My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 425KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
  53. * G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
  54. * G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
  55. * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
  56. * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
  57. * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
  58. * G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
  59. * G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
  60. * G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION)
  61. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  62. * G28 - Home one or more axes
  63. * G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
  64. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  65. * G31 - Dock sled (Z_PROBE_SLED only)
  66. * G32 - Undock sled (Z_PROBE_SLED only)
  67. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  68. * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
  69. * G42 - Coordinated move to a mesh point (Requires AUTO_BED_LEVELING_UBL)
  70. * G90 - Use Absolute Coordinates
  71. * G91 - Use Relative Coordinates
  72. * G92 - Set current position to coordinates given
  73. *
  74. * "M" Codes
  75. *
  76. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  77. * M1 -> M0
  78. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  79. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  80. * M5 - Turn laser/spindle off
  81. * M17 - Enable/Power all stepper motors
  82. * M18 - Disable all stepper motors; same as M84
  83. * M20 - List SD card. (Requires SDSUPPORT)
  84. * M21 - Init SD card. (Requires SDSUPPORT)
  85. * M22 - Release SD card. (Requires SDSUPPORT)
  86. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  87. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  88. * M25 - Pause SD print. (Requires SDSUPPORT)
  89. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  90. * M27 - Report SD print status. (Requires SDSUPPORT)
  91. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  92. * M29 - Stop SD write. (Requires SDSUPPORT)
  93. * M30 - Delete file from SD: "M30 /path/file.gco"
  94. * M31 - Report time since last M109 or SD card start to serial.
  95. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  96. * Use P to run other files as sub-programs: "M32 P !filename#"
  97. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  99. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  100. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  101. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  102. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  103. * M75 - Start the print job timer.
  104. * M76 - Pause the print job timer.
  105. * M77 - Stop the print job timer.
  106. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  107. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  108. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  109. * M82 - Set E codes absolute (default).
  110. * M83 - Set E codes relative while in Absolute (G90) mode.
  111. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  112. * duration after which steppers should turn off. S0 disables the timeout.
  113. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  114. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  115. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  116. * M104 - Set extruder target temp.
  117. * M105 - Report current temperatures.
  118. * M106 - Fan on.
  119. * M107 - Fan off.
  120. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  121. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  122. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  123. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  124. * M110 - Set the current line number. (Used by host printing)
  125. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  126. * M112 - Emergency stop.
  127. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  128. * M114 - Report current position.
  129. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  130. * M117 - Display a message on the controller screen. (Requires an LCD)
  131. * M118 - Display a message in the host console.
  132. * M119 - Report endstops status.
  133. * M120 - Enable endstops detection.
  134. * M121 - Disable endstops detection.
  135. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  136. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  137. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  138. * M128 - EtoP Open. (Requires BARICUDA)
  139. * M129 - EtoP Closed. (Requires BARICUDA)
  140. * M140 - Set bed target temp. S<temp>
  141. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  142. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  143. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, or PCA9632)
  144. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  145. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  146. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  147. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  148. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  149. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  150. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  151. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  152. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  153. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  154. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  155. * M205 - Set advanced settings. Current units apply:
  156. S<print> T<travel> minimum speeds
  157. B<minimum segment time>
  158. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  159. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  160. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  161. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  162. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  163. Every normal extrude-only move will be classified as retract depending on the direction.
  164. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  165. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  166. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  167. * M221 - Set Flow Percentage: "M221 S<percent>"
  168. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  169. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  170. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  171. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  172. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  173. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  174. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  175. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  176. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  177. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  178. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  179. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  180. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  181. * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
  182. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  183. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  184. * M400 - Finish all moves.
  185. * M401 - Lower Z probe. (Requires a probe)
  186. * M402 - Raise Z probe. (Requires a probe)
  187. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  188. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  189. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  190. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  191. * M410 - Quickstop. Abort all planned moves.
  192. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  193. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  194. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  195. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  196. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  197. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  198. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  199. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  200. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
  201. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  202. * M666 - Set delta endstop adjustment. (Requires DELTA)
  203. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  204. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  205. * M860 - Report the position of position encoder modules.
  206. * M861 - Report the status of position encoder modules.
  207. * M862 - Perform an axis continuity test for position encoder modules.
  208. * M863 - Perform steps-per-mm calibration for position encoder modules.
  209. * M864 - Change position encoder module I2C address.
  210. * M865 - Check position encoder module firmware version.
  211. * M866 - Report or reset position encoder module error count.
  212. * M867 - Enable/disable or toggle error correction for position encoder modules.
  213. * M868 - Report or set position encoder module error correction threshold.
  214. * M869 - Report position encoder module error.
  215. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  216. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  217. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  218. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  219. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  220. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  221. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  222. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  223. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  224. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  225. *
  226. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  227. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  228. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  229. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  230. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  231. *
  232. * ************ Custom codes - This can change to suit future G-code regulations
  233. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  234. * M999 - Restart after being stopped by error
  235. *
  236. * "T" Codes
  237. *
  238. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  239. *
  240. */
  241. #include "Marlin.h"
  242. #include "ultralcd.h"
  243. #include "planner.h"
  244. #include "stepper.h"
  245. #include "endstops.h"
  246. #include "temperature.h"
  247. #include "cardreader.h"
  248. #include "configuration_store.h"
  249. #include "language.h"
  250. #include "pins_arduino.h"
  251. #include "math.h"
  252. #include "nozzle.h"
  253. #include "duration_t.h"
  254. #include "types.h"
  255. #include "gcode.h"
  256. #if HAS_ABL
  257. #include "vector_3.h"
  258. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  259. #include "least_squares_fit.h"
  260. #endif
  261. #elif ENABLED(MESH_BED_LEVELING)
  262. #include "mesh_bed_leveling.h"
  263. #endif
  264. #if ENABLED(BEZIER_CURVE_SUPPORT)
  265. #include "planner_bezier.h"
  266. #endif
  267. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  268. #include "buzzer.h"
  269. #endif
  270. #if ENABLED(USE_WATCHDOG)
  271. #include "watchdog.h"
  272. #endif
  273. #if ENABLED(NEOPIXEL_RGBW_LED)
  274. #include <Adafruit_NeoPixel.h>
  275. #endif
  276. #if ENABLED(BLINKM)
  277. #include "blinkm.h"
  278. #include "Wire.h"
  279. #endif
  280. #if ENABLED(PCA9632)
  281. #include "pca9632.h"
  282. #endif
  283. #if HAS_SERVOS
  284. #include "servo.h"
  285. #endif
  286. #if HAS_DIGIPOTSS
  287. #include <SPI.h>
  288. #endif
  289. #if ENABLED(DAC_STEPPER_CURRENT)
  290. #include "stepper_dac.h"
  291. #endif
  292. #if ENABLED(EXPERIMENTAL_I2CBUS)
  293. #include "twibus.h"
  294. #endif
  295. #if ENABLED(I2C_POSITION_ENCODERS)
  296. #include "I2CPositionEncoder.h"
  297. #endif
  298. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  299. #include "endstop_interrupts.h"
  300. #endif
  301. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  302. void gcode_M100();
  303. void M100_dump_routine(const char * const title, const char *start, const char *end);
  304. #endif
  305. #if ENABLED(SDSUPPORT)
  306. CardReader card;
  307. #endif
  308. #if ENABLED(EXPERIMENTAL_I2CBUS)
  309. TWIBus i2c;
  310. #endif
  311. #if ENABLED(G38_PROBE_TARGET)
  312. bool G38_move = false,
  313. G38_endstop_hit = false;
  314. #endif
  315. #if ENABLED(AUTO_BED_LEVELING_UBL)
  316. #include "ubl.h"
  317. extern bool defer_return_to_status;
  318. unified_bed_leveling ubl;
  319. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  320. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  321. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  322. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  323. || isnan(ubl.z_values[0][0]))
  324. #endif
  325. bool Running = true;
  326. uint8_t marlin_debug_flags = DEBUG_NONE;
  327. /**
  328. * Cartesian Current Position
  329. * Used to track the logical position as moves are queued.
  330. * Used by 'line_to_current_position' to do a move after changing it.
  331. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  332. */
  333. float current_position[XYZE] = { 0.0 };
  334. /**
  335. * Cartesian Destination
  336. * A temporary position, usually applied to 'current_position'.
  337. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  338. * 'line_to_destination' sets 'current_position' to 'destination'.
  339. */
  340. float destination[XYZE] = { 0.0 };
  341. /**
  342. * axis_homed
  343. * Flags that each linear axis was homed.
  344. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  345. *
  346. * axis_known_position
  347. * Flags that the position is known in each linear axis. Set when homed.
  348. * Cleared whenever a stepper powers off, potentially losing its position.
  349. */
  350. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  351. /**
  352. * GCode line number handling. Hosts may opt to include line numbers when
  353. * sending commands to Marlin, and lines will be checked for sequentiality.
  354. * M110 N<int> sets the current line number.
  355. */
  356. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  357. /**
  358. * GCode Command Queue
  359. * A simple ring buffer of BUFSIZE command strings.
  360. *
  361. * Commands are copied into this buffer by the command injectors
  362. * (immediate, serial, sd card) and they are processed sequentially by
  363. * the main loop. The process_next_command function parses the next
  364. * command and hands off execution to individual handler functions.
  365. */
  366. uint8_t commands_in_queue = 0; // Count of commands in the queue
  367. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  368. cmd_queue_index_w = 0; // Ring buffer write position
  369. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  370. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  371. #else // This can be collapsed back to the way it was soon.
  372. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  373. #endif
  374. /**
  375. * Next Injected Command pointer. NULL if no commands are being injected.
  376. * Used by Marlin internally to ensure that commands initiated from within
  377. * are enqueued ahead of any pending serial or sd card commands.
  378. */
  379. static const char *injected_commands_P = NULL;
  380. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  381. TempUnit input_temp_units = TEMPUNIT_C;
  382. #endif
  383. /**
  384. * Feed rates are often configured with mm/m
  385. * but the planner and stepper like mm/s units.
  386. */
  387. static const float homing_feedrate_mm_s[] PROGMEM = {
  388. #if ENABLED(DELTA)
  389. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  390. #else
  391. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  392. #endif
  393. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  394. };
  395. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  396. float feedrate_mm_s = MMM_TO_MMS(1500.0);
  397. static float saved_feedrate_mm_s;
  398. int16_t feedrate_percentage = 100, saved_feedrate_percentage,
  399. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  400. // Initialized by settings.load()
  401. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  402. volumetric_enabled;
  403. float filament_size[EXTRUDERS], volumetric_multiplier[EXTRUDERS];
  404. #if HAS_WORKSPACE_OFFSET
  405. #if HAS_POSITION_SHIFT
  406. // The distance that XYZ has been offset by G92. Reset by G28.
  407. float position_shift[XYZ] = { 0 };
  408. #endif
  409. #if HAS_HOME_OFFSET
  410. // This offset is added to the configured home position.
  411. // Set by M206, M428, or menu item. Saved to EEPROM.
  412. float home_offset[XYZ] = { 0 };
  413. #endif
  414. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  415. // The above two are combined to save on computes
  416. float workspace_offset[XYZ] = { 0 };
  417. #endif
  418. #endif
  419. // Software Endstops are based on the configured limits.
  420. #if HAS_SOFTWARE_ENDSTOPS
  421. bool soft_endstops_enabled = true;
  422. #endif
  423. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
  424. soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
  425. #if FAN_COUNT > 0
  426. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  427. #if ENABLED(PROBING_FANS_OFF)
  428. bool fans_paused = false;
  429. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  430. #endif
  431. #endif
  432. // The active extruder (tool). Set with T<extruder> command.
  433. uint8_t active_extruder = 0;
  434. // Relative Mode. Enable with G91, disable with G90.
  435. static bool relative_mode = false;
  436. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  437. volatile bool wait_for_heatup = true;
  438. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  439. #if HAS_RESUME_CONTINUE
  440. volatile bool wait_for_user = false;
  441. #endif
  442. const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
  443. // Number of characters read in the current line of serial input
  444. static int serial_count = 0;
  445. // Inactivity shutdown
  446. millis_t previous_cmd_ms = 0;
  447. static millis_t max_inactive_time = 0;
  448. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  449. // Print Job Timer
  450. #if ENABLED(PRINTCOUNTER)
  451. PrintCounter print_job_timer = PrintCounter();
  452. #else
  453. Stopwatch print_job_timer = Stopwatch();
  454. #endif
  455. // Buzzer - I2C on the LCD or a BEEPER_PIN
  456. #if ENABLED(LCD_USE_I2C_BUZZER)
  457. #define BUZZ(d,f) lcd_buzz(d, f)
  458. #elif PIN_EXISTS(BEEPER)
  459. Buzzer buzzer;
  460. #define BUZZ(d,f) buzzer.tone(d, f)
  461. #else
  462. #define BUZZ(d,f) NOOP
  463. #endif
  464. static uint8_t target_extruder;
  465. #if HAS_BED_PROBE
  466. float zprobe_zoffset; // Initialized by settings.load()
  467. #endif
  468. #if HAS_ABL
  469. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  470. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  471. #elif defined(XY_PROBE_SPEED)
  472. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  473. #else
  474. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  475. #endif
  476. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  477. #if ENABLED(DELTA)
  478. #define ADJUST_DELTA(V) \
  479. if (planner.abl_enabled) { \
  480. const float zadj = bilinear_z_offset(V); \
  481. delta[A_AXIS] += zadj; \
  482. delta[B_AXIS] += zadj; \
  483. delta[C_AXIS] += zadj; \
  484. }
  485. #else
  486. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  487. #endif
  488. #elif IS_KINEMATIC
  489. #define ADJUST_DELTA(V) NOOP
  490. #endif
  491. #if ENABLED(Z_DUAL_ENDSTOPS)
  492. float z_endstop_adj;
  493. #endif
  494. // Extruder offsets
  495. #if HOTENDS > 1
  496. float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
  497. #endif
  498. #if HAS_Z_SERVO_ENDSTOP
  499. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  500. #endif
  501. #if ENABLED(BARICUDA)
  502. uint8_t baricuda_valve_pressure = 0,
  503. baricuda_e_to_p_pressure = 0;
  504. #endif
  505. #if ENABLED(FWRETRACT) // Initialized by settings.load()...
  506. bool autoretract_enabled, // M209 S - Autoretract switch
  507. retracted[EXTRUDERS] = { false }; // Which extruders are currently retracted
  508. float retract_length, // M207 S - G10 Retract length
  509. retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
  510. retract_zlift, // M207 Z - G10 Retract hop size
  511. retract_recover_length, // M208 S - G11 Recover length
  512. retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
  513. swap_retract_length, // M207 W - G10 Swap Retract length
  514. swap_retract_recover_length, // M208 W - G11 Swap Recover length
  515. swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
  516. #if EXTRUDERS > 1
  517. bool retracted_swap[EXTRUDERS] = { false }; // Which extruders are swap-retracted
  518. #else
  519. constexpr bool retracted_swap[1] = { false };
  520. #endif
  521. #endif // FWRETRACT
  522. #if HAS_POWER_SWITCH
  523. bool powersupply_on =
  524. #if ENABLED(PS_DEFAULT_OFF)
  525. false
  526. #else
  527. true
  528. #endif
  529. ;
  530. #endif
  531. #if ENABLED(DELTA)
  532. float delta[ABC],
  533. endstop_adj[ABC] = { 0 };
  534. // Initialized by settings.load()
  535. float delta_radius,
  536. delta_tower_angle_trim[2],
  537. delta_tower[ABC][2],
  538. delta_diagonal_rod,
  539. delta_calibration_radius,
  540. delta_diagonal_rod_2_tower[ABC],
  541. delta_segments_per_second,
  542. delta_clip_start_height = Z_MAX_POS;
  543. float delta_safe_distance_from_top();
  544. #endif
  545. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  546. int bilinear_grid_spacing[2], bilinear_start[2];
  547. float bilinear_grid_factor[2],
  548. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  549. #endif
  550. #if IS_SCARA
  551. // Float constants for SCARA calculations
  552. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  553. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  554. L2_2 = sq(float(L2));
  555. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  556. delta[ABC];
  557. #endif
  558. float cartes[XYZ] = { 0 };
  559. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  560. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  561. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  562. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  563. uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
  564. measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  565. int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  566. #endif
  567. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  568. static bool filament_ran_out = false;
  569. #endif
  570. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  571. AdvancedPauseMenuResponse advanced_pause_menu_response;
  572. #endif
  573. #if ENABLED(MIXING_EXTRUDER)
  574. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  575. #if MIXING_VIRTUAL_TOOLS > 1
  576. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  577. #endif
  578. #endif
  579. static bool send_ok[BUFSIZE];
  580. #if HAS_SERVOS
  581. Servo servo[NUM_SERVOS];
  582. #define MOVE_SERVO(I, P) servo[I].move(P)
  583. #if HAS_Z_SERVO_ENDSTOP
  584. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  585. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  586. #endif
  587. #endif
  588. #ifdef CHDK
  589. millis_t chdkHigh = 0;
  590. bool chdkActive = false;
  591. #endif
  592. #ifdef AUTOMATIC_CURRENT_CONTROL
  593. bool auto_current_control = 0;
  594. #endif
  595. #if ENABLED(PID_EXTRUSION_SCALING)
  596. int lpq_len = 20;
  597. #endif
  598. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  599. MarlinBusyState busy_state = NOT_BUSY;
  600. static millis_t next_busy_signal_ms = 0;
  601. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  602. #else
  603. #define host_keepalive() NOOP
  604. #endif
  605. #if ENABLED(I2C_POSITION_ENCODERS)
  606. I2CPositionEncodersMgr I2CPEM;
  607. uint8_t blockBufferIndexRef = 0;
  608. millis_t lastUpdateMillis;
  609. #endif
  610. #if ENABLED(CNC_WORKSPACE_PLANES)
  611. static WorkspacePlane workspace_plane = PLANE_XY;
  612. #endif
  613. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  614. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  615. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  616. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  617. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  618. typedef void __void_##CONFIG##__
  619. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  620. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  621. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  622. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  623. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  624. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  625. /**
  626. * ***************************************************************************
  627. * ******************************** FUNCTIONS ********************************
  628. * ***************************************************************************
  629. */
  630. void stop();
  631. void get_available_commands();
  632. void process_next_command();
  633. void prepare_move_to_destination();
  634. void get_cartesian_from_steppers();
  635. void set_current_from_steppers_for_axis(const AxisEnum axis);
  636. #if ENABLED(ARC_SUPPORT)
  637. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  638. #endif
  639. #if ENABLED(BEZIER_CURVE_SUPPORT)
  640. void plan_cubic_move(const float offset[4]);
  641. #endif
  642. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  643. void report_current_position();
  644. void report_current_position_detail();
  645. #if ENABLED(DEBUG_LEVELING_FEATURE)
  646. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  647. serialprintPGM(prefix);
  648. SERIAL_CHAR('(');
  649. SERIAL_ECHO(x);
  650. SERIAL_ECHOPAIR(", ", y);
  651. SERIAL_ECHOPAIR(", ", z);
  652. SERIAL_CHAR(')');
  653. if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
  654. }
  655. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  656. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  657. }
  658. #if HAS_ABL
  659. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  660. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  661. }
  662. #endif
  663. #define DEBUG_POS(SUFFIX,VAR) do { \
  664. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  665. #endif
  666. /**
  667. * sync_plan_position
  668. *
  669. * Set the planner/stepper positions directly from current_position with
  670. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  671. */
  672. void sync_plan_position() {
  673. #if ENABLED(DEBUG_LEVELING_FEATURE)
  674. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  675. #endif
  676. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  677. }
  678. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  679. #if IS_KINEMATIC
  680. inline void sync_plan_position_kinematic() {
  681. #if ENABLED(DEBUG_LEVELING_FEATURE)
  682. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  683. #endif
  684. planner.set_position_mm_kinematic(current_position);
  685. }
  686. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  687. #else
  688. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  689. #endif
  690. #if ENABLED(SDSUPPORT)
  691. #include "SdFatUtil.h"
  692. int freeMemory() { return SdFatUtil::FreeRam(); }
  693. #else
  694. extern "C" {
  695. extern char __bss_end;
  696. extern char __heap_start;
  697. extern void* __brkval;
  698. int freeMemory() {
  699. int free_memory;
  700. if ((int)__brkval == 0)
  701. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  702. else
  703. free_memory = ((int)&free_memory) - ((int)__brkval);
  704. return free_memory;
  705. }
  706. }
  707. #endif // !SDSUPPORT
  708. #if ENABLED(DIGIPOT_I2C)
  709. extern void digipot_i2c_set_current(uint8_t channel, float current);
  710. extern void digipot_i2c_init();
  711. #endif
  712. /**
  713. * Inject the next "immediate" command, when possible, onto the front of the queue.
  714. * Return true if any immediate commands remain to inject.
  715. */
  716. static bool drain_injected_commands_P() {
  717. if (injected_commands_P != NULL) {
  718. size_t i = 0;
  719. char c, cmd[30];
  720. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  721. cmd[sizeof(cmd) - 1] = '\0';
  722. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  723. cmd[i] = '\0';
  724. if (enqueue_and_echo_command(cmd)) // success?
  725. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  726. }
  727. return (injected_commands_P != NULL); // return whether any more remain
  728. }
  729. /**
  730. * Record one or many commands to run from program memory.
  731. * Aborts the current queue, if any.
  732. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  733. */
  734. void enqueue_and_echo_commands_P(const char * const pgcode) {
  735. injected_commands_P = pgcode;
  736. drain_injected_commands_P(); // first command executed asap (when possible)
  737. }
  738. /**
  739. * Clear the Marlin command queue
  740. */
  741. void clear_command_queue() {
  742. cmd_queue_index_r = cmd_queue_index_w;
  743. commands_in_queue = 0;
  744. }
  745. /**
  746. * Once a new command is in the ring buffer, call this to commit it
  747. */
  748. inline void _commit_command(bool say_ok) {
  749. send_ok[cmd_queue_index_w] = say_ok;
  750. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  751. commands_in_queue++;
  752. }
  753. /**
  754. * Copy a command from RAM into the main command buffer.
  755. * Return true if the command was successfully added.
  756. * Return false for a full buffer, or if the 'command' is a comment.
  757. */
  758. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  759. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  760. strcpy(command_queue[cmd_queue_index_w], cmd);
  761. _commit_command(say_ok);
  762. return true;
  763. }
  764. /**
  765. * Enqueue with Serial Echo
  766. */
  767. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  768. if (_enqueuecommand(cmd, say_ok)) {
  769. SERIAL_ECHO_START();
  770. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  771. SERIAL_CHAR('"');
  772. SERIAL_EOL();
  773. return true;
  774. }
  775. return false;
  776. }
  777. void setup_killpin() {
  778. #if HAS_KILL
  779. SET_INPUT_PULLUP(KILL_PIN);
  780. #endif
  781. }
  782. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  783. void setup_filrunoutpin() {
  784. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  785. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  786. #else
  787. SET_INPUT(FIL_RUNOUT_PIN);
  788. #endif
  789. }
  790. #endif
  791. void setup_powerhold() {
  792. #if HAS_SUICIDE
  793. OUT_WRITE(SUICIDE_PIN, HIGH);
  794. #endif
  795. #if HAS_POWER_SWITCH
  796. #if ENABLED(PS_DEFAULT_OFF)
  797. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  798. #else
  799. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  800. #endif
  801. #endif
  802. }
  803. void suicide() {
  804. #if HAS_SUICIDE
  805. OUT_WRITE(SUICIDE_PIN, LOW);
  806. #endif
  807. }
  808. void servo_init() {
  809. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  810. servo[0].attach(SERVO0_PIN);
  811. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  812. #endif
  813. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  814. servo[1].attach(SERVO1_PIN);
  815. servo[1].detach();
  816. #endif
  817. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  818. servo[2].attach(SERVO2_PIN);
  819. servo[2].detach();
  820. #endif
  821. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  822. servo[3].attach(SERVO3_PIN);
  823. servo[3].detach();
  824. #endif
  825. #if HAS_Z_SERVO_ENDSTOP
  826. /**
  827. * Set position of Z Servo Endstop
  828. *
  829. * The servo might be deployed and positioned too low to stow
  830. * when starting up the machine or rebooting the board.
  831. * There's no way to know where the nozzle is positioned until
  832. * homing has been done - no homing with z-probe without init!
  833. *
  834. */
  835. STOW_Z_SERVO();
  836. #endif
  837. }
  838. /**
  839. * Stepper Reset (RigidBoard, et.al.)
  840. */
  841. #if HAS_STEPPER_RESET
  842. void disableStepperDrivers() {
  843. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  844. }
  845. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  846. #endif
  847. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  848. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  849. i2c.receive(bytes);
  850. }
  851. void i2c_on_request() { // just send dummy data for now
  852. i2c.reply("Hello World!\n");
  853. }
  854. #endif
  855. #if HAS_COLOR_LEDS
  856. #if ENABLED(NEOPIXEL_RGBW_LED)
  857. Adafruit_NeoPixel pixels(NEOPIXEL_PIXELS, NEOPIXEL_PIN, NEO_GRBW + NEO_KHZ800);
  858. void set_neopixel_color(const uint32_t color) {
  859. for (uint16_t i = 0; i < pixels.numPixels(); ++i)
  860. pixels.setPixelColor(i, color);
  861. pixels.show();
  862. }
  863. void setup_neopixel() {
  864. pixels.setBrightness(255); // 0 - 255 range
  865. pixels.begin();
  866. pixels.show(); // initialize to all off
  867. #if ENABLED(NEOPIXEL_STARTUP_TEST)
  868. delay(2000);
  869. set_neopixel_color(pixels.Color(255, 0, 0, 0)); // red
  870. delay(2000);
  871. set_neopixel_color(pixels.Color(0, 255, 0, 0)); // green
  872. delay(2000);
  873. set_neopixel_color(pixels.Color(0, 0, 255, 0)); // blue
  874. delay(2000);
  875. #endif
  876. set_neopixel_color(pixels.Color(0, 0, 0, 255)); // white
  877. }
  878. #endif // NEOPIXEL_RGBW_LED
  879. void set_led_color(
  880. const uint8_t r, const uint8_t g, const uint8_t b
  881. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
  882. , const uint8_t w = 0
  883. #if ENABLED(NEOPIXEL_RGBW_LED)
  884. , bool isSequence = false
  885. #endif
  886. #endif
  887. ) {
  888. #if ENABLED(NEOPIXEL_RGBW_LED)
  889. const uint32_t color = pixels.Color(r, g, b, w);
  890. static uint16_t nextLed = 0;
  891. if (!isSequence)
  892. set_neopixel_color(color);
  893. else {
  894. pixels.setPixelColor(nextLed, color);
  895. pixels.show();
  896. if (++nextLed >= pixels.numPixels()) nextLed = 0;
  897. return;
  898. }
  899. #endif
  900. #if ENABLED(BLINKM)
  901. // This variant uses i2c to send the RGB components to the device.
  902. SendColors(r, g, b);
  903. #endif
  904. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  905. // This variant uses 3 separate pins for the RGB components.
  906. // If the pins can do PWM then their intensity will be set.
  907. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  908. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  909. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  910. analogWrite(RGB_LED_R_PIN, r);
  911. analogWrite(RGB_LED_G_PIN, g);
  912. analogWrite(RGB_LED_B_PIN, b);
  913. #if ENABLED(RGBW_LED)
  914. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  915. analogWrite(RGB_LED_W_PIN, w);
  916. #endif
  917. #endif
  918. #if ENABLED(PCA9632)
  919. // Update I2C LED driver
  920. PCA9632_SetColor(r, g, b);
  921. #endif
  922. }
  923. #endif // HAS_COLOR_LEDS
  924. void gcode_line_error(const char* err, bool doFlush = true) {
  925. SERIAL_ERROR_START();
  926. serialprintPGM(err);
  927. SERIAL_ERRORLN(gcode_LastN);
  928. //Serial.println(gcode_N);
  929. if (doFlush) FlushSerialRequestResend();
  930. serial_count = 0;
  931. }
  932. /**
  933. * Get all commands waiting on the serial port and queue them.
  934. * Exit when the buffer is full or when no more characters are
  935. * left on the serial port.
  936. */
  937. inline void get_serial_commands() {
  938. static char serial_line_buffer[MAX_CMD_SIZE];
  939. static bool serial_comment_mode = false;
  940. // If the command buffer is empty for too long,
  941. // send "wait" to indicate Marlin is still waiting.
  942. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  943. static millis_t last_command_time = 0;
  944. const millis_t ms = millis();
  945. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  946. SERIAL_ECHOLNPGM(MSG_WAIT);
  947. last_command_time = ms;
  948. }
  949. #endif
  950. /**
  951. * Loop while serial characters are incoming and the queue is not full
  952. */
  953. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  954. char serial_char = MYSERIAL.read();
  955. /**
  956. * If the character ends the line
  957. */
  958. if (serial_char == '\n' || serial_char == '\r') {
  959. serial_comment_mode = false; // end of line == end of comment
  960. if (!serial_count) continue; // skip empty lines
  961. serial_line_buffer[serial_count] = 0; // terminate string
  962. serial_count = 0; //reset buffer
  963. char* command = serial_line_buffer;
  964. while (*command == ' ') command++; // skip any leading spaces
  965. char *npos = (*command == 'N') ? command : NULL, // Require the N parameter to start the line
  966. *apos = strchr(command, '*');
  967. if (npos) {
  968. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  969. if (M110) {
  970. char* n2pos = strchr(command + 4, 'N');
  971. if (n2pos) npos = n2pos;
  972. }
  973. gcode_N = strtol(npos + 1, NULL, 10);
  974. if (gcode_N != gcode_LastN + 1 && !M110) {
  975. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  976. return;
  977. }
  978. if (apos) {
  979. byte checksum = 0, count = 0;
  980. while (command[count] != '*') checksum ^= command[count++];
  981. if (strtol(apos + 1, NULL, 10) != checksum) {
  982. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  983. return;
  984. }
  985. // if no errors, continue parsing
  986. }
  987. else {
  988. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  989. return;
  990. }
  991. gcode_LastN = gcode_N;
  992. // if no errors, continue parsing
  993. }
  994. else if (apos) { // No '*' without 'N'
  995. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  996. return;
  997. }
  998. // Movement commands alert when stopped
  999. if (IsStopped()) {
  1000. char* gpos = strchr(command, 'G');
  1001. if (gpos) {
  1002. const int codenum = strtol(gpos + 1, NULL, 10);
  1003. switch (codenum) {
  1004. case 0:
  1005. case 1:
  1006. case 2:
  1007. case 3:
  1008. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1009. LCD_MESSAGEPGM(MSG_STOPPED);
  1010. break;
  1011. }
  1012. }
  1013. }
  1014. #if DISABLED(EMERGENCY_PARSER)
  1015. // If command was e-stop process now
  1016. if (strcmp(command, "M108") == 0) {
  1017. wait_for_heatup = false;
  1018. #if ENABLED(ULTIPANEL)
  1019. wait_for_user = false;
  1020. #endif
  1021. }
  1022. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  1023. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  1024. #endif
  1025. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  1026. last_command_time = ms;
  1027. #endif
  1028. // Add the command to the queue
  1029. _enqueuecommand(serial_line_buffer, true);
  1030. }
  1031. else if (serial_count >= MAX_CMD_SIZE - 1) {
  1032. // Keep fetching, but ignore normal characters beyond the max length
  1033. // The command will be injected when EOL is reached
  1034. }
  1035. else if (serial_char == '\\') { // Handle escapes
  1036. if (MYSERIAL.available() > 0) {
  1037. // if we have one more character, copy it over
  1038. serial_char = MYSERIAL.read();
  1039. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1040. }
  1041. // otherwise do nothing
  1042. }
  1043. else { // it's not a newline, carriage return or escape char
  1044. if (serial_char == ';') serial_comment_mode = true;
  1045. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1046. }
  1047. } // queue has space, serial has data
  1048. }
  1049. #if ENABLED(SDSUPPORT)
  1050. /**
  1051. * Get commands from the SD Card until the command buffer is full
  1052. * or until the end of the file is reached. The special character '#'
  1053. * can also interrupt buffering.
  1054. */
  1055. inline void get_sdcard_commands() {
  1056. static bool stop_buffering = false,
  1057. sd_comment_mode = false;
  1058. if (!card.sdprinting) return;
  1059. /**
  1060. * '#' stops reading from SD to the buffer prematurely, so procedural
  1061. * macro calls are possible. If it occurs, stop_buffering is triggered
  1062. * and the buffer is run dry; this character _can_ occur in serial com
  1063. * due to checksums, however, no checksums are used in SD printing.
  1064. */
  1065. if (commands_in_queue == 0) stop_buffering = false;
  1066. uint16_t sd_count = 0;
  1067. bool card_eof = card.eof();
  1068. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1069. const int16_t n = card.get();
  1070. char sd_char = (char)n;
  1071. card_eof = card.eof();
  1072. if (card_eof || n == -1
  1073. || sd_char == '\n' || sd_char == '\r'
  1074. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1075. ) {
  1076. if (card_eof) {
  1077. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1078. card.printingHasFinished();
  1079. #if ENABLED(PRINTER_EVENT_LEDS)
  1080. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1081. set_led_color(0, 255, 0); // Green
  1082. #if HAS_RESUME_CONTINUE
  1083. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1084. #else
  1085. safe_delay(1000);
  1086. #endif
  1087. set_led_color(0, 0, 0); // OFF
  1088. #endif
  1089. card.checkautostart(true);
  1090. }
  1091. else if (n == -1) {
  1092. SERIAL_ERROR_START();
  1093. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1094. }
  1095. if (sd_char == '#') stop_buffering = true;
  1096. sd_comment_mode = false; // for new command
  1097. if (!sd_count) continue; // skip empty lines (and comment lines)
  1098. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1099. sd_count = 0; // clear sd line buffer
  1100. _commit_command(false);
  1101. }
  1102. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1103. /**
  1104. * Keep fetching, but ignore normal characters beyond the max length
  1105. * The command will be injected when EOL is reached
  1106. */
  1107. }
  1108. else {
  1109. if (sd_char == ';') sd_comment_mode = true;
  1110. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1111. }
  1112. }
  1113. }
  1114. #endif // SDSUPPORT
  1115. /**
  1116. * Add to the circular command queue the next command from:
  1117. * - The command-injection queue (injected_commands_P)
  1118. * - The active serial input (usually USB)
  1119. * - The SD card file being actively printed
  1120. */
  1121. void get_available_commands() {
  1122. // if any immediate commands remain, don't get other commands yet
  1123. if (drain_injected_commands_P()) return;
  1124. get_serial_commands();
  1125. #if ENABLED(SDSUPPORT)
  1126. get_sdcard_commands();
  1127. #endif
  1128. }
  1129. /**
  1130. * Set target_extruder from the T parameter or the active_extruder
  1131. *
  1132. * Returns TRUE if the target is invalid
  1133. */
  1134. bool get_target_extruder_from_command(const uint16_t code) {
  1135. if (parser.seenval('T')) {
  1136. const int8_t e = parser.value_byte();
  1137. if (e >= EXTRUDERS) {
  1138. SERIAL_ECHO_START();
  1139. SERIAL_CHAR('M');
  1140. SERIAL_ECHO(code);
  1141. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
  1142. return true;
  1143. }
  1144. target_extruder = e;
  1145. }
  1146. else
  1147. target_extruder = active_extruder;
  1148. return false;
  1149. }
  1150. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1151. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1152. #endif
  1153. #if ENABLED(DUAL_X_CARRIAGE)
  1154. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1155. static float x_home_pos(const int extruder) {
  1156. if (extruder == 0)
  1157. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1158. else
  1159. /**
  1160. * In dual carriage mode the extruder offset provides an override of the
  1161. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1162. * This allows soft recalibration of the second extruder home position
  1163. * without firmware reflash (through the M218 command).
  1164. */
  1165. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1166. }
  1167. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1168. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1169. static bool active_extruder_parked = false; // used in mode 1 & 2
  1170. static float raised_parked_position[XYZE]; // used in mode 1
  1171. static millis_t delayed_move_time = 0; // used in mode 1
  1172. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1173. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1174. #endif // DUAL_X_CARRIAGE
  1175. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1176. /**
  1177. * Software endstops can be used to monitor the open end of
  1178. * an axis that has a hardware endstop on the other end. Or
  1179. * they can prevent axes from moving past endstops and grinding.
  1180. *
  1181. * To keep doing their job as the coordinate system changes,
  1182. * the software endstop positions must be refreshed to remain
  1183. * at the same positions relative to the machine.
  1184. */
  1185. void update_software_endstops(const AxisEnum axis) {
  1186. const float offs = 0.0
  1187. #if HAS_HOME_OFFSET
  1188. + home_offset[axis]
  1189. #endif
  1190. #if HAS_POSITION_SHIFT
  1191. + position_shift[axis]
  1192. #endif
  1193. ;
  1194. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1195. workspace_offset[axis] = offs;
  1196. #endif
  1197. #if ENABLED(DUAL_X_CARRIAGE)
  1198. if (axis == X_AXIS) {
  1199. // In Dual X mode hotend_offset[X] is T1's home position
  1200. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1201. if (active_extruder != 0) {
  1202. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1203. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1204. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1205. }
  1206. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1207. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1208. // but not so far to the right that T1 would move past the end
  1209. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1210. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1211. }
  1212. else {
  1213. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1214. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1215. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1216. }
  1217. }
  1218. #else
  1219. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1220. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1221. #endif
  1222. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1223. if (DEBUGGING(LEVELING)) {
  1224. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1225. #if HAS_HOME_OFFSET
  1226. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1227. #endif
  1228. #if HAS_POSITION_SHIFT
  1229. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1230. #endif
  1231. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1232. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1233. }
  1234. #endif
  1235. #if ENABLED(DELTA)
  1236. if (axis == Z_AXIS)
  1237. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1238. #endif
  1239. }
  1240. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1241. #if HAS_M206_COMMAND
  1242. /**
  1243. * Change the home offset for an axis, update the current
  1244. * position and the software endstops to retain the same
  1245. * relative distance to the new home.
  1246. *
  1247. * Since this changes the current_position, code should
  1248. * call sync_plan_position soon after this.
  1249. */
  1250. static void set_home_offset(const AxisEnum axis, const float v) {
  1251. current_position[axis] += v - home_offset[axis];
  1252. home_offset[axis] = v;
  1253. update_software_endstops(axis);
  1254. }
  1255. #endif // HAS_M206_COMMAND
  1256. /**
  1257. * Set an axis' current position to its home position (after homing).
  1258. *
  1259. * For Core and Cartesian robots this applies one-to-one when an
  1260. * individual axis has been homed.
  1261. *
  1262. * DELTA should wait until all homing is done before setting the XYZ
  1263. * current_position to home, because homing is a single operation.
  1264. * In the case where the axis positions are already known and previously
  1265. * homed, DELTA could home to X or Y individually by moving either one
  1266. * to the center. However, homing Z always homes XY and Z.
  1267. *
  1268. * SCARA should wait until all XY homing is done before setting the XY
  1269. * current_position to home, because neither X nor Y is at home until
  1270. * both are at home. Z can however be homed individually.
  1271. *
  1272. * Callers must sync the planner position after calling this!
  1273. */
  1274. static void set_axis_is_at_home(const AxisEnum axis) {
  1275. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1276. if (DEBUGGING(LEVELING)) {
  1277. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1278. SERIAL_CHAR(')');
  1279. SERIAL_EOL();
  1280. }
  1281. #endif
  1282. axis_known_position[axis] = axis_homed[axis] = true;
  1283. #if HAS_POSITION_SHIFT
  1284. position_shift[axis] = 0;
  1285. update_software_endstops(axis);
  1286. #endif
  1287. #if ENABLED(DUAL_X_CARRIAGE)
  1288. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1289. current_position[X_AXIS] = x_home_pos(active_extruder);
  1290. return;
  1291. }
  1292. #endif
  1293. #if ENABLED(MORGAN_SCARA)
  1294. /**
  1295. * Morgan SCARA homes XY at the same time
  1296. */
  1297. if (axis == X_AXIS || axis == Y_AXIS) {
  1298. float homeposition[XYZ];
  1299. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1300. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1301. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1302. /**
  1303. * Get Home position SCARA arm angles using inverse kinematics,
  1304. * and calculate homing offset using forward kinematics
  1305. */
  1306. inverse_kinematics(homeposition);
  1307. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1308. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1309. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1310. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1311. /**
  1312. * SCARA home positions are based on configuration since the actual
  1313. * limits are determined by the inverse kinematic transform.
  1314. */
  1315. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1316. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1317. }
  1318. else
  1319. #endif
  1320. {
  1321. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1322. }
  1323. /**
  1324. * Z Probe Z Homing? Account for the probe's Z offset.
  1325. */
  1326. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1327. if (axis == Z_AXIS) {
  1328. #if HOMING_Z_WITH_PROBE
  1329. current_position[Z_AXIS] -= zprobe_zoffset;
  1330. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1331. if (DEBUGGING(LEVELING)) {
  1332. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1333. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1334. }
  1335. #endif
  1336. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1337. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1338. #endif
  1339. }
  1340. #endif
  1341. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1342. if (DEBUGGING(LEVELING)) {
  1343. #if HAS_HOME_OFFSET
  1344. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1345. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1346. #endif
  1347. DEBUG_POS("", current_position);
  1348. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1349. SERIAL_CHAR(')');
  1350. SERIAL_EOL();
  1351. }
  1352. #endif
  1353. #if ENABLED(I2C_POSITION_ENCODERS)
  1354. I2CPEM.homed(axis);
  1355. #endif
  1356. }
  1357. /**
  1358. * Some planner shorthand inline functions
  1359. */
  1360. inline float get_homing_bump_feedrate(const AxisEnum axis) {
  1361. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  1362. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  1363. if (hbd < 1) {
  1364. hbd = 10;
  1365. SERIAL_ECHO_START();
  1366. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1367. }
  1368. return homing_feedrate(axis) / hbd;
  1369. }
  1370. /**
  1371. * Move the planner to the current position from wherever it last moved
  1372. * (or from wherever it has been told it is located).
  1373. */
  1374. inline void line_to_current_position() {
  1375. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1376. }
  1377. /**
  1378. * Move the planner to the position stored in the destination array, which is
  1379. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  1380. */
  1381. inline void line_to_destination(const float fr_mm_s) {
  1382. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1383. }
  1384. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1385. inline void set_current_to_destination() { COPY(current_position, destination); }
  1386. inline void set_destination_to_current() { COPY(destination, current_position); }
  1387. #if IS_KINEMATIC
  1388. /**
  1389. * Calculate delta, start a line, and set current_position to destination
  1390. */
  1391. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1392. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1393. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1394. #endif
  1395. refresh_cmd_timeout();
  1396. #if UBL_DELTA
  1397. // ubl segmented line will do z-only moves in single segment
  1398. ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
  1399. #else
  1400. if ( current_position[X_AXIS] == destination[X_AXIS]
  1401. && current_position[Y_AXIS] == destination[Y_AXIS]
  1402. && current_position[Z_AXIS] == destination[Z_AXIS]
  1403. && current_position[E_AXIS] == destination[E_AXIS]
  1404. ) return;
  1405. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1406. #endif
  1407. set_current_to_destination();
  1408. }
  1409. #endif // IS_KINEMATIC
  1410. /**
  1411. * Plan a move to (X, Y, Z) and set the current_position
  1412. * The final current_position may not be the one that was requested
  1413. */
  1414. void do_blocking_move_to(const float &lx, const float &ly, const float &lz, const float &fr_mm_s/*=0.0*/) {
  1415. const float old_feedrate_mm_s = feedrate_mm_s;
  1416. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1417. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, lx, ly, lz);
  1418. #endif
  1419. #if ENABLED(DELTA)
  1420. if (!position_is_reachable_xy(lx, ly)) return;
  1421. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1422. set_destination_to_current(); // sync destination at the start
  1423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1424. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1425. #endif
  1426. // when in the danger zone
  1427. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1428. if (lz > delta_clip_start_height) { // staying in the danger zone
  1429. destination[X_AXIS] = lx; // move directly (uninterpolated)
  1430. destination[Y_AXIS] = ly;
  1431. destination[Z_AXIS] = lz;
  1432. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1434. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1435. #endif
  1436. return;
  1437. }
  1438. else {
  1439. destination[Z_AXIS] = delta_clip_start_height;
  1440. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1442. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1443. #endif
  1444. }
  1445. }
  1446. if (lz > current_position[Z_AXIS]) { // raising?
  1447. destination[Z_AXIS] = lz;
  1448. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1450. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1451. #endif
  1452. }
  1453. destination[X_AXIS] = lx;
  1454. destination[Y_AXIS] = ly;
  1455. prepare_move_to_destination(); // set_current_to_destination
  1456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1457. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1458. #endif
  1459. if (lz < current_position[Z_AXIS]) { // lowering?
  1460. destination[Z_AXIS] = lz;
  1461. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1462. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1463. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1464. #endif
  1465. }
  1466. #elif IS_SCARA
  1467. if (!position_is_reachable_xy(lx, ly)) return;
  1468. set_destination_to_current();
  1469. // If Z needs to raise, do it before moving XY
  1470. if (destination[Z_AXIS] < lz) {
  1471. destination[Z_AXIS] = lz;
  1472. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1473. }
  1474. destination[X_AXIS] = lx;
  1475. destination[Y_AXIS] = ly;
  1476. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1477. // If Z needs to lower, do it after moving XY
  1478. if (destination[Z_AXIS] > lz) {
  1479. destination[Z_AXIS] = lz;
  1480. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1481. }
  1482. #else
  1483. // If Z needs to raise, do it before moving XY
  1484. if (current_position[Z_AXIS] < lz) {
  1485. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1486. current_position[Z_AXIS] = lz;
  1487. line_to_current_position();
  1488. }
  1489. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1490. current_position[X_AXIS] = lx;
  1491. current_position[Y_AXIS] = ly;
  1492. line_to_current_position();
  1493. // If Z needs to lower, do it after moving XY
  1494. if (current_position[Z_AXIS] > lz) {
  1495. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1496. current_position[Z_AXIS] = lz;
  1497. line_to_current_position();
  1498. }
  1499. #endif
  1500. stepper.synchronize();
  1501. feedrate_mm_s = old_feedrate_mm_s;
  1502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1503. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1504. #endif
  1505. }
  1506. void do_blocking_move_to_x(const float &lx, const float &fr_mm_s/*=0.0*/) {
  1507. do_blocking_move_to(lx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1508. }
  1509. void do_blocking_move_to_z(const float &lz, const float &fr_mm_s/*=0.0*/) {
  1510. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], lz, fr_mm_s);
  1511. }
  1512. void do_blocking_move_to_xy(const float &lx, const float &ly, const float &fr_mm_s/*=0.0*/) {
  1513. do_blocking_move_to(lx, ly, current_position[Z_AXIS], fr_mm_s);
  1514. }
  1515. //
  1516. // Prepare to do endstop or probe moves
  1517. // with custom feedrates.
  1518. //
  1519. // - Save current feedrates
  1520. // - Reset the rate multiplier
  1521. // - Reset the command timeout
  1522. // - Enable the endstops (for endstop moves)
  1523. //
  1524. static void setup_for_endstop_or_probe_move() {
  1525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1526. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1527. #endif
  1528. saved_feedrate_mm_s = feedrate_mm_s;
  1529. saved_feedrate_percentage = feedrate_percentage;
  1530. feedrate_percentage = 100;
  1531. refresh_cmd_timeout();
  1532. }
  1533. static void clean_up_after_endstop_or_probe_move() {
  1534. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1535. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1536. #endif
  1537. feedrate_mm_s = saved_feedrate_mm_s;
  1538. feedrate_percentage = saved_feedrate_percentage;
  1539. refresh_cmd_timeout();
  1540. }
  1541. #if HAS_BED_PROBE
  1542. /**
  1543. * Raise Z to a minimum height to make room for a probe to move
  1544. */
  1545. inline void do_probe_raise(const float z_raise) {
  1546. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1547. if (DEBUGGING(LEVELING)) {
  1548. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1549. SERIAL_CHAR(')');
  1550. SERIAL_EOL();
  1551. }
  1552. #endif
  1553. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1554. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1555. #if ENABLED(DELTA)
  1556. z_dest -= home_offset[Z_AXIS]; // Account for delta height adjustment
  1557. #endif
  1558. if (z_dest > current_position[Z_AXIS])
  1559. do_blocking_move_to_z(z_dest);
  1560. }
  1561. #endif // HAS_BED_PROBE
  1562. #if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
  1563. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1564. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1565. const bool xx = x && !axis_known_position[X_AXIS],
  1566. yy = y && !axis_known_position[Y_AXIS],
  1567. zz = z && !axis_known_position[Z_AXIS];
  1568. #else
  1569. const bool xx = x && !axis_homed[X_AXIS],
  1570. yy = y && !axis_homed[Y_AXIS],
  1571. zz = z && !axis_homed[Z_AXIS];
  1572. #endif
  1573. if (xx || yy || zz) {
  1574. SERIAL_ECHO_START();
  1575. SERIAL_ECHOPGM(MSG_HOME " ");
  1576. if (xx) SERIAL_ECHOPGM(MSG_X);
  1577. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1578. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1579. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1580. #if ENABLED(ULTRA_LCD)
  1581. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1582. #endif
  1583. return true;
  1584. }
  1585. return false;
  1586. }
  1587. #endif
  1588. #if ENABLED(Z_PROBE_SLED)
  1589. #ifndef SLED_DOCKING_OFFSET
  1590. #define SLED_DOCKING_OFFSET 0
  1591. #endif
  1592. /**
  1593. * Method to dock/undock a sled designed by Charles Bell.
  1594. *
  1595. * stow[in] If false, move to MAX_X and engage the solenoid
  1596. * If true, move to MAX_X and release the solenoid
  1597. */
  1598. static void dock_sled(bool stow) {
  1599. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1600. if (DEBUGGING(LEVELING)) {
  1601. SERIAL_ECHOPAIR("dock_sled(", stow);
  1602. SERIAL_CHAR(')');
  1603. SERIAL_EOL();
  1604. }
  1605. #endif
  1606. // Dock sled a bit closer to ensure proper capturing
  1607. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1608. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1609. WRITE(SOL1_PIN, !stow); // switch solenoid
  1610. #endif
  1611. }
  1612. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1613. FORCE_INLINE void do_blocking_move_to(const float logical[XYZ], const float &fr_mm_s) {
  1614. do_blocking_move_to(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], fr_mm_s);
  1615. }
  1616. void run_deploy_moves_script() {
  1617. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1618. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1619. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1620. #endif
  1621. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1622. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1623. #endif
  1624. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1625. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1626. #endif
  1627. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1628. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1629. #endif
  1630. const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
  1631. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1632. #endif
  1633. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1634. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1635. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1638. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1639. #endif
  1640. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1641. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1642. #endif
  1643. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1644. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1645. #endif
  1646. const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
  1647. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1648. #endif
  1649. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1650. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1651. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1652. #endif
  1653. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1654. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1655. #endif
  1656. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1657. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1658. #endif
  1659. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1660. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1661. #endif
  1662. const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
  1663. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1664. #endif
  1665. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1666. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1667. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1668. #endif
  1669. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1670. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1671. #endif
  1672. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1673. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1674. #endif
  1675. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1676. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1677. #endif
  1678. const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
  1679. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1680. #endif
  1681. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1682. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1683. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1684. #endif
  1685. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1686. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1687. #endif
  1688. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1689. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1690. #endif
  1691. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1692. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1693. #endif
  1694. const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
  1695. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1696. #endif
  1697. }
  1698. void run_stow_moves_script() {
  1699. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1701. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1702. #endif
  1703. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1704. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1705. #endif
  1706. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1707. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1708. #endif
  1709. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1710. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1711. #endif
  1712. const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
  1713. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1714. #endif
  1715. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1716. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1717. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1718. #endif
  1719. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1720. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1721. #endif
  1722. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1723. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1724. #endif
  1725. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1726. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1727. #endif
  1728. const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
  1729. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1730. #endif
  1731. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1732. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1733. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1734. #endif
  1735. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1736. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1737. #endif
  1738. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1739. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1740. #endif
  1741. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1742. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1743. #endif
  1744. const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
  1745. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1746. #endif
  1747. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1748. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1749. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1750. #endif
  1751. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1752. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1753. #endif
  1754. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1755. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1756. #endif
  1757. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1758. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1759. #endif
  1760. const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
  1761. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1762. #endif
  1763. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1764. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1765. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1766. #endif
  1767. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1768. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1769. #endif
  1770. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1771. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1772. #endif
  1773. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1774. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1775. #endif
  1776. const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
  1777. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1778. #endif
  1779. }
  1780. #endif
  1781. #if ENABLED(PROBING_FANS_OFF)
  1782. void fans_pause(const bool p) {
  1783. if (p != fans_paused) {
  1784. fans_paused = p;
  1785. if (p)
  1786. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1787. paused_fanSpeeds[x] = fanSpeeds[x];
  1788. fanSpeeds[x] = 0;
  1789. }
  1790. else
  1791. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1792. fanSpeeds[x] = paused_fanSpeeds[x];
  1793. }
  1794. }
  1795. #endif // PROBING_FANS_OFF
  1796. #if HAS_BED_PROBE
  1797. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1798. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1799. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1800. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1801. #else
  1802. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1803. #endif
  1804. #endif
  1805. #if QUIET_PROBING
  1806. void probing_pause(const bool p) {
  1807. #if ENABLED(PROBING_HEATERS_OFF)
  1808. thermalManager.pause(p);
  1809. #endif
  1810. #if ENABLED(PROBING_FANS_OFF)
  1811. fans_pause(p);
  1812. #endif
  1813. if (p) safe_delay(25);
  1814. }
  1815. #endif // QUIET_PROBING
  1816. #if ENABLED(BLTOUCH)
  1817. void bltouch_command(int angle) {
  1818. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1819. safe_delay(BLTOUCH_DELAY);
  1820. }
  1821. void set_bltouch_deployed(const bool deploy) {
  1822. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1823. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1824. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1825. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1826. safe_delay(1500); // Wait for internal self-test to complete.
  1827. // (Measured completion time was 0.65 seconds
  1828. // after reset, deploy, and stow sequence)
  1829. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1830. SERIAL_ERROR_START();
  1831. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1832. stop(); // punt!
  1833. }
  1834. }
  1835. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1836. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1837. if (DEBUGGING(LEVELING)) {
  1838. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1839. SERIAL_CHAR(')');
  1840. SERIAL_EOL();
  1841. }
  1842. #endif
  1843. }
  1844. #endif // BLTOUCH
  1845. // returns false for ok and true for failure
  1846. bool set_probe_deployed(bool deploy) {
  1847. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1848. if (DEBUGGING(LEVELING)) {
  1849. DEBUG_POS("set_probe_deployed", current_position);
  1850. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1851. }
  1852. #endif
  1853. if (endstops.z_probe_enabled == deploy) return false;
  1854. // Make room for probe
  1855. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1856. // When deploying make sure BLTOUCH is not already triggered
  1857. #if ENABLED(BLTOUCH)
  1858. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1859. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1860. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1861. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1862. safe_delay(1500); // wait for internal self test to complete
  1863. // measured completion time was 0.65 seconds
  1864. // after reset, deploy & stow sequence
  1865. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1866. SERIAL_ERROR_START();
  1867. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1868. stop(); // punt!
  1869. return true;
  1870. }
  1871. }
  1872. #elif ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1873. #if ENABLED(Z_PROBE_SLED)
  1874. #define _AUE_ARGS true, false, false
  1875. #else
  1876. #define _AUE_ARGS
  1877. #endif
  1878. if (axis_unhomed_error(_AUE_ARGS)) {
  1879. SERIAL_ERROR_START();
  1880. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1881. stop();
  1882. return true;
  1883. }
  1884. #endif
  1885. const float oldXpos = current_position[X_AXIS],
  1886. oldYpos = current_position[Y_AXIS];
  1887. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1888. // If endstop is already false, the Z probe is deployed
  1889. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1890. // Would a goto be less ugly?
  1891. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1892. // for a triggered when stowed manual probe.
  1893. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1894. // otherwise an Allen-Key probe can't be stowed.
  1895. #endif
  1896. #if ENABLED(SOLENOID_PROBE)
  1897. #if HAS_SOLENOID_1
  1898. WRITE(SOL1_PIN, deploy);
  1899. #endif
  1900. #elif ENABLED(Z_PROBE_SLED)
  1901. dock_sled(!deploy);
  1902. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1903. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1904. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1905. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1906. #endif
  1907. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1908. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1909. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1910. if (IsRunning()) {
  1911. SERIAL_ERROR_START();
  1912. SERIAL_ERRORLNPGM("Z-Probe failed");
  1913. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1914. }
  1915. stop();
  1916. return true;
  1917. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1918. #endif
  1919. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1920. endstops.enable_z_probe(deploy);
  1921. return false;
  1922. }
  1923. static void do_probe_move(float z, float fr_mm_m) {
  1924. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1925. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1926. #endif
  1927. // Deploy BLTouch at the start of any probe
  1928. #if ENABLED(BLTOUCH)
  1929. set_bltouch_deployed(true);
  1930. #endif
  1931. #if QUIET_PROBING
  1932. probing_pause(true);
  1933. #endif
  1934. // Move down until probe triggered
  1935. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1936. #if QUIET_PROBING
  1937. probing_pause(false);
  1938. #endif
  1939. // Retract BLTouch immediately after a probe
  1940. #if ENABLED(BLTOUCH)
  1941. set_bltouch_deployed(false);
  1942. #endif
  1943. // Clear endstop flags
  1944. endstops.hit_on_purpose();
  1945. // Get Z where the steppers were interrupted
  1946. set_current_from_steppers_for_axis(Z_AXIS);
  1947. // Tell the planner where we actually are
  1948. SYNC_PLAN_POSITION_KINEMATIC();
  1949. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1950. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1951. #endif
  1952. }
  1953. // Do a single Z probe and return with current_position[Z_AXIS]
  1954. // at the height where the probe triggered.
  1955. static float run_z_probe() {
  1956. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1957. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1958. #endif
  1959. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1960. refresh_cmd_timeout();
  1961. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1962. // Do a first probe at the fast speed
  1963. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1964. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1965. float first_probe_z = current_position[Z_AXIS];
  1966. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1967. #endif
  1968. // move up by the bump distance
  1969. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1970. #else
  1971. // If the nozzle is above the travel height then
  1972. // move down quickly before doing the slow probe
  1973. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1974. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1975. #if ENABLED(DELTA)
  1976. z -= home_offset[Z_AXIS]; // Account for delta height adjustment
  1977. #endif
  1978. if (z < current_position[Z_AXIS])
  1979. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1980. #endif
  1981. // move down slowly to find bed
  1982. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1983. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1984. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1985. #endif
  1986. // Debug: compare probe heights
  1987. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1988. if (DEBUGGING(LEVELING)) {
  1989. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1990. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1991. }
  1992. #endif
  1993. return RAW_CURRENT_POSITION(Z) + zprobe_zoffset
  1994. #if ENABLED(DELTA)
  1995. + home_offset[Z_AXIS] // Account for delta height adjustment
  1996. #endif
  1997. ;
  1998. }
  1999. /**
  2000. * - Move to the given XY
  2001. * - Deploy the probe, if not already deployed
  2002. * - Probe the bed, get the Z position
  2003. * - Depending on the 'stow' flag
  2004. * - Stow the probe, or
  2005. * - Raise to the BETWEEN height
  2006. * - Return the probed Z position
  2007. */
  2008. float probe_pt(const float &lx, const float &ly, const bool stow, const uint8_t verbose_level, const bool printable=true) {
  2009. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2010. if (DEBUGGING(LEVELING)) {
  2011. SERIAL_ECHOPAIR(">>> probe_pt(", lx);
  2012. SERIAL_ECHOPAIR(", ", ly);
  2013. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2014. SERIAL_ECHOLNPGM("stow)");
  2015. DEBUG_POS("", current_position);
  2016. }
  2017. #endif
  2018. const float nx = lx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ly - (Y_PROBE_OFFSET_FROM_EXTRUDER);
  2019. if (printable) {
  2020. if (!position_is_reachable_by_probe_xy(lx, ly)) return NAN;
  2021. }
  2022. else if (!position_is_reachable_xy(nx, ny)) return NAN;
  2023. const float old_feedrate_mm_s = feedrate_mm_s;
  2024. #if ENABLED(DELTA)
  2025. if (current_position[Z_AXIS] > delta_clip_start_height)
  2026. do_blocking_move_to_z(delta_clip_start_height);
  2027. #endif
  2028. // Ensure a minimum height before moving the probe
  2029. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2030. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2031. // Move the probe to the given XY
  2032. do_blocking_move_to_xy(nx, ny);
  2033. if (DEPLOY_PROBE()) return NAN;
  2034. const float measured_z = run_z_probe();
  2035. if (!stow)
  2036. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2037. else
  2038. if (STOW_PROBE()) return NAN;
  2039. if (verbose_level > 2) {
  2040. SERIAL_PROTOCOLPGM("Bed X: ");
  2041. SERIAL_PROTOCOL_F(lx, 3);
  2042. SERIAL_PROTOCOLPGM(" Y: ");
  2043. SERIAL_PROTOCOL_F(ly, 3);
  2044. SERIAL_PROTOCOLPGM(" Z: ");
  2045. SERIAL_PROTOCOL_F(measured_z, 3);
  2046. SERIAL_EOL();
  2047. }
  2048. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2049. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2050. #endif
  2051. feedrate_mm_s = old_feedrate_mm_s;
  2052. return measured_z;
  2053. }
  2054. #endif // HAS_BED_PROBE
  2055. #if HAS_LEVELING
  2056. bool leveling_is_valid() {
  2057. return
  2058. #if ENABLED(MESH_BED_LEVELING)
  2059. mbl.has_mesh()
  2060. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2061. !!bilinear_grid_spacing[X_AXIS]
  2062. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2063. true
  2064. #else // 3POINT, LINEAR
  2065. true
  2066. #endif
  2067. ;
  2068. }
  2069. bool leveling_is_active() {
  2070. return
  2071. #if ENABLED(MESH_BED_LEVELING)
  2072. mbl.active()
  2073. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2074. ubl.state.active
  2075. #else
  2076. planner.abl_enabled
  2077. #endif
  2078. ;
  2079. }
  2080. /**
  2081. * Turn bed leveling on or off, fixing the current
  2082. * position as-needed.
  2083. *
  2084. * Disable: Current position = physical position
  2085. * Enable: Current position = "unleveled" physical position
  2086. */
  2087. void set_bed_leveling_enabled(const bool enable/*=true*/) {
  2088. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2089. const bool can_change = (!enable || leveling_is_valid());
  2090. #else
  2091. constexpr bool can_change = true;
  2092. #endif
  2093. if (can_change && enable != leveling_is_active()) {
  2094. #if ENABLED(MESH_BED_LEVELING)
  2095. if (!enable)
  2096. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2097. const bool enabling = enable && leveling_is_valid();
  2098. mbl.set_active(enabling);
  2099. if (enabling) planner.unapply_leveling(current_position);
  2100. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2101. #if PLANNER_LEVELING
  2102. if (ubl.state.active) { // leveling from on to off
  2103. // change unleveled current_position to physical current_position without moving steppers.
  2104. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2105. ubl.state.active = false; // disable only AFTER calling apply_leveling
  2106. }
  2107. else { // leveling from off to on
  2108. ubl.state.active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
  2109. // change physical current_position to unleveled current_position without moving steppers.
  2110. planner.unapply_leveling(current_position);
  2111. }
  2112. #else
  2113. ubl.state.active = enable; // just flip the bit, current_position will be wrong until next move.
  2114. #endif
  2115. #else // ABL
  2116. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2117. // Force bilinear_z_offset to re-calculate next time
  2118. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2119. (void)bilinear_z_offset(reset);
  2120. #endif
  2121. // Enable or disable leveling compensation in the planner
  2122. planner.abl_enabled = enable;
  2123. if (!enable)
  2124. // When disabling just get the current position from the steppers.
  2125. // This will yield the smallest error when first converted back to steps.
  2126. set_current_from_steppers_for_axis(
  2127. #if ABL_PLANAR
  2128. ALL_AXES
  2129. #else
  2130. Z_AXIS
  2131. #endif
  2132. );
  2133. else
  2134. // When enabling, remove compensation from the current position,
  2135. // so compensation will give the right stepper counts.
  2136. planner.unapply_leveling(current_position);
  2137. #endif // ABL
  2138. }
  2139. }
  2140. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2141. void set_z_fade_height(const float zfh) {
  2142. const bool level_active = leveling_is_active();
  2143. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2144. if (level_active)
  2145. set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
  2146. planner.z_fade_height = zfh;
  2147. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2148. if (level_active)
  2149. set_bed_leveling_enabled(true); // turn back on after changing fade height
  2150. #else
  2151. planner.z_fade_height = zfh;
  2152. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2153. if (level_active) {
  2154. set_current_from_steppers_for_axis(
  2155. #if ABL_PLANAR
  2156. ALL_AXES
  2157. #else
  2158. Z_AXIS
  2159. #endif
  2160. );
  2161. }
  2162. #endif
  2163. }
  2164. #endif // LEVELING_FADE_HEIGHT
  2165. /**
  2166. * Reset calibration results to zero.
  2167. */
  2168. void reset_bed_level() {
  2169. set_bed_leveling_enabled(false);
  2170. #if ENABLED(MESH_BED_LEVELING)
  2171. if (leveling_is_valid()) {
  2172. mbl.reset();
  2173. mbl.set_has_mesh(false);
  2174. }
  2175. #else
  2176. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2177. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2178. #endif
  2179. #if ABL_PLANAR
  2180. planner.bed_level_matrix.set_to_identity();
  2181. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2182. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2183. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2184. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2185. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2186. z_values[x][y] = NAN;
  2187. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2188. ubl.reset();
  2189. #endif
  2190. #endif
  2191. }
  2192. #endif // HAS_LEVELING
  2193. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2194. /**
  2195. * Enable to produce output in JSON format suitable
  2196. * for SCAD or JavaScript mesh visualizers.
  2197. *
  2198. * Visualize meshes in OpenSCAD using the included script.
  2199. *
  2200. * buildroot/shared/scripts/MarlinMesh.scad
  2201. */
  2202. //#define SCAD_MESH_OUTPUT
  2203. /**
  2204. * Print calibration results for plotting or manual frame adjustment.
  2205. */
  2206. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2207. #ifndef SCAD_MESH_OUTPUT
  2208. for (uint8_t x = 0; x < sx; x++) {
  2209. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2210. SERIAL_PROTOCOLCHAR(' ');
  2211. SERIAL_PROTOCOL((int)x);
  2212. }
  2213. SERIAL_EOL();
  2214. #endif
  2215. #ifdef SCAD_MESH_OUTPUT
  2216. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2217. #endif
  2218. for (uint8_t y = 0; y < sy; y++) {
  2219. #ifdef SCAD_MESH_OUTPUT
  2220. SERIAL_PROTOCOLPGM(" ["); // open sub-array
  2221. #else
  2222. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2223. SERIAL_PROTOCOL((int)y);
  2224. #endif
  2225. for (uint8_t x = 0; x < sx; x++) {
  2226. SERIAL_PROTOCOLCHAR(' ');
  2227. const float offset = fn(x, y);
  2228. if (!isnan(offset)) {
  2229. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2230. SERIAL_PROTOCOL_F(offset, precision);
  2231. }
  2232. else {
  2233. #ifdef SCAD_MESH_OUTPUT
  2234. for (uint8_t i = 3; i < precision + 3; i++)
  2235. SERIAL_PROTOCOLCHAR(' ');
  2236. SERIAL_PROTOCOLPGM("NAN");
  2237. #else
  2238. for (uint8_t i = 0; i < precision + 3; i++)
  2239. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2240. #endif
  2241. }
  2242. #ifdef SCAD_MESH_OUTPUT
  2243. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2244. #endif
  2245. }
  2246. #ifdef SCAD_MESH_OUTPUT
  2247. SERIAL_PROTOCOLCHAR(' ');
  2248. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2249. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2250. #endif
  2251. SERIAL_EOL();
  2252. }
  2253. #ifdef SCAD_MESH_OUTPUT
  2254. SERIAL_PROTOCOLPGM("];"); // close 2D array
  2255. #endif
  2256. SERIAL_EOL();
  2257. }
  2258. #endif
  2259. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2260. /**
  2261. * Extrapolate a single point from its neighbors
  2262. */
  2263. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2264. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2265. if (DEBUGGING(LEVELING)) {
  2266. SERIAL_ECHOPGM("Extrapolate [");
  2267. if (x < 10) SERIAL_CHAR(' ');
  2268. SERIAL_ECHO((int)x);
  2269. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2270. SERIAL_CHAR(' ');
  2271. if (y < 10) SERIAL_CHAR(' ');
  2272. SERIAL_ECHO((int)y);
  2273. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2274. SERIAL_CHAR(']');
  2275. }
  2276. #endif
  2277. if (!isnan(z_values[x][y])) {
  2278. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2279. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2280. #endif
  2281. return; // Don't overwrite good values.
  2282. }
  2283. SERIAL_EOL();
  2284. // Get X neighbors, Y neighbors, and XY neighbors
  2285. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2286. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2287. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2288. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2289. // Treat far unprobed points as zero, near as equal to far
  2290. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2291. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2292. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2293. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2294. // Take the average instead of the median
  2295. z_values[x][y] = (a + b + c) / 3.0;
  2296. // Median is robust (ignores outliers).
  2297. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2298. // : ((c < b) ? b : (a < c) ? a : c);
  2299. }
  2300. //Enable this if your SCARA uses 180° of total area
  2301. //#define EXTRAPOLATE_FROM_EDGE
  2302. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2303. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2304. #define HALF_IN_X
  2305. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2306. #define HALF_IN_Y
  2307. #endif
  2308. #endif
  2309. /**
  2310. * Fill in the unprobed points (corners of circular print surface)
  2311. * using linear extrapolation, away from the center.
  2312. */
  2313. static void extrapolate_unprobed_bed_level() {
  2314. #ifdef HALF_IN_X
  2315. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2316. #else
  2317. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2318. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2319. xlen = ctrx1;
  2320. #endif
  2321. #ifdef HALF_IN_Y
  2322. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2323. #else
  2324. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2325. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2326. ylen = ctry1;
  2327. #endif
  2328. for (uint8_t xo = 0; xo <= xlen; xo++)
  2329. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2330. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2331. #ifndef HALF_IN_X
  2332. const uint8_t x1 = ctrx1 - xo;
  2333. #endif
  2334. #ifndef HALF_IN_Y
  2335. const uint8_t y1 = ctry1 - yo;
  2336. #ifndef HALF_IN_X
  2337. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2338. #endif
  2339. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2340. #endif
  2341. #ifndef HALF_IN_X
  2342. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2343. #endif
  2344. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2345. }
  2346. }
  2347. static void print_bilinear_leveling_grid() {
  2348. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2349. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2350. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2351. );
  2352. }
  2353. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2354. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2355. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2356. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2357. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2358. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2359. int bilinear_grid_spacing_virt[2] = { 0 };
  2360. float bilinear_grid_factor_virt[2] = { 0 };
  2361. static void bed_level_virt_print() {
  2362. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2363. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2364. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2365. );
  2366. }
  2367. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2368. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2369. uint8_t ep = 0, ip = 1;
  2370. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2371. if (x) {
  2372. ep = GRID_MAX_POINTS_X - 1;
  2373. ip = GRID_MAX_POINTS_X - 2;
  2374. }
  2375. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2376. return LINEAR_EXTRAPOLATION(
  2377. z_values[ep][y - 1],
  2378. z_values[ip][y - 1]
  2379. );
  2380. else
  2381. return LINEAR_EXTRAPOLATION(
  2382. bed_level_virt_coord(ep + 1, y),
  2383. bed_level_virt_coord(ip + 1, y)
  2384. );
  2385. }
  2386. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2387. if (y) {
  2388. ep = GRID_MAX_POINTS_Y - 1;
  2389. ip = GRID_MAX_POINTS_Y - 2;
  2390. }
  2391. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2392. return LINEAR_EXTRAPOLATION(
  2393. z_values[x - 1][ep],
  2394. z_values[x - 1][ip]
  2395. );
  2396. else
  2397. return LINEAR_EXTRAPOLATION(
  2398. bed_level_virt_coord(x, ep + 1),
  2399. bed_level_virt_coord(x, ip + 1)
  2400. );
  2401. }
  2402. return z_values[x - 1][y - 1];
  2403. }
  2404. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2405. return (
  2406. p[i-1] * -t * sq(1 - t)
  2407. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2408. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2409. - p[i+2] * sq(t) * (1 - t)
  2410. ) * 0.5;
  2411. }
  2412. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2413. float row[4], column[4];
  2414. for (uint8_t i = 0; i < 4; i++) {
  2415. for (uint8_t j = 0; j < 4; j++) {
  2416. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2417. }
  2418. row[i] = bed_level_virt_cmr(column, 1, ty);
  2419. }
  2420. return bed_level_virt_cmr(row, 1, tx);
  2421. }
  2422. void bed_level_virt_interpolate() {
  2423. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2424. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2425. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2426. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2427. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2428. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2429. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2430. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2431. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2432. continue;
  2433. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2434. bed_level_virt_2cmr(
  2435. x + 1,
  2436. y + 1,
  2437. (float)tx / (BILINEAR_SUBDIVISIONS),
  2438. (float)ty / (BILINEAR_SUBDIVISIONS)
  2439. );
  2440. }
  2441. }
  2442. #endif // ABL_BILINEAR_SUBDIVISION
  2443. // Refresh after other values have been updated
  2444. void refresh_bed_level() {
  2445. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2446. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2447. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2448. bed_level_virt_interpolate();
  2449. #endif
  2450. }
  2451. #endif // AUTO_BED_LEVELING_BILINEAR
  2452. /**
  2453. * Home an individual linear axis
  2454. */
  2455. static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
  2456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2457. if (DEBUGGING(LEVELING)) {
  2458. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2459. SERIAL_ECHOPAIR(", ", distance);
  2460. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2461. SERIAL_CHAR(')');
  2462. SERIAL_EOL();
  2463. }
  2464. #endif
  2465. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2466. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2467. if (deploy_bltouch) set_bltouch_deployed(true);
  2468. #endif
  2469. #if QUIET_PROBING
  2470. if (axis == Z_AXIS) probing_pause(true);
  2471. #endif
  2472. // Tell the planner we're at Z=0
  2473. current_position[axis] = 0;
  2474. #if IS_SCARA
  2475. SYNC_PLAN_POSITION_KINEMATIC();
  2476. current_position[axis] = distance;
  2477. inverse_kinematics(current_position);
  2478. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2479. #else
  2480. sync_plan_position();
  2481. current_position[axis] = distance;
  2482. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2483. #endif
  2484. stepper.synchronize();
  2485. #if QUIET_PROBING
  2486. if (axis == Z_AXIS) probing_pause(false);
  2487. #endif
  2488. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2489. if (deploy_bltouch) set_bltouch_deployed(false);
  2490. #endif
  2491. endstops.hit_on_purpose();
  2492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2493. if (DEBUGGING(LEVELING)) {
  2494. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2495. SERIAL_CHAR(')');
  2496. SERIAL_EOL();
  2497. }
  2498. #endif
  2499. }
  2500. /**
  2501. * TMC2130 specific sensorless homing using stallGuard2.
  2502. * stallGuard2 only works when in spreadCycle mode.
  2503. * spreadCycle and stealthChop are mutually exclusive.
  2504. */
  2505. #if ENABLED(SENSORLESS_HOMING)
  2506. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2507. #if ENABLED(STEALTHCHOP)
  2508. if (enable) {
  2509. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2510. st.stealthChop(0);
  2511. }
  2512. else {
  2513. st.coolstep_min_speed(0);
  2514. st.stealthChop(1);
  2515. }
  2516. #endif
  2517. st.diag1_stall(enable ? 1 : 0);
  2518. }
  2519. #endif
  2520. /**
  2521. * Home an individual "raw axis" to its endstop.
  2522. * This applies to XYZ on Cartesian and Core robots, and
  2523. * to the individual ABC steppers on DELTA and SCARA.
  2524. *
  2525. * At the end of the procedure the axis is marked as
  2526. * homed and the current position of that axis is updated.
  2527. * Kinematic robots should wait till all axes are homed
  2528. * before updating the current position.
  2529. */
  2530. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2531. static void homeaxis(const AxisEnum axis) {
  2532. #if IS_SCARA
  2533. // Only Z homing (with probe) is permitted
  2534. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2535. #else
  2536. #define CAN_HOME(A) \
  2537. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2538. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2539. #endif
  2540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2541. if (DEBUGGING(LEVELING)) {
  2542. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2543. SERIAL_CHAR(')');
  2544. SERIAL_EOL();
  2545. }
  2546. #endif
  2547. const int axis_home_dir =
  2548. #if ENABLED(DUAL_X_CARRIAGE)
  2549. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2550. #endif
  2551. home_dir(axis);
  2552. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2553. #if HOMING_Z_WITH_PROBE
  2554. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2555. #endif
  2556. // Set a flag for Z motor locking
  2557. #if ENABLED(Z_DUAL_ENDSTOPS)
  2558. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2559. #endif
  2560. // Disable stealthChop if used. Enable diag1 pin on driver.
  2561. #if ENABLED(SENSORLESS_HOMING)
  2562. #if ENABLED(X_IS_TMC2130)
  2563. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2564. #endif
  2565. #if ENABLED(Y_IS_TMC2130)
  2566. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2567. #endif
  2568. #endif
  2569. // Fast move towards endstop until triggered
  2570. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2571. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2572. #endif
  2573. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2574. // When homing Z with probe respect probe clearance
  2575. const float bump = axis_home_dir * (
  2576. #if HOMING_Z_WITH_PROBE
  2577. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2578. #endif
  2579. home_bump_mm(axis)
  2580. );
  2581. // If a second homing move is configured...
  2582. if (bump) {
  2583. // Move away from the endstop by the axis HOME_BUMP_MM
  2584. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2585. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2586. #endif
  2587. do_homing_move(axis, -bump);
  2588. // Slow move towards endstop until triggered
  2589. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2590. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2591. #endif
  2592. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2593. }
  2594. #if ENABLED(Z_DUAL_ENDSTOPS)
  2595. if (axis == Z_AXIS) {
  2596. float adj = FABS(z_endstop_adj);
  2597. bool lockZ1;
  2598. if (axis_home_dir > 0) {
  2599. adj = -adj;
  2600. lockZ1 = (z_endstop_adj > 0);
  2601. }
  2602. else
  2603. lockZ1 = (z_endstop_adj < 0);
  2604. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2605. // Move to the adjusted endstop height
  2606. do_homing_move(axis, adj);
  2607. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2608. stepper.set_homing_flag(false);
  2609. } // Z_AXIS
  2610. #endif
  2611. #if IS_SCARA
  2612. set_axis_is_at_home(axis);
  2613. SYNC_PLAN_POSITION_KINEMATIC();
  2614. #elif ENABLED(DELTA)
  2615. // Delta has already moved all three towers up in G28
  2616. // so here it re-homes each tower in turn.
  2617. // Delta homing treats the axes as normal linear axes.
  2618. // retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
  2619. if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2620. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2621. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2622. #endif
  2623. do_homing_move(axis, endstop_adj[axis] - 0.1);
  2624. }
  2625. #else
  2626. // For cartesian/core machines,
  2627. // set the axis to its home position
  2628. set_axis_is_at_home(axis);
  2629. sync_plan_position();
  2630. destination[axis] = current_position[axis];
  2631. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2632. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2633. #endif
  2634. #endif
  2635. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2636. #if ENABLED(SENSORLESS_HOMING)
  2637. #if ENABLED(X_IS_TMC2130)
  2638. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2639. #endif
  2640. #if ENABLED(Y_IS_TMC2130)
  2641. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2642. #endif
  2643. #endif
  2644. // Put away the Z probe
  2645. #if HOMING_Z_WITH_PROBE
  2646. if (axis == Z_AXIS && STOW_PROBE()) return;
  2647. #endif
  2648. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2649. if (DEBUGGING(LEVELING)) {
  2650. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2651. SERIAL_CHAR(')');
  2652. SERIAL_EOL();
  2653. }
  2654. #endif
  2655. } // homeaxis()
  2656. #if ENABLED(FWRETRACT)
  2657. /**
  2658. * Retract or recover according to firmware settings
  2659. *
  2660. * This function handles retract/recover moves for G10 and G11,
  2661. * plus auto-retract moves sent from G0/G1 when E-only moves are done.
  2662. *
  2663. * To simplify the logic, doubled retract/recover moves are ignored.
  2664. *
  2665. * Note: Z lift is done transparently to the planner. Aborting
  2666. * a print between G10 and G11 may corrupt the Z position.
  2667. *
  2668. * Note: Auto-retract will apply the set Z hop in addition to any Z hop
  2669. * included in the G-code. Use M207 Z0 to to prevent double hop.
  2670. */
  2671. void retract(const bool retracting
  2672. #if EXTRUDERS > 1
  2673. , bool swapping = false
  2674. #endif
  2675. ) {
  2676. static float hop_height, // Remember where the Z height started
  2677. hop_amount = 0.0; // Total amount lifted, for use in recover
  2678. // Simply never allow two retracts or recovers in a row
  2679. if (retracted[active_extruder] == retracting) return;
  2680. #if EXTRUDERS < 2
  2681. bool swapping = false;
  2682. #endif
  2683. if (!retracting) swapping = retracted_swap[active_extruder];
  2684. /* // debugging
  2685. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2686. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2687. SERIAL_ECHOLNPAIR("active extruder ", active_extruder);
  2688. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2689. SERIAL_ECHOPAIR("retracted[", i);
  2690. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2691. SERIAL_ECHOPAIR("retracted_swap[", i);
  2692. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2693. }
  2694. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2695. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2696. //*/
  2697. const bool has_zhop = retract_zlift > 0.01; // Is there a hop set?
  2698. const float old_feedrate_mm_s = feedrate_mm_s;
  2699. const int16_t old_flow = flow_percentage[active_extruder];
  2700. // Don't apply flow multiplication to retract/recover
  2701. flow_percentage[active_extruder] = 100;
  2702. // The current position will be the destination for E and Z moves
  2703. set_destination_to_current();
  2704. if (retracting) {
  2705. // Remember the Z height since G-code may include its own Z-hop
  2706. // For best results turn off Z hop if G-code already includes it
  2707. hop_height = destination[Z_AXIS];
  2708. // Retract by moving from a faux E position back to the current E position
  2709. feedrate_mm_s = retract_feedrate_mm_s;
  2710. current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) / volumetric_multiplier[active_extruder];
  2711. sync_plan_position_e();
  2712. prepare_move_to_destination();
  2713. // Is a Z hop set, and has the hop not yet been done?
  2714. if (has_zhop) {
  2715. hop_amount += retract_zlift; // Carriage is raised for retraction hop
  2716. current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2717. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2718. prepare_move_to_destination(); // Raise up to the old current pos
  2719. }
  2720. }
  2721. else {
  2722. // If a hop was done and Z hasn't changed, undo the Z hop
  2723. if (hop_amount && NEAR(hop_height, destination[Z_AXIS])) {
  2724. current_position[Z_AXIS] += hop_amount; // Pretend current pos is higher. Next move lowers Z.
  2725. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2726. prepare_move_to_destination(); // Lower to the old current pos
  2727. hop_amount = 0.0;
  2728. }
  2729. // A retract multiplier has been added here to get faster swap recovery
  2730. feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
  2731. const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length;
  2732. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2733. sync_plan_position_e();
  2734. prepare_move_to_destination(); // Recover E
  2735. }
  2736. // Restore flow and feedrate
  2737. flow_percentage[active_extruder] = old_flow;
  2738. feedrate_mm_s = old_feedrate_mm_s;
  2739. // The active extruder is now retracted or recovered
  2740. retracted[active_extruder] = retracting;
  2741. // If swap retract/recover then update the retracted_swap flag too
  2742. #if EXTRUDERS > 1
  2743. if (swapping) retracted_swap[active_extruder] = retracting;
  2744. #endif
  2745. /* // debugging
  2746. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2747. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2748. SERIAL_ECHOLNPAIR("active_extruder ", active_extruder);
  2749. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2750. SERIAL_ECHOPAIR("retracted[", i);
  2751. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2752. SERIAL_ECHOPAIR("retracted_swap[", i);
  2753. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2754. }
  2755. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2756. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2757. //*/
  2758. } // retract()
  2759. #endif // FWRETRACT
  2760. #if ENABLED(MIXING_EXTRUDER)
  2761. void normalize_mix() {
  2762. float mix_total = 0.0;
  2763. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2764. // Scale all values if they don't add up to ~1.0
  2765. if (!NEAR(mix_total, 1.0)) {
  2766. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2767. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2768. }
  2769. }
  2770. #if ENABLED(DIRECT_MIXING_IN_G1)
  2771. // Get mixing parameters from the GCode
  2772. // The total "must" be 1.0 (but it will be normalized)
  2773. // If no mix factors are given, the old mix is preserved
  2774. void gcode_get_mix() {
  2775. const char* mixing_codes = "ABCDHI";
  2776. byte mix_bits = 0;
  2777. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2778. if (parser.seenval(mixing_codes[i])) {
  2779. SBI(mix_bits, i);
  2780. float v = parser.value_float();
  2781. NOLESS(v, 0.0);
  2782. mixing_factor[i] = RECIPROCAL(v);
  2783. }
  2784. }
  2785. // If any mixing factors were included, clear the rest
  2786. // If none were included, preserve the last mix
  2787. if (mix_bits) {
  2788. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2789. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2790. normalize_mix();
  2791. }
  2792. }
  2793. #endif
  2794. #endif
  2795. /**
  2796. * ***************************************************************************
  2797. * ***************************** G-CODE HANDLING *****************************
  2798. * ***************************************************************************
  2799. */
  2800. /**
  2801. * Set XYZE destination and feedrate from the current GCode command
  2802. *
  2803. * - Set destination from included axis codes
  2804. * - Set to current for missing axis codes
  2805. * - Set the feedrate, if included
  2806. */
  2807. void gcode_get_destination() {
  2808. LOOP_XYZE(i) {
  2809. if (parser.seen(axis_codes[i]))
  2810. destination[i] = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2811. else
  2812. destination[i] = current_position[i];
  2813. }
  2814. if (parser.linearval('F') > 0.0)
  2815. feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
  2816. #if ENABLED(PRINTCOUNTER)
  2817. if (!DEBUGGING(DRYRUN))
  2818. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2819. #endif
  2820. // Get ABCDHI mixing factors
  2821. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2822. gcode_get_mix();
  2823. #endif
  2824. }
  2825. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2826. /**
  2827. * Output a "busy" message at regular intervals
  2828. * while the machine is not accepting commands.
  2829. */
  2830. void host_keepalive() {
  2831. const millis_t ms = millis();
  2832. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2833. if (PENDING(ms, next_busy_signal_ms)) return;
  2834. switch (busy_state) {
  2835. case IN_HANDLER:
  2836. case IN_PROCESS:
  2837. SERIAL_ECHO_START();
  2838. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2839. break;
  2840. case PAUSED_FOR_USER:
  2841. SERIAL_ECHO_START();
  2842. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2843. break;
  2844. case PAUSED_FOR_INPUT:
  2845. SERIAL_ECHO_START();
  2846. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2847. break;
  2848. default:
  2849. break;
  2850. }
  2851. }
  2852. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2853. }
  2854. #endif // HOST_KEEPALIVE_FEATURE
  2855. /**************************************************
  2856. ***************** GCode Handlers *****************
  2857. **************************************************/
  2858. /**
  2859. * G0, G1: Coordinated movement of X Y Z E axes
  2860. */
  2861. inline void gcode_G0_G1(
  2862. #if IS_SCARA
  2863. bool fast_move=false
  2864. #endif
  2865. ) {
  2866. if (IsRunning()) {
  2867. gcode_get_destination(); // For X Y Z E F
  2868. #if ENABLED(FWRETRACT)
  2869. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  2870. // When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
  2871. if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
  2872. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2873. // Is this a retract or recover move?
  2874. if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) {
  2875. current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations
  2876. sync_plan_position_e(); // AND from the planner
  2877. return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored)
  2878. }
  2879. }
  2880. }
  2881. #endif // FWRETRACT
  2882. #if IS_SCARA
  2883. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2884. #else
  2885. prepare_move_to_destination();
  2886. #endif
  2887. }
  2888. }
  2889. /**
  2890. * G2: Clockwise Arc
  2891. * G3: Counterclockwise Arc
  2892. *
  2893. * This command has two forms: IJ-form and R-form.
  2894. *
  2895. * - I specifies an X offset. J specifies a Y offset.
  2896. * At least one of the IJ parameters is required.
  2897. * X and Y can be omitted to do a complete circle.
  2898. * The given XY is not error-checked. The arc ends
  2899. * based on the angle of the destination.
  2900. * Mixing I or J with R will throw an error.
  2901. *
  2902. * - R specifies the radius. X or Y is required.
  2903. * Omitting both X and Y will throw an error.
  2904. * X or Y must differ from the current XY.
  2905. * Mixing R with I or J will throw an error.
  2906. *
  2907. * - P specifies the number of full circles to do
  2908. * before the specified arc move.
  2909. *
  2910. * Examples:
  2911. *
  2912. * G2 I10 ; CW circle centered at X+10
  2913. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2914. */
  2915. #if ENABLED(ARC_SUPPORT)
  2916. inline void gcode_G2_G3(bool clockwise) {
  2917. if (IsRunning()) {
  2918. #if ENABLED(SF_ARC_FIX)
  2919. const bool relative_mode_backup = relative_mode;
  2920. relative_mode = true;
  2921. #endif
  2922. gcode_get_destination();
  2923. #if ENABLED(SF_ARC_FIX)
  2924. relative_mode = relative_mode_backup;
  2925. #endif
  2926. float arc_offset[2] = { 0.0, 0.0 };
  2927. if (parser.seenval('R')) {
  2928. const float r = parser.value_linear_units(),
  2929. p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
  2930. p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
  2931. if (r && (p2 != p1 || q2 != q1)) {
  2932. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2933. dx = p2 - p1, dy = q2 - q1, // X and Y differences
  2934. d = HYPOT(dx, dy), // Linear distance between the points
  2935. h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2936. mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
  2937. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2938. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2939. arc_offset[0] = cx - p1;
  2940. arc_offset[1] = cy - q1;
  2941. }
  2942. }
  2943. else {
  2944. if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
  2945. if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
  2946. }
  2947. if (arc_offset[0] || arc_offset[1]) {
  2948. #if ENABLED(ARC_P_CIRCLES)
  2949. // P indicates number of circles to do
  2950. int8_t circles_to_do = parser.byteval('P');
  2951. if (!WITHIN(circles_to_do, 0, 100)) {
  2952. SERIAL_ERROR_START();
  2953. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2954. }
  2955. while (circles_to_do--)
  2956. plan_arc(current_position, arc_offset, clockwise);
  2957. #endif
  2958. // Send the arc to the planner
  2959. plan_arc(destination, arc_offset, clockwise);
  2960. refresh_cmd_timeout();
  2961. }
  2962. else {
  2963. // Bad arguments
  2964. SERIAL_ERROR_START();
  2965. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2966. }
  2967. }
  2968. }
  2969. #endif // ARC_SUPPORT
  2970. /**
  2971. * G4: Dwell S<seconds> or P<milliseconds>
  2972. */
  2973. inline void gcode_G4() {
  2974. millis_t dwell_ms = 0;
  2975. if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
  2976. if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
  2977. stepper.synchronize();
  2978. refresh_cmd_timeout();
  2979. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2980. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2981. while (PENDING(millis(), dwell_ms)) idle();
  2982. }
  2983. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2984. /**
  2985. * Parameters interpreted according to:
  2986. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2987. * However I, J omission is not supported at this point; all
  2988. * parameters can be omitted and default to zero.
  2989. */
  2990. /**
  2991. * G5: Cubic B-spline
  2992. */
  2993. inline void gcode_G5() {
  2994. if (IsRunning()) {
  2995. gcode_get_destination();
  2996. const float offset[] = {
  2997. parser.linearval('I'),
  2998. parser.linearval('J'),
  2999. parser.linearval('P'),
  3000. parser.linearval('Q')
  3001. };
  3002. plan_cubic_move(offset);
  3003. }
  3004. }
  3005. #endif // BEZIER_CURVE_SUPPORT
  3006. #if ENABLED(FWRETRACT)
  3007. /**
  3008. * G10 - Retract filament according to settings of M207
  3009. */
  3010. inline void gcode_G10() {
  3011. #if EXTRUDERS > 1
  3012. const bool rs = parser.boolval('S');
  3013. retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
  3014. #endif
  3015. retract(true
  3016. #if EXTRUDERS > 1
  3017. , rs
  3018. #endif
  3019. );
  3020. }
  3021. /**
  3022. * G11 - Recover filament according to settings of M208
  3023. */
  3024. inline void gcode_G11() { retract(false); }
  3025. #endif // FWRETRACT
  3026. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  3027. /**
  3028. * G12: Clean the nozzle
  3029. */
  3030. inline void gcode_G12() {
  3031. // Don't allow nozzle cleaning without homing first
  3032. if (axis_unhomed_error()) return;
  3033. const uint8_t pattern = parser.ushortval('P', 0),
  3034. strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
  3035. objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
  3036. const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
  3037. Nozzle::clean(pattern, strokes, radius, objects);
  3038. }
  3039. #endif
  3040. #if ENABLED(CNC_WORKSPACE_PLANES)
  3041. void report_workspace_plane() {
  3042. SERIAL_ECHO_START();
  3043. SERIAL_ECHOPGM("Workspace Plane ");
  3044. serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") : workspace_plane == PLANE_ZX ? PSTR("ZX\n") : PSTR("XY\n"));
  3045. }
  3046. /**
  3047. * G17: Select Plane XY
  3048. * G18: Select Plane ZX
  3049. * G19: Select Plane YZ
  3050. */
  3051. inline void gcode_G17() { workspace_plane = PLANE_XY; }
  3052. inline void gcode_G18() { workspace_plane = PLANE_ZX; }
  3053. inline void gcode_G19() { workspace_plane = PLANE_YZ; }
  3054. #endif // CNC_WORKSPACE_PLANES
  3055. #if ENABLED(INCH_MODE_SUPPORT)
  3056. /**
  3057. * G20: Set input mode to inches
  3058. */
  3059. inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
  3060. /**
  3061. * G21: Set input mode to millimeters
  3062. */
  3063. inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
  3064. #endif
  3065. #if ENABLED(NOZZLE_PARK_FEATURE)
  3066. /**
  3067. * G27: Park the nozzle
  3068. */
  3069. inline void gcode_G27() {
  3070. // Don't allow nozzle parking without homing first
  3071. if (axis_unhomed_error()) return;
  3072. Nozzle::park(parser.ushortval('P'));
  3073. }
  3074. #endif // NOZZLE_PARK_FEATURE
  3075. #if ENABLED(QUICK_HOME)
  3076. static void quick_home_xy() {
  3077. // Pretend the current position is 0,0
  3078. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3079. sync_plan_position();
  3080. const int x_axis_home_dir =
  3081. #if ENABLED(DUAL_X_CARRIAGE)
  3082. x_home_dir(active_extruder)
  3083. #else
  3084. home_dir(X_AXIS)
  3085. #endif
  3086. ;
  3087. const float mlx = max_length(X_AXIS),
  3088. mly = max_length(Y_AXIS),
  3089. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  3090. fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
  3091. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  3092. endstops.hit_on_purpose(); // clear endstop hit flags
  3093. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3094. }
  3095. #endif // QUICK_HOME
  3096. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3097. void log_machine_info() {
  3098. SERIAL_ECHOPGM("Machine Type: ");
  3099. #if ENABLED(DELTA)
  3100. SERIAL_ECHOLNPGM("Delta");
  3101. #elif IS_SCARA
  3102. SERIAL_ECHOLNPGM("SCARA");
  3103. #elif IS_CORE
  3104. SERIAL_ECHOLNPGM("Core");
  3105. #else
  3106. SERIAL_ECHOLNPGM("Cartesian");
  3107. #endif
  3108. SERIAL_ECHOPGM("Probe: ");
  3109. #if ENABLED(PROBE_MANUALLY)
  3110. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3111. #elif ENABLED(FIX_MOUNTED_PROBE)
  3112. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3113. #elif ENABLED(BLTOUCH)
  3114. SERIAL_ECHOLNPGM("BLTOUCH");
  3115. #elif HAS_Z_SERVO_ENDSTOP
  3116. SERIAL_ECHOLNPGM("SERVO PROBE");
  3117. #elif ENABLED(Z_PROBE_SLED)
  3118. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3119. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3120. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3121. #else
  3122. SERIAL_ECHOLNPGM("NONE");
  3123. #endif
  3124. #if HAS_BED_PROBE
  3125. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3126. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3127. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3128. #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
  3129. SERIAL_ECHOPGM(" (Right");
  3130. #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
  3131. SERIAL_ECHOPGM(" (Left");
  3132. #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
  3133. SERIAL_ECHOPGM(" (Middle");
  3134. #else
  3135. SERIAL_ECHOPGM(" (Aligned With");
  3136. #endif
  3137. #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
  3138. SERIAL_ECHOPGM("-Back");
  3139. #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
  3140. SERIAL_ECHOPGM("-Front");
  3141. #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
  3142. SERIAL_ECHOPGM("-Center");
  3143. #endif
  3144. if (zprobe_zoffset < 0)
  3145. SERIAL_ECHOPGM(" & Below");
  3146. else if (zprobe_zoffset > 0)
  3147. SERIAL_ECHOPGM(" & Above");
  3148. else
  3149. SERIAL_ECHOPGM(" & Same Z as");
  3150. SERIAL_ECHOLNPGM(" Nozzle)");
  3151. #endif
  3152. #if HAS_ABL
  3153. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3154. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3155. SERIAL_ECHOPGM("LINEAR");
  3156. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3157. SERIAL_ECHOPGM("BILINEAR");
  3158. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3159. SERIAL_ECHOPGM("3POINT");
  3160. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3161. SERIAL_ECHOPGM("UBL");
  3162. #endif
  3163. if (leveling_is_active()) {
  3164. SERIAL_ECHOLNPGM(" (enabled)");
  3165. #if ABL_PLANAR
  3166. const float diff[XYZ] = {
  3167. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3168. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3169. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3170. };
  3171. SERIAL_ECHOPGM("ABL Adjustment X");
  3172. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3173. SERIAL_ECHO(diff[X_AXIS]);
  3174. SERIAL_ECHOPGM(" Y");
  3175. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3176. SERIAL_ECHO(diff[Y_AXIS]);
  3177. SERIAL_ECHOPGM(" Z");
  3178. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3179. SERIAL_ECHO(diff[Z_AXIS]);
  3180. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3181. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3182. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3183. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3184. #endif
  3185. }
  3186. else
  3187. SERIAL_ECHOLNPGM(" (disabled)");
  3188. SERIAL_EOL();
  3189. #elif ENABLED(MESH_BED_LEVELING)
  3190. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3191. if (leveling_is_active()) {
  3192. float lz = current_position[Z_AXIS];
  3193. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3194. SERIAL_ECHOLNPGM(" (enabled)");
  3195. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3196. }
  3197. else
  3198. SERIAL_ECHOPGM(" (disabled)");
  3199. SERIAL_EOL();
  3200. #endif // MESH_BED_LEVELING
  3201. }
  3202. #endif // DEBUG_LEVELING_FEATURE
  3203. #if ENABLED(DELTA)
  3204. /**
  3205. * A delta can only safely home all axes at the same time
  3206. * This is like quick_home_xy() but for 3 towers.
  3207. */
  3208. inline void home_delta() {
  3209. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3210. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3211. #endif
  3212. // Init the current position of all carriages to 0,0,0
  3213. ZERO(current_position);
  3214. sync_plan_position();
  3215. // Move all carriages together linearly until an endstop is hit.
  3216. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  3217. feedrate_mm_s = homing_feedrate(X_AXIS);
  3218. line_to_current_position();
  3219. stepper.synchronize();
  3220. endstops.hit_on_purpose(); // clear endstop hit flags
  3221. // At least one carriage has reached the top.
  3222. // Now re-home each carriage separately.
  3223. HOMEAXIS(A);
  3224. HOMEAXIS(B);
  3225. HOMEAXIS(C);
  3226. // Set all carriages to their home positions
  3227. // Do this here all at once for Delta, because
  3228. // XYZ isn't ABC. Applying this per-tower would
  3229. // give the impression that they are the same.
  3230. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3231. SYNC_PLAN_POSITION_KINEMATIC();
  3232. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3233. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3234. #endif
  3235. }
  3236. #endif // DELTA
  3237. #if ENABLED(Z_SAFE_HOMING)
  3238. inline void home_z_safely() {
  3239. // Disallow Z homing if X or Y are unknown
  3240. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3241. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3242. SERIAL_ECHO_START();
  3243. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3244. return;
  3245. }
  3246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3247. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3248. #endif
  3249. SYNC_PLAN_POSITION_KINEMATIC();
  3250. /**
  3251. * Move the Z probe (or just the nozzle) to the safe homing point
  3252. */
  3253. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3254. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3255. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3256. #if HOMING_Z_WITH_PROBE
  3257. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3258. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3259. #endif
  3260. if (position_is_reachable_xy(destination[X_AXIS], destination[Y_AXIS])) {
  3261. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3262. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3263. #endif
  3264. // This causes the carriage on Dual X to unpark
  3265. #if ENABLED(DUAL_X_CARRIAGE)
  3266. active_extruder_parked = false;
  3267. #endif
  3268. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3269. HOMEAXIS(Z);
  3270. }
  3271. else {
  3272. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3273. SERIAL_ECHO_START();
  3274. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3275. }
  3276. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3277. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3278. #endif
  3279. }
  3280. #endif // Z_SAFE_HOMING
  3281. #if ENABLED(PROBE_MANUALLY)
  3282. bool g29_in_progress = false;
  3283. #else
  3284. constexpr bool g29_in_progress = false;
  3285. #endif
  3286. /**
  3287. * G28: Home all axes according to settings
  3288. *
  3289. * Parameters
  3290. *
  3291. * None Home to all axes with no parameters.
  3292. * With QUICK_HOME enabled XY will home together, then Z.
  3293. *
  3294. * Cartesian parameters
  3295. *
  3296. * X Home to the X endstop
  3297. * Y Home to the Y endstop
  3298. * Z Home to the Z endstop
  3299. *
  3300. */
  3301. inline void gcode_G28(const bool always_home_all) {
  3302. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3303. if (DEBUGGING(LEVELING)) {
  3304. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3305. log_machine_info();
  3306. }
  3307. #endif
  3308. // Wait for planner moves to finish!
  3309. stepper.synchronize();
  3310. // Cancel the active G29 session
  3311. #if ENABLED(PROBE_MANUALLY)
  3312. g29_in_progress = false;
  3313. #endif
  3314. // Disable the leveling matrix before homing
  3315. #if HAS_LEVELING
  3316. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3317. const bool ubl_state_at_entry = leveling_is_active();
  3318. #endif
  3319. set_bed_leveling_enabled(false);
  3320. #endif
  3321. #if ENABLED(CNC_WORKSPACE_PLANES)
  3322. workspace_plane = PLANE_XY;
  3323. #endif
  3324. // Always home with tool 0 active
  3325. #if HOTENDS > 1
  3326. const uint8_t old_tool_index = active_extruder;
  3327. tool_change(0, 0, true);
  3328. #endif
  3329. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3330. extruder_duplication_enabled = false;
  3331. #endif
  3332. setup_for_endstop_or_probe_move();
  3333. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3334. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3335. #endif
  3336. endstops.enable(true); // Enable endstops for next homing move
  3337. #if ENABLED(DELTA)
  3338. home_delta();
  3339. UNUSED(always_home_all);
  3340. #else // NOT DELTA
  3341. const bool homeX = always_home_all || parser.seen('X'),
  3342. homeY = always_home_all || parser.seen('Y'),
  3343. homeZ = always_home_all || parser.seen('Z'),
  3344. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3345. set_destination_to_current();
  3346. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3347. if (home_all || homeZ) {
  3348. HOMEAXIS(Z);
  3349. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3350. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3351. #endif
  3352. }
  3353. #else
  3354. if (home_all || homeX || homeY) {
  3355. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3356. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3357. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3358. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3359. if (DEBUGGING(LEVELING))
  3360. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3361. #endif
  3362. do_blocking_move_to_z(destination[Z_AXIS]);
  3363. }
  3364. }
  3365. #endif
  3366. #if ENABLED(QUICK_HOME)
  3367. if (home_all || (homeX && homeY)) quick_home_xy();
  3368. #endif
  3369. #if ENABLED(HOME_Y_BEFORE_X)
  3370. // Home Y
  3371. if (home_all || homeY) {
  3372. HOMEAXIS(Y);
  3373. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3374. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3375. #endif
  3376. }
  3377. #endif
  3378. // Home X
  3379. if (home_all || homeX) {
  3380. #if ENABLED(DUAL_X_CARRIAGE)
  3381. // Always home the 2nd (right) extruder first
  3382. active_extruder = 1;
  3383. HOMEAXIS(X);
  3384. // Remember this extruder's position for later tool change
  3385. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3386. // Home the 1st (left) extruder
  3387. active_extruder = 0;
  3388. HOMEAXIS(X);
  3389. // Consider the active extruder to be parked
  3390. COPY(raised_parked_position, current_position);
  3391. delayed_move_time = 0;
  3392. active_extruder_parked = true;
  3393. #else
  3394. HOMEAXIS(X);
  3395. #endif
  3396. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3397. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3398. #endif
  3399. }
  3400. #if DISABLED(HOME_Y_BEFORE_X)
  3401. // Home Y
  3402. if (home_all || homeY) {
  3403. HOMEAXIS(Y);
  3404. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3405. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3406. #endif
  3407. }
  3408. #endif
  3409. // Home Z last if homing towards the bed
  3410. #if Z_HOME_DIR < 0
  3411. if (home_all || homeZ) {
  3412. #if ENABLED(Z_SAFE_HOMING)
  3413. home_z_safely();
  3414. #else
  3415. HOMEAXIS(Z);
  3416. #endif
  3417. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3418. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3419. #endif
  3420. } // home_all || homeZ
  3421. #endif // Z_HOME_DIR < 0
  3422. SYNC_PLAN_POSITION_KINEMATIC();
  3423. #endif // !DELTA (gcode_G28)
  3424. endstops.not_homing();
  3425. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3426. // move to a height where we can use the full xy-area
  3427. do_blocking_move_to_z(delta_clip_start_height);
  3428. #endif
  3429. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3430. set_bed_leveling_enabled(ubl_state_at_entry);
  3431. #endif
  3432. clean_up_after_endstop_or_probe_move();
  3433. // Restore the active tool after homing
  3434. #if HOTENDS > 1
  3435. tool_change(old_tool_index, 0, true);
  3436. #endif
  3437. lcd_refresh();
  3438. report_current_position();
  3439. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3440. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3441. #endif
  3442. } // G28
  3443. void home_all_axes() { gcode_G28(true); }
  3444. #if HAS_PROBING_PROCEDURE
  3445. void out_of_range_error(const char* p_edge) {
  3446. SERIAL_PROTOCOLPGM("?Probe ");
  3447. serialprintPGM(p_edge);
  3448. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3449. }
  3450. #endif
  3451. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3452. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3453. extern bool lcd_wait_for_move;
  3454. #endif
  3455. inline void _manual_goto_xy(const float &x, const float &y) {
  3456. const float old_feedrate_mm_s = feedrate_mm_s;
  3457. #if MANUAL_PROBE_HEIGHT > 0
  3458. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3459. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3460. line_to_current_position();
  3461. #endif
  3462. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3463. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3464. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3465. line_to_current_position();
  3466. #if MANUAL_PROBE_HEIGHT > 0
  3467. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3468. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS); // just slightly over the bed
  3469. line_to_current_position();
  3470. #endif
  3471. feedrate_mm_s = old_feedrate_mm_s;
  3472. stepper.synchronize();
  3473. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3474. lcd_wait_for_move = false;
  3475. #endif
  3476. }
  3477. #endif
  3478. #if ENABLED(MESH_BED_LEVELING)
  3479. // Save 130 bytes with non-duplication of PSTR
  3480. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3481. void mbl_mesh_report() {
  3482. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3483. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3484. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3485. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3486. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3487. );
  3488. }
  3489. void mesh_probing_done() {
  3490. mbl.set_has_mesh(true);
  3491. home_all_axes();
  3492. set_bed_leveling_enabled(true);
  3493. #if ENABLED(MESH_G28_REST_ORIGIN)
  3494. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3495. set_destination_to_current();
  3496. line_to_destination(homing_feedrate(Z_AXIS));
  3497. stepper.synchronize();
  3498. #endif
  3499. }
  3500. /**
  3501. * G29: Mesh-based Z probe, probes a grid and produces a
  3502. * mesh to compensate for variable bed height
  3503. *
  3504. * Parameters With MESH_BED_LEVELING:
  3505. *
  3506. * S0 Produce a mesh report
  3507. * S1 Start probing mesh points
  3508. * S2 Probe the next mesh point
  3509. * S3 Xn Yn Zn.nn Manually modify a single point
  3510. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3511. * S5 Reset and disable mesh
  3512. *
  3513. * The S0 report the points as below
  3514. *
  3515. * +----> X-axis 1-n
  3516. * |
  3517. * |
  3518. * v Y-axis 1-n
  3519. *
  3520. */
  3521. inline void gcode_G29() {
  3522. static int mbl_probe_index = -1;
  3523. #if HAS_SOFTWARE_ENDSTOPS
  3524. static bool enable_soft_endstops;
  3525. #endif
  3526. const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
  3527. if (!WITHIN(state, 0, 5)) {
  3528. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3529. return;
  3530. }
  3531. int8_t px, py;
  3532. switch (state) {
  3533. case MeshReport:
  3534. if (leveling_is_valid()) {
  3535. SERIAL_PROTOCOLLNPAIR("State: ", leveling_is_active() ? MSG_ON : MSG_OFF);
  3536. mbl_mesh_report();
  3537. }
  3538. else
  3539. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3540. break;
  3541. case MeshStart:
  3542. mbl.reset();
  3543. mbl_probe_index = 0;
  3544. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3545. break;
  3546. case MeshNext:
  3547. if (mbl_probe_index < 0) {
  3548. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3549. return;
  3550. }
  3551. // For each G29 S2...
  3552. if (mbl_probe_index == 0) {
  3553. #if HAS_SOFTWARE_ENDSTOPS
  3554. // For the initial G29 S2 save software endstop state
  3555. enable_soft_endstops = soft_endstops_enabled;
  3556. #endif
  3557. }
  3558. else {
  3559. // For G29 S2 after adjusting Z.
  3560. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3561. #if HAS_SOFTWARE_ENDSTOPS
  3562. soft_endstops_enabled = enable_soft_endstops;
  3563. #endif
  3564. }
  3565. // If there's another point to sample, move there with optional lift.
  3566. if (mbl_probe_index < GRID_MAX_POINTS) {
  3567. mbl.zigzag(mbl_probe_index, px, py);
  3568. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3569. #if HAS_SOFTWARE_ENDSTOPS
  3570. // Disable software endstops to allow manual adjustment
  3571. // If G29 is not completed, they will not be re-enabled
  3572. soft_endstops_enabled = false;
  3573. #endif
  3574. mbl_probe_index++;
  3575. }
  3576. else {
  3577. // One last "return to the bed" (as originally coded) at completion
  3578. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3579. line_to_current_position();
  3580. stepper.synchronize();
  3581. // After recording the last point, activate home and activate
  3582. mbl_probe_index = -1;
  3583. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3584. BUZZ(100, 659);
  3585. BUZZ(100, 698);
  3586. mesh_probing_done();
  3587. }
  3588. break;
  3589. case MeshSet:
  3590. if (parser.seenval('X')) {
  3591. px = parser.value_int() - 1;
  3592. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3593. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3594. return;
  3595. }
  3596. }
  3597. else {
  3598. SERIAL_CHAR('X'); echo_not_entered();
  3599. return;
  3600. }
  3601. if (parser.seenval('Y')) {
  3602. py = parser.value_int() - 1;
  3603. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3604. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3605. return;
  3606. }
  3607. }
  3608. else {
  3609. SERIAL_CHAR('Y'); echo_not_entered();
  3610. return;
  3611. }
  3612. if (parser.seenval('Z')) {
  3613. mbl.z_values[px][py] = parser.value_linear_units();
  3614. }
  3615. else {
  3616. SERIAL_CHAR('Z'); echo_not_entered();
  3617. return;
  3618. }
  3619. break;
  3620. case MeshSetZOffset:
  3621. if (parser.seenval('Z')) {
  3622. mbl.z_offset = parser.value_linear_units();
  3623. }
  3624. else {
  3625. SERIAL_CHAR('Z'); echo_not_entered();
  3626. return;
  3627. }
  3628. break;
  3629. case MeshReset:
  3630. reset_bed_level();
  3631. break;
  3632. } // switch(state)
  3633. report_current_position();
  3634. }
  3635. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3636. #if ABL_GRID
  3637. #if ENABLED(PROBE_Y_FIRST)
  3638. #define PR_OUTER_VAR xCount
  3639. #define PR_OUTER_END abl_grid_points_x
  3640. #define PR_INNER_VAR yCount
  3641. #define PR_INNER_END abl_grid_points_y
  3642. #else
  3643. #define PR_OUTER_VAR yCount
  3644. #define PR_OUTER_END abl_grid_points_y
  3645. #define PR_INNER_VAR xCount
  3646. #define PR_INNER_END abl_grid_points_x
  3647. #endif
  3648. #endif
  3649. /**
  3650. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3651. * Will fail if the printer has not been homed with G28.
  3652. *
  3653. * Enhanced G29 Auto Bed Leveling Probe Routine
  3654. *
  3655. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3656. * or alter the bed level data. Useful to check the topology
  3657. * after a first run of G29.
  3658. *
  3659. * J Jettison current bed leveling data
  3660. *
  3661. * V Set the verbose level (0-4). Example: "G29 V3"
  3662. *
  3663. * Parameters With LINEAR leveling only:
  3664. *
  3665. * P Set the size of the grid that will be probed (P x P points).
  3666. * Example: "G29 P4"
  3667. *
  3668. * X Set the X size of the grid that will be probed (X x Y points).
  3669. * Example: "G29 X7 Y5"
  3670. *
  3671. * Y Set the Y size of the grid that will be probed (X x Y points).
  3672. *
  3673. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3674. * This is useful for manual bed leveling and finding flaws in the bed (to
  3675. * assist with part placement).
  3676. * Not supported by non-linear delta printer bed leveling.
  3677. *
  3678. * Parameters With LINEAR and BILINEAR leveling only:
  3679. *
  3680. * S Set the XY travel speed between probe points (in units/min)
  3681. *
  3682. * F Set the Front limit of the probing grid
  3683. * B Set the Back limit of the probing grid
  3684. * L Set the Left limit of the probing grid
  3685. * R Set the Right limit of the probing grid
  3686. *
  3687. * Parameters with DEBUG_LEVELING_FEATURE only:
  3688. *
  3689. * C Make a totally fake grid with no actual probing.
  3690. * For use in testing when no probing is possible.
  3691. *
  3692. * Parameters with BILINEAR leveling only:
  3693. *
  3694. * Z Supply an additional Z probe offset
  3695. *
  3696. * Extra parameters with PROBE_MANUALLY:
  3697. *
  3698. * To do manual probing simply repeat G29 until the procedure is complete.
  3699. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3700. *
  3701. * Q Query leveling and G29 state
  3702. *
  3703. * A Abort current leveling procedure
  3704. *
  3705. * Extra parameters with BILINEAR only:
  3706. *
  3707. * W Write a mesh point. (If G29 is idle.)
  3708. * I X index for mesh point
  3709. * J Y index for mesh point
  3710. * X X for mesh point, overrides I
  3711. * Y Y for mesh point, overrides J
  3712. * Z Z for mesh point. Otherwise, raw current Z.
  3713. *
  3714. * Without PROBE_MANUALLY:
  3715. *
  3716. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3717. * Include "E" to engage/disengage the Z probe for each sample.
  3718. * There's no extra effect if you have a fixed Z probe.
  3719. *
  3720. */
  3721. inline void gcode_G29() {
  3722. // G29 Q is also available if debugging
  3723. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3724. const bool query = parser.seen('Q');
  3725. const uint8_t old_debug_flags = marlin_debug_flags;
  3726. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3727. if (DEBUGGING(LEVELING)) {
  3728. DEBUG_POS(">>> gcode_G29", current_position);
  3729. log_machine_info();
  3730. }
  3731. marlin_debug_flags = old_debug_flags;
  3732. #if DISABLED(PROBE_MANUALLY)
  3733. if (query) return;
  3734. #endif
  3735. #endif
  3736. #if ENABLED(PROBE_MANUALLY)
  3737. const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
  3738. #endif
  3739. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3740. const bool faux = parser.boolval('C');
  3741. #elif ENABLED(PROBE_MANUALLY)
  3742. const bool faux = no_action;
  3743. #else
  3744. bool constexpr faux = false;
  3745. #endif
  3746. // Don't allow auto-leveling without homing first
  3747. if (axis_unhomed_error()) return;
  3748. // Define local vars 'static' for manual probing, 'auto' otherwise
  3749. #if ENABLED(PROBE_MANUALLY)
  3750. #define ABL_VAR static
  3751. #else
  3752. #define ABL_VAR
  3753. #endif
  3754. ABL_VAR int verbose_level;
  3755. ABL_VAR float xProbe, yProbe, measured_z;
  3756. ABL_VAR bool dryrun, abl_should_enable;
  3757. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3758. ABL_VAR int abl_probe_index;
  3759. #endif
  3760. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3761. ABL_VAR bool enable_soft_endstops = true;
  3762. #endif
  3763. #if ABL_GRID
  3764. #if ENABLED(PROBE_MANUALLY)
  3765. ABL_VAR uint8_t PR_OUTER_VAR;
  3766. ABL_VAR int8_t PR_INNER_VAR;
  3767. #endif
  3768. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3769. ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
  3770. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3771. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3772. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3773. ABL_VAR bool do_topography_map;
  3774. #else // Bilinear
  3775. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3776. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3777. #endif
  3778. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3779. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3780. ABL_VAR int abl2;
  3781. #else // Bilinear
  3782. int constexpr abl2 = GRID_MAX_POINTS;
  3783. #endif
  3784. #endif
  3785. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3786. ABL_VAR float zoffset;
  3787. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3788. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3789. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3790. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3791. mean;
  3792. #endif
  3793. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3794. int constexpr abl2 = 3;
  3795. // Probe at 3 arbitrary points
  3796. ABL_VAR vector_3 points[3] = {
  3797. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3798. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3799. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3800. };
  3801. #endif // AUTO_BED_LEVELING_3POINT
  3802. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3803. struct linear_fit_data lsf_results;
  3804. incremental_LSF_reset(&lsf_results);
  3805. #endif
  3806. /**
  3807. * On the initial G29 fetch command parameters.
  3808. */
  3809. if (!g29_in_progress) {
  3810. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3811. abl_probe_index = -1;
  3812. #endif
  3813. abl_should_enable = leveling_is_active();
  3814. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3815. if (parser.seen('W')) {
  3816. if (!leveling_is_valid()) {
  3817. SERIAL_ERROR_START();
  3818. SERIAL_ERRORLNPGM("No bilinear grid");
  3819. return;
  3820. }
  3821. const float z = parser.floatval('Z', RAW_CURRENT_POSITION(Z));
  3822. if (!WITHIN(z, -10, 10)) {
  3823. SERIAL_ERROR_START();
  3824. SERIAL_ERRORLNPGM("Bad Z value");
  3825. return;
  3826. }
  3827. const float x = parser.floatval('X', NAN),
  3828. y = parser.floatval('Y', NAN);
  3829. int8_t i = parser.byteval('I', -1),
  3830. j = parser.byteval('J', -1);
  3831. if (!isnan(x) && !isnan(y)) {
  3832. // Get nearest i / j from x / y
  3833. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3834. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3835. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3836. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3837. }
  3838. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3839. set_bed_leveling_enabled(false);
  3840. z_values[i][j] = z;
  3841. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3842. bed_level_virt_interpolate();
  3843. #endif
  3844. set_bed_leveling_enabled(abl_should_enable);
  3845. }
  3846. return;
  3847. } // parser.seen('W')
  3848. #endif
  3849. #if HAS_LEVELING
  3850. // Jettison bed leveling data
  3851. if (parser.seen('J')) {
  3852. reset_bed_level();
  3853. return;
  3854. }
  3855. #endif
  3856. verbose_level = parser.intval('V');
  3857. if (!WITHIN(verbose_level, 0, 4)) {
  3858. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  3859. return;
  3860. }
  3861. dryrun = parser.boolval('D')
  3862. #if ENABLED(PROBE_MANUALLY)
  3863. || no_action
  3864. #endif
  3865. ;
  3866. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3867. do_topography_map = verbose_level > 2 || parser.boolval('T');
  3868. // X and Y specify points in each direction, overriding the default
  3869. // These values may be saved with the completed mesh
  3870. abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
  3871. abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
  3872. if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
  3873. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3874. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3875. return;
  3876. }
  3877. abl2 = abl_grid_points_x * abl_grid_points_y;
  3878. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3879. zoffset = parser.linearval('Z');
  3880. #endif
  3881. #if ABL_GRID
  3882. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  3883. left_probe_bed_position = (int)parser.linearval('L', LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION));
  3884. right_probe_bed_position = (int)parser.linearval('R', LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION));
  3885. front_probe_bed_position = (int)parser.linearval('F', LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION));
  3886. back_probe_bed_position = (int)parser.linearval('B', LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION));
  3887. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3888. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3889. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3890. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3891. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3892. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3893. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3894. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3895. if (left_out || right_out || front_out || back_out) {
  3896. if (left_out) {
  3897. out_of_range_error(PSTR("(L)eft"));
  3898. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3899. }
  3900. if (right_out) {
  3901. out_of_range_error(PSTR("(R)ight"));
  3902. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3903. }
  3904. if (front_out) {
  3905. out_of_range_error(PSTR("(F)ront"));
  3906. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3907. }
  3908. if (back_out) {
  3909. out_of_range_error(PSTR("(B)ack"));
  3910. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3911. }
  3912. return;
  3913. }
  3914. // probe at the points of a lattice grid
  3915. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3916. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3917. #endif // ABL_GRID
  3918. if (verbose_level > 0) {
  3919. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3920. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3921. }
  3922. stepper.synchronize();
  3923. // Disable auto bed leveling during G29
  3924. planner.abl_enabled = false;
  3925. if (!dryrun) {
  3926. // Re-orient the current position without leveling
  3927. // based on where the steppers are positioned.
  3928. set_current_from_steppers_for_axis(ALL_AXES);
  3929. // Sync the planner to where the steppers stopped
  3930. SYNC_PLAN_POSITION_KINEMATIC();
  3931. }
  3932. if (!faux) setup_for_endstop_or_probe_move();
  3933. //xProbe = yProbe = measured_z = 0;
  3934. #if HAS_BED_PROBE
  3935. // Deploy the probe. Probe will raise if needed.
  3936. if (DEPLOY_PROBE()) {
  3937. planner.abl_enabled = abl_should_enable;
  3938. return;
  3939. }
  3940. #endif
  3941. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3942. #if ENABLED(PROBE_MANUALLY)
  3943. if (!no_action)
  3944. #endif
  3945. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3946. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3947. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3948. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3949. ) {
  3950. if (dryrun) {
  3951. // Before reset bed level, re-enable to correct the position
  3952. planner.abl_enabled = abl_should_enable;
  3953. }
  3954. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3955. reset_bed_level();
  3956. // Initialize a grid with the given dimensions
  3957. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3958. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3959. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3960. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3961. // Can't re-enable (on error) until the new grid is written
  3962. abl_should_enable = false;
  3963. }
  3964. #endif // AUTO_BED_LEVELING_BILINEAR
  3965. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3966. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3967. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3968. #endif
  3969. // Probe at 3 arbitrary points
  3970. points[0].z = points[1].z = points[2].z = 0;
  3971. #endif // AUTO_BED_LEVELING_3POINT
  3972. } // !g29_in_progress
  3973. #if ENABLED(PROBE_MANUALLY)
  3974. // For manual probing, get the next index to probe now.
  3975. // On the first probe this will be incremented to 0.
  3976. if (!no_action) {
  3977. ++abl_probe_index;
  3978. g29_in_progress = true;
  3979. }
  3980. // Abort current G29 procedure, go back to idle state
  3981. if (seenA && g29_in_progress) {
  3982. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3983. #if HAS_SOFTWARE_ENDSTOPS
  3984. soft_endstops_enabled = enable_soft_endstops;
  3985. #endif
  3986. planner.abl_enabled = abl_should_enable;
  3987. g29_in_progress = false;
  3988. #if ENABLED(LCD_BED_LEVELING)
  3989. lcd_wait_for_move = false;
  3990. #endif
  3991. }
  3992. // Query G29 status
  3993. if (verbose_level || seenQ) {
  3994. SERIAL_PROTOCOLPGM("Manual G29 ");
  3995. if (g29_in_progress) {
  3996. SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
  3997. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3998. }
  3999. else
  4000. SERIAL_PROTOCOLLNPGM("idle");
  4001. }
  4002. if (no_action) return;
  4003. if (abl_probe_index == 0) {
  4004. // For the initial G29 save software endstop state
  4005. #if HAS_SOFTWARE_ENDSTOPS
  4006. enable_soft_endstops = soft_endstops_enabled;
  4007. #endif
  4008. }
  4009. else {
  4010. // For G29 after adjusting Z.
  4011. // Save the previous Z before going to the next point
  4012. measured_z = current_position[Z_AXIS];
  4013. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4014. mean += measured_z;
  4015. eqnBVector[abl_probe_index] = measured_z;
  4016. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4017. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4018. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4019. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4020. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4021. z_values[xCount][yCount] = measured_z + zoffset;
  4022. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4023. if (DEBUGGING(LEVELING)) {
  4024. SERIAL_PROTOCOLPAIR("Save X", xCount);
  4025. SERIAL_PROTOCOLPAIR(" Y", yCount);
  4026. SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
  4027. }
  4028. #endif
  4029. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4030. points[abl_probe_index].z = measured_z;
  4031. #endif
  4032. }
  4033. //
  4034. // If there's another point to sample, move there with optional lift.
  4035. //
  4036. #if ABL_GRID
  4037. // Skip any unreachable points
  4038. while (abl_probe_index < abl2) {
  4039. // Set xCount, yCount based on abl_probe_index, with zig-zag
  4040. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  4041. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  4042. // Probe in reverse order for every other row/column
  4043. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  4044. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  4045. const float xBase = xCount * xGridSpacing + left_probe_bed_position,
  4046. yBase = yCount * yGridSpacing + front_probe_bed_position;
  4047. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4048. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4049. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4050. indexIntoAB[xCount][yCount] = abl_probe_index;
  4051. #endif
  4052. // Keep looping till a reachable point is found
  4053. if (position_is_reachable_xy(xProbe, yProbe)) break;
  4054. ++abl_probe_index;
  4055. }
  4056. // Is there a next point to move to?
  4057. if (abl_probe_index < abl2) {
  4058. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  4059. #if HAS_SOFTWARE_ENDSTOPS
  4060. // Disable software endstops to allow manual adjustment
  4061. // If G29 is not completed, they will not be re-enabled
  4062. soft_endstops_enabled = false;
  4063. #endif
  4064. return;
  4065. }
  4066. else {
  4067. // Leveling done! Fall through to G29 finishing code below
  4068. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  4069. // Re-enable software endstops, if needed
  4070. #if HAS_SOFTWARE_ENDSTOPS
  4071. soft_endstops_enabled = enable_soft_endstops;
  4072. #endif
  4073. }
  4074. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4075. // Probe at 3 arbitrary points
  4076. if (abl_probe_index < 3) {
  4077. xProbe = LOGICAL_X_POSITION(points[abl_probe_index].x);
  4078. yProbe = LOGICAL_Y_POSITION(points[abl_probe_index].y);
  4079. #if HAS_SOFTWARE_ENDSTOPS
  4080. // Disable software endstops to allow manual adjustment
  4081. // If G29 is not completed, they will not be re-enabled
  4082. soft_endstops_enabled = false;
  4083. #endif
  4084. return;
  4085. }
  4086. else {
  4087. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  4088. // Re-enable software endstops, if needed
  4089. #if HAS_SOFTWARE_ENDSTOPS
  4090. soft_endstops_enabled = enable_soft_endstops;
  4091. #endif
  4092. if (!dryrun) {
  4093. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4094. if (planeNormal.z < 0) {
  4095. planeNormal.x *= -1;
  4096. planeNormal.y *= -1;
  4097. planeNormal.z *= -1;
  4098. }
  4099. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4100. // Can't re-enable (on error) until the new grid is written
  4101. abl_should_enable = false;
  4102. }
  4103. }
  4104. #endif // AUTO_BED_LEVELING_3POINT
  4105. #else // !PROBE_MANUALLY
  4106. const bool stow_probe_after_each = parser.boolval('E');
  4107. #if ABL_GRID
  4108. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  4109. // Outer loop is Y with PROBE_Y_FIRST disabled
  4110. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  4111. int8_t inStart, inStop, inInc;
  4112. if (zig) { // away from origin
  4113. inStart = 0;
  4114. inStop = PR_INNER_END;
  4115. inInc = 1;
  4116. }
  4117. else { // towards origin
  4118. inStart = PR_INNER_END - 1;
  4119. inStop = -1;
  4120. inInc = -1;
  4121. }
  4122. zig ^= true; // zag
  4123. // Inner loop is Y with PROBE_Y_FIRST enabled
  4124. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4125. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4126. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4127. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4128. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4129. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4130. indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
  4131. #endif
  4132. #if IS_KINEMATIC
  4133. // Avoid probing outside the round or hexagonal area
  4134. if (!position_is_reachable_by_probe_xy(xProbe, yProbe)) continue;
  4135. #endif
  4136. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4137. if (isnan(measured_z)) {
  4138. planner.abl_enabled = abl_should_enable;
  4139. return;
  4140. }
  4141. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4142. mean += measured_z;
  4143. eqnBVector[abl_probe_index] = measured_z;
  4144. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4145. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4146. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4147. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4148. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4149. z_values[xCount][yCount] = measured_z + zoffset;
  4150. #endif
  4151. abl_should_enable = false;
  4152. idle();
  4153. } // inner
  4154. } // outer
  4155. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4156. // Probe at 3 arbitrary points
  4157. for (uint8_t i = 0; i < 3; ++i) {
  4158. // Retain the last probe position
  4159. xProbe = LOGICAL_X_POSITION(points[i].x);
  4160. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4161. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4162. if (isnan(measured_z)) {
  4163. planner.abl_enabled = abl_should_enable;
  4164. return;
  4165. }
  4166. points[i].z = measured_z;
  4167. }
  4168. if (!dryrun) {
  4169. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4170. if (planeNormal.z < 0) {
  4171. planeNormal.x *= -1;
  4172. planeNormal.y *= -1;
  4173. planeNormal.z *= -1;
  4174. }
  4175. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4176. // Can't re-enable (on error) until the new grid is written
  4177. abl_should_enable = false;
  4178. }
  4179. #endif // AUTO_BED_LEVELING_3POINT
  4180. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4181. if (STOW_PROBE()) {
  4182. planner.abl_enabled = abl_should_enable;
  4183. return;
  4184. }
  4185. #endif // !PROBE_MANUALLY
  4186. //
  4187. // G29 Finishing Code
  4188. //
  4189. // Unless this is a dry run, auto bed leveling will
  4190. // definitely be enabled after this point.
  4191. //
  4192. // If code above wants to continue leveling, it should
  4193. // return or loop before this point.
  4194. //
  4195. // Restore state after probing
  4196. if (!faux) clean_up_after_endstop_or_probe_move();
  4197. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4198. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4199. #endif
  4200. #if ENABLED(PROBE_MANUALLY)
  4201. g29_in_progress = false;
  4202. #if ENABLED(LCD_BED_LEVELING)
  4203. lcd_wait_for_move = false;
  4204. #endif
  4205. #endif
  4206. // Calculate leveling, print reports, correct the position
  4207. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4208. if (!dryrun) extrapolate_unprobed_bed_level();
  4209. print_bilinear_leveling_grid();
  4210. refresh_bed_level();
  4211. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4212. bed_level_virt_print();
  4213. #endif
  4214. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4215. // For LINEAR leveling calculate matrix, print reports, correct the position
  4216. /**
  4217. * solve the plane equation ax + by + d = z
  4218. * A is the matrix with rows [x y 1] for all the probed points
  4219. * B is the vector of the Z positions
  4220. * the normal vector to the plane is formed by the coefficients of the
  4221. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4222. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4223. */
  4224. float plane_equation_coefficients[3];
  4225. finish_incremental_LSF(&lsf_results);
  4226. plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  4227. plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
  4228. plane_equation_coefficients[2] = -lsf_results.D;
  4229. mean /= abl2;
  4230. if (verbose_level) {
  4231. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4232. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4233. SERIAL_PROTOCOLPGM(" b: ");
  4234. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4235. SERIAL_PROTOCOLPGM(" d: ");
  4236. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4237. SERIAL_EOL();
  4238. if (verbose_level > 2) {
  4239. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4240. SERIAL_PROTOCOL_F(mean, 8);
  4241. SERIAL_EOL();
  4242. }
  4243. }
  4244. // Create the matrix but don't correct the position yet
  4245. if (!dryrun)
  4246. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4247. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
  4248. );
  4249. // Show the Topography map if enabled
  4250. if (do_topography_map) {
  4251. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4252. " +--- BACK --+\n"
  4253. " | |\n"
  4254. " L | (+) | R\n"
  4255. " E | | I\n"
  4256. " F | (-) N (+) | G\n"
  4257. " T | | H\n"
  4258. " | (-) | T\n"
  4259. " | |\n"
  4260. " O-- FRONT --+\n"
  4261. " (0,0)");
  4262. float min_diff = 999;
  4263. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4264. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4265. int ind = indexIntoAB[xx][yy];
  4266. float diff = eqnBVector[ind] - mean,
  4267. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4268. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4269. z_tmp = 0;
  4270. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4271. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4272. if (diff >= 0.0)
  4273. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4274. else
  4275. SERIAL_PROTOCOLCHAR(' ');
  4276. SERIAL_PROTOCOL_F(diff, 5);
  4277. } // xx
  4278. SERIAL_EOL();
  4279. } // yy
  4280. SERIAL_EOL();
  4281. if (verbose_level > 3) {
  4282. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4283. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4284. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4285. int ind = indexIntoAB[xx][yy];
  4286. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4287. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4288. z_tmp = 0;
  4289. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4290. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4291. if (diff >= 0.0)
  4292. SERIAL_PROTOCOLPGM(" +");
  4293. // Include + for column alignment
  4294. else
  4295. SERIAL_PROTOCOLCHAR(' ');
  4296. SERIAL_PROTOCOL_F(diff, 5);
  4297. } // xx
  4298. SERIAL_EOL();
  4299. } // yy
  4300. SERIAL_EOL();
  4301. }
  4302. } //do_topography_map
  4303. #endif // AUTO_BED_LEVELING_LINEAR
  4304. #if ABL_PLANAR
  4305. // For LINEAR and 3POINT leveling correct the current position
  4306. if (verbose_level > 0)
  4307. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4308. if (!dryrun) {
  4309. //
  4310. // Correct the current XYZ position based on the tilted plane.
  4311. //
  4312. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4313. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4314. #endif
  4315. float converted[XYZ];
  4316. COPY(converted, current_position);
  4317. planner.abl_enabled = true;
  4318. planner.unapply_leveling(converted); // use conversion machinery
  4319. planner.abl_enabled = false;
  4320. // Use the last measured distance to the bed, if possible
  4321. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4322. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4323. ) {
  4324. const float simple_z = current_position[Z_AXIS] - measured_z;
  4325. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4326. if (DEBUGGING(LEVELING)) {
  4327. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4328. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4329. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4330. }
  4331. #endif
  4332. converted[Z_AXIS] = simple_z;
  4333. }
  4334. // The rotated XY and corrected Z are now current_position
  4335. COPY(current_position, converted);
  4336. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4337. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4338. #endif
  4339. }
  4340. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4341. if (!dryrun) {
  4342. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4343. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4344. #endif
  4345. // Unapply the offset because it is going to be immediately applied
  4346. // and cause compensation movement in Z
  4347. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4348. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4349. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4350. #endif
  4351. }
  4352. #endif // ABL_PLANAR
  4353. #ifdef Z_PROBE_END_SCRIPT
  4354. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4355. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4356. #endif
  4357. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4358. stepper.synchronize();
  4359. #endif
  4360. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4361. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4362. #endif
  4363. report_current_position();
  4364. KEEPALIVE_STATE(IN_HANDLER);
  4365. // Auto Bed Leveling is complete! Enable if possible.
  4366. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4367. if (planner.abl_enabled)
  4368. SYNC_PLAN_POSITION_KINEMATIC();
  4369. }
  4370. #endif // HAS_ABL && !AUTO_BED_LEVELING_UBL
  4371. #if HAS_BED_PROBE
  4372. /**
  4373. * G30: Do a single Z probe at the current XY
  4374. *
  4375. * Parameters:
  4376. *
  4377. * X Probe X position (default current X)
  4378. * Y Probe Y position (default current Y)
  4379. * S0 Leave the probe deployed
  4380. */
  4381. inline void gcode_G30() {
  4382. const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
  4383. ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
  4384. if (!position_is_reachable_by_probe_xy(xpos, ypos)) return;
  4385. // Disable leveling so the planner won't mess with us
  4386. #if HAS_LEVELING
  4387. set_bed_leveling_enabled(false);
  4388. #endif
  4389. setup_for_endstop_or_probe_move();
  4390. const float measured_z = probe_pt(xpos, ypos, parser.boolval('S', true), 1);
  4391. if (!isnan(measured_z)) {
  4392. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4393. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4394. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4395. }
  4396. clean_up_after_endstop_or_probe_move();
  4397. report_current_position();
  4398. }
  4399. #if ENABLED(Z_PROBE_SLED)
  4400. /**
  4401. * G31: Deploy the Z probe
  4402. */
  4403. inline void gcode_G31() { DEPLOY_PROBE(); }
  4404. /**
  4405. * G32: Stow the Z probe
  4406. */
  4407. inline void gcode_G32() { STOW_PROBE(); }
  4408. #endif // Z_PROBE_SLED
  4409. #endif // HAS_BED_PROBE
  4410. #if PROBE_SELECTED
  4411. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4412. /**
  4413. * G33 - Delta '1-4-7-point' Auto-Calibration
  4414. * Calibrate height, endstops, delta radius, and tower angles.
  4415. *
  4416. * Parameters:
  4417. *
  4418. * Pn Number of probe points:
  4419. *
  4420. * P1 Probe center and set height only.
  4421. * P2 Probe center and towers. Set height, endstops, and delta radius.
  4422. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4423. * P4-P7 Probe all positions at different locations and average them.
  4424. *
  4425. * T0 Don't calibrate tower angle corrections
  4426. *
  4427. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4428. *
  4429. * Fn Force to run at least n iterations and takes the best result
  4430. *
  4431. * Vn Verbose level:
  4432. *
  4433. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4434. * V1 Report settings
  4435. * V2 Report settings and probe results
  4436. *
  4437. * E Engage the probe for each point
  4438. */
  4439. void print_signed_float(const char * const prefix, const float &f) {
  4440. SERIAL_PROTOCOLPGM(" ");
  4441. serialprintPGM(prefix);
  4442. SERIAL_PROTOCOLCHAR(':');
  4443. if (f >= 0) SERIAL_CHAR('+');
  4444. SERIAL_PROTOCOL_F(f, 2);
  4445. }
  4446. inline void print_G33_settings(const bool end_stops, const bool tower_angles){ // TODO echo these to LCD ???
  4447. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4448. if (end_stops) {
  4449. print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
  4450. print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
  4451. print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
  4452. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4453. }
  4454. SERIAL_EOL();
  4455. if (tower_angles) {
  4456. SERIAL_PROTOCOLPGM(".Tower angle : ");
  4457. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4458. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4459. SERIAL_PROTOCOLLNPGM(" Tz:+0.00");
  4460. }
  4461. }
  4462. inline void gcode_G33() {
  4463. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  4464. if (!WITHIN(probe_points, 1, 7)) {
  4465. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1-7).");
  4466. return;
  4467. }
  4468. const int8_t verbose_level = parser.byteval('V', 1);
  4469. if (!WITHIN(verbose_level, 0, 2)) {
  4470. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
  4471. return;
  4472. }
  4473. const float calibration_precision = parser.floatval('C');
  4474. if (calibration_precision < 0) {
  4475. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
  4476. return;
  4477. }
  4478. const int8_t force_iterations = parser.intval('F', 0);
  4479. if (!WITHIN(force_iterations, 0, 30)) {
  4480. SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
  4481. return;
  4482. }
  4483. const bool towers_set = parser.boolval('T', true),
  4484. stow_after_each = parser.boolval('E'),
  4485. _1p_calibration = probe_points == 1,
  4486. _4p_calibration = probe_points == 2,
  4487. _4p_towers_points = _4p_calibration && towers_set,
  4488. _4p_opposite_points = _4p_calibration && !towers_set,
  4489. _7p_calibration = probe_points >= 3,
  4490. _7p_half_circle = probe_points == 3,
  4491. _7p_double_circle = probe_points == 5,
  4492. _7p_triple_circle = probe_points == 6,
  4493. _7p_quadruple_circle = probe_points == 7,
  4494. _7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
  4495. _7p_intermed_points = _7p_calibration && !_7p_half_circle;
  4496. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4497. const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
  4498. dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
  4499. int8_t iterations = 0;
  4500. float test_precision,
  4501. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4502. zero_std_dev_old = zero_std_dev,
  4503. zero_std_dev_min = zero_std_dev,
  4504. e_old[XYZ] = {
  4505. endstop_adj[A_AXIS],
  4506. endstop_adj[B_AXIS],
  4507. endstop_adj[C_AXIS]
  4508. },
  4509. dr_old = delta_radius,
  4510. zh_old = home_offset[Z_AXIS],
  4511. alpha_old = delta_tower_angle_trim[A_AXIS],
  4512. beta_old = delta_tower_angle_trim[B_AXIS];
  4513. if (!_1p_calibration) { // test if the outer radius is reachable
  4514. const float circles = (_7p_quadruple_circle ? 1.5 :
  4515. _7p_triple_circle ? 1.0 :
  4516. _7p_double_circle ? 0.5 : 0),
  4517. r = (1 + circles * 0.1) * delta_calibration_radius;
  4518. for (uint8_t axis = 1; axis < 13; ++axis) {
  4519. const float a = RADIANS(180 + 30 * axis);
  4520. if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
  4521. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4522. return;
  4523. }
  4524. }
  4525. }
  4526. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4527. stepper.synchronize();
  4528. #if HAS_LEVELING
  4529. reset_bed_level(); // After calibration bed-level data is no longer valid
  4530. #endif
  4531. #if HOTENDS > 1
  4532. const uint8_t old_tool_index = active_extruder;
  4533. tool_change(0, 0, true);
  4534. #endif
  4535. setup_for_endstop_or_probe_move();
  4536. DEPLOY_PROBE();
  4537. endstops.enable(true);
  4538. home_delta();
  4539. endstops.not_homing();
  4540. // print settings
  4541. const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
  4542. serialprintPGM(checkingac);
  4543. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4544. SERIAL_EOL();
  4545. lcd_setstatusPGM(checkingac);
  4546. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4547. #if DISABLED(PROBE_MANUALLY)
  4548. home_offset[Z_AXIS] -= probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
  4549. #endif
  4550. do {
  4551. float z_at_pt[13] = { 0.0 };
  4552. test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
  4553. iterations++;
  4554. // Probe the points
  4555. if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
  4556. #if ENABLED(PROBE_MANUALLY)
  4557. z_at_pt[0] += lcd_probe_pt(0, 0);
  4558. #else
  4559. z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
  4560. #endif
  4561. }
  4562. if (_7p_calibration) { // probe extra center points
  4563. for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
  4564. const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
  4565. #if ENABLED(PROBE_MANUALLY)
  4566. z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
  4567. #else
  4568. z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false);
  4569. #endif
  4570. }
  4571. z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
  4572. }
  4573. if (!_1p_calibration) { // probe the radius
  4574. bool zig_zag = true;
  4575. const uint8_t start = _4p_opposite_points ? 3 : 1,
  4576. step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
  4577. for (uint8_t axis = start; axis < 13; axis += step) {
  4578. const float zigadd = (zig_zag ? 0.5 : 0.0),
  4579. offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
  4580. _7p_triple_circle ? zigadd + 0.5 :
  4581. _7p_double_circle ? zigadd : 0;
  4582. for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
  4583. const float a = RADIANS(180 + 30 * axis),
  4584. r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
  4585. #if ENABLED(PROBE_MANUALLY)
  4586. z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
  4587. #else
  4588. z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false);
  4589. #endif
  4590. }
  4591. zig_zag = !zig_zag;
  4592. z_at_pt[axis] /= (2 * offset_circles + 1);
  4593. }
  4594. }
  4595. if (_7p_intermed_points) // average intermediates to tower and opposites
  4596. for (uint8_t axis = 1; axis < 13; axis += 2)
  4597. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4598. float S1 = z_at_pt[0],
  4599. S2 = sq(z_at_pt[0]);
  4600. int16_t N = 1;
  4601. if (!_1p_calibration) // std dev from zero plane
  4602. for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
  4603. S1 += z_at_pt[axis];
  4604. S2 += sq(z_at_pt[axis]);
  4605. N++;
  4606. }
  4607. zero_std_dev_old = zero_std_dev;
  4608. zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4609. // Solve matrices
  4610. if ((zero_std_dev < test_precision && zero_std_dev > calibration_precision) || iterations <= force_iterations) {
  4611. if (zero_std_dev < zero_std_dev_min) {
  4612. COPY(e_old, endstop_adj);
  4613. dr_old = delta_radius;
  4614. zh_old = home_offset[Z_AXIS];
  4615. alpha_old = delta_tower_angle_trim[A_AXIS];
  4616. beta_old = delta_tower_angle_trim[B_AXIS];
  4617. }
  4618. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0;
  4619. const float r_diff = delta_radius - delta_calibration_radius,
  4620. h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
  4621. r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
  4622. a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
  4623. #define ZP(N,I) ((N) * z_at_pt[I])
  4624. #define Z1000(I) ZP(1.00, I)
  4625. #define Z1050(I) ZP(h_factor, I)
  4626. #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
  4627. #define Z0350(I) ZP(h_factor / 3.00, I)
  4628. #define Z0175(I) ZP(h_factor / 6.00, I)
  4629. #define Z2250(I) ZP(r_factor, I)
  4630. #define Z0750(I) ZP(r_factor / 3.00, I)
  4631. #define Z0375(I) ZP(r_factor / 6.00, I)
  4632. #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
  4633. #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
  4634. #if ENABLED(PROBE_MANUALLY)
  4635. test_precision = 0.00; // forced end
  4636. #endif
  4637. switch (probe_points) {
  4638. case 1:
  4639. test_precision = 0.00; // forced end
  4640. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4641. break;
  4642. case 2:
  4643. if (towers_set) {
  4644. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4645. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4646. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4647. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4648. }
  4649. else {
  4650. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4651. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4652. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4653. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4654. }
  4655. break;
  4656. default:
  4657. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4658. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4659. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4660. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4661. if (towers_set) {
  4662. t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
  4663. t_beta = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3);
  4664. }
  4665. break;
  4666. }
  4667. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4668. delta_radius += r_delta;
  4669. delta_tower_angle_trim[A_AXIS] += t_alpha;
  4670. delta_tower_angle_trim[B_AXIS] += t_beta;
  4671. // adjust delta_height and endstops by the max amount
  4672. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  4673. home_offset[Z_AXIS] -= z_temp;
  4674. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4675. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4676. }
  4677. else if (zero_std_dev >= test_precision) { // step one back
  4678. COPY(endstop_adj, e_old);
  4679. delta_radius = dr_old;
  4680. home_offset[Z_AXIS] = zh_old;
  4681. delta_tower_angle_trim[A_AXIS] = alpha_old;
  4682. delta_tower_angle_trim[B_AXIS] = beta_old;
  4683. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4684. }
  4685. NOMORE(zero_std_dev_min, zero_std_dev);
  4686. // print report
  4687. if (verbose_level != 1) {
  4688. SERIAL_PROTOCOLPGM(". ");
  4689. print_signed_float(PSTR("c"), z_at_pt[0]);
  4690. if (_4p_towers_points || _7p_calibration) {
  4691. print_signed_float(PSTR(" x"), z_at_pt[1]);
  4692. print_signed_float(PSTR(" y"), z_at_pt[5]);
  4693. print_signed_float(PSTR(" z"), z_at_pt[9]);
  4694. }
  4695. if (!_4p_opposite_points) SERIAL_EOL();
  4696. if ((_4p_opposite_points) || _7p_calibration) {
  4697. if (_7p_calibration) {
  4698. SERIAL_CHAR('.');
  4699. SERIAL_PROTOCOL_SP(13);
  4700. }
  4701. print_signed_float(PSTR(" yz"), z_at_pt[7]);
  4702. print_signed_float(PSTR("zx"), z_at_pt[11]);
  4703. print_signed_float(PSTR("xy"), z_at_pt[3]);
  4704. SERIAL_EOL();
  4705. }
  4706. }
  4707. if (verbose_level != 0) { // !dry run
  4708. if ((zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) && iterations > force_iterations) { // end iterations
  4709. SERIAL_PROTOCOLPGM("Calibration OK");
  4710. SERIAL_PROTOCOL_SP(36);
  4711. #if DISABLED(PROBE_MANUALLY)
  4712. if (zero_std_dev >= test_precision && !_1p_calibration)
  4713. SERIAL_PROTOCOLPGM("rolling back.");
  4714. else
  4715. #endif
  4716. {
  4717. SERIAL_PROTOCOLPGM("std dev:");
  4718. SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
  4719. }
  4720. SERIAL_EOL();
  4721. char mess[21];
  4722. sprintf_P(mess, PSTR("Calibration sd:"));
  4723. if (zero_std_dev_min < 1)
  4724. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
  4725. else
  4726. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
  4727. lcd_setstatus(mess);
  4728. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4729. serialprintPGM(save_message);
  4730. SERIAL_EOL();
  4731. }
  4732. else { // !end iterations
  4733. char mess[15];
  4734. if (iterations < 31)
  4735. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4736. else
  4737. sprintf_P(mess, PSTR("No convergence"));
  4738. SERIAL_PROTOCOL(mess);
  4739. SERIAL_PROTOCOL_SP(36);
  4740. SERIAL_PROTOCOLPGM("std dev:");
  4741. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4742. SERIAL_EOL();
  4743. lcd_setstatus(mess);
  4744. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4745. }
  4746. }
  4747. else { // dry run
  4748. const char *enddryrun = PSTR("End DRY-RUN");
  4749. serialprintPGM(enddryrun);
  4750. SERIAL_PROTOCOL_SP(39);
  4751. SERIAL_PROTOCOLPGM("std dev:");
  4752. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4753. SERIAL_EOL();
  4754. char mess[21];
  4755. sprintf_P(mess, enddryrun);
  4756. sprintf_P(&mess[11], PSTR(" sd:"));
  4757. if (zero_std_dev < 1)
  4758. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
  4759. else
  4760. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
  4761. lcd_setstatus(mess);
  4762. }
  4763. endstops.enable(true);
  4764. home_delta();
  4765. endstops.not_homing();
  4766. }
  4767. while ((zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31) || iterations <= force_iterations);
  4768. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4769. do_blocking_move_to_z(delta_clip_start_height);
  4770. #endif
  4771. STOW_PROBE();
  4772. clean_up_after_endstop_or_probe_move();
  4773. #if HOTENDS > 1
  4774. tool_change(old_tool_index, 0, true);
  4775. #endif
  4776. }
  4777. #endif // DELTA_AUTO_CALIBRATION
  4778. #endif // PROBE_SELECTED
  4779. #if ENABLED(G38_PROBE_TARGET)
  4780. static bool G38_run_probe() {
  4781. bool G38_pass_fail = false;
  4782. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4783. // Get direction of move and retract
  4784. float retract_mm[XYZ];
  4785. LOOP_XYZ(i) {
  4786. float dist = destination[i] - current_position[i];
  4787. retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4788. }
  4789. #endif
  4790. stepper.synchronize(); // wait until the machine is idle
  4791. // Move until destination reached or target hit
  4792. endstops.enable(true);
  4793. G38_move = true;
  4794. G38_endstop_hit = false;
  4795. prepare_move_to_destination();
  4796. stepper.synchronize();
  4797. G38_move = false;
  4798. endstops.hit_on_purpose();
  4799. set_current_from_steppers_for_axis(ALL_AXES);
  4800. SYNC_PLAN_POSITION_KINEMATIC();
  4801. if (G38_endstop_hit) {
  4802. G38_pass_fail = true;
  4803. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4804. // Move away by the retract distance
  4805. set_destination_to_current();
  4806. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4807. endstops.enable(false);
  4808. prepare_move_to_destination();
  4809. stepper.synchronize();
  4810. feedrate_mm_s /= 4;
  4811. // Bump the target more slowly
  4812. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4813. endstops.enable(true);
  4814. G38_move = true;
  4815. prepare_move_to_destination();
  4816. stepper.synchronize();
  4817. G38_move = false;
  4818. set_current_from_steppers_for_axis(ALL_AXES);
  4819. SYNC_PLAN_POSITION_KINEMATIC();
  4820. #endif
  4821. }
  4822. endstops.hit_on_purpose();
  4823. endstops.not_homing();
  4824. return G38_pass_fail;
  4825. }
  4826. /**
  4827. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4828. * G38.3 - probe toward workpiece, stop on contact
  4829. *
  4830. * Like G28 except uses Z min probe for all axes
  4831. */
  4832. inline void gcode_G38(bool is_38_2) {
  4833. // Get X Y Z E F
  4834. gcode_get_destination();
  4835. setup_for_endstop_or_probe_move();
  4836. // If any axis has enough movement, do the move
  4837. LOOP_XYZ(i)
  4838. if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4839. if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
  4840. // If G38.2 fails throw an error
  4841. if (!G38_run_probe() && is_38_2) {
  4842. SERIAL_ERROR_START();
  4843. SERIAL_ERRORLNPGM("Failed to reach target");
  4844. }
  4845. break;
  4846. }
  4847. clean_up_after_endstop_or_probe_move();
  4848. }
  4849. #endif // G38_PROBE_TARGET
  4850. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
  4851. /**
  4852. * G42: Move X & Y axes to mesh coordinates (I & J)
  4853. */
  4854. inline void gcode_G42() {
  4855. if (IsRunning()) {
  4856. const bool hasI = parser.seenval('I');
  4857. const int8_t ix = hasI ? parser.value_int() : 0;
  4858. const bool hasJ = parser.seenval('J');
  4859. const int8_t iy = hasJ ? parser.value_int() : 0;
  4860. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  4861. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  4862. return;
  4863. }
  4864. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4865. #define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
  4866. #define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
  4867. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  4868. #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
  4869. #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
  4870. #elif ENABLED(MESH_BED_LEVELING)
  4871. #define _GET_MESH_X(I) mbl.index_to_xpos[I]
  4872. #define _GET_MESH_Y(J) mbl.index_to_ypos[J]
  4873. #endif
  4874. set_destination_to_current();
  4875. if (hasI) destination[X_AXIS] = LOGICAL_X_POSITION(_GET_MESH_X(ix));
  4876. if (hasJ) destination[Y_AXIS] = LOGICAL_Y_POSITION(_GET_MESH_Y(iy));
  4877. if (parser.boolval('P')) {
  4878. if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  4879. if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  4880. }
  4881. const float fval = parser.linearval('F');
  4882. if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
  4883. // SCARA kinematic has "safe" XY raw moves
  4884. #if IS_SCARA
  4885. prepare_uninterpolated_move_to_destination();
  4886. #else
  4887. prepare_move_to_destination();
  4888. #endif
  4889. }
  4890. }
  4891. #endif // AUTO_BED_LEVELING_UBL
  4892. /**
  4893. * G92: Set current position to given X Y Z E
  4894. */
  4895. inline void gcode_G92() {
  4896. bool didXYZ = false,
  4897. didE = parser.seenval('E');
  4898. if (!didE) stepper.synchronize();
  4899. LOOP_XYZE(i) {
  4900. if (parser.seenval(axis_codes[i])) {
  4901. #if IS_SCARA
  4902. current_position[i] = parser.value_axis_units((AxisEnum)i);
  4903. if (i != E_AXIS) didXYZ = true;
  4904. #else
  4905. #if HAS_POSITION_SHIFT
  4906. const float p = current_position[i];
  4907. #endif
  4908. const float v = parser.value_axis_units((AxisEnum)i);
  4909. current_position[i] = v;
  4910. if (i != E_AXIS) {
  4911. didXYZ = true;
  4912. #if HAS_POSITION_SHIFT
  4913. position_shift[i] += v - p; // Offset the coordinate space
  4914. update_software_endstops((AxisEnum)i);
  4915. #if ENABLED(I2C_POSITION_ENCODERS)
  4916. I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum)i)].set_axis_offset(position_shift[i]);
  4917. #endif
  4918. #endif
  4919. }
  4920. #endif
  4921. }
  4922. }
  4923. if (didXYZ)
  4924. SYNC_PLAN_POSITION_KINEMATIC();
  4925. else if (didE)
  4926. sync_plan_position_e();
  4927. report_current_position();
  4928. }
  4929. #if HAS_RESUME_CONTINUE
  4930. /**
  4931. * M0: Unconditional stop - Wait for user button press on LCD
  4932. * M1: Conditional stop - Wait for user button press on LCD
  4933. */
  4934. inline void gcode_M0_M1() {
  4935. const char * const args = parser.string_arg;
  4936. millis_t ms = 0;
  4937. bool hasP = false, hasS = false;
  4938. if (parser.seenval('P')) {
  4939. ms = parser.value_millis(); // milliseconds to wait
  4940. hasP = ms > 0;
  4941. }
  4942. if (parser.seenval('S')) {
  4943. ms = parser.value_millis_from_seconds(); // seconds to wait
  4944. hasS = ms > 0;
  4945. }
  4946. #if ENABLED(ULTIPANEL)
  4947. if (!hasP && !hasS && args && *args)
  4948. lcd_setstatus(args, true);
  4949. else {
  4950. LCD_MESSAGEPGM(MSG_USERWAIT);
  4951. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4952. dontExpireStatus();
  4953. #endif
  4954. }
  4955. #else
  4956. if (!hasP && !hasS && args && *args) {
  4957. SERIAL_ECHO_START();
  4958. SERIAL_ECHOLN(args);
  4959. }
  4960. #endif
  4961. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4962. wait_for_user = true;
  4963. stepper.synchronize();
  4964. refresh_cmd_timeout();
  4965. if (ms > 0) {
  4966. ms += previous_cmd_ms; // wait until this time for a click
  4967. while (PENDING(millis(), ms) && wait_for_user) idle();
  4968. }
  4969. else {
  4970. #if ENABLED(ULTIPANEL)
  4971. if (lcd_detected()) {
  4972. while (wait_for_user) idle();
  4973. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4974. }
  4975. #else
  4976. while (wait_for_user) idle();
  4977. #endif
  4978. }
  4979. wait_for_user = false;
  4980. KEEPALIVE_STATE(IN_HANDLER);
  4981. }
  4982. #endif // HAS_RESUME_CONTINUE
  4983. #if ENABLED(SPINDLE_LASER_ENABLE)
  4984. /**
  4985. * M3: Spindle Clockwise
  4986. * M4: Spindle Counter-clockwise
  4987. *
  4988. * S0 turns off spindle.
  4989. *
  4990. * If no speed PWM output is defined then M3/M4 just turns it on.
  4991. *
  4992. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  4993. * Hardware PWM is required. ISRs are too slow.
  4994. *
  4995. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  4996. * No other settings give a PWM signal that goes from 0 to 5 volts.
  4997. *
  4998. * The system automatically sets WGM to Mode 1, so no special
  4999. * initialization is needed.
  5000. *
  5001. * WGM bits for timer 2 are automatically set by the system to
  5002. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  5003. * No special initialization is needed.
  5004. *
  5005. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  5006. * factors for timers 2, 3, 4, and 5 are acceptable.
  5007. *
  5008. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  5009. * the spindle/laser during power-up or when connecting to the host
  5010. * (usually goes through a reset which sets all I/O pins to tri-state)
  5011. *
  5012. * PWM duty cycle goes from 0 (off) to 255 (always on).
  5013. */
  5014. // Wait for spindle to come up to speed
  5015. inline void delay_for_power_up() {
  5016. refresh_cmd_timeout();
  5017. while (PENDING(millis(), SPINDLE_LASER_POWERUP_DELAY + previous_cmd_ms)) idle();
  5018. }
  5019. // Wait for spindle to stop turning
  5020. inline void delay_for_power_down() {
  5021. refresh_cmd_timeout();
  5022. while (PENDING(millis(), SPINDLE_LASER_POWERDOWN_DELAY + previous_cmd_ms + 1)) idle();
  5023. }
  5024. /**
  5025. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  5026. *
  5027. * it accepts inputs of 0-255
  5028. */
  5029. inline void ocr_val_mode() {
  5030. uint8_t spindle_laser_power = parser.value_byte();
  5031. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5032. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  5033. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  5034. }
  5035. inline void gcode_M3_M4(bool is_M3) {
  5036. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  5037. #if SPINDLE_DIR_CHANGE
  5038. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  5039. if (SPINDLE_STOP_ON_DIR_CHANGE \
  5040. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  5041. && READ(SPINDLE_DIR_PIN) != rotation_dir
  5042. ) {
  5043. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  5044. delay_for_power_down();
  5045. }
  5046. WRITE(SPINDLE_DIR_PIN, rotation_dir);
  5047. #endif
  5048. /**
  5049. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  5050. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  5051. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  5052. */
  5053. #if ENABLED(SPINDLE_LASER_PWM)
  5054. if (parser.seen('O')) ocr_val_mode();
  5055. else {
  5056. const float spindle_laser_power = parser.floatval('S');
  5057. if (spindle_laser_power == 0) {
  5058. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  5059. delay_for_power_down();
  5060. }
  5061. else {
  5062. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  5063. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  5064. if (spindle_laser_power <= SPEED_POWER_MIN)
  5065. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  5066. if (spindle_laser_power >= SPEED_POWER_MAX)
  5067. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  5068. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  5069. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5070. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  5071. delay_for_power_up();
  5072. }
  5073. }
  5074. #else
  5075. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  5076. delay_for_power_up();
  5077. #endif
  5078. }
  5079. /**
  5080. * M5 turn off spindle
  5081. */
  5082. inline void gcode_M5() {
  5083. stepper.synchronize();
  5084. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  5085. delay_for_power_down();
  5086. }
  5087. #endif // SPINDLE_LASER_ENABLE
  5088. /**
  5089. * M17: Enable power on all stepper motors
  5090. */
  5091. inline void gcode_M17() {
  5092. LCD_MESSAGEPGM(MSG_NO_MOVE);
  5093. enable_all_steppers();
  5094. }
  5095. #if IS_KINEMATIC
  5096. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  5097. #else
  5098. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  5099. #endif
  5100. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  5101. static float resume_position[XYZE];
  5102. static bool move_away_flag = false;
  5103. #if ENABLED(SDSUPPORT)
  5104. static bool sd_print_paused = false;
  5105. #endif
  5106. static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
  5107. static millis_t next_buzz = 0;
  5108. static int8_t runout_beep = 0;
  5109. if (init) next_buzz = runout_beep = 0;
  5110. const millis_t ms = millis();
  5111. if (ELAPSED(ms, next_buzz)) {
  5112. if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
  5113. next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
  5114. BUZZ(300, 2000);
  5115. runout_beep++;
  5116. }
  5117. }
  5118. }
  5119. static void ensure_safe_temperature() {
  5120. bool heaters_heating = true;
  5121. wait_for_heatup = true; // M108 will clear this
  5122. while (wait_for_heatup && heaters_heating) {
  5123. idle();
  5124. heaters_heating = false;
  5125. HOTEND_LOOP() {
  5126. if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
  5127. heaters_heating = true;
  5128. #if ENABLED(ULTIPANEL)
  5129. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  5130. #endif
  5131. break;
  5132. }
  5133. }
  5134. }
  5135. }
  5136. static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
  5137. const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
  5138. ) {
  5139. if (move_away_flag) return false; // already paused
  5140. if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
  5141. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5142. if (!thermalManager.allow_cold_extrude &&
  5143. thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
  5144. SERIAL_ERROR_START();
  5145. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5146. return false;
  5147. }
  5148. #endif
  5149. ensure_safe_temperature(); // wait for extruder to heat up before unloading
  5150. }
  5151. // Indicate that the printer is paused
  5152. move_away_flag = true;
  5153. // Pause the print job and timer
  5154. #if ENABLED(SDSUPPORT)
  5155. if (card.sdprinting) {
  5156. card.pauseSDPrint();
  5157. sd_print_paused = true;
  5158. }
  5159. #endif
  5160. print_job_timer.pause();
  5161. // Show initial message and wait for synchronize steppers
  5162. if (show_lcd) {
  5163. #if ENABLED(ULTIPANEL)
  5164. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
  5165. #endif
  5166. }
  5167. stepper.synchronize();
  5168. // Save current position
  5169. COPY(resume_position, current_position);
  5170. set_destination_to_current();
  5171. if (retract) {
  5172. // Initial retract before move to filament change position
  5173. destination[E_AXIS] += retract;
  5174. RUNPLAN(PAUSE_PARK_RETRACT_FEEDRATE);
  5175. }
  5176. // Lift Z axis
  5177. if (z_lift > 0) {
  5178. destination[Z_AXIS] += z_lift;
  5179. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5180. RUNPLAN(PAUSE_PARK_Z_FEEDRATE);
  5181. }
  5182. // Move XY axes to filament exchange position
  5183. destination[X_AXIS] = x_pos;
  5184. destination[Y_AXIS] = y_pos;
  5185. clamp_to_software_endstops(destination);
  5186. RUNPLAN(PAUSE_PARK_XY_FEEDRATE);
  5187. stepper.synchronize();
  5188. if (unload_length != 0) {
  5189. if (show_lcd) {
  5190. #if ENABLED(ULTIPANEL)
  5191. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
  5192. idle();
  5193. #endif
  5194. }
  5195. // Unload filament
  5196. destination[E_AXIS] += unload_length;
  5197. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5198. stepper.synchronize();
  5199. }
  5200. if (show_lcd) {
  5201. #if ENABLED(ULTIPANEL)
  5202. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5203. #endif
  5204. }
  5205. #if HAS_BUZZER
  5206. filament_change_beep(max_beep_count, true);
  5207. #endif
  5208. idle();
  5209. // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
  5210. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
  5211. disable_e_steppers();
  5212. safe_delay(100);
  5213. #endif
  5214. // Start the heater idle timers
  5215. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5216. HOTEND_LOOP()
  5217. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5218. return true;
  5219. }
  5220. static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
  5221. bool nozzle_timed_out = false;
  5222. // Wait for filament insert by user and press button
  5223. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5224. wait_for_user = true; // LCD click or M108 will clear this
  5225. while (wait_for_user) {
  5226. #if HAS_BUZZER
  5227. filament_change_beep(max_beep_count);
  5228. #endif
  5229. // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
  5230. // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
  5231. if (!nozzle_timed_out)
  5232. HOTEND_LOOP()
  5233. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5234. if (nozzle_timed_out) {
  5235. #if ENABLED(ULTIPANEL)
  5236. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  5237. #endif
  5238. // Wait for LCD click or M108
  5239. while (wait_for_user) idle(true);
  5240. // Re-enable the heaters if they timed out
  5241. HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
  5242. // Wait for the heaters to reach the target temperatures
  5243. ensure_safe_temperature();
  5244. #if ENABLED(ULTIPANEL)
  5245. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5246. #endif
  5247. // Start the heater idle timers
  5248. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5249. HOTEND_LOOP()
  5250. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5251. wait_for_user = true; /* Wait for user to load filament */
  5252. nozzle_timed_out = false;
  5253. #if HAS_BUZZER
  5254. filament_change_beep(max_beep_count, true);
  5255. #endif
  5256. }
  5257. idle(true);
  5258. }
  5259. KEEPALIVE_STATE(IN_HANDLER);
  5260. }
  5261. static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
  5262. bool nozzle_timed_out = false;
  5263. if (!move_away_flag) return;
  5264. // Re-enable the heaters if they timed out
  5265. HOTEND_LOOP() {
  5266. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5267. thermalManager.reset_heater_idle_timer(e);
  5268. }
  5269. if (nozzle_timed_out) ensure_safe_temperature();
  5270. #if HAS_BUZZER
  5271. filament_change_beep(max_beep_count, true);
  5272. #endif
  5273. if (load_length != 0) {
  5274. #if ENABLED(ULTIPANEL)
  5275. // Show "insert filament"
  5276. if (nozzle_timed_out)
  5277. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5278. #endif
  5279. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5280. wait_for_user = true; // LCD click or M108 will clear this
  5281. while (wait_for_user && nozzle_timed_out) {
  5282. #if HAS_BUZZER
  5283. filament_change_beep(max_beep_count);
  5284. #endif
  5285. idle(true);
  5286. }
  5287. KEEPALIVE_STATE(IN_HANDLER);
  5288. #if ENABLED(ULTIPANEL)
  5289. // Show "load" message
  5290. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
  5291. #endif
  5292. // Load filament
  5293. destination[E_AXIS] += load_length;
  5294. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5295. stepper.synchronize();
  5296. }
  5297. #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
  5298. float extrude_length = initial_extrude_length;
  5299. do {
  5300. if (extrude_length > 0) {
  5301. // "Wait for filament extrude"
  5302. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
  5303. // Extrude filament to get into hotend
  5304. destination[E_AXIS] += extrude_length;
  5305. RUNPLAN(ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
  5306. stepper.synchronize();
  5307. }
  5308. // Show "Extrude More" / "Resume" menu and wait for reply
  5309. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5310. wait_for_user = false;
  5311. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
  5312. while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
  5313. KEEPALIVE_STATE(IN_HANDLER);
  5314. extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
  5315. // Keep looping if "Extrude More" was selected
  5316. } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
  5317. #endif
  5318. #if ENABLED(ULTIPANEL)
  5319. // "Wait for print to resume"
  5320. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
  5321. #endif
  5322. // Set extruder to saved position
  5323. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  5324. planner.set_e_position_mm(current_position[E_AXIS]);
  5325. #if IS_KINEMATIC
  5326. // Move XYZ to starting position
  5327. planner.buffer_line_kinematic(resume_position, PAUSE_PARK_XY_FEEDRATE, active_extruder);
  5328. #else
  5329. // Move XY to starting position, then Z
  5330. destination[X_AXIS] = resume_position[X_AXIS];
  5331. destination[Y_AXIS] = resume_position[Y_AXIS];
  5332. RUNPLAN(PAUSE_PARK_XY_FEEDRATE);
  5333. destination[Z_AXIS] = resume_position[Z_AXIS];
  5334. RUNPLAN(PAUSE_PARK_Z_FEEDRATE);
  5335. #endif
  5336. stepper.synchronize();
  5337. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5338. filament_ran_out = false;
  5339. #endif
  5340. #if ENABLED(ULTIPANEL)
  5341. // Show status screen
  5342. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
  5343. #endif
  5344. #if ENABLED(SDSUPPORT)
  5345. if (sd_print_paused) {
  5346. card.startFileprint();
  5347. sd_print_paused = false;
  5348. }
  5349. #endif
  5350. move_away_flag = false;
  5351. }
  5352. #endif // ADVANCED_PAUSE_FEATURE
  5353. #if ENABLED(SDSUPPORT)
  5354. /**
  5355. * M20: List SD card to serial output
  5356. */
  5357. inline void gcode_M20() {
  5358. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  5359. card.ls();
  5360. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  5361. }
  5362. /**
  5363. * M21: Init SD Card
  5364. */
  5365. inline void gcode_M21() { card.initsd(); }
  5366. /**
  5367. * M22: Release SD Card
  5368. */
  5369. inline void gcode_M22() { card.release(); }
  5370. /**
  5371. * M23: Open a file
  5372. */
  5373. inline void gcode_M23() {
  5374. // Simplify3D includes the size, so zero out all spaces (#7227)
  5375. for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
  5376. card.openFile(parser.string_arg, true);
  5377. }
  5378. /**
  5379. * M24: Start or Resume SD Print
  5380. */
  5381. inline void gcode_M24() {
  5382. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5383. resume_print();
  5384. #endif
  5385. card.startFileprint();
  5386. print_job_timer.start();
  5387. }
  5388. /**
  5389. * M25: Pause SD Print
  5390. */
  5391. inline void gcode_M25() {
  5392. card.pauseSDPrint();
  5393. print_job_timer.pause();
  5394. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5395. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  5396. #endif
  5397. }
  5398. /**
  5399. * M26: Set SD Card file index
  5400. */
  5401. inline void gcode_M26() {
  5402. if (card.cardOK && parser.seenval('S'))
  5403. card.setIndex(parser.value_long());
  5404. }
  5405. /**
  5406. * M27: Get SD Card status
  5407. */
  5408. inline void gcode_M27() { card.getStatus(); }
  5409. /**
  5410. * M28: Start SD Write
  5411. */
  5412. inline void gcode_M28() { card.openFile(parser.string_arg, false); }
  5413. /**
  5414. * M29: Stop SD Write
  5415. * Processed in write to file routine above
  5416. */
  5417. inline void gcode_M29() {
  5418. // card.saving = false;
  5419. }
  5420. /**
  5421. * M30 <filename>: Delete SD Card file
  5422. */
  5423. inline void gcode_M30() {
  5424. if (card.cardOK) {
  5425. card.closefile();
  5426. card.removeFile(parser.string_arg);
  5427. }
  5428. }
  5429. #endif // SDSUPPORT
  5430. /**
  5431. * M31: Get the time since the start of SD Print (or last M109)
  5432. */
  5433. inline void gcode_M31() {
  5434. char buffer[21];
  5435. duration_t elapsed = print_job_timer.duration();
  5436. elapsed.toString(buffer);
  5437. lcd_setstatus(buffer);
  5438. SERIAL_ECHO_START();
  5439. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5440. }
  5441. #if ENABLED(SDSUPPORT)
  5442. /**
  5443. * M32: Select file and start SD Print
  5444. */
  5445. inline void gcode_M32() {
  5446. if (card.sdprinting)
  5447. stepper.synchronize();
  5448. char* namestartpos = parser.string_arg;
  5449. const bool call_procedure = parser.boolval('P');
  5450. if (card.cardOK) {
  5451. card.openFile(namestartpos, true, call_procedure);
  5452. if (parser.seenval('S'))
  5453. card.setIndex(parser.value_long());
  5454. card.startFileprint();
  5455. // Procedure calls count as normal print time.
  5456. if (!call_procedure) print_job_timer.start();
  5457. }
  5458. }
  5459. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5460. /**
  5461. * M33: Get the long full path of a file or folder
  5462. *
  5463. * Parameters:
  5464. * <dospath> Case-insensitive DOS-style path to a file or folder
  5465. *
  5466. * Example:
  5467. * M33 miscel~1/armchair/armcha~1.gco
  5468. *
  5469. * Output:
  5470. * /Miscellaneous/Armchair/Armchair.gcode
  5471. */
  5472. inline void gcode_M33() {
  5473. card.printLongPath(parser.string_arg);
  5474. }
  5475. #endif
  5476. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5477. /**
  5478. * M34: Set SD Card Sorting Options
  5479. */
  5480. inline void gcode_M34() {
  5481. if (parser.seen('S')) card.setSortOn(parser.value_bool());
  5482. if (parser.seenval('F')) {
  5483. const int v = parser.value_long();
  5484. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5485. }
  5486. //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
  5487. }
  5488. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5489. /**
  5490. * M928: Start SD Write
  5491. */
  5492. inline void gcode_M928() {
  5493. card.openLogFile(parser.string_arg);
  5494. }
  5495. #endif // SDSUPPORT
  5496. /**
  5497. * Sensitive pin test for M42, M226
  5498. */
  5499. static bool pin_is_protected(const int8_t pin) {
  5500. static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
  5501. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5502. if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
  5503. return false;
  5504. }
  5505. /**
  5506. * M42: Change pin status via GCode
  5507. *
  5508. * P<pin> Pin number (LED if omitted)
  5509. * S<byte> Pin status from 0 - 255
  5510. */
  5511. inline void gcode_M42() {
  5512. if (!parser.seenval('S')) return;
  5513. const byte pin_status = parser.value_byte();
  5514. const int pin_number = parser.intval('P', LED_PIN);
  5515. if (pin_number < 0) return;
  5516. if (pin_is_protected(pin_number)) {
  5517. SERIAL_ERROR_START();
  5518. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5519. return;
  5520. }
  5521. pinMode(pin_number, OUTPUT);
  5522. digitalWrite(pin_number, pin_status);
  5523. analogWrite(pin_number, pin_status);
  5524. #if FAN_COUNT > 0
  5525. switch (pin_number) {
  5526. #if HAS_FAN0
  5527. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5528. #endif
  5529. #if HAS_FAN1
  5530. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5531. #endif
  5532. #if HAS_FAN2
  5533. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5534. #endif
  5535. }
  5536. #endif
  5537. }
  5538. #if ENABLED(PINS_DEBUGGING)
  5539. #include "pinsDebug.h"
  5540. inline void toggle_pins() {
  5541. const bool I_flag = parser.boolval('I');
  5542. const int repeat = parser.intval('R', 1),
  5543. start = parser.intval('S'),
  5544. end = parser.intval('E', NUM_DIGITAL_PINS - 1),
  5545. wait = parser.intval('W', 500);
  5546. for (uint8_t pin = start; pin <= end; pin++) {
  5547. //report_pin_state_extended(pin, I_flag, false);
  5548. if (!I_flag && pin_is_protected(pin)) {
  5549. report_pin_state_extended(pin, I_flag, true, "Untouched ");
  5550. SERIAL_EOL();
  5551. }
  5552. else {
  5553. report_pin_state_extended(pin, I_flag, true, "Pulsing ");
  5554. #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
  5555. if (pin == TEENSY_E2) {
  5556. SET_OUTPUT(TEENSY_E2);
  5557. for (int16_t j = 0; j < repeat; j++) {
  5558. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5559. WRITE(TEENSY_E2, HIGH); safe_delay(wait);
  5560. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5561. }
  5562. }
  5563. else if (pin == TEENSY_E3) {
  5564. SET_OUTPUT(TEENSY_E3);
  5565. for (int16_t j = 0; j < repeat; j++) {
  5566. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5567. WRITE(TEENSY_E3, HIGH); safe_delay(wait);
  5568. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5569. }
  5570. }
  5571. else
  5572. #endif
  5573. {
  5574. pinMode(pin, OUTPUT);
  5575. for (int16_t j = 0; j < repeat; j++) {
  5576. digitalWrite(pin, 0); safe_delay(wait);
  5577. digitalWrite(pin, 1); safe_delay(wait);
  5578. digitalWrite(pin, 0); safe_delay(wait);
  5579. }
  5580. }
  5581. }
  5582. SERIAL_EOL();
  5583. }
  5584. SERIAL_ECHOLNPGM("Done.");
  5585. } // toggle_pins
  5586. inline void servo_probe_test() {
  5587. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5588. SERIAL_ERROR_START();
  5589. SERIAL_ERRORLNPGM("SERVO not setup");
  5590. #elif !HAS_Z_SERVO_ENDSTOP
  5591. SERIAL_ERROR_START();
  5592. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5593. #else
  5594. const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
  5595. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5596. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5597. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5598. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5599. bool probe_inverting;
  5600. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5601. #define PROBE_TEST_PIN Z_MIN_PIN
  5602. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5603. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5604. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5605. #if Z_MIN_ENDSTOP_INVERTING
  5606. SERIAL_PROTOCOLLNPGM("true");
  5607. #else
  5608. SERIAL_PROTOCOLLNPGM("false");
  5609. #endif
  5610. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5611. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5612. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5613. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5614. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5615. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5616. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5617. SERIAL_PROTOCOLLNPGM("true");
  5618. #else
  5619. SERIAL_PROTOCOLLNPGM("false");
  5620. #endif
  5621. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5622. #endif
  5623. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5624. SET_INPUT_PULLUP(PROBE_TEST_PIN);
  5625. bool deploy_state, stow_state;
  5626. for (uint8_t i = 0; i < 4; i++) {
  5627. servo[probe_index].move(z_servo_angle[0]); //deploy
  5628. safe_delay(500);
  5629. deploy_state = READ(PROBE_TEST_PIN);
  5630. servo[probe_index].move(z_servo_angle[1]); //stow
  5631. safe_delay(500);
  5632. stow_state = READ(PROBE_TEST_PIN);
  5633. }
  5634. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5635. refresh_cmd_timeout();
  5636. if (deploy_state != stow_state) {
  5637. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5638. if (deploy_state) {
  5639. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5640. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5641. }
  5642. else {
  5643. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5644. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5645. }
  5646. #if ENABLED(BLTOUCH)
  5647. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5648. #endif
  5649. }
  5650. else { // measure active signal length
  5651. servo[probe_index].move(z_servo_angle[0]); // deploy
  5652. safe_delay(500);
  5653. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5654. uint16_t probe_counter = 0;
  5655. // Allow 30 seconds max for operator to trigger probe
  5656. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5657. safe_delay(2);
  5658. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5659. refresh_cmd_timeout();
  5660. if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
  5661. for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
  5662. safe_delay(2);
  5663. if (probe_counter == 50)
  5664. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5665. else if (probe_counter >= 2)
  5666. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5667. else
  5668. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5669. servo[probe_index].move(z_servo_angle[1]); //stow
  5670. } // pulse detected
  5671. } // for loop waiting for trigger
  5672. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5673. } // measure active signal length
  5674. #endif
  5675. } // servo_probe_test
  5676. /**
  5677. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5678. *
  5679. * M43 - report name and state of pin(s)
  5680. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5681. * I Flag to ignore Marlin's pin protection.
  5682. *
  5683. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5684. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5685. * I Flag to ignore Marlin's pin protection.
  5686. *
  5687. * M43 E<bool> - Enable / disable background endstop monitoring
  5688. * - Machine continues to operate
  5689. * - Reports changes to endstops
  5690. * - Toggles LED_PIN when an endstop changes
  5691. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5692. *
  5693. * M43 T - Toggle pin(s) and report which pin is being toggled
  5694. * S<pin> - Start Pin number. If not given, will default to 0
  5695. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5696. * I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5697. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5698. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5699. *
  5700. * M43 S - Servo probe test
  5701. * P<index> - Probe index (optional - defaults to 0
  5702. */
  5703. inline void gcode_M43() {
  5704. if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
  5705. toggle_pins();
  5706. return;
  5707. }
  5708. // Enable or disable endstop monitoring
  5709. if (parser.seen('E')) {
  5710. endstop_monitor_flag = parser.value_bool();
  5711. SERIAL_PROTOCOLPGM("endstop monitor ");
  5712. serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
  5713. SERIAL_PROTOCOLLNPGM("abled");
  5714. return;
  5715. }
  5716. if (parser.seen('S')) {
  5717. servo_probe_test();
  5718. return;
  5719. }
  5720. // Get the range of pins to test or watch
  5721. const uint8_t first_pin = parser.byteval('P'),
  5722. last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5723. if (first_pin > last_pin) return;
  5724. const bool ignore_protection = parser.boolval('I');
  5725. // Watch until click, M108, or reset
  5726. if (parser.boolval('W')) {
  5727. SERIAL_PROTOCOLLNPGM("Watching pins");
  5728. byte pin_state[last_pin - first_pin + 1];
  5729. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5730. if (pin_is_protected(pin) && !ignore_protection) continue;
  5731. pinMode(pin, INPUT_PULLUP);
  5732. delay(1);
  5733. /*
  5734. if (IS_ANALOG(pin))
  5735. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5736. else
  5737. //*/
  5738. pin_state[pin - first_pin] = digitalRead(pin);
  5739. }
  5740. #if HAS_RESUME_CONTINUE
  5741. wait_for_user = true;
  5742. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5743. #endif
  5744. for (;;) {
  5745. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5746. if (pin_is_protected(pin) && !ignore_protection) continue;
  5747. const byte val =
  5748. /*
  5749. IS_ANALOG(pin)
  5750. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5751. :
  5752. //*/
  5753. digitalRead(pin);
  5754. if (val != pin_state[pin - first_pin]) {
  5755. report_pin_state_extended(pin, ignore_protection, false);
  5756. pin_state[pin - first_pin] = val;
  5757. }
  5758. }
  5759. #if HAS_RESUME_CONTINUE
  5760. if (!wait_for_user) {
  5761. KEEPALIVE_STATE(IN_HANDLER);
  5762. break;
  5763. }
  5764. #endif
  5765. safe_delay(200);
  5766. }
  5767. return;
  5768. }
  5769. // Report current state of selected pin(s)
  5770. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5771. report_pin_state_extended(pin, ignore_protection, true);
  5772. }
  5773. #endif // PINS_DEBUGGING
  5774. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5775. /**
  5776. * M48: Z probe repeatability measurement function.
  5777. *
  5778. * Usage:
  5779. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5780. * P = Number of sampled points (4-50, default 10)
  5781. * X = Sample X position
  5782. * Y = Sample Y position
  5783. * V = Verbose level (0-4, default=1)
  5784. * E = Engage Z probe for each reading
  5785. * L = Number of legs of movement before probe
  5786. * S = Schizoid (Or Star if you prefer)
  5787. *
  5788. * This function assumes the bed has been homed. Specifically, that a G28 command
  5789. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5790. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5791. * regenerated.
  5792. */
  5793. inline void gcode_M48() {
  5794. if (axis_unhomed_error()) return;
  5795. const int8_t verbose_level = parser.byteval('V', 1);
  5796. if (!WITHIN(verbose_level, 0, 4)) {
  5797. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  5798. return;
  5799. }
  5800. if (verbose_level > 0)
  5801. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5802. const int8_t n_samples = parser.byteval('P', 10);
  5803. if (!WITHIN(n_samples, 4, 50)) {
  5804. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5805. return;
  5806. }
  5807. const bool stow_probe_after_each = parser.boolval('E');
  5808. float X_current = current_position[X_AXIS],
  5809. Y_current = current_position[Y_AXIS];
  5810. const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
  5811. Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5812. #if DISABLED(DELTA)
  5813. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5814. out_of_range_error(PSTR("X"));
  5815. return;
  5816. }
  5817. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5818. out_of_range_error(PSTR("Y"));
  5819. return;
  5820. }
  5821. #else
  5822. if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) {
  5823. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5824. return;
  5825. }
  5826. #endif
  5827. bool seen_L = parser.seen('L');
  5828. uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  5829. if (n_legs > 15) {
  5830. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5831. return;
  5832. }
  5833. if (n_legs == 1) n_legs = 2;
  5834. const bool schizoid_flag = parser.boolval('S');
  5835. if (schizoid_flag && !seen_L) n_legs = 7;
  5836. /**
  5837. * Now get everything to the specified probe point So we can safely do a
  5838. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5839. * we don't want to use that as a starting point for each probe.
  5840. */
  5841. if (verbose_level > 2)
  5842. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5843. // Disable bed level correction in M48 because we want the raw data when we probe
  5844. #if HAS_LEVELING
  5845. const bool was_enabled = leveling_is_active();
  5846. set_bed_leveling_enabled(false);
  5847. #endif
  5848. setup_for_endstop_or_probe_move();
  5849. // Move to the first point, deploy, and probe
  5850. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5851. if (isnan(t)) return;
  5852. randomSeed(millis());
  5853. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5854. for (uint8_t n = 0; n < n_samples; n++) {
  5855. if (n_legs) {
  5856. const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5857. float angle = random(0.0, 360.0);
  5858. const float radius = random(
  5859. #if ENABLED(DELTA)
  5860. 0.1250000000 * (DELTA_PROBEABLE_RADIUS),
  5861. 0.3333333333 * (DELTA_PROBEABLE_RADIUS)
  5862. #else
  5863. 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
  5864. #endif
  5865. );
  5866. if (verbose_level > 3) {
  5867. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5868. SERIAL_ECHOPAIR(" angle: ", angle);
  5869. SERIAL_ECHOPGM(" Direction: ");
  5870. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5871. SERIAL_ECHOLNPGM("Clockwise");
  5872. }
  5873. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5874. double delta_angle;
  5875. if (schizoid_flag)
  5876. // The points of a 5 point star are 72 degrees apart. We need to
  5877. // skip a point and go to the next one on the star.
  5878. delta_angle = dir * 2.0 * 72.0;
  5879. else
  5880. // If we do this line, we are just trying to move further
  5881. // around the circle.
  5882. delta_angle = dir * (float) random(25, 45);
  5883. angle += delta_angle;
  5884. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5885. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5886. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5887. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5888. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5889. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5890. #if DISABLED(DELTA)
  5891. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5892. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5893. #else
  5894. // If we have gone out too far, we can do a simple fix and scale the numbers
  5895. // back in closer to the origin.
  5896. while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
  5897. X_current *= 0.8;
  5898. Y_current *= 0.8;
  5899. if (verbose_level > 3) {
  5900. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5901. SERIAL_ECHOLNPAIR(", ", Y_current);
  5902. }
  5903. }
  5904. #endif
  5905. if (verbose_level > 3) {
  5906. SERIAL_PROTOCOLPGM("Going to:");
  5907. SERIAL_ECHOPAIR(" X", X_current);
  5908. SERIAL_ECHOPAIR(" Y", Y_current);
  5909. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5910. }
  5911. do_blocking_move_to_xy(X_current, Y_current);
  5912. } // n_legs loop
  5913. } // n_legs
  5914. // Probe a single point
  5915. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5916. /**
  5917. * Get the current mean for the data points we have so far
  5918. */
  5919. double sum = 0.0;
  5920. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5921. mean = sum / (n + 1);
  5922. NOMORE(min, sample_set[n]);
  5923. NOLESS(max, sample_set[n]);
  5924. /**
  5925. * Now, use that mean to calculate the standard deviation for the
  5926. * data points we have so far
  5927. */
  5928. sum = 0.0;
  5929. for (uint8_t j = 0; j <= n; j++)
  5930. sum += sq(sample_set[j] - mean);
  5931. sigma = SQRT(sum / (n + 1));
  5932. if (verbose_level > 0) {
  5933. if (verbose_level > 1) {
  5934. SERIAL_PROTOCOL(n + 1);
  5935. SERIAL_PROTOCOLPGM(" of ");
  5936. SERIAL_PROTOCOL((int)n_samples);
  5937. SERIAL_PROTOCOLPGM(": z: ");
  5938. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5939. if (verbose_level > 2) {
  5940. SERIAL_PROTOCOLPGM(" mean: ");
  5941. SERIAL_PROTOCOL_F(mean, 4);
  5942. SERIAL_PROTOCOLPGM(" sigma: ");
  5943. SERIAL_PROTOCOL_F(sigma, 6);
  5944. SERIAL_PROTOCOLPGM(" min: ");
  5945. SERIAL_PROTOCOL_F(min, 3);
  5946. SERIAL_PROTOCOLPGM(" max: ");
  5947. SERIAL_PROTOCOL_F(max, 3);
  5948. SERIAL_PROTOCOLPGM(" range: ");
  5949. SERIAL_PROTOCOL_F(max-min, 3);
  5950. }
  5951. SERIAL_EOL();
  5952. }
  5953. }
  5954. } // End of probe loop
  5955. if (STOW_PROBE()) return;
  5956. SERIAL_PROTOCOLPGM("Finished!");
  5957. SERIAL_EOL();
  5958. if (verbose_level > 0) {
  5959. SERIAL_PROTOCOLPGM("Mean: ");
  5960. SERIAL_PROTOCOL_F(mean, 6);
  5961. SERIAL_PROTOCOLPGM(" Min: ");
  5962. SERIAL_PROTOCOL_F(min, 3);
  5963. SERIAL_PROTOCOLPGM(" Max: ");
  5964. SERIAL_PROTOCOL_F(max, 3);
  5965. SERIAL_PROTOCOLPGM(" Range: ");
  5966. SERIAL_PROTOCOL_F(max-min, 3);
  5967. SERIAL_EOL();
  5968. }
  5969. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5970. SERIAL_PROTOCOL_F(sigma, 6);
  5971. SERIAL_EOL();
  5972. SERIAL_EOL();
  5973. clean_up_after_endstop_or_probe_move();
  5974. // Re-enable bed level correction if it had been on
  5975. #if HAS_LEVELING
  5976. set_bed_leveling_enabled(was_enabled);
  5977. #endif
  5978. report_current_position();
  5979. }
  5980. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5981. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  5982. inline void gcode_M49() {
  5983. ubl.g26_debug_flag ^= true;
  5984. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  5985. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  5986. }
  5987. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  5988. /**
  5989. * M75: Start print timer
  5990. */
  5991. inline void gcode_M75() { print_job_timer.start(); }
  5992. /**
  5993. * M76: Pause print timer
  5994. */
  5995. inline void gcode_M76() { print_job_timer.pause(); }
  5996. /**
  5997. * M77: Stop print timer
  5998. */
  5999. inline void gcode_M77() { print_job_timer.stop(); }
  6000. #if ENABLED(PRINTCOUNTER)
  6001. /**
  6002. * M78: Show print statistics
  6003. */
  6004. inline void gcode_M78() {
  6005. // "M78 S78" will reset the statistics
  6006. if (parser.intval('S') == 78)
  6007. print_job_timer.initStats();
  6008. else
  6009. print_job_timer.showStats();
  6010. }
  6011. #endif
  6012. /**
  6013. * M104: Set hot end temperature
  6014. */
  6015. inline void gcode_M104() {
  6016. if (get_target_extruder_from_command(104)) return;
  6017. if (DEBUGGING(DRYRUN)) return;
  6018. #if ENABLED(SINGLENOZZLE)
  6019. if (target_extruder != active_extruder) return;
  6020. #endif
  6021. if (parser.seenval('S')) {
  6022. const int16_t temp = parser.value_celsius();
  6023. thermalManager.setTargetHotend(temp, target_extruder);
  6024. #if ENABLED(DUAL_X_CARRIAGE)
  6025. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6026. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6027. #endif
  6028. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6029. /**
  6030. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  6031. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  6032. * standby mode, for instance in a dual extruder setup, without affecting
  6033. * the running print timer.
  6034. */
  6035. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6036. print_job_timer.stop();
  6037. LCD_MESSAGEPGM(WELCOME_MSG);
  6038. }
  6039. #endif
  6040. if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
  6041. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6042. }
  6043. #if ENABLED(AUTOTEMP)
  6044. planner.autotemp_M104_M109();
  6045. #endif
  6046. }
  6047. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6048. void print_heater_state(const float &c, const float &t,
  6049. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6050. const float r,
  6051. #endif
  6052. const int8_t e=-2
  6053. ) {
  6054. #if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1
  6055. UNUSED(e);
  6056. #endif
  6057. SERIAL_PROTOCOLCHAR(' ');
  6058. SERIAL_PROTOCOLCHAR(
  6059. #if HAS_TEMP_BED && HAS_TEMP_HOTEND
  6060. e == -1 ? 'B' : 'T'
  6061. #elif HAS_TEMP_HOTEND
  6062. 'T'
  6063. #else
  6064. 'B'
  6065. #endif
  6066. );
  6067. #if HOTENDS > 1
  6068. if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
  6069. #endif
  6070. SERIAL_PROTOCOLCHAR(':');
  6071. SERIAL_PROTOCOL(c);
  6072. SERIAL_PROTOCOLPAIR(" /" , t);
  6073. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6074. SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
  6075. SERIAL_PROTOCOLCHAR(')');
  6076. #endif
  6077. }
  6078. void print_heaterstates() {
  6079. #if HAS_TEMP_HOTEND
  6080. print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
  6081. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6082. , thermalManager.rawHotendTemp(target_extruder)
  6083. #endif
  6084. );
  6085. #endif
  6086. #if HAS_TEMP_BED
  6087. print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
  6088. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6089. thermalManager.rawBedTemp(),
  6090. #endif
  6091. -1 // BED
  6092. );
  6093. #endif
  6094. #if HOTENDS > 1
  6095. HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
  6096. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6097. thermalManager.rawHotendTemp(e),
  6098. #endif
  6099. e
  6100. );
  6101. #endif
  6102. SERIAL_PROTOCOLPGM(" @:");
  6103. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  6104. #if HAS_TEMP_BED
  6105. SERIAL_PROTOCOLPGM(" B@:");
  6106. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  6107. #endif
  6108. #if HOTENDS > 1
  6109. HOTEND_LOOP() {
  6110. SERIAL_PROTOCOLPAIR(" @", e);
  6111. SERIAL_PROTOCOLCHAR(':');
  6112. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  6113. }
  6114. #endif
  6115. }
  6116. #endif
  6117. /**
  6118. * M105: Read hot end and bed temperature
  6119. */
  6120. inline void gcode_M105() {
  6121. if (get_target_extruder_from_command(105)) return;
  6122. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6123. SERIAL_PROTOCOLPGM(MSG_OK);
  6124. print_heaterstates();
  6125. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  6126. SERIAL_ERROR_START();
  6127. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  6128. #endif
  6129. SERIAL_EOL();
  6130. }
  6131. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6132. static uint8_t auto_report_temp_interval;
  6133. static millis_t next_temp_report_ms;
  6134. /**
  6135. * M155: Set temperature auto-report interval. M155 S<seconds>
  6136. */
  6137. inline void gcode_M155() {
  6138. if (parser.seenval('S')) {
  6139. auto_report_temp_interval = parser.value_byte();
  6140. NOMORE(auto_report_temp_interval, 60);
  6141. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6142. }
  6143. }
  6144. inline void auto_report_temperatures() {
  6145. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  6146. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6147. print_heaterstates();
  6148. SERIAL_EOL();
  6149. }
  6150. }
  6151. #endif // AUTO_REPORT_TEMPERATURES
  6152. #if FAN_COUNT > 0
  6153. /**
  6154. * M106: Set Fan Speed
  6155. *
  6156. * S<int> Speed between 0-255
  6157. * P<index> Fan index, if more than one fan
  6158. */
  6159. inline void gcode_M106() {
  6160. uint16_t s = parser.ushortval('S', 255);
  6161. NOMORE(s, 255);
  6162. const uint8_t p = parser.byteval('P', 0);
  6163. if (p < FAN_COUNT) fanSpeeds[p] = s;
  6164. }
  6165. /**
  6166. * M107: Fan Off
  6167. */
  6168. inline void gcode_M107() {
  6169. const uint16_t p = parser.ushortval('P');
  6170. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  6171. }
  6172. #endif // FAN_COUNT > 0
  6173. #if DISABLED(EMERGENCY_PARSER)
  6174. /**
  6175. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  6176. */
  6177. inline void gcode_M108() { wait_for_heatup = false; }
  6178. /**
  6179. * M112: Emergency Stop
  6180. */
  6181. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  6182. /**
  6183. * M410: Quickstop - Abort all planned moves
  6184. *
  6185. * This will stop the carriages mid-move, so most likely they
  6186. * will be out of sync with the stepper position after this.
  6187. */
  6188. inline void gcode_M410() { quickstop_stepper(); }
  6189. #endif
  6190. /**
  6191. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  6192. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  6193. */
  6194. #ifndef MIN_COOLING_SLOPE_DEG
  6195. #define MIN_COOLING_SLOPE_DEG 1.50
  6196. #endif
  6197. #ifndef MIN_COOLING_SLOPE_TIME
  6198. #define MIN_COOLING_SLOPE_TIME 60
  6199. #endif
  6200. inline void gcode_M109() {
  6201. if (get_target_extruder_from_command(109)) return;
  6202. if (DEBUGGING(DRYRUN)) return;
  6203. #if ENABLED(SINGLENOZZLE)
  6204. if (target_extruder != active_extruder) return;
  6205. #endif
  6206. const bool no_wait_for_cooling = parser.seenval('S');
  6207. if (no_wait_for_cooling || parser.seenval('R')) {
  6208. const int16_t temp = parser.value_celsius();
  6209. thermalManager.setTargetHotend(temp, target_extruder);
  6210. #if ENABLED(DUAL_X_CARRIAGE)
  6211. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6212. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6213. #endif
  6214. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6215. /**
  6216. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  6217. * standby mode, (e.g., in a dual extruder setup) without affecting
  6218. * the running print timer.
  6219. */
  6220. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6221. print_job_timer.stop();
  6222. LCD_MESSAGEPGM(WELCOME_MSG);
  6223. }
  6224. else
  6225. print_job_timer.start();
  6226. #endif
  6227. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6228. }
  6229. else return;
  6230. #if ENABLED(AUTOTEMP)
  6231. planner.autotemp_M104_M109();
  6232. #endif
  6233. #if TEMP_RESIDENCY_TIME > 0
  6234. millis_t residency_start_ms = 0;
  6235. // Loop until the temperature has stabilized
  6236. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  6237. #else
  6238. // Loop until the temperature is very close target
  6239. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  6240. #endif
  6241. float target_temp = -1.0, old_temp = 9999.0;
  6242. bool wants_to_cool = false;
  6243. wait_for_heatup = true;
  6244. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6245. #if DISABLED(BUSY_WHILE_HEATING)
  6246. KEEPALIVE_STATE(NOT_BUSY);
  6247. #endif
  6248. #if ENABLED(PRINTER_EVENT_LEDS)
  6249. const float start_temp = thermalManager.degHotend(target_extruder);
  6250. uint8_t old_blue = 0;
  6251. #endif
  6252. do {
  6253. // Target temperature might be changed during the loop
  6254. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  6255. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  6256. target_temp = thermalManager.degTargetHotend(target_extruder);
  6257. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6258. if (no_wait_for_cooling && wants_to_cool) break;
  6259. }
  6260. now = millis();
  6261. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  6262. next_temp_ms = now + 1000UL;
  6263. print_heaterstates();
  6264. #if TEMP_RESIDENCY_TIME > 0
  6265. SERIAL_PROTOCOLPGM(" W:");
  6266. if (residency_start_ms)
  6267. SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6268. else
  6269. SERIAL_PROTOCOLCHAR('?');
  6270. #endif
  6271. SERIAL_EOL();
  6272. }
  6273. idle();
  6274. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6275. const float temp = thermalManager.degHotend(target_extruder);
  6276. #if ENABLED(PRINTER_EVENT_LEDS)
  6277. // Gradually change LED strip from violet to red as nozzle heats up
  6278. if (!wants_to_cool) {
  6279. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  6280. if (blue != old_blue) {
  6281. old_blue = blue;
  6282. set_led_color(255, 0, blue
  6283. #if ENABLED(NEOPIXEL_RGBW_LED)
  6284. , 0, true
  6285. #endif
  6286. );
  6287. }
  6288. }
  6289. #endif
  6290. #if TEMP_RESIDENCY_TIME > 0
  6291. const float temp_diff = FABS(target_temp - temp);
  6292. if (!residency_start_ms) {
  6293. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  6294. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  6295. }
  6296. else if (temp_diff > TEMP_HYSTERESIS) {
  6297. // Restart the timer whenever the temperature falls outside the hysteresis.
  6298. residency_start_ms = now;
  6299. }
  6300. #endif
  6301. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  6302. if (wants_to_cool) {
  6303. // break after MIN_COOLING_SLOPE_TIME seconds
  6304. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  6305. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6306. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  6307. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  6308. old_temp = temp;
  6309. }
  6310. }
  6311. } while (wait_for_heatup && TEMP_CONDITIONS);
  6312. if (wait_for_heatup) {
  6313. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  6314. #if ENABLED(PRINTER_EVENT_LEDS)
  6315. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
  6316. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  6317. #else
  6318. set_led_color(255, 255, 255); // Set LEDs All On
  6319. #endif
  6320. #endif
  6321. }
  6322. #if DISABLED(BUSY_WHILE_HEATING)
  6323. KEEPALIVE_STATE(IN_HANDLER);
  6324. #endif
  6325. }
  6326. #if HAS_TEMP_BED
  6327. #ifndef MIN_COOLING_SLOPE_DEG_BED
  6328. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  6329. #endif
  6330. #ifndef MIN_COOLING_SLOPE_TIME_BED
  6331. #define MIN_COOLING_SLOPE_TIME_BED 60
  6332. #endif
  6333. /**
  6334. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  6335. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  6336. */
  6337. inline void gcode_M190() {
  6338. if (DEBUGGING(DRYRUN)) return;
  6339. LCD_MESSAGEPGM(MSG_BED_HEATING);
  6340. const bool no_wait_for_cooling = parser.seenval('S');
  6341. if (no_wait_for_cooling || parser.seenval('R')) {
  6342. thermalManager.setTargetBed(parser.value_celsius());
  6343. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6344. if (parser.value_celsius() > BED_MINTEMP)
  6345. print_job_timer.start();
  6346. #endif
  6347. }
  6348. else return;
  6349. #if TEMP_BED_RESIDENCY_TIME > 0
  6350. millis_t residency_start_ms = 0;
  6351. // Loop until the temperature has stabilized
  6352. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  6353. #else
  6354. // Loop until the temperature is very close target
  6355. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  6356. #endif
  6357. float target_temp = -1.0, old_temp = 9999.0;
  6358. bool wants_to_cool = false;
  6359. wait_for_heatup = true;
  6360. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6361. #if DISABLED(BUSY_WHILE_HEATING)
  6362. KEEPALIVE_STATE(NOT_BUSY);
  6363. #endif
  6364. target_extruder = active_extruder; // for print_heaterstates
  6365. #if ENABLED(PRINTER_EVENT_LEDS)
  6366. const float start_temp = thermalManager.degBed();
  6367. uint8_t old_red = 255;
  6368. #endif
  6369. do {
  6370. // Target temperature might be changed during the loop
  6371. if (target_temp != thermalManager.degTargetBed()) {
  6372. wants_to_cool = thermalManager.isCoolingBed();
  6373. target_temp = thermalManager.degTargetBed();
  6374. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6375. if (no_wait_for_cooling && wants_to_cool) break;
  6376. }
  6377. now = millis();
  6378. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  6379. next_temp_ms = now + 1000UL;
  6380. print_heaterstates();
  6381. #if TEMP_BED_RESIDENCY_TIME > 0
  6382. SERIAL_PROTOCOLPGM(" W:");
  6383. if (residency_start_ms)
  6384. SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6385. else
  6386. SERIAL_PROTOCOLCHAR('?');
  6387. #endif
  6388. SERIAL_EOL();
  6389. }
  6390. idle();
  6391. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6392. const float temp = thermalManager.degBed();
  6393. #if ENABLED(PRINTER_EVENT_LEDS)
  6394. // Gradually change LED strip from blue to violet as bed heats up
  6395. if (!wants_to_cool) {
  6396. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  6397. if (red != old_red) {
  6398. old_red = red;
  6399. set_led_color(red, 0, 255
  6400. #if ENABLED(NEOPIXEL_RGBW_LED)
  6401. , 0, true
  6402. #endif
  6403. );
  6404. }
  6405. }
  6406. #endif
  6407. #if TEMP_BED_RESIDENCY_TIME > 0
  6408. const float temp_diff = FABS(target_temp - temp);
  6409. if (!residency_start_ms) {
  6410. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  6411. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  6412. }
  6413. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  6414. // Restart the timer whenever the temperature falls outside the hysteresis.
  6415. residency_start_ms = now;
  6416. }
  6417. #endif // TEMP_BED_RESIDENCY_TIME > 0
  6418. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  6419. if (wants_to_cool) {
  6420. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  6421. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  6422. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6423. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  6424. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  6425. old_temp = temp;
  6426. }
  6427. }
  6428. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  6429. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  6430. #if DISABLED(BUSY_WHILE_HEATING)
  6431. KEEPALIVE_STATE(IN_HANDLER);
  6432. #endif
  6433. }
  6434. #endif // HAS_TEMP_BED
  6435. /**
  6436. * M110: Set Current Line Number
  6437. */
  6438. inline void gcode_M110() {
  6439. if (parser.seenval('N')) gcode_LastN = parser.value_long();
  6440. }
  6441. /**
  6442. * M111: Set the debug level
  6443. */
  6444. inline void gcode_M111() {
  6445. marlin_debug_flags = parser.byteval('S', (uint8_t)DEBUG_NONE);
  6446. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  6447. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  6448. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  6449. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  6450. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  6451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6452. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  6453. #endif
  6454. const static char* const debug_strings[] PROGMEM = {
  6455. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
  6456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6457. , str_debug_32
  6458. #endif
  6459. };
  6460. SERIAL_ECHO_START();
  6461. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6462. if (marlin_debug_flags) {
  6463. uint8_t comma = 0;
  6464. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6465. if (TEST(marlin_debug_flags, i)) {
  6466. if (comma++) SERIAL_CHAR(',');
  6467. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6468. }
  6469. }
  6470. }
  6471. else {
  6472. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6473. }
  6474. SERIAL_EOL();
  6475. }
  6476. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6477. /**
  6478. * M113: Get or set Host Keepalive interval (0 to disable)
  6479. *
  6480. * S<seconds> Optional. Set the keepalive interval.
  6481. */
  6482. inline void gcode_M113() {
  6483. if (parser.seenval('S')) {
  6484. host_keepalive_interval = parser.value_byte();
  6485. NOMORE(host_keepalive_interval, 60);
  6486. }
  6487. else {
  6488. SERIAL_ECHO_START();
  6489. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6490. }
  6491. }
  6492. #endif
  6493. #if ENABLED(BARICUDA)
  6494. #if HAS_HEATER_1
  6495. /**
  6496. * M126: Heater 1 valve open
  6497. */
  6498. inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
  6499. /**
  6500. * M127: Heater 1 valve close
  6501. */
  6502. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6503. #endif
  6504. #if HAS_HEATER_2
  6505. /**
  6506. * M128: Heater 2 valve open
  6507. */
  6508. inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
  6509. /**
  6510. * M129: Heater 2 valve close
  6511. */
  6512. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6513. #endif
  6514. #endif // BARICUDA
  6515. /**
  6516. * M140: Set bed temperature
  6517. */
  6518. inline void gcode_M140() {
  6519. if (DEBUGGING(DRYRUN)) return;
  6520. if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
  6521. }
  6522. #if ENABLED(ULTIPANEL)
  6523. /**
  6524. * M145: Set the heatup state for a material in the LCD menu
  6525. *
  6526. * S<material> (0=PLA, 1=ABS)
  6527. * H<hotend temp>
  6528. * B<bed temp>
  6529. * F<fan speed>
  6530. */
  6531. inline void gcode_M145() {
  6532. const uint8_t material = (uint8_t)parser.intval('S');
  6533. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6534. SERIAL_ERROR_START();
  6535. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6536. }
  6537. else {
  6538. int v;
  6539. if (parser.seenval('H')) {
  6540. v = parser.value_int();
  6541. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  6542. }
  6543. if (parser.seenval('F')) {
  6544. v = parser.value_int();
  6545. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  6546. }
  6547. #if TEMP_SENSOR_BED != 0
  6548. if (parser.seenval('B')) {
  6549. v = parser.value_int();
  6550. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  6551. }
  6552. #endif
  6553. }
  6554. }
  6555. #endif // ULTIPANEL
  6556. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6557. /**
  6558. * M149: Set temperature units
  6559. */
  6560. inline void gcode_M149() {
  6561. if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
  6562. else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
  6563. else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
  6564. }
  6565. #endif
  6566. #if HAS_POWER_SWITCH
  6567. /**
  6568. * M80 : Turn on the Power Supply
  6569. * M80 S : Report the current state and exit
  6570. */
  6571. inline void gcode_M80() {
  6572. // S: Report the current power supply state and exit
  6573. if (parser.seen('S')) {
  6574. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  6575. return;
  6576. }
  6577. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  6578. /**
  6579. * If you have a switch on suicide pin, this is useful
  6580. * if you want to start another print with suicide feature after
  6581. * a print without suicide...
  6582. */
  6583. #if HAS_SUICIDE
  6584. OUT_WRITE(SUICIDE_PIN, HIGH);
  6585. #endif
  6586. #if ENABLED(HAVE_TMC2130)
  6587. delay(100);
  6588. tmc2130_init(); // Settings only stick when the driver has power
  6589. #endif
  6590. powersupply_on = true;
  6591. #if ENABLED(ULTIPANEL)
  6592. LCD_MESSAGEPGM(WELCOME_MSG);
  6593. #endif
  6594. }
  6595. #endif // HAS_POWER_SWITCH
  6596. /**
  6597. * M81: Turn off Power, including Power Supply, if there is one.
  6598. *
  6599. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  6600. */
  6601. inline void gcode_M81() {
  6602. thermalManager.disable_all_heaters();
  6603. stepper.finish_and_disable();
  6604. #if FAN_COUNT > 0
  6605. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  6606. #if ENABLED(PROBING_FANS_OFF)
  6607. fans_paused = false;
  6608. ZERO(paused_fanSpeeds);
  6609. #endif
  6610. #endif
  6611. safe_delay(1000); // Wait 1 second before switching off
  6612. #if HAS_SUICIDE
  6613. stepper.synchronize();
  6614. suicide();
  6615. #elif HAS_POWER_SWITCH
  6616. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  6617. powersupply_on = false;
  6618. #endif
  6619. #if ENABLED(ULTIPANEL)
  6620. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  6621. #endif
  6622. }
  6623. /**
  6624. * M82: Set E codes absolute (default)
  6625. */
  6626. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  6627. /**
  6628. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  6629. */
  6630. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6631. /**
  6632. * M18, M84: Disable stepper motors
  6633. */
  6634. inline void gcode_M18_M84() {
  6635. if (parser.seenval('S')) {
  6636. stepper_inactive_time = parser.value_millis_from_seconds();
  6637. }
  6638. else {
  6639. bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
  6640. if (all_axis) {
  6641. stepper.finish_and_disable();
  6642. }
  6643. else {
  6644. stepper.synchronize();
  6645. if (parser.seen('X')) disable_X();
  6646. if (parser.seen('Y')) disable_Y();
  6647. if (parser.seen('Z')) disable_Z();
  6648. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
  6649. if (parser.seen('E')) disable_e_steppers();
  6650. #endif
  6651. }
  6652. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  6653. ubl_lcd_map_control = defer_return_to_status = false;
  6654. #endif
  6655. }
  6656. }
  6657. /**
  6658. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6659. */
  6660. inline void gcode_M85() {
  6661. if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
  6662. }
  6663. /**
  6664. * Multi-stepper support for M92, M201, M203
  6665. */
  6666. #if ENABLED(DISTINCT_E_FACTORS)
  6667. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6668. #define TARGET_EXTRUDER target_extruder
  6669. #else
  6670. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6671. #define TARGET_EXTRUDER 0
  6672. #endif
  6673. /**
  6674. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6675. * (Follows the same syntax as G92)
  6676. *
  6677. * With multiple extruders use T to specify which one.
  6678. */
  6679. inline void gcode_M92() {
  6680. GET_TARGET_EXTRUDER(92);
  6681. LOOP_XYZE(i) {
  6682. if (parser.seen(axis_codes[i])) {
  6683. if (i == E_AXIS) {
  6684. const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  6685. if (value < 20.0) {
  6686. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6687. planner.max_jerk[E_AXIS] *= factor;
  6688. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6689. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6690. }
  6691. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6692. }
  6693. else {
  6694. planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
  6695. }
  6696. }
  6697. }
  6698. planner.refresh_positioning();
  6699. }
  6700. /**
  6701. * Output the current position to serial
  6702. */
  6703. void report_current_position() {
  6704. SERIAL_PROTOCOLPGM("X:");
  6705. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6706. SERIAL_PROTOCOLPGM(" Y:");
  6707. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6708. SERIAL_PROTOCOLPGM(" Z:");
  6709. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6710. SERIAL_PROTOCOLPGM(" E:");
  6711. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6712. stepper.report_positions();
  6713. #if IS_SCARA
  6714. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6715. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6716. SERIAL_EOL();
  6717. #endif
  6718. }
  6719. #ifdef M114_DETAIL
  6720. void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
  6721. char str[12];
  6722. for (uint8_t i = 0; i < n; i++) {
  6723. SERIAL_CHAR(' ');
  6724. SERIAL_CHAR(axis_codes[i]);
  6725. SERIAL_CHAR(':');
  6726. SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
  6727. }
  6728. SERIAL_EOL();
  6729. }
  6730. inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
  6731. void report_current_position_detail() {
  6732. stepper.synchronize();
  6733. SERIAL_PROTOCOLPGM("\nLogical:");
  6734. report_xyze(current_position);
  6735. SERIAL_PROTOCOLPGM("Raw: ");
  6736. const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) };
  6737. report_xyz(raw);
  6738. SERIAL_PROTOCOLPGM("Leveled:");
  6739. float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  6740. planner.apply_leveling(leveled);
  6741. report_xyz(leveled);
  6742. SERIAL_PROTOCOLPGM("UnLevel:");
  6743. float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
  6744. planner.unapply_leveling(unleveled);
  6745. report_xyz(unleveled);
  6746. #if IS_KINEMATIC
  6747. #if IS_SCARA
  6748. SERIAL_PROTOCOLPGM("ScaraK: ");
  6749. #else
  6750. SERIAL_PROTOCOLPGM("DeltaK: ");
  6751. #endif
  6752. inverse_kinematics(leveled); // writes delta[]
  6753. report_xyz(delta);
  6754. #endif
  6755. SERIAL_PROTOCOLPGM("Stepper:");
  6756. const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
  6757. report_xyze(step_count, 4, 0);
  6758. #if IS_SCARA
  6759. const float deg[XYZ] = {
  6760. stepper.get_axis_position_degrees(A_AXIS),
  6761. stepper.get_axis_position_degrees(B_AXIS)
  6762. };
  6763. SERIAL_PROTOCOLPGM("Degrees:");
  6764. report_xyze(deg, 2);
  6765. #endif
  6766. SERIAL_PROTOCOLPGM("FromStp:");
  6767. get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
  6768. const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
  6769. report_xyze(from_steppers);
  6770. const float diff[XYZE] = {
  6771. from_steppers[X_AXIS] - leveled[X_AXIS],
  6772. from_steppers[Y_AXIS] - leveled[Y_AXIS],
  6773. from_steppers[Z_AXIS] - leveled[Z_AXIS],
  6774. from_steppers[E_AXIS] - current_position[E_AXIS]
  6775. };
  6776. SERIAL_PROTOCOLPGM("Differ: ");
  6777. report_xyze(diff);
  6778. }
  6779. #endif // M114_DETAIL
  6780. /**
  6781. * M114: Report current position to host
  6782. */
  6783. inline void gcode_M114() {
  6784. #ifdef M114_DETAIL
  6785. if (parser.seen('D')) {
  6786. report_current_position_detail();
  6787. return;
  6788. }
  6789. #endif
  6790. stepper.synchronize();
  6791. report_current_position();
  6792. }
  6793. /**
  6794. * M115: Capabilities string
  6795. */
  6796. inline void gcode_M115() {
  6797. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6798. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6799. // EEPROM (M500, M501)
  6800. #if ENABLED(EEPROM_SETTINGS)
  6801. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6802. #else
  6803. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6804. #endif
  6805. // AUTOREPORT_TEMP (M155)
  6806. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6807. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6808. #else
  6809. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6810. #endif
  6811. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6812. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6813. // Print Job timer M75, M76, M77
  6814. SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
  6815. // AUTOLEVEL (G29)
  6816. #if HAS_ABL
  6817. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6818. #else
  6819. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6820. #endif
  6821. // Z_PROBE (G30)
  6822. #if HAS_BED_PROBE
  6823. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6824. #else
  6825. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6826. #endif
  6827. // MESH_REPORT (M420 V)
  6828. #if HAS_LEVELING
  6829. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6830. #else
  6831. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6832. #endif
  6833. // SOFTWARE_POWER (M80, M81)
  6834. #if HAS_POWER_SWITCH
  6835. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6836. #else
  6837. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6838. #endif
  6839. // CASE LIGHTS (M355)
  6840. #if HAS_CASE_LIGHT
  6841. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6842. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  6843. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
  6844. }
  6845. else
  6846. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  6847. #else
  6848. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6849. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  6850. #endif
  6851. // EMERGENCY_PARSER (M108, M112, M410)
  6852. #if ENABLED(EMERGENCY_PARSER)
  6853. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6854. #else
  6855. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6856. #endif
  6857. #endif // EXTENDED_CAPABILITIES_REPORT
  6858. }
  6859. /**
  6860. * M117: Set LCD Status Message
  6861. */
  6862. inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
  6863. /**
  6864. * M118: Display a message in the host console.
  6865. *
  6866. * A Append '// ' for an action command, as in OctoPrint
  6867. * E Have the host 'echo:' the text
  6868. */
  6869. inline void gcode_M118() {
  6870. if (parser.boolval('E')) SERIAL_ECHO_START();
  6871. if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
  6872. SERIAL_ECHOLN(parser.string_arg);
  6873. }
  6874. /**
  6875. * M119: Output endstop states to serial output
  6876. */
  6877. inline void gcode_M119() { endstops.M119(); }
  6878. /**
  6879. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6880. */
  6881. inline void gcode_M120() { endstops.enable_globally(true); }
  6882. /**
  6883. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6884. */
  6885. inline void gcode_M121() { endstops.enable_globally(false); }
  6886. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6887. /**
  6888. * M125: Store current position and move to filament change position.
  6889. * Called on pause (by M25) to prevent material leaking onto the
  6890. * object. On resume (M24) the head will be moved back and the
  6891. * print will resume.
  6892. *
  6893. * If Marlin is compiled without SD Card support, M125 can be
  6894. * used directly to pause the print and move to park position,
  6895. * resuming with a button click or M108.
  6896. *
  6897. * L = override retract length
  6898. * X = override X
  6899. * Y = override Y
  6900. * Z = override Z raise
  6901. */
  6902. inline void gcode_M125() {
  6903. // Initial retract before move to filament change position
  6904. const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  6905. #if defined(PAUSE_PARK_RETRACT_LENGTH) && PAUSE_PARK_RETRACT_LENGTH > 0
  6906. - (PAUSE_PARK_RETRACT_LENGTH)
  6907. #endif
  6908. ;
  6909. // Lift Z axis
  6910. const float z_lift = parser.linearval('Z')
  6911. #if PAUSE_PARK_Z_ADD > 0
  6912. + PAUSE_PARK_Z_ADD
  6913. #endif
  6914. ;
  6915. // Move XY axes to filament change position or given position
  6916. const float x_pos = parser.linearval('X')
  6917. #ifdef PAUSE_PARK_X_POS
  6918. + PAUSE_PARK_X_POS
  6919. #endif
  6920. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6921. + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
  6922. #endif
  6923. ;
  6924. const float y_pos = parser.linearval('Y')
  6925. #ifdef PAUSE_PARK_Y_POS
  6926. + PAUSE_PARK_Y_POS
  6927. #endif
  6928. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6929. + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
  6930. #endif
  6931. ;
  6932. const bool job_running = print_job_timer.isRunning();
  6933. if (pause_print(retract, z_lift, x_pos, y_pos)) {
  6934. #if DISABLED(SDSUPPORT)
  6935. // Wait for lcd click or M108
  6936. wait_for_filament_reload();
  6937. // Return to print position and continue
  6938. resume_print();
  6939. if (job_running) print_job_timer.start();
  6940. #endif
  6941. }
  6942. }
  6943. #endif // PARK_HEAD_ON_PAUSE
  6944. #if HAS_COLOR_LEDS
  6945. /**
  6946. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6947. *
  6948. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6949. *
  6950. * Examples:
  6951. *
  6952. * M150 R255 ; Turn LED red
  6953. * M150 R255 U127 ; Turn LED orange (PWM only)
  6954. * M150 ; Turn LED off
  6955. * M150 R U B ; Turn LED white
  6956. * M150 W ; Turn LED white using a white LED
  6957. *
  6958. */
  6959. inline void gcode_M150() {
  6960. set_led_color(
  6961. parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  6962. parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  6963. parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  6964. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
  6965. , parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  6966. #endif
  6967. );
  6968. }
  6969. #endif // HAS_COLOR_LEDS
  6970. /**
  6971. * M200: Set filament diameter and set E axis units to cubic units
  6972. *
  6973. * T<extruder> - Optional extruder number. Current extruder if omitted.
  6974. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  6975. */
  6976. inline void gcode_M200() {
  6977. if (get_target_extruder_from_command(200)) return;
  6978. if (parser.seen('D')) {
  6979. // setting any extruder filament size disables volumetric on the assumption that
  6980. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6981. // for all extruders
  6982. volumetric_enabled = (parser.value_linear_units() != 0.0);
  6983. if (volumetric_enabled) {
  6984. filament_size[target_extruder] = parser.value_linear_units();
  6985. // make sure all extruders have some sane value for the filament size
  6986. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  6987. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  6988. }
  6989. }
  6990. calculate_volumetric_multipliers();
  6991. }
  6992. /**
  6993. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  6994. *
  6995. * With multiple extruders use T to specify which one.
  6996. */
  6997. inline void gcode_M201() {
  6998. GET_TARGET_EXTRUDER(201);
  6999. LOOP_XYZE(i) {
  7000. if (parser.seen(axis_codes[i])) {
  7001. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7002. planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
  7003. }
  7004. }
  7005. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  7006. planner.reset_acceleration_rates();
  7007. }
  7008. #if 0 // Not used for Sprinter/grbl gen6
  7009. inline void gcode_M202() {
  7010. LOOP_XYZE(i) {
  7011. if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  7012. }
  7013. }
  7014. #endif
  7015. /**
  7016. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  7017. *
  7018. * With multiple extruders use T to specify which one.
  7019. */
  7020. inline void gcode_M203() {
  7021. GET_TARGET_EXTRUDER(203);
  7022. LOOP_XYZE(i)
  7023. if (parser.seen(axis_codes[i])) {
  7024. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7025. planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
  7026. }
  7027. }
  7028. /**
  7029. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  7030. *
  7031. * P = Printing moves
  7032. * R = Retract only (no X, Y, Z) moves
  7033. * T = Travel (non printing) moves
  7034. *
  7035. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  7036. */
  7037. inline void gcode_M204() {
  7038. if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  7039. planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
  7040. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  7041. }
  7042. if (parser.seen('P')) {
  7043. planner.acceleration = parser.value_linear_units();
  7044. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  7045. }
  7046. if (parser.seen('R')) {
  7047. planner.retract_acceleration = parser.value_linear_units();
  7048. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  7049. }
  7050. if (parser.seen('T')) {
  7051. planner.travel_acceleration = parser.value_linear_units();
  7052. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  7053. }
  7054. }
  7055. /**
  7056. * M205: Set Advanced Settings
  7057. *
  7058. * S = Min Feed Rate (units/s)
  7059. * T = Min Travel Feed Rate (units/s)
  7060. * B = Min Segment Time (µs)
  7061. * X = Max X Jerk (units/sec^2)
  7062. * Y = Max Y Jerk (units/sec^2)
  7063. * Z = Max Z Jerk (units/sec^2)
  7064. * E = Max E Jerk (units/sec^2)
  7065. */
  7066. inline void gcode_M205() {
  7067. if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  7068. if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  7069. if (parser.seen('B')) planner.min_segment_time = parser.value_millis();
  7070. if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  7071. if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  7072. if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  7073. if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
  7074. }
  7075. #if HAS_M206_COMMAND
  7076. /**
  7077. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  7078. *
  7079. * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
  7080. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
  7081. * *** In the next 1.2 release, it will simply be disabled by default.
  7082. */
  7083. inline void gcode_M206() {
  7084. LOOP_XYZ(i)
  7085. if (parser.seen(axis_codes[i]))
  7086. set_home_offset((AxisEnum)i, parser.value_linear_units());
  7087. #if ENABLED(MORGAN_SCARA)
  7088. if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta
  7089. if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi
  7090. #endif
  7091. SYNC_PLAN_POSITION_KINEMATIC();
  7092. report_current_position();
  7093. }
  7094. #endif // HAS_M206_COMMAND
  7095. #if ENABLED(DELTA)
  7096. /**
  7097. * M665: Set delta configurations
  7098. *
  7099. * H = delta height
  7100. * L = diagonal rod
  7101. * R = delta radius
  7102. * S = segments per second
  7103. * B = delta calibration radius
  7104. * X = Alpha (Tower 1) angle trim
  7105. * Y = Beta (Tower 2) angle trim
  7106. * Z = Rotate A and B by this angle
  7107. */
  7108. inline void gcode_M665() {
  7109. if (parser.seen('H')) {
  7110. home_offset[Z_AXIS] = parser.value_linear_units() - DELTA_HEIGHT;
  7111. update_software_endstops(Z_AXIS);
  7112. }
  7113. if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
  7114. if (parser.seen('R')) delta_radius = parser.value_linear_units();
  7115. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7116. if (parser.seen('B')) delta_calibration_radius = parser.value_float();
  7117. if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
  7118. if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
  7119. if (parser.seen('Z')) { // rotate all 3 axis for Z = 0
  7120. delta_tower_angle_trim[A_AXIS] -= parser.value_float();
  7121. delta_tower_angle_trim[B_AXIS] -= parser.value_float();
  7122. }
  7123. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  7124. }
  7125. /**
  7126. * M666: Set delta endstop adjustment
  7127. */
  7128. inline void gcode_M666() {
  7129. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7130. if (DEBUGGING(LEVELING)) {
  7131. SERIAL_ECHOLNPGM(">>> gcode_M666");
  7132. }
  7133. #endif
  7134. LOOP_XYZ(i) {
  7135. if (parser.seen(axis_codes[i])) {
  7136. endstop_adj[i] = parser.value_linear_units();
  7137. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7138. if (DEBUGGING(LEVELING)) {
  7139. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  7140. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  7141. }
  7142. #endif
  7143. }
  7144. }
  7145. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7146. if (DEBUGGING(LEVELING)) {
  7147. SERIAL_ECHOLNPGM("<<< gcode_M666");
  7148. }
  7149. #endif
  7150. // normalize endstops so all are <=0; set the residue to delta height
  7151. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  7152. home_offset[Z_AXIS] -= z_temp;
  7153. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  7154. }
  7155. #elif IS_SCARA
  7156. /**
  7157. * M665: Set SCARA settings
  7158. *
  7159. * Parameters:
  7160. *
  7161. * S[segments-per-second] - Segments-per-second
  7162. * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
  7163. * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
  7164. *
  7165. * A, P, and X are all aliases for the shoulder angle
  7166. * B, T, and Y are all aliases for the elbow angle
  7167. */
  7168. inline void gcode_M665() {
  7169. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7170. const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
  7171. const uint8_t sumAPX = hasA + hasP + hasX;
  7172. if (sumAPX == 1)
  7173. home_offset[A_AXIS] = parser.value_float();
  7174. else if (sumAPX > 1) {
  7175. SERIAL_ERROR_START();
  7176. SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
  7177. return;
  7178. }
  7179. const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
  7180. const uint8_t sumBTY = hasB + hasT + hasY;
  7181. if (sumBTY == 1)
  7182. home_offset[B_AXIS] = parser.value_float();
  7183. else if (sumBTY > 1) {
  7184. SERIAL_ERROR_START();
  7185. SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
  7186. return;
  7187. }
  7188. }
  7189. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  7190. /**
  7191. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  7192. */
  7193. inline void gcode_M666() {
  7194. if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
  7195. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  7196. }
  7197. #endif // !DELTA && Z_DUAL_ENDSTOPS
  7198. #if ENABLED(FWRETRACT)
  7199. /**
  7200. * M207: Set firmware retraction values
  7201. *
  7202. * S[+units] retract_length
  7203. * W[+units] swap_retract_length (multi-extruder)
  7204. * F[units/min] retract_feedrate_mm_s
  7205. * Z[units] retract_zlift
  7206. */
  7207. inline void gcode_M207() {
  7208. if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
  7209. if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7210. if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
  7211. if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS);
  7212. }
  7213. /**
  7214. * M208: Set firmware un-retraction values
  7215. *
  7216. * S[+units] retract_recover_length (in addition to M207 S*)
  7217. * W[+units] swap_retract_recover_length (multi-extruder)
  7218. * F[units/min] retract_recover_feedrate_mm_s
  7219. * R[units/min] swap_retract_recover_feedrate_mm_s
  7220. */
  7221. inline void gcode_M208() {
  7222. if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
  7223. if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7224. if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7225. if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS);
  7226. }
  7227. /**
  7228. * M209: Enable automatic retract (M209 S1)
  7229. * For slicers that don't support G10/11, reversed extrude-only
  7230. * moves will be classified as retraction.
  7231. */
  7232. inline void gcode_M209() {
  7233. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  7234. if (parser.seen('S')) {
  7235. autoretract_enabled = parser.value_bool();
  7236. for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  7237. }
  7238. }
  7239. }
  7240. #endif // FWRETRACT
  7241. /**
  7242. * M211: Enable, Disable, and/or Report software endstops
  7243. *
  7244. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  7245. */
  7246. inline void gcode_M211() {
  7247. SERIAL_ECHO_START();
  7248. #if HAS_SOFTWARE_ENDSTOPS
  7249. if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
  7250. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7251. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  7252. #else
  7253. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7254. SERIAL_ECHOPGM(MSG_OFF);
  7255. #endif
  7256. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  7257. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  7258. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  7259. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  7260. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  7261. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  7262. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  7263. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  7264. }
  7265. #if HOTENDS > 1
  7266. /**
  7267. * M218 - set hotend offset (in linear units)
  7268. *
  7269. * T<tool>
  7270. * X<xoffset>
  7271. * Y<yoffset>
  7272. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  7273. */
  7274. inline void gcode_M218() {
  7275. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  7276. if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
  7277. if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
  7278. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
  7279. if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
  7280. #endif
  7281. SERIAL_ECHO_START();
  7282. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7283. HOTEND_LOOP() {
  7284. SERIAL_CHAR(' ');
  7285. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  7286. SERIAL_CHAR(',');
  7287. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  7288. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
  7289. SERIAL_CHAR(',');
  7290. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  7291. #endif
  7292. }
  7293. SERIAL_EOL();
  7294. }
  7295. #endif // HOTENDS > 1
  7296. /**
  7297. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  7298. */
  7299. inline void gcode_M220() {
  7300. if (parser.seenval('S')) feedrate_percentage = parser.value_int();
  7301. }
  7302. /**
  7303. * M221: Set extrusion percentage (M221 T0 S95)
  7304. */
  7305. inline void gcode_M221() {
  7306. if (get_target_extruder_from_command(221)) return;
  7307. if (parser.seenval('S'))
  7308. flow_percentage[target_extruder] = parser.value_int();
  7309. }
  7310. /**
  7311. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  7312. */
  7313. inline void gcode_M226() {
  7314. if (parser.seen('P')) {
  7315. const int pin_number = parser.value_int(),
  7316. pin_state = parser.intval('S', -1); // required pin state - default is inverted
  7317. if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
  7318. int target = LOW;
  7319. stepper.synchronize();
  7320. pinMode(pin_number, INPUT);
  7321. switch (pin_state) {
  7322. case 1:
  7323. target = HIGH;
  7324. break;
  7325. case 0:
  7326. target = LOW;
  7327. break;
  7328. case -1:
  7329. target = !digitalRead(pin_number);
  7330. break;
  7331. }
  7332. while (digitalRead(pin_number) != target) idle();
  7333. } // pin_state -1 0 1 && pin_number > -1
  7334. } // parser.seen('P')
  7335. }
  7336. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7337. /**
  7338. * M260: Send data to a I2C slave device
  7339. *
  7340. * This is a PoC, the formating and arguments for the GCODE will
  7341. * change to be more compatible, the current proposal is:
  7342. *
  7343. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  7344. *
  7345. * M260 B<byte-1 value in base 10>
  7346. * M260 B<byte-2 value in base 10>
  7347. * M260 B<byte-3 value in base 10>
  7348. *
  7349. * M260 S1 ; Send the buffered data and reset the buffer
  7350. * M260 R1 ; Reset the buffer without sending data
  7351. *
  7352. */
  7353. inline void gcode_M260() {
  7354. // Set the target address
  7355. if (parser.seen('A')) i2c.address(parser.value_byte());
  7356. // Add a new byte to the buffer
  7357. if (parser.seen('B')) i2c.addbyte(parser.value_byte());
  7358. // Flush the buffer to the bus
  7359. if (parser.seen('S')) i2c.send();
  7360. // Reset and rewind the buffer
  7361. else if (parser.seen('R')) i2c.reset();
  7362. }
  7363. /**
  7364. * M261: Request X bytes from I2C slave device
  7365. *
  7366. * Usage: M261 A<slave device address base 10> B<number of bytes>
  7367. */
  7368. inline void gcode_M261() {
  7369. if (parser.seen('A')) i2c.address(parser.value_byte());
  7370. uint8_t bytes = parser.byteval('B', 1);
  7371. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  7372. i2c.relay(bytes);
  7373. }
  7374. else {
  7375. SERIAL_ERROR_START();
  7376. SERIAL_ERRORLN("Bad i2c request");
  7377. }
  7378. }
  7379. #endif // EXPERIMENTAL_I2CBUS
  7380. #if HAS_SERVOS
  7381. /**
  7382. * M280: Get or set servo position. P<index> [S<angle>]
  7383. */
  7384. inline void gcode_M280() {
  7385. if (!parser.seen('P')) return;
  7386. const int servo_index = parser.value_int();
  7387. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  7388. if (parser.seen('S'))
  7389. MOVE_SERVO(servo_index, parser.value_int());
  7390. else {
  7391. SERIAL_ECHO_START();
  7392. SERIAL_ECHOPAIR(" Servo ", servo_index);
  7393. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  7394. }
  7395. }
  7396. else {
  7397. SERIAL_ERROR_START();
  7398. SERIAL_ECHOPAIR("Servo ", servo_index);
  7399. SERIAL_ECHOLNPGM(" out of range");
  7400. }
  7401. }
  7402. #endif // HAS_SERVOS
  7403. #if HAS_BUZZER
  7404. /**
  7405. * M300: Play beep sound S<frequency Hz> P<duration ms>
  7406. */
  7407. inline void gcode_M300() {
  7408. uint16_t const frequency = parser.ushortval('S', 260);
  7409. uint16_t duration = parser.ushortval('P', 1000);
  7410. // Limits the tone duration to 0-5 seconds.
  7411. NOMORE(duration, 5000);
  7412. BUZZ(duration, frequency);
  7413. }
  7414. #endif // HAS_BUZZER
  7415. #if ENABLED(PIDTEMP)
  7416. /**
  7417. * M301: Set PID parameters P I D (and optionally C, L)
  7418. *
  7419. * P[float] Kp term
  7420. * I[float] Ki term (unscaled)
  7421. * D[float] Kd term (unscaled)
  7422. *
  7423. * With PID_EXTRUSION_SCALING:
  7424. *
  7425. * C[float] Kc term
  7426. * L[float] LPQ length
  7427. */
  7428. inline void gcode_M301() {
  7429. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  7430. // default behaviour (omitting E parameter) is to update for extruder 0 only
  7431. const uint8_t e = parser.byteval('E'); // extruder being updated
  7432. if (e < HOTENDS) { // catch bad input value
  7433. if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
  7434. if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
  7435. if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
  7436. #if ENABLED(PID_EXTRUSION_SCALING)
  7437. if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
  7438. if (parser.seen('L')) lpq_len = parser.value_float();
  7439. NOMORE(lpq_len, LPQ_MAX_LEN);
  7440. #endif
  7441. thermalManager.updatePID();
  7442. SERIAL_ECHO_START();
  7443. #if ENABLED(PID_PARAMS_PER_HOTEND)
  7444. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  7445. #endif // PID_PARAMS_PER_HOTEND
  7446. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  7447. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  7448. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  7449. #if ENABLED(PID_EXTRUSION_SCALING)
  7450. //Kc does not have scaling applied above, or in resetting defaults
  7451. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  7452. #endif
  7453. SERIAL_EOL();
  7454. }
  7455. else {
  7456. SERIAL_ERROR_START();
  7457. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  7458. }
  7459. }
  7460. #endif // PIDTEMP
  7461. #if ENABLED(PIDTEMPBED)
  7462. inline void gcode_M304() {
  7463. if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
  7464. if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
  7465. if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
  7466. thermalManager.updatePID();
  7467. SERIAL_ECHO_START();
  7468. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  7469. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  7470. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  7471. }
  7472. #endif // PIDTEMPBED
  7473. #if defined(CHDK) || HAS_PHOTOGRAPH
  7474. /**
  7475. * M240: Trigger a camera by emulating a Canon RC-1
  7476. * See http://www.doc-diy.net/photo/rc-1_hacked/
  7477. */
  7478. inline void gcode_M240() {
  7479. #ifdef CHDK
  7480. OUT_WRITE(CHDK, HIGH);
  7481. chdkHigh = millis();
  7482. chdkActive = true;
  7483. #elif HAS_PHOTOGRAPH
  7484. const uint8_t NUM_PULSES = 16;
  7485. const float PULSE_LENGTH = 0.01524;
  7486. for (int i = 0; i < NUM_PULSES; i++) {
  7487. WRITE(PHOTOGRAPH_PIN, HIGH);
  7488. _delay_ms(PULSE_LENGTH);
  7489. WRITE(PHOTOGRAPH_PIN, LOW);
  7490. _delay_ms(PULSE_LENGTH);
  7491. }
  7492. delay(7.33);
  7493. for (int i = 0; i < NUM_PULSES; i++) {
  7494. WRITE(PHOTOGRAPH_PIN, HIGH);
  7495. _delay_ms(PULSE_LENGTH);
  7496. WRITE(PHOTOGRAPH_PIN, LOW);
  7497. _delay_ms(PULSE_LENGTH);
  7498. }
  7499. #endif // !CHDK && HAS_PHOTOGRAPH
  7500. }
  7501. #endif // CHDK || PHOTOGRAPH_PIN
  7502. #if HAS_LCD_CONTRAST
  7503. /**
  7504. * M250: Read and optionally set the LCD contrast
  7505. */
  7506. inline void gcode_M250() {
  7507. if (parser.seen('C')) set_lcd_contrast(parser.value_int());
  7508. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  7509. SERIAL_PROTOCOL(lcd_contrast);
  7510. SERIAL_EOL();
  7511. }
  7512. #endif // HAS_LCD_CONTRAST
  7513. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7514. /**
  7515. * M302: Allow cold extrudes, or set the minimum extrude temperature
  7516. *
  7517. * S<temperature> sets the minimum extrude temperature
  7518. * P<bool> enables (1) or disables (0) cold extrusion
  7519. *
  7520. * Examples:
  7521. *
  7522. * M302 ; report current cold extrusion state
  7523. * M302 P0 ; enable cold extrusion checking
  7524. * M302 P1 ; disables cold extrusion checking
  7525. * M302 S0 ; always allow extrusion (disables checking)
  7526. * M302 S170 ; only allow extrusion above 170
  7527. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  7528. */
  7529. inline void gcode_M302() {
  7530. const bool seen_S = parser.seen('S');
  7531. if (seen_S) {
  7532. thermalManager.extrude_min_temp = parser.value_celsius();
  7533. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  7534. }
  7535. if (parser.seen('P'))
  7536. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
  7537. else if (!seen_S) {
  7538. // Report current state
  7539. SERIAL_ECHO_START();
  7540. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  7541. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  7542. SERIAL_ECHOLNPGM("C)");
  7543. }
  7544. }
  7545. #endif // PREVENT_COLD_EXTRUSION
  7546. /**
  7547. * M303: PID relay autotune
  7548. *
  7549. * S<temperature> sets the target temperature. (default 150C)
  7550. * E<extruder> (-1 for the bed) (default 0)
  7551. * C<cycles>
  7552. * U<bool> with a non-zero value will apply the result to current settings
  7553. */
  7554. inline void gcode_M303() {
  7555. #if HAS_PID_HEATING
  7556. const int e = parser.intval('E'), c = parser.intval('C', 5);
  7557. const bool u = parser.boolval('U');
  7558. int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
  7559. if (WITHIN(e, 0, HOTENDS - 1))
  7560. target_extruder = e;
  7561. #if DISABLED(BUSY_WHILE_HEATING)
  7562. KEEPALIVE_STATE(NOT_BUSY);
  7563. #endif
  7564. thermalManager.PID_autotune(temp, e, c, u);
  7565. #if DISABLED(BUSY_WHILE_HEATING)
  7566. KEEPALIVE_STATE(IN_HANDLER);
  7567. #endif
  7568. #else
  7569. SERIAL_ERROR_START();
  7570. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  7571. #endif
  7572. }
  7573. #if ENABLED(MORGAN_SCARA)
  7574. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  7575. if (IsRunning()) {
  7576. forward_kinematics_SCARA(delta_a, delta_b);
  7577. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  7578. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  7579. destination[Z_AXIS] = current_position[Z_AXIS];
  7580. prepare_move_to_destination();
  7581. return true;
  7582. }
  7583. return false;
  7584. }
  7585. /**
  7586. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  7587. */
  7588. inline bool gcode_M360() {
  7589. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  7590. return SCARA_move_to_cal(0, 120);
  7591. }
  7592. /**
  7593. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  7594. */
  7595. inline bool gcode_M361() {
  7596. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  7597. return SCARA_move_to_cal(90, 130);
  7598. }
  7599. /**
  7600. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  7601. */
  7602. inline bool gcode_M362() {
  7603. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  7604. return SCARA_move_to_cal(60, 180);
  7605. }
  7606. /**
  7607. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  7608. */
  7609. inline bool gcode_M363() {
  7610. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  7611. return SCARA_move_to_cal(50, 90);
  7612. }
  7613. /**
  7614. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  7615. */
  7616. inline bool gcode_M364() {
  7617. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  7618. return SCARA_move_to_cal(45, 135);
  7619. }
  7620. #endif // SCARA
  7621. #if ENABLED(EXT_SOLENOID)
  7622. void enable_solenoid(const uint8_t num) {
  7623. switch (num) {
  7624. case 0:
  7625. OUT_WRITE(SOL0_PIN, HIGH);
  7626. break;
  7627. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7628. case 1:
  7629. OUT_WRITE(SOL1_PIN, HIGH);
  7630. break;
  7631. #endif
  7632. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7633. case 2:
  7634. OUT_WRITE(SOL2_PIN, HIGH);
  7635. break;
  7636. #endif
  7637. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7638. case 3:
  7639. OUT_WRITE(SOL3_PIN, HIGH);
  7640. break;
  7641. #endif
  7642. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7643. case 4:
  7644. OUT_WRITE(SOL4_PIN, HIGH);
  7645. break;
  7646. #endif
  7647. default:
  7648. SERIAL_ECHO_START();
  7649. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  7650. break;
  7651. }
  7652. }
  7653. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  7654. void disable_all_solenoids() {
  7655. OUT_WRITE(SOL0_PIN, LOW);
  7656. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7657. OUT_WRITE(SOL1_PIN, LOW);
  7658. #endif
  7659. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7660. OUT_WRITE(SOL2_PIN, LOW);
  7661. #endif
  7662. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7663. OUT_WRITE(SOL3_PIN, LOW);
  7664. #endif
  7665. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7666. OUT_WRITE(SOL4_PIN, LOW);
  7667. #endif
  7668. }
  7669. /**
  7670. * M380: Enable solenoid on the active extruder
  7671. */
  7672. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  7673. /**
  7674. * M381: Disable all solenoids
  7675. */
  7676. inline void gcode_M381() { disable_all_solenoids(); }
  7677. #endif // EXT_SOLENOID
  7678. /**
  7679. * M400: Finish all moves
  7680. */
  7681. inline void gcode_M400() { stepper.synchronize(); }
  7682. #if HAS_BED_PROBE
  7683. /**
  7684. * M401: Engage Z Servo endstop if available
  7685. */
  7686. inline void gcode_M401() { DEPLOY_PROBE(); }
  7687. /**
  7688. * M402: Retract Z Servo endstop if enabled
  7689. */
  7690. inline void gcode_M402() { STOW_PROBE(); }
  7691. #endif // HAS_BED_PROBE
  7692. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7693. /**
  7694. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  7695. */
  7696. inline void gcode_M404() {
  7697. if (parser.seen('W')) {
  7698. filament_width_nominal = parser.value_linear_units();
  7699. }
  7700. else {
  7701. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  7702. SERIAL_PROTOCOLLN(filament_width_nominal);
  7703. }
  7704. }
  7705. /**
  7706. * M405: Turn on filament sensor for control
  7707. */
  7708. inline void gcode_M405() {
  7709. // This is technically a linear measurement, but since it's quantized to centimeters and is a different
  7710. // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
  7711. if (parser.seen('D')) {
  7712. meas_delay_cm = parser.value_byte();
  7713. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  7714. }
  7715. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  7716. const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  7717. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  7718. measurement_delay[i] = temp_ratio;
  7719. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  7720. }
  7721. filament_sensor = true;
  7722. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7723. //SERIAL_PROTOCOL(filament_width_meas);
  7724. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  7725. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  7726. }
  7727. /**
  7728. * M406: Turn off filament sensor for control
  7729. */
  7730. inline void gcode_M406() { filament_sensor = false; }
  7731. /**
  7732. * M407: Get measured filament diameter on serial output
  7733. */
  7734. inline void gcode_M407() {
  7735. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7736. SERIAL_PROTOCOLLN(filament_width_meas);
  7737. }
  7738. #endif // FILAMENT_WIDTH_SENSOR
  7739. void quickstop_stepper() {
  7740. stepper.quick_stop();
  7741. stepper.synchronize();
  7742. set_current_from_steppers_for_axis(ALL_AXES);
  7743. SYNC_PLAN_POSITION_KINEMATIC();
  7744. }
  7745. #if HAS_LEVELING
  7746. /**
  7747. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  7748. *
  7749. * S[bool] Turns leveling on or off
  7750. * Z[height] Sets the Z fade height (0 or none to disable)
  7751. * V[bool] Verbose - Print the leveling grid
  7752. *
  7753. * With AUTO_BED_LEVELING_UBL only:
  7754. *
  7755. * L[index] Load UBL mesh from index (0 is default)
  7756. */
  7757. inline void gcode_M420() {
  7758. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7759. // L to load a mesh from the EEPROM
  7760. if (parser.seen('L')) {
  7761. #if ENABLED(EEPROM_SETTINGS)
  7762. const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.state.storage_slot;
  7763. const int16_t a = settings.calc_num_meshes();
  7764. if (!a) {
  7765. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7766. return;
  7767. }
  7768. if (!WITHIN(storage_slot, 0, a - 1)) {
  7769. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  7770. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  7771. return;
  7772. }
  7773. settings.load_mesh(storage_slot);
  7774. ubl.state.storage_slot = storage_slot;
  7775. #else
  7776. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7777. return;
  7778. #endif
  7779. }
  7780. // L to load a mesh from the EEPROM
  7781. if (parser.seen('L') || parser.seen('V')) {
  7782. ubl.display_map(0); // Currently only supports one map type
  7783. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7784. SERIAL_ECHOLNPAIR("ubl.state.storage_slot = ", ubl.state.storage_slot);
  7785. }
  7786. #endif // AUTO_BED_LEVELING_UBL
  7787. // V to print the matrix or mesh
  7788. if (parser.seen('V')) {
  7789. #if ABL_PLANAR
  7790. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  7791. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7792. if (leveling_is_valid()) {
  7793. print_bilinear_leveling_grid();
  7794. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7795. bed_level_virt_print();
  7796. #endif
  7797. }
  7798. #elif ENABLED(MESH_BED_LEVELING)
  7799. if (leveling_is_valid()) {
  7800. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7801. mbl_mesh_report();
  7802. }
  7803. #endif
  7804. }
  7805. const bool to_enable = parser.boolval('S');
  7806. if (parser.seen('S'))
  7807. set_bed_leveling_enabled(to_enable);
  7808. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7809. if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
  7810. #endif
  7811. const bool new_status = leveling_is_active();
  7812. if (to_enable && !new_status) {
  7813. SERIAL_ERROR_START();
  7814. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7815. }
  7816. SERIAL_ECHO_START();
  7817. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7818. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7819. SERIAL_ECHO_START();
  7820. SERIAL_ECHOPGM("Fade Height ");
  7821. if (planner.z_fade_height > 0.0)
  7822. SERIAL_ECHOLN(planner.z_fade_height);
  7823. else
  7824. SERIAL_ECHOLNPGM(MSG_OFF);
  7825. #endif
  7826. }
  7827. #endif
  7828. #if ENABLED(MESH_BED_LEVELING)
  7829. /**
  7830. * M421: Set a single Mesh Bed Leveling Z coordinate
  7831. *
  7832. * Usage:
  7833. * M421 X<linear> Y<linear> Z<linear>
  7834. * M421 X<linear> Y<linear> Q<offset>
  7835. * M421 I<xindex> J<yindex> Z<linear>
  7836. * M421 I<xindex> J<yindex> Q<offset>
  7837. */
  7838. inline void gcode_M421() {
  7839. const bool hasX = parser.seen('X'), hasI = parser.seen('I');
  7840. const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
  7841. const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
  7842. const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1;
  7843. const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
  7844. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  7845. SERIAL_ERROR_START();
  7846. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7847. }
  7848. else if (ix < 0 || iy < 0) {
  7849. SERIAL_ERROR_START();
  7850. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7851. }
  7852. else
  7853. mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  7854. }
  7855. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7856. /**
  7857. * M421: Set a single Mesh Bed Leveling Z coordinate
  7858. *
  7859. * Usage:
  7860. * M421 I<xindex> J<yindex> Z<linear>
  7861. * M421 I<xindex> J<yindex> Q<offset>
  7862. */
  7863. inline void gcode_M421() {
  7864. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  7865. const bool hasI = ix >= 0,
  7866. hasJ = iy >= 0,
  7867. hasZ = parser.seen('Z'),
  7868. hasQ = !hasZ && parser.seen('Q');
  7869. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  7870. SERIAL_ERROR_START();
  7871. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7872. }
  7873. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  7874. SERIAL_ERROR_START();
  7875. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7876. }
  7877. else {
  7878. z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  7879. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7880. bed_level_virt_interpolate();
  7881. #endif
  7882. }
  7883. }
  7884. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7885. /**
  7886. * M421: Set a single Mesh Bed Leveling Z coordinate
  7887. *
  7888. * Usage:
  7889. * M421 I<xindex> J<yindex> Z<linear>
  7890. * M421 I<xindex> J<yindex> Q<offset>
  7891. * M421 C Z<linear>
  7892. * M421 C Q<offset>
  7893. */
  7894. inline void gcode_M421() {
  7895. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  7896. const bool hasI = ix >= 0,
  7897. hasJ = iy >= 0,
  7898. hasC = parser.seen('C'),
  7899. hasZ = parser.seen('Z'),
  7900. hasQ = !hasZ && parser.seen('Q');
  7901. if (hasC) {
  7902. const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
  7903. ix = location.x_index;
  7904. iy = location.y_index;
  7905. }
  7906. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  7907. SERIAL_ERROR_START();
  7908. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7909. }
  7910. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  7911. SERIAL_ERROR_START();
  7912. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7913. }
  7914. else
  7915. ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  7916. }
  7917. #endif // AUTO_BED_LEVELING_UBL
  7918. #if HAS_M206_COMMAND
  7919. /**
  7920. * M428: Set home_offset based on the distance between the
  7921. * current_position and the nearest "reference point."
  7922. * If an axis is past center its endstop position
  7923. * is the reference-point. Otherwise it uses 0. This allows
  7924. * the Z offset to be set near the bed when using a max endstop.
  7925. *
  7926. * M428 can't be used more than 2cm away from 0 or an endstop.
  7927. *
  7928. * Use M206 to set these values directly.
  7929. */
  7930. inline void gcode_M428() {
  7931. bool err = false;
  7932. LOOP_XYZ(i) {
  7933. if (axis_homed[i]) {
  7934. const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7935. diff = base - RAW_POSITION(current_position[i], i);
  7936. if (WITHIN(diff, -20, 20)) {
  7937. set_home_offset((AxisEnum)i, diff);
  7938. }
  7939. else {
  7940. SERIAL_ERROR_START();
  7941. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7942. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7943. BUZZ(200, 40);
  7944. err = true;
  7945. break;
  7946. }
  7947. }
  7948. }
  7949. if (!err) {
  7950. SYNC_PLAN_POSITION_KINEMATIC();
  7951. report_current_position();
  7952. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  7953. BUZZ(100, 659);
  7954. BUZZ(100, 698);
  7955. }
  7956. }
  7957. #endif // HAS_M206_COMMAND
  7958. /**
  7959. * M500: Store settings in EEPROM
  7960. */
  7961. inline void gcode_M500() {
  7962. (void)settings.save();
  7963. }
  7964. /**
  7965. * M501: Read settings from EEPROM
  7966. */
  7967. inline void gcode_M501() {
  7968. (void)settings.load();
  7969. }
  7970. /**
  7971. * M502: Revert to default settings
  7972. */
  7973. inline void gcode_M502() {
  7974. (void)settings.reset();
  7975. }
  7976. #if DISABLED(DISABLE_M503)
  7977. /**
  7978. * M503: print settings currently in memory
  7979. */
  7980. inline void gcode_M503() {
  7981. (void)settings.report(!parser.boolval('S', true));
  7982. }
  7983. #endif
  7984. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7985. /**
  7986. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  7987. */
  7988. inline void gcode_M540() {
  7989. if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  7990. }
  7991. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  7992. #if HAS_BED_PROBE
  7993. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  7994. static float last_zoffset = NAN;
  7995. if (!isnan(last_zoffset)) {
  7996. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  7997. const float diff = zprobe_zoffset - last_zoffset;
  7998. #endif
  7999. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8000. // Correct bilinear grid for new probe offset
  8001. if (diff) {
  8002. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  8003. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  8004. z_values[x][y] -= diff;
  8005. }
  8006. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8007. bed_level_virt_interpolate();
  8008. #endif
  8009. #endif
  8010. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  8011. if (!no_babystep && leveling_is_active())
  8012. thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
  8013. #else
  8014. UNUSED(no_babystep);
  8015. #endif
  8016. #if ENABLED(DELTA) // correct the delta_height
  8017. home_offset[Z_AXIS] -= diff;
  8018. #endif
  8019. }
  8020. last_zoffset = zprobe_zoffset;
  8021. }
  8022. inline void gcode_M851() {
  8023. SERIAL_ECHO_START();
  8024. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  8025. if (parser.seen('Z')) {
  8026. const float value = parser.value_linear_units();
  8027. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  8028. zprobe_zoffset = value;
  8029. refresh_zprobe_zoffset();
  8030. SERIAL_ECHO(zprobe_zoffset);
  8031. }
  8032. else
  8033. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  8034. }
  8035. else
  8036. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  8037. SERIAL_EOL();
  8038. }
  8039. #endif // HAS_BED_PROBE
  8040. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  8041. /**
  8042. * M600: Pause for filament change
  8043. *
  8044. * E[distance] - Retract the filament this far (negative value)
  8045. * Z[distance] - Move the Z axis by this distance
  8046. * X[position] - Move to this X position, with Y
  8047. * Y[position] - Move to this Y position, with X
  8048. * U[distance] - Retract distance for removal (negative value) (manual reload)
  8049. * L[distance] - Extrude distance for insertion (positive value) (manual reload)
  8050. * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
  8051. *
  8052. * Default values are used for omitted arguments.
  8053. *
  8054. */
  8055. inline void gcode_M600() {
  8056. #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
  8057. // Don't allow filament change without homing first
  8058. if (axis_unhomed_error()) home_all_axes();
  8059. #endif
  8060. // Initial retract before move to filament change position
  8061. const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
  8062. #if defined(PAUSE_PARK_RETRACT_LENGTH) && PAUSE_PARK_RETRACT_LENGTH > 0
  8063. - (PAUSE_PARK_RETRACT_LENGTH)
  8064. #endif
  8065. ;
  8066. // Lift Z axis
  8067. const float z_lift = parser.linearval('Z', 0
  8068. #if defined(PAUSE_PARK_Z_ADD) && PAUSE_PARK_Z_ADD > 0
  8069. + PAUSE_PARK_Z_ADD
  8070. #endif
  8071. );
  8072. // Move XY axes to filament exchange position
  8073. const float x_pos = parser.linearval('X', 0
  8074. #ifdef PAUSE_PARK_X_POS
  8075. + PAUSE_PARK_X_POS
  8076. #endif
  8077. );
  8078. const float y_pos = parser.linearval('Y', 0
  8079. #ifdef PAUSE_PARK_Y_POS
  8080. + PAUSE_PARK_Y_POS
  8081. #endif
  8082. );
  8083. // Unload filament
  8084. const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
  8085. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  8086. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  8087. #endif
  8088. ;
  8089. // Load filament
  8090. const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  8091. #ifdef FILAMENT_CHANGE_LOAD_LENGTH
  8092. + FILAMENT_CHANGE_LOAD_LENGTH
  8093. #endif
  8094. ;
  8095. const int beep_count = parser.intval('B',
  8096. #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8097. FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8098. #else
  8099. -1
  8100. #endif
  8101. );
  8102. const bool job_running = print_job_timer.isRunning();
  8103. if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
  8104. wait_for_filament_reload(beep_count);
  8105. resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
  8106. }
  8107. // Resume the print job timer if it was running
  8108. if (job_running) print_job_timer.start();
  8109. }
  8110. #endif // ADVANCED_PAUSE_FEATURE
  8111. #if ENABLED(MK2_MULTIPLEXER)
  8112. inline void select_multiplexed_stepper(const uint8_t e) {
  8113. stepper.synchronize();
  8114. disable_e_steppers();
  8115. WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8116. WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8117. WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
  8118. safe_delay(100);
  8119. }
  8120. /**
  8121. * M702: Unload all extruders
  8122. */
  8123. inline void gcode_M702() {
  8124. for (uint8_t s = 0; s < E_STEPPERS; s++) {
  8125. select_multiplexed_stepper(e);
  8126. // TODO: standard unload filament function
  8127. // MK2 firmware behavior:
  8128. // - Make sure temperature is high enough
  8129. // - Raise Z to at least 15 to make room
  8130. // - Extrude 1cm of filament in 1 second
  8131. // - Under 230C quickly purge ~12mm, over 230C purge ~10mm
  8132. // - Change E max feedrate to 80, eject the filament from the tube. Sync.
  8133. // - Restore E max feedrate to 50
  8134. }
  8135. // Go back to the last active extruder
  8136. select_multiplexed_stepper(active_extruder);
  8137. disable_e_steppers();
  8138. }
  8139. #endif // MK2_MULTIPLEXER
  8140. #if ENABLED(DUAL_X_CARRIAGE)
  8141. /**
  8142. * M605: Set dual x-carriage movement mode
  8143. *
  8144. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  8145. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  8146. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  8147. * units x-offset and an optional differential hotend temperature of
  8148. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  8149. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  8150. *
  8151. * Note: the X axis should be homed after changing dual x-carriage mode.
  8152. */
  8153. inline void gcode_M605() {
  8154. stepper.synchronize();
  8155. if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
  8156. switch (dual_x_carriage_mode) {
  8157. case DXC_FULL_CONTROL_MODE:
  8158. case DXC_AUTO_PARK_MODE:
  8159. break;
  8160. case DXC_DUPLICATION_MODE:
  8161. if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
  8162. if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
  8163. SERIAL_ECHO_START();
  8164. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  8165. SERIAL_CHAR(' ');
  8166. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  8167. SERIAL_CHAR(',');
  8168. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  8169. SERIAL_CHAR(' ');
  8170. SERIAL_ECHO(duplicate_extruder_x_offset);
  8171. SERIAL_CHAR(',');
  8172. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  8173. break;
  8174. default:
  8175. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  8176. break;
  8177. }
  8178. active_extruder_parked = false;
  8179. extruder_duplication_enabled = false;
  8180. delayed_move_time = 0;
  8181. }
  8182. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  8183. inline void gcode_M605() {
  8184. stepper.synchronize();
  8185. extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
  8186. SERIAL_ECHO_START();
  8187. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  8188. }
  8189. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  8190. #if ENABLED(LIN_ADVANCE)
  8191. /**
  8192. * M900: Set and/or Get advance K factor and WH/D ratio
  8193. *
  8194. * K<factor> Set advance K factor
  8195. * R<ratio> Set ratio directly (overrides WH/D)
  8196. * W<width> H<height> D<diam> Set ratio from WH/D
  8197. */
  8198. inline void gcode_M900() {
  8199. stepper.synchronize();
  8200. const float newK = parser.floatval('K', -1);
  8201. if (newK >= 0) planner.extruder_advance_k = newK;
  8202. float newR = parser.floatval('R', -1);
  8203. if (newR < 0) {
  8204. const float newD = parser.floatval('D', -1),
  8205. newW = parser.floatval('W', -1),
  8206. newH = parser.floatval('H', -1);
  8207. if (newD >= 0 && newW >= 0 && newH >= 0)
  8208. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  8209. }
  8210. if (newR >= 0) planner.advance_ed_ratio = newR;
  8211. SERIAL_ECHO_START();
  8212. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  8213. SERIAL_ECHOPGM(" E/D=");
  8214. const float ratio = planner.advance_ed_ratio;
  8215. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  8216. SERIAL_EOL();
  8217. }
  8218. #endif // LIN_ADVANCE
  8219. #if ENABLED(HAVE_TMC2130)
  8220. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  8221. SERIAL_CHAR(name);
  8222. SERIAL_ECHOPGM(" axis driver current: ");
  8223. SERIAL_ECHOLN(st.getCurrent());
  8224. }
  8225. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  8226. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  8227. tmc2130_get_current(st, name);
  8228. }
  8229. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  8230. SERIAL_CHAR(name);
  8231. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  8232. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  8233. SERIAL_EOL();
  8234. }
  8235. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  8236. st.clear_otpw();
  8237. SERIAL_CHAR(name);
  8238. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  8239. }
  8240. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  8241. SERIAL_CHAR(name);
  8242. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  8243. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  8244. }
  8245. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  8246. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  8247. tmc2130_get_pwmthrs(st, name, spmm);
  8248. }
  8249. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  8250. SERIAL_CHAR(name);
  8251. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  8252. SERIAL_ECHOLN(st.sgt());
  8253. }
  8254. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  8255. st.sgt(sgt_val);
  8256. tmc2130_get_sgt(st, name);
  8257. }
  8258. /**
  8259. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8260. * Report driver currents when no axis specified
  8261. *
  8262. * S1: Enable automatic current control
  8263. * S0: Disable
  8264. */
  8265. inline void gcode_M906() {
  8266. uint16_t values[XYZE];
  8267. LOOP_XYZE(i)
  8268. values[i] = parser.intval(axis_codes[i]);
  8269. #if ENABLED(X_IS_TMC2130)
  8270. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  8271. else tmc2130_get_current(stepperX, 'X');
  8272. #endif
  8273. #if ENABLED(Y_IS_TMC2130)
  8274. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  8275. else tmc2130_get_current(stepperY, 'Y');
  8276. #endif
  8277. #if ENABLED(Z_IS_TMC2130)
  8278. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  8279. else tmc2130_get_current(stepperZ, 'Z');
  8280. #endif
  8281. #if ENABLED(E0_IS_TMC2130)
  8282. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  8283. else tmc2130_get_current(stepperE0, 'E');
  8284. #endif
  8285. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8286. if (parser.seen('S')) auto_current_control = parser.value_bool();
  8287. #endif
  8288. }
  8289. /**
  8290. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  8291. * The flag is held by the library and persist until manually cleared by M912
  8292. */
  8293. inline void gcode_M911() {
  8294. const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
  8295. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  8296. #if ENABLED(X_IS_TMC2130)
  8297. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  8298. #endif
  8299. #if ENABLED(Y_IS_TMC2130)
  8300. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  8301. #endif
  8302. #if ENABLED(Z_IS_TMC2130)
  8303. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  8304. #endif
  8305. #if ENABLED(E0_IS_TMC2130)
  8306. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  8307. #endif
  8308. }
  8309. /**
  8310. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  8311. */
  8312. inline void gcode_M912() {
  8313. const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
  8314. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  8315. #if ENABLED(X_IS_TMC2130)
  8316. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  8317. #endif
  8318. #if ENABLED(Y_IS_TMC2130)
  8319. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  8320. #endif
  8321. #if ENABLED(Z_IS_TMC2130)
  8322. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  8323. #endif
  8324. #if ENABLED(E0_IS_TMC2130)
  8325. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  8326. #endif
  8327. }
  8328. /**
  8329. * M913: Set HYBRID_THRESHOLD speed.
  8330. */
  8331. #if ENABLED(HYBRID_THRESHOLD)
  8332. inline void gcode_M913() {
  8333. uint16_t values[XYZE];
  8334. LOOP_XYZE(i)
  8335. values[i] = parser.intval(axis_codes[i]);
  8336. #if ENABLED(X_IS_TMC2130)
  8337. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  8338. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  8339. #endif
  8340. #if ENABLED(Y_IS_TMC2130)
  8341. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  8342. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  8343. #endif
  8344. #if ENABLED(Z_IS_TMC2130)
  8345. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  8346. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  8347. #endif
  8348. #if ENABLED(E0_IS_TMC2130)
  8349. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  8350. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  8351. #endif
  8352. }
  8353. #endif // HYBRID_THRESHOLD
  8354. /**
  8355. * M914: Set SENSORLESS_HOMING sensitivity.
  8356. */
  8357. #if ENABLED(SENSORLESS_HOMING)
  8358. inline void gcode_M914() {
  8359. #if ENABLED(X_IS_TMC2130)
  8360. if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
  8361. else tmc2130_get_sgt(stepperX, 'X');
  8362. #endif
  8363. #if ENABLED(Y_IS_TMC2130)
  8364. if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
  8365. else tmc2130_get_sgt(stepperY, 'Y');
  8366. #endif
  8367. }
  8368. #endif // SENSORLESS_HOMING
  8369. #endif // HAVE_TMC2130
  8370. /**
  8371. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  8372. */
  8373. inline void gcode_M907() {
  8374. #if HAS_DIGIPOTSS
  8375. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
  8376. if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
  8377. if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  8378. #elif HAS_MOTOR_CURRENT_PWM
  8379. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  8380. if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
  8381. #endif
  8382. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  8383. if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
  8384. #endif
  8385. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  8386. if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
  8387. #endif
  8388. #endif
  8389. #if ENABLED(DIGIPOT_I2C)
  8390. // this one uses actual amps in floating point
  8391. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
  8392. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  8393. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  8394. #endif
  8395. #if ENABLED(DAC_STEPPER_CURRENT)
  8396. if (parser.seen('S')) {
  8397. const float dac_percent = parser.value_float();
  8398. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  8399. }
  8400. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  8401. #endif
  8402. }
  8403. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8404. /**
  8405. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  8406. */
  8407. inline void gcode_M908() {
  8408. #if HAS_DIGIPOTSS
  8409. stepper.digitalPotWrite(
  8410. parser.intval('P'),
  8411. parser.intval('S')
  8412. );
  8413. #endif
  8414. #ifdef DAC_STEPPER_CURRENT
  8415. dac_current_raw(
  8416. parser.byteval('P', -1),
  8417. parser.ushortval('S', 0)
  8418. );
  8419. #endif
  8420. }
  8421. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8422. inline void gcode_M909() { dac_print_values(); }
  8423. inline void gcode_M910() { dac_commit_eeprom(); }
  8424. #endif
  8425. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8426. #if HAS_MICROSTEPS
  8427. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8428. inline void gcode_M350() {
  8429. if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
  8430. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
  8431. if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
  8432. stepper.microstep_readings();
  8433. }
  8434. /**
  8435. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  8436. * S# determines MS1 or MS2, X# sets the pin high/low.
  8437. */
  8438. inline void gcode_M351() {
  8439. if (parser.seenval('S')) switch (parser.value_byte()) {
  8440. case 1:
  8441. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
  8442. if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
  8443. break;
  8444. case 2:
  8445. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
  8446. if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
  8447. break;
  8448. }
  8449. stepper.microstep_readings();
  8450. }
  8451. #endif // HAS_MICROSTEPS
  8452. #if HAS_CASE_LIGHT
  8453. #ifndef INVERT_CASE_LIGHT
  8454. #define INVERT_CASE_LIGHT false
  8455. #endif
  8456. int case_light_brightness; // LCD routine wants INT
  8457. bool case_light_on;
  8458. void update_case_light() {
  8459. pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
  8460. uint8_t case_light_bright = (uint8_t)case_light_brightness;
  8461. if (case_light_on) {
  8462. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  8463. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness );
  8464. }
  8465. else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
  8466. }
  8467. else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  8468. }
  8469. #endif // HAS_CASE_LIGHT
  8470. /**
  8471. * M355: Turn case light on/off and set brightness
  8472. *
  8473. * P<byte> Set case light brightness (PWM pin required - ignored otherwise)
  8474. *
  8475. * S<bool> Set case light on/off
  8476. *
  8477. * When S turns on the light on a PWM pin then the current brightness level is used/restored
  8478. *
  8479. * M355 P200 S0 turns off the light & sets the brightness level
  8480. * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
  8481. */
  8482. inline void gcode_M355() {
  8483. #if HAS_CASE_LIGHT
  8484. uint8_t args = 0;
  8485. if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
  8486. if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
  8487. if (args) update_case_light();
  8488. // always report case light status
  8489. SERIAL_ECHO_START();
  8490. if (!case_light_on) {
  8491. SERIAL_ECHOLN("Case light: off");
  8492. }
  8493. else {
  8494. if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
  8495. else SERIAL_ECHOLNPAIR("Case light: ", case_light_brightness);
  8496. }
  8497. #else
  8498. SERIAL_ERROR_START();
  8499. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  8500. #endif // HAS_CASE_LIGHT
  8501. }
  8502. #if ENABLED(MIXING_EXTRUDER)
  8503. /**
  8504. * M163: Set a single mix factor for a mixing extruder
  8505. * This is called "weight" by some systems.
  8506. *
  8507. * S[index] The channel index to set
  8508. * P[float] The mix value
  8509. *
  8510. */
  8511. inline void gcode_M163() {
  8512. const int mix_index = parser.intval('S');
  8513. if (mix_index < MIXING_STEPPERS) {
  8514. float mix_value = parser.floatval('P');
  8515. NOLESS(mix_value, 0.0);
  8516. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  8517. }
  8518. }
  8519. #if MIXING_VIRTUAL_TOOLS > 1
  8520. /**
  8521. * M164: Store the current mix factors as a virtual tool.
  8522. *
  8523. * S[index] The virtual tool to store
  8524. *
  8525. */
  8526. inline void gcode_M164() {
  8527. const int tool_index = parser.intval('S');
  8528. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  8529. normalize_mix();
  8530. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8531. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  8532. }
  8533. }
  8534. #endif
  8535. #if ENABLED(DIRECT_MIXING_IN_G1)
  8536. /**
  8537. * M165: Set multiple mix factors for a mixing extruder.
  8538. * Factors that are left out will be set to 0.
  8539. * All factors together must add up to 1.0.
  8540. *
  8541. * A[factor] Mix factor for extruder stepper 1
  8542. * B[factor] Mix factor for extruder stepper 2
  8543. * C[factor] Mix factor for extruder stepper 3
  8544. * D[factor] Mix factor for extruder stepper 4
  8545. * H[factor] Mix factor for extruder stepper 5
  8546. * I[factor] Mix factor for extruder stepper 6
  8547. *
  8548. */
  8549. inline void gcode_M165() { gcode_get_mix(); }
  8550. #endif
  8551. #endif // MIXING_EXTRUDER
  8552. /**
  8553. * M999: Restart after being stopped
  8554. *
  8555. * Default behaviour is to flush the serial buffer and request
  8556. * a resend to the host starting on the last N line received.
  8557. *
  8558. * Sending "M999 S1" will resume printing without flushing the
  8559. * existing command buffer.
  8560. *
  8561. */
  8562. inline void gcode_M999() {
  8563. Running = true;
  8564. lcd_reset_alert_level();
  8565. if (parser.boolval('S')) return;
  8566. // gcode_LastN = Stopped_gcode_LastN;
  8567. FlushSerialRequestResend();
  8568. }
  8569. #if ENABLED(SWITCHING_EXTRUDER)
  8570. #if EXTRUDERS > 3
  8571. #define REQ_ANGLES 4
  8572. #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
  8573. #else
  8574. #define REQ_ANGLES 2
  8575. #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
  8576. #endif
  8577. inline void move_extruder_servo(const uint8_t e) {
  8578. constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  8579. static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  8580. stepper.synchronize();
  8581. #if EXTRUDERS & 1
  8582. if (e < EXTRUDERS - 1)
  8583. #endif
  8584. {
  8585. MOVE_SERVO(_SERVO_NR, angles[e]);
  8586. safe_delay(500);
  8587. }
  8588. }
  8589. #endif // SWITCHING_EXTRUDER
  8590. #if ENABLED(SWITCHING_NOZZLE)
  8591. inline void move_nozzle_servo(const uint8_t e) {
  8592. const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  8593. stepper.synchronize();
  8594. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  8595. safe_delay(500);
  8596. }
  8597. #endif
  8598. inline void invalid_extruder_error(const uint8_t e) {
  8599. SERIAL_ECHO_START();
  8600. SERIAL_CHAR('T');
  8601. SERIAL_ECHO_F(e, DEC);
  8602. SERIAL_CHAR(' ');
  8603. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  8604. }
  8605. /**
  8606. * Perform a tool-change, which may result in moving the
  8607. * previous tool out of the way and the new tool into place.
  8608. */
  8609. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  8610. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8611. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  8612. return invalid_extruder_error(tmp_extruder);
  8613. // T0-Tnnn: Switch virtual tool by changing the mix
  8614. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  8615. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  8616. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8617. if (tmp_extruder >= EXTRUDERS)
  8618. return invalid_extruder_error(tmp_extruder);
  8619. #if HOTENDS > 1
  8620. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  8621. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  8622. if (tmp_extruder != active_extruder) {
  8623. if (!no_move && axis_unhomed_error()) {
  8624. SERIAL_ECHOLNPGM("No move on toolchange");
  8625. no_move = true;
  8626. }
  8627. // Save current position to destination, for use later
  8628. set_destination_to_current();
  8629. #if ENABLED(DUAL_X_CARRIAGE)
  8630. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8631. if (DEBUGGING(LEVELING)) {
  8632. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  8633. switch (dual_x_carriage_mode) {
  8634. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  8635. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  8636. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  8637. }
  8638. }
  8639. #endif
  8640. const float xhome = x_home_pos(active_extruder);
  8641. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  8642. && IsRunning()
  8643. && (delayed_move_time || current_position[X_AXIS] != xhome)
  8644. ) {
  8645. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  8646. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8647. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  8648. #endif
  8649. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8650. if (DEBUGGING(LEVELING)) {
  8651. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  8652. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  8653. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  8654. }
  8655. #endif
  8656. // Park old head: 1) raise 2) move to park position 3) lower
  8657. for (uint8_t i = 0; i < 3; i++)
  8658. planner.buffer_line(
  8659. i == 0 ? current_position[X_AXIS] : xhome,
  8660. current_position[Y_AXIS],
  8661. i == 2 ? current_position[Z_AXIS] : raised_z,
  8662. current_position[E_AXIS],
  8663. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  8664. active_extruder
  8665. );
  8666. stepper.synchronize();
  8667. }
  8668. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  8669. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  8670. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  8671. // Activate the new extruder
  8672. active_extruder = tmp_extruder;
  8673. // This function resets the max/min values - the current position may be overwritten below.
  8674. set_axis_is_at_home(X_AXIS);
  8675. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8676. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  8677. #endif
  8678. // Only when auto-parking are carriages safe to move
  8679. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  8680. switch (dual_x_carriage_mode) {
  8681. case DXC_FULL_CONTROL_MODE:
  8682. // New current position is the position of the activated extruder
  8683. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8684. // Save the inactive extruder's position (from the old current_position)
  8685. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8686. break;
  8687. case DXC_AUTO_PARK_MODE:
  8688. // record raised toolhead position for use by unpark
  8689. COPY(raised_parked_position, current_position);
  8690. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  8691. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8692. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8693. #endif
  8694. active_extruder_parked = true;
  8695. delayed_move_time = 0;
  8696. break;
  8697. case DXC_DUPLICATION_MODE:
  8698. // If the new extruder is the left one, set it "parked"
  8699. // This triggers the second extruder to move into the duplication position
  8700. active_extruder_parked = (active_extruder == 0);
  8701. if (active_extruder_parked)
  8702. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8703. else
  8704. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  8705. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8706. extruder_duplication_enabled = false;
  8707. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8708. if (DEBUGGING(LEVELING)) {
  8709. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  8710. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  8711. }
  8712. #endif
  8713. break;
  8714. }
  8715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8716. if (DEBUGGING(LEVELING)) {
  8717. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  8718. DEBUG_POS("New extruder (parked)", current_position);
  8719. }
  8720. #endif
  8721. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  8722. #else // !DUAL_X_CARRIAGE
  8723. #if ENABLED(SWITCHING_NOZZLE)
  8724. #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
  8725. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  8726. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  8727. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  8728. // Always raise by some amount (destination copied from current_position earlier)
  8729. current_position[Z_AXIS] += z_raise;
  8730. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8731. move_nozzle_servo(tmp_extruder);
  8732. #endif
  8733. /**
  8734. * Set current_position to the position of the new nozzle.
  8735. * Offsets are based on linear distance, so we need to get
  8736. * the resulting position in coordinate space.
  8737. *
  8738. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  8739. * - With mesh leveling, update Z for the new position
  8740. * - Otherwise, just use the raw linear distance
  8741. *
  8742. * Software endstops are altered here too. Consider a case where:
  8743. * E0 at X=0 ... E1 at X=10
  8744. * When we switch to E1 now X=10, but E1 can't move left.
  8745. * To express this we apply the change in XY to the software endstops.
  8746. * E1 can move farther right than E0, so the right limit is extended.
  8747. *
  8748. * Note that we don't adjust the Z software endstops. Why not?
  8749. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  8750. * because the bed is 1mm lower at the new position. As long as
  8751. * the first nozzle is out of the way, the carriage should be
  8752. * allowed to move 1mm lower. This technically "breaks" the
  8753. * Z software endstop. But this is technically correct (and
  8754. * there is no viable alternative).
  8755. */
  8756. #if ABL_PLANAR
  8757. // Offset extruder, make sure to apply the bed level rotation matrix
  8758. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  8759. hotend_offset[Y_AXIS][tmp_extruder],
  8760. 0),
  8761. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  8762. hotend_offset[Y_AXIS][active_extruder],
  8763. 0),
  8764. offset_vec = tmp_offset_vec - act_offset_vec;
  8765. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8766. if (DEBUGGING(LEVELING)) {
  8767. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  8768. act_offset_vec.debug(PSTR("act_offset_vec"));
  8769. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  8770. }
  8771. #endif
  8772. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  8773. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8774. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  8775. #endif
  8776. // Adjustments to the current position
  8777. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  8778. current_position[Z_AXIS] += offset_vec.z;
  8779. #else // !ABL_PLANAR
  8780. const float xydiff[2] = {
  8781. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  8782. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  8783. };
  8784. #if ENABLED(MESH_BED_LEVELING)
  8785. if (leveling_is_active()) {
  8786. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8787. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  8788. #endif
  8789. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  8790. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  8791. z1 = current_position[Z_AXIS], z2 = z1;
  8792. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  8793. planner.apply_leveling(x2, y2, z2);
  8794. current_position[Z_AXIS] += z2 - z1;
  8795. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8796. if (DEBUGGING(LEVELING))
  8797. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  8798. #endif
  8799. }
  8800. #endif // MESH_BED_LEVELING
  8801. #endif // !HAS_ABL
  8802. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8803. if (DEBUGGING(LEVELING)) {
  8804. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  8805. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  8806. SERIAL_ECHOLNPGM(" }");
  8807. }
  8808. #endif
  8809. // The newly-selected extruder XY is actually at...
  8810. current_position[X_AXIS] += xydiff[X_AXIS];
  8811. current_position[Y_AXIS] += xydiff[Y_AXIS];
  8812. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  8813. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  8814. #if HAS_POSITION_SHIFT
  8815. position_shift[i] += xydiff[i];
  8816. #endif
  8817. update_software_endstops((AxisEnum)i);
  8818. }
  8819. #endif
  8820. // Set the new active extruder
  8821. active_extruder = tmp_extruder;
  8822. #endif // !DUAL_X_CARRIAGE
  8823. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8824. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  8825. #endif
  8826. // Tell the planner the new "current position"
  8827. SYNC_PLAN_POSITION_KINEMATIC();
  8828. // Move to the "old position" (move the extruder into place)
  8829. if (!no_move && IsRunning()) {
  8830. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8831. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  8832. #endif
  8833. prepare_move_to_destination();
  8834. }
  8835. #if ENABLED(SWITCHING_NOZZLE)
  8836. // Move back down, if needed. (Including when the new tool is higher.)
  8837. if (z_raise != z_diff) {
  8838. destination[Z_AXIS] += z_diff;
  8839. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  8840. prepare_move_to_destination();
  8841. }
  8842. #endif
  8843. } // (tmp_extruder != active_extruder)
  8844. stepper.synchronize();
  8845. #if ENABLED(EXT_SOLENOID)
  8846. disable_all_solenoids();
  8847. enable_solenoid_on_active_extruder();
  8848. #endif // EXT_SOLENOID
  8849. feedrate_mm_s = old_feedrate_mm_s;
  8850. #else // HOTENDS <= 1
  8851. UNUSED(fr_mm_s);
  8852. UNUSED(no_move);
  8853. #if ENABLED(MK2_MULTIPLEXER)
  8854. if (tmp_extruder >= E_STEPPERS)
  8855. return invalid_extruder_error(tmp_extruder);
  8856. select_multiplexed_stepper(tmp_extruder);
  8857. #endif
  8858. #endif // HOTENDS <= 1
  8859. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  8860. stepper.synchronize();
  8861. move_extruder_servo(tmp_extruder);
  8862. #endif
  8863. active_extruder = tmp_extruder;
  8864. SERIAL_ECHO_START();
  8865. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  8866. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8867. }
  8868. /**
  8869. * T0-T3: Switch tool, usually switching extruders
  8870. *
  8871. * F[units/min] Set the movement feedrate
  8872. * S1 Don't move the tool in XY after change
  8873. */
  8874. inline void gcode_T(uint8_t tmp_extruder) {
  8875. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8876. if (DEBUGGING(LEVELING)) {
  8877. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  8878. SERIAL_CHAR(')');
  8879. SERIAL_EOL();
  8880. DEBUG_POS("BEFORE", current_position);
  8881. }
  8882. #endif
  8883. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  8884. tool_change(tmp_extruder);
  8885. #elif HOTENDS > 1
  8886. tool_change(
  8887. tmp_extruder,
  8888. MMM_TO_MMS(parser.linearval('F')),
  8889. (tmp_extruder == active_extruder) || parser.boolval('S')
  8890. );
  8891. #endif
  8892. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8893. if (DEBUGGING(LEVELING)) {
  8894. DEBUG_POS("AFTER", current_position);
  8895. SERIAL_ECHOLNPGM("<<< gcode_T");
  8896. }
  8897. #endif
  8898. }
  8899. /**
  8900. * Process a single command and dispatch it to its handler
  8901. * This is called from the main loop()
  8902. */
  8903. void process_next_command() {
  8904. char * const current_command = command_queue[cmd_queue_index_r];
  8905. if (DEBUGGING(ECHO)) {
  8906. SERIAL_ECHO_START();
  8907. SERIAL_ECHOLN(current_command);
  8908. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8909. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  8910. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  8911. #endif
  8912. }
  8913. KEEPALIVE_STATE(IN_HANDLER);
  8914. // Parse the next command in the queue
  8915. parser.parse(current_command);
  8916. // Handle a known G, M, or T
  8917. switch (parser.command_letter) {
  8918. case 'G': switch (parser.codenum) {
  8919. // G0, G1
  8920. case 0:
  8921. case 1:
  8922. #if IS_SCARA
  8923. gcode_G0_G1(parser.codenum == 0);
  8924. #else
  8925. gcode_G0_G1();
  8926. #endif
  8927. break;
  8928. // G2, G3
  8929. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  8930. case 2: // G2: CW ARC
  8931. case 3: // G3: CCW ARC
  8932. gcode_G2_G3(parser.codenum == 2);
  8933. break;
  8934. #endif
  8935. // G4 Dwell
  8936. case 4:
  8937. gcode_G4();
  8938. break;
  8939. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8940. case 5: // G5: Cubic B_spline
  8941. gcode_G5();
  8942. break;
  8943. #endif // BEZIER_CURVE_SUPPORT
  8944. #if ENABLED(FWRETRACT)
  8945. case 10: // G10: retract
  8946. gcode_G10();
  8947. break;
  8948. case 11: // G11: retract_recover
  8949. gcode_G11();
  8950. break;
  8951. #endif // FWRETRACT
  8952. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  8953. case 12:
  8954. gcode_G12(); // G12: Nozzle Clean
  8955. break;
  8956. #endif // NOZZLE_CLEAN_FEATURE
  8957. #if ENABLED(CNC_WORKSPACE_PLANES)
  8958. case 17: // G17: Select Plane XY
  8959. gcode_G17();
  8960. break;
  8961. case 18: // G18: Select Plane ZX
  8962. gcode_G18();
  8963. break;
  8964. case 19: // G19: Select Plane YZ
  8965. gcode_G19();
  8966. break;
  8967. #endif // CNC_WORKSPACE_PLANES
  8968. #if ENABLED(INCH_MODE_SUPPORT)
  8969. case 20: //G20: Inch Mode
  8970. gcode_G20();
  8971. break;
  8972. case 21: //G21: MM Mode
  8973. gcode_G21();
  8974. break;
  8975. #endif // INCH_MODE_SUPPORT
  8976. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  8977. case 26: // G26: Mesh Validation Pattern generation
  8978. gcode_G26();
  8979. break;
  8980. #endif // AUTO_BED_LEVELING_UBL
  8981. #if ENABLED(NOZZLE_PARK_FEATURE)
  8982. case 27: // G27: Nozzle Park
  8983. gcode_G27();
  8984. break;
  8985. #endif // NOZZLE_PARK_FEATURE
  8986. case 28: // G28: Home all axes, one at a time
  8987. gcode_G28(false);
  8988. break;
  8989. #if HAS_LEVELING
  8990. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  8991. // or provides access to the UBL System if enabled.
  8992. gcode_G29();
  8993. break;
  8994. #endif // HAS_LEVELING
  8995. #if HAS_BED_PROBE
  8996. case 30: // G30 Single Z probe
  8997. gcode_G30();
  8998. break;
  8999. #if ENABLED(Z_PROBE_SLED)
  9000. case 31: // G31: dock the sled
  9001. gcode_G31();
  9002. break;
  9003. case 32: // G32: undock the sled
  9004. gcode_G32();
  9005. break;
  9006. #endif // Z_PROBE_SLED
  9007. #endif // HAS_BED_PROBE
  9008. #if PROBE_SELECTED
  9009. #if ENABLED(DELTA_AUTO_CALIBRATION)
  9010. case 33: // G33: Delta Auto-Calibration
  9011. gcode_G33();
  9012. break;
  9013. #endif // DELTA_AUTO_CALIBRATION
  9014. #endif // PROBE_SELECTED
  9015. #if ENABLED(G38_PROBE_TARGET)
  9016. case 38: // G38.2 & G38.3
  9017. if (parser.subcode == 2 || parser.subcode == 3)
  9018. gcode_G38(parser.subcode == 2);
  9019. break;
  9020. #endif
  9021. case 90: // G90
  9022. relative_mode = false;
  9023. break;
  9024. case 91: // G91
  9025. relative_mode = true;
  9026. break;
  9027. case 92: // G92
  9028. gcode_G92();
  9029. break;
  9030. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
  9031. case 42:
  9032. gcode_G42();
  9033. break;
  9034. #endif
  9035. #if ENABLED(DEBUG_GCODE_PARSER)
  9036. case 800:
  9037. parser.debug(); // GCode Parser Test for G
  9038. break;
  9039. #endif
  9040. }
  9041. break;
  9042. case 'M': switch (parser.codenum) {
  9043. #if HAS_RESUME_CONTINUE
  9044. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  9045. case 1: // M1: Conditional stop - Wait for user button press on LCD
  9046. gcode_M0_M1();
  9047. break;
  9048. #endif // ULTIPANEL
  9049. #if ENABLED(SPINDLE_LASER_ENABLE)
  9050. case 3:
  9051. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  9052. break; // synchronizes with movement commands
  9053. case 4:
  9054. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  9055. break; // synchronizes with movement commands
  9056. case 5:
  9057. gcode_M5(); // M5 - turn spindle/laser off
  9058. break; // synchronizes with movement commands
  9059. #endif
  9060. case 17: // M17: Enable all stepper motors
  9061. gcode_M17();
  9062. break;
  9063. #if ENABLED(SDSUPPORT)
  9064. case 20: // M20: list SD card
  9065. gcode_M20(); break;
  9066. case 21: // M21: init SD card
  9067. gcode_M21(); break;
  9068. case 22: // M22: release SD card
  9069. gcode_M22(); break;
  9070. case 23: // M23: Select file
  9071. gcode_M23(); break;
  9072. case 24: // M24: Start SD print
  9073. gcode_M24(); break;
  9074. case 25: // M25: Pause SD print
  9075. gcode_M25(); break;
  9076. case 26: // M26: Set SD index
  9077. gcode_M26(); break;
  9078. case 27: // M27: Get SD status
  9079. gcode_M27(); break;
  9080. case 28: // M28: Start SD write
  9081. gcode_M28(); break;
  9082. case 29: // M29: Stop SD write
  9083. gcode_M29(); break;
  9084. case 30: // M30 <filename> Delete File
  9085. gcode_M30(); break;
  9086. case 32: // M32: Select file and start SD print
  9087. gcode_M32(); break;
  9088. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  9089. case 33: // M33: Get the long full path to a file or folder
  9090. gcode_M33(); break;
  9091. #endif
  9092. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  9093. case 34: //M34 - Set SD card sorting options
  9094. gcode_M34(); break;
  9095. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  9096. case 928: // M928: Start SD write
  9097. gcode_M928(); break;
  9098. #endif // SDSUPPORT
  9099. case 31: // M31: Report time since the start of SD print or last M109
  9100. gcode_M31(); break;
  9101. case 42: // M42: Change pin state
  9102. gcode_M42(); break;
  9103. #if ENABLED(PINS_DEBUGGING)
  9104. case 43: // M43: Read pin state
  9105. gcode_M43(); break;
  9106. #endif
  9107. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  9108. case 48: // M48: Z probe repeatability test
  9109. gcode_M48();
  9110. break;
  9111. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  9112. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  9113. case 49: // M49: Turn on or off G26 debug flag for verbose output
  9114. gcode_M49();
  9115. break;
  9116. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  9117. case 75: // M75: Start print timer
  9118. gcode_M75(); break;
  9119. case 76: // M76: Pause print timer
  9120. gcode_M76(); break;
  9121. case 77: // M77: Stop print timer
  9122. gcode_M77(); break;
  9123. #if ENABLED(PRINTCOUNTER)
  9124. case 78: // M78: Show print statistics
  9125. gcode_M78(); break;
  9126. #endif
  9127. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9128. case 100: // M100: Free Memory Report
  9129. gcode_M100();
  9130. break;
  9131. #endif
  9132. case 104: // M104: Set hot end temperature
  9133. gcode_M104();
  9134. break;
  9135. case 110: // M110: Set Current Line Number
  9136. gcode_M110();
  9137. break;
  9138. case 111: // M111: Set debug level
  9139. gcode_M111();
  9140. break;
  9141. #if DISABLED(EMERGENCY_PARSER)
  9142. case 108: // M108: Cancel Waiting
  9143. gcode_M108();
  9144. break;
  9145. case 112: // M112: Emergency Stop
  9146. gcode_M112();
  9147. break;
  9148. case 410: // M410 quickstop - Abort all the planned moves.
  9149. gcode_M410();
  9150. break;
  9151. #endif
  9152. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  9153. case 113: // M113: Set Host Keepalive interval
  9154. gcode_M113();
  9155. break;
  9156. #endif
  9157. case 140: // M140: Set bed temperature
  9158. gcode_M140();
  9159. break;
  9160. case 105: // M105: Report current temperature
  9161. gcode_M105();
  9162. KEEPALIVE_STATE(NOT_BUSY);
  9163. return; // "ok" already printed
  9164. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9165. case 155: // M155: Set temperature auto-report interval
  9166. gcode_M155();
  9167. break;
  9168. #endif
  9169. case 109: // M109: Wait for hotend temperature to reach target
  9170. gcode_M109();
  9171. break;
  9172. #if HAS_TEMP_BED
  9173. case 190: // M190: Wait for bed temperature to reach target
  9174. gcode_M190();
  9175. break;
  9176. #endif // HAS_TEMP_BED
  9177. #if FAN_COUNT > 0
  9178. case 106: // M106: Fan On
  9179. gcode_M106();
  9180. break;
  9181. case 107: // M107: Fan Off
  9182. gcode_M107();
  9183. break;
  9184. #endif // FAN_COUNT > 0
  9185. #if ENABLED(PARK_HEAD_ON_PAUSE)
  9186. case 125: // M125: Store current position and move to filament change position
  9187. gcode_M125(); break;
  9188. #endif
  9189. #if ENABLED(BARICUDA)
  9190. // PWM for HEATER_1_PIN
  9191. #if HAS_HEATER_1
  9192. case 126: // M126: valve open
  9193. gcode_M126();
  9194. break;
  9195. case 127: // M127: valve closed
  9196. gcode_M127();
  9197. break;
  9198. #endif // HAS_HEATER_1
  9199. // PWM for HEATER_2_PIN
  9200. #if HAS_HEATER_2
  9201. case 128: // M128: valve open
  9202. gcode_M128();
  9203. break;
  9204. case 129: // M129: valve closed
  9205. gcode_M129();
  9206. break;
  9207. #endif // HAS_HEATER_2
  9208. #endif // BARICUDA
  9209. #if HAS_POWER_SWITCH
  9210. case 80: // M80: Turn on Power Supply
  9211. gcode_M80();
  9212. break;
  9213. #endif // HAS_POWER_SWITCH
  9214. case 81: // M81: Turn off Power, including Power Supply, if possible
  9215. gcode_M81();
  9216. break;
  9217. case 82: // M82: Set E axis normal mode (same as other axes)
  9218. gcode_M82();
  9219. break;
  9220. case 83: // M83: Set E axis relative mode
  9221. gcode_M83();
  9222. break;
  9223. case 18: // M18 => M84
  9224. case 84: // M84: Disable all steppers or set timeout
  9225. gcode_M18_M84();
  9226. break;
  9227. case 85: // M85: Set inactivity stepper shutdown timeout
  9228. gcode_M85();
  9229. break;
  9230. case 92: // M92: Set the steps-per-unit for one or more axes
  9231. gcode_M92();
  9232. break;
  9233. case 114: // M114: Report current position
  9234. gcode_M114();
  9235. break;
  9236. case 115: // M115: Report capabilities
  9237. gcode_M115();
  9238. break;
  9239. case 117: // M117: Set LCD message text, if possible
  9240. gcode_M117();
  9241. break;
  9242. case 118: // M118: Display a message in the host console
  9243. gcode_M118();
  9244. break;
  9245. case 119: // M119: Report endstop states
  9246. gcode_M119();
  9247. break;
  9248. case 120: // M120: Enable endstops
  9249. gcode_M120();
  9250. break;
  9251. case 121: // M121: Disable endstops
  9252. gcode_M121();
  9253. break;
  9254. #if ENABLED(ULTIPANEL)
  9255. case 145: // M145: Set material heatup parameters
  9256. gcode_M145();
  9257. break;
  9258. #endif
  9259. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  9260. case 149: // M149: Set temperature units
  9261. gcode_M149();
  9262. break;
  9263. #endif
  9264. #if HAS_COLOR_LEDS
  9265. case 150: // M150: Set Status LED Color
  9266. gcode_M150();
  9267. break;
  9268. #endif // HAS_COLOR_LEDS
  9269. #if ENABLED(MIXING_EXTRUDER)
  9270. case 163: // M163: Set a component weight for mixing extruder
  9271. gcode_M163();
  9272. break;
  9273. #if MIXING_VIRTUAL_TOOLS > 1
  9274. case 164: // M164: Save current mix as a virtual extruder
  9275. gcode_M164();
  9276. break;
  9277. #endif
  9278. #if ENABLED(DIRECT_MIXING_IN_G1)
  9279. case 165: // M165: Set multiple mix weights
  9280. gcode_M165();
  9281. break;
  9282. #endif
  9283. #endif
  9284. case 200: // M200: Set filament diameter, E to cubic units
  9285. gcode_M200();
  9286. break;
  9287. case 201: // M201: Set max acceleration for print moves (units/s^2)
  9288. gcode_M201();
  9289. break;
  9290. #if 0 // Not used for Sprinter/grbl gen6
  9291. case 202: // M202
  9292. gcode_M202();
  9293. break;
  9294. #endif
  9295. case 203: // M203: Set max feedrate (units/sec)
  9296. gcode_M203();
  9297. break;
  9298. case 204: // M204: Set acceleration
  9299. gcode_M204();
  9300. break;
  9301. case 205: //M205: Set advanced settings
  9302. gcode_M205();
  9303. break;
  9304. #if HAS_M206_COMMAND
  9305. case 206: // M206: Set home offsets
  9306. gcode_M206();
  9307. break;
  9308. #endif
  9309. #if ENABLED(DELTA)
  9310. case 665: // M665: Set delta configurations
  9311. gcode_M665();
  9312. break;
  9313. #endif
  9314. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  9315. case 666: // M666: Set delta or dual endstop adjustment
  9316. gcode_M666();
  9317. break;
  9318. #endif
  9319. #if ENABLED(FWRETRACT)
  9320. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  9321. gcode_M207();
  9322. break;
  9323. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  9324. gcode_M208();
  9325. break;
  9326. case 209: // M209: Turn Automatic Retract Detection on/off
  9327. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209();
  9328. break;
  9329. #endif // FWRETRACT
  9330. case 211: // M211: Enable, Disable, and/or Report software endstops
  9331. gcode_M211();
  9332. break;
  9333. #if HOTENDS > 1
  9334. case 218: // M218: Set a tool offset
  9335. gcode_M218();
  9336. break;
  9337. #endif
  9338. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  9339. gcode_M220();
  9340. break;
  9341. case 221: // M221: Set Flow Percentage
  9342. gcode_M221();
  9343. break;
  9344. case 226: // M226: Wait until a pin reaches a state
  9345. gcode_M226();
  9346. break;
  9347. #if HAS_SERVOS
  9348. case 280: // M280: Set servo position absolute
  9349. gcode_M280();
  9350. break;
  9351. #endif // HAS_SERVOS
  9352. #if HAS_BUZZER
  9353. case 300: // M300: Play beep tone
  9354. gcode_M300();
  9355. break;
  9356. #endif // HAS_BUZZER
  9357. #if ENABLED(PIDTEMP)
  9358. case 301: // M301: Set hotend PID parameters
  9359. gcode_M301();
  9360. break;
  9361. #endif // PIDTEMP
  9362. #if ENABLED(PIDTEMPBED)
  9363. case 304: // M304: Set bed PID parameters
  9364. gcode_M304();
  9365. break;
  9366. #endif // PIDTEMPBED
  9367. #if defined(CHDK) || HAS_PHOTOGRAPH
  9368. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  9369. gcode_M240();
  9370. break;
  9371. #endif // CHDK || PHOTOGRAPH_PIN
  9372. #if HAS_LCD_CONTRAST
  9373. case 250: // M250: Set LCD contrast
  9374. gcode_M250();
  9375. break;
  9376. #endif // HAS_LCD_CONTRAST
  9377. #if ENABLED(EXPERIMENTAL_I2CBUS)
  9378. case 260: // M260: Send data to an i2c slave
  9379. gcode_M260();
  9380. break;
  9381. case 261: // M261: Request data from an i2c slave
  9382. gcode_M261();
  9383. break;
  9384. #endif // EXPERIMENTAL_I2CBUS
  9385. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9386. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  9387. gcode_M302();
  9388. break;
  9389. #endif // PREVENT_COLD_EXTRUSION
  9390. case 303: // M303: PID autotune
  9391. gcode_M303();
  9392. break;
  9393. #if ENABLED(MORGAN_SCARA)
  9394. case 360: // M360: SCARA Theta pos1
  9395. if (gcode_M360()) return;
  9396. break;
  9397. case 361: // M361: SCARA Theta pos2
  9398. if (gcode_M361()) return;
  9399. break;
  9400. case 362: // M362: SCARA Psi pos1
  9401. if (gcode_M362()) return;
  9402. break;
  9403. case 363: // M363: SCARA Psi pos2
  9404. if (gcode_M363()) return;
  9405. break;
  9406. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  9407. if (gcode_M364()) return;
  9408. break;
  9409. #endif // SCARA
  9410. case 400: // M400: Finish all moves
  9411. gcode_M400();
  9412. break;
  9413. #if HAS_BED_PROBE
  9414. case 401: // M401: Deploy probe
  9415. gcode_M401();
  9416. break;
  9417. case 402: // M402: Stow probe
  9418. gcode_M402();
  9419. break;
  9420. #endif // HAS_BED_PROBE
  9421. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  9422. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  9423. gcode_M404();
  9424. break;
  9425. case 405: // M405: Turn on filament sensor for control
  9426. gcode_M405();
  9427. break;
  9428. case 406: // M406: Turn off filament sensor for control
  9429. gcode_M406();
  9430. break;
  9431. case 407: // M407: Display measured filament diameter
  9432. gcode_M407();
  9433. break;
  9434. #endif // FILAMENT_WIDTH_SENSOR
  9435. #if HAS_LEVELING
  9436. case 420: // M420: Enable/Disable Bed Leveling
  9437. gcode_M420();
  9438. break;
  9439. #endif
  9440. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9441. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  9442. gcode_M421();
  9443. break;
  9444. #endif
  9445. #if HAS_M206_COMMAND
  9446. case 428: // M428: Apply current_position to home_offset
  9447. gcode_M428();
  9448. break;
  9449. #endif
  9450. case 500: // M500: Store settings in EEPROM
  9451. gcode_M500();
  9452. break;
  9453. case 501: // M501: Read settings from EEPROM
  9454. gcode_M501();
  9455. break;
  9456. case 502: // M502: Revert to default settings
  9457. gcode_M502();
  9458. break;
  9459. #if DISABLED(DISABLE_M503)
  9460. case 503: // M503: print settings currently in memory
  9461. gcode_M503();
  9462. break;
  9463. #endif
  9464. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  9465. case 540: // M540: Set abort on endstop hit for SD printing
  9466. gcode_M540();
  9467. break;
  9468. #endif
  9469. #if HAS_BED_PROBE
  9470. case 851: // M851: Set Z Probe Z Offset
  9471. gcode_M851();
  9472. break;
  9473. #endif // HAS_BED_PROBE
  9474. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  9475. case 600: // M600: Pause for filament change
  9476. gcode_M600();
  9477. break;
  9478. #endif // ADVANCED_PAUSE_FEATURE
  9479. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  9480. case 605: // M605: Set Dual X Carriage movement mode
  9481. gcode_M605();
  9482. break;
  9483. #endif // DUAL_X_CARRIAGE
  9484. #if ENABLED(MK2_MULTIPLEXER)
  9485. case 702: // M702: Unload all extruders
  9486. gcode_M702();
  9487. break;
  9488. #endif
  9489. #if ENABLED(LIN_ADVANCE)
  9490. case 900: // M900: Set advance K factor.
  9491. gcode_M900();
  9492. break;
  9493. #endif
  9494. #if ENABLED(HAVE_TMC2130)
  9495. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  9496. gcode_M906();
  9497. break;
  9498. #endif
  9499. case 907: // M907: Set digital trimpot motor current using axis codes.
  9500. gcode_M907();
  9501. break;
  9502. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  9503. case 908: // M908: Control digital trimpot directly.
  9504. gcode_M908();
  9505. break;
  9506. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  9507. case 909: // M909: Print digipot/DAC current value
  9508. gcode_M909();
  9509. break;
  9510. case 910: // M910: Commit digipot/DAC value to external EEPROM
  9511. gcode_M910();
  9512. break;
  9513. #endif
  9514. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  9515. #if ENABLED(HAVE_TMC2130)
  9516. case 911: // M911: Report TMC2130 prewarn triggered flags
  9517. gcode_M911();
  9518. break;
  9519. case 912: // M911: Clear TMC2130 prewarn triggered flags
  9520. gcode_M912();
  9521. break;
  9522. #if ENABLED(HYBRID_THRESHOLD)
  9523. case 913: // M913: Set HYBRID_THRESHOLD speed.
  9524. gcode_M913();
  9525. break;
  9526. #endif
  9527. #if ENABLED(SENSORLESS_HOMING)
  9528. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  9529. gcode_M914();
  9530. break;
  9531. #endif
  9532. #endif
  9533. #if HAS_MICROSTEPS
  9534. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  9535. gcode_M350();
  9536. break;
  9537. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  9538. gcode_M351();
  9539. break;
  9540. #endif // HAS_MICROSTEPS
  9541. case 355: // M355 set case light brightness
  9542. gcode_M355();
  9543. break;
  9544. #if ENABLED(DEBUG_GCODE_PARSER)
  9545. case 800:
  9546. parser.debug(); // GCode Parser Test for M
  9547. break;
  9548. #endif
  9549. #if ENABLED(I2C_POSITION_ENCODERS)
  9550. case 860: // M860 Report encoder module position
  9551. gcode_M860();
  9552. break;
  9553. case 861: // M861 Report encoder module status
  9554. gcode_M861();
  9555. break;
  9556. case 862: // M862 Perform axis test
  9557. gcode_M862();
  9558. break;
  9559. case 863: // M863 Calibrate steps/mm
  9560. gcode_M863();
  9561. break;
  9562. case 864: // M864 Change module address
  9563. gcode_M864();
  9564. break;
  9565. case 865: // M865 Check module firmware version
  9566. gcode_M865();
  9567. break;
  9568. case 866: // M866 Report axis error count
  9569. gcode_M866();
  9570. break;
  9571. case 867: // M867 Toggle error correction
  9572. gcode_M867();
  9573. break;
  9574. case 868: // M868 Set error correction threshold
  9575. gcode_M868();
  9576. break;
  9577. case 869: // M869 Report axis error
  9578. gcode_M869();
  9579. break;
  9580. #endif // I2C_POSITION_ENCODERS
  9581. case 999: // M999: Restart after being Stopped
  9582. gcode_M999();
  9583. break;
  9584. }
  9585. break;
  9586. case 'T':
  9587. gcode_T(parser.codenum);
  9588. break;
  9589. default: parser.unknown_command_error();
  9590. }
  9591. KEEPALIVE_STATE(NOT_BUSY);
  9592. ok_to_send();
  9593. }
  9594. /**
  9595. * Send a "Resend: nnn" message to the host to
  9596. * indicate that a command needs to be re-sent.
  9597. */
  9598. void FlushSerialRequestResend() {
  9599. //char command_queue[cmd_queue_index_r][100]="Resend:";
  9600. MYSERIAL.flush();
  9601. SERIAL_PROTOCOLPGM(MSG_RESEND);
  9602. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  9603. ok_to_send();
  9604. }
  9605. /**
  9606. * Send an "ok" message to the host, indicating
  9607. * that a command was successfully processed.
  9608. *
  9609. * If ADVANCED_OK is enabled also include:
  9610. * N<int> Line number of the command, if any
  9611. * P<int> Planner space remaining
  9612. * B<int> Block queue space remaining
  9613. */
  9614. void ok_to_send() {
  9615. refresh_cmd_timeout();
  9616. if (!send_ok[cmd_queue_index_r]) return;
  9617. SERIAL_PROTOCOLPGM(MSG_OK);
  9618. #if ENABLED(ADVANCED_OK)
  9619. char* p = command_queue[cmd_queue_index_r];
  9620. if (*p == 'N') {
  9621. SERIAL_PROTOCOL(' ');
  9622. SERIAL_ECHO(*p++);
  9623. while (NUMERIC_SIGNED(*p))
  9624. SERIAL_ECHO(*p++);
  9625. }
  9626. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  9627. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  9628. #endif
  9629. SERIAL_EOL();
  9630. }
  9631. #if HAS_SOFTWARE_ENDSTOPS
  9632. /**
  9633. * Constrain the given coordinates to the software endstops.
  9634. */
  9635. // NOTE: This makes no sense for delta beds other than Z-axis.
  9636. // For delta the X/Y would need to be clamped at
  9637. // DELTA_PRINTABLE_RADIUS from center of bed, but delta
  9638. // now enforces is_position_reachable for X/Y regardless
  9639. // of HAS_SOFTWARE_ENDSTOPS, so that enforcement would be
  9640. // redundant here. Probably should #ifdef out the X/Y
  9641. // axis clamps here for delta and just leave the Z clamp.
  9642. void clamp_to_software_endstops(float target[XYZ]) {
  9643. if (!soft_endstops_enabled) return;
  9644. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  9645. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  9646. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  9647. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  9648. #endif
  9649. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9650. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  9651. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  9652. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9653. #endif
  9654. }
  9655. #endif
  9656. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9657. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  9658. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  9659. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  9660. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  9661. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  9662. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  9663. #else
  9664. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  9665. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  9666. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  9667. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  9668. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  9669. #endif
  9670. // Get the Z adjustment for non-linear bed leveling
  9671. float bilinear_z_offset(const float logical[XYZ]) {
  9672. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  9673. last_x = -999.999, last_y = -999.999;
  9674. // Whole units for the grid line indices. Constrained within bounds.
  9675. static int8_t gridx, gridy, nextx, nexty,
  9676. last_gridx = -99, last_gridy = -99;
  9677. // XY relative to the probed area
  9678. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  9679. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  9680. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  9681. // Keep using the last grid box
  9682. #define FAR_EDGE_OR_BOX 2
  9683. #else
  9684. // Just use the grid far edge
  9685. #define FAR_EDGE_OR_BOX 1
  9686. #endif
  9687. if (last_x != x) {
  9688. last_x = x;
  9689. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  9690. const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  9691. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  9692. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  9693. // Beyond the grid maintain height at grid edges
  9694. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  9695. #endif
  9696. gridx = gx;
  9697. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  9698. }
  9699. if (last_y != y || last_gridx != gridx) {
  9700. if (last_y != y) {
  9701. last_y = y;
  9702. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  9703. const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  9704. ratio_y -= gy;
  9705. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  9706. // Beyond the grid maintain height at grid edges
  9707. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  9708. #endif
  9709. gridy = gy;
  9710. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  9711. }
  9712. if (last_gridx != gridx || last_gridy != gridy) {
  9713. last_gridx = gridx;
  9714. last_gridy = gridy;
  9715. // Z at the box corners
  9716. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  9717. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  9718. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  9719. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  9720. }
  9721. // Bilinear interpolate. Needed since y or gridx has changed.
  9722. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  9723. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  9724. D = R - L;
  9725. }
  9726. const float offset = L + ratio_x * D; // the offset almost always changes
  9727. /*
  9728. static float last_offset = 0;
  9729. if (FABS(last_offset - offset) > 0.2) {
  9730. SERIAL_ECHOPGM("Sudden Shift at ");
  9731. SERIAL_ECHOPAIR("x=", x);
  9732. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  9733. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  9734. SERIAL_ECHOPAIR(" y=", y);
  9735. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  9736. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  9737. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  9738. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  9739. SERIAL_ECHOPAIR(" z1=", z1);
  9740. SERIAL_ECHOPAIR(" z2=", z2);
  9741. SERIAL_ECHOPAIR(" z3=", z3);
  9742. SERIAL_ECHOLNPAIR(" z4=", z4);
  9743. SERIAL_ECHOPAIR(" L=", L);
  9744. SERIAL_ECHOPAIR(" R=", R);
  9745. SERIAL_ECHOLNPAIR(" offset=", offset);
  9746. }
  9747. last_offset = offset;
  9748. //*/
  9749. return offset;
  9750. }
  9751. #endif // AUTO_BED_LEVELING_BILINEAR
  9752. #if ENABLED(DELTA)
  9753. /**
  9754. * Recalculate factors used for delta kinematics whenever
  9755. * settings have been changed (e.g., by M665).
  9756. */
  9757. void recalc_delta_settings(float radius, float diagonal_rod) {
  9758. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  9759. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  9760. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
  9761. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
  9762. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
  9763. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
  9764. delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
  9765. delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
  9766. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
  9767. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
  9768. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  9769. }
  9770. #if ENABLED(DELTA_FAST_SQRT)
  9771. /**
  9772. * Fast inverse sqrt from Quake III Arena
  9773. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  9774. */
  9775. float Q_rsqrt(float number) {
  9776. long i;
  9777. float x2, y;
  9778. const float threehalfs = 1.5f;
  9779. x2 = number * 0.5f;
  9780. y = number;
  9781. i = * ( long * ) &y; // evil floating point bit level hacking
  9782. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  9783. y = * ( float * ) &i;
  9784. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  9785. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  9786. return y;
  9787. }
  9788. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  9789. #else
  9790. #define _SQRT(n) SQRT(n)
  9791. #endif
  9792. /**
  9793. * Delta Inverse Kinematics
  9794. *
  9795. * Calculate the tower positions for a given logical
  9796. * position, storing the result in the delta[] array.
  9797. *
  9798. * This is an expensive calculation, requiring 3 square
  9799. * roots per segmented linear move, and strains the limits
  9800. * of a Mega2560 with a Graphical Display.
  9801. *
  9802. * Suggested optimizations include:
  9803. *
  9804. * - Disable the home_offset (M206) and/or position_shift (G92)
  9805. * features to remove up to 12 float additions.
  9806. *
  9807. * - Use a fast-inverse-sqrt function and add the reciprocal.
  9808. * (see above)
  9809. */
  9810. // Macro to obtain the Z position of an individual tower
  9811. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  9812. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  9813. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  9814. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  9815. ) \
  9816. )
  9817. #define DELTA_RAW_IK() do { \
  9818. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  9819. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  9820. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  9821. }while(0)
  9822. #define DELTA_LOGICAL_IK() do { \
  9823. const float raw[XYZ] = { \
  9824. RAW_X_POSITION(logical[X_AXIS]), \
  9825. RAW_Y_POSITION(logical[Y_AXIS]), \
  9826. RAW_Z_POSITION(logical[Z_AXIS]) \
  9827. }; \
  9828. DELTA_RAW_IK(); \
  9829. }while(0)
  9830. #define DELTA_DEBUG() do { \
  9831. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  9832. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  9833. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  9834. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  9835. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  9836. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  9837. }while(0)
  9838. void inverse_kinematics(const float logical[XYZ]) {
  9839. DELTA_LOGICAL_IK();
  9840. // DELTA_DEBUG();
  9841. }
  9842. /**
  9843. * Calculate the highest Z position where the
  9844. * effector has the full range of XY motion.
  9845. */
  9846. float delta_safe_distance_from_top() {
  9847. float cartesian[XYZ] = {
  9848. LOGICAL_X_POSITION(0),
  9849. LOGICAL_Y_POSITION(0),
  9850. LOGICAL_Z_POSITION(0)
  9851. };
  9852. inverse_kinematics(cartesian);
  9853. float distance = delta[A_AXIS];
  9854. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  9855. inverse_kinematics(cartesian);
  9856. return FABS(distance - delta[A_AXIS]);
  9857. }
  9858. /**
  9859. * Delta Forward Kinematics
  9860. *
  9861. * See the Wikipedia article "Trilateration"
  9862. * https://en.wikipedia.org/wiki/Trilateration
  9863. *
  9864. * Establish a new coordinate system in the plane of the
  9865. * three carriage points. This system has its origin at
  9866. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  9867. * plane with a Z component of zero.
  9868. * We will define unit vectors in this coordinate system
  9869. * in our original coordinate system. Then when we calculate
  9870. * the Xnew, Ynew and Znew values, we can translate back into
  9871. * the original system by moving along those unit vectors
  9872. * by the corresponding values.
  9873. *
  9874. * Variable names matched to Marlin, c-version, and avoid the
  9875. * use of any vector library.
  9876. *
  9877. * by Andreas Hardtung 2016-06-07
  9878. * based on a Java function from "Delta Robot Kinematics V3"
  9879. * by Steve Graves
  9880. *
  9881. * The result is stored in the cartes[] array.
  9882. */
  9883. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  9884. // Create a vector in old coordinates along x axis of new coordinate
  9885. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  9886. // Get the Magnitude of vector.
  9887. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  9888. // Create unit vector by dividing by magnitude.
  9889. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  9890. // Get the vector from the origin of the new system to the third point.
  9891. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  9892. // Use the dot product to find the component of this vector on the X axis.
  9893. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  9894. // Create a vector along the x axis that represents the x component of p13.
  9895. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  9896. // Subtract the X component from the original vector leaving only Y. We use the
  9897. // variable that will be the unit vector after we scale it.
  9898. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  9899. // The magnitude of Y component
  9900. float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  9901. // Convert to a unit vector
  9902. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  9903. // The cross product of the unit x and y is the unit z
  9904. // float[] ez = vectorCrossProd(ex, ey);
  9905. float ez[3] = {
  9906. ex[1] * ey[2] - ex[2] * ey[1],
  9907. ex[2] * ey[0] - ex[0] * ey[2],
  9908. ex[0] * ey[1] - ex[1] * ey[0]
  9909. };
  9910. // We now have the d, i and j values defined in Wikipedia.
  9911. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  9912. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  9913. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  9914. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  9915. // Start from the origin of the old coordinates and add vectors in the
  9916. // old coords that represent the Xnew, Ynew and Znew to find the point
  9917. // in the old system.
  9918. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  9919. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  9920. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  9921. }
  9922. void forward_kinematics_DELTA(float point[ABC]) {
  9923. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  9924. }
  9925. #endif // DELTA
  9926. /**
  9927. * Get the stepper positions in the cartes[] array.
  9928. * Forward kinematics are applied for DELTA and SCARA.
  9929. *
  9930. * The result is in the current coordinate space with
  9931. * leveling applied. The coordinates need to be run through
  9932. * unapply_leveling to obtain the "ideal" coordinates
  9933. * suitable for current_position, etc.
  9934. */
  9935. void get_cartesian_from_steppers() {
  9936. #if ENABLED(DELTA)
  9937. forward_kinematics_DELTA(
  9938. stepper.get_axis_position_mm(A_AXIS),
  9939. stepper.get_axis_position_mm(B_AXIS),
  9940. stepper.get_axis_position_mm(C_AXIS)
  9941. );
  9942. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9943. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9944. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  9945. #elif IS_SCARA
  9946. forward_kinematics_SCARA(
  9947. stepper.get_axis_position_degrees(A_AXIS),
  9948. stepper.get_axis_position_degrees(B_AXIS)
  9949. );
  9950. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9951. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9952. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9953. #else
  9954. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  9955. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  9956. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9957. #endif
  9958. }
  9959. /**
  9960. * Set the current_position for an axis based on
  9961. * the stepper positions, removing any leveling that
  9962. * may have been applied.
  9963. */
  9964. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  9965. get_cartesian_from_steppers();
  9966. #if PLANNER_LEVELING
  9967. planner.unapply_leveling(cartes);
  9968. #endif
  9969. if (axis == ALL_AXES)
  9970. COPY(current_position, cartes);
  9971. else
  9972. current_position[axis] = cartes[axis];
  9973. }
  9974. #if ENABLED(MESH_BED_LEVELING)
  9975. /**
  9976. * Prepare a mesh-leveled linear move in a Cartesian setup,
  9977. * splitting the move where it crosses mesh borders.
  9978. */
  9979. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  9980. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  9981. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  9982. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  9983. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  9984. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  9985. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  9986. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  9987. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  9988. if (cx1 == cx2 && cy1 == cy2) {
  9989. // Start and end on same mesh square
  9990. line_to_destination(fr_mm_s);
  9991. set_current_to_destination();
  9992. return;
  9993. }
  9994. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9995. float normalized_dist, end[XYZE];
  9996. // Split at the left/front border of the right/top square
  9997. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9998. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9999. COPY(end, destination);
  10000. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  10001. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10002. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  10003. CBI(x_splits, gcx);
  10004. }
  10005. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10006. COPY(end, destination);
  10007. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  10008. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10009. destination[X_AXIS] = MBL_SEGMENT_END(X);
  10010. CBI(y_splits, gcy);
  10011. }
  10012. else {
  10013. // Already split on a border
  10014. line_to_destination(fr_mm_s);
  10015. set_current_to_destination();
  10016. return;
  10017. }
  10018. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  10019. destination[E_AXIS] = MBL_SEGMENT_END(E);
  10020. // Do the split and look for more borders
  10021. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10022. // Restore destination from stack
  10023. COPY(destination, end);
  10024. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10025. }
  10026. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  10027. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  10028. /**
  10029. * Prepare a bilinear-leveled linear move on Cartesian,
  10030. * splitting the move where it crosses grid borders.
  10031. */
  10032. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  10033. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  10034. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  10035. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  10036. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  10037. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  10038. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  10039. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  10040. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  10041. if (cx1 == cx2 && cy1 == cy2) {
  10042. // Start and end on same mesh square
  10043. line_to_destination(fr_mm_s);
  10044. set_current_to_destination();
  10045. return;
  10046. }
  10047. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10048. float normalized_dist, end[XYZE];
  10049. // Split at the left/front border of the right/top square
  10050. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10051. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10052. COPY(end, destination);
  10053. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  10054. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10055. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  10056. CBI(x_splits, gcx);
  10057. }
  10058. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10059. COPY(end, destination);
  10060. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  10061. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10062. destination[X_AXIS] = LINE_SEGMENT_END(X);
  10063. CBI(y_splits, gcy);
  10064. }
  10065. else {
  10066. // Already split on a border
  10067. line_to_destination(fr_mm_s);
  10068. set_current_to_destination();
  10069. return;
  10070. }
  10071. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  10072. destination[E_AXIS] = LINE_SEGMENT_END(E);
  10073. // Do the split and look for more borders
  10074. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10075. // Restore destination from stack
  10076. COPY(destination, end);
  10077. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10078. }
  10079. #endif // AUTO_BED_LEVELING_BILINEAR
  10080. #if IS_KINEMATIC && !UBL_DELTA
  10081. /**
  10082. * Prepare a linear move in a DELTA or SCARA setup.
  10083. *
  10084. * This calls planner.buffer_line several times, adding
  10085. * small incremental moves for DELTA or SCARA.
  10086. */
  10087. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  10088. // Get the top feedrate of the move in the XY plane
  10089. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  10090. // If the move is only in Z/E don't split up the move
  10091. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  10092. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10093. return false;
  10094. }
  10095. // Fail if attempting move outside printable radius
  10096. if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
  10097. // Get the cartesian distances moved in XYZE
  10098. const float difference[XYZE] = {
  10099. ltarget[X_AXIS] - current_position[X_AXIS],
  10100. ltarget[Y_AXIS] - current_position[Y_AXIS],
  10101. ltarget[Z_AXIS] - current_position[Z_AXIS],
  10102. ltarget[E_AXIS] - current_position[E_AXIS]
  10103. };
  10104. // Get the linear distance in XYZ
  10105. float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  10106. // If the move is very short, check the E move distance
  10107. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
  10108. // No E move either? Game over.
  10109. if (UNEAR_ZERO(cartesian_mm)) return true;
  10110. // Minimum number of seconds to move the given distance
  10111. const float seconds = cartesian_mm / _feedrate_mm_s;
  10112. // The number of segments-per-second times the duration
  10113. // gives the number of segments
  10114. uint16_t segments = delta_segments_per_second * seconds;
  10115. // For SCARA minimum segment size is 0.25mm
  10116. #if IS_SCARA
  10117. NOMORE(segments, cartesian_mm * 4);
  10118. #endif
  10119. // At least one segment is required
  10120. NOLESS(segments, 1);
  10121. // The approximate length of each segment
  10122. const float inv_segments = 1.0 / float(segments),
  10123. segment_distance[XYZE] = {
  10124. difference[X_AXIS] * inv_segments,
  10125. difference[Y_AXIS] * inv_segments,
  10126. difference[Z_AXIS] * inv_segments,
  10127. difference[E_AXIS] * inv_segments
  10128. };
  10129. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  10130. // SERIAL_ECHOPAIR(" seconds=", seconds);
  10131. // SERIAL_ECHOLNPAIR(" segments=", segments);
  10132. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10133. // SCARA needs to scale the feed rate from mm/s to degrees/s
  10134. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  10135. feed_factor = inv_segment_length * _feedrate_mm_s;
  10136. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  10137. oldB = stepper.get_axis_position_degrees(B_AXIS);
  10138. #endif
  10139. // Get the logical current position as starting point
  10140. float logical[XYZE];
  10141. COPY(logical, current_position);
  10142. // Drop one segment so the last move is to the exact target.
  10143. // If there's only 1 segment, loops will be skipped entirely.
  10144. --segments;
  10145. // Calculate and execute the segments
  10146. for (uint16_t s = segments + 1; --s;) {
  10147. LOOP_XYZE(i) logical[i] += segment_distance[i];
  10148. #if ENABLED(DELTA)
  10149. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  10150. #else
  10151. inverse_kinematics(logical);
  10152. #endif
  10153. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  10154. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10155. // For SCARA scale the feed rate from mm/s to degrees/s
  10156. // Use ratio between the length of the move and the larger angle change
  10157. const float adiff = abs(delta[A_AXIS] - oldA),
  10158. bdiff = abs(delta[B_AXIS] - oldB);
  10159. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10160. oldA = delta[A_AXIS];
  10161. oldB = delta[B_AXIS];
  10162. #else
  10163. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  10164. #endif
  10165. }
  10166. // Since segment_distance is only approximate,
  10167. // the final move must be to the exact destination.
  10168. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10169. // For SCARA scale the feed rate from mm/s to degrees/s
  10170. // With segments > 1 length is 1 segment, otherwise total length
  10171. inverse_kinematics(ltarget);
  10172. ADJUST_DELTA(ltarget);
  10173. const float adiff = abs(delta[A_AXIS] - oldA),
  10174. bdiff = abs(delta[B_AXIS] - oldB);
  10175. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10176. #else
  10177. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10178. #endif
  10179. return false;
  10180. }
  10181. #else // !IS_KINEMATIC || UBL_DELTA
  10182. /**
  10183. * Prepare a linear move in a Cartesian setup.
  10184. * If Mesh Bed Leveling is enabled, perform a mesh move.
  10185. *
  10186. * Returns true if the caller didn't update current_position.
  10187. */
  10188. inline bool prepare_move_to_destination_cartesian() {
  10189. #if ENABLED(AUTO_BED_LEVELING_UBL)
  10190. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  10191. if (ubl.state.active) { // direct use of ubl.state.active for speed
  10192. ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
  10193. return true;
  10194. }
  10195. else
  10196. line_to_destination(fr_scaled);
  10197. #else
  10198. // Do not use feedrate_percentage for E or Z only moves
  10199. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS])
  10200. line_to_destination();
  10201. else {
  10202. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  10203. #if ENABLED(MESH_BED_LEVELING)
  10204. if (mbl.active()) { // direct used of mbl.active() for speed
  10205. mesh_line_to_destination(fr_scaled);
  10206. return true;
  10207. }
  10208. else
  10209. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10210. if (planner.abl_enabled) { // direct use of abl_enabled for speed
  10211. bilinear_line_to_destination(fr_scaled);
  10212. return true;
  10213. }
  10214. else
  10215. #endif
  10216. line_to_destination(fr_scaled);
  10217. }
  10218. #endif
  10219. return false;
  10220. }
  10221. #endif // !IS_KINEMATIC || UBL_DELTA
  10222. #if ENABLED(DUAL_X_CARRIAGE)
  10223. /**
  10224. * Prepare a linear move in a dual X axis setup
  10225. */
  10226. inline bool prepare_move_to_destination_dualx() {
  10227. if (active_extruder_parked) {
  10228. switch (dual_x_carriage_mode) {
  10229. case DXC_FULL_CONTROL_MODE:
  10230. break;
  10231. case DXC_AUTO_PARK_MODE:
  10232. if (current_position[E_AXIS] == destination[E_AXIS]) {
  10233. // This is a travel move (with no extrusion)
  10234. // Skip it, but keep track of the current position
  10235. // (so it can be used as the start of the next non-travel move)
  10236. if (delayed_move_time != 0xFFFFFFFFUL) {
  10237. set_current_to_destination();
  10238. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  10239. delayed_move_time = millis();
  10240. return true;
  10241. }
  10242. }
  10243. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  10244. for (uint8_t i = 0; i < 3; i++)
  10245. planner.buffer_line(
  10246. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  10247. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  10248. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  10249. current_position[E_AXIS],
  10250. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  10251. active_extruder
  10252. );
  10253. delayed_move_time = 0;
  10254. active_extruder_parked = false;
  10255. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10256. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  10257. #endif
  10258. break;
  10259. case DXC_DUPLICATION_MODE:
  10260. if (active_extruder == 0) {
  10261. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10262. if (DEBUGGING(LEVELING)) {
  10263. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  10264. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  10265. }
  10266. #endif
  10267. // move duplicate extruder into correct duplication position.
  10268. planner.set_position_mm(
  10269. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  10270. current_position[Y_AXIS],
  10271. current_position[Z_AXIS],
  10272. current_position[E_AXIS]
  10273. );
  10274. planner.buffer_line(
  10275. current_position[X_AXIS] + duplicate_extruder_x_offset,
  10276. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  10277. planner.max_feedrate_mm_s[X_AXIS], 1
  10278. );
  10279. SYNC_PLAN_POSITION_KINEMATIC();
  10280. stepper.synchronize();
  10281. extruder_duplication_enabled = true;
  10282. active_extruder_parked = false;
  10283. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10284. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  10285. #endif
  10286. }
  10287. else {
  10288. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10289. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  10290. #endif
  10291. }
  10292. break;
  10293. }
  10294. }
  10295. return false;
  10296. }
  10297. #endif // DUAL_X_CARRIAGE
  10298. /**
  10299. * Prepare a single move and get ready for the next one
  10300. *
  10301. * This may result in several calls to planner.buffer_line to
  10302. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  10303. */
  10304. void prepare_move_to_destination() {
  10305. clamp_to_software_endstops(destination);
  10306. refresh_cmd_timeout();
  10307. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10308. if (!DEBUGGING(DRYRUN)) {
  10309. if (destination[E_AXIS] != current_position[E_AXIS]) {
  10310. if (thermalManager.tooColdToExtrude(active_extruder)) {
  10311. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10312. SERIAL_ECHO_START();
  10313. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  10314. }
  10315. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10316. if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) {
  10317. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10318. SERIAL_ECHO_START();
  10319. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  10320. }
  10321. #endif
  10322. }
  10323. }
  10324. #endif
  10325. if (
  10326. #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
  10327. ubl.prepare_segmented_line_to(destination, feedrate_mm_s)
  10328. #elif IS_KINEMATIC
  10329. prepare_kinematic_move_to(destination)
  10330. #elif ENABLED(DUAL_X_CARRIAGE)
  10331. prepare_move_to_destination_dualx()
  10332. #else
  10333. prepare_move_to_destination_cartesian()
  10334. #endif
  10335. ) return;
  10336. set_current_to_destination();
  10337. }
  10338. #if ENABLED(ARC_SUPPORT)
  10339. #if N_ARC_CORRECTION < 1
  10340. #undef N_ARC_CORRECTION
  10341. #define N_ARC_CORRECTION 1
  10342. #endif
  10343. /**
  10344. * Plan an arc in 2 dimensions
  10345. *
  10346. * The arc is approximated by generating many small linear segments.
  10347. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  10348. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  10349. * larger segments will tend to be more efficient. Your slicer should have
  10350. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  10351. */
  10352. void plan_arc(
  10353. float logical[XYZE], // Destination position
  10354. float *offset, // Center of rotation relative to current_position
  10355. uint8_t clockwise // Clockwise?
  10356. ) {
  10357. #if ENABLED(CNC_WORKSPACE_PLANES)
  10358. AxisEnum p_axis, q_axis, l_axis;
  10359. switch (workspace_plane) {
  10360. case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  10361. case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  10362. case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  10363. }
  10364. #else
  10365. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  10366. #endif
  10367. // Radius vector from center to current location
  10368. float r_P = -offset[0], r_Q = -offset[1];
  10369. const float radius = HYPOT(r_P, r_Q),
  10370. center_P = current_position[p_axis] - r_P,
  10371. center_Q = current_position[q_axis] - r_Q,
  10372. rt_X = logical[p_axis] - center_P,
  10373. rt_Y = logical[q_axis] - center_Q,
  10374. linear_travel = logical[l_axis] - current_position[l_axis],
  10375. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  10376. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  10377. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
  10378. if (angular_travel < 0) angular_travel += RADIANS(360);
  10379. if (clockwise) angular_travel -= RADIANS(360);
  10380. // Make a circle if the angular rotation is 0 and the target is current position
  10381. if (angular_travel == 0 && current_position[p_axis] == logical[p_axis] && current_position[q_axis] == logical[q_axis])
  10382. angular_travel = RADIANS(360);
  10383. const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
  10384. if (mm_of_travel < 0.001) return;
  10385. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  10386. if (segments == 0) segments = 1;
  10387. /**
  10388. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  10389. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  10390. * r_T = [cos(phi) -sin(phi);
  10391. * sin(phi) cos(phi)] * r ;
  10392. *
  10393. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  10394. * defined from the circle center to the initial position. Each line segment is formed by successive
  10395. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  10396. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  10397. * all double numbers are single precision on the Arduino. (True double precision will not have
  10398. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  10399. * tool precision in some cases. Therefore, arc path correction is implemented.
  10400. *
  10401. * Small angle approximation may be used to reduce computation overhead further. This approximation
  10402. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  10403. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  10404. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  10405. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  10406. * issue for CNC machines with the single precision Arduino calculations.
  10407. *
  10408. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  10409. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  10410. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  10411. * This is important when there are successive arc motions.
  10412. */
  10413. // Vector rotation matrix values
  10414. float arc_target[XYZE];
  10415. const float theta_per_segment = angular_travel / segments,
  10416. linear_per_segment = linear_travel / segments,
  10417. extruder_per_segment = extruder_travel / segments,
  10418. sin_T = theta_per_segment,
  10419. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  10420. // Initialize the linear axis
  10421. arc_target[l_axis] = current_position[l_axis];
  10422. // Initialize the extruder axis
  10423. arc_target[E_AXIS] = current_position[E_AXIS];
  10424. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  10425. millis_t next_idle_ms = millis() + 200UL;
  10426. #if N_ARC_CORRECTION > 1
  10427. int8_t count = N_ARC_CORRECTION;
  10428. #endif
  10429. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  10430. thermalManager.manage_heater();
  10431. if (ELAPSED(millis(), next_idle_ms)) {
  10432. next_idle_ms = millis() + 200UL;
  10433. idle();
  10434. }
  10435. #if N_ARC_CORRECTION > 1
  10436. if (--count) {
  10437. // Apply vector rotation matrix to previous r_P / 1
  10438. const float r_new_Y = r_P * sin_T + r_Q * cos_T;
  10439. r_P = r_P * cos_T - r_Q * sin_T;
  10440. r_Q = r_new_Y;
  10441. }
  10442. else
  10443. #endif
  10444. {
  10445. #if N_ARC_CORRECTION > 1
  10446. count = N_ARC_CORRECTION;
  10447. #endif
  10448. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  10449. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  10450. // To reduce stuttering, the sin and cos could be computed at different times.
  10451. // For now, compute both at the same time.
  10452. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  10453. r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  10454. r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  10455. }
  10456. // Update arc_target location
  10457. arc_target[p_axis] = center_P + r_P;
  10458. arc_target[q_axis] = center_Q + r_Q;
  10459. arc_target[l_axis] += linear_per_segment;
  10460. arc_target[E_AXIS] += extruder_per_segment;
  10461. clamp_to_software_endstops(arc_target);
  10462. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  10463. }
  10464. // Ensure last segment arrives at target location.
  10465. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  10466. // As far as the parser is concerned, the position is now == target. In reality the
  10467. // motion control system might still be processing the action and the real tool position
  10468. // in any intermediate location.
  10469. set_current_to_destination();
  10470. }
  10471. #endif
  10472. #if ENABLED(BEZIER_CURVE_SUPPORT)
  10473. void plan_cubic_move(const float offset[4]) {
  10474. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  10475. // As far as the parser is concerned, the position is now == destination. In reality the
  10476. // motion control system might still be processing the action and the real tool position
  10477. // in any intermediate location.
  10478. set_current_to_destination();
  10479. }
  10480. #endif // BEZIER_CURVE_SUPPORT
  10481. #if ENABLED(USE_CONTROLLER_FAN)
  10482. void controllerFan() {
  10483. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  10484. nextMotorCheck = 0; // Last time the state was checked
  10485. const millis_t ms = millis();
  10486. if (ELAPSED(ms, nextMotorCheck)) {
  10487. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  10488. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  10489. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  10490. #if E_STEPPERS > 1
  10491. || E1_ENABLE_READ == E_ENABLE_ON
  10492. #if HAS_X2_ENABLE
  10493. || X2_ENABLE_READ == X_ENABLE_ON
  10494. #endif
  10495. #if E_STEPPERS > 2
  10496. || E2_ENABLE_READ == E_ENABLE_ON
  10497. #if E_STEPPERS > 3
  10498. || E3_ENABLE_READ == E_ENABLE_ON
  10499. #if E_STEPPERS > 4
  10500. || E4_ENABLE_READ == E_ENABLE_ON
  10501. #endif // E_STEPPERS > 4
  10502. #endif // E_STEPPERS > 3
  10503. #endif // E_STEPPERS > 2
  10504. #endif // E_STEPPERS > 1
  10505. ) {
  10506. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  10507. }
  10508. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  10509. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  10510. // allows digital or PWM fan output to be used (see M42 handling)
  10511. WRITE(CONTROLLER_FAN_PIN, speed);
  10512. analogWrite(CONTROLLER_FAN_PIN, speed);
  10513. }
  10514. }
  10515. #endif // USE_CONTROLLER_FAN
  10516. #if ENABLED(MORGAN_SCARA)
  10517. /**
  10518. * Morgan SCARA Forward Kinematics. Results in cartes[].
  10519. * Maths and first version by QHARLEY.
  10520. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  10521. */
  10522. void forward_kinematics_SCARA(const float &a, const float &b) {
  10523. float a_sin = sin(RADIANS(a)) * L1,
  10524. a_cos = cos(RADIANS(a)) * L1,
  10525. b_sin = sin(RADIANS(b)) * L2,
  10526. b_cos = cos(RADIANS(b)) * L2;
  10527. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  10528. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  10529. /*
  10530. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  10531. SERIAL_ECHOPAIR(" b=", b);
  10532. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  10533. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  10534. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  10535. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  10536. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  10537. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  10538. //*/
  10539. }
  10540. /**
  10541. * Morgan SCARA Inverse Kinematics. Results in delta[].
  10542. *
  10543. * See http://forums.reprap.org/read.php?185,283327
  10544. *
  10545. * Maths and first version by QHARLEY.
  10546. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  10547. */
  10548. void inverse_kinematics(const float logical[XYZ]) {
  10549. static float C2, S2, SK1, SK2, THETA, PSI;
  10550. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  10551. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  10552. if (L1 == L2)
  10553. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  10554. else
  10555. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  10556. S2 = SQRT(1 - sq(C2));
  10557. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  10558. SK1 = L1 + L2 * C2;
  10559. // Rotated Arm2 gives the distance from Arm1 to Arm2
  10560. SK2 = L2 * S2;
  10561. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  10562. THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
  10563. // Angle of Arm2
  10564. PSI = ATAN2(S2, C2);
  10565. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  10566. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  10567. delta[C_AXIS] = logical[Z_AXIS];
  10568. /*
  10569. DEBUG_POS("SCARA IK", logical);
  10570. DEBUG_POS("SCARA IK", delta);
  10571. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  10572. SERIAL_ECHOPAIR(",", sy);
  10573. SERIAL_ECHOPAIR(" C2=", C2);
  10574. SERIAL_ECHOPAIR(" S2=", S2);
  10575. SERIAL_ECHOPAIR(" Theta=", THETA);
  10576. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  10577. //*/
  10578. }
  10579. #endif // MORGAN_SCARA
  10580. #if ENABLED(TEMP_STAT_LEDS)
  10581. static bool red_led = false;
  10582. static millis_t next_status_led_update_ms = 0;
  10583. void handle_status_leds(void) {
  10584. if (ELAPSED(millis(), next_status_led_update_ms)) {
  10585. next_status_led_update_ms += 500; // Update every 0.5s
  10586. float max_temp = 0.0;
  10587. #if HAS_TEMP_BED
  10588. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  10589. #endif
  10590. HOTEND_LOOP()
  10591. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  10592. const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  10593. if (new_led != red_led) {
  10594. red_led = new_led;
  10595. #if PIN_EXISTS(STAT_LED_RED)
  10596. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  10597. #if PIN_EXISTS(STAT_LED_BLUE)
  10598. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  10599. #endif
  10600. #else
  10601. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  10602. #endif
  10603. }
  10604. }
  10605. }
  10606. #endif
  10607. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10608. void handle_filament_runout() {
  10609. if (!filament_ran_out) {
  10610. filament_ran_out = true;
  10611. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  10612. stepper.synchronize();
  10613. }
  10614. }
  10615. #endif // FILAMENT_RUNOUT_SENSOR
  10616. #if ENABLED(FAST_PWM_FAN)
  10617. void setPwmFrequency(uint8_t pin, int val) {
  10618. val &= 0x07;
  10619. switch (digitalPinToTimer(pin)) {
  10620. #ifdef TCCR0A
  10621. #if !AVR_AT90USB1286_FAMILY
  10622. case TIMER0A:
  10623. #endif
  10624. case TIMER0B:
  10625. //_SET_CS(0, val);
  10626. break;
  10627. #endif
  10628. #ifdef TCCR1A
  10629. case TIMER1A:
  10630. case TIMER1B:
  10631. //_SET_CS(1, val);
  10632. break;
  10633. #endif
  10634. #ifdef TCCR2
  10635. case TIMER2:
  10636. case TIMER2:
  10637. _SET_CS(2, val);
  10638. break;
  10639. #endif
  10640. #ifdef TCCR2A
  10641. case TIMER2A:
  10642. case TIMER2B:
  10643. _SET_CS(2, val);
  10644. break;
  10645. #endif
  10646. #ifdef TCCR3A
  10647. case TIMER3A:
  10648. case TIMER3B:
  10649. case TIMER3C:
  10650. _SET_CS(3, val);
  10651. break;
  10652. #endif
  10653. #ifdef TCCR4A
  10654. case TIMER4A:
  10655. case TIMER4B:
  10656. case TIMER4C:
  10657. _SET_CS(4, val);
  10658. break;
  10659. #endif
  10660. #ifdef TCCR5A
  10661. case TIMER5A:
  10662. case TIMER5B:
  10663. case TIMER5C:
  10664. _SET_CS(5, val);
  10665. break;
  10666. #endif
  10667. }
  10668. }
  10669. #endif // FAST_PWM_FAN
  10670. float calculate_volumetric_multiplier(const float diameter) {
  10671. if (!volumetric_enabled || diameter == 0) return 1.0;
  10672. return 1.0 / (M_PI * sq(diameter * 0.5));
  10673. }
  10674. void calculate_volumetric_multipliers() {
  10675. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  10676. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  10677. }
  10678. void enable_all_steppers() {
  10679. enable_X();
  10680. enable_Y();
  10681. enable_Z();
  10682. enable_E0();
  10683. enable_E1();
  10684. enable_E2();
  10685. enable_E3();
  10686. enable_E4();
  10687. }
  10688. void disable_e_steppers() {
  10689. disable_E0();
  10690. disable_E1();
  10691. disable_E2();
  10692. disable_E3();
  10693. disable_E4();
  10694. }
  10695. void disable_all_steppers() {
  10696. disable_X();
  10697. disable_Y();
  10698. disable_Z();
  10699. disable_e_steppers();
  10700. }
  10701. #if ENABLED(HAVE_TMC2130)
  10702. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  10703. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  10704. const bool is_otpw = st.checkOT();
  10705. // Report if a warning was triggered
  10706. static bool previous_otpw = false;
  10707. if (is_otpw && !previous_otpw) {
  10708. char timestamp[10];
  10709. duration_t elapsed = print_job_timer.duration();
  10710. const bool has_days = (elapsed.value > 60*60*24L);
  10711. (void)elapsed.toDigital(timestamp, has_days);
  10712. SERIAL_ECHO(timestamp);
  10713. SERIAL_ECHOPGM(": ");
  10714. SERIAL_ECHO(axisID);
  10715. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  10716. }
  10717. previous_otpw = is_otpw;
  10718. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  10719. // Return if user has not enabled current control start with M906 S1.
  10720. if (!auto_current_control) return;
  10721. /**
  10722. * Decrease current if is_otpw is true.
  10723. * Bail out if driver is disabled.
  10724. * Increase current if OTPW has not been triggered yet.
  10725. */
  10726. uint16_t current = st.getCurrent();
  10727. if (is_otpw) {
  10728. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  10729. #if ENABLED(REPORT_CURRENT_CHANGE)
  10730. SERIAL_ECHO(axisID);
  10731. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  10732. #endif
  10733. }
  10734. else if (!st.isEnabled())
  10735. return;
  10736. else if (!is_otpw && !st.getOTPW()) {
  10737. current += CURRENT_STEP;
  10738. if (current <= AUTO_ADJUST_MAX) {
  10739. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  10740. #if ENABLED(REPORT_CURRENT_CHANGE)
  10741. SERIAL_ECHO(axisID);
  10742. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  10743. #endif
  10744. }
  10745. }
  10746. SERIAL_EOL();
  10747. #endif
  10748. }
  10749. void checkOverTemp() {
  10750. static millis_t next_cOT = 0;
  10751. if (ELAPSED(millis(), next_cOT)) {
  10752. next_cOT = millis() + 5000;
  10753. #if ENABLED(X_IS_TMC2130)
  10754. automatic_current_control(stepperX, "X");
  10755. #endif
  10756. #if ENABLED(Y_IS_TMC2130)
  10757. automatic_current_control(stepperY, "Y");
  10758. #endif
  10759. #if ENABLED(Z_IS_TMC2130)
  10760. automatic_current_control(stepperZ, "Z");
  10761. #endif
  10762. #if ENABLED(X2_IS_TMC2130)
  10763. automatic_current_control(stepperX2, "X2");
  10764. #endif
  10765. #if ENABLED(Y2_IS_TMC2130)
  10766. automatic_current_control(stepperY2, "Y2");
  10767. #endif
  10768. #if ENABLED(Z2_IS_TMC2130)
  10769. automatic_current_control(stepperZ2, "Z2");
  10770. #endif
  10771. #if ENABLED(E0_IS_TMC2130)
  10772. automatic_current_control(stepperE0, "E0");
  10773. #endif
  10774. #if ENABLED(E1_IS_TMC2130)
  10775. automatic_current_control(stepperE1, "E1");
  10776. #endif
  10777. #if ENABLED(E2_IS_TMC2130)
  10778. automatic_current_control(stepperE2, "E2");
  10779. #endif
  10780. #if ENABLED(E3_IS_TMC2130)
  10781. automatic_current_control(stepperE3, "E3");
  10782. #endif
  10783. #if ENABLED(E4_IS_TMC2130)
  10784. automatic_current_control(stepperE4, "E4");
  10785. #endif
  10786. #if ENABLED(E4_IS_TMC2130)
  10787. automatic_current_control(stepperE4);
  10788. #endif
  10789. }
  10790. }
  10791. #endif // HAVE_TMC2130
  10792. /**
  10793. * Manage several activities:
  10794. * - Check for Filament Runout
  10795. * - Keep the command buffer full
  10796. * - Check for maximum inactive time between commands
  10797. * - Check for maximum inactive time between stepper commands
  10798. * - Check if pin CHDK needs to go LOW
  10799. * - Check for KILL button held down
  10800. * - Check for HOME button held down
  10801. * - Check if cooling fan needs to be switched on
  10802. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  10803. */
  10804. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  10805. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10806. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  10807. handle_filament_runout();
  10808. #endif
  10809. if (commands_in_queue < BUFSIZE) get_available_commands();
  10810. const millis_t ms = millis();
  10811. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  10812. SERIAL_ERROR_START();
  10813. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
  10814. kill(PSTR(MSG_KILLED));
  10815. }
  10816. // Prevent steppers timing-out in the middle of M600
  10817. #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
  10818. #define MOVE_AWAY_TEST !move_away_flag
  10819. #else
  10820. #define MOVE_AWAY_TEST true
  10821. #endif
  10822. if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  10823. && !ignore_stepper_queue && !planner.blocks_queued()) {
  10824. #if ENABLED(DISABLE_INACTIVE_X)
  10825. disable_X();
  10826. #endif
  10827. #if ENABLED(DISABLE_INACTIVE_Y)
  10828. disable_Y();
  10829. #endif
  10830. #if ENABLED(DISABLE_INACTIVE_Z)
  10831. disable_Z();
  10832. #endif
  10833. #if ENABLED(DISABLE_INACTIVE_E)
  10834. disable_e_steppers();
  10835. #endif
  10836. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  10837. ubl_lcd_map_control = defer_return_to_status = false;
  10838. #endif
  10839. }
  10840. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  10841. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  10842. chdkActive = false;
  10843. WRITE(CHDK, LOW);
  10844. }
  10845. #endif
  10846. #if HAS_KILL
  10847. // Check if the kill button was pressed and wait just in case it was an accidental
  10848. // key kill key press
  10849. // -------------------------------------------------------------------------------
  10850. static int killCount = 0; // make the inactivity button a bit less responsive
  10851. const int KILL_DELAY = 750;
  10852. if (!READ(KILL_PIN))
  10853. killCount++;
  10854. else if (killCount > 0)
  10855. killCount--;
  10856. // Exceeded threshold and we can confirm that it was not accidental
  10857. // KILL the machine
  10858. // ----------------------------------------------------------------
  10859. if (killCount >= KILL_DELAY) {
  10860. SERIAL_ERROR_START();
  10861. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  10862. kill(PSTR(MSG_KILLED));
  10863. }
  10864. #endif
  10865. #if HAS_HOME
  10866. // Check to see if we have to home, use poor man's debouncer
  10867. // ---------------------------------------------------------
  10868. static int homeDebounceCount = 0; // poor man's debouncing count
  10869. const int HOME_DEBOUNCE_DELAY = 2500;
  10870. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  10871. if (!homeDebounceCount) {
  10872. enqueue_and_echo_commands_P(PSTR("G28"));
  10873. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  10874. }
  10875. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  10876. homeDebounceCount++;
  10877. else
  10878. homeDebounceCount = 0;
  10879. }
  10880. #endif
  10881. #if ENABLED(USE_CONTROLLER_FAN)
  10882. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  10883. #endif
  10884. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  10885. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  10886. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  10887. #if ENABLED(SWITCHING_EXTRUDER)
  10888. const bool oldstatus = E0_ENABLE_READ;
  10889. enable_E0();
  10890. #else // !SWITCHING_EXTRUDER
  10891. bool oldstatus;
  10892. switch (active_extruder) {
  10893. default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  10894. #if E_STEPPERS > 1
  10895. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  10896. #if E_STEPPERS > 2
  10897. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  10898. #if E_STEPPERS > 3
  10899. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  10900. #if E_STEPPERS > 4
  10901. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  10902. #endif // E_STEPPERS > 4
  10903. #endif // E_STEPPERS > 3
  10904. #endif // E_STEPPERS > 2
  10905. #endif // E_STEPPERS > 1
  10906. }
  10907. #endif // !SWITCHING_EXTRUDER
  10908. previous_cmd_ms = ms; // refresh_cmd_timeout()
  10909. const float olde = current_position[E_AXIS];
  10910. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  10911. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  10912. current_position[E_AXIS] = olde;
  10913. planner.set_e_position_mm(olde);
  10914. stepper.synchronize();
  10915. #if ENABLED(SWITCHING_EXTRUDER)
  10916. E0_ENABLE_WRITE(oldstatus);
  10917. #else
  10918. switch (active_extruder) {
  10919. case 0: E0_ENABLE_WRITE(oldstatus); break;
  10920. #if E_STEPPERS > 1
  10921. case 1: E1_ENABLE_WRITE(oldstatus); break;
  10922. #if E_STEPPERS > 2
  10923. case 2: E2_ENABLE_WRITE(oldstatus); break;
  10924. #if E_STEPPERS > 3
  10925. case 3: E3_ENABLE_WRITE(oldstatus); break;
  10926. #if E_STEPPERS > 4
  10927. case 4: E4_ENABLE_WRITE(oldstatus); break;
  10928. #endif // E_STEPPERS > 4
  10929. #endif // E_STEPPERS > 3
  10930. #endif // E_STEPPERS > 2
  10931. #endif // E_STEPPERS > 1
  10932. }
  10933. #endif // !SWITCHING_EXTRUDER
  10934. }
  10935. #endif // EXTRUDER_RUNOUT_PREVENT
  10936. #if ENABLED(DUAL_X_CARRIAGE)
  10937. // handle delayed move timeout
  10938. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  10939. // travel moves have been received so enact them
  10940. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  10941. set_destination_to_current();
  10942. prepare_move_to_destination();
  10943. }
  10944. #endif
  10945. #if ENABLED(TEMP_STAT_LEDS)
  10946. handle_status_leds();
  10947. #endif
  10948. #if ENABLED(HAVE_TMC2130)
  10949. checkOverTemp();
  10950. #endif
  10951. planner.check_axes_activity();
  10952. }
  10953. /**
  10954. * Standard idle routine keeps the machine alive
  10955. */
  10956. void idle(
  10957. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  10958. bool no_stepper_sleep/*=false*/
  10959. #endif
  10960. ) {
  10961. lcd_update();
  10962. host_keepalive();
  10963. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10964. auto_report_temperatures();
  10965. #endif
  10966. manage_inactivity(
  10967. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  10968. no_stepper_sleep
  10969. #endif
  10970. );
  10971. thermalManager.manage_heater();
  10972. #if ENABLED(PRINTCOUNTER)
  10973. print_job_timer.tick();
  10974. #endif
  10975. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  10976. buzzer.tick();
  10977. #endif
  10978. #if ENABLED(I2C_POSITION_ENCODERS)
  10979. if (planner.blocks_queued() &&
  10980. ( (blockBufferIndexRef != planner.block_buffer_head) ||
  10981. ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
  10982. blockBufferIndexRef = planner.block_buffer_head;
  10983. I2CPEM.update();
  10984. lastUpdateMillis = millis();
  10985. }
  10986. #endif
  10987. }
  10988. /**
  10989. * Kill all activity and lock the machine.
  10990. * After this the machine will need to be reset.
  10991. */
  10992. void kill(const char* lcd_msg) {
  10993. SERIAL_ERROR_START();
  10994. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  10995. thermalManager.disable_all_heaters();
  10996. disable_all_steppers();
  10997. #if ENABLED(ULTRA_LCD)
  10998. kill_screen(lcd_msg);
  10999. #else
  11000. UNUSED(lcd_msg);
  11001. #endif
  11002. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  11003. cli(); // Stop interrupts
  11004. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  11005. thermalManager.disable_all_heaters(); //turn off heaters again
  11006. #ifdef ACTION_ON_KILL
  11007. SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
  11008. #endif
  11009. #if HAS_POWER_SWITCH
  11010. SET_INPUT(PS_ON_PIN);
  11011. #endif
  11012. suicide();
  11013. while (1) {
  11014. #if ENABLED(USE_WATCHDOG)
  11015. watchdog_reset();
  11016. #endif
  11017. } // Wait for reset
  11018. }
  11019. /**
  11020. * Turn off heaters and stop the print in progress
  11021. * After a stop the machine may be resumed with M999
  11022. */
  11023. void stop() {
  11024. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  11025. #if ENABLED(PROBING_FANS_OFF)
  11026. if (fans_paused) fans_pause(false); // put things back the way they were
  11027. #endif
  11028. if (IsRunning()) {
  11029. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  11030. SERIAL_ERROR_START();
  11031. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  11032. LCD_MESSAGEPGM(MSG_STOPPED);
  11033. safe_delay(350); // allow enough time for messages to get out before stopping
  11034. Running = false;
  11035. }
  11036. }
  11037. /**
  11038. * Marlin entry-point: Set up before the program loop
  11039. * - Set up the kill pin, filament runout, power hold
  11040. * - Start the serial port
  11041. * - Print startup messages and diagnostics
  11042. * - Get EEPROM or default settings
  11043. * - Initialize managers for:
  11044. * • temperature
  11045. * • planner
  11046. * • watchdog
  11047. * • stepper
  11048. * • photo pin
  11049. * • servos
  11050. * • LCD controller
  11051. * • Digipot I2C
  11052. * • Z probe sled
  11053. * • status LEDs
  11054. */
  11055. void setup() {
  11056. #ifdef DISABLE_JTAG
  11057. // Disable JTAG on AT90USB chips to free up pins for IO
  11058. MCUCR = 0x80;
  11059. MCUCR = 0x80;
  11060. #endif
  11061. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11062. setup_filrunoutpin();
  11063. #endif
  11064. setup_killpin();
  11065. setup_powerhold();
  11066. #if HAS_STEPPER_RESET
  11067. disableStepperDrivers();
  11068. #endif
  11069. MYSERIAL.begin(BAUDRATE);
  11070. SERIAL_PROTOCOLLNPGM("start");
  11071. SERIAL_ECHO_START();
  11072. // Check startup - does nothing if bootloader sets MCUSR to 0
  11073. byte mcu = MCUSR;
  11074. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  11075. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  11076. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  11077. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  11078. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  11079. MCUSR = 0;
  11080. SERIAL_ECHOPGM(MSG_MARLIN);
  11081. SERIAL_CHAR(' ');
  11082. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  11083. SERIAL_EOL();
  11084. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  11085. SERIAL_ECHO_START();
  11086. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  11087. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  11088. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  11089. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  11090. #endif
  11091. SERIAL_ECHO_START();
  11092. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  11093. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  11094. // Send "ok" after commands by default
  11095. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  11096. // Load data from EEPROM if available (or use defaults)
  11097. // This also updates variables in the planner, elsewhere
  11098. (void)settings.load();
  11099. #if HAS_M206_COMMAND
  11100. // Initialize current position based on home_offset
  11101. COPY(current_position, home_offset);
  11102. #else
  11103. ZERO(current_position);
  11104. #endif
  11105. // Vital to init stepper/planner equivalent for current_position
  11106. SYNC_PLAN_POSITION_KINEMATIC();
  11107. thermalManager.init(); // Initialize temperature loop
  11108. #if ENABLED(USE_WATCHDOG)
  11109. watchdog_init();
  11110. #endif
  11111. stepper.init(); // Initialize stepper, this enables interrupts!
  11112. servo_init();
  11113. #if HAS_PHOTOGRAPH
  11114. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  11115. #endif
  11116. #if HAS_CASE_LIGHT
  11117. case_light_on = CASE_LIGHT_DEFAULT_ON;
  11118. case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
  11119. update_case_light();
  11120. #endif
  11121. #if ENABLED(SPINDLE_LASER_ENABLE)
  11122. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  11123. #if SPINDLE_DIR_CHANGE
  11124. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  11125. #endif
  11126. #if ENABLED(SPINDLE_LASER_PWM)
  11127. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  11128. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  11129. #endif
  11130. #endif
  11131. #if HAS_BED_PROBE
  11132. endstops.enable_z_probe(false);
  11133. #endif
  11134. #if ENABLED(USE_CONTROLLER_FAN)
  11135. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  11136. #endif
  11137. #if HAS_STEPPER_RESET
  11138. enableStepperDrivers();
  11139. #endif
  11140. #if ENABLED(DIGIPOT_I2C)
  11141. digipot_i2c_init();
  11142. #endif
  11143. #if ENABLED(DAC_STEPPER_CURRENT)
  11144. dac_init();
  11145. #endif
  11146. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  11147. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  11148. #endif
  11149. #if HAS_HOME
  11150. SET_INPUT_PULLUP(HOME_PIN);
  11151. #endif
  11152. #if PIN_EXISTS(STAT_LED_RED)
  11153. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  11154. #endif
  11155. #if PIN_EXISTS(STAT_LED_BLUE)
  11156. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  11157. #endif
  11158. #if ENABLED(NEOPIXEL_RGBW_LED)
  11159. SET_OUTPUT(NEOPIXEL_PIN);
  11160. setup_neopixel();
  11161. #endif
  11162. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  11163. SET_OUTPUT(RGB_LED_R_PIN);
  11164. SET_OUTPUT(RGB_LED_G_PIN);
  11165. SET_OUTPUT(RGB_LED_B_PIN);
  11166. #if ENABLED(RGBW_LED)
  11167. SET_OUTPUT(RGB_LED_W_PIN);
  11168. #endif
  11169. #endif
  11170. #if ENABLED(MK2_MULTIPLEXER)
  11171. SET_OUTPUT(E_MUX0_PIN);
  11172. SET_OUTPUT(E_MUX1_PIN);
  11173. SET_OUTPUT(E_MUX2_PIN);
  11174. #endif
  11175. lcd_init();
  11176. #ifndef CUSTOM_BOOTSCREEN_TIMEOUT
  11177. #define CUSTOM_BOOTSCREEN_TIMEOUT 2500
  11178. #endif
  11179. #if ENABLED(SHOW_BOOTSCREEN)
  11180. #if ENABLED(DOGLCD) // On DOGM the first bootscreen is already drawn
  11181. #if ENABLED(SHOW_CUSTOM_BOOTSCREEN)
  11182. safe_delay(CUSTOM_BOOTSCREEN_TIMEOUT); // Custom boot screen pause
  11183. lcd_bootscreen(); // Show Marlin boot screen
  11184. #endif
  11185. safe_delay(BOOTSCREEN_TIMEOUT); // Pause
  11186. #elif ENABLED(ULTRA_LCD)
  11187. lcd_bootscreen();
  11188. #if DISABLED(SDSUPPORT)
  11189. lcd_init();
  11190. #endif
  11191. #endif
  11192. #endif
  11193. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  11194. // Initialize mixing to 100% color 1
  11195. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11196. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  11197. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  11198. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11199. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  11200. #endif
  11201. #if ENABLED(BLTOUCH)
  11202. // Make sure any BLTouch error condition is cleared
  11203. bltouch_command(BLTOUCH_RESET);
  11204. set_bltouch_deployed(true);
  11205. set_bltouch_deployed(false);
  11206. #endif
  11207. #if ENABLED(I2C_POSITION_ENCODERS)
  11208. I2CPEM.init();
  11209. #endif
  11210. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  11211. i2c.onReceive(i2c_on_receive);
  11212. i2c.onRequest(i2c_on_request);
  11213. #endif
  11214. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  11215. setup_endstop_interrupts();
  11216. #endif
  11217. #if ENABLED(SWITCHING_EXTRUDER)
  11218. move_extruder_servo(0); // Initialize extruder servo
  11219. #endif
  11220. #if ENABLED(SWITCHING_NOZZLE)
  11221. move_nozzle_servo(0); // Initialize nozzle servo
  11222. #endif
  11223. }
  11224. /**
  11225. * The main Marlin program loop
  11226. *
  11227. * - Save or log commands to SD
  11228. * - Process available commands (if not saving)
  11229. * - Call heater manager
  11230. * - Call inactivity manager
  11231. * - Call endstop manager
  11232. * - Call LCD update
  11233. */
  11234. void loop() {
  11235. if (commands_in_queue < BUFSIZE) get_available_commands();
  11236. #if ENABLED(SDSUPPORT)
  11237. card.checkautostart(false);
  11238. #endif
  11239. if (commands_in_queue) {
  11240. #if ENABLED(SDSUPPORT)
  11241. if (card.saving) {
  11242. char* command = command_queue[cmd_queue_index_r];
  11243. if (strstr_P(command, PSTR("M29"))) {
  11244. // M29 closes the file
  11245. card.closefile();
  11246. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  11247. ok_to_send();
  11248. }
  11249. else {
  11250. // Write the string from the read buffer to SD
  11251. card.write_command(command);
  11252. if (card.logging)
  11253. process_next_command(); // The card is saving because it's logging
  11254. else
  11255. ok_to_send();
  11256. }
  11257. }
  11258. else
  11259. process_next_command();
  11260. #else
  11261. process_next_command();
  11262. #endif // SDSUPPORT
  11263. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  11264. if (commands_in_queue) {
  11265. --commands_in_queue;
  11266. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  11267. }
  11268. }
  11269. endstops.report_state();
  11270. idle();
  11271. }