. // Apply the scale factors to the PID values
  1408. float scalePID_i(float i) { return i * PID_dT; }
  1409. float unscalePID_i(float i) { return i / PID_dT; }
  1410. float scalePID_d(float d) { return d / PID_dT; }
  1411. float unscalePID_d(float d) { return d * PID_dT; }
  1412. #endif //PIDTEMP