My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

Marlin_main.cpp 451KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
  53. * G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
  54. * G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
  55. * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
  56. * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
  57. * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
  58. * G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
  59. * G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
  60. * G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION)
  61. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  62. * G28 - Home one or more axes
  63. * G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
  64. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  65. * G31 - Dock sled (Z_PROBE_SLED only)
  66. * G32 - Undock sled (Z_PROBE_SLED only)
  67. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  68. * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
  69. * G42 - Coordinated move to a mesh point (Requires AUTO_BED_LEVELING_UBL)
  70. * G90 - Use Absolute Coordinates
  71. * G91 - Use Relative Coordinates
  72. * G92 - Set current position to coordinates given
  73. *
  74. * "M" Codes
  75. *
  76. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  77. * M1 -> M0
  78. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  79. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  80. * M5 - Turn laser/spindle off
  81. * M17 - Enable/Power all stepper motors
  82. * M18 - Disable all stepper motors; same as M84
  83. * M20 - List SD card. (Requires SDSUPPORT)
  84. * M21 - Init SD card. (Requires SDSUPPORT)
  85. * M22 - Release SD card. (Requires SDSUPPORT)
  86. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  87. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  88. * M25 - Pause SD print. (Requires SDSUPPORT)
  89. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  90. * M27 - Report SD print status. (Requires SDSUPPORT)
  91. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  92. * M29 - Stop SD write. (Requires SDSUPPORT)
  93. * M30 - Delete file from SD: "M30 /path/file.gco"
  94. * M31 - Report time since last M109 or SD card start to serial.
  95. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  96. * Use P to run other files as sub-programs: "M32 P !filename#"
  97. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  99. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  100. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  101. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  102. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  103. * M75 - Start the print job timer.
  104. * M76 - Pause the print job timer.
  105. * M77 - Stop the print job timer.
  106. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  107. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  108. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  109. * M82 - Set E codes absolute (default).
  110. * M83 - Set E codes relative while in Absolute (G90) mode.
  111. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  112. * duration after which steppers should turn off. S0 disables the timeout.
  113. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  114. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  115. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  116. * M104 - Set extruder target temp.
  117. * M105 - Report current temperatures.
  118. * M106 - Set print fan speed.
  119. * M107 - Print fan off.
  120. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  121. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  122. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  123. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  124. * M110 - Set the current line number. (Used by host printing)
  125. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  126. * M112 - Emergency stop.
  127. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  128. * M114 - Report current position.
  129. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  130. * M117 - Display a message on the controller screen. (Requires an LCD)
  131. * M118 - Display a message in the host console.
  132. * M119 - Report endstops status.
  133. * M120 - Enable endstops detection.
  134. * M121 - Disable endstops detection.
  135. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  136. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  137. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  138. * M128 - EtoP Open. (Requires BARICUDA)
  139. * M129 - EtoP Closed. (Requires BARICUDA)
  140. * M140 - Set bed target temp. S<temp>
  141. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  142. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  143. * M150 - Set Status LED Color as R<red> U<green> B<blue> P<bright>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, NEOPIXEL_LED, or PCA9632).
  144. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  145. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  146. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  147. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  148. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  149. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  150. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  151. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  152. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  153. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  154. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  155. * M205 - Set advanced settings. Current units apply:
  156. S<print> T<travel> minimum speeds
  157. B<minimum segment time>
  158. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  159. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  160. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  161. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  162. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  163. Every normal extrude-only move will be classified as retract depending on the direction.
  164. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  165. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  166. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  167. * M221 - Set Flow Percentage: "M221 S<percent>"
  168. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  169. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  170. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  171. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  172. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  173. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  174. * M290 - Babystepping (Requires BABYSTEPPING)
  175. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  176. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  177. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  178. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  179. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  180. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  181. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  182. * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
  183. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  184. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  185. * M400 - Finish all moves.
  186. * M401 - Lower Z probe. (Requires a probe)
  187. * M402 - Raise Z probe. (Requires a probe)
  188. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  189. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  190. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  191. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  192. * M410 - Quickstop. Abort all planned moves.
  193. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  194. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  195. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  196. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  197. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  198. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  199. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  200. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  201. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
  202. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  203. * M666 - Set delta endstop adjustment. (Requires DELTA)
  204. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  205. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  206. * M860 - Report the position of position encoder modules.
  207. * M861 - Report the status of position encoder modules.
  208. * M862 - Perform an axis continuity test for position encoder modules.
  209. * M863 - Perform steps-per-mm calibration for position encoder modules.
  210. * M864 - Change position encoder module I2C address.
  211. * M865 - Check position encoder module firmware version.
  212. * M866 - Report or reset position encoder module error count.
  213. * M867 - Enable/disable or toggle error correction for position encoder modules.
  214. * M868 - Report or set position encoder module error correction threshold.
  215. * M869 - Report position encoder module error.
  216. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  217. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  218. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  219. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  220. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  221. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  222. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  223. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  224. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  225. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  226. *
  227. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  228. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  229. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  230. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  231. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  232. *
  233. * ************ Custom codes - This can change to suit future G-code regulations
  234. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  235. * M999 - Restart after being stopped by error
  236. *
  237. * "T" Codes
  238. *
  239. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  240. *
  241. */
  242. #include "Marlin.h"
  243. #include "ultralcd.h"
  244. #include "planner.h"
  245. #include "stepper.h"
  246. #include "endstops.h"
  247. #include "temperature.h"
  248. #include "cardreader.h"
  249. #include "configuration_store.h"
  250. #include "language.h"
  251. #include "pins_arduino.h"
  252. #include "math.h"
  253. #include "nozzle.h"
  254. #include "duration_t.h"
  255. #include "types.h"
  256. #include "gcode.h"
  257. #if HAS_ABL
  258. #include "vector_3.h"
  259. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  260. #include "least_squares_fit.h"
  261. #endif
  262. #elif ENABLED(MESH_BED_LEVELING)
  263. #include "mesh_bed_leveling.h"
  264. #endif
  265. #if ENABLED(BEZIER_CURVE_SUPPORT)
  266. #include "planner_bezier.h"
  267. #endif
  268. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  269. #include "buzzer.h"
  270. #endif
  271. #if ENABLED(USE_WATCHDOG)
  272. #include "watchdog.h"
  273. #endif
  274. #if ENABLED(MAX7219_DEBUG)
  275. #include "Max7219_Debug_LEDs.h"
  276. #endif
  277. #if ENABLED(NEOPIXEL_LED)
  278. #include <Adafruit_NeoPixel.h>
  279. #endif
  280. #if ENABLED(BLINKM)
  281. #include "blinkm.h"
  282. #include "Wire.h"
  283. #endif
  284. #if ENABLED(PCA9632)
  285. #include "pca9632.h"
  286. #endif
  287. #if HAS_SERVOS
  288. #include "servo.h"
  289. #endif
  290. #if HAS_DIGIPOTSS
  291. #include <SPI.h>
  292. #endif
  293. #if ENABLED(DAC_STEPPER_CURRENT)
  294. #include "stepper_dac.h"
  295. #endif
  296. #if ENABLED(EXPERIMENTAL_I2CBUS)
  297. #include "twibus.h"
  298. #endif
  299. #if ENABLED(I2C_POSITION_ENCODERS)
  300. #include "I2CPositionEncoder.h"
  301. #endif
  302. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  303. #include "endstop_interrupts.h"
  304. #endif
  305. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  306. void gcode_M100();
  307. void M100_dump_routine(const char * const title, const char *start, const char *end);
  308. #endif
  309. #if ENABLED(SDSUPPORT)
  310. CardReader card;
  311. #endif
  312. #if ENABLED(EXPERIMENTAL_I2CBUS)
  313. TWIBus i2c;
  314. #endif
  315. #if ENABLED(G38_PROBE_TARGET)
  316. bool G38_move = false,
  317. G38_endstop_hit = false;
  318. #endif
  319. #if ENABLED(AUTO_BED_LEVELING_UBL)
  320. #include "ubl.h"
  321. extern bool defer_return_to_status;
  322. unified_bed_leveling ubl;
  323. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  324. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  325. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  326. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  327. || isnan(ubl.z_values[0][0]))
  328. #endif
  329. #if ENABLED(NEOPIXEL_LED)
  330. #if NEOPIXEL_TYPE == NEO_RGB || NEOPIXEL_TYPE == NEO_RBG || NEOPIXEL_TYPE == NEO_GRB || NEOPIXEL_TYPE == NEO_GBR || NEOPIXEL_TYPE == NEO_BRG || NEOPIXEL_TYPE == NEO_BGR
  331. #define NEO_WHITE 255, 255, 255
  332. #else
  333. #define NEO_WHITE 0, 0, 0, 255
  334. #endif
  335. #endif
  336. #if ENABLED(RGB_LED) || ENABLED(BLINKM) || ENABLED(PCA9632)
  337. #define LED_WHITE 255, 255, 255
  338. #elif ENABLED(RGBW_LED)
  339. #define LED_WHITE 0, 0, 0, 255
  340. #endif
  341. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  342. int8_t active_coordinate_system = -1; // machine space
  343. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  344. #endif
  345. bool Running = true;
  346. uint8_t marlin_debug_flags = DEBUG_NONE;
  347. /**
  348. * Cartesian Current Position
  349. * Used to track the native machine position as moves are queued.
  350. * Used by 'buffer_line_to_current_position' to do a move after changing it.
  351. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  352. */
  353. float current_position[XYZE] = { 0.0 };
  354. /**
  355. * Cartesian Destination
  356. * The destination for a move, filled in by G-code movement commands,
  357. * and expected by functions like 'prepare_move_to_destination'.
  358. * Set with 'gcode_get_destination' or 'set_destination_from_current'.
  359. */
  360. float destination[XYZE] = { 0.0 };
  361. /**
  362. * axis_homed
  363. * Flags that each linear axis was homed.
  364. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  365. *
  366. * axis_known_position
  367. * Flags that the position is known in each linear axis. Set when homed.
  368. * Cleared whenever a stepper powers off, potentially losing its position.
  369. */
  370. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  371. /**
  372. * GCode line number handling. Hosts may opt to include line numbers when
  373. * sending commands to Marlin, and lines will be checked for sequentiality.
  374. * M110 N<int> sets the current line number.
  375. */
  376. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  377. /**
  378. * GCode Command Queue
  379. * A simple ring buffer of BUFSIZE command strings.
  380. *
  381. * Commands are copied into this buffer by the command injectors
  382. * (immediate, serial, sd card) and they are processed sequentially by
  383. * the main loop. The process_next_command function parses the next
  384. * command and hands off execution to individual handler functions.
  385. */
  386. uint8_t commands_in_queue = 0; // Count of commands in the queue
  387. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  388. cmd_queue_index_w = 0; // Ring buffer write position
  389. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  390. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  391. #else // This can be collapsed back to the way it was soon.
  392. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  393. #endif
  394. /**
  395. * Next Injected Command pointer. NULL if no commands are being injected.
  396. * Used by Marlin internally to ensure that commands initiated from within
  397. * are enqueued ahead of any pending serial or sd card commands.
  398. */
  399. static const char *injected_commands_P = NULL;
  400. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  401. TempUnit input_temp_units = TEMPUNIT_C;
  402. #endif
  403. /**
  404. * Feed rates are often configured with mm/m
  405. * but the planner and stepper like mm/s units.
  406. */
  407. static const float homing_feedrate_mm_s[] PROGMEM = {
  408. #if ENABLED(DELTA)
  409. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  410. #else
  411. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  412. #endif
  413. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  414. };
  415. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  416. float feedrate_mm_s = MMM_TO_MMS(1500.0);
  417. static float saved_feedrate_mm_s;
  418. int16_t feedrate_percentage = 100, saved_feedrate_percentage,
  419. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  420. // Initialized by settings.load()
  421. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  422. volumetric_enabled;
  423. float filament_size[EXTRUDERS], volumetric_multiplier[EXTRUDERS];
  424. #if HAS_WORKSPACE_OFFSET
  425. #if HAS_POSITION_SHIFT
  426. // The distance that XYZ has been offset by G92. Reset by G28.
  427. float position_shift[XYZ] = { 0 };
  428. #endif
  429. #if HAS_HOME_OFFSET
  430. // This offset is added to the configured home position.
  431. // Set by M206, M428, or menu item. Saved to EEPROM.
  432. float home_offset[XYZ] = { 0 };
  433. #endif
  434. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  435. // The above two are combined to save on computes
  436. float workspace_offset[XYZ] = { 0 };
  437. #endif
  438. #endif
  439. // Software Endstops are based on the configured limits.
  440. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
  441. soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
  442. #if HAS_SOFTWARE_ENDSTOPS
  443. bool soft_endstops_enabled = true;
  444. #if IS_KINEMATIC
  445. float soft_endstop_radius, soft_endstop_radius_2;
  446. #endif
  447. #endif
  448. #if FAN_COUNT > 0
  449. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  450. #if ENABLED(EXTRA_FAN_SPEED)
  451. int16_t old_fanSpeeds[FAN_COUNT],
  452. new_fanSpeeds[FAN_COUNT];
  453. #endif
  454. #if ENABLED(PROBING_FANS_OFF)
  455. bool fans_paused = false;
  456. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  457. #endif
  458. #endif
  459. // The active extruder (tool). Set with T<extruder> command.
  460. uint8_t active_extruder = 0;
  461. // Relative Mode. Enable with G91, disable with G90.
  462. static bool relative_mode = false;
  463. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  464. volatile bool wait_for_heatup = true;
  465. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  466. #if HAS_RESUME_CONTINUE
  467. volatile bool wait_for_user = false;
  468. #endif
  469. const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
  470. // Number of characters read in the current line of serial input
  471. static int serial_count = 0;
  472. // Inactivity shutdown
  473. millis_t previous_cmd_ms = 0;
  474. static millis_t max_inactive_time = 0;
  475. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  476. // Print Job Timer
  477. #if ENABLED(PRINTCOUNTER)
  478. PrintCounter print_job_timer = PrintCounter();
  479. #else
  480. Stopwatch print_job_timer = Stopwatch();
  481. #endif
  482. // Buzzer - I2C on the LCD or a BEEPER_PIN
  483. #if ENABLED(LCD_USE_I2C_BUZZER)
  484. #define BUZZ(d,f) lcd_buzz(d, f)
  485. #elif PIN_EXISTS(BEEPER)
  486. Buzzer buzzer;
  487. #define BUZZ(d,f) buzzer.tone(d, f)
  488. #else
  489. #define BUZZ(d,f) NOOP
  490. #endif
  491. static uint8_t target_extruder;
  492. #if HAS_BED_PROBE
  493. float zprobe_zoffset; // Initialized by settings.load()
  494. #endif
  495. #if HAS_ABL
  496. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  497. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  498. #elif defined(XY_PROBE_SPEED)
  499. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  500. #else
  501. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  502. #endif
  503. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  504. #if ENABLED(DELTA)
  505. #define ADJUST_DELTA(V) \
  506. if (planner.leveling_active) { \
  507. const float zadj = bilinear_z_offset(V); \
  508. delta[A_AXIS] += zadj; \
  509. delta[B_AXIS] += zadj; \
  510. delta[C_AXIS] += zadj; \
  511. }
  512. #else
  513. #define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
  514. #endif
  515. #elif IS_KINEMATIC
  516. #define ADJUST_DELTA(V) NOOP
  517. #endif
  518. #if ENABLED(X_DUAL_ENDSTOPS)
  519. float x_endstop_adj; // Initialized by settings.load()
  520. #endif
  521. #if ENABLED(Y_DUAL_ENDSTOPS)
  522. float y_endstop_adj; // Initialized by settings.load()
  523. #endif
  524. #if ENABLED(Z_DUAL_ENDSTOPS)
  525. float z_endstop_adj; // Initialized by settings.load()
  526. #endif
  527. // Extruder offsets
  528. #if HOTENDS > 1
  529. float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
  530. #endif
  531. #if HAS_Z_SERVO_ENDSTOP
  532. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  533. #endif
  534. #if ENABLED(BARICUDA)
  535. uint8_t baricuda_valve_pressure = 0,
  536. baricuda_e_to_p_pressure = 0;
  537. #endif
  538. #if ENABLED(FWRETRACT) // Initialized by settings.load()...
  539. bool autoretract_enabled, // M209 S - Autoretract switch
  540. retracted[EXTRUDERS] = { false }; // Which extruders are currently retracted
  541. float retract_length, // M207 S - G10 Retract length
  542. retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
  543. retract_zlift, // M207 Z - G10 Retract hop size
  544. retract_recover_length, // M208 S - G11 Recover length
  545. retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
  546. swap_retract_length, // M207 W - G10 Swap Retract length
  547. swap_retract_recover_length, // M208 W - G11 Swap Recover length
  548. swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
  549. #if EXTRUDERS > 1
  550. bool retracted_swap[EXTRUDERS] = { false }; // Which extruders are swap-retracted
  551. #else
  552. constexpr bool retracted_swap[1] = { false };
  553. #endif
  554. #endif // FWRETRACT
  555. #if HAS_POWER_SWITCH
  556. bool powersupply_on =
  557. #if ENABLED(PS_DEFAULT_OFF)
  558. false
  559. #else
  560. true
  561. #endif
  562. ;
  563. #endif
  564. #if ENABLED(DELTA)
  565. float delta[ABC];
  566. // Initialized by settings.load()
  567. float delta_height,
  568. delta_endstop_adj[ABC] = { 0 },
  569. delta_radius,
  570. delta_tower_angle_trim[ABC],
  571. delta_tower[ABC][2],
  572. delta_diagonal_rod,
  573. delta_calibration_radius,
  574. delta_diagonal_rod_2_tower[ABC],
  575. delta_segments_per_second,
  576. delta_clip_start_height = Z_MAX_POS;
  577. float delta_safe_distance_from_top();
  578. #endif
  579. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  580. int bilinear_grid_spacing[2], bilinear_start[2];
  581. float bilinear_grid_factor[2],
  582. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  583. #endif
  584. #if IS_SCARA
  585. // Float constants for SCARA calculations
  586. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  587. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  588. L2_2 = sq(float(L2));
  589. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  590. delta[ABC];
  591. #endif
  592. float cartes[XYZ] = { 0 };
  593. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  594. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  595. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  596. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  597. uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
  598. measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  599. int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  600. #endif
  601. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  602. static bool filament_ran_out = false;
  603. #endif
  604. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  605. AdvancedPauseMenuResponse advanced_pause_menu_response;
  606. #endif
  607. #if ENABLED(MIXING_EXTRUDER)
  608. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  609. #if MIXING_VIRTUAL_TOOLS > 1
  610. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  611. #endif
  612. #endif
  613. static bool send_ok[BUFSIZE];
  614. #if HAS_SERVOS
  615. Servo servo[NUM_SERVOS];
  616. #define MOVE_SERVO(I, P) servo[I].move(P)
  617. #if HAS_Z_SERVO_ENDSTOP
  618. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  619. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  620. #endif
  621. #endif
  622. #ifdef CHDK
  623. millis_t chdkHigh = 0;
  624. bool chdkActive = false;
  625. #endif
  626. #ifdef AUTOMATIC_CURRENT_CONTROL
  627. bool auto_current_control = 0;
  628. #endif
  629. #if ENABLED(PID_EXTRUSION_SCALING)
  630. int lpq_len = 20;
  631. #endif
  632. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  633. MarlinBusyState busy_state = NOT_BUSY;
  634. static millis_t next_busy_signal_ms = 0;
  635. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  636. #else
  637. #define host_keepalive() NOOP
  638. #endif
  639. #if ENABLED(I2C_POSITION_ENCODERS)
  640. I2CPositionEncodersMgr I2CPEM;
  641. uint8_t blockBufferIndexRef = 0;
  642. millis_t lastUpdateMillis;
  643. #endif
  644. #if ENABLED(CNC_WORKSPACE_PLANES)
  645. static WorkspacePlane workspace_plane = PLANE_XY;
  646. #endif
  647. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  648. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  649. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  650. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  651. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  652. typedef void __void_##CONFIG##__
  653. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  654. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  655. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  656. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  657. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  658. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  659. /**
  660. * ***************************************************************************
  661. * ******************************** FUNCTIONS ********************************
  662. * ***************************************************************************
  663. */
  664. void stop();
  665. void get_available_commands();
  666. void process_next_command();
  667. void process_parsed_command();
  668. void prepare_move_to_destination();
  669. void get_cartesian_from_steppers();
  670. void set_current_from_steppers_for_axis(const AxisEnum axis);
  671. #if ENABLED(ARC_SUPPORT)
  672. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  673. #endif
  674. #if ENABLED(BEZIER_CURVE_SUPPORT)
  675. void plan_cubic_move(const float offset[4]);
  676. #endif
  677. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  678. void report_current_position();
  679. void report_current_position_detail();
  680. #if ENABLED(DEBUG_LEVELING_FEATURE)
  681. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  682. serialprintPGM(prefix);
  683. SERIAL_CHAR('(');
  684. SERIAL_ECHO(x);
  685. SERIAL_ECHOPAIR(", ", y);
  686. SERIAL_ECHOPAIR(", ", z);
  687. SERIAL_CHAR(')');
  688. if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
  689. }
  690. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  691. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  692. }
  693. #if HAS_ABL
  694. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  695. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  696. }
  697. #endif
  698. #define DEBUG_POS(SUFFIX,VAR) do { \
  699. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  700. #endif
  701. /**
  702. * sync_plan_position
  703. *
  704. * Set the planner/stepper positions directly from current_position with
  705. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  706. */
  707. void sync_plan_position() {
  708. #if ENABLED(DEBUG_LEVELING_FEATURE)
  709. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  710. #endif
  711. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  712. }
  713. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  714. #if IS_KINEMATIC
  715. inline void sync_plan_position_kinematic() {
  716. #if ENABLED(DEBUG_LEVELING_FEATURE)
  717. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  718. #endif
  719. planner.set_position_mm_kinematic(current_position);
  720. }
  721. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  722. #else
  723. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  724. #endif
  725. #if ENABLED(SDSUPPORT)
  726. #include "SdFatUtil.h"
  727. int freeMemory() { return SdFatUtil::FreeRam(); }
  728. #else
  729. extern "C" {
  730. extern char __bss_end;
  731. extern char __heap_start;
  732. extern void* __brkval;
  733. int freeMemory() {
  734. int free_memory;
  735. if ((int)__brkval == 0)
  736. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  737. else
  738. free_memory = ((int)&free_memory) - ((int)__brkval);
  739. return free_memory;
  740. }
  741. }
  742. #endif // !SDSUPPORT
  743. #if ENABLED(DIGIPOT_I2C)
  744. extern void digipot_i2c_set_current(uint8_t channel, float current);
  745. extern void digipot_i2c_init();
  746. #endif
  747. /**
  748. * Inject the next "immediate" command, when possible, onto the front of the queue.
  749. * Return true if any immediate commands remain to inject.
  750. */
  751. static bool drain_injected_commands_P() {
  752. if (injected_commands_P != NULL) {
  753. size_t i = 0;
  754. char c, cmd[30];
  755. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  756. cmd[sizeof(cmd) - 1] = '\0';
  757. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  758. cmd[i] = '\0';
  759. if (enqueue_and_echo_command(cmd)) // success?
  760. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  761. }
  762. return (injected_commands_P != NULL); // return whether any more remain
  763. }
  764. /**
  765. * Record one or many commands to run from program memory.
  766. * Aborts the current queue, if any.
  767. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  768. */
  769. void enqueue_and_echo_commands_P(const char * const pgcode) {
  770. injected_commands_P = pgcode;
  771. drain_injected_commands_P(); // first command executed asap (when possible)
  772. }
  773. /**
  774. * Clear the Marlin command queue
  775. */
  776. void clear_command_queue() {
  777. cmd_queue_index_r = cmd_queue_index_w;
  778. commands_in_queue = 0;
  779. }
  780. /**
  781. * Once a new command is in the ring buffer, call this to commit it
  782. */
  783. inline void _commit_command(bool say_ok) {
  784. send_ok[cmd_queue_index_w] = say_ok;
  785. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  786. commands_in_queue++;
  787. }
  788. /**
  789. * Copy a command from RAM into the main command buffer.
  790. * Return true if the command was successfully added.
  791. * Return false for a full buffer, or if the 'command' is a comment.
  792. */
  793. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  794. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  795. strcpy(command_queue[cmd_queue_index_w], cmd);
  796. _commit_command(say_ok);
  797. return true;
  798. }
  799. /**
  800. * Enqueue with Serial Echo
  801. */
  802. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  803. if (_enqueuecommand(cmd, say_ok)) {
  804. SERIAL_ECHO_START();
  805. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  806. SERIAL_CHAR('"');
  807. SERIAL_EOL();
  808. return true;
  809. }
  810. return false;
  811. }
  812. void setup_killpin() {
  813. #if HAS_KILL
  814. SET_INPUT_PULLUP(KILL_PIN);
  815. #endif
  816. }
  817. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  818. void setup_filrunoutpin() {
  819. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  820. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  821. #else
  822. SET_INPUT(FIL_RUNOUT_PIN);
  823. #endif
  824. }
  825. #endif
  826. void setup_powerhold() {
  827. #if HAS_SUICIDE
  828. OUT_WRITE(SUICIDE_PIN, HIGH);
  829. #endif
  830. #if HAS_POWER_SWITCH
  831. #if ENABLED(PS_DEFAULT_OFF)
  832. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  833. #else
  834. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  835. #endif
  836. #endif
  837. }
  838. void suicide() {
  839. #if HAS_SUICIDE
  840. OUT_WRITE(SUICIDE_PIN, LOW);
  841. #endif
  842. }
  843. void servo_init() {
  844. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  845. servo[0].attach(SERVO0_PIN);
  846. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  847. #endif
  848. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  849. servo[1].attach(SERVO1_PIN);
  850. servo[1].detach();
  851. #endif
  852. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  853. servo[2].attach(SERVO2_PIN);
  854. servo[2].detach();
  855. #endif
  856. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  857. servo[3].attach(SERVO3_PIN);
  858. servo[3].detach();
  859. #endif
  860. #if HAS_Z_SERVO_ENDSTOP
  861. /**
  862. * Set position of Z Servo Endstop
  863. *
  864. * The servo might be deployed and positioned too low to stow
  865. * when starting up the machine or rebooting the board.
  866. * There's no way to know where the nozzle is positioned until
  867. * homing has been done - no homing with z-probe without init!
  868. *
  869. */
  870. STOW_Z_SERVO();
  871. #endif
  872. }
  873. /**
  874. * Stepper Reset (RigidBoard, et.al.)
  875. */
  876. #if HAS_STEPPER_RESET
  877. void disableStepperDrivers() {
  878. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  879. }
  880. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  881. #endif
  882. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  883. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  884. i2c.receive(bytes);
  885. }
  886. void i2c_on_request() { // just send dummy data for now
  887. i2c.reply("Hello World!\n");
  888. }
  889. #endif
  890. #if HAS_COLOR_LEDS
  891. #if ENABLED(NEOPIXEL_LED)
  892. Adafruit_NeoPixel pixels(NEOPIXEL_PIXELS, NEOPIXEL_PIN, NEOPIXEL_TYPE + NEO_KHZ800);
  893. void set_neopixel_color(const uint32_t color) {
  894. for (uint16_t i = 0; i < pixels.numPixels(); ++i)
  895. pixels.setPixelColor(i, color);
  896. pixels.show();
  897. }
  898. void setup_neopixel() {
  899. pixels.setBrightness(NEOPIXEL_BRIGHTNESS); // 0 - 255 range
  900. pixels.begin();
  901. pixels.show(); // initialize to all off
  902. #if ENABLED(NEOPIXEL_STARTUP_TEST)
  903. safe_delay(1000);
  904. set_neopixel_color(pixels.Color(255, 0, 0, 0)); // red
  905. safe_delay(1000);
  906. set_neopixel_color(pixels.Color(0, 255, 0, 0)); // green
  907. safe_delay(1000);
  908. set_neopixel_color(pixels.Color(0, 0, 255, 0)); // blue
  909. safe_delay(1000);
  910. #endif
  911. set_neopixel_color(pixels.Color(NEO_WHITE)); // white
  912. }
  913. #endif // NEOPIXEL_LED
  914. void set_led_color(
  915. const uint8_t r, const uint8_t g, const uint8_t b
  916. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_LED)
  917. , const uint8_t w = 0
  918. #if ENABLED(NEOPIXEL_LED)
  919. , const uint8_t p = NEOPIXEL_BRIGHTNESS
  920. , bool isSequence = false
  921. #endif
  922. #endif
  923. ) {
  924. #if ENABLED(NEOPIXEL_LED)
  925. const uint32_t color = pixels.Color(r, g, b, w);
  926. static uint16_t nextLed = 0;
  927. pixels.setBrightness(p);
  928. if (!isSequence)
  929. set_neopixel_color(color);
  930. else {
  931. pixels.setPixelColor(nextLed, color);
  932. pixels.show();
  933. if (++nextLed >= pixels.numPixels()) nextLed = 0;
  934. return;
  935. }
  936. #endif
  937. #if ENABLED(BLINKM)
  938. // This variant uses i2c to send the RGB components to the device.
  939. SendColors(r, g, b);
  940. #endif
  941. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  942. // This variant uses 3 separate pins for the RGB components.
  943. // If the pins can do PWM then their intensity will be set.
  944. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  945. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  946. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  947. analogWrite(RGB_LED_R_PIN, r);
  948. analogWrite(RGB_LED_G_PIN, g);
  949. analogWrite(RGB_LED_B_PIN, b);
  950. #if ENABLED(RGBW_LED)
  951. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  952. analogWrite(RGB_LED_W_PIN, w);
  953. #endif
  954. #endif
  955. #if ENABLED(PCA9632)
  956. // Update I2C LED driver
  957. PCA9632_SetColor(r, g, b);
  958. #endif
  959. }
  960. #endif // HAS_COLOR_LEDS
  961. void gcode_line_error(const char* err, bool doFlush = true) {
  962. SERIAL_ERROR_START();
  963. serialprintPGM(err);
  964. SERIAL_ERRORLN(gcode_LastN);
  965. //Serial.println(gcode_N);
  966. if (doFlush) FlushSerialRequestResend();
  967. serial_count = 0;
  968. }
  969. /**
  970. * Get all commands waiting on the serial port and queue them.
  971. * Exit when the buffer is full or when no more characters are
  972. * left on the serial port.
  973. */
  974. inline void get_serial_commands() {
  975. static char serial_line_buffer[MAX_CMD_SIZE];
  976. static bool serial_comment_mode = false;
  977. // If the command buffer is empty for too long,
  978. // send "wait" to indicate Marlin is still waiting.
  979. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  980. static millis_t last_command_time = 0;
  981. const millis_t ms = millis();
  982. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  983. SERIAL_ECHOLNPGM(MSG_WAIT);
  984. last_command_time = ms;
  985. }
  986. #endif
  987. /**
  988. * Loop while serial characters are incoming and the queue is not full
  989. */
  990. int c;
  991. while (commands_in_queue < BUFSIZE && (c = MYSERIAL.read()) >= 0) {
  992. char serial_char = c;
  993. /**
  994. * If the character ends the line
  995. */
  996. if (serial_char == '\n' || serial_char == '\r') {
  997. serial_comment_mode = false; // end of line == end of comment
  998. if (!serial_count) continue; // Skip empty lines
  999. serial_line_buffer[serial_count] = 0; // Terminate string
  1000. serial_count = 0; // Reset buffer
  1001. char* command = serial_line_buffer;
  1002. while (*command == ' ') command++; // Skip leading spaces
  1003. char *npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  1004. if (npos) {
  1005. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  1006. if (M110) {
  1007. char* n2pos = strchr(command + 4, 'N');
  1008. if (n2pos) npos = n2pos;
  1009. }
  1010. gcode_N = strtol(npos + 1, NULL, 10);
  1011. if (gcode_N != gcode_LastN + 1 && !M110) {
  1012. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  1013. return;
  1014. }
  1015. char *apos = strrchr(command, '*');
  1016. if (apos) {
  1017. uint8_t checksum = 0, count = uint8_t(apos - command);
  1018. while (count) checksum ^= command[--count];
  1019. if (strtol(apos + 1, NULL, 10) != checksum) {
  1020. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  1021. return;
  1022. }
  1023. }
  1024. else {
  1025. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  1026. return;
  1027. }
  1028. gcode_LastN = gcode_N;
  1029. }
  1030. // Movement commands alert when stopped
  1031. if (IsStopped()) {
  1032. char* gpos = strchr(command, 'G');
  1033. if (gpos) {
  1034. const int codenum = strtol(gpos + 1, NULL, 10);
  1035. switch (codenum) {
  1036. case 0:
  1037. case 1:
  1038. case 2:
  1039. case 3:
  1040. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1041. LCD_MESSAGEPGM(MSG_STOPPED);
  1042. break;
  1043. }
  1044. }
  1045. }
  1046. #if DISABLED(EMERGENCY_PARSER)
  1047. // If command was e-stop process now
  1048. if (strcmp(command, "M108") == 0) {
  1049. wait_for_heatup = false;
  1050. #if ENABLED(ULTIPANEL)
  1051. wait_for_user = false;
  1052. #endif
  1053. }
  1054. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  1055. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  1056. #endif
  1057. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  1058. last_command_time = ms;
  1059. #endif
  1060. // Add the command to the queue
  1061. _enqueuecommand(serial_line_buffer, true);
  1062. }
  1063. else if (serial_count >= MAX_CMD_SIZE - 1) {
  1064. // Keep fetching, but ignore normal characters beyond the max length
  1065. // The command will be injected when EOL is reached
  1066. }
  1067. else if (serial_char == '\\') { // Handle escapes
  1068. if ((c = MYSERIAL.read()) >= 0) {
  1069. // if we have one more character, copy it over
  1070. serial_char = c;
  1071. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1072. }
  1073. // otherwise do nothing
  1074. }
  1075. else { // it's not a newline, carriage return or escape char
  1076. if (serial_char == ';') serial_comment_mode = true;
  1077. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1078. }
  1079. } // queue has space, serial has data
  1080. }
  1081. #if ENABLED(SDSUPPORT)
  1082. /**
  1083. * Get commands from the SD Card until the command buffer is full
  1084. * or until the end of the file is reached. The special character '#'
  1085. * can also interrupt buffering.
  1086. */
  1087. inline void get_sdcard_commands() {
  1088. static bool stop_buffering = false,
  1089. sd_comment_mode = false;
  1090. if (!card.sdprinting) return;
  1091. /**
  1092. * '#' stops reading from SD to the buffer prematurely, so procedural
  1093. * macro calls are possible. If it occurs, stop_buffering is triggered
  1094. * and the buffer is run dry; this character _can_ occur in serial com
  1095. * due to checksums, however, no checksums are used in SD printing.
  1096. */
  1097. if (commands_in_queue == 0) stop_buffering = false;
  1098. uint16_t sd_count = 0;
  1099. bool card_eof = card.eof();
  1100. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1101. const int16_t n = card.get();
  1102. char sd_char = (char)n;
  1103. card_eof = card.eof();
  1104. if (card_eof || n == -1
  1105. || sd_char == '\n' || sd_char == '\r'
  1106. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1107. ) {
  1108. if (card_eof) {
  1109. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1110. card.printingHasFinished();
  1111. #if ENABLED(PRINTER_EVENT_LEDS)
  1112. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1113. set_led_color(0, 255, 0); // Green
  1114. #if HAS_RESUME_CONTINUE
  1115. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1116. #else
  1117. safe_delay(1000);
  1118. #endif
  1119. set_led_color(0, 0, 0); // OFF
  1120. #endif
  1121. card.checkautostart(true);
  1122. }
  1123. else if (n == -1) {
  1124. SERIAL_ERROR_START();
  1125. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1126. }
  1127. if (sd_char == '#') stop_buffering = true;
  1128. sd_comment_mode = false; // for new command
  1129. if (!sd_count) continue; // skip empty lines (and comment lines)
  1130. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1131. sd_count = 0; // clear sd line buffer
  1132. _commit_command(false);
  1133. }
  1134. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1135. /**
  1136. * Keep fetching, but ignore normal characters beyond the max length
  1137. * The command will be injected when EOL is reached
  1138. */
  1139. }
  1140. else {
  1141. if (sd_char == ';') sd_comment_mode = true;
  1142. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1143. }
  1144. }
  1145. }
  1146. #endif // SDSUPPORT
  1147. /**
  1148. * Add to the circular command queue the next command from:
  1149. * - The command-injection queue (injected_commands_P)
  1150. * - The active serial input (usually USB)
  1151. * - The SD card file being actively printed
  1152. */
  1153. void get_available_commands() {
  1154. // if any immediate commands remain, don't get other commands yet
  1155. if (drain_injected_commands_P()) return;
  1156. get_serial_commands();
  1157. #if ENABLED(SDSUPPORT)
  1158. get_sdcard_commands();
  1159. #endif
  1160. }
  1161. /**
  1162. * Set target_extruder from the T parameter or the active_extruder
  1163. *
  1164. * Returns TRUE if the target is invalid
  1165. */
  1166. bool get_target_extruder_from_command(const uint16_t code) {
  1167. if (parser.seenval('T')) {
  1168. const int8_t e = parser.value_byte();
  1169. if (e >= EXTRUDERS) {
  1170. SERIAL_ECHO_START();
  1171. SERIAL_CHAR('M');
  1172. SERIAL_ECHO(code);
  1173. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
  1174. return true;
  1175. }
  1176. target_extruder = e;
  1177. }
  1178. else
  1179. target_extruder = active_extruder;
  1180. return false;
  1181. }
  1182. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1183. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1184. #endif
  1185. #if ENABLED(DUAL_X_CARRIAGE)
  1186. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1187. static float x_home_pos(const int extruder) {
  1188. if (extruder == 0)
  1189. return base_home_pos(X_AXIS);
  1190. else
  1191. /**
  1192. * In dual carriage mode the extruder offset provides an override of the
  1193. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1194. * This allows soft recalibration of the second extruder home position
  1195. * without firmware reflash (through the M218 command).
  1196. */
  1197. return hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1198. }
  1199. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1200. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1201. static bool active_extruder_parked = false; // used in mode 1 & 2
  1202. static float raised_parked_position[XYZE]; // used in mode 1
  1203. static millis_t delayed_move_time = 0; // used in mode 1
  1204. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1205. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1206. #endif // DUAL_X_CARRIAGE
  1207. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1208. /**
  1209. * Software endstops can be used to monitor the open end of
  1210. * an axis that has a hardware endstop on the other end. Or
  1211. * they can prevent axes from moving past endstops and grinding.
  1212. *
  1213. * To keep doing their job as the coordinate system changes,
  1214. * the software endstop positions must be refreshed to remain
  1215. * at the same positions relative to the machine.
  1216. */
  1217. void update_software_endstops(const AxisEnum axis) {
  1218. const float offs = 0.0
  1219. #if HAS_HOME_OFFSET
  1220. + home_offset[axis]
  1221. #endif
  1222. #if HAS_POSITION_SHIFT
  1223. + position_shift[axis]
  1224. #endif
  1225. ;
  1226. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1227. workspace_offset[axis] = offs;
  1228. #endif
  1229. #if ENABLED(DUAL_X_CARRIAGE)
  1230. if (axis == X_AXIS) {
  1231. // In Dual X mode hotend_offset[X] is T1's home position
  1232. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1233. if (active_extruder != 0) {
  1234. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1235. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1236. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1237. }
  1238. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1239. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1240. // but not so far to the right that T1 would move past the end
  1241. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1242. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1243. }
  1244. else {
  1245. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1246. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1247. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1248. }
  1249. }
  1250. #elif ENABLED(DELTA)
  1251. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1252. soft_endstop_max[axis] = (axis == Z_AXIS ? delta_height : base_max_pos(axis)) + offs;
  1253. #else
  1254. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1255. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1256. #endif
  1257. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1258. if (DEBUGGING(LEVELING)) {
  1259. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1260. #if HAS_HOME_OFFSET
  1261. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1262. #endif
  1263. #if HAS_POSITION_SHIFT
  1264. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1265. #endif
  1266. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1267. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1268. }
  1269. #endif
  1270. #if ENABLED(DELTA)
  1271. switch(axis) {
  1272. case X_AXIS:
  1273. case Y_AXIS:
  1274. // Get a minimum radius for clamping
  1275. soft_endstop_radius = MIN3(FABS(max(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]);
  1276. soft_endstop_radius_2 = sq(soft_endstop_radius);
  1277. break;
  1278. case Z_AXIS:
  1279. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1280. default: break;
  1281. }
  1282. #endif
  1283. }
  1284. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1285. #if HAS_M206_COMMAND
  1286. /**
  1287. * Change the home offset for an axis, update the current
  1288. * position and the software endstops to retain the same
  1289. * relative distance to the new home.
  1290. *
  1291. * Since this changes the current_position, code should
  1292. * call sync_plan_position soon after this.
  1293. */
  1294. static void set_home_offset(const AxisEnum axis, const float v) {
  1295. home_offset[axis] = v;
  1296. update_software_endstops(axis);
  1297. }
  1298. #endif // HAS_M206_COMMAND
  1299. /**
  1300. * Set an axis' current position to its home position (after homing).
  1301. *
  1302. * For Core and Cartesian robots this applies one-to-one when an
  1303. * individual axis has been homed.
  1304. *
  1305. * DELTA should wait until all homing is done before setting the XYZ
  1306. * current_position to home, because homing is a single operation.
  1307. * In the case where the axis positions are already known and previously
  1308. * homed, DELTA could home to X or Y individually by moving either one
  1309. * to the center. However, homing Z always homes XY and Z.
  1310. *
  1311. * SCARA should wait until all XY homing is done before setting the XY
  1312. * current_position to home, because neither X nor Y is at home until
  1313. * both are at home. Z can however be homed individually.
  1314. *
  1315. * Callers must sync the planner position after calling this!
  1316. */
  1317. static void set_axis_is_at_home(const AxisEnum axis) {
  1318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1319. if (DEBUGGING(LEVELING)) {
  1320. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1321. SERIAL_CHAR(')');
  1322. SERIAL_EOL();
  1323. }
  1324. #endif
  1325. axis_known_position[axis] = axis_homed[axis] = true;
  1326. #if HAS_POSITION_SHIFT
  1327. position_shift[axis] = 0;
  1328. update_software_endstops(axis);
  1329. #endif
  1330. #if ENABLED(DUAL_X_CARRIAGE)
  1331. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1332. current_position[X_AXIS] = x_home_pos(active_extruder);
  1333. return;
  1334. }
  1335. #endif
  1336. #if ENABLED(MORGAN_SCARA)
  1337. /**
  1338. * Morgan SCARA homes XY at the same time
  1339. */
  1340. if (axis == X_AXIS || axis == Y_AXIS) {
  1341. float homeposition[XYZ] = {
  1342. base_home_pos(X_AXIS),
  1343. base_home_pos(Y_AXIS),
  1344. base_home_pos(Z_AXIS)
  1345. };
  1346. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1347. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1348. /**
  1349. * Get Home position SCARA arm angles using inverse kinematics,
  1350. * and calculate homing offset using forward kinematics
  1351. */
  1352. inverse_kinematics(homeposition);
  1353. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1354. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1355. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1356. current_position[axis] = cartes[axis];
  1357. /**
  1358. * SCARA home positions are based on configuration since the actual
  1359. * limits are determined by the inverse kinematic transform.
  1360. */
  1361. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1362. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1363. }
  1364. else
  1365. #elif ENABLED(DELTA)
  1366. if (axis == Z_AXIS)
  1367. current_position[axis] = delta_height;
  1368. else
  1369. #endif
  1370. {
  1371. current_position[axis] = base_home_pos(axis);
  1372. }
  1373. /**
  1374. * Z Probe Z Homing? Account for the probe's Z offset.
  1375. */
  1376. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1377. if (axis == Z_AXIS) {
  1378. #if HOMING_Z_WITH_PROBE
  1379. current_position[Z_AXIS] -= zprobe_zoffset;
  1380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1381. if (DEBUGGING(LEVELING)) {
  1382. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1383. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1384. }
  1385. #endif
  1386. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1387. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1388. #endif
  1389. }
  1390. #endif
  1391. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1392. if (DEBUGGING(LEVELING)) {
  1393. #if HAS_HOME_OFFSET
  1394. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1395. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1396. #endif
  1397. DEBUG_POS("", current_position);
  1398. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1399. SERIAL_CHAR(')');
  1400. SERIAL_EOL();
  1401. }
  1402. #endif
  1403. #if ENABLED(I2C_POSITION_ENCODERS)
  1404. I2CPEM.homed(axis);
  1405. #endif
  1406. }
  1407. /**
  1408. * Some planner shorthand inline functions
  1409. */
  1410. inline float get_homing_bump_feedrate(const AxisEnum axis) {
  1411. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  1412. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  1413. if (hbd < 1) {
  1414. hbd = 10;
  1415. SERIAL_ECHO_START();
  1416. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1417. }
  1418. return homing_feedrate(axis) / hbd;
  1419. }
  1420. /**
  1421. * Move the planner to the current position from wherever it last moved
  1422. * (or from wherever it has been told it is located).
  1423. */
  1424. inline void buffer_line_to_current_position() {
  1425. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1426. }
  1427. /**
  1428. * Move the planner to the position stored in the destination array, which is
  1429. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  1430. */
  1431. inline void buffer_line_to_destination(const float fr_mm_s) {
  1432. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1433. }
  1434. inline void set_current_from_destination() { COPY(current_position, destination); }
  1435. inline void set_destination_from_current() { COPY(destination, current_position); }
  1436. #if IS_KINEMATIC
  1437. /**
  1438. * Calculate delta, start a line, and set current_position to destination
  1439. */
  1440. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1442. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1443. #endif
  1444. refresh_cmd_timeout();
  1445. #if UBL_DELTA
  1446. // ubl segmented line will do z-only moves in single segment
  1447. ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
  1448. #else
  1449. if ( current_position[X_AXIS] == destination[X_AXIS]
  1450. && current_position[Y_AXIS] == destination[Y_AXIS]
  1451. && current_position[Z_AXIS] == destination[Z_AXIS]
  1452. && current_position[E_AXIS] == destination[E_AXIS]
  1453. ) return;
  1454. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1455. #endif
  1456. set_current_from_destination();
  1457. }
  1458. #endif // IS_KINEMATIC
  1459. /**
  1460. * Plan a move to (X, Y, Z) and set the current_position
  1461. * The final current_position may not be the one that was requested
  1462. */
  1463. void do_blocking_move_to(const float &rx, const float &ry, const float &rz, const float &fr_mm_s/*=0.0*/) {
  1464. const float old_feedrate_mm_s = feedrate_mm_s;
  1465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1466. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, LOGICAL_X_POSITION(rx), LOGICAL_Y_POSITION(ry), LOGICAL_Z_POSITION(rz));
  1467. #endif
  1468. #if ENABLED(DELTA)
  1469. if (!position_is_reachable(rx, ry)) return;
  1470. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1471. set_destination_from_current(); // sync destination at the start
  1472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1473. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination);
  1474. #endif
  1475. // when in the danger zone
  1476. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1477. if (rz > delta_clip_start_height) { // staying in the danger zone
  1478. destination[X_AXIS] = rx; // move directly (uninterpolated)
  1479. destination[Y_AXIS] = ry;
  1480. destination[Z_AXIS] = rz;
  1481. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1482. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1483. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1484. #endif
  1485. return;
  1486. }
  1487. else {
  1488. destination[Z_AXIS] = delta_clip_start_height;
  1489. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1490. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1491. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1492. #endif
  1493. }
  1494. }
  1495. if (rz > current_position[Z_AXIS]) { // raising?
  1496. destination[Z_AXIS] = rz;
  1497. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1498. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1499. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1500. #endif
  1501. }
  1502. destination[X_AXIS] = rx;
  1503. destination[Y_AXIS] = ry;
  1504. prepare_move_to_destination(); // set_current_from_destination
  1505. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1506. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1507. #endif
  1508. if (rz < current_position[Z_AXIS]) { // lowering?
  1509. destination[Z_AXIS] = rz;
  1510. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1511. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1512. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1513. #endif
  1514. }
  1515. #elif IS_SCARA
  1516. if (!position_is_reachable(rx, ry)) return;
  1517. set_destination_from_current();
  1518. // If Z needs to raise, do it before moving XY
  1519. if (destination[Z_AXIS] < rz) {
  1520. destination[Z_AXIS] = rz;
  1521. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1522. }
  1523. destination[X_AXIS] = rx;
  1524. destination[Y_AXIS] = ry;
  1525. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1526. // If Z needs to lower, do it after moving XY
  1527. if (destination[Z_AXIS] > rz) {
  1528. destination[Z_AXIS] = rz;
  1529. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1530. }
  1531. #else
  1532. // If Z needs to raise, do it before moving XY
  1533. if (current_position[Z_AXIS] < rz) {
  1534. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1535. current_position[Z_AXIS] = rz;
  1536. buffer_line_to_current_position();
  1537. }
  1538. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1539. current_position[X_AXIS] = rx;
  1540. current_position[Y_AXIS] = ry;
  1541. buffer_line_to_current_position();
  1542. // If Z needs to lower, do it after moving XY
  1543. if (current_position[Z_AXIS] > rz) {
  1544. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1545. current_position[Z_AXIS] = rz;
  1546. buffer_line_to_current_position();
  1547. }
  1548. #endif
  1549. stepper.synchronize();
  1550. feedrate_mm_s = old_feedrate_mm_s;
  1551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1552. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1553. #endif
  1554. }
  1555. void do_blocking_move_to_x(const float &rx, const float &fr_mm_s/*=0.0*/) {
  1556. do_blocking_move_to(rx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1557. }
  1558. void do_blocking_move_to_z(const float &rz, const float &fr_mm_s/*=0.0*/) {
  1559. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], rz, fr_mm_s);
  1560. }
  1561. void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s/*=0.0*/) {
  1562. do_blocking_move_to(rx, ry, current_position[Z_AXIS], fr_mm_s);
  1563. }
  1564. //
  1565. // Prepare to do endstop or probe moves
  1566. // with custom feedrates.
  1567. //
  1568. // - Save current feedrates
  1569. // - Reset the rate multiplier
  1570. // - Reset the command timeout
  1571. // - Enable the endstops (for endstop moves)
  1572. //
  1573. static void setup_for_endstop_or_probe_move() {
  1574. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1575. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1576. #endif
  1577. saved_feedrate_mm_s = feedrate_mm_s;
  1578. saved_feedrate_percentage = feedrate_percentage;
  1579. feedrate_percentage = 100;
  1580. refresh_cmd_timeout();
  1581. }
  1582. static void clean_up_after_endstop_or_probe_move() {
  1583. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1584. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1585. #endif
  1586. feedrate_mm_s = saved_feedrate_mm_s;
  1587. feedrate_percentage = saved_feedrate_percentage;
  1588. refresh_cmd_timeout();
  1589. }
  1590. #if HAS_BED_PROBE
  1591. /**
  1592. * Raise Z to a minimum height to make room for a probe to move
  1593. */
  1594. inline void do_probe_raise(const float z_raise) {
  1595. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1596. if (DEBUGGING(LEVELING)) {
  1597. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1598. SERIAL_CHAR(')');
  1599. SERIAL_EOL();
  1600. }
  1601. #endif
  1602. float z_dest = z_raise;
  1603. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1604. if (z_dest > current_position[Z_AXIS])
  1605. do_blocking_move_to_z(z_dest);
  1606. }
  1607. #endif // HAS_BED_PROBE
  1608. #if HAS_AXIS_UNHOMED_ERR
  1609. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1610. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1611. const bool xx = x && !axis_known_position[X_AXIS],
  1612. yy = y && !axis_known_position[Y_AXIS],
  1613. zz = z && !axis_known_position[Z_AXIS];
  1614. #else
  1615. const bool xx = x && !axis_homed[X_AXIS],
  1616. yy = y && !axis_homed[Y_AXIS],
  1617. zz = z && !axis_homed[Z_AXIS];
  1618. #endif
  1619. if (xx || yy || zz) {
  1620. SERIAL_ECHO_START();
  1621. SERIAL_ECHOPGM(MSG_HOME " ");
  1622. if (xx) SERIAL_ECHOPGM(MSG_X);
  1623. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1624. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1625. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1626. #if ENABLED(ULTRA_LCD)
  1627. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1628. #endif
  1629. return true;
  1630. }
  1631. return false;
  1632. }
  1633. #endif // HAS_AXIS_UNHOMED_ERR
  1634. #if ENABLED(Z_PROBE_SLED)
  1635. #ifndef SLED_DOCKING_OFFSET
  1636. #define SLED_DOCKING_OFFSET 0
  1637. #endif
  1638. /**
  1639. * Method to dock/undock a sled designed by Charles Bell.
  1640. *
  1641. * stow[in] If false, move to MAX_X and engage the solenoid
  1642. * If true, move to MAX_X and release the solenoid
  1643. */
  1644. static void dock_sled(bool stow) {
  1645. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1646. if (DEBUGGING(LEVELING)) {
  1647. SERIAL_ECHOPAIR("dock_sled(", stow);
  1648. SERIAL_CHAR(')');
  1649. SERIAL_EOL();
  1650. }
  1651. #endif
  1652. // Dock sled a bit closer to ensure proper capturing
  1653. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1654. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1655. WRITE(SOL1_PIN, !stow); // switch solenoid
  1656. #endif
  1657. }
  1658. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1659. FORCE_INLINE void do_blocking_move_to(const float raw[XYZ], const float &fr_mm_s) {
  1660. do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s);
  1661. }
  1662. void run_deploy_moves_script() {
  1663. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1664. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1665. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1668. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1671. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1672. #endif
  1673. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1674. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1675. #endif
  1676. const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
  1677. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1678. #endif
  1679. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1680. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1681. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1682. #endif
  1683. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1684. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1685. #endif
  1686. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1687. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1688. #endif
  1689. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1690. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1691. #endif
  1692. const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
  1693. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1694. #endif
  1695. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1696. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1697. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1698. #endif
  1699. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1700. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1701. #endif
  1702. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1703. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1704. #endif
  1705. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1706. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1707. #endif
  1708. const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
  1709. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1710. #endif
  1711. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1712. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1713. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1714. #endif
  1715. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1716. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1717. #endif
  1718. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1719. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1720. #endif
  1721. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1722. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1723. #endif
  1724. const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
  1725. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1726. #endif
  1727. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1728. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1729. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1730. #endif
  1731. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1732. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1733. #endif
  1734. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1735. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1736. #endif
  1737. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1738. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1739. #endif
  1740. const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
  1741. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1742. #endif
  1743. }
  1744. void run_stow_moves_script() {
  1745. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1746. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1747. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1748. #endif
  1749. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1750. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1751. #endif
  1752. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1753. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1754. #endif
  1755. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1756. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1757. #endif
  1758. const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
  1759. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1760. #endif
  1761. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1762. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1763. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1764. #endif
  1765. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1766. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1767. #endif
  1768. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1769. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1770. #endif
  1771. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1772. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1773. #endif
  1774. const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
  1775. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1776. #endif
  1777. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1778. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1779. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1780. #endif
  1781. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1782. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1783. #endif
  1784. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1785. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1786. #endif
  1787. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1788. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1789. #endif
  1790. const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
  1791. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1792. #endif
  1793. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1794. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1795. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1796. #endif
  1797. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1798. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1799. #endif
  1800. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1801. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1802. #endif
  1803. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1804. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1805. #endif
  1806. const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
  1807. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1808. #endif
  1809. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1810. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1811. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1812. #endif
  1813. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1814. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1815. #endif
  1816. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1817. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1818. #endif
  1819. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1820. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1821. #endif
  1822. const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
  1823. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1824. #endif
  1825. }
  1826. #endif // Z_PROBE_ALLEN_KEY
  1827. #if ENABLED(PROBING_FANS_OFF)
  1828. void fans_pause(const bool p) {
  1829. if (p != fans_paused) {
  1830. fans_paused = p;
  1831. if (p)
  1832. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1833. paused_fanSpeeds[x] = fanSpeeds[x];
  1834. fanSpeeds[x] = 0;
  1835. }
  1836. else
  1837. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1838. fanSpeeds[x] = paused_fanSpeeds[x];
  1839. }
  1840. }
  1841. #endif // PROBING_FANS_OFF
  1842. #if HAS_BED_PROBE
  1843. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1844. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1845. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1846. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1847. #else
  1848. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1849. #endif
  1850. #endif
  1851. #if QUIET_PROBING
  1852. void probing_pause(const bool p) {
  1853. #if ENABLED(PROBING_HEATERS_OFF)
  1854. thermalManager.pause(p);
  1855. #endif
  1856. #if ENABLED(PROBING_FANS_OFF)
  1857. fans_pause(p);
  1858. #endif
  1859. if (p) safe_delay(
  1860. #if DELAY_BEFORE_PROBING > 25
  1861. DELAY_BEFORE_PROBING
  1862. #else
  1863. 25
  1864. #endif
  1865. );
  1866. }
  1867. #endif // QUIET_PROBING
  1868. #if ENABLED(BLTOUCH)
  1869. void bltouch_command(int angle) {
  1870. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait
  1871. safe_delay(BLTOUCH_DELAY);
  1872. }
  1873. bool set_bltouch_deployed(const bool deploy) {
  1874. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1875. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1876. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1877. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1878. safe_delay(1500); // Wait for internal self-test to complete.
  1879. // (Measured completion time was 0.65 seconds
  1880. // after reset, deploy, and stow sequence)
  1881. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1882. SERIAL_ERROR_START();
  1883. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1884. stop(); // punt!
  1885. return true;
  1886. }
  1887. }
  1888. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1889. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1890. if (DEBUGGING(LEVELING)) {
  1891. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1892. SERIAL_CHAR(')');
  1893. SERIAL_EOL();
  1894. }
  1895. #endif
  1896. return false;
  1897. }
  1898. #endif // BLTOUCH
  1899. // returns false for ok and true for failure
  1900. bool set_probe_deployed(bool deploy) {
  1901. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1902. if (DEBUGGING(LEVELING)) {
  1903. DEBUG_POS("set_probe_deployed", current_position);
  1904. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1905. }
  1906. #endif
  1907. if (endstops.z_probe_enabled == deploy) return false;
  1908. // Make room for probe
  1909. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1910. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1911. #if ENABLED(Z_PROBE_SLED)
  1912. #define _AUE_ARGS true, false, false
  1913. #else
  1914. #define _AUE_ARGS
  1915. #endif
  1916. if (axis_unhomed_error(_AUE_ARGS)) {
  1917. SERIAL_ERROR_START();
  1918. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1919. stop();
  1920. return true;
  1921. }
  1922. #endif
  1923. const float oldXpos = current_position[X_AXIS],
  1924. oldYpos = current_position[Y_AXIS];
  1925. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1926. // If endstop is already false, the Z probe is deployed
  1927. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1928. // Would a goto be less ugly?
  1929. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1930. // for a triggered when stowed manual probe.
  1931. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1932. // otherwise an Allen-Key probe can't be stowed.
  1933. #endif
  1934. #if ENABLED(SOLENOID_PROBE)
  1935. #if HAS_SOLENOID_1
  1936. WRITE(SOL1_PIN, deploy);
  1937. #endif
  1938. #elif ENABLED(Z_PROBE_SLED)
  1939. dock_sled(!deploy);
  1940. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1941. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
  1942. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1943. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1944. #endif
  1945. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1946. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1947. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1948. if (IsRunning()) {
  1949. SERIAL_ERROR_START();
  1950. SERIAL_ERRORLNPGM("Z-Probe failed");
  1951. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1952. }
  1953. stop();
  1954. return true;
  1955. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1956. #endif
  1957. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1958. endstops.enable_z_probe(deploy);
  1959. return false;
  1960. }
  1961. /**
  1962. * @brief Used by run_z_probe to do a single Z probe move.
  1963. *
  1964. * @param z Z destination
  1965. * @param fr_mm_s Feedrate in mm/s
  1966. * @return true to indicate an error
  1967. */
  1968. static bool do_probe_move(const float z, const float fr_mm_m) {
  1969. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1970. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1971. #endif
  1972. // Deploy BLTouch at the start of any probe
  1973. #if ENABLED(BLTOUCH)
  1974. if (set_bltouch_deployed(true)) return true;
  1975. #endif
  1976. #if QUIET_PROBING
  1977. probing_pause(true);
  1978. #endif
  1979. // Move down until probe triggered
  1980. do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m));
  1981. // Check to see if the probe was triggered
  1982. const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
  1983. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  1984. Z_MIN
  1985. #else
  1986. Z_MIN_PROBE
  1987. #endif
  1988. );
  1989. #if QUIET_PROBING
  1990. probing_pause(false);
  1991. #endif
  1992. // Retract BLTouch immediately after a probe if it was triggered
  1993. #if ENABLED(BLTOUCH)
  1994. if (probe_triggered && set_bltouch_deployed(false)) return true;
  1995. #endif
  1996. // Clear endstop flags
  1997. endstops.hit_on_purpose();
  1998. // Get Z where the steppers were interrupted
  1999. set_current_from_steppers_for_axis(Z_AXIS);
  2000. // Tell the planner where we actually are
  2001. SYNC_PLAN_POSITION_KINEMATIC();
  2002. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2003. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  2004. #endif
  2005. return !probe_triggered;
  2006. }
  2007. /**
  2008. * @details Used by probe_pt to do a single Z probe.
  2009. * Leaves current_position[Z_AXIS] at the height where the probe triggered.
  2010. *
  2011. * @return The raw Z position where the probe was triggered
  2012. */
  2013. static float run_z_probe() {
  2014. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2015. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  2016. #endif
  2017. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  2018. refresh_cmd_timeout();
  2019. #if ENABLED(PROBE_DOUBLE_TOUCH)
  2020. // Do a first probe at the fast speed
  2021. if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN;
  2022. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2023. float first_probe_z = current_position[Z_AXIS];
  2024. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  2025. #endif
  2026. // move up to make clearance for the probe
  2027. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2028. #else
  2029. // If the nozzle is above the travel height then
  2030. // move down quickly before doing the slow probe
  2031. float z = Z_CLEARANCE_DEPLOY_PROBE;
  2032. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  2033. if (z < current_position[Z_AXIS]) {
  2034. // If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
  2035. if (!do_probe_move(z, Z_PROBE_SPEED_FAST))
  2036. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2037. }
  2038. #endif
  2039. // move down slowly to find bed
  2040. if (do_probe_move(-10, Z_PROBE_SPEED_SLOW)) return NAN;
  2041. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2042. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  2043. #endif
  2044. // Debug: compare probe heights
  2045. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  2046. if (DEBUGGING(LEVELING)) {
  2047. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  2048. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  2049. }
  2050. #endif
  2051. return current_position[Z_AXIS] + zprobe_zoffset;
  2052. }
  2053. /**
  2054. * - Move to the given XY
  2055. * - Deploy the probe, if not already deployed
  2056. * - Probe the bed, get the Z position
  2057. * - Depending on the 'stow' flag
  2058. * - Stow the probe, or
  2059. * - Raise to the BETWEEN height
  2060. * - Return the probed Z position
  2061. */
  2062. float probe_pt(const float &rx, const float &ry, const bool stow, const uint8_t verbose_level, const bool printable=true) {
  2063. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2064. if (DEBUGGING(LEVELING)) {
  2065. SERIAL_ECHOPAIR(">>> probe_pt(", LOGICAL_X_POSITION(rx));
  2066. SERIAL_ECHOPAIR(", ", LOGICAL_Y_POSITION(ry));
  2067. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2068. SERIAL_ECHOLNPGM("stow)");
  2069. DEBUG_POS("", current_position);
  2070. }
  2071. #endif
  2072. const float nx = rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ry - (Y_PROBE_OFFSET_FROM_EXTRUDER);
  2073. if (!printable
  2074. ? !position_is_reachable(nx, ny)
  2075. : !position_is_reachable_by_probe(rx, ry)
  2076. ) return NAN;
  2077. const float old_feedrate_mm_s = feedrate_mm_s;
  2078. #if ENABLED(DELTA)
  2079. if (current_position[Z_AXIS] > delta_clip_start_height)
  2080. do_blocking_move_to_z(delta_clip_start_height);
  2081. #endif
  2082. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2083. // Move the probe to the given XY
  2084. do_blocking_move_to_xy(nx, ny);
  2085. float measured_z = NAN;
  2086. if (!DEPLOY_PROBE()) {
  2087. measured_z = run_z_probe();
  2088. if (!stow)
  2089. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2090. else
  2091. if (STOW_PROBE()) measured_z = NAN;
  2092. }
  2093. if (verbose_level > 2) {
  2094. SERIAL_PROTOCOLPGM("Bed X: ");
  2095. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 3);
  2096. SERIAL_PROTOCOLPGM(" Y: ");
  2097. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 3);
  2098. SERIAL_PROTOCOLPGM(" Z: ");
  2099. SERIAL_PROTOCOL_F(measured_z, 3);
  2100. SERIAL_EOL();
  2101. }
  2102. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2103. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2104. #endif
  2105. feedrate_mm_s = old_feedrate_mm_s;
  2106. if (isnan(measured_z)) {
  2107. LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
  2108. SERIAL_ERROR_START();
  2109. SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
  2110. }
  2111. return measured_z;
  2112. }
  2113. #endif // HAS_BED_PROBE
  2114. #if HAS_LEVELING
  2115. bool leveling_is_valid() {
  2116. return
  2117. #if ENABLED(MESH_BED_LEVELING)
  2118. mbl.has_mesh
  2119. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2120. !!bilinear_grid_spacing[X_AXIS]
  2121. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2122. true
  2123. #else // 3POINT, LINEAR
  2124. true
  2125. #endif
  2126. ;
  2127. }
  2128. /**
  2129. * Turn bed leveling on or off, fixing the current
  2130. * position as-needed.
  2131. *
  2132. * Disable: Current position = physical position
  2133. * Enable: Current position = "unleveled" physical position
  2134. */
  2135. void set_bed_leveling_enabled(const bool enable/*=true*/) {
  2136. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2137. const bool can_change = (!enable || leveling_is_valid());
  2138. #else
  2139. constexpr bool can_change = true;
  2140. #endif
  2141. if (can_change && enable != planner.leveling_active) {
  2142. #if ENABLED(MESH_BED_LEVELING)
  2143. if (!enable)
  2144. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2145. const bool enabling = enable && leveling_is_valid();
  2146. planner.leveling_active = enabling;
  2147. if (enabling) planner.unapply_leveling(current_position);
  2148. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2149. #if PLANNER_LEVELING
  2150. if (planner.leveling_active) { // leveling from on to off
  2151. // change unleveled current_position to physical current_position without moving steppers.
  2152. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2153. planner.leveling_active = false; // disable only AFTER calling apply_leveling
  2154. }
  2155. else { // leveling from off to on
  2156. planner.leveling_active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
  2157. // change physical current_position to unleveled current_position without moving steppers.
  2158. planner.unapply_leveling(current_position);
  2159. }
  2160. #else
  2161. planner.leveling_active = enable; // just flip the bit, current_position will be wrong until next move.
  2162. #endif
  2163. #else // ABL
  2164. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2165. // Force bilinear_z_offset to re-calculate next time
  2166. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2167. (void)bilinear_z_offset(reset);
  2168. #endif
  2169. // Enable or disable leveling compensation in the planner
  2170. planner.leveling_active = enable;
  2171. if (!enable)
  2172. // When disabling just get the current position from the steppers.
  2173. // This will yield the smallest error when first converted back to steps.
  2174. set_current_from_steppers_for_axis(
  2175. #if ABL_PLANAR
  2176. ALL_AXES
  2177. #else
  2178. Z_AXIS
  2179. #endif
  2180. );
  2181. else
  2182. // When enabling, remove compensation from the current position,
  2183. // so compensation will give the right stepper counts.
  2184. planner.unapply_leveling(current_position);
  2185. #endif // ABL
  2186. }
  2187. }
  2188. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2189. void set_z_fade_height(const float zfh) {
  2190. const bool level_active = planner.leveling_active;
  2191. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2192. if (level_active) set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
  2193. #endif
  2194. planner.set_z_fade_height(zfh);
  2195. if (level_active) {
  2196. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2197. set_bed_leveling_enabled(true); // turn back on after changing fade height
  2198. #else
  2199. set_current_from_steppers_for_axis(
  2200. #if ABL_PLANAR
  2201. ALL_AXES
  2202. #else
  2203. Z_AXIS
  2204. #endif
  2205. );
  2206. #endif
  2207. }
  2208. }
  2209. #endif // LEVELING_FADE_HEIGHT
  2210. /**
  2211. * Reset calibration results to zero.
  2212. */
  2213. void reset_bed_level() {
  2214. set_bed_leveling_enabled(false);
  2215. #if ENABLED(MESH_BED_LEVELING)
  2216. if (leveling_is_valid()) {
  2217. mbl.reset();
  2218. mbl.has_mesh = false;
  2219. }
  2220. #else
  2221. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2222. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2223. #endif
  2224. #if ABL_PLANAR
  2225. planner.bed_level_matrix.set_to_identity();
  2226. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2227. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2228. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2229. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2230. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2231. z_values[x][y] = NAN;
  2232. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2233. ubl.reset();
  2234. #endif
  2235. #endif
  2236. }
  2237. #endif // HAS_LEVELING
  2238. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2239. /**
  2240. * Enable to produce output in JSON format suitable
  2241. * for SCAD or JavaScript mesh visualizers.
  2242. *
  2243. * Visualize meshes in OpenSCAD using the included script.
  2244. *
  2245. * buildroot/shared/scripts/MarlinMesh.scad
  2246. */
  2247. //#define SCAD_MESH_OUTPUT
  2248. /**
  2249. * Print calibration results for plotting or manual frame adjustment.
  2250. */
  2251. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2252. #ifndef SCAD_MESH_OUTPUT
  2253. for (uint8_t x = 0; x < sx; x++) {
  2254. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2255. SERIAL_PROTOCOLCHAR(' ');
  2256. SERIAL_PROTOCOL((int)x);
  2257. }
  2258. SERIAL_EOL();
  2259. #endif
  2260. #ifdef SCAD_MESH_OUTPUT
  2261. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2262. #endif
  2263. for (uint8_t y = 0; y < sy; y++) {
  2264. #ifdef SCAD_MESH_OUTPUT
  2265. SERIAL_PROTOCOLPGM(" ["); // open sub-array
  2266. #else
  2267. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2268. SERIAL_PROTOCOL((int)y);
  2269. #endif
  2270. for (uint8_t x = 0; x < sx; x++) {
  2271. SERIAL_PROTOCOLCHAR(' ');
  2272. const float offset = fn(x, y);
  2273. if (!isnan(offset)) {
  2274. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2275. SERIAL_PROTOCOL_F(offset, precision);
  2276. }
  2277. else {
  2278. #ifdef SCAD_MESH_OUTPUT
  2279. for (uint8_t i = 3; i < precision + 3; i++)
  2280. SERIAL_PROTOCOLCHAR(' ');
  2281. SERIAL_PROTOCOLPGM("NAN");
  2282. #else
  2283. for (uint8_t i = 0; i < precision + 3; i++)
  2284. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2285. #endif
  2286. }
  2287. #ifdef SCAD_MESH_OUTPUT
  2288. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2289. #endif
  2290. }
  2291. #ifdef SCAD_MESH_OUTPUT
  2292. SERIAL_PROTOCOLCHAR(' ');
  2293. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2294. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2295. #endif
  2296. SERIAL_EOL();
  2297. }
  2298. #ifdef SCAD_MESH_OUTPUT
  2299. SERIAL_PROTOCOLPGM("];"); // close 2D array
  2300. #endif
  2301. SERIAL_EOL();
  2302. }
  2303. #endif
  2304. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2305. /**
  2306. * Extrapolate a single point from its neighbors
  2307. */
  2308. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2309. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2310. if (DEBUGGING(LEVELING)) {
  2311. SERIAL_ECHOPGM("Extrapolate [");
  2312. if (x < 10) SERIAL_CHAR(' ');
  2313. SERIAL_ECHO((int)x);
  2314. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2315. SERIAL_CHAR(' ');
  2316. if (y < 10) SERIAL_CHAR(' ');
  2317. SERIAL_ECHO((int)y);
  2318. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2319. SERIAL_CHAR(']');
  2320. }
  2321. #endif
  2322. if (!isnan(z_values[x][y])) {
  2323. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2324. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2325. #endif
  2326. return; // Don't overwrite good values.
  2327. }
  2328. SERIAL_EOL();
  2329. // Get X neighbors, Y neighbors, and XY neighbors
  2330. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2331. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2332. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2333. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2334. // Treat far unprobed points as zero, near as equal to far
  2335. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2336. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2337. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2338. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2339. // Take the average instead of the median
  2340. z_values[x][y] = (a + b + c) / 3.0;
  2341. // Median is robust (ignores outliers).
  2342. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2343. // : ((c < b) ? b : (a < c) ? a : c);
  2344. }
  2345. //Enable this if your SCARA uses 180° of total area
  2346. //#define EXTRAPOLATE_FROM_EDGE
  2347. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2348. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2349. #define HALF_IN_X
  2350. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2351. #define HALF_IN_Y
  2352. #endif
  2353. #endif
  2354. /**
  2355. * Fill in the unprobed points (corners of circular print surface)
  2356. * using linear extrapolation, away from the center.
  2357. */
  2358. static void extrapolate_unprobed_bed_level() {
  2359. #ifdef HALF_IN_X
  2360. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2361. #else
  2362. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2363. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2364. xlen = ctrx1;
  2365. #endif
  2366. #ifdef HALF_IN_Y
  2367. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2368. #else
  2369. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2370. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2371. ylen = ctry1;
  2372. #endif
  2373. for (uint8_t xo = 0; xo <= xlen; xo++)
  2374. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2375. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2376. #ifndef HALF_IN_X
  2377. const uint8_t x1 = ctrx1 - xo;
  2378. #endif
  2379. #ifndef HALF_IN_Y
  2380. const uint8_t y1 = ctry1 - yo;
  2381. #ifndef HALF_IN_X
  2382. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2383. #endif
  2384. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2385. #endif
  2386. #ifndef HALF_IN_X
  2387. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2388. #endif
  2389. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2390. }
  2391. }
  2392. static void print_bilinear_leveling_grid() {
  2393. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2394. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2395. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2396. );
  2397. }
  2398. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2399. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2400. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2401. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2402. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2403. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2404. int bilinear_grid_spacing_virt[2] = { 0 };
  2405. float bilinear_grid_factor_virt[2] = { 0 };
  2406. static void print_bilinear_leveling_grid_virt() {
  2407. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2408. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2409. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2410. );
  2411. }
  2412. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2413. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2414. uint8_t ep = 0, ip = 1;
  2415. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2416. if (x) {
  2417. ep = GRID_MAX_POINTS_X - 1;
  2418. ip = GRID_MAX_POINTS_X - 2;
  2419. }
  2420. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2421. return LINEAR_EXTRAPOLATION(
  2422. z_values[ep][y - 1],
  2423. z_values[ip][y - 1]
  2424. );
  2425. else
  2426. return LINEAR_EXTRAPOLATION(
  2427. bed_level_virt_coord(ep + 1, y),
  2428. bed_level_virt_coord(ip + 1, y)
  2429. );
  2430. }
  2431. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2432. if (y) {
  2433. ep = GRID_MAX_POINTS_Y - 1;
  2434. ip = GRID_MAX_POINTS_Y - 2;
  2435. }
  2436. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2437. return LINEAR_EXTRAPOLATION(
  2438. z_values[x - 1][ep],
  2439. z_values[x - 1][ip]
  2440. );
  2441. else
  2442. return LINEAR_EXTRAPOLATION(
  2443. bed_level_virt_coord(x, ep + 1),
  2444. bed_level_virt_coord(x, ip + 1)
  2445. );
  2446. }
  2447. return z_values[x - 1][y - 1];
  2448. }
  2449. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2450. return (
  2451. p[i-1] * -t * sq(1 - t)
  2452. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2453. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2454. - p[i+2] * sq(t) * (1 - t)
  2455. ) * 0.5;
  2456. }
  2457. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2458. float row[4], column[4];
  2459. for (uint8_t i = 0; i < 4; i++) {
  2460. for (uint8_t j = 0; j < 4; j++) {
  2461. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2462. }
  2463. row[i] = bed_level_virt_cmr(column, 1, ty);
  2464. }
  2465. return bed_level_virt_cmr(row, 1, tx);
  2466. }
  2467. void bed_level_virt_interpolate() {
  2468. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2469. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2470. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2471. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2472. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2473. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2474. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2475. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2476. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2477. continue;
  2478. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2479. bed_level_virt_2cmr(
  2480. x + 1,
  2481. y + 1,
  2482. (float)tx / (BILINEAR_SUBDIVISIONS),
  2483. (float)ty / (BILINEAR_SUBDIVISIONS)
  2484. );
  2485. }
  2486. }
  2487. #endif // ABL_BILINEAR_SUBDIVISION
  2488. // Refresh after other values have been updated
  2489. void refresh_bed_level() {
  2490. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2491. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2492. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2493. bed_level_virt_interpolate();
  2494. #endif
  2495. }
  2496. #endif // AUTO_BED_LEVELING_BILINEAR
  2497. /**
  2498. * Home an individual linear axis
  2499. */
  2500. static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
  2501. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2502. if (DEBUGGING(LEVELING)) {
  2503. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2504. SERIAL_ECHOPAIR(", ", distance);
  2505. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2506. SERIAL_CHAR(')');
  2507. SERIAL_EOL();
  2508. }
  2509. #endif
  2510. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2511. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2512. if (deploy_bltouch) set_bltouch_deployed(true);
  2513. #endif
  2514. #if QUIET_PROBING
  2515. if (axis == Z_AXIS) probing_pause(true);
  2516. #endif
  2517. // Tell the planner we're at Z=0
  2518. current_position[axis] = 0;
  2519. #if IS_SCARA
  2520. SYNC_PLAN_POSITION_KINEMATIC();
  2521. current_position[axis] = distance;
  2522. inverse_kinematics(current_position);
  2523. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2524. #else
  2525. sync_plan_position();
  2526. current_position[axis] = distance;
  2527. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2528. #endif
  2529. stepper.synchronize();
  2530. #if QUIET_PROBING
  2531. if (axis == Z_AXIS) probing_pause(false);
  2532. #endif
  2533. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2534. if (deploy_bltouch) set_bltouch_deployed(false);
  2535. #endif
  2536. endstops.hit_on_purpose();
  2537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2538. if (DEBUGGING(LEVELING)) {
  2539. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2540. SERIAL_CHAR(')');
  2541. SERIAL_EOL();
  2542. }
  2543. #endif
  2544. }
  2545. /**
  2546. * TMC2130 specific sensorless homing using stallGuard2.
  2547. * stallGuard2 only works when in spreadCycle mode.
  2548. * spreadCycle and stealthChop are mutually exclusive.
  2549. */
  2550. #if ENABLED(SENSORLESS_HOMING)
  2551. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2552. #if ENABLED(STEALTHCHOP)
  2553. if (enable) {
  2554. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2555. st.stealthChop(0);
  2556. }
  2557. else {
  2558. st.coolstep_min_speed(0);
  2559. st.stealthChop(1);
  2560. }
  2561. #endif
  2562. st.diag1_stall(enable ? 1 : 0);
  2563. }
  2564. #endif
  2565. /**
  2566. * Home an individual "raw axis" to its endstop.
  2567. * This applies to XYZ on Cartesian and Core robots, and
  2568. * to the individual ABC steppers on DELTA and SCARA.
  2569. *
  2570. * At the end of the procedure the axis is marked as
  2571. * homed and the current position of that axis is updated.
  2572. * Kinematic robots should wait till all axes are homed
  2573. * before updating the current position.
  2574. */
  2575. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2576. static void homeaxis(const AxisEnum axis) {
  2577. #if IS_SCARA
  2578. // Only Z homing (with probe) is permitted
  2579. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2580. #else
  2581. #define CAN_HOME(A) \
  2582. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2583. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2584. #endif
  2585. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2586. if (DEBUGGING(LEVELING)) {
  2587. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2588. SERIAL_CHAR(')');
  2589. SERIAL_EOL();
  2590. }
  2591. #endif
  2592. const int axis_home_dir =
  2593. #if ENABLED(DUAL_X_CARRIAGE)
  2594. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2595. #endif
  2596. home_dir(axis);
  2597. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2598. #if HOMING_Z_WITH_PROBE
  2599. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2600. #endif
  2601. // Set flags for X, Y, Z motor locking
  2602. #if ENABLED(X_DUAL_ENDSTOPS)
  2603. if (axis == X_AXIS) stepper.set_homing_flag_x(true);
  2604. #endif
  2605. #if ENABLED(Y_DUAL_ENDSTOPS)
  2606. if (axis == Y_AXIS) stepper.set_homing_flag_y(true);
  2607. #endif
  2608. #if ENABLED(Z_DUAL_ENDSTOPS)
  2609. if (axis == Z_AXIS) stepper.set_homing_flag_z(true);
  2610. #endif
  2611. // Disable stealthChop if used. Enable diag1 pin on driver.
  2612. #if ENABLED(SENSORLESS_HOMING)
  2613. #if ENABLED(X_IS_TMC2130)
  2614. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2615. #endif
  2616. #if ENABLED(Y_IS_TMC2130)
  2617. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2618. #endif
  2619. #endif
  2620. // Fast move towards endstop until triggered
  2621. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2622. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2623. #endif
  2624. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2625. // When homing Z with probe respect probe clearance
  2626. const float bump = axis_home_dir * (
  2627. #if HOMING_Z_WITH_PROBE
  2628. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2629. #endif
  2630. home_bump_mm(axis)
  2631. );
  2632. // If a second homing move is configured...
  2633. if (bump) {
  2634. // Move away from the endstop by the axis HOME_BUMP_MM
  2635. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2636. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2637. #endif
  2638. do_homing_move(axis, -bump);
  2639. // Slow move towards endstop until triggered
  2640. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2641. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2642. #endif
  2643. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2644. }
  2645. /**
  2646. * Home axes that have dual endstops... differently
  2647. */
  2648. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  2649. const bool pos_dir = axis_home_dir > 0;
  2650. #if ENABLED(X_DUAL_ENDSTOPS)
  2651. if (axis == X_AXIS) {
  2652. const bool lock_x1 = pos_dir ? (x_endstop_adj > 0) : (x_endstop_adj < 0);
  2653. const float adj = FABS(x_endstop_adj);
  2654. if (lock_x1) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
  2655. do_homing_move(axis, pos_dir ? -adj : adj);
  2656. if (lock_x1) stepper.set_x_lock(false); else stepper.set_x2_lock(false);
  2657. stepper.set_homing_flag_x(false);
  2658. }
  2659. #endif
  2660. #if ENABLED(Y_DUAL_ENDSTOPS)
  2661. if (axis == Y_AXIS) {
  2662. const bool lock_y1 = pos_dir ? (y_endstop_adj > 0) : (y_endstop_adj < 0);
  2663. const float adj = FABS(y_endstop_adj);
  2664. if (lock_y1) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
  2665. do_homing_move(axis, pos_dir ? -adj : adj);
  2666. if (lock_y1) stepper.set_y_lock(false); else stepper.set_y2_lock(false);
  2667. stepper.set_homing_flag_y(false);
  2668. }
  2669. #endif
  2670. #if ENABLED(Z_DUAL_ENDSTOPS)
  2671. if (axis == Z_AXIS) {
  2672. const bool lock_z1 = pos_dir ? (z_endstop_adj > 0) : (z_endstop_adj < 0);
  2673. const float adj = FABS(z_endstop_adj);
  2674. if (lock_z1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2675. do_homing_move(axis, pos_dir ? -adj : adj);
  2676. if (lock_z1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2677. stepper.set_homing_flag_z(false);
  2678. }
  2679. #endif
  2680. #endif
  2681. #if IS_SCARA
  2682. set_axis_is_at_home(axis);
  2683. SYNC_PLAN_POSITION_KINEMATIC();
  2684. #elif ENABLED(DELTA)
  2685. // Delta has already moved all three towers up in G28
  2686. // so here it re-homes each tower in turn.
  2687. // Delta homing treats the axes as normal linear axes.
  2688. // retrace by the amount specified in delta_endstop_adj + additional 0.1mm in order to have minimum steps
  2689. if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2690. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2691. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:");
  2692. #endif
  2693. do_homing_move(axis, delta_endstop_adj[axis] - 0.1 * Z_HOME_DIR);
  2694. }
  2695. #else
  2696. // For cartesian/core machines,
  2697. // set the axis to its home position
  2698. set_axis_is_at_home(axis);
  2699. sync_plan_position();
  2700. destination[axis] = current_position[axis];
  2701. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2702. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2703. #endif
  2704. #endif
  2705. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2706. #if ENABLED(SENSORLESS_HOMING)
  2707. #if ENABLED(X_IS_TMC2130)
  2708. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2709. #endif
  2710. #if ENABLED(Y_IS_TMC2130)
  2711. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2712. #endif
  2713. #endif
  2714. // Put away the Z probe
  2715. #if HOMING_Z_WITH_PROBE
  2716. if (axis == Z_AXIS && STOW_PROBE()) return;
  2717. #endif
  2718. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2719. if (DEBUGGING(LEVELING)) {
  2720. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2721. SERIAL_CHAR(')');
  2722. SERIAL_EOL();
  2723. }
  2724. #endif
  2725. } // homeaxis()
  2726. #if ENABLED(FWRETRACT)
  2727. /**
  2728. * Retract or recover according to firmware settings
  2729. *
  2730. * This function handles retract/recover moves for G10 and G11,
  2731. * plus auto-retract moves sent from G0/G1 when E-only moves are done.
  2732. *
  2733. * To simplify the logic, doubled retract/recover moves are ignored.
  2734. *
  2735. * Note: Z lift is done transparently to the planner. Aborting
  2736. * a print between G10 and G11 may corrupt the Z position.
  2737. *
  2738. * Note: Auto-retract will apply the set Z hop in addition to any Z hop
  2739. * included in the G-code. Use M207 Z0 to to prevent double hop.
  2740. */
  2741. void retract(const bool retracting
  2742. #if EXTRUDERS > 1
  2743. , bool swapping = false
  2744. #endif
  2745. ) {
  2746. static float hop_amount = 0.0; // Total amount lifted, for use in recover
  2747. // Prevent two retracts or recovers in a row
  2748. if (retracted[active_extruder] == retracting) return;
  2749. // Prevent two swap-retract or recovers in a row
  2750. #if EXTRUDERS > 1
  2751. // Allow G10 S1 only after G10
  2752. if (swapping && retracted_swap[active_extruder] == retracting) return;
  2753. // G11 priority to recover the long retract if activated
  2754. if (!retracting) swapping = retracted_swap[active_extruder];
  2755. #else
  2756. const bool swapping = false;
  2757. #endif
  2758. /* // debugging
  2759. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2760. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2761. SERIAL_ECHOLNPAIR("active extruder ", active_extruder);
  2762. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2763. SERIAL_ECHOPAIR("retracted[", i);
  2764. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2765. SERIAL_ECHOPAIR("retracted_swap[", i);
  2766. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2767. }
  2768. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2769. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2770. //*/
  2771. const bool has_zhop = retract_zlift > 0.01; // Is there a hop set?
  2772. const float old_feedrate_mm_s = feedrate_mm_s;
  2773. // The current position will be the destination for E and Z moves
  2774. set_destination_from_current();
  2775. stepper.synchronize(); // Wait for buffered moves to complete
  2776. const float renormalize = 100.0 / flow_percentage[active_extruder] / volumetric_multiplier[active_extruder];
  2777. if (retracting) {
  2778. // Retract by moving from a faux E position back to the current E position
  2779. feedrate_mm_s = retract_feedrate_mm_s;
  2780. current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) * renormalize;
  2781. sync_plan_position_e();
  2782. prepare_move_to_destination();
  2783. // Is a Z hop set, and has the hop not yet been done?
  2784. if (has_zhop && !hop_amount) {
  2785. hop_amount += retract_zlift; // Carriage is raised for retraction hop
  2786. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
  2787. current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2788. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2789. prepare_move_to_destination(); // Raise up to the old current pos
  2790. feedrate_mm_s = retract_feedrate_mm_s; // Restore feedrate
  2791. }
  2792. }
  2793. else {
  2794. // If a hop was done and Z hasn't changed, undo the Z hop
  2795. if (hop_amount) {
  2796. current_position[Z_AXIS] += retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2797. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2798. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
  2799. prepare_move_to_destination(); // Raise up to the old current pos
  2800. hop_amount = 0.0; // Clear hop
  2801. }
  2802. // A retract multiplier has been added here to get faster swap recovery
  2803. feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
  2804. const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length;
  2805. current_position[E_AXIS] -= move_e * renormalize;
  2806. sync_plan_position_e();
  2807. prepare_move_to_destination(); // Recover E
  2808. }
  2809. feedrate_mm_s = old_feedrate_mm_s; // Restore original feedrate
  2810. retracted[active_extruder] = retracting; // Active extruder now retracted / recovered
  2811. // If swap retract/recover update the retracted_swap flag too
  2812. #if EXTRUDERS > 1
  2813. if (swapping) retracted_swap[active_extruder] = retracting;
  2814. #endif
  2815. /* // debugging
  2816. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2817. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2818. SERIAL_ECHOLNPAIR("active_extruder ", active_extruder);
  2819. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2820. SERIAL_ECHOPAIR("retracted[", i);
  2821. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2822. SERIAL_ECHOPAIR("retracted_swap[", i);
  2823. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2824. }
  2825. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2826. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2827. //*/
  2828. }
  2829. #endif // FWRETRACT
  2830. #if ENABLED(MIXING_EXTRUDER)
  2831. void normalize_mix() {
  2832. float mix_total = 0.0;
  2833. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2834. // Scale all values if they don't add up to ~1.0
  2835. if (!NEAR(mix_total, 1.0)) {
  2836. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2837. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2838. }
  2839. }
  2840. #if ENABLED(DIRECT_MIXING_IN_G1)
  2841. // Get mixing parameters from the GCode
  2842. // The total "must" be 1.0 (but it will be normalized)
  2843. // If no mix factors are given, the old mix is preserved
  2844. void gcode_get_mix() {
  2845. const char* mixing_codes = "ABCDHI";
  2846. byte mix_bits = 0;
  2847. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2848. if (parser.seenval(mixing_codes[i])) {
  2849. SBI(mix_bits, i);
  2850. float v = parser.value_float();
  2851. NOLESS(v, 0.0);
  2852. mixing_factor[i] = RECIPROCAL(v);
  2853. }
  2854. }
  2855. // If any mixing factors were included, clear the rest
  2856. // If none were included, preserve the last mix
  2857. if (mix_bits) {
  2858. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2859. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2860. normalize_mix();
  2861. }
  2862. }
  2863. #endif
  2864. #endif
  2865. /**
  2866. * ***************************************************************************
  2867. * ***************************** G-CODE HANDLING *****************************
  2868. * ***************************************************************************
  2869. */
  2870. /**
  2871. * Set XYZE destination and feedrate from the current GCode command
  2872. *
  2873. * - Set destination from included axis codes
  2874. * - Set to current for missing axis codes
  2875. * - Set the feedrate, if included
  2876. */
  2877. void gcode_get_destination() {
  2878. LOOP_XYZE(i) {
  2879. if (parser.seen(axis_codes[i])) {
  2880. const float v = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2881. destination[i] = i == E_AXIS ? v : LOGICAL_TO_NATIVE(v, i);
  2882. }
  2883. else
  2884. destination[i] = current_position[i];
  2885. }
  2886. if (parser.linearval('F') > 0.0)
  2887. feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
  2888. #if ENABLED(PRINTCOUNTER)
  2889. if (!DEBUGGING(DRYRUN))
  2890. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2891. #endif
  2892. // Get ABCDHI mixing factors
  2893. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2894. gcode_get_mix();
  2895. #endif
  2896. }
  2897. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2898. /**
  2899. * Output a "busy" message at regular intervals
  2900. * while the machine is not accepting commands.
  2901. */
  2902. void host_keepalive() {
  2903. const millis_t ms = millis();
  2904. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2905. if (PENDING(ms, next_busy_signal_ms)) return;
  2906. switch (busy_state) {
  2907. case IN_HANDLER:
  2908. case IN_PROCESS:
  2909. SERIAL_ECHO_START();
  2910. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2911. break;
  2912. case PAUSED_FOR_USER:
  2913. SERIAL_ECHO_START();
  2914. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2915. break;
  2916. case PAUSED_FOR_INPUT:
  2917. SERIAL_ECHO_START();
  2918. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2919. break;
  2920. default:
  2921. break;
  2922. }
  2923. }
  2924. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2925. }
  2926. #endif // HOST_KEEPALIVE_FEATURE
  2927. /**************************************************
  2928. ***************** GCode Handlers *****************
  2929. **************************************************/
  2930. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2931. #define G0_G1_CONDITION !axis_unhomed_error(parser.seen('X'), parser.seen('Y'), parser.seen('Z'))
  2932. #else
  2933. #define G0_G1_CONDITION true
  2934. #endif
  2935. /**
  2936. * G0, G1: Coordinated movement of X Y Z E axes
  2937. */
  2938. inline void gcode_G0_G1(
  2939. #if IS_SCARA
  2940. bool fast_move=false
  2941. #endif
  2942. ) {
  2943. if (IsRunning() && G0_G1_CONDITION) {
  2944. gcode_get_destination(); // For X Y Z E F
  2945. #if ENABLED(FWRETRACT)
  2946. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  2947. // When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
  2948. if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
  2949. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2950. // Is this a retract or recover move?
  2951. if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) {
  2952. current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations
  2953. sync_plan_position_e(); // AND from the planner
  2954. return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored)
  2955. }
  2956. }
  2957. }
  2958. #endif // FWRETRACT
  2959. #if IS_SCARA
  2960. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2961. #else
  2962. prepare_move_to_destination();
  2963. #endif
  2964. }
  2965. }
  2966. /**
  2967. * G2: Clockwise Arc
  2968. * G3: Counterclockwise Arc
  2969. *
  2970. * This command has two forms: IJ-form and R-form.
  2971. *
  2972. * - I specifies an X offset. J specifies a Y offset.
  2973. * At least one of the IJ parameters is required.
  2974. * X and Y can be omitted to do a complete circle.
  2975. * The given XY is not error-checked. The arc ends
  2976. * based on the angle of the destination.
  2977. * Mixing I or J with R will throw an error.
  2978. *
  2979. * - R specifies the radius. X or Y is required.
  2980. * Omitting both X and Y will throw an error.
  2981. * X or Y must differ from the current XY.
  2982. * Mixing R with I or J will throw an error.
  2983. *
  2984. * - P specifies the number of full circles to do
  2985. * before the specified arc move.
  2986. *
  2987. * Examples:
  2988. *
  2989. * G2 I10 ; CW circle centered at X+10
  2990. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2991. */
  2992. #if ENABLED(ARC_SUPPORT)
  2993. inline void gcode_G2_G3(const bool clockwise) {
  2994. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2995. if (axis_unhomed_error()) return;
  2996. #endif
  2997. if (IsRunning()) {
  2998. #if ENABLED(SF_ARC_FIX)
  2999. const bool relative_mode_backup = relative_mode;
  3000. relative_mode = true;
  3001. #endif
  3002. gcode_get_destination();
  3003. #if ENABLED(SF_ARC_FIX)
  3004. relative_mode = relative_mode_backup;
  3005. #endif
  3006. float arc_offset[2] = { 0.0, 0.0 };
  3007. if (parser.seenval('R')) {
  3008. const float r = parser.value_linear_units(),
  3009. p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
  3010. p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
  3011. if (r && (p2 != p1 || q2 != q1)) {
  3012. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  3013. dx = p2 - p1, dy = q2 - q1, // X and Y differences
  3014. d = HYPOT(dx, dy), // Linear distance between the points
  3015. h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  3016. mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
  3017. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  3018. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  3019. arc_offset[0] = cx - p1;
  3020. arc_offset[1] = cy - q1;
  3021. }
  3022. }
  3023. else {
  3024. if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
  3025. if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
  3026. }
  3027. if (arc_offset[0] || arc_offset[1]) {
  3028. #if ENABLED(ARC_P_CIRCLES)
  3029. // P indicates number of circles to do
  3030. int8_t circles_to_do = parser.byteval('P');
  3031. if (!WITHIN(circles_to_do, 0, 100)) {
  3032. SERIAL_ERROR_START();
  3033. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  3034. }
  3035. while (circles_to_do--)
  3036. plan_arc(current_position, arc_offset, clockwise);
  3037. #endif
  3038. // Send the arc to the planner
  3039. plan_arc(destination, arc_offset, clockwise);
  3040. refresh_cmd_timeout();
  3041. }
  3042. else {
  3043. // Bad arguments
  3044. SERIAL_ERROR_START();
  3045. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  3046. }
  3047. }
  3048. }
  3049. #endif // ARC_SUPPORT
  3050. void dwell(millis_t time) {
  3051. refresh_cmd_timeout();
  3052. time += previous_cmd_ms;
  3053. while (PENDING(millis(), time)) idle();
  3054. }
  3055. /**
  3056. * G4: Dwell S<seconds> or P<milliseconds>
  3057. */
  3058. inline void gcode_G4() {
  3059. millis_t dwell_ms = 0;
  3060. if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
  3061. if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
  3062. stepper.synchronize();
  3063. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  3064. dwell(dwell_ms);
  3065. }
  3066. #if ENABLED(BEZIER_CURVE_SUPPORT)
  3067. /**
  3068. * Parameters interpreted according to:
  3069. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  3070. * However I, J omission is not supported at this point; all
  3071. * parameters can be omitted and default to zero.
  3072. */
  3073. /**
  3074. * G5: Cubic B-spline
  3075. */
  3076. inline void gcode_G5() {
  3077. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  3078. if (axis_unhomed_error()) return;
  3079. #endif
  3080. if (IsRunning()) {
  3081. #if ENABLED(CNC_WORKSPACE_PLANES)
  3082. if (workspace_plane != PLANE_XY) {
  3083. SERIAL_ERROR_START();
  3084. SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
  3085. return;
  3086. }
  3087. #endif
  3088. gcode_get_destination();
  3089. const float offset[] = {
  3090. parser.linearval('I'),
  3091. parser.linearval('J'),
  3092. parser.linearval('P'),
  3093. parser.linearval('Q')
  3094. };
  3095. plan_cubic_move(offset);
  3096. }
  3097. }
  3098. #endif // BEZIER_CURVE_SUPPORT
  3099. #if ENABLED(FWRETRACT)
  3100. /**
  3101. * G10 - Retract filament according to settings of M207
  3102. */
  3103. inline void gcode_G10() {
  3104. #if EXTRUDERS > 1
  3105. const bool rs = parser.boolval('S');
  3106. retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
  3107. #endif
  3108. retract(true
  3109. #if EXTRUDERS > 1
  3110. , rs
  3111. #endif
  3112. );
  3113. }
  3114. /**
  3115. * G11 - Recover filament according to settings of M208
  3116. */
  3117. inline void gcode_G11() { retract(false); }
  3118. #endif // FWRETRACT
  3119. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  3120. /**
  3121. * G12: Clean the nozzle
  3122. */
  3123. inline void gcode_G12() {
  3124. // Don't allow nozzle cleaning without homing first
  3125. if (axis_unhomed_error()) return;
  3126. const uint8_t pattern = parser.ushortval('P', 0),
  3127. strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
  3128. objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
  3129. const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
  3130. Nozzle::clean(pattern, strokes, radius, objects);
  3131. }
  3132. #endif
  3133. #if ENABLED(CNC_WORKSPACE_PLANES)
  3134. inline void report_workspace_plane() {
  3135. SERIAL_ECHO_START();
  3136. SERIAL_ECHOPGM("Workspace Plane ");
  3137. serialprintPGM(
  3138. workspace_plane == PLANE_YZ ? PSTR("YZ\n") :
  3139. workspace_plane == PLANE_ZX ? PSTR("ZX\n") :
  3140. PSTR("XY\n")
  3141. );
  3142. }
  3143. inline void set_workspace_plane(const WorkspacePlane plane) {
  3144. workspace_plane = plane;
  3145. if (DEBUGGING(INFO)) report_workspace_plane();
  3146. }
  3147. /**
  3148. * G17: Select Plane XY
  3149. * G18: Select Plane ZX
  3150. * G19: Select Plane YZ
  3151. */
  3152. inline void gcode_G17() { set_workspace_plane(PLANE_XY); }
  3153. inline void gcode_G18() { set_workspace_plane(PLANE_ZX); }
  3154. inline void gcode_G19() { set_workspace_plane(PLANE_YZ); }
  3155. #endif // CNC_WORKSPACE_PLANES
  3156. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  3157. /**
  3158. * Select a coordinate system and update the current position.
  3159. * System index -1 is used to specify machine-native.
  3160. */
  3161. bool select_coordinate_system(const int8_t _new) {
  3162. if (active_coordinate_system == _new) return false;
  3163. float old_offset[XYZ] = { 0 }, new_offset[XYZ] = { 0 };
  3164. if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
  3165. COPY(old_offset, coordinate_system[active_coordinate_system]);
  3166. if (WITHIN(_new, 0, MAX_COORDINATE_SYSTEMS - 1))
  3167. COPY(new_offset, coordinate_system[_new]);
  3168. active_coordinate_system = _new;
  3169. bool didXYZ = false;
  3170. LOOP_XYZ(i) {
  3171. const float diff = new_offset[i] - old_offset[i];
  3172. if (diff) {
  3173. position_shift[i] += diff;
  3174. update_software_endstops((AxisEnum)i);
  3175. didXYZ = true;
  3176. }
  3177. }
  3178. if (didXYZ) SYNC_PLAN_POSITION_KINEMATIC();
  3179. return true;
  3180. }
  3181. /**
  3182. * In CNC G-code G53 is like a modifier
  3183. * It precedes a movement command (or other modifiers) on the same line.
  3184. * This is the first command to use parser.chain() to make this possible.
  3185. */
  3186. inline void gcode_G53() {
  3187. // If this command has more following...
  3188. if (parser.chain()) {
  3189. const int8_t _system = active_coordinate_system;
  3190. active_coordinate_system = -1;
  3191. process_parsed_command();
  3192. active_coordinate_system = _system;
  3193. }
  3194. }
  3195. /**
  3196. * G54-G59.3: Select a new workspace
  3197. *
  3198. * A workspace is an XYZ offset to the machine native space.
  3199. * All workspaces default to 0,0,0 at start, or with EEPROM
  3200. * support they may be restored from a previous session.
  3201. *
  3202. * G92 is used to set the current workspace's offset.
  3203. */
  3204. inline void gcode_G54_59(uint8_t subcode=0) {
  3205. const int8_t _space = parser.codenum - 54 + subcode;
  3206. if (select_coordinate_system(_space)) {
  3207. SERIAL_PROTOCOLLNPAIR("Select workspace ", _space);
  3208. report_current_position();
  3209. }
  3210. }
  3211. FORCE_INLINE void gcode_G54() { gcode_G54_59(); }
  3212. FORCE_INLINE void gcode_G55() { gcode_G54_59(); }
  3213. FORCE_INLINE void gcode_G56() { gcode_G54_59(); }
  3214. FORCE_INLINE void gcode_G57() { gcode_G54_59(); }
  3215. FORCE_INLINE void gcode_G58() { gcode_G54_59(); }
  3216. FORCE_INLINE void gcode_G59() { gcode_G54_59(parser.subcode); }
  3217. #endif
  3218. #if ENABLED(INCH_MODE_SUPPORT)
  3219. /**
  3220. * G20: Set input mode to inches
  3221. */
  3222. inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
  3223. /**
  3224. * G21: Set input mode to millimeters
  3225. */
  3226. inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
  3227. #endif
  3228. #if ENABLED(NOZZLE_PARK_FEATURE)
  3229. /**
  3230. * G27: Park the nozzle
  3231. */
  3232. inline void gcode_G27() {
  3233. // Don't allow nozzle parking without homing first
  3234. if (axis_unhomed_error()) return;
  3235. Nozzle::park(parser.ushortval('P'));
  3236. }
  3237. #endif // NOZZLE_PARK_FEATURE
  3238. #if ENABLED(QUICK_HOME)
  3239. static void quick_home_xy() {
  3240. // Pretend the current position is 0,0
  3241. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3242. sync_plan_position();
  3243. const int x_axis_home_dir =
  3244. #if ENABLED(DUAL_X_CARRIAGE)
  3245. x_home_dir(active_extruder)
  3246. #else
  3247. home_dir(X_AXIS)
  3248. #endif
  3249. ;
  3250. const float mlx = max_length(X_AXIS),
  3251. mly = max_length(Y_AXIS),
  3252. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  3253. fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
  3254. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  3255. endstops.hit_on_purpose(); // clear endstop hit flags
  3256. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3257. }
  3258. #endif // QUICK_HOME
  3259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3260. void log_machine_info() {
  3261. SERIAL_ECHOPGM("Machine Type: ");
  3262. #if ENABLED(DELTA)
  3263. SERIAL_ECHOLNPGM("Delta");
  3264. #elif IS_SCARA
  3265. SERIAL_ECHOLNPGM("SCARA");
  3266. #elif IS_CORE
  3267. SERIAL_ECHOLNPGM("Core");
  3268. #else
  3269. SERIAL_ECHOLNPGM("Cartesian");
  3270. #endif
  3271. SERIAL_ECHOPGM("Probe: ");
  3272. #if ENABLED(PROBE_MANUALLY)
  3273. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3274. #elif ENABLED(FIX_MOUNTED_PROBE)
  3275. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3276. #elif ENABLED(BLTOUCH)
  3277. SERIAL_ECHOLNPGM("BLTOUCH");
  3278. #elif HAS_Z_SERVO_ENDSTOP
  3279. SERIAL_ECHOLNPGM("SERVO PROBE");
  3280. #elif ENABLED(Z_PROBE_SLED)
  3281. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3282. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3283. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3284. #else
  3285. SERIAL_ECHOLNPGM("NONE");
  3286. #endif
  3287. #if HAS_BED_PROBE
  3288. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3289. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3290. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3291. #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
  3292. SERIAL_ECHOPGM(" (Right");
  3293. #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
  3294. SERIAL_ECHOPGM(" (Left");
  3295. #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
  3296. SERIAL_ECHOPGM(" (Middle");
  3297. #else
  3298. SERIAL_ECHOPGM(" (Aligned With");
  3299. #endif
  3300. #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
  3301. SERIAL_ECHOPGM("-Back");
  3302. #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
  3303. SERIAL_ECHOPGM("-Front");
  3304. #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
  3305. SERIAL_ECHOPGM("-Center");
  3306. #endif
  3307. if (zprobe_zoffset < 0)
  3308. SERIAL_ECHOPGM(" & Below");
  3309. else if (zprobe_zoffset > 0)
  3310. SERIAL_ECHOPGM(" & Above");
  3311. else
  3312. SERIAL_ECHOPGM(" & Same Z as");
  3313. SERIAL_ECHOLNPGM(" Nozzle)");
  3314. #endif
  3315. #if HAS_ABL
  3316. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3317. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3318. SERIAL_ECHOPGM("LINEAR");
  3319. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3320. SERIAL_ECHOPGM("BILINEAR");
  3321. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3322. SERIAL_ECHOPGM("3POINT");
  3323. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3324. SERIAL_ECHOPGM("UBL");
  3325. #endif
  3326. if (planner.leveling_active) {
  3327. SERIAL_ECHOLNPGM(" (enabled)");
  3328. #if ABL_PLANAR
  3329. const float diff[XYZ] = {
  3330. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3331. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3332. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3333. };
  3334. SERIAL_ECHOPGM("ABL Adjustment X");
  3335. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3336. SERIAL_ECHO(diff[X_AXIS]);
  3337. SERIAL_ECHOPGM(" Y");
  3338. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3339. SERIAL_ECHO(diff[Y_AXIS]);
  3340. SERIAL_ECHOPGM(" Z");
  3341. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3342. SERIAL_ECHO(diff[Z_AXIS]);
  3343. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3344. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3345. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3346. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3347. #endif
  3348. }
  3349. else
  3350. SERIAL_ECHOLNPGM(" (disabled)");
  3351. SERIAL_EOL();
  3352. #elif ENABLED(MESH_BED_LEVELING)
  3353. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3354. if (planner.leveling_active) {
  3355. float rz = current_position[Z_AXIS];
  3356. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], rz);
  3357. SERIAL_ECHOLNPGM(" (enabled)");
  3358. SERIAL_ECHOPAIR("MBL Adjustment Z", rz);
  3359. }
  3360. else
  3361. SERIAL_ECHOPGM(" (disabled)");
  3362. SERIAL_EOL();
  3363. #endif // MESH_BED_LEVELING
  3364. }
  3365. #endif // DEBUG_LEVELING_FEATURE
  3366. #if ENABLED(DELTA)
  3367. /**
  3368. * A delta can only safely home all axes at the same time
  3369. * This is like quick_home_xy() but for 3 towers.
  3370. */
  3371. inline bool home_delta() {
  3372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3373. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3374. #endif
  3375. // Init the current position of all carriages to 0,0,0
  3376. ZERO(current_position);
  3377. sync_plan_position();
  3378. // Move all carriages together linearly until an endstop is hit.
  3379. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (delta_height + 10);
  3380. feedrate_mm_s = homing_feedrate(X_AXIS);
  3381. buffer_line_to_current_position();
  3382. stepper.synchronize();
  3383. // If an endstop was not hit, then damage can occur if homing is continued.
  3384. // This can occur if the delta height not set correctly.
  3385. if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
  3386. LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
  3387. SERIAL_ERROR_START();
  3388. SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
  3389. return false;
  3390. }
  3391. endstops.hit_on_purpose(); // clear endstop hit flags
  3392. // At least one carriage has reached the top.
  3393. // Now re-home each carriage separately.
  3394. HOMEAXIS(A);
  3395. HOMEAXIS(B);
  3396. HOMEAXIS(C);
  3397. // Set all carriages to their home positions
  3398. // Do this here all at once for Delta, because
  3399. // XYZ isn't ABC. Applying this per-tower would
  3400. // give the impression that they are the same.
  3401. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3402. SYNC_PLAN_POSITION_KINEMATIC();
  3403. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3404. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3405. #endif
  3406. return true;
  3407. }
  3408. #endif // DELTA
  3409. #if ENABLED(Z_SAFE_HOMING)
  3410. inline void home_z_safely() {
  3411. // Disallow Z homing if X or Y are unknown
  3412. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3413. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3414. SERIAL_ECHO_START();
  3415. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3416. return;
  3417. }
  3418. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3419. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3420. #endif
  3421. SYNC_PLAN_POSITION_KINEMATIC();
  3422. /**
  3423. * Move the Z probe (or just the nozzle) to the safe homing point
  3424. */
  3425. destination[X_AXIS] = Z_SAFE_HOMING_X_POINT;
  3426. destination[Y_AXIS] = Z_SAFE_HOMING_Y_POINT;
  3427. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3428. #if HOMING_Z_WITH_PROBE
  3429. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3430. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3431. #endif
  3432. if (position_is_reachable(destination[X_AXIS], destination[Y_AXIS])) {
  3433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3434. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3435. #endif
  3436. // This causes the carriage on Dual X to unpark
  3437. #if ENABLED(DUAL_X_CARRIAGE)
  3438. active_extruder_parked = false;
  3439. #endif
  3440. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3441. HOMEAXIS(Z);
  3442. }
  3443. else {
  3444. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3445. SERIAL_ECHO_START();
  3446. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3447. }
  3448. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3449. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3450. #endif
  3451. }
  3452. #endif // Z_SAFE_HOMING
  3453. #if ENABLED(PROBE_MANUALLY)
  3454. bool g29_in_progress = false;
  3455. #else
  3456. constexpr bool g29_in_progress = false;
  3457. #endif
  3458. /**
  3459. * G28: Home all axes according to settings
  3460. *
  3461. * Parameters
  3462. *
  3463. * None Home to all axes with no parameters.
  3464. * With QUICK_HOME enabled XY will home together, then Z.
  3465. *
  3466. * Cartesian parameters
  3467. *
  3468. * X Home to the X endstop
  3469. * Y Home to the Y endstop
  3470. * Z Home to the Z endstop
  3471. *
  3472. */
  3473. inline void gcode_G28(const bool always_home_all) {
  3474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3475. if (DEBUGGING(LEVELING)) {
  3476. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3477. log_machine_info();
  3478. }
  3479. #endif
  3480. // Wait for planner moves to finish!
  3481. stepper.synchronize();
  3482. // Cancel the active G29 session
  3483. #if ENABLED(PROBE_MANUALLY)
  3484. g29_in_progress = false;
  3485. #endif
  3486. // Disable the leveling matrix before homing
  3487. #if HAS_LEVELING
  3488. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3489. const bool ubl_state_at_entry = planner.leveling_active;
  3490. #endif
  3491. set_bed_leveling_enabled(false);
  3492. #endif
  3493. #if ENABLED(CNC_WORKSPACE_PLANES)
  3494. workspace_plane = PLANE_XY;
  3495. #endif
  3496. // Always home with tool 0 active
  3497. #if HOTENDS > 1
  3498. const uint8_t old_tool_index = active_extruder;
  3499. tool_change(0, 0, true);
  3500. #endif
  3501. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3502. extruder_duplication_enabled = false;
  3503. #endif
  3504. setup_for_endstop_or_probe_move();
  3505. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3506. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3507. #endif
  3508. endstops.enable(true); // Enable endstops for next homing move
  3509. #if ENABLED(DELTA)
  3510. home_delta();
  3511. UNUSED(always_home_all);
  3512. #else // NOT DELTA
  3513. const bool homeX = always_home_all || parser.seen('X'),
  3514. homeY = always_home_all || parser.seen('Y'),
  3515. homeZ = always_home_all || parser.seen('Z'),
  3516. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3517. set_destination_from_current();
  3518. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3519. if (home_all || homeZ) {
  3520. HOMEAXIS(Z);
  3521. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3522. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3523. #endif
  3524. }
  3525. #else
  3526. if (home_all || homeX || homeY) {
  3527. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3528. destination[Z_AXIS] = Z_HOMING_HEIGHT;
  3529. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3530. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3531. if (DEBUGGING(LEVELING))
  3532. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3533. #endif
  3534. do_blocking_move_to_z(destination[Z_AXIS]);
  3535. }
  3536. }
  3537. #endif
  3538. #if ENABLED(QUICK_HOME)
  3539. if (home_all || (homeX && homeY)) quick_home_xy();
  3540. #endif
  3541. #if ENABLED(HOME_Y_BEFORE_X)
  3542. // Home Y
  3543. if (home_all || homeY) {
  3544. HOMEAXIS(Y);
  3545. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3546. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3547. #endif
  3548. }
  3549. #endif
  3550. // Home X
  3551. if (home_all || homeX) {
  3552. #if ENABLED(DUAL_X_CARRIAGE)
  3553. // Always home the 2nd (right) extruder first
  3554. active_extruder = 1;
  3555. HOMEAXIS(X);
  3556. // Remember this extruder's position for later tool change
  3557. inactive_extruder_x_pos = current_position[X_AXIS];
  3558. // Home the 1st (left) extruder
  3559. active_extruder = 0;
  3560. HOMEAXIS(X);
  3561. // Consider the active extruder to be parked
  3562. COPY(raised_parked_position, current_position);
  3563. delayed_move_time = 0;
  3564. active_extruder_parked = true;
  3565. #else
  3566. HOMEAXIS(X);
  3567. #endif
  3568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3569. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3570. #endif
  3571. }
  3572. #if DISABLED(HOME_Y_BEFORE_X)
  3573. // Home Y
  3574. if (home_all || homeY) {
  3575. HOMEAXIS(Y);
  3576. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3577. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3578. #endif
  3579. }
  3580. #endif
  3581. // Home Z last if homing towards the bed
  3582. #if Z_HOME_DIR < 0
  3583. if (home_all || homeZ) {
  3584. #if ENABLED(Z_SAFE_HOMING)
  3585. home_z_safely();
  3586. #else
  3587. HOMEAXIS(Z);
  3588. #endif
  3589. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3590. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3591. #endif
  3592. } // home_all || homeZ
  3593. #endif // Z_HOME_DIR < 0
  3594. SYNC_PLAN_POSITION_KINEMATIC();
  3595. #endif // !DELTA (gcode_G28)
  3596. endstops.not_homing();
  3597. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3598. // move to a height where we can use the full xy-area
  3599. do_blocking_move_to_z(delta_clip_start_height);
  3600. #endif
  3601. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3602. set_bed_leveling_enabled(ubl_state_at_entry);
  3603. #endif
  3604. clean_up_after_endstop_or_probe_move();
  3605. // Restore the active tool after homing
  3606. #if HOTENDS > 1
  3607. #if ENABLED(PARKING_EXTRUDER)
  3608. #define NO_FETCH false // fetch the previous toolhead
  3609. #else
  3610. #define NO_FETCH true
  3611. #endif
  3612. tool_change(old_tool_index, 0, NO_FETCH);
  3613. #endif
  3614. lcd_refresh();
  3615. report_current_position();
  3616. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3617. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3618. #endif
  3619. } // G28
  3620. void home_all_axes() { gcode_G28(true); }
  3621. #if HAS_PROBING_PROCEDURE
  3622. void out_of_range_error(const char* p_edge) {
  3623. SERIAL_PROTOCOLPGM("?Probe ");
  3624. serialprintPGM(p_edge);
  3625. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3626. }
  3627. #endif
  3628. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3629. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3630. extern bool lcd_wait_for_move;
  3631. #endif
  3632. inline void _manual_goto_xy(const float &rx, const float &ry) {
  3633. #if MANUAL_PROBE_HEIGHT > 0
  3634. const float prev_z = current_position[Z_AXIS];
  3635. do_blocking_move_to_z(MANUAL_PROBE_HEIGHT, homing_feedrate(Z_AXIS));
  3636. #endif
  3637. do_blocking_move_to_xy(rx, ry, MMM_TO_MMS(XY_PROBE_SPEED));
  3638. #if MANUAL_PROBE_HEIGHT > 0
  3639. do_blocking_move_to_z(prev_z, homing_feedrate(Z_AXIS));
  3640. #endif
  3641. current_position[X_AXIS] = rx;
  3642. current_position[Y_AXIS] = ry;
  3643. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3644. lcd_wait_for_move = false;
  3645. #endif
  3646. }
  3647. #endif
  3648. #if ENABLED(MESH_BED_LEVELING)
  3649. // Save 130 bytes with non-duplication of PSTR
  3650. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3651. void mbl_mesh_report() {
  3652. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3653. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3654. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3655. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3656. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3657. );
  3658. }
  3659. void mesh_probing_done() {
  3660. mbl.has_mesh = true;
  3661. home_all_axes();
  3662. set_bed_leveling_enabled(true);
  3663. #if ENABLED(MESH_G28_REST_ORIGIN)
  3664. current_position[Z_AXIS] = Z_MIN_POS;
  3665. set_destination_from_current();
  3666. buffer_line_to_destination(homing_feedrate(Z_AXIS));
  3667. stepper.synchronize();
  3668. #endif
  3669. }
  3670. /**
  3671. * G29: Mesh-based Z probe, probes a grid and produces a
  3672. * mesh to compensate for variable bed height
  3673. *
  3674. * Parameters With MESH_BED_LEVELING:
  3675. *
  3676. * S0 Produce a mesh report
  3677. * S1 Start probing mesh points
  3678. * S2 Probe the next mesh point
  3679. * S3 Xn Yn Zn.nn Manually modify a single point
  3680. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3681. * S5 Reset and disable mesh
  3682. *
  3683. * The S0 report the points as below
  3684. *
  3685. * +----> X-axis 1-n
  3686. * |
  3687. * |
  3688. * v Y-axis 1-n
  3689. *
  3690. */
  3691. inline void gcode_G29() {
  3692. static int mbl_probe_index = -1;
  3693. #if HAS_SOFTWARE_ENDSTOPS
  3694. static bool enable_soft_endstops;
  3695. #endif
  3696. const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
  3697. if (!WITHIN(state, 0, 5)) {
  3698. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3699. return;
  3700. }
  3701. int8_t px, py;
  3702. switch (state) {
  3703. case MeshReport:
  3704. if (leveling_is_valid()) {
  3705. SERIAL_PROTOCOLLNPAIR("State: ", planner.leveling_active ? MSG_ON : MSG_OFF);
  3706. mbl_mesh_report();
  3707. }
  3708. else
  3709. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3710. break;
  3711. case MeshStart:
  3712. mbl.reset();
  3713. mbl_probe_index = 0;
  3714. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3715. break;
  3716. case MeshNext:
  3717. if (mbl_probe_index < 0) {
  3718. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3719. return;
  3720. }
  3721. // For each G29 S2...
  3722. if (mbl_probe_index == 0) {
  3723. #if HAS_SOFTWARE_ENDSTOPS
  3724. // For the initial G29 S2 save software endstop state
  3725. enable_soft_endstops = soft_endstops_enabled;
  3726. #endif
  3727. }
  3728. else {
  3729. // For G29 S2 after adjusting Z.
  3730. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3731. #if HAS_SOFTWARE_ENDSTOPS
  3732. soft_endstops_enabled = enable_soft_endstops;
  3733. #endif
  3734. }
  3735. // If there's another point to sample, move there with optional lift.
  3736. if (mbl_probe_index < GRID_MAX_POINTS) {
  3737. mbl.zigzag(mbl_probe_index, px, py);
  3738. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3739. #if HAS_SOFTWARE_ENDSTOPS
  3740. // Disable software endstops to allow manual adjustment
  3741. // If G29 is not completed, they will not be re-enabled
  3742. soft_endstops_enabled = false;
  3743. #endif
  3744. mbl_probe_index++;
  3745. }
  3746. else {
  3747. // One last "return to the bed" (as originally coded) at completion
  3748. current_position[Z_AXIS] = Z_MIN_POS + MANUAL_PROBE_HEIGHT;
  3749. buffer_line_to_current_position();
  3750. stepper.synchronize();
  3751. // After recording the last point, activate home and activate
  3752. mbl_probe_index = -1;
  3753. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3754. BUZZ(100, 659);
  3755. BUZZ(100, 698);
  3756. mesh_probing_done();
  3757. }
  3758. break;
  3759. case MeshSet:
  3760. if (parser.seenval('X')) {
  3761. px = parser.value_int() - 1;
  3762. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3763. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3764. return;
  3765. }
  3766. }
  3767. else {
  3768. SERIAL_CHAR('X'); echo_not_entered();
  3769. return;
  3770. }
  3771. if (parser.seenval('Y')) {
  3772. py = parser.value_int() - 1;
  3773. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3774. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3775. return;
  3776. }
  3777. }
  3778. else {
  3779. SERIAL_CHAR('Y'); echo_not_entered();
  3780. return;
  3781. }
  3782. if (parser.seenval('Z')) {
  3783. mbl.z_values[px][py] = parser.value_linear_units();
  3784. }
  3785. else {
  3786. SERIAL_CHAR('Z'); echo_not_entered();
  3787. return;
  3788. }
  3789. break;
  3790. case MeshSetZOffset:
  3791. if (parser.seenval('Z')) {
  3792. mbl.z_offset = parser.value_linear_units();
  3793. }
  3794. else {
  3795. SERIAL_CHAR('Z'); echo_not_entered();
  3796. return;
  3797. }
  3798. break;
  3799. case MeshReset:
  3800. reset_bed_level();
  3801. break;
  3802. } // switch(state)
  3803. report_current_position();
  3804. }
  3805. #elif OLDSCHOOL_ABL
  3806. #if ABL_GRID
  3807. #if ENABLED(PROBE_Y_FIRST)
  3808. #define PR_OUTER_VAR xCount
  3809. #define PR_OUTER_END abl_grid_points_x
  3810. #define PR_INNER_VAR yCount
  3811. #define PR_INNER_END abl_grid_points_y
  3812. #else
  3813. #define PR_OUTER_VAR yCount
  3814. #define PR_OUTER_END abl_grid_points_y
  3815. #define PR_INNER_VAR xCount
  3816. #define PR_INNER_END abl_grid_points_x
  3817. #endif
  3818. #endif
  3819. /**
  3820. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3821. * Will fail if the printer has not been homed with G28.
  3822. *
  3823. * Enhanced G29 Auto Bed Leveling Probe Routine
  3824. *
  3825. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3826. * or alter the bed level data. Useful to check the topology
  3827. * after a first run of G29.
  3828. *
  3829. * J Jettison current bed leveling data
  3830. *
  3831. * V Set the verbose level (0-4). Example: "G29 V3"
  3832. *
  3833. * Parameters With LINEAR leveling only:
  3834. *
  3835. * P Set the size of the grid that will be probed (P x P points).
  3836. * Example: "G29 P4"
  3837. *
  3838. * X Set the X size of the grid that will be probed (X x Y points).
  3839. * Example: "G29 X7 Y5"
  3840. *
  3841. * Y Set the Y size of the grid that will be probed (X x Y points).
  3842. *
  3843. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3844. * This is useful for manual bed leveling and finding flaws in the bed (to
  3845. * assist with part placement).
  3846. * Not supported by non-linear delta printer bed leveling.
  3847. *
  3848. * Parameters With LINEAR and BILINEAR leveling only:
  3849. *
  3850. * S Set the XY travel speed between probe points (in units/min)
  3851. *
  3852. * F Set the Front limit of the probing grid
  3853. * B Set the Back limit of the probing grid
  3854. * L Set the Left limit of the probing grid
  3855. * R Set the Right limit of the probing grid
  3856. *
  3857. * Parameters with DEBUG_LEVELING_FEATURE only:
  3858. *
  3859. * C Make a totally fake grid with no actual probing.
  3860. * For use in testing when no probing is possible.
  3861. *
  3862. * Parameters with BILINEAR leveling only:
  3863. *
  3864. * Z Supply an additional Z probe offset
  3865. *
  3866. * Extra parameters with PROBE_MANUALLY:
  3867. *
  3868. * To do manual probing simply repeat G29 until the procedure is complete.
  3869. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3870. *
  3871. * Q Query leveling and G29 state
  3872. *
  3873. * A Abort current leveling procedure
  3874. *
  3875. * Extra parameters with BILINEAR only:
  3876. *
  3877. * W Write a mesh point. (If G29 is idle.)
  3878. * I X index for mesh point
  3879. * J Y index for mesh point
  3880. * X X for mesh point, overrides I
  3881. * Y Y for mesh point, overrides J
  3882. * Z Z for mesh point. Otherwise, raw current Z.
  3883. *
  3884. * Without PROBE_MANUALLY:
  3885. *
  3886. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3887. * Include "E" to engage/disengage the Z probe for each sample.
  3888. * There's no extra effect if you have a fixed Z probe.
  3889. *
  3890. */
  3891. inline void gcode_G29() {
  3892. // G29 Q is also available if debugging
  3893. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3894. const bool query = parser.seen('Q');
  3895. const uint8_t old_debug_flags = marlin_debug_flags;
  3896. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3897. if (DEBUGGING(LEVELING)) {
  3898. DEBUG_POS(">>> gcode_G29", current_position);
  3899. log_machine_info();
  3900. }
  3901. marlin_debug_flags = old_debug_flags;
  3902. #if DISABLED(PROBE_MANUALLY)
  3903. if (query) return;
  3904. #endif
  3905. #endif
  3906. #if ENABLED(PROBE_MANUALLY)
  3907. const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
  3908. #endif
  3909. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3910. const bool faux = parser.boolval('C');
  3911. #elif ENABLED(PROBE_MANUALLY)
  3912. const bool faux = no_action;
  3913. #else
  3914. bool constexpr faux = false;
  3915. #endif
  3916. // Don't allow auto-leveling without homing first
  3917. if (axis_unhomed_error()) return;
  3918. // Define local vars 'static' for manual probing, 'auto' otherwise
  3919. #if ENABLED(PROBE_MANUALLY)
  3920. #define ABL_VAR static
  3921. #else
  3922. #define ABL_VAR
  3923. #endif
  3924. ABL_VAR int verbose_level;
  3925. ABL_VAR float xProbe, yProbe, measured_z;
  3926. ABL_VAR bool dryrun, abl_should_enable;
  3927. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3928. ABL_VAR int abl_probe_index;
  3929. #endif
  3930. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3931. ABL_VAR bool enable_soft_endstops = true;
  3932. #endif
  3933. #if ABL_GRID
  3934. #if ENABLED(PROBE_MANUALLY)
  3935. ABL_VAR uint8_t PR_OUTER_VAR;
  3936. ABL_VAR int8_t PR_INNER_VAR;
  3937. #endif
  3938. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3939. ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
  3940. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3941. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3942. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3943. ABL_VAR bool do_topography_map;
  3944. #else // Bilinear
  3945. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3946. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3947. #endif
  3948. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3949. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3950. ABL_VAR int abl2;
  3951. #else // Bilinear
  3952. int constexpr abl2 = GRID_MAX_POINTS;
  3953. #endif
  3954. #endif
  3955. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3956. ABL_VAR float zoffset;
  3957. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3958. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3959. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3960. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3961. mean;
  3962. #endif
  3963. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3964. int constexpr abl2 = 3;
  3965. // Probe at 3 arbitrary points
  3966. ABL_VAR vector_3 points[3] = {
  3967. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3968. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3969. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3970. };
  3971. #endif // AUTO_BED_LEVELING_3POINT
  3972. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3973. struct linear_fit_data lsf_results;
  3974. incremental_LSF_reset(&lsf_results);
  3975. #endif
  3976. /**
  3977. * On the initial G29 fetch command parameters.
  3978. */
  3979. if (!g29_in_progress) {
  3980. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3981. abl_probe_index = -1;
  3982. #endif
  3983. abl_should_enable = planner.leveling_active;
  3984. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3985. if (parser.seen('W')) {
  3986. if (!leveling_is_valid()) {
  3987. SERIAL_ERROR_START();
  3988. SERIAL_ERRORLNPGM("No bilinear grid");
  3989. return;
  3990. }
  3991. const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position[Z_AXIS];
  3992. if (!WITHIN(rz, -10, 10)) {
  3993. SERIAL_ERROR_START();
  3994. SERIAL_ERRORLNPGM("Bad Z value");
  3995. return;
  3996. }
  3997. const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
  3998. ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
  3999. int8_t i = parser.byteval('I', -1),
  4000. j = parser.byteval('J', -1);
  4001. if (!isnan(rx) && !isnan(ry)) {
  4002. // Get nearest i / j from x / y
  4003. i = (rx - bilinear_start[X_AXIS] + 0.5 * xGridSpacing) / xGridSpacing;
  4004. j = (ry - bilinear_start[Y_AXIS] + 0.5 * yGridSpacing) / yGridSpacing;
  4005. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  4006. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  4007. }
  4008. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  4009. set_bed_leveling_enabled(false);
  4010. z_values[i][j] = rz;
  4011. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4012. bed_level_virt_interpolate();
  4013. #endif
  4014. set_bed_leveling_enabled(abl_should_enable);
  4015. }
  4016. return;
  4017. } // parser.seen('W')
  4018. #endif
  4019. #if HAS_LEVELING
  4020. // Jettison bed leveling data
  4021. if (parser.seen('J')) {
  4022. reset_bed_level();
  4023. return;
  4024. }
  4025. #endif
  4026. verbose_level = parser.intval('V');
  4027. if (!WITHIN(verbose_level, 0, 4)) {
  4028. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  4029. return;
  4030. }
  4031. dryrun = parser.boolval('D')
  4032. #if ENABLED(PROBE_MANUALLY)
  4033. || no_action
  4034. #endif
  4035. ;
  4036. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4037. do_topography_map = verbose_level > 2 || parser.boolval('T');
  4038. // X and Y specify points in each direction, overriding the default
  4039. // These values may be saved with the completed mesh
  4040. abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
  4041. abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
  4042. if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
  4043. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  4044. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  4045. return;
  4046. }
  4047. abl2 = abl_grid_points_x * abl_grid_points_y;
  4048. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4049. zoffset = parser.linearval('Z');
  4050. #endif
  4051. #if ABL_GRID
  4052. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  4053. left_probe_bed_position = parser.seenval('L') ? (int)RAW_X_POSITION(parser.value_linear_units()) : LEFT_PROBE_BED_POSITION;
  4054. right_probe_bed_position = parser.seenval('R') ? (int)RAW_X_POSITION(parser.value_linear_units()) : RIGHT_PROBE_BED_POSITION;
  4055. front_probe_bed_position = parser.seenval('F') ? (int)RAW_Y_POSITION(parser.value_linear_units()) : FRONT_PROBE_BED_POSITION;
  4056. back_probe_bed_position = parser.seenval('B') ? (int)RAW_Y_POSITION(parser.value_linear_units()) : BACK_PROBE_BED_POSITION;
  4057. const bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  4058. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  4059. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  4060. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  4061. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  4062. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  4063. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  4064. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  4065. if (left_out || right_out || front_out || back_out) {
  4066. if (left_out) {
  4067. out_of_range_error(PSTR("(L)eft"));
  4068. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  4069. }
  4070. if (right_out) {
  4071. out_of_range_error(PSTR("(R)ight"));
  4072. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  4073. }
  4074. if (front_out) {
  4075. out_of_range_error(PSTR("(F)ront"));
  4076. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  4077. }
  4078. if (back_out) {
  4079. out_of_range_error(PSTR("(B)ack"));
  4080. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  4081. }
  4082. return;
  4083. }
  4084. // probe at the points of a lattice grid
  4085. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  4086. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  4087. #endif // ABL_GRID
  4088. if (verbose_level > 0) {
  4089. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  4090. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  4091. }
  4092. stepper.synchronize();
  4093. // Disable auto bed leveling during G29
  4094. planner.leveling_active = false;
  4095. if (!dryrun) {
  4096. // Re-orient the current position without leveling
  4097. // based on where the steppers are positioned.
  4098. set_current_from_steppers_for_axis(ALL_AXES);
  4099. // Sync the planner to where the steppers stopped
  4100. SYNC_PLAN_POSITION_KINEMATIC();
  4101. }
  4102. #if HAS_BED_PROBE
  4103. // Deploy the probe. Probe will raise if needed.
  4104. if (DEPLOY_PROBE()) {
  4105. planner.leveling_active = abl_should_enable;
  4106. return;
  4107. }
  4108. #endif
  4109. if (!faux) setup_for_endstop_or_probe_move();
  4110. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4111. #if ENABLED(PROBE_MANUALLY)
  4112. if (!no_action)
  4113. #endif
  4114. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  4115. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  4116. || left_probe_bed_position != bilinear_start[X_AXIS]
  4117. || front_probe_bed_position != bilinear_start[Y_AXIS]
  4118. ) {
  4119. if (dryrun) {
  4120. // Before reset bed level, re-enable to correct the position
  4121. planner.leveling_active = abl_should_enable;
  4122. }
  4123. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  4124. reset_bed_level();
  4125. // Initialize a grid with the given dimensions
  4126. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  4127. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  4128. bilinear_start[X_AXIS] = left_probe_bed_position;
  4129. bilinear_start[Y_AXIS] = front_probe_bed_position;
  4130. // Can't re-enable (on error) until the new grid is written
  4131. abl_should_enable = false;
  4132. }
  4133. #endif // AUTO_BED_LEVELING_BILINEAR
  4134. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  4135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4136. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  4137. #endif
  4138. // Probe at 3 arbitrary points
  4139. points[0].z = points[1].z = points[2].z = 0;
  4140. #endif // AUTO_BED_LEVELING_3POINT
  4141. } // !g29_in_progress
  4142. #if ENABLED(PROBE_MANUALLY)
  4143. // For manual probing, get the next index to probe now.
  4144. // On the first probe this will be incremented to 0.
  4145. if (!no_action) {
  4146. ++abl_probe_index;
  4147. g29_in_progress = true;
  4148. }
  4149. // Abort current G29 procedure, go back to idle state
  4150. if (seenA && g29_in_progress) {
  4151. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  4152. #if HAS_SOFTWARE_ENDSTOPS
  4153. soft_endstops_enabled = enable_soft_endstops;
  4154. #endif
  4155. planner.leveling_active = abl_should_enable;
  4156. g29_in_progress = false;
  4157. #if ENABLED(LCD_BED_LEVELING)
  4158. lcd_wait_for_move = false;
  4159. #endif
  4160. }
  4161. // Query G29 status
  4162. if (verbose_level || seenQ) {
  4163. SERIAL_PROTOCOLPGM("Manual G29 ");
  4164. if (g29_in_progress) {
  4165. SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
  4166. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  4167. }
  4168. else
  4169. SERIAL_PROTOCOLLNPGM("idle");
  4170. }
  4171. if (no_action) return;
  4172. if (abl_probe_index == 0) {
  4173. // For the initial G29 save software endstop state
  4174. #if HAS_SOFTWARE_ENDSTOPS
  4175. enable_soft_endstops = soft_endstops_enabled;
  4176. #endif
  4177. }
  4178. else {
  4179. // For G29 after adjusting Z.
  4180. // Save the previous Z before going to the next point
  4181. measured_z = current_position[Z_AXIS];
  4182. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4183. mean += measured_z;
  4184. eqnBVector[abl_probe_index] = measured_z;
  4185. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4186. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4187. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4188. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4189. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4190. z_values[xCount][yCount] = measured_z + zoffset;
  4191. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4192. if (DEBUGGING(LEVELING)) {
  4193. SERIAL_PROTOCOLPAIR("Save X", xCount);
  4194. SERIAL_PROTOCOLPAIR(" Y", yCount);
  4195. SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
  4196. }
  4197. #endif
  4198. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4199. points[abl_probe_index].z = measured_z;
  4200. #endif
  4201. }
  4202. //
  4203. // If there's another point to sample, move there with optional lift.
  4204. //
  4205. #if ABL_GRID
  4206. // Skip any unreachable points
  4207. while (abl_probe_index < abl2) {
  4208. // Set xCount, yCount based on abl_probe_index, with zig-zag
  4209. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  4210. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  4211. // Probe in reverse order for every other row/column
  4212. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  4213. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  4214. const float xBase = xCount * xGridSpacing + left_probe_bed_position,
  4215. yBase = yCount * yGridSpacing + front_probe_bed_position;
  4216. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4217. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4218. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4219. indexIntoAB[xCount][yCount] = abl_probe_index;
  4220. #endif
  4221. // Keep looping till a reachable point is found
  4222. if (position_is_reachable(xProbe, yProbe)) break;
  4223. ++abl_probe_index;
  4224. }
  4225. // Is there a next point to move to?
  4226. if (abl_probe_index < abl2) {
  4227. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  4228. #if HAS_SOFTWARE_ENDSTOPS
  4229. // Disable software endstops to allow manual adjustment
  4230. // If G29 is not completed, they will not be re-enabled
  4231. soft_endstops_enabled = false;
  4232. #endif
  4233. return;
  4234. }
  4235. else {
  4236. // Leveling done! Fall through to G29 finishing code below
  4237. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  4238. // Re-enable software endstops, if needed
  4239. #if HAS_SOFTWARE_ENDSTOPS
  4240. soft_endstops_enabled = enable_soft_endstops;
  4241. #endif
  4242. }
  4243. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4244. // Probe at 3 arbitrary points
  4245. if (abl_probe_index < 3) {
  4246. xProbe = points[abl_probe_index].x;
  4247. yProbe = points[abl_probe_index].y;
  4248. #if HAS_SOFTWARE_ENDSTOPS
  4249. // Disable software endstops to allow manual adjustment
  4250. // If G29 is not completed, they will not be re-enabled
  4251. soft_endstops_enabled = false;
  4252. #endif
  4253. return;
  4254. }
  4255. else {
  4256. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  4257. // Re-enable software endstops, if needed
  4258. #if HAS_SOFTWARE_ENDSTOPS
  4259. soft_endstops_enabled = enable_soft_endstops;
  4260. #endif
  4261. if (!dryrun) {
  4262. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4263. if (planeNormal.z < 0) {
  4264. planeNormal.x *= -1;
  4265. planeNormal.y *= -1;
  4266. planeNormal.z *= -1;
  4267. }
  4268. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4269. // Can't re-enable (on error) until the new grid is written
  4270. abl_should_enable = false;
  4271. }
  4272. }
  4273. #endif // AUTO_BED_LEVELING_3POINT
  4274. #else // !PROBE_MANUALLY
  4275. {
  4276. const bool stow_probe_after_each = parser.boolval('E');
  4277. #if ABL_GRID
  4278. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  4279. measured_z = 0;
  4280. // Outer loop is Y with PROBE_Y_FIRST disabled
  4281. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  4282. int8_t inStart, inStop, inInc;
  4283. if (zig) { // away from origin
  4284. inStart = 0;
  4285. inStop = PR_INNER_END;
  4286. inInc = 1;
  4287. }
  4288. else { // towards origin
  4289. inStart = PR_INNER_END - 1;
  4290. inStop = -1;
  4291. inInc = -1;
  4292. }
  4293. zig ^= true; // zag
  4294. // Inner loop is Y with PROBE_Y_FIRST enabled
  4295. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4296. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4297. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4298. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4299. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4300. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4301. indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
  4302. #endif
  4303. #if IS_KINEMATIC
  4304. // Avoid probing outside the round or hexagonal area
  4305. if (!position_is_reachable_by_probe(xProbe, yProbe)) continue;
  4306. #endif
  4307. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4308. if (isnan(measured_z)) {
  4309. planner.leveling_active = abl_should_enable;
  4310. break;
  4311. }
  4312. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4313. mean += measured_z;
  4314. eqnBVector[abl_probe_index] = measured_z;
  4315. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4316. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4317. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4318. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4319. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4320. z_values[xCount][yCount] = measured_z + zoffset;
  4321. #endif
  4322. abl_should_enable = false;
  4323. idle();
  4324. } // inner
  4325. } // outer
  4326. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4327. // Probe at 3 arbitrary points
  4328. for (uint8_t i = 0; i < 3; ++i) {
  4329. // Retain the last probe position
  4330. xProbe = points[i].x;
  4331. yProbe = points[i].y;
  4332. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4333. if (isnan(measured_z)) {
  4334. planner.leveling_active = abl_should_enable;
  4335. break;
  4336. }
  4337. points[i].z = measured_z;
  4338. }
  4339. if (!dryrun && !isnan(measured_z)) {
  4340. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4341. if (planeNormal.z < 0) {
  4342. planeNormal.x *= -1;
  4343. planeNormal.y *= -1;
  4344. planeNormal.z *= -1;
  4345. }
  4346. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4347. // Can't re-enable (on error) until the new grid is written
  4348. abl_should_enable = false;
  4349. }
  4350. #endif // AUTO_BED_LEVELING_3POINT
  4351. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4352. if (STOW_PROBE()) {
  4353. planner.leveling_active = abl_should_enable;
  4354. measured_z = NAN;
  4355. }
  4356. }
  4357. #endif // !PROBE_MANUALLY
  4358. //
  4359. // G29 Finishing Code
  4360. //
  4361. // Unless this is a dry run, auto bed leveling will
  4362. // definitely be enabled after this point.
  4363. //
  4364. // If code above wants to continue leveling, it should
  4365. // return or loop before this point.
  4366. //
  4367. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4368. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4369. #endif
  4370. #if ENABLED(PROBE_MANUALLY)
  4371. g29_in_progress = false;
  4372. #if ENABLED(LCD_BED_LEVELING)
  4373. lcd_wait_for_move = false;
  4374. #endif
  4375. #endif
  4376. // Calculate leveling, print reports, correct the position
  4377. if (!isnan(measured_z)) {
  4378. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4379. if (!dryrun) extrapolate_unprobed_bed_level();
  4380. print_bilinear_leveling_grid();
  4381. refresh_bed_level();
  4382. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4383. print_bilinear_leveling_grid_virt();
  4384. #endif
  4385. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4386. // For LINEAR leveling calculate matrix, print reports, correct the position
  4387. /**
  4388. * solve the plane equation ax + by + d = z
  4389. * A is the matrix with rows [x y 1] for all the probed points
  4390. * B is the vector of the Z positions
  4391. * the normal vector to the plane is formed by the coefficients of the
  4392. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4393. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4394. */
  4395. float plane_equation_coefficients[3];
  4396. finish_incremental_LSF(&lsf_results);
  4397. plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  4398. plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
  4399. plane_equation_coefficients[2] = -lsf_results.D;
  4400. mean /= abl2;
  4401. if (verbose_level) {
  4402. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4403. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4404. SERIAL_PROTOCOLPGM(" b: ");
  4405. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4406. SERIAL_PROTOCOLPGM(" d: ");
  4407. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4408. SERIAL_EOL();
  4409. if (verbose_level > 2) {
  4410. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4411. SERIAL_PROTOCOL_F(mean, 8);
  4412. SERIAL_EOL();
  4413. }
  4414. }
  4415. // Create the matrix but don't correct the position yet
  4416. if (!dryrun)
  4417. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4418. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
  4419. );
  4420. // Show the Topography map if enabled
  4421. if (do_topography_map) {
  4422. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4423. " +--- BACK --+\n"
  4424. " | |\n"
  4425. " L | (+) | R\n"
  4426. " E | | I\n"
  4427. " F | (-) N (+) | G\n"
  4428. " T | | H\n"
  4429. " | (-) | T\n"
  4430. " | |\n"
  4431. " O-- FRONT --+\n"
  4432. " (0,0)");
  4433. float min_diff = 999;
  4434. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4435. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4436. int ind = indexIntoAB[xx][yy];
  4437. float diff = eqnBVector[ind] - mean,
  4438. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4439. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4440. z_tmp = 0;
  4441. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4442. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4443. if (diff >= 0.0)
  4444. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4445. else
  4446. SERIAL_PROTOCOLCHAR(' ');
  4447. SERIAL_PROTOCOL_F(diff, 5);
  4448. } // xx
  4449. SERIAL_EOL();
  4450. } // yy
  4451. SERIAL_EOL();
  4452. if (verbose_level > 3) {
  4453. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4454. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4455. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4456. int ind = indexIntoAB[xx][yy];
  4457. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4458. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4459. z_tmp = 0;
  4460. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4461. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4462. if (diff >= 0.0)
  4463. SERIAL_PROTOCOLPGM(" +");
  4464. // Include + for column alignment
  4465. else
  4466. SERIAL_PROTOCOLCHAR(' ');
  4467. SERIAL_PROTOCOL_F(diff, 5);
  4468. } // xx
  4469. SERIAL_EOL();
  4470. } // yy
  4471. SERIAL_EOL();
  4472. }
  4473. } //do_topography_map
  4474. #endif // AUTO_BED_LEVELING_LINEAR
  4475. #if ABL_PLANAR
  4476. // For LINEAR and 3POINT leveling correct the current position
  4477. if (verbose_level > 0)
  4478. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4479. if (!dryrun) {
  4480. //
  4481. // Correct the current XYZ position based on the tilted plane.
  4482. //
  4483. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4484. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4485. #endif
  4486. float converted[XYZ];
  4487. COPY(converted, current_position);
  4488. planner.leveling_active = true;
  4489. planner.unapply_leveling(converted); // use conversion machinery
  4490. planner.leveling_active = false;
  4491. // Use the last measured distance to the bed, if possible
  4492. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4493. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4494. ) {
  4495. const float simple_z = current_position[Z_AXIS] - measured_z;
  4496. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4497. if (DEBUGGING(LEVELING)) {
  4498. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4499. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4500. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4501. }
  4502. #endif
  4503. converted[Z_AXIS] = simple_z;
  4504. }
  4505. // The rotated XY and corrected Z are now current_position
  4506. COPY(current_position, converted);
  4507. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4508. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4509. #endif
  4510. }
  4511. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4512. if (!dryrun) {
  4513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4514. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4515. #endif
  4516. // Unapply the offset because it is going to be immediately applied
  4517. // and cause compensation movement in Z
  4518. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4520. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4521. #endif
  4522. }
  4523. #endif // ABL_PLANAR
  4524. #ifdef Z_PROBE_END_SCRIPT
  4525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4526. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4527. #endif
  4528. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4529. stepper.synchronize();
  4530. #endif
  4531. // Auto Bed Leveling is complete! Enable if possible.
  4532. planner.leveling_active = dryrun ? abl_should_enable : true;
  4533. } // !isnan(measured_z)
  4534. // Restore state after probing
  4535. if (!faux) clean_up_after_endstop_or_probe_move();
  4536. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4537. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4538. #endif
  4539. report_current_position();
  4540. KEEPALIVE_STATE(IN_HANDLER);
  4541. if (planner.leveling_active)
  4542. SYNC_PLAN_POSITION_KINEMATIC();
  4543. }
  4544. #endif // OLDSCHOOL_ABL
  4545. #if HAS_BED_PROBE
  4546. /**
  4547. * G30: Do a single Z probe at the current XY
  4548. *
  4549. * Parameters:
  4550. *
  4551. * X Probe X position (default current X)
  4552. * Y Probe Y position (default current Y)
  4553. * E Engage the probe for each probe
  4554. */
  4555. inline void gcode_G30() {
  4556. const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
  4557. ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
  4558. if (!position_is_reachable_by_probe(xpos, ypos)) return;
  4559. // Disable leveling so the planner won't mess with us
  4560. #if HAS_LEVELING
  4561. set_bed_leveling_enabled(false);
  4562. #endif
  4563. setup_for_endstop_or_probe_move();
  4564. const float measured_z = probe_pt(xpos, ypos, parser.boolval('E'), 1);
  4565. if (!isnan(measured_z)) {
  4566. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4567. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4568. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4569. }
  4570. clean_up_after_endstop_or_probe_move();
  4571. report_current_position();
  4572. }
  4573. #if ENABLED(Z_PROBE_SLED)
  4574. /**
  4575. * G31: Deploy the Z probe
  4576. */
  4577. inline void gcode_G31() { DEPLOY_PROBE(); }
  4578. /**
  4579. * G32: Stow the Z probe
  4580. */
  4581. inline void gcode_G32() { STOW_PROBE(); }
  4582. #endif // Z_PROBE_SLED
  4583. #endif // HAS_BED_PROBE
  4584. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4585. constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
  4586. _4P_STEP = _7P_STEP * 2, // 4-point step
  4587. NPP = _7P_STEP * 6; // number of calibration points on the radius
  4588. enum CalEnum { // the 7 main calibration points - add definitions if needed
  4589. CEN = 0,
  4590. __A = 1,
  4591. _AB = __A + _7P_STEP,
  4592. __B = _AB + _7P_STEP,
  4593. _BC = __B + _7P_STEP,
  4594. __C = _BC + _7P_STEP,
  4595. _CA = __C + _7P_STEP,
  4596. };
  4597. #define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
  4598. #define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
  4599. #define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
  4600. #define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
  4601. #define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
  4602. #define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
  4603. static void print_signed_float(const char * const prefix, const float &f) {
  4604. SERIAL_PROTOCOLPGM(" ");
  4605. serialprintPGM(prefix);
  4606. SERIAL_PROTOCOLCHAR(':');
  4607. if (f >= 0) SERIAL_CHAR('+');
  4608. SERIAL_PROTOCOL_F(f, 2);
  4609. }
  4610. static void print_G33_settings(const bool end_stops, const bool tower_angles) {
  4611. SERIAL_PROTOCOLPAIR(".Height:", delta_height);
  4612. if (end_stops) {
  4613. print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
  4614. print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
  4615. print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
  4616. }
  4617. if (end_stops && tower_angles) {
  4618. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4619. SERIAL_EOL();
  4620. SERIAL_CHAR('.');
  4621. SERIAL_PROTOCOL_SP(13);
  4622. }
  4623. if (tower_angles) {
  4624. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4625. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4626. print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
  4627. }
  4628. if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
  4629. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4630. }
  4631. SERIAL_EOL();
  4632. }
  4633. static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
  4634. SERIAL_PROTOCOLPGM(". ");
  4635. print_signed_float(PSTR("c"), z_at_pt[CEN]);
  4636. if (tower_points) {
  4637. print_signed_float(PSTR(" x"), z_at_pt[__A]);
  4638. print_signed_float(PSTR(" y"), z_at_pt[__B]);
  4639. print_signed_float(PSTR(" z"), z_at_pt[__C]);
  4640. }
  4641. if (tower_points && opposite_points) {
  4642. SERIAL_EOL();
  4643. SERIAL_CHAR('.');
  4644. SERIAL_PROTOCOL_SP(13);
  4645. }
  4646. if (opposite_points) {
  4647. print_signed_float(PSTR("yz"), z_at_pt[_BC]);
  4648. print_signed_float(PSTR("zx"), z_at_pt[_CA]);
  4649. print_signed_float(PSTR("xy"), z_at_pt[_AB]);
  4650. }
  4651. SERIAL_EOL();
  4652. }
  4653. /**
  4654. * After G33:
  4655. * - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only)
  4656. * - Stow the probe
  4657. * - Restore endstops state
  4658. * - Select the old tool, if needed
  4659. */
  4660. static void G33_cleanup(
  4661. #if HOTENDS > 1
  4662. const uint8_t old_tool_index
  4663. #endif
  4664. ) {
  4665. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4666. do_blocking_move_to_z(delta_clip_start_height);
  4667. #endif
  4668. STOW_PROBE();
  4669. clean_up_after_endstop_or_probe_move();
  4670. #if HOTENDS > 1
  4671. tool_change(old_tool_index, 0, true);
  4672. #endif
  4673. }
  4674. static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
  4675. const bool _0p_calibration = probe_points == 0,
  4676. _1p_calibration = probe_points == 1,
  4677. _4p_calibration = probe_points == 2,
  4678. _4p_opposite_points = _4p_calibration && !towers_set,
  4679. _7p_calibration = probe_points >= 3 || probe_points == 0,
  4680. _7p_no_intermediates = probe_points == 3,
  4681. _7p_1_intermediates = probe_points == 4,
  4682. _7p_2_intermediates = probe_points == 5,
  4683. _7p_4_intermediates = probe_points == 6,
  4684. _7p_6_intermediates = probe_points == 7,
  4685. _7p_8_intermediates = probe_points == 8,
  4686. _7p_11_intermediates = probe_points == 9,
  4687. _7p_14_intermediates = probe_points == 10,
  4688. _7p_intermed_points = probe_points >= 4,
  4689. _7p_6_centre = probe_points >= 5 && probe_points <= 7,
  4690. _7p_9_centre = probe_points >= 8;
  4691. #if HAS_BED_PROBE
  4692. const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
  4693. dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
  4694. #endif
  4695. LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
  4696. if (!_0p_calibration) {
  4697. if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
  4698. z_at_pt[CEN] +=
  4699. #if HAS_BED_PROBE
  4700. probe_pt(dx, dy, stow_after_each, 1, false)
  4701. #else
  4702. lcd_probe_pt(0, 0)
  4703. #endif
  4704. ;
  4705. }
  4706. if (_7p_calibration) { // probe extra center points
  4707. const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
  4708. steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP;
  4709. I_LOOP_CAL_PT(axis, start, steps) {
  4710. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4711. r = delta_calibration_radius * 0.1;
  4712. z_at_pt[CEN] +=
  4713. #if HAS_BED_PROBE
  4714. probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false)
  4715. #else
  4716. lcd_probe_pt(cos(a) * r, sin(a) * r)
  4717. #endif
  4718. ;
  4719. }
  4720. z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
  4721. }
  4722. if (!_1p_calibration) { // probe the radius
  4723. const CalEnum start = _4p_opposite_points ? _AB : __A;
  4724. const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
  4725. _7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
  4726. _7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
  4727. _7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
  4728. _7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
  4729. _7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
  4730. _7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
  4731. _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
  4732. _4P_STEP; // .5r * 6 + 1c = 4
  4733. bool zig_zag = true;
  4734. F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
  4735. const int8_t offset = _7p_9_centre ? 1 : 0;
  4736. for (int8_t circle = -offset; circle <= offset; circle++) {
  4737. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4738. r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
  4739. interpol = fmod(axis, 1);
  4740. const float z_temp =
  4741. #if HAS_BED_PROBE
  4742. probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false)
  4743. #else
  4744. lcd_probe_pt(cos(a) * r, sin(a) * r)
  4745. #endif
  4746. ;
  4747. // split probe point to neighbouring calibration points
  4748. z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
  4749. z_at_pt[uint8_t(round(axis - interpol )) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
  4750. }
  4751. zig_zag = !zig_zag;
  4752. }
  4753. if (_7p_intermed_points)
  4754. LOOP_CAL_RAD(axis)
  4755. z_at_pt[axis] /= _7P_STEP / steps;
  4756. }
  4757. float S1 = z_at_pt[CEN],
  4758. S2 = sq(z_at_pt[CEN]);
  4759. int16_t N = 1;
  4760. if (!_1p_calibration) { // std dev from zero plane
  4761. LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) {
  4762. S1 += z_at_pt[axis];
  4763. S2 += sq(z_at_pt[axis]);
  4764. N++;
  4765. }
  4766. return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4767. }
  4768. }
  4769. return 0.00001;
  4770. }
  4771. #if HAS_BED_PROBE
  4772. static void G33_auto_tune() {
  4773. float z_at_pt[NPP + 1] = { 0.0 },
  4774. z_at_pt_base[NPP + 1] = { 0.0 },
  4775. z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
  4776. #define ZP(N,I) ((N) * z_at_pt[I])
  4777. #define Z06(I) ZP(6, I)
  4778. #define Z03(I) ZP(3, I)
  4779. #define Z02(I) ZP(2, I)
  4780. #define Z01(I) ZP(1, I)
  4781. #define Z32(I) ZP(3/2, I)
  4782. SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
  4783. SERIAL_EOL();
  4784. probe_G33_points(z_at_pt_base, 3, true, false);
  4785. print_G33_results(z_at_pt_base, true, true);
  4786. LOOP_XYZ(axis) {
  4787. delta_endstop_adj[axis] -= 1.0;
  4788. recalc_delta_settings();
  4789. endstops.enable(true);
  4790. if (!home_delta()) return;
  4791. endstops.not_homing();
  4792. SERIAL_PROTOCOLPGM("Tuning E");
  4793. SERIAL_CHAR(tolower(axis_codes[axis]));
  4794. SERIAL_EOL();
  4795. probe_G33_points(z_at_pt, 3, true, false);
  4796. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4797. print_G33_results(z_at_pt, true, true);
  4798. delta_endstop_adj[axis] += 1.0;
  4799. recalc_delta_settings();
  4800. switch (axis) {
  4801. case A_AXIS :
  4802. h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
  4803. break;
  4804. case B_AXIS :
  4805. h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop
  4806. break;
  4807. case C_AXIS :
  4808. h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop
  4809. break;
  4810. }
  4811. }
  4812. h_fac /= 3.0;
  4813. h_fac *= norm; // Normalize to 1.02 for Kossel mini
  4814. for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
  4815. delta_radius += 1.0 * zig_zag;
  4816. recalc_delta_settings();
  4817. endstops.enable(true);
  4818. if (!home_delta()) return;
  4819. endstops.not_homing();
  4820. SERIAL_PROTOCOLPGM("Tuning R");
  4821. SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
  4822. SERIAL_EOL();
  4823. probe_G33_points(z_at_pt, 3, true, false);
  4824. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4825. print_G33_results(z_at_pt, true, true);
  4826. delta_radius -= 1.0 * zig_zag;
  4827. recalc_delta_settings();
  4828. r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
  4829. }
  4830. r_fac /= 2.0;
  4831. r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
  4832. LOOP_XYZ(axis) {
  4833. delta_tower_angle_trim[axis] += 1.0;
  4834. delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5;
  4835. delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5;
  4836. z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  4837. delta_height -= z_temp;
  4838. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  4839. recalc_delta_settings();
  4840. endstops.enable(true);
  4841. if (!home_delta()) return;
  4842. endstops.not_homing();
  4843. SERIAL_PROTOCOLPGM("Tuning T");
  4844. SERIAL_CHAR(tolower(axis_codes[axis]));
  4845. SERIAL_EOL();
  4846. probe_G33_points(z_at_pt, 3, true, false);
  4847. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4848. print_G33_results(z_at_pt, true, true);
  4849. delta_tower_angle_trim[axis] -= 1.0;
  4850. delta_endstop_adj[(axis+1) % 3] += 1.0/4.5;
  4851. delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5;
  4852. z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  4853. delta_height -= z_temp;
  4854. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  4855. recalc_delta_settings();
  4856. switch (axis) {
  4857. case A_AXIS :
  4858. a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
  4859. break;
  4860. case B_AXIS :
  4861. a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle
  4862. break;
  4863. case C_AXIS :
  4864. a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle
  4865. break;
  4866. }
  4867. }
  4868. a_fac /= 3.0;
  4869. a_fac *= norm; // Normalize to 0.83 for Kossel mini
  4870. endstops.enable(true);
  4871. if (!home_delta()) return;
  4872. endstops.not_homing();
  4873. print_signed_float(PSTR( "H_FACTOR: "), h_fac);
  4874. print_signed_float(PSTR(" R_FACTOR: "), r_fac);
  4875. print_signed_float(PSTR(" A_FACTOR: "), a_fac);
  4876. SERIAL_EOL();
  4877. SERIAL_PROTOCOLPGM("Copy these values to Configuration.h");
  4878. SERIAL_EOL();
  4879. }
  4880. #endif // HAS_BED_PROBE
  4881. /**
  4882. * G33 - Delta '1-4-7-point' Auto-Calibration
  4883. * Calibrate height, endstops, delta radius, and tower angles.
  4884. *
  4885. * Parameters:
  4886. *
  4887. * Pn Number of probe points:
  4888. * P0 No probe. Normalize only.
  4889. * P1 Probe center and set height only.
  4890. * P2 Probe center and towers. Set height, endstops and delta radius.
  4891. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4892. * P4-P10 Probe all positions + at different itermediate locations and average them.
  4893. *
  4894. * T Don't calibrate tower angle corrections
  4895. *
  4896. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4897. *
  4898. * Fn Force to run at least n iterations and takes the best result
  4899. *
  4900. * A Auto tune calibartion factors (set in Configuration.h)
  4901. *
  4902. * Vn Verbose level:
  4903. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4904. * V1 Report settings
  4905. * V2 Report settings and probe results
  4906. *
  4907. * E Engage the probe for each point
  4908. */
  4909. inline void gcode_G33() {
  4910. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  4911. if (!WITHIN(probe_points, 0, 10)) {
  4912. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
  4913. return;
  4914. }
  4915. const int8_t verbose_level = parser.byteval('V', 1);
  4916. if (!WITHIN(verbose_level, 0, 2)) {
  4917. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
  4918. return;
  4919. }
  4920. const float calibration_precision = parser.floatval('C');
  4921. if (calibration_precision < 0) {
  4922. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
  4923. return;
  4924. }
  4925. const int8_t force_iterations = parser.intval('F', 0);
  4926. if (!WITHIN(force_iterations, 0, 30)) {
  4927. SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
  4928. return;
  4929. }
  4930. const bool towers_set = !parser.boolval('T'),
  4931. auto_tune = parser.boolval('A'),
  4932. stow_after_each = parser.boolval('E'),
  4933. _0p_calibration = probe_points == 0,
  4934. _1p_calibration = probe_points == 1,
  4935. _4p_calibration = probe_points == 2,
  4936. _7p_9_centre = probe_points >= 8,
  4937. _tower_results = (_4p_calibration && towers_set)
  4938. || probe_points >= 3 || probe_points == 0,
  4939. _opposite_results = (_4p_calibration && !towers_set)
  4940. || probe_points >= 3 || probe_points == 0,
  4941. _endstop_results = probe_points != 1,
  4942. _angle_results = (probe_points >= 3 || probe_points == 0) && towers_set;
  4943. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4944. int8_t iterations = 0;
  4945. float test_precision,
  4946. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4947. zero_std_dev_min = zero_std_dev,
  4948. e_old[ABC] = {
  4949. delta_endstop_adj[A_AXIS],
  4950. delta_endstop_adj[B_AXIS],
  4951. delta_endstop_adj[C_AXIS]
  4952. },
  4953. dr_old = delta_radius,
  4954. zh_old = delta_height,
  4955. ta_old[ABC] = {
  4956. delta_tower_angle_trim[A_AXIS],
  4957. delta_tower_angle_trim[B_AXIS],
  4958. delta_tower_angle_trim[C_AXIS]
  4959. };
  4960. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4961. if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
  4962. LOOP_CAL_RAD(axis) {
  4963. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4964. r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0));
  4965. if (!position_is_reachable(cos(a) * r, sin(a) * r)) {
  4966. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4967. return;
  4968. }
  4969. }
  4970. }
  4971. stepper.synchronize();
  4972. #if HAS_LEVELING
  4973. reset_bed_level(); // After calibration bed-level data is no longer valid
  4974. #endif
  4975. #if HOTENDS > 1
  4976. const uint8_t old_tool_index = active_extruder;
  4977. tool_change(0, 0, true);
  4978. #define G33_CLEANUP() G33_cleanup(old_tool_index)
  4979. #else
  4980. #define G33_CLEANUP() G33_cleanup()
  4981. #endif
  4982. setup_for_endstop_or_probe_move();
  4983. endstops.enable(true);
  4984. if (!_0p_calibration) {
  4985. if (!home_delta())
  4986. return;
  4987. endstops.not_homing();
  4988. }
  4989. if (auto_tune) {
  4990. #if HAS_BED_PROBE
  4991. G33_auto_tune();
  4992. #else
  4993. SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune");
  4994. #endif
  4995. G33_CLEANUP();
  4996. return;
  4997. }
  4998. // Report settings
  4999. const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
  5000. serialprintPGM(checkingac);
  5001. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  5002. SERIAL_EOL();
  5003. lcd_setstatusPGM(checkingac);
  5004. print_G33_settings(_endstop_results, _angle_results);
  5005. do {
  5006. float z_at_pt[NPP + 1] = { 0.0 };
  5007. test_precision = zero_std_dev;
  5008. iterations++;
  5009. // Probe the points
  5010. zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each);
  5011. // Solve matrices
  5012. if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
  5013. if (zero_std_dev < zero_std_dev_min) {
  5014. COPY(e_old, delta_endstop_adj);
  5015. dr_old = delta_radius;
  5016. zh_old = delta_height;
  5017. COPY(ta_old, delta_tower_angle_trim);
  5018. }
  5019. float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
  5020. const float r_diff = delta_radius - delta_calibration_radius,
  5021. h_factor = 1 / 6.0 *
  5022. #ifdef H_FACTOR
  5023. (H_FACTOR), // Set in Configuration.h
  5024. #else
  5025. (1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm
  5026. #endif
  5027. r_factor = 1 / 6.0 *
  5028. #ifdef R_FACTOR
  5029. -(R_FACTOR), // Set in Configuration.h
  5030. #else
  5031. -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm
  5032. #endif
  5033. a_factor = 1 / 6.0 *
  5034. #ifdef A_FACTOR
  5035. (A_FACTOR); // Set in Configuration.h
  5036. #else
  5037. (66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm
  5038. #endif
  5039. #define ZP(N,I) ((N) * z_at_pt[I])
  5040. #define Z6(I) ZP(6, I)
  5041. #define Z4(I) ZP(4, I)
  5042. #define Z2(I) ZP(2, I)
  5043. #define Z1(I) ZP(1, I)
  5044. #if !HAS_BED_PROBE
  5045. test_precision = 0.00; // forced end
  5046. #endif
  5047. switch (probe_points) {
  5048. case 0:
  5049. test_precision = 0.00; // forced end
  5050. break;
  5051. case 1:
  5052. test_precision = 0.00; // forced end
  5053. LOOP_XYZ(axis) e_delta[axis] = Z1(CEN);
  5054. break;
  5055. case 2:
  5056. if (towers_set) {
  5057. e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor;
  5058. e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor;
  5059. e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
  5060. r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
  5061. }
  5062. else {
  5063. e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
  5064. e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
  5065. e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
  5066. r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
  5067. }
  5068. break;
  5069. default:
  5070. e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor;
  5071. e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor;
  5072. e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor;
  5073. r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor;
  5074. if (towers_set) {
  5075. t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor;
  5076. t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor;
  5077. t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor;
  5078. e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
  5079. e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
  5080. e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
  5081. }
  5082. break;
  5083. }
  5084. LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
  5085. delta_radius += r_delta;
  5086. LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
  5087. }
  5088. else if (zero_std_dev >= test_precision) { // step one back
  5089. COPY(delta_endstop_adj, e_old);
  5090. delta_radius = dr_old;
  5091. delta_height = zh_old;
  5092. COPY(delta_tower_angle_trim, ta_old);
  5093. }
  5094. if (verbose_level != 0) { // !dry run
  5095. // normalise angles to least squares
  5096. if (_angle_results) {
  5097. float a_sum = 0.0;
  5098. LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
  5099. LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
  5100. }
  5101. // adjust delta_height and endstops by the max amount
  5102. const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  5103. delta_height -= z_temp;
  5104. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  5105. }
  5106. recalc_delta_settings();
  5107. NOMORE(zero_std_dev_min, zero_std_dev);
  5108. // print report
  5109. if (verbose_level != 1)
  5110. print_G33_results(z_at_pt, _tower_results, _opposite_results);
  5111. if (verbose_level != 0) { // !dry run
  5112. if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
  5113. SERIAL_PROTOCOLPGM("Calibration OK");
  5114. SERIAL_PROTOCOL_SP(32);
  5115. #if HAS_BED_PROBE
  5116. if (zero_std_dev >= test_precision && !_1p_calibration)
  5117. SERIAL_PROTOCOLPGM("rolling back.");
  5118. else
  5119. #endif
  5120. {
  5121. SERIAL_PROTOCOLPGM("std dev:");
  5122. SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
  5123. }
  5124. SERIAL_EOL();
  5125. char mess[21];
  5126. strcpy_P(mess, PSTR("Calibration sd:"));
  5127. if (zero_std_dev_min < 1)
  5128. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
  5129. else
  5130. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
  5131. lcd_setstatus(mess);
  5132. print_G33_settings(_endstop_results, _angle_results);
  5133. serialprintPGM(save_message);
  5134. SERIAL_EOL();
  5135. }
  5136. else { // !end iterations
  5137. char mess[15];
  5138. if (iterations < 31)
  5139. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  5140. else
  5141. strcpy_P(mess, PSTR("No convergence"));
  5142. SERIAL_PROTOCOL(mess);
  5143. SERIAL_PROTOCOL_SP(32);
  5144. SERIAL_PROTOCOLPGM("std dev:");
  5145. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  5146. SERIAL_EOL();
  5147. lcd_setstatus(mess);
  5148. print_G33_settings(_endstop_results, _angle_results);
  5149. }
  5150. }
  5151. else { // dry run
  5152. const char *enddryrun = PSTR("End DRY-RUN");
  5153. serialprintPGM(enddryrun);
  5154. SERIAL_PROTOCOL_SP(35);
  5155. SERIAL_PROTOCOLPGM("std dev:");
  5156. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  5157. SERIAL_EOL();
  5158. char mess[21];
  5159. strcpy_P(mess, enddryrun);
  5160. strcpy_P(&mess[11], PSTR(" sd:"));
  5161. if (zero_std_dev < 1)
  5162. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
  5163. else
  5164. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
  5165. lcd_setstatus(mess);
  5166. }
  5167. endstops.enable(true);
  5168. if (!home_delta())
  5169. return;
  5170. endstops.not_homing();
  5171. }
  5172. while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
  5173. G33_CLEANUP();
  5174. }
  5175. #endif // DELTA_AUTO_CALIBRATION
  5176. #if ENABLED(G38_PROBE_TARGET)
  5177. static bool G38_run_probe() {
  5178. bool G38_pass_fail = false;
  5179. #if ENABLED(PROBE_DOUBLE_TOUCH)
  5180. // Get direction of move and retract
  5181. float retract_mm[XYZ];
  5182. LOOP_XYZ(i) {
  5183. float dist = destination[i] - current_position[i];
  5184. retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  5185. }
  5186. #endif
  5187. stepper.synchronize(); // wait until the machine is idle
  5188. // Move until destination reached or target hit
  5189. endstops.enable(true);
  5190. G38_move = true;
  5191. G38_endstop_hit = false;
  5192. prepare_move_to_destination();
  5193. stepper.synchronize();
  5194. G38_move = false;
  5195. endstops.hit_on_purpose();
  5196. set_current_from_steppers_for_axis(ALL_AXES);
  5197. SYNC_PLAN_POSITION_KINEMATIC();
  5198. if (G38_endstop_hit) {
  5199. G38_pass_fail = true;
  5200. #if ENABLED(PROBE_DOUBLE_TOUCH)
  5201. // Move away by the retract distance
  5202. set_destination_from_current();
  5203. LOOP_XYZ(i) destination[i] += retract_mm[i];
  5204. endstops.enable(false);
  5205. prepare_move_to_destination();
  5206. stepper.synchronize();
  5207. feedrate_mm_s /= 4;
  5208. // Bump the target more slowly
  5209. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  5210. endstops.enable(true);
  5211. G38_move = true;
  5212. prepare_move_to_destination();
  5213. stepper.synchronize();
  5214. G38_move = false;
  5215. set_current_from_steppers_for_axis(ALL_AXES);
  5216. SYNC_PLAN_POSITION_KINEMATIC();
  5217. #endif
  5218. }
  5219. endstops.hit_on_purpose();
  5220. endstops.not_homing();
  5221. return G38_pass_fail;
  5222. }
  5223. /**
  5224. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  5225. * G38.3 - probe toward workpiece, stop on contact
  5226. *
  5227. * Like G28 except uses Z min probe for all axes
  5228. */
  5229. inline void gcode_G38(bool is_38_2) {
  5230. // Get X Y Z E F
  5231. gcode_get_destination();
  5232. setup_for_endstop_or_probe_move();
  5233. // If any axis has enough movement, do the move
  5234. LOOP_XYZ(i)
  5235. if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  5236. if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
  5237. // If G38.2 fails throw an error
  5238. if (!G38_run_probe() && is_38_2) {
  5239. SERIAL_ERROR_START();
  5240. SERIAL_ERRORLNPGM("Failed to reach target");
  5241. }
  5242. break;
  5243. }
  5244. clean_up_after_endstop_or_probe_move();
  5245. }
  5246. #endif // G38_PROBE_TARGET
  5247. #if HAS_MESH
  5248. /**
  5249. * G42: Move X & Y axes to mesh coordinates (I & J)
  5250. */
  5251. inline void gcode_G42() {
  5252. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  5253. if (axis_unhomed_error()) return;
  5254. #endif
  5255. if (IsRunning()) {
  5256. const bool hasI = parser.seenval('I');
  5257. const int8_t ix = RAW_X_POSITION(hasI ? parser.value_linear_units() : 0);
  5258. const bool hasJ = parser.seenval('J');
  5259. const int8_t iy = RAW_Y_POSITION(hasJ ? parser.value_linear_units() : 0);
  5260. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  5261. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  5262. return;
  5263. }
  5264. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  5265. #define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
  5266. #define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
  5267. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  5268. #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
  5269. #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
  5270. #elif ENABLED(MESH_BED_LEVELING)
  5271. #define _GET_MESH_X(I) mbl.index_to_xpos[I]
  5272. #define _GET_MESH_Y(J) mbl.index_to_ypos[J]
  5273. #endif
  5274. set_destination_from_current();
  5275. if (hasI) destination[X_AXIS] = _GET_MESH_X(ix);
  5276. if (hasJ) destination[Y_AXIS] = _GET_MESH_Y(iy);
  5277. if (parser.boolval('P')) {
  5278. if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  5279. if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  5280. }
  5281. const float fval = parser.linearval('F');
  5282. if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
  5283. // SCARA kinematic has "safe" XY raw moves
  5284. #if IS_SCARA
  5285. prepare_uninterpolated_move_to_destination();
  5286. #else
  5287. prepare_move_to_destination();
  5288. #endif
  5289. }
  5290. }
  5291. #endif // HAS_MESH
  5292. /**
  5293. * G92: Set current position to given X Y Z E
  5294. */
  5295. inline void gcode_G92() {
  5296. stepper.synchronize();
  5297. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5298. switch (parser.subcode) {
  5299. case 1:
  5300. // Zero the G92 values and restore current position
  5301. #if !IS_SCARA
  5302. LOOP_XYZ(i) {
  5303. const float v = position_shift[i];
  5304. if (v) {
  5305. position_shift[i] = 0;
  5306. update_software_endstops((AxisEnum)i);
  5307. }
  5308. }
  5309. #endif // Not SCARA
  5310. return;
  5311. }
  5312. #endif
  5313. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5314. #define IS_G92_0 (parser.subcode == 0)
  5315. #else
  5316. #define IS_G92_0 true
  5317. #endif
  5318. bool didXYZ = false, didE = false;
  5319. if (IS_G92_0) LOOP_XYZE(i) {
  5320. if (parser.seenval(axis_codes[i])) {
  5321. const float l = parser.value_axis_units((AxisEnum)i),
  5322. v = i == E_AXIS ? l : LOGICAL_TO_NATIVE(l, i),
  5323. d = v - current_position[i];
  5324. if (!NEAR_ZERO(d)) {
  5325. if (i == E_AXIS) didE = true; else didXYZ = true;
  5326. #if IS_SCARA
  5327. current_position[i] = v; // For SCARA just set the position directly
  5328. #elif HAS_POSITION_SHIFT
  5329. if (i == E_AXIS)
  5330. current_position[E_AXIS] = v; // When using coordinate spaces, only E is set directly
  5331. else {
  5332. position_shift[i] += d; // Other axes simply offset the coordinate space
  5333. update_software_endstops((AxisEnum)i);
  5334. }
  5335. #else
  5336. current_position[i] = v; // Without workspaces revert to Marlin 1.0 behavior
  5337. #endif
  5338. }
  5339. }
  5340. }
  5341. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5342. // Apply workspace offset to the active coordinate system
  5343. if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
  5344. COPY(coordinate_system[active_coordinate_system], position_shift);
  5345. #endif
  5346. if (didXYZ)
  5347. SYNC_PLAN_POSITION_KINEMATIC();
  5348. else if (didE)
  5349. sync_plan_position_e();
  5350. report_current_position();
  5351. }
  5352. #if HAS_RESUME_CONTINUE
  5353. /**
  5354. * M0: Unconditional stop - Wait for user button press on LCD
  5355. * M1: Conditional stop - Wait for user button press on LCD
  5356. */
  5357. inline void gcode_M0_M1() {
  5358. const char * const args = parser.string_arg;
  5359. millis_t ms = 0;
  5360. bool hasP = false, hasS = false;
  5361. if (parser.seenval('P')) {
  5362. ms = parser.value_millis(); // milliseconds to wait
  5363. hasP = ms > 0;
  5364. }
  5365. if (parser.seenval('S')) {
  5366. ms = parser.value_millis_from_seconds(); // seconds to wait
  5367. hasS = ms > 0;
  5368. }
  5369. #if ENABLED(ULTIPANEL)
  5370. if (!hasP && !hasS && args && *args)
  5371. lcd_setstatus(args, true);
  5372. else {
  5373. LCD_MESSAGEPGM(MSG_USERWAIT);
  5374. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  5375. dontExpireStatus();
  5376. #endif
  5377. }
  5378. #else
  5379. if (!hasP && !hasS && args && *args) {
  5380. SERIAL_ECHO_START();
  5381. SERIAL_ECHOLN(args);
  5382. }
  5383. #endif
  5384. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5385. wait_for_user = true;
  5386. stepper.synchronize();
  5387. refresh_cmd_timeout();
  5388. if (ms > 0) {
  5389. ms += previous_cmd_ms; // wait until this time for a click
  5390. while (PENDING(millis(), ms) && wait_for_user) idle();
  5391. }
  5392. else {
  5393. #if ENABLED(ULTIPANEL)
  5394. if (lcd_detected()) {
  5395. while (wait_for_user) idle();
  5396. print_job_timer.isPaused() ? LCD_MESSAGEPGM(WELCOME_MSG) : LCD_MESSAGEPGM(MSG_RESUMING);
  5397. }
  5398. #else
  5399. while (wait_for_user) idle();
  5400. #endif
  5401. }
  5402. wait_for_user = false;
  5403. KEEPALIVE_STATE(IN_HANDLER);
  5404. }
  5405. #endif // HAS_RESUME_CONTINUE
  5406. #if ENABLED(SPINDLE_LASER_ENABLE)
  5407. /**
  5408. * M3: Spindle Clockwise
  5409. * M4: Spindle Counter-clockwise
  5410. *
  5411. * S0 turns off spindle.
  5412. *
  5413. * If no speed PWM output is defined then M3/M4 just turns it on.
  5414. *
  5415. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  5416. * Hardware PWM is required. ISRs are too slow.
  5417. *
  5418. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  5419. * No other settings give a PWM signal that goes from 0 to 5 volts.
  5420. *
  5421. * The system automatically sets WGM to Mode 1, so no special
  5422. * initialization is needed.
  5423. *
  5424. * WGM bits for timer 2 are automatically set by the system to
  5425. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  5426. * No special initialization is needed.
  5427. *
  5428. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  5429. * factors for timers 2, 3, 4, and 5 are acceptable.
  5430. *
  5431. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  5432. * the spindle/laser during power-up or when connecting to the host
  5433. * (usually goes through a reset which sets all I/O pins to tri-state)
  5434. *
  5435. * PWM duty cycle goes from 0 (off) to 255 (always on).
  5436. */
  5437. // Wait for spindle to come up to speed
  5438. inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
  5439. // Wait for spindle to stop turning
  5440. inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
  5441. /**
  5442. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  5443. *
  5444. * it accepts inputs of 0-255
  5445. */
  5446. inline void ocr_val_mode() {
  5447. uint8_t spindle_laser_power = parser.value_byte();
  5448. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5449. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  5450. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  5451. }
  5452. inline void gcode_M3_M4(bool is_M3) {
  5453. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  5454. #if SPINDLE_DIR_CHANGE
  5455. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  5456. if (SPINDLE_STOP_ON_DIR_CHANGE \
  5457. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  5458. && READ(SPINDLE_DIR_PIN) != rotation_dir
  5459. ) {
  5460. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  5461. delay_for_power_down();
  5462. }
  5463. WRITE(SPINDLE_DIR_PIN, rotation_dir);
  5464. #endif
  5465. /**
  5466. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  5467. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  5468. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  5469. */
  5470. #if ENABLED(SPINDLE_LASER_PWM)
  5471. if (parser.seen('O')) ocr_val_mode();
  5472. else {
  5473. const float spindle_laser_power = parser.floatval('S');
  5474. if (spindle_laser_power == 0) {
  5475. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  5476. delay_for_power_down();
  5477. }
  5478. else {
  5479. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  5480. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  5481. if (spindle_laser_power <= SPEED_POWER_MIN)
  5482. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  5483. if (spindle_laser_power >= SPEED_POWER_MAX)
  5484. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  5485. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  5486. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5487. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  5488. delay_for_power_up();
  5489. }
  5490. }
  5491. #else
  5492. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  5493. delay_for_power_up();
  5494. #endif
  5495. }
  5496. /**
  5497. * M5 turn off spindle
  5498. */
  5499. inline void gcode_M5() {
  5500. stepper.synchronize();
  5501. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  5502. delay_for_power_down();
  5503. }
  5504. #endif // SPINDLE_LASER_ENABLE
  5505. /**
  5506. * M17: Enable power on all stepper motors
  5507. */
  5508. inline void gcode_M17() {
  5509. LCD_MESSAGEPGM(MSG_NO_MOVE);
  5510. enable_all_steppers();
  5511. }
  5512. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  5513. static float resume_position[XYZE];
  5514. static bool move_away_flag = false;
  5515. #if ENABLED(SDSUPPORT)
  5516. static bool sd_print_paused = false;
  5517. #endif
  5518. static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
  5519. static millis_t next_buzz = 0;
  5520. static int8_t runout_beep = 0;
  5521. if (init) next_buzz = runout_beep = 0;
  5522. const millis_t ms = millis();
  5523. if (ELAPSED(ms, next_buzz)) {
  5524. if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
  5525. next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
  5526. BUZZ(300, 2000);
  5527. runout_beep++;
  5528. }
  5529. }
  5530. }
  5531. static void ensure_safe_temperature() {
  5532. bool heaters_heating = true;
  5533. wait_for_heatup = true; // M108 will clear this
  5534. while (wait_for_heatup && heaters_heating) {
  5535. idle();
  5536. heaters_heating = false;
  5537. HOTEND_LOOP() {
  5538. if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
  5539. heaters_heating = true;
  5540. #if ENABLED(ULTIPANEL)
  5541. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  5542. #endif
  5543. break;
  5544. }
  5545. }
  5546. }
  5547. }
  5548. #if IS_KINEMATIC
  5549. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  5550. #else
  5551. #define RUNPLAN(RATE_MM_S) buffer_line_to_destination(RATE_MM_S)
  5552. #endif
  5553. void do_pause_e_move(const float &length, const float fr) {
  5554. current_position[E_AXIS] += length;
  5555. set_destination_from_current();
  5556. RUNPLAN(fr);
  5557. stepper.synchronize();
  5558. }
  5559. static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
  5560. const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
  5561. ) {
  5562. if (move_away_flag) return false; // already paused
  5563. if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
  5564. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5565. if (!thermalManager.allow_cold_extrude &&
  5566. thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
  5567. SERIAL_ERROR_START();
  5568. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5569. return false;
  5570. }
  5571. #endif
  5572. ensure_safe_temperature(); // wait for extruder to heat up before unloading
  5573. }
  5574. // Indicate that the printer is paused
  5575. move_away_flag = true;
  5576. // Pause the print job and timer
  5577. #if ENABLED(SDSUPPORT)
  5578. if (card.sdprinting) {
  5579. card.pauseSDPrint();
  5580. sd_print_paused = true;
  5581. }
  5582. #endif
  5583. print_job_timer.pause();
  5584. // Show initial message and wait for synchronize steppers
  5585. if (show_lcd) {
  5586. #if ENABLED(ULTIPANEL)
  5587. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
  5588. #endif
  5589. }
  5590. // Save current position
  5591. stepper.synchronize();
  5592. COPY(resume_position, current_position);
  5593. // Initial retract before move to filament change position
  5594. if (retract) do_pause_e_move(retract, PAUSE_PARK_RETRACT_FEEDRATE);
  5595. // Lift Z axis
  5596. if (z_lift > 0)
  5597. do_blocking_move_to_z(current_position[Z_AXIS] + z_lift, PAUSE_PARK_Z_FEEDRATE);
  5598. // Move XY axes to filament exchange position
  5599. do_blocking_move_to_xy(x_pos, y_pos, PAUSE_PARK_XY_FEEDRATE);
  5600. if (unload_length != 0) {
  5601. if (show_lcd) {
  5602. #if ENABLED(ULTIPANEL)
  5603. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
  5604. idle();
  5605. #endif
  5606. }
  5607. // Unload filament
  5608. do_pause_e_move(unload_length, FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5609. }
  5610. if (show_lcd) {
  5611. #if ENABLED(ULTIPANEL)
  5612. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5613. #endif
  5614. }
  5615. #if HAS_BUZZER
  5616. filament_change_beep(max_beep_count, true);
  5617. #endif
  5618. idle();
  5619. // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
  5620. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
  5621. disable_e_steppers();
  5622. safe_delay(100);
  5623. #endif
  5624. // Start the heater idle timers
  5625. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5626. HOTEND_LOOP()
  5627. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5628. return true;
  5629. }
  5630. static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
  5631. bool nozzle_timed_out = false;
  5632. // Wait for filament insert by user and press button
  5633. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5634. wait_for_user = true; // LCD click or M108 will clear this
  5635. while (wait_for_user) {
  5636. #if HAS_BUZZER
  5637. filament_change_beep(max_beep_count);
  5638. #endif
  5639. // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
  5640. // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
  5641. if (!nozzle_timed_out)
  5642. HOTEND_LOOP()
  5643. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5644. if (nozzle_timed_out) {
  5645. #if ENABLED(ULTIPANEL)
  5646. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  5647. #endif
  5648. // Wait for LCD click or M108
  5649. while (wait_for_user) idle(true);
  5650. // Re-enable the heaters if they timed out
  5651. HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
  5652. // Wait for the heaters to reach the target temperatures
  5653. ensure_safe_temperature();
  5654. #if ENABLED(ULTIPANEL)
  5655. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5656. #endif
  5657. // Start the heater idle timers
  5658. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5659. HOTEND_LOOP()
  5660. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5661. wait_for_user = true; /* Wait for user to load filament */
  5662. nozzle_timed_out = false;
  5663. #if HAS_BUZZER
  5664. filament_change_beep(max_beep_count, true);
  5665. #endif
  5666. }
  5667. idle(true);
  5668. }
  5669. KEEPALIVE_STATE(IN_HANDLER);
  5670. }
  5671. static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
  5672. bool nozzle_timed_out = false;
  5673. if (!move_away_flag) return;
  5674. // Re-enable the heaters if they timed out
  5675. HOTEND_LOOP() {
  5676. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5677. thermalManager.reset_heater_idle_timer(e);
  5678. }
  5679. if (nozzle_timed_out) ensure_safe_temperature();
  5680. #if HAS_BUZZER
  5681. filament_change_beep(max_beep_count, true);
  5682. #endif
  5683. set_destination_from_current();
  5684. if (load_length != 0) {
  5685. #if ENABLED(ULTIPANEL)
  5686. // Show "insert filament"
  5687. if (nozzle_timed_out)
  5688. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5689. #endif
  5690. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5691. wait_for_user = true; // LCD click or M108 will clear this
  5692. while (wait_for_user && nozzle_timed_out) {
  5693. #if HAS_BUZZER
  5694. filament_change_beep(max_beep_count);
  5695. #endif
  5696. idle(true);
  5697. }
  5698. KEEPALIVE_STATE(IN_HANDLER);
  5699. #if ENABLED(ULTIPANEL)
  5700. // Show "load" message
  5701. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
  5702. #endif
  5703. // Load filament
  5704. do_pause_e_move(load_length, FILAMENT_CHANGE_LOAD_FEEDRATE);
  5705. }
  5706. #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
  5707. float extrude_length = initial_extrude_length;
  5708. do {
  5709. if (extrude_length > 0) {
  5710. // "Wait for filament extrude"
  5711. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
  5712. // Extrude filament to get into hotend
  5713. do_pause_e_move(extrude_length, ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
  5714. }
  5715. // Show "Extrude More" / "Resume" menu and wait for reply
  5716. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5717. wait_for_user = false;
  5718. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
  5719. while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
  5720. KEEPALIVE_STATE(IN_HANDLER);
  5721. extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
  5722. // Keep looping if "Extrude More" was selected
  5723. } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
  5724. #endif
  5725. #if ENABLED(ULTIPANEL)
  5726. // "Wait for print to resume"
  5727. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
  5728. #endif
  5729. // Set extruder to saved position
  5730. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  5731. planner.set_e_position_mm(current_position[E_AXIS]);
  5732. // Move XY to starting position, then Z
  5733. do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], PAUSE_PARK_XY_FEEDRATE);
  5734. do_blocking_move_to_z(resume_position[Z_AXIS], PAUSE_PARK_Z_FEEDRATE);
  5735. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5736. filament_ran_out = false;
  5737. #endif
  5738. #if ENABLED(ULTIPANEL)
  5739. // Show status screen
  5740. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
  5741. #endif
  5742. #if ENABLED(SDSUPPORT)
  5743. if (sd_print_paused) {
  5744. card.startFileprint();
  5745. sd_print_paused = false;
  5746. }
  5747. #endif
  5748. move_away_flag = false;
  5749. }
  5750. #endif // ADVANCED_PAUSE_FEATURE
  5751. #if ENABLED(SDSUPPORT)
  5752. /**
  5753. * M20: List SD card to serial output
  5754. */
  5755. inline void gcode_M20() {
  5756. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  5757. card.ls();
  5758. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  5759. }
  5760. /**
  5761. * M21: Init SD Card
  5762. */
  5763. inline void gcode_M21() { card.initsd(); }
  5764. /**
  5765. * M22: Release SD Card
  5766. */
  5767. inline void gcode_M22() { card.release(); }
  5768. /**
  5769. * M23: Open a file
  5770. */
  5771. inline void gcode_M23() {
  5772. // Simplify3D includes the size, so zero out all spaces (#7227)
  5773. for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
  5774. card.openFile(parser.string_arg, true);
  5775. }
  5776. /**
  5777. * M24: Start or Resume SD Print
  5778. */
  5779. inline void gcode_M24() {
  5780. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5781. resume_print();
  5782. #endif
  5783. card.startFileprint();
  5784. print_job_timer.start();
  5785. }
  5786. /**
  5787. * M25: Pause SD Print
  5788. */
  5789. inline void gcode_M25() {
  5790. card.pauseSDPrint();
  5791. print_job_timer.pause();
  5792. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5793. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  5794. #endif
  5795. }
  5796. /**
  5797. * M26: Set SD Card file index
  5798. */
  5799. inline void gcode_M26() {
  5800. if (card.cardOK && parser.seenval('S'))
  5801. card.setIndex(parser.value_long());
  5802. }
  5803. /**
  5804. * M27: Get SD Card status
  5805. */
  5806. inline void gcode_M27() { card.getStatus(); }
  5807. /**
  5808. * M28: Start SD Write
  5809. */
  5810. inline void gcode_M28() { card.openFile(parser.string_arg, false); }
  5811. /**
  5812. * M29: Stop SD Write
  5813. * Processed in write to file routine above
  5814. */
  5815. inline void gcode_M29() {
  5816. // card.saving = false;
  5817. }
  5818. /**
  5819. * M30 <filename>: Delete SD Card file
  5820. */
  5821. inline void gcode_M30() {
  5822. if (card.cardOK) {
  5823. card.closefile();
  5824. card.removeFile(parser.string_arg);
  5825. }
  5826. }
  5827. #endif // SDSUPPORT
  5828. /**
  5829. * M31: Get the time since the start of SD Print (or last M109)
  5830. */
  5831. inline void gcode_M31() {
  5832. char buffer[21];
  5833. duration_t elapsed = print_job_timer.duration();
  5834. elapsed.toString(buffer);
  5835. lcd_setstatus(buffer);
  5836. SERIAL_ECHO_START();
  5837. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5838. }
  5839. #if ENABLED(SDSUPPORT)
  5840. /**
  5841. * M32: Select file and start SD Print
  5842. */
  5843. inline void gcode_M32() {
  5844. if (card.sdprinting)
  5845. stepper.synchronize();
  5846. char* namestartpos = parser.string_arg;
  5847. const bool call_procedure = parser.boolval('P');
  5848. if (card.cardOK) {
  5849. card.openFile(namestartpos, true, call_procedure);
  5850. if (parser.seenval('S'))
  5851. card.setIndex(parser.value_long());
  5852. card.startFileprint();
  5853. // Procedure calls count as normal print time.
  5854. if (!call_procedure) print_job_timer.start();
  5855. }
  5856. }
  5857. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5858. /**
  5859. * M33: Get the long full path of a file or folder
  5860. *
  5861. * Parameters:
  5862. * <dospath> Case-insensitive DOS-style path to a file or folder
  5863. *
  5864. * Example:
  5865. * M33 miscel~1/armchair/armcha~1.gco
  5866. *
  5867. * Output:
  5868. * /Miscellaneous/Armchair/Armchair.gcode
  5869. */
  5870. inline void gcode_M33() {
  5871. card.printLongPath(parser.string_arg);
  5872. }
  5873. #endif
  5874. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5875. /**
  5876. * M34: Set SD Card Sorting Options
  5877. */
  5878. inline void gcode_M34() {
  5879. if (parser.seen('S')) card.setSortOn(parser.value_bool());
  5880. if (parser.seenval('F')) {
  5881. const int v = parser.value_long();
  5882. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5883. }
  5884. //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
  5885. }
  5886. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5887. /**
  5888. * M928: Start SD Write
  5889. */
  5890. inline void gcode_M928() {
  5891. card.openLogFile(parser.string_arg);
  5892. }
  5893. #endif // SDSUPPORT
  5894. /**
  5895. * Sensitive pin test for M42, M226
  5896. */
  5897. static bool pin_is_protected(const int8_t pin) {
  5898. static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
  5899. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5900. if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
  5901. return false;
  5902. }
  5903. /**
  5904. * M42: Change pin status via GCode
  5905. *
  5906. * P<pin> Pin number (LED if omitted)
  5907. * S<byte> Pin status from 0 - 255
  5908. */
  5909. inline void gcode_M42() {
  5910. if (!parser.seenval('S')) return;
  5911. const byte pin_status = parser.value_byte();
  5912. const int pin_number = parser.intval('P', LED_PIN);
  5913. if (pin_number < 0) return;
  5914. if (pin_is_protected(pin_number)) {
  5915. SERIAL_ERROR_START();
  5916. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5917. return;
  5918. }
  5919. pinMode(pin_number, OUTPUT);
  5920. digitalWrite(pin_number, pin_status);
  5921. analogWrite(pin_number, pin_status);
  5922. #if FAN_COUNT > 0
  5923. switch (pin_number) {
  5924. #if HAS_FAN0
  5925. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5926. #endif
  5927. #if HAS_FAN1
  5928. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5929. #endif
  5930. #if HAS_FAN2
  5931. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5932. #endif
  5933. }
  5934. #endif
  5935. }
  5936. #if ENABLED(PINS_DEBUGGING)
  5937. #include "pinsDebug.h"
  5938. inline void toggle_pins() {
  5939. const bool I_flag = parser.boolval('I');
  5940. const int repeat = parser.intval('R', 1),
  5941. start = parser.intval('S'),
  5942. end = parser.intval('E', NUM_DIGITAL_PINS - 1),
  5943. wait = parser.intval('W', 500);
  5944. for (uint8_t pin = start; pin <= end; pin++) {
  5945. //report_pin_state_extended(pin, I_flag, false);
  5946. if (!I_flag && pin_is_protected(pin)) {
  5947. report_pin_state_extended(pin, I_flag, true, "Untouched ");
  5948. SERIAL_EOL();
  5949. }
  5950. else {
  5951. report_pin_state_extended(pin, I_flag, true, "Pulsing ");
  5952. #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
  5953. if (pin == TEENSY_E2) {
  5954. SET_OUTPUT(TEENSY_E2);
  5955. for (int16_t j = 0; j < repeat; j++) {
  5956. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5957. WRITE(TEENSY_E2, HIGH); safe_delay(wait);
  5958. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5959. }
  5960. }
  5961. else if (pin == TEENSY_E3) {
  5962. SET_OUTPUT(TEENSY_E3);
  5963. for (int16_t j = 0; j < repeat; j++) {
  5964. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5965. WRITE(TEENSY_E3, HIGH); safe_delay(wait);
  5966. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5967. }
  5968. }
  5969. else
  5970. #endif
  5971. {
  5972. pinMode(pin, OUTPUT);
  5973. for (int16_t j = 0; j < repeat; j++) {
  5974. digitalWrite(pin, 0); safe_delay(wait);
  5975. digitalWrite(pin, 1); safe_delay(wait);
  5976. digitalWrite(pin, 0); safe_delay(wait);
  5977. }
  5978. }
  5979. }
  5980. SERIAL_EOL();
  5981. }
  5982. SERIAL_ECHOLNPGM("Done.");
  5983. } // toggle_pins
  5984. inline void servo_probe_test() {
  5985. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5986. SERIAL_ERROR_START();
  5987. SERIAL_ERRORLNPGM("SERVO not setup");
  5988. #elif !HAS_Z_SERVO_ENDSTOP
  5989. SERIAL_ERROR_START();
  5990. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5991. #else // HAS_Z_SERVO_ENDSTOP
  5992. const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
  5993. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5994. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5995. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5996. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5997. bool probe_inverting;
  5998. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5999. #define PROBE_TEST_PIN Z_MIN_PIN
  6000. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  6001. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  6002. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  6003. #if Z_MIN_ENDSTOP_INVERTING
  6004. SERIAL_PROTOCOLLNPGM("true");
  6005. #else
  6006. SERIAL_PROTOCOLLNPGM("false");
  6007. #endif
  6008. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  6009. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  6010. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  6011. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  6012. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  6013. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  6014. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  6015. SERIAL_PROTOCOLLNPGM("true");
  6016. #else
  6017. SERIAL_PROTOCOLLNPGM("false");
  6018. #endif
  6019. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  6020. #endif
  6021. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  6022. SET_INPUT_PULLUP(PROBE_TEST_PIN);
  6023. bool deploy_state, stow_state;
  6024. for (uint8_t i = 0; i < 4; i++) {
  6025. MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
  6026. safe_delay(500);
  6027. deploy_state = READ(PROBE_TEST_PIN);
  6028. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  6029. safe_delay(500);
  6030. stow_state = READ(PROBE_TEST_PIN);
  6031. }
  6032. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  6033. refresh_cmd_timeout();
  6034. if (deploy_state != stow_state) {
  6035. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  6036. if (deploy_state) {
  6037. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  6038. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  6039. }
  6040. else {
  6041. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  6042. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  6043. }
  6044. #if ENABLED(BLTOUCH)
  6045. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  6046. #endif
  6047. }
  6048. else { // measure active signal length
  6049. MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
  6050. safe_delay(500);
  6051. SERIAL_PROTOCOLLNPGM("please trigger probe");
  6052. uint16_t probe_counter = 0;
  6053. // Allow 30 seconds max for operator to trigger probe
  6054. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  6055. safe_delay(2);
  6056. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  6057. refresh_cmd_timeout();
  6058. if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
  6059. for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
  6060. safe_delay(2);
  6061. if (probe_counter == 50)
  6062. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  6063. else if (probe_counter >= 2)
  6064. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  6065. else
  6066. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  6067. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  6068. } // pulse detected
  6069. } // for loop waiting for trigger
  6070. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  6071. } // measure active signal length
  6072. #endif
  6073. } // servo_probe_test
  6074. /**
  6075. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  6076. *
  6077. * M43 - report name and state of pin(s)
  6078. * P<pin> Pin to read or watch. If omitted, reads all pins.
  6079. * I Flag to ignore Marlin's pin protection.
  6080. *
  6081. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  6082. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  6083. * I Flag to ignore Marlin's pin protection.
  6084. *
  6085. * M43 E<bool> - Enable / disable background endstop monitoring
  6086. * - Machine continues to operate
  6087. * - Reports changes to endstops
  6088. * - Toggles LED_PIN when an endstop changes
  6089. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  6090. *
  6091. * M43 T - Toggle pin(s) and report which pin is being toggled
  6092. * S<pin> - Start Pin number. If not given, will default to 0
  6093. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  6094. * I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
  6095. * R - Repeat pulses on each pin this number of times before continueing to next pin
  6096. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  6097. *
  6098. * M43 S - Servo probe test
  6099. * P<index> - Probe index (optional - defaults to 0
  6100. */
  6101. inline void gcode_M43() {
  6102. if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
  6103. toggle_pins();
  6104. return;
  6105. }
  6106. // Enable or disable endstop monitoring
  6107. if (parser.seen('E')) {
  6108. endstop_monitor_flag = parser.value_bool();
  6109. SERIAL_PROTOCOLPGM("endstop monitor ");
  6110. serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
  6111. SERIAL_PROTOCOLLNPGM("abled");
  6112. return;
  6113. }
  6114. if (parser.seen('S')) {
  6115. servo_probe_test();
  6116. return;
  6117. }
  6118. // Get the range of pins to test or watch
  6119. const uint8_t first_pin = parser.byteval('P'),
  6120. last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  6121. if (first_pin > last_pin) return;
  6122. const bool ignore_protection = parser.boolval('I');
  6123. // Watch until click, M108, or reset
  6124. if (parser.boolval('W')) {
  6125. SERIAL_PROTOCOLLNPGM("Watching pins");
  6126. byte pin_state[last_pin - first_pin + 1];
  6127. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  6128. if (pin_is_protected(pin) && !ignore_protection) continue;
  6129. pinMode(pin, INPUT_PULLUP);
  6130. delay(1);
  6131. /*
  6132. if (IS_ANALOG(pin))
  6133. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  6134. else
  6135. //*/
  6136. pin_state[pin - first_pin] = digitalRead(pin);
  6137. }
  6138. #if HAS_RESUME_CONTINUE
  6139. wait_for_user = true;
  6140. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6141. #endif
  6142. for (;;) {
  6143. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  6144. if (pin_is_protected(pin) && !ignore_protection) continue;
  6145. const byte val =
  6146. /*
  6147. IS_ANALOG(pin)
  6148. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  6149. :
  6150. //*/
  6151. digitalRead(pin);
  6152. if (val != pin_state[pin - first_pin]) {
  6153. report_pin_state_extended(pin, ignore_protection, false);
  6154. pin_state[pin - first_pin] = val;
  6155. }
  6156. }
  6157. #if HAS_RESUME_CONTINUE
  6158. if (!wait_for_user) {
  6159. KEEPALIVE_STATE(IN_HANDLER);
  6160. break;
  6161. }
  6162. #endif
  6163. safe_delay(200);
  6164. }
  6165. return;
  6166. }
  6167. // Report current state of selected pin(s)
  6168. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  6169. report_pin_state_extended(pin, ignore_protection, true);
  6170. }
  6171. #endif // PINS_DEBUGGING
  6172. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6173. /**
  6174. * M48: Z probe repeatability measurement function.
  6175. *
  6176. * Usage:
  6177. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  6178. * P = Number of sampled points (4-50, default 10)
  6179. * X = Sample X position
  6180. * Y = Sample Y position
  6181. * V = Verbose level (0-4, default=1)
  6182. * E = Engage Z probe for each reading
  6183. * L = Number of legs of movement before probe
  6184. * S = Schizoid (Or Star if you prefer)
  6185. *
  6186. * This function assumes the bed has been homed. Specifically, that a G28 command
  6187. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  6188. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  6189. * regenerated.
  6190. */
  6191. inline void gcode_M48() {
  6192. if (axis_unhomed_error()) return;
  6193. const int8_t verbose_level = parser.byteval('V', 1);
  6194. if (!WITHIN(verbose_level, 0, 4)) {
  6195. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  6196. return;
  6197. }
  6198. if (verbose_level > 0)
  6199. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  6200. const int8_t n_samples = parser.byteval('P', 10);
  6201. if (!WITHIN(n_samples, 4, 50)) {
  6202. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  6203. return;
  6204. }
  6205. const bool stow_probe_after_each = parser.boolval('E');
  6206. float X_current = current_position[X_AXIS],
  6207. Y_current = current_position[Y_AXIS];
  6208. const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
  6209. Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6210. #if DISABLED(DELTA)
  6211. if (!WITHIN(X_probe_location, MIN_PROBE_X, MAX_PROBE_X)) {
  6212. out_of_range_error(PSTR("X"));
  6213. return;
  6214. }
  6215. if (!WITHIN(Y_probe_location, MIN_PROBE_Y, MAX_PROBE_Y)) {
  6216. out_of_range_error(PSTR("Y"));
  6217. return;
  6218. }
  6219. #else
  6220. if (!position_is_reachable_by_probe(X_probe_location, Y_probe_location)) {
  6221. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  6222. return;
  6223. }
  6224. #endif
  6225. bool seen_L = parser.seen('L');
  6226. uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  6227. if (n_legs > 15) {
  6228. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  6229. return;
  6230. }
  6231. if (n_legs == 1) n_legs = 2;
  6232. const bool schizoid_flag = parser.boolval('S');
  6233. if (schizoid_flag && !seen_L) n_legs = 7;
  6234. /**
  6235. * Now get everything to the specified probe point So we can safely do a
  6236. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  6237. * we don't want to use that as a starting point for each probe.
  6238. */
  6239. if (verbose_level > 2)
  6240. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  6241. // Disable bed level correction in M48 because we want the raw data when we probe
  6242. #if HAS_LEVELING
  6243. const bool was_enabled = planner.leveling_active;
  6244. set_bed_leveling_enabled(false);
  6245. #endif
  6246. setup_for_endstop_or_probe_move();
  6247. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  6248. // Move to the first point, deploy, and probe
  6249. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  6250. bool probing_good = !isnan(t);
  6251. if (probing_good) {
  6252. randomSeed(millis());
  6253. for (uint8_t n = 0; n < n_samples; n++) {
  6254. if (n_legs) {
  6255. const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  6256. float angle = random(0.0, 360.0);
  6257. const float radius = random(
  6258. #if ENABLED(DELTA)
  6259. 0.1250000000 * (DELTA_PROBEABLE_RADIUS),
  6260. 0.3333333333 * (DELTA_PROBEABLE_RADIUS)
  6261. #else
  6262. 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
  6263. #endif
  6264. );
  6265. if (verbose_level > 3) {
  6266. SERIAL_ECHOPAIR("Starting radius: ", radius);
  6267. SERIAL_ECHOPAIR(" angle: ", angle);
  6268. SERIAL_ECHOPGM(" Direction: ");
  6269. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  6270. SERIAL_ECHOLNPGM("Clockwise");
  6271. }
  6272. for (uint8_t l = 0; l < n_legs - 1; l++) {
  6273. double delta_angle;
  6274. if (schizoid_flag)
  6275. // The points of a 5 point star are 72 degrees apart. We need to
  6276. // skip a point and go to the next one on the star.
  6277. delta_angle = dir * 2.0 * 72.0;
  6278. else
  6279. // If we do this line, we are just trying to move further
  6280. // around the circle.
  6281. delta_angle = dir * (float) random(25, 45);
  6282. angle += delta_angle;
  6283. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  6284. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  6285. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  6286. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  6287. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  6288. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  6289. #if DISABLED(DELTA)
  6290. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  6291. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  6292. #else
  6293. // If we have gone out too far, we can do a simple fix and scale the numbers
  6294. // back in closer to the origin.
  6295. while (!position_is_reachable_by_probe(X_current, Y_current)) {
  6296. X_current *= 0.8;
  6297. Y_current *= 0.8;
  6298. if (verbose_level > 3) {
  6299. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  6300. SERIAL_ECHOLNPAIR(", ", Y_current);
  6301. }
  6302. }
  6303. #endif
  6304. if (verbose_level > 3) {
  6305. SERIAL_PROTOCOLPGM("Going to:");
  6306. SERIAL_ECHOPAIR(" X", X_current);
  6307. SERIAL_ECHOPAIR(" Y", Y_current);
  6308. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  6309. }
  6310. do_blocking_move_to_xy(X_current, Y_current);
  6311. } // n_legs loop
  6312. } // n_legs
  6313. // Probe a single point
  6314. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  6315. // Break the loop if the probe fails
  6316. probing_good = !isnan(sample_set[n]);
  6317. if (!probing_good) break;
  6318. /**
  6319. * Get the current mean for the data points we have so far
  6320. */
  6321. double sum = 0.0;
  6322. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  6323. mean = sum / (n + 1);
  6324. NOMORE(min, sample_set[n]);
  6325. NOLESS(max, sample_set[n]);
  6326. /**
  6327. * Now, use that mean to calculate the standard deviation for the
  6328. * data points we have so far
  6329. */
  6330. sum = 0.0;
  6331. for (uint8_t j = 0; j <= n; j++)
  6332. sum += sq(sample_set[j] - mean);
  6333. sigma = SQRT(sum / (n + 1));
  6334. if (verbose_level > 0) {
  6335. if (verbose_level > 1) {
  6336. SERIAL_PROTOCOL(n + 1);
  6337. SERIAL_PROTOCOLPGM(" of ");
  6338. SERIAL_PROTOCOL((int)n_samples);
  6339. SERIAL_PROTOCOLPGM(": z: ");
  6340. SERIAL_PROTOCOL_F(sample_set[n], 3);
  6341. if (verbose_level > 2) {
  6342. SERIAL_PROTOCOLPGM(" mean: ");
  6343. SERIAL_PROTOCOL_F(mean, 4);
  6344. SERIAL_PROTOCOLPGM(" sigma: ");
  6345. SERIAL_PROTOCOL_F(sigma, 6);
  6346. SERIAL_PROTOCOLPGM(" min: ");
  6347. SERIAL_PROTOCOL_F(min, 3);
  6348. SERIAL_PROTOCOLPGM(" max: ");
  6349. SERIAL_PROTOCOL_F(max, 3);
  6350. SERIAL_PROTOCOLPGM(" range: ");
  6351. SERIAL_PROTOCOL_F(max-min, 3);
  6352. }
  6353. SERIAL_EOL();
  6354. }
  6355. }
  6356. } // n_samples loop
  6357. }
  6358. STOW_PROBE();
  6359. if (probing_good) {
  6360. SERIAL_PROTOCOLLNPGM("Finished!");
  6361. if (verbose_level > 0) {
  6362. SERIAL_PROTOCOLPGM("Mean: ");
  6363. SERIAL_PROTOCOL_F(mean, 6);
  6364. SERIAL_PROTOCOLPGM(" Min: ");
  6365. SERIAL_PROTOCOL_F(min, 3);
  6366. SERIAL_PROTOCOLPGM(" Max: ");
  6367. SERIAL_PROTOCOL_F(max, 3);
  6368. SERIAL_PROTOCOLPGM(" Range: ");
  6369. SERIAL_PROTOCOL_F(max-min, 3);
  6370. SERIAL_EOL();
  6371. }
  6372. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  6373. SERIAL_PROTOCOL_F(sigma, 6);
  6374. SERIAL_EOL();
  6375. SERIAL_EOL();
  6376. }
  6377. clean_up_after_endstop_or_probe_move();
  6378. // Re-enable bed level correction if it had been on
  6379. #if HAS_LEVELING
  6380. set_bed_leveling_enabled(was_enabled);
  6381. #endif
  6382. report_current_position();
  6383. }
  6384. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6385. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  6386. inline void gcode_M49() {
  6387. ubl.g26_debug_flag ^= true;
  6388. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  6389. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  6390. }
  6391. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  6392. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  6393. /**
  6394. * M73: Set percentage complete (for display on LCD)
  6395. *
  6396. * Example:
  6397. * M73 P25 ; Set progress to 25%
  6398. *
  6399. * Notes:
  6400. * This has no effect during an SD print job
  6401. */
  6402. inline void gcode_M73() {
  6403. if (!IS_SD_PRINTING && parser.seen('P')) {
  6404. progress_bar_percent = parser.value_byte();
  6405. NOMORE(progress_bar_percent, 100);
  6406. }
  6407. }
  6408. #endif // ULTRA_LCD && LCD_SET_PROGRESS_MANUALLY
  6409. /**
  6410. * M75: Start print timer
  6411. */
  6412. inline void gcode_M75() { print_job_timer.start(); }
  6413. /**
  6414. * M76: Pause print timer
  6415. */
  6416. inline void gcode_M76() { print_job_timer.pause(); }
  6417. /**
  6418. * M77: Stop print timer
  6419. */
  6420. inline void gcode_M77() { print_job_timer.stop(); }
  6421. #if ENABLED(PRINTCOUNTER)
  6422. /**
  6423. * M78: Show print statistics
  6424. */
  6425. inline void gcode_M78() {
  6426. // "M78 S78" will reset the statistics
  6427. if (parser.intval('S') == 78)
  6428. print_job_timer.initStats();
  6429. else
  6430. print_job_timer.showStats();
  6431. }
  6432. #endif
  6433. /**
  6434. * M104: Set hot end temperature
  6435. */
  6436. inline void gcode_M104() {
  6437. if (get_target_extruder_from_command(104)) return;
  6438. if (DEBUGGING(DRYRUN)) return;
  6439. #if ENABLED(SINGLENOZZLE)
  6440. if (target_extruder != active_extruder) return;
  6441. #endif
  6442. if (parser.seenval('S')) {
  6443. const int16_t temp = parser.value_celsius();
  6444. thermalManager.setTargetHotend(temp, target_extruder);
  6445. #if ENABLED(DUAL_X_CARRIAGE)
  6446. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6447. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6448. #endif
  6449. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6450. /**
  6451. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  6452. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  6453. * standby mode, for instance in a dual extruder setup, without affecting
  6454. * the running print timer.
  6455. */
  6456. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6457. print_job_timer.stop();
  6458. LCD_MESSAGEPGM(WELCOME_MSG);
  6459. }
  6460. #endif
  6461. if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
  6462. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6463. }
  6464. #if ENABLED(AUTOTEMP)
  6465. planner.autotemp_M104_M109();
  6466. #endif
  6467. }
  6468. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6469. void print_heater_state(const float &c, const float &t,
  6470. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6471. const float r,
  6472. #endif
  6473. const int8_t e=-2
  6474. ) {
  6475. #if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1
  6476. UNUSED(e);
  6477. #endif
  6478. SERIAL_PROTOCOLCHAR(' ');
  6479. SERIAL_PROTOCOLCHAR(
  6480. #if HAS_TEMP_BED && HAS_TEMP_HOTEND
  6481. e == -1 ? 'B' : 'T'
  6482. #elif HAS_TEMP_HOTEND
  6483. 'T'
  6484. #else
  6485. 'B'
  6486. #endif
  6487. );
  6488. #if HOTENDS > 1
  6489. if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
  6490. #endif
  6491. SERIAL_PROTOCOLCHAR(':');
  6492. SERIAL_PROTOCOL(c);
  6493. SERIAL_PROTOCOLPAIR(" /" , t);
  6494. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6495. SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
  6496. SERIAL_PROTOCOLCHAR(')');
  6497. #endif
  6498. }
  6499. void print_heaterstates() {
  6500. #if HAS_TEMP_HOTEND
  6501. print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
  6502. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6503. , thermalManager.rawHotendTemp(target_extruder)
  6504. #endif
  6505. );
  6506. #endif
  6507. #if HAS_TEMP_BED
  6508. print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
  6509. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6510. thermalManager.rawBedTemp(),
  6511. #endif
  6512. -1 // BED
  6513. );
  6514. #endif
  6515. #if HOTENDS > 1
  6516. HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
  6517. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6518. thermalManager.rawHotendTemp(e),
  6519. #endif
  6520. e
  6521. );
  6522. #endif
  6523. SERIAL_PROTOCOLPGM(" @:");
  6524. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  6525. #if HAS_TEMP_BED
  6526. SERIAL_PROTOCOLPGM(" B@:");
  6527. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  6528. #endif
  6529. #if HOTENDS > 1
  6530. HOTEND_LOOP() {
  6531. SERIAL_PROTOCOLPAIR(" @", e);
  6532. SERIAL_PROTOCOLCHAR(':');
  6533. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  6534. }
  6535. #endif
  6536. }
  6537. #endif
  6538. /**
  6539. * M105: Read hot end and bed temperature
  6540. */
  6541. inline void gcode_M105() {
  6542. if (get_target_extruder_from_command(105)) return;
  6543. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6544. SERIAL_PROTOCOLPGM(MSG_OK);
  6545. print_heaterstates();
  6546. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  6547. SERIAL_ERROR_START();
  6548. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  6549. #endif
  6550. SERIAL_EOL();
  6551. }
  6552. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6553. static uint8_t auto_report_temp_interval;
  6554. static millis_t next_temp_report_ms;
  6555. /**
  6556. * M155: Set temperature auto-report interval. M155 S<seconds>
  6557. */
  6558. inline void gcode_M155() {
  6559. if (parser.seenval('S')) {
  6560. auto_report_temp_interval = parser.value_byte();
  6561. NOMORE(auto_report_temp_interval, 60);
  6562. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6563. }
  6564. }
  6565. inline void auto_report_temperatures() {
  6566. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  6567. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6568. print_heaterstates();
  6569. SERIAL_EOL();
  6570. }
  6571. }
  6572. #endif // AUTO_REPORT_TEMPERATURES
  6573. #if FAN_COUNT > 0
  6574. /**
  6575. * M106: Set Fan Speed
  6576. *
  6577. * S<int> Speed between 0-255
  6578. * P<index> Fan index, if more than one fan
  6579. *
  6580. * With EXTRA_FAN_SPEED enabled:
  6581. *
  6582. * T<int> Restore/Use/Set Temporary Speed:
  6583. * 1 = Restore previous speed after T2
  6584. * 2 = Use temporary speed set with T3-255
  6585. * 3-255 = Set the speed for use with T2
  6586. */
  6587. inline void gcode_M106() {
  6588. const uint8_t p = parser.byteval('P');
  6589. if (p < FAN_COUNT) {
  6590. #if ENABLED(EXTRA_FAN_SPEED)
  6591. const int16_t t = parser.intval('T');
  6592. NOMORE(t, 255);
  6593. if (t > 0) {
  6594. switch (t) {
  6595. case 1:
  6596. fanSpeeds[p] = old_fanSpeeds[p];
  6597. break;
  6598. case 2:
  6599. old_fanSpeeds[p] = fanSpeeds[p];
  6600. fanSpeeds[p] = new_fanSpeeds[p];
  6601. break;
  6602. default:
  6603. new_fanSpeeds[p] = t;
  6604. break;
  6605. }
  6606. return;
  6607. }
  6608. #endif // EXTRA_FAN_SPEED
  6609. const uint16_t s = parser.ushortval('S', 255);
  6610. fanSpeeds[p] = min(s, 255);
  6611. }
  6612. }
  6613. /**
  6614. * M107: Fan Off
  6615. */
  6616. inline void gcode_M107() {
  6617. const uint16_t p = parser.ushortval('P');
  6618. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  6619. }
  6620. #endif // FAN_COUNT > 0
  6621. #if DISABLED(EMERGENCY_PARSER)
  6622. /**
  6623. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  6624. */
  6625. inline void gcode_M108() { wait_for_heatup = false; }
  6626. /**
  6627. * M112: Emergency Stop
  6628. */
  6629. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  6630. /**
  6631. * M410: Quickstop - Abort all planned moves
  6632. *
  6633. * This will stop the carriages mid-move, so most likely they
  6634. * will be out of sync with the stepper position after this.
  6635. */
  6636. inline void gcode_M410() { quickstop_stepper(); }
  6637. #endif
  6638. /**
  6639. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  6640. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  6641. */
  6642. #ifndef MIN_COOLING_SLOPE_DEG
  6643. #define MIN_COOLING_SLOPE_DEG 1.50
  6644. #endif
  6645. #ifndef MIN_COOLING_SLOPE_TIME
  6646. #define MIN_COOLING_SLOPE_TIME 60
  6647. #endif
  6648. inline void gcode_M109() {
  6649. if (get_target_extruder_from_command(109)) return;
  6650. if (DEBUGGING(DRYRUN)) return;
  6651. #if ENABLED(SINGLENOZZLE)
  6652. if (target_extruder != active_extruder) return;
  6653. #endif
  6654. const bool no_wait_for_cooling = parser.seenval('S');
  6655. if (no_wait_for_cooling || parser.seenval('R')) {
  6656. const int16_t temp = parser.value_celsius();
  6657. thermalManager.setTargetHotend(temp, target_extruder);
  6658. #if ENABLED(DUAL_X_CARRIAGE)
  6659. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6660. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6661. #endif
  6662. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6663. /**
  6664. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  6665. * standby mode, (e.g., in a dual extruder setup) without affecting
  6666. * the running print timer.
  6667. */
  6668. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6669. print_job_timer.stop();
  6670. LCD_MESSAGEPGM(WELCOME_MSG);
  6671. }
  6672. else
  6673. print_job_timer.start();
  6674. #endif
  6675. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6676. }
  6677. else return;
  6678. #if ENABLED(AUTOTEMP)
  6679. planner.autotemp_M104_M109();
  6680. #endif
  6681. #if TEMP_RESIDENCY_TIME > 0
  6682. millis_t residency_start_ms = 0;
  6683. // Loop until the temperature has stabilized
  6684. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  6685. #else
  6686. // Loop until the temperature is very close target
  6687. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  6688. #endif
  6689. float target_temp = -1.0, old_temp = 9999.0;
  6690. bool wants_to_cool = false;
  6691. wait_for_heatup = true;
  6692. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6693. #if DISABLED(BUSY_WHILE_HEATING)
  6694. KEEPALIVE_STATE(NOT_BUSY);
  6695. #endif
  6696. #if ENABLED(PRINTER_EVENT_LEDS)
  6697. const float start_temp = thermalManager.degHotend(target_extruder);
  6698. uint8_t old_blue = 0;
  6699. #endif
  6700. do {
  6701. // Target temperature might be changed during the loop
  6702. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  6703. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  6704. target_temp = thermalManager.degTargetHotend(target_extruder);
  6705. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6706. if (no_wait_for_cooling && wants_to_cool) break;
  6707. }
  6708. now = millis();
  6709. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  6710. next_temp_ms = now + 1000UL;
  6711. print_heaterstates();
  6712. #if TEMP_RESIDENCY_TIME > 0
  6713. SERIAL_PROTOCOLPGM(" W:");
  6714. if (residency_start_ms)
  6715. SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6716. else
  6717. SERIAL_PROTOCOLCHAR('?');
  6718. #endif
  6719. SERIAL_EOL();
  6720. }
  6721. idle();
  6722. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6723. const float temp = thermalManager.degHotend(target_extruder);
  6724. #if ENABLED(PRINTER_EVENT_LEDS)
  6725. // Gradually change LED strip from violet to red as nozzle heats up
  6726. if (!wants_to_cool) {
  6727. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  6728. if (blue != old_blue) {
  6729. old_blue = blue;
  6730. set_led_color(255, 0, blue
  6731. #if ENABLED(NEOPIXEL_LED)
  6732. , 0
  6733. , pixels.getBrightness()
  6734. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6735. , true
  6736. #endif
  6737. #endif
  6738. );
  6739. }
  6740. }
  6741. #endif
  6742. #if TEMP_RESIDENCY_TIME > 0
  6743. const float temp_diff = FABS(target_temp - temp);
  6744. if (!residency_start_ms) {
  6745. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  6746. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  6747. }
  6748. else if (temp_diff > TEMP_HYSTERESIS) {
  6749. // Restart the timer whenever the temperature falls outside the hysteresis.
  6750. residency_start_ms = now;
  6751. }
  6752. #endif
  6753. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  6754. if (wants_to_cool) {
  6755. // break after MIN_COOLING_SLOPE_TIME seconds
  6756. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  6757. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6758. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  6759. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  6760. old_temp = temp;
  6761. }
  6762. }
  6763. } while (wait_for_heatup && TEMP_CONDITIONS);
  6764. if (wait_for_heatup) {
  6765. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  6766. #if ENABLED(PRINTER_EVENT_LEDS)
  6767. #if ENABLED(RGB_LED) || ENABLED(BLINKM) || ENABLED(PCA9632) || ENABLED(RGBW_LED)
  6768. set_led_color(LED_WHITE);
  6769. #endif
  6770. #if ENABLED(NEOPIXEL_LED)
  6771. set_neopixel_color(pixels.Color(NEO_WHITE));
  6772. #endif
  6773. #endif
  6774. }
  6775. #if DISABLED(BUSY_WHILE_HEATING)
  6776. KEEPALIVE_STATE(IN_HANDLER);
  6777. #endif
  6778. }
  6779. #if HAS_TEMP_BED
  6780. #ifndef MIN_COOLING_SLOPE_DEG_BED
  6781. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  6782. #endif
  6783. #ifndef MIN_COOLING_SLOPE_TIME_BED
  6784. #define MIN_COOLING_SLOPE_TIME_BED 60
  6785. #endif
  6786. /**
  6787. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  6788. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  6789. */
  6790. inline void gcode_M190() {
  6791. if (DEBUGGING(DRYRUN)) return;
  6792. LCD_MESSAGEPGM(MSG_BED_HEATING);
  6793. const bool no_wait_for_cooling = parser.seenval('S');
  6794. if (no_wait_for_cooling || parser.seenval('R')) {
  6795. thermalManager.setTargetBed(parser.value_celsius());
  6796. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6797. if (parser.value_celsius() > BED_MINTEMP)
  6798. print_job_timer.start();
  6799. #endif
  6800. }
  6801. else return;
  6802. #if TEMP_BED_RESIDENCY_TIME > 0
  6803. millis_t residency_start_ms = 0;
  6804. // Loop until the temperature has stabilized
  6805. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  6806. #else
  6807. // Loop until the temperature is very close target
  6808. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  6809. #endif
  6810. float target_temp = -1.0, old_temp = 9999.0;
  6811. bool wants_to_cool = false;
  6812. wait_for_heatup = true;
  6813. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6814. #if DISABLED(BUSY_WHILE_HEATING)
  6815. KEEPALIVE_STATE(NOT_BUSY);
  6816. #endif
  6817. target_extruder = active_extruder; // for print_heaterstates
  6818. #if ENABLED(PRINTER_EVENT_LEDS)
  6819. const float start_temp = thermalManager.degBed();
  6820. uint8_t old_red = 255;
  6821. #endif
  6822. do {
  6823. // Target temperature might be changed during the loop
  6824. if (target_temp != thermalManager.degTargetBed()) {
  6825. wants_to_cool = thermalManager.isCoolingBed();
  6826. target_temp = thermalManager.degTargetBed();
  6827. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6828. if (no_wait_for_cooling && wants_to_cool) break;
  6829. }
  6830. now = millis();
  6831. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  6832. next_temp_ms = now + 1000UL;
  6833. print_heaterstates();
  6834. #if TEMP_BED_RESIDENCY_TIME > 0
  6835. SERIAL_PROTOCOLPGM(" W:");
  6836. if (residency_start_ms)
  6837. SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6838. else
  6839. SERIAL_PROTOCOLCHAR('?');
  6840. #endif
  6841. SERIAL_EOL();
  6842. }
  6843. idle();
  6844. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6845. const float temp = thermalManager.degBed();
  6846. #if ENABLED(PRINTER_EVENT_LEDS)
  6847. // Gradually change LED strip from blue to violet as bed heats up
  6848. if (!wants_to_cool) {
  6849. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  6850. if (red != old_red) {
  6851. old_red = red;
  6852. set_led_color(red, 0, 255
  6853. #if ENABLED(NEOPIXEL_LED)
  6854. , 0, pixels.getBrightness()
  6855. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6856. , true
  6857. #endif
  6858. #endif
  6859. );
  6860. }
  6861. }
  6862. #endif
  6863. #if TEMP_BED_RESIDENCY_TIME > 0
  6864. const float temp_diff = FABS(target_temp - temp);
  6865. if (!residency_start_ms) {
  6866. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  6867. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  6868. }
  6869. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  6870. // Restart the timer whenever the temperature falls outside the hysteresis.
  6871. residency_start_ms = now;
  6872. }
  6873. #endif // TEMP_BED_RESIDENCY_TIME > 0
  6874. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  6875. if (wants_to_cool) {
  6876. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  6877. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  6878. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6879. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  6880. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  6881. old_temp = temp;
  6882. }
  6883. }
  6884. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  6885. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  6886. #if DISABLED(BUSY_WHILE_HEATING)
  6887. KEEPALIVE_STATE(IN_HANDLER);
  6888. #endif
  6889. }
  6890. #endif // HAS_TEMP_BED
  6891. /**
  6892. * M110: Set Current Line Number
  6893. */
  6894. inline void gcode_M110() {
  6895. if (parser.seenval('N')) gcode_LastN = parser.value_long();
  6896. }
  6897. /**
  6898. * M111: Set the debug level
  6899. */
  6900. inline void gcode_M111() {
  6901. if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
  6902. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
  6903. str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
  6904. str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
  6905. str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
  6906. str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
  6907. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6908. , str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
  6909. #endif
  6910. ;
  6911. const static char* const debug_strings[] PROGMEM = {
  6912. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
  6913. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6914. , str_debug_32
  6915. #endif
  6916. };
  6917. SERIAL_ECHO_START();
  6918. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6919. if (marlin_debug_flags) {
  6920. uint8_t comma = 0;
  6921. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6922. if (TEST(marlin_debug_flags, i)) {
  6923. if (comma++) SERIAL_CHAR(',');
  6924. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6925. }
  6926. }
  6927. }
  6928. else {
  6929. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6930. }
  6931. SERIAL_EOL();
  6932. }
  6933. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6934. /**
  6935. * M113: Get or set Host Keepalive interval (0 to disable)
  6936. *
  6937. * S<seconds> Optional. Set the keepalive interval.
  6938. */
  6939. inline void gcode_M113() {
  6940. if (parser.seenval('S')) {
  6941. host_keepalive_interval = parser.value_byte();
  6942. NOMORE(host_keepalive_interval, 60);
  6943. }
  6944. else {
  6945. SERIAL_ECHO_START();
  6946. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6947. }
  6948. }
  6949. #endif
  6950. #if ENABLED(BARICUDA)
  6951. #if HAS_HEATER_1
  6952. /**
  6953. * M126: Heater 1 valve open
  6954. */
  6955. inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
  6956. /**
  6957. * M127: Heater 1 valve close
  6958. */
  6959. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6960. #endif
  6961. #if HAS_HEATER_2
  6962. /**
  6963. * M128: Heater 2 valve open
  6964. */
  6965. inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
  6966. /**
  6967. * M129: Heater 2 valve close
  6968. */
  6969. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6970. #endif
  6971. #endif // BARICUDA
  6972. /**
  6973. * M140: Set bed temperature
  6974. */
  6975. inline void gcode_M140() {
  6976. if (DEBUGGING(DRYRUN)) return;
  6977. if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
  6978. }
  6979. #if ENABLED(ULTIPANEL)
  6980. /**
  6981. * M145: Set the heatup state for a material in the LCD menu
  6982. *
  6983. * S<material> (0=PLA, 1=ABS)
  6984. * H<hotend temp>
  6985. * B<bed temp>
  6986. * F<fan speed>
  6987. */
  6988. inline void gcode_M145() {
  6989. const uint8_t material = (uint8_t)parser.intval('S');
  6990. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6991. SERIAL_ERROR_START();
  6992. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6993. }
  6994. else {
  6995. int v;
  6996. if (parser.seenval('H')) {
  6997. v = parser.value_int();
  6998. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  6999. }
  7000. if (parser.seenval('F')) {
  7001. v = parser.value_int();
  7002. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  7003. }
  7004. #if TEMP_SENSOR_BED != 0
  7005. if (parser.seenval('B')) {
  7006. v = parser.value_int();
  7007. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  7008. }
  7009. #endif
  7010. }
  7011. }
  7012. #endif // ULTIPANEL
  7013. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7014. /**
  7015. * M149: Set temperature units
  7016. */
  7017. inline void gcode_M149() {
  7018. if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
  7019. else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
  7020. else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
  7021. }
  7022. #endif
  7023. #if HAS_POWER_SWITCH
  7024. /**
  7025. * M80 : Turn on the Power Supply
  7026. * M80 S : Report the current state and exit
  7027. */
  7028. inline void gcode_M80() {
  7029. // S: Report the current power supply state and exit
  7030. if (parser.seen('S')) {
  7031. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  7032. return;
  7033. }
  7034. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  7035. /**
  7036. * If you have a switch on suicide pin, this is useful
  7037. * if you want to start another print with suicide feature after
  7038. * a print without suicide...
  7039. */
  7040. #if HAS_SUICIDE
  7041. OUT_WRITE(SUICIDE_PIN, HIGH);
  7042. #endif
  7043. #if ENABLED(HAVE_TMC2130)
  7044. delay(100);
  7045. tmc2130_init(); // Settings only stick when the driver has power
  7046. #endif
  7047. powersupply_on = true;
  7048. #if ENABLED(ULTIPANEL)
  7049. LCD_MESSAGEPGM(WELCOME_MSG);
  7050. #endif
  7051. }
  7052. #endif // HAS_POWER_SWITCH
  7053. /**
  7054. * M81: Turn off Power, including Power Supply, if there is one.
  7055. *
  7056. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  7057. */
  7058. inline void gcode_M81() {
  7059. thermalManager.disable_all_heaters();
  7060. stepper.finish_and_disable();
  7061. #if FAN_COUNT > 0
  7062. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  7063. #if ENABLED(PROBING_FANS_OFF)
  7064. fans_paused = false;
  7065. ZERO(paused_fanSpeeds);
  7066. #endif
  7067. #endif
  7068. safe_delay(1000); // Wait 1 second before switching off
  7069. #if HAS_SUICIDE
  7070. stepper.synchronize();
  7071. suicide();
  7072. #elif HAS_POWER_SWITCH
  7073. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  7074. powersupply_on = false;
  7075. #endif
  7076. #if ENABLED(ULTIPANEL)
  7077. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  7078. #endif
  7079. }
  7080. /**
  7081. * M82: Set E codes absolute (default)
  7082. */
  7083. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  7084. /**
  7085. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  7086. */
  7087. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  7088. /**
  7089. * M18, M84: Disable stepper motors
  7090. */
  7091. inline void gcode_M18_M84() {
  7092. if (parser.seenval('S')) {
  7093. stepper_inactive_time = parser.value_millis_from_seconds();
  7094. }
  7095. else {
  7096. bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
  7097. if (all_axis) {
  7098. stepper.finish_and_disable();
  7099. }
  7100. else {
  7101. stepper.synchronize();
  7102. if (parser.seen('X')) disable_X();
  7103. if (parser.seen('Y')) disable_Y();
  7104. if (parser.seen('Z')) disable_Z();
  7105. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
  7106. if (parser.seen('E')) disable_e_steppers();
  7107. #endif
  7108. }
  7109. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  7110. ubl_lcd_map_control = defer_return_to_status = false;
  7111. #endif
  7112. }
  7113. }
  7114. /**
  7115. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  7116. */
  7117. inline void gcode_M85() {
  7118. if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
  7119. }
  7120. /**
  7121. * Multi-stepper support for M92, M201, M203
  7122. */
  7123. #if ENABLED(DISTINCT_E_FACTORS)
  7124. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  7125. #define TARGET_EXTRUDER target_extruder
  7126. #else
  7127. #define GET_TARGET_EXTRUDER(CMD) NOOP
  7128. #define TARGET_EXTRUDER 0
  7129. #endif
  7130. /**
  7131. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  7132. * (Follows the same syntax as G92)
  7133. *
  7134. * With multiple extruders use T to specify which one.
  7135. */
  7136. inline void gcode_M92() {
  7137. GET_TARGET_EXTRUDER(92);
  7138. LOOP_XYZE(i) {
  7139. if (parser.seen(axis_codes[i])) {
  7140. if (i == E_AXIS) {
  7141. const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  7142. if (value < 20.0) {
  7143. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  7144. planner.max_jerk[E_AXIS] *= factor;
  7145. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  7146. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  7147. }
  7148. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  7149. }
  7150. else {
  7151. planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
  7152. }
  7153. }
  7154. }
  7155. planner.refresh_positioning();
  7156. }
  7157. /**
  7158. * Output the current position to serial
  7159. */
  7160. void report_current_position() {
  7161. SERIAL_PROTOCOLPGM("X:");
  7162. SERIAL_PROTOCOL(LOGICAL_X_POSITION(current_position[X_AXIS]));
  7163. SERIAL_PROTOCOLPGM(" Y:");
  7164. SERIAL_PROTOCOL(LOGICAL_X_POSITION(current_position[Y_AXIS]));
  7165. SERIAL_PROTOCOLPGM(" Z:");
  7166. SERIAL_PROTOCOL(LOGICAL_Z_POSITION(current_position[Z_AXIS]));
  7167. SERIAL_PROTOCOLPGM(" E:");
  7168. SERIAL_PROTOCOL(current_position[E_AXIS]);
  7169. stepper.report_positions();
  7170. #if IS_SCARA
  7171. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  7172. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  7173. SERIAL_EOL();
  7174. #endif
  7175. }
  7176. #ifdef M114_DETAIL
  7177. void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
  7178. char str[12];
  7179. for (uint8_t i = 0; i < n; i++) {
  7180. SERIAL_CHAR(' ');
  7181. SERIAL_CHAR(axis_codes[i]);
  7182. SERIAL_CHAR(':');
  7183. SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
  7184. }
  7185. SERIAL_EOL();
  7186. }
  7187. inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
  7188. void report_current_position_detail() {
  7189. stepper.synchronize();
  7190. SERIAL_PROTOCOLPGM("\nLogical:");
  7191. const float logical[XYZ] = {
  7192. LOGICAL_X_POSITION(current_position[X_AXIS]),
  7193. LOGICAL_Y_POSITION(current_position[Y_AXIS]),
  7194. LOGICAL_Z_POSITION(current_position[Z_AXIS])
  7195. };
  7196. report_xyze(logical);
  7197. SERIAL_PROTOCOLPGM("Raw: ");
  7198. report_xyz(current_position);
  7199. SERIAL_PROTOCOLPGM("Leveled:");
  7200. float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  7201. planner.apply_leveling(leveled);
  7202. report_xyz(leveled);
  7203. SERIAL_PROTOCOLPGM("UnLevel:");
  7204. float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
  7205. planner.unapply_leveling(unleveled);
  7206. report_xyz(unleveled);
  7207. #if IS_KINEMATIC
  7208. #if IS_SCARA
  7209. SERIAL_PROTOCOLPGM("ScaraK: ");
  7210. #else
  7211. SERIAL_PROTOCOLPGM("DeltaK: ");
  7212. #endif
  7213. inverse_kinematics(leveled); // writes delta[]
  7214. report_xyz(delta);
  7215. #endif
  7216. SERIAL_PROTOCOLPGM("Stepper:");
  7217. const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
  7218. report_xyze(step_count, 4, 0);
  7219. #if IS_SCARA
  7220. const float deg[XYZ] = {
  7221. stepper.get_axis_position_degrees(A_AXIS),
  7222. stepper.get_axis_position_degrees(B_AXIS)
  7223. };
  7224. SERIAL_PROTOCOLPGM("Degrees:");
  7225. report_xyze(deg, 2);
  7226. #endif
  7227. SERIAL_PROTOCOLPGM("FromStp:");
  7228. get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
  7229. const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
  7230. report_xyze(from_steppers);
  7231. const float diff[XYZE] = {
  7232. from_steppers[X_AXIS] - leveled[X_AXIS],
  7233. from_steppers[Y_AXIS] - leveled[Y_AXIS],
  7234. from_steppers[Z_AXIS] - leveled[Z_AXIS],
  7235. from_steppers[E_AXIS] - current_position[E_AXIS]
  7236. };
  7237. SERIAL_PROTOCOLPGM("Differ: ");
  7238. report_xyze(diff);
  7239. }
  7240. #endif // M114_DETAIL
  7241. /**
  7242. * M114: Report current position to host
  7243. */
  7244. inline void gcode_M114() {
  7245. #ifdef M114_DETAIL
  7246. if (parser.seen('D')) {
  7247. report_current_position_detail();
  7248. return;
  7249. }
  7250. #endif
  7251. stepper.synchronize();
  7252. report_current_position();
  7253. }
  7254. /**
  7255. * M115: Capabilities string
  7256. */
  7257. inline void gcode_M115() {
  7258. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  7259. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  7260. // EEPROM (M500, M501)
  7261. #if ENABLED(EEPROM_SETTINGS)
  7262. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  7263. #else
  7264. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  7265. #endif
  7266. // AUTOREPORT_TEMP (M155)
  7267. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  7268. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  7269. #else
  7270. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  7271. #endif
  7272. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  7273. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  7274. // Print Job timer M75, M76, M77
  7275. SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
  7276. // AUTOLEVEL (G29)
  7277. #if HAS_ABL
  7278. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  7279. #else
  7280. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  7281. #endif
  7282. // Z_PROBE (G30)
  7283. #if HAS_BED_PROBE
  7284. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  7285. #else
  7286. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  7287. #endif
  7288. // MESH_REPORT (M420 V)
  7289. #if HAS_LEVELING
  7290. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  7291. #else
  7292. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  7293. #endif
  7294. // BUILD_PERCENT (M73)
  7295. #if ENABLED(LCD_SET_PROGRESS_MANUALLY)
  7296. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:1");
  7297. #else
  7298. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:0");
  7299. #endif
  7300. // SOFTWARE_POWER (M80, M81)
  7301. #if HAS_POWER_SWITCH
  7302. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  7303. #else
  7304. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  7305. #endif
  7306. // CASE LIGHTS (M355)
  7307. #if HAS_CASE_LIGHT
  7308. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  7309. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  7310. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
  7311. }
  7312. else
  7313. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7314. #else
  7315. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  7316. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7317. #endif
  7318. // EMERGENCY_PARSER (M108, M112, M410)
  7319. #if ENABLED(EMERGENCY_PARSER)
  7320. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  7321. #else
  7322. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  7323. #endif
  7324. #endif // EXTENDED_CAPABILITIES_REPORT
  7325. }
  7326. /**
  7327. * M117: Set LCD Status Message
  7328. */
  7329. inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
  7330. /**
  7331. * M118: Display a message in the host console.
  7332. *
  7333. * A1 Append '// ' for an action command, as in OctoPrint
  7334. * E1 Have the host 'echo:' the text
  7335. */
  7336. inline void gcode_M118() {
  7337. if (parser.boolval('E')) SERIAL_ECHO_START();
  7338. if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
  7339. SERIAL_ECHOLN(parser.string_arg);
  7340. }
  7341. /**
  7342. * M119: Output endstop states to serial output
  7343. */
  7344. inline void gcode_M119() { endstops.M119(); }
  7345. /**
  7346. * M120: Enable endstops and set non-homing endstop state to "enabled"
  7347. */
  7348. inline void gcode_M120() { endstops.enable_globally(true); }
  7349. /**
  7350. * M121: Disable endstops and set non-homing endstop state to "disabled"
  7351. */
  7352. inline void gcode_M121() { endstops.enable_globally(false); }
  7353. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7354. /**
  7355. * M125: Store current position and move to filament change position.
  7356. * Called on pause (by M25) to prevent material leaking onto the
  7357. * object. On resume (M24) the head will be moved back and the
  7358. * print will resume.
  7359. *
  7360. * If Marlin is compiled without SD Card support, M125 can be
  7361. * used directly to pause the print and move to park position,
  7362. * resuming with a button click or M108.
  7363. *
  7364. * L = override retract length
  7365. * X = override X
  7366. * Y = override Y
  7367. * Z = override Z raise
  7368. */
  7369. inline void gcode_M125() {
  7370. // Initial retract before move to filament change position
  7371. const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  7372. #ifdef PAUSE_PARK_RETRACT_LENGTH
  7373. - (PAUSE_PARK_RETRACT_LENGTH)
  7374. #endif
  7375. ;
  7376. // Lift Z axis
  7377. const float z_lift = parser.linearval('Z')
  7378. #ifdef PAUSE_PARK_Z_ADD
  7379. + PAUSE_PARK_Z_ADD
  7380. #endif
  7381. ;
  7382. // Move XY axes to filament change position or given position
  7383. const float x_pos = parser.linearval('X')
  7384. #ifdef PAUSE_PARK_X_POS
  7385. + PAUSE_PARK_X_POS
  7386. #endif
  7387. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7388. + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
  7389. #endif
  7390. ;
  7391. const float y_pos = parser.linearval('Y')
  7392. #ifdef PAUSE_PARK_Y_POS
  7393. + PAUSE_PARK_Y_POS
  7394. #endif
  7395. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7396. + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
  7397. #endif
  7398. ;
  7399. #if DISABLED(SDSUPPORT)
  7400. const bool job_running = print_job_timer.isRunning();
  7401. #endif
  7402. if (pause_print(retract, z_lift, x_pos, y_pos)) {
  7403. #if DISABLED(SDSUPPORT)
  7404. // Wait for lcd click or M108
  7405. wait_for_filament_reload();
  7406. // Return to print position and continue
  7407. resume_print();
  7408. if (job_running) print_job_timer.start();
  7409. #endif
  7410. }
  7411. }
  7412. #endif // PARK_HEAD_ON_PAUSE
  7413. #if HAS_COLOR_LEDS
  7414. /**
  7415. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  7416. * and Brightness - Use P (for NEOPIXEL only)
  7417. *
  7418. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  7419. * If brightness is left out, no value changed
  7420. *
  7421. * Examples:
  7422. *
  7423. * M150 R255 ; Turn LED red
  7424. * M150 R255 U127 ; Turn LED orange (PWM only)
  7425. * M150 ; Turn LED off
  7426. * M150 R U B ; Turn LED white
  7427. * M150 W ; Turn LED white using a white LED
  7428. * M150 P127 ; Set LED 50% brightness
  7429. * M150 P ; Set LED full brightness
  7430. */
  7431. inline void gcode_M150() {
  7432. set_led_color(
  7433. parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7434. parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7435. parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7436. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_LED)
  7437. , parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7438. #if ENABLED(NEOPIXEL_LED)
  7439. , parser.seen('P') ? (parser.has_value() ? parser.value_byte() : 255) : pixels.getBrightness()
  7440. #endif
  7441. #endif
  7442. );
  7443. }
  7444. #endif // HAS_COLOR_LEDS
  7445. /**
  7446. * M200: Set filament diameter and set E axis units to cubic units
  7447. *
  7448. * T<extruder> - Optional extruder number. Current extruder if omitted.
  7449. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  7450. */
  7451. inline void gcode_M200() {
  7452. if (get_target_extruder_from_command(200)) return;
  7453. if (parser.seen('D')) {
  7454. // setting any extruder filament size disables volumetric on the assumption that
  7455. // slicers either generate in extruder values as cubic mm or as as filament feeds
  7456. // for all extruders
  7457. volumetric_enabled = (parser.value_linear_units() != 0.0);
  7458. if (volumetric_enabled) {
  7459. filament_size[target_extruder] = parser.value_linear_units();
  7460. // make sure all extruders have some sane value for the filament size
  7461. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7462. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  7463. }
  7464. }
  7465. calculate_volumetric_multipliers();
  7466. }
  7467. /**
  7468. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  7469. *
  7470. * With multiple extruders use T to specify which one.
  7471. */
  7472. inline void gcode_M201() {
  7473. GET_TARGET_EXTRUDER(201);
  7474. LOOP_XYZE(i) {
  7475. if (parser.seen(axis_codes[i])) {
  7476. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7477. planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
  7478. }
  7479. }
  7480. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  7481. planner.reset_acceleration_rates();
  7482. }
  7483. #if 0 // Not used for Sprinter/grbl gen6
  7484. inline void gcode_M202() {
  7485. LOOP_XYZE(i) {
  7486. if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  7487. }
  7488. }
  7489. #endif
  7490. /**
  7491. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  7492. *
  7493. * With multiple extruders use T to specify which one.
  7494. */
  7495. inline void gcode_M203() {
  7496. GET_TARGET_EXTRUDER(203);
  7497. LOOP_XYZE(i)
  7498. if (parser.seen(axis_codes[i])) {
  7499. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7500. planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
  7501. }
  7502. }
  7503. /**
  7504. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  7505. *
  7506. * P = Printing moves
  7507. * R = Retract only (no X, Y, Z) moves
  7508. * T = Travel (non printing) moves
  7509. *
  7510. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  7511. */
  7512. inline void gcode_M204() {
  7513. if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  7514. planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
  7515. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  7516. }
  7517. if (parser.seen('P')) {
  7518. planner.acceleration = parser.value_linear_units();
  7519. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  7520. }
  7521. if (parser.seen('R')) {
  7522. planner.retract_acceleration = parser.value_linear_units();
  7523. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  7524. }
  7525. if (parser.seen('T')) {
  7526. planner.travel_acceleration = parser.value_linear_units();
  7527. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  7528. }
  7529. }
  7530. /**
  7531. * M205: Set Advanced Settings
  7532. *
  7533. * S = Min Feed Rate (units/s)
  7534. * T = Min Travel Feed Rate (units/s)
  7535. * B = Min Segment Time (µs)
  7536. * X = Max X Jerk (units/sec^2)
  7537. * Y = Max Y Jerk (units/sec^2)
  7538. * Z = Max Z Jerk (units/sec^2)
  7539. * E = Max E Jerk (units/sec^2)
  7540. */
  7541. inline void gcode_M205() {
  7542. if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  7543. if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  7544. if (parser.seen('B')) planner.min_segment_time_us = parser.value_ulong();
  7545. if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  7546. if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  7547. if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  7548. if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
  7549. }
  7550. #if HAS_M206_COMMAND
  7551. /**
  7552. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  7553. *
  7554. * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
  7555. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
  7556. * *** In the next 1.2 release, it will simply be disabled by default.
  7557. */
  7558. inline void gcode_M206() {
  7559. LOOP_XYZ(i)
  7560. if (parser.seen(axis_codes[i]))
  7561. set_home_offset((AxisEnum)i, parser.value_linear_units());
  7562. #if ENABLED(MORGAN_SCARA)
  7563. if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta
  7564. if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi
  7565. #endif
  7566. report_current_position();
  7567. }
  7568. #endif // HAS_M206_COMMAND
  7569. #if ENABLED(DELTA)
  7570. /**
  7571. * M665: Set delta configurations
  7572. *
  7573. * H = delta height
  7574. * L = diagonal rod
  7575. * R = delta radius
  7576. * S = segments per second
  7577. * B = delta calibration radius
  7578. * X = Alpha (Tower 1) angle trim
  7579. * Y = Beta (Tower 2) angle trim
  7580. * Z = Rotate A and B by this angle
  7581. */
  7582. inline void gcode_M665() {
  7583. if (parser.seen('H')) {
  7584. delta_height = parser.value_linear_units();
  7585. update_software_endstops(Z_AXIS);
  7586. }
  7587. if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
  7588. if (parser.seen('R')) delta_radius = parser.value_linear_units();
  7589. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7590. if (parser.seen('B')) delta_calibration_radius = parser.value_float();
  7591. if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
  7592. if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
  7593. if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
  7594. recalc_delta_settings();
  7595. }
  7596. /**
  7597. * M666: Set delta endstop adjustment
  7598. */
  7599. inline void gcode_M666() {
  7600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7601. if (DEBUGGING(LEVELING)) {
  7602. SERIAL_ECHOLNPGM(">>> gcode_M666");
  7603. }
  7604. #endif
  7605. LOOP_XYZ(i) {
  7606. if (parser.seen(axis_codes[i])) {
  7607. if (parser.value_linear_units() * Z_HOME_DIR <= 0)
  7608. delta_endstop_adj[i] = parser.value_linear_units();
  7609. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7610. if (DEBUGGING(LEVELING)) {
  7611. SERIAL_ECHOPAIR("delta_endstop_adj[", axis_codes[i]);
  7612. SERIAL_ECHOLNPAIR("] = ", delta_endstop_adj[i]);
  7613. }
  7614. #endif
  7615. }
  7616. }
  7617. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7618. if (DEBUGGING(LEVELING)) {
  7619. SERIAL_ECHOLNPGM("<<< gcode_M666");
  7620. }
  7621. #endif
  7622. }
  7623. #elif IS_SCARA
  7624. /**
  7625. * M665: Set SCARA settings
  7626. *
  7627. * Parameters:
  7628. *
  7629. * S[segments-per-second] - Segments-per-second
  7630. * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
  7631. * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
  7632. *
  7633. * A, P, and X are all aliases for the shoulder angle
  7634. * B, T, and Y are all aliases for the elbow angle
  7635. */
  7636. inline void gcode_M665() {
  7637. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7638. const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
  7639. const uint8_t sumAPX = hasA + hasP + hasX;
  7640. if (sumAPX == 1)
  7641. home_offset[A_AXIS] = parser.value_float();
  7642. else if (sumAPX > 1) {
  7643. SERIAL_ERROR_START();
  7644. SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
  7645. return;
  7646. }
  7647. const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
  7648. const uint8_t sumBTY = hasB + hasT + hasY;
  7649. if (sumBTY == 1)
  7650. home_offset[B_AXIS] = parser.value_float();
  7651. else if (sumBTY > 1) {
  7652. SERIAL_ERROR_START();
  7653. SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
  7654. return;
  7655. }
  7656. }
  7657. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  7658. /**
  7659. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  7660. */
  7661. inline void gcode_M666() {
  7662. SERIAL_ECHOPGM("Dual Endstop Adjustment (mm): ");
  7663. #if ENABLED(X_DUAL_ENDSTOPS)
  7664. if (parser.seen('X')) x_endstop_adj = parser.value_linear_units();
  7665. SERIAL_ECHOPAIR(" X", x_endstop_adj);
  7666. #endif
  7667. #if ENABLED(Y_DUAL_ENDSTOPS)
  7668. if (parser.seen('Y')) y_endstop_adj = parser.value_linear_units();
  7669. SERIAL_ECHOPAIR(" Y", y_endstop_adj);
  7670. #endif
  7671. #if ENABLED(Z_DUAL_ENDSTOPS)
  7672. if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
  7673. SERIAL_ECHOPAIR(" Z", z_endstop_adj);
  7674. #endif
  7675. SERIAL_EOL();
  7676. }
  7677. #endif // !DELTA && Z_DUAL_ENDSTOPS
  7678. #if ENABLED(FWRETRACT)
  7679. /**
  7680. * M207: Set firmware retraction values
  7681. *
  7682. * S[+units] retract_length
  7683. * W[+units] swap_retract_length (multi-extruder)
  7684. * F[units/min] retract_feedrate_mm_s
  7685. * Z[units] retract_zlift
  7686. */
  7687. inline void gcode_M207() {
  7688. if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
  7689. if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7690. if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
  7691. if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS);
  7692. }
  7693. /**
  7694. * M208: Set firmware un-retraction values
  7695. *
  7696. * S[+units] retract_recover_length (in addition to M207 S*)
  7697. * W[+units] swap_retract_recover_length (multi-extruder)
  7698. * F[units/min] retract_recover_feedrate_mm_s
  7699. * R[units/min] swap_retract_recover_feedrate_mm_s
  7700. */
  7701. inline void gcode_M208() {
  7702. if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
  7703. if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7704. if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7705. if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS);
  7706. }
  7707. /**
  7708. * M209: Enable automatic retract (M209 S1)
  7709. * For slicers that don't support G10/11, reversed extrude-only
  7710. * moves will be classified as retraction.
  7711. */
  7712. inline void gcode_M209() {
  7713. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  7714. if (parser.seen('S')) {
  7715. autoretract_enabled = parser.value_bool();
  7716. for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  7717. }
  7718. }
  7719. }
  7720. #endif // FWRETRACT
  7721. /**
  7722. * M211: Enable, Disable, and/or Report software endstops
  7723. *
  7724. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  7725. */
  7726. inline void gcode_M211() {
  7727. SERIAL_ECHO_START();
  7728. #if HAS_SOFTWARE_ENDSTOPS
  7729. if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
  7730. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7731. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  7732. #else
  7733. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7734. SERIAL_ECHOPGM(MSG_OFF);
  7735. #endif
  7736. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  7737. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  7738. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  7739. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  7740. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  7741. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  7742. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  7743. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  7744. }
  7745. #if HOTENDS > 1
  7746. /**
  7747. * M218 - set hotend offset (in linear units)
  7748. *
  7749. * T<tool>
  7750. * X<xoffset>
  7751. * Y<yoffset>
  7752. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  7753. */
  7754. inline void gcode_M218() {
  7755. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  7756. if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
  7757. if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
  7758. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7759. if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
  7760. #endif
  7761. SERIAL_ECHO_START();
  7762. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7763. HOTEND_LOOP() {
  7764. SERIAL_CHAR(' ');
  7765. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  7766. SERIAL_CHAR(',');
  7767. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  7768. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7769. SERIAL_CHAR(',');
  7770. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  7771. #endif
  7772. }
  7773. SERIAL_EOL();
  7774. }
  7775. #endif // HOTENDS > 1
  7776. /**
  7777. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  7778. */
  7779. inline void gcode_M220() {
  7780. if (parser.seenval('S')) feedrate_percentage = parser.value_int();
  7781. }
  7782. /**
  7783. * M221: Set extrusion percentage (M221 T0 S95)
  7784. */
  7785. inline void gcode_M221() {
  7786. if (get_target_extruder_from_command(221)) return;
  7787. if (parser.seenval('S'))
  7788. flow_percentage[target_extruder] = parser.value_int();
  7789. }
  7790. /**
  7791. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  7792. */
  7793. inline void gcode_M226() {
  7794. if (parser.seen('P')) {
  7795. const int pin_number = parser.value_int(),
  7796. pin_state = parser.intval('S', -1); // required pin state - default is inverted
  7797. if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
  7798. int target = LOW;
  7799. stepper.synchronize();
  7800. pinMode(pin_number, INPUT);
  7801. switch (pin_state) {
  7802. case 1:
  7803. target = HIGH;
  7804. break;
  7805. case 0:
  7806. target = LOW;
  7807. break;
  7808. case -1:
  7809. target = !digitalRead(pin_number);
  7810. break;
  7811. }
  7812. while (digitalRead(pin_number) != target) idle();
  7813. } // pin_state -1 0 1 && pin_number > -1
  7814. } // parser.seen('P')
  7815. }
  7816. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7817. /**
  7818. * M260: Send data to a I2C slave device
  7819. *
  7820. * This is a PoC, the formating and arguments for the GCODE will
  7821. * change to be more compatible, the current proposal is:
  7822. *
  7823. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  7824. *
  7825. * M260 B<byte-1 value in base 10>
  7826. * M260 B<byte-2 value in base 10>
  7827. * M260 B<byte-3 value in base 10>
  7828. *
  7829. * M260 S1 ; Send the buffered data and reset the buffer
  7830. * M260 R1 ; Reset the buffer without sending data
  7831. *
  7832. */
  7833. inline void gcode_M260() {
  7834. // Set the target address
  7835. if (parser.seen('A')) i2c.address(parser.value_byte());
  7836. // Add a new byte to the buffer
  7837. if (parser.seen('B')) i2c.addbyte(parser.value_byte());
  7838. // Flush the buffer to the bus
  7839. if (parser.seen('S')) i2c.send();
  7840. // Reset and rewind the buffer
  7841. else if (parser.seen('R')) i2c.reset();
  7842. }
  7843. /**
  7844. * M261: Request X bytes from I2C slave device
  7845. *
  7846. * Usage: M261 A<slave device address base 10> B<number of bytes>
  7847. */
  7848. inline void gcode_M261() {
  7849. if (parser.seen('A')) i2c.address(parser.value_byte());
  7850. uint8_t bytes = parser.byteval('B', 1);
  7851. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  7852. i2c.relay(bytes);
  7853. }
  7854. else {
  7855. SERIAL_ERROR_START();
  7856. SERIAL_ERRORLN("Bad i2c request");
  7857. }
  7858. }
  7859. #endif // EXPERIMENTAL_I2CBUS
  7860. #if HAS_SERVOS
  7861. /**
  7862. * M280: Get or set servo position. P<index> [S<angle>]
  7863. */
  7864. inline void gcode_M280() {
  7865. if (!parser.seen('P')) return;
  7866. const int servo_index = parser.value_int();
  7867. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  7868. if (parser.seen('S'))
  7869. MOVE_SERVO(servo_index, parser.value_int());
  7870. else {
  7871. SERIAL_ECHO_START();
  7872. SERIAL_ECHOPAIR(" Servo ", servo_index);
  7873. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  7874. }
  7875. }
  7876. else {
  7877. SERIAL_ERROR_START();
  7878. SERIAL_ECHOPAIR("Servo ", servo_index);
  7879. SERIAL_ECHOLNPGM(" out of range");
  7880. }
  7881. }
  7882. #endif // HAS_SERVOS
  7883. #if ENABLED(BABYSTEPPING)
  7884. /**
  7885. * M290: Babystepping
  7886. */
  7887. inline void gcode_M290() {
  7888. #if ENABLED(BABYSTEP_XY)
  7889. for (uint8_t a = X_AXIS; a <= Z_AXIS; a++)
  7890. if (parser.seenval(axis_codes[a]) || (a == Z_AXIS && parser.seenval('S'))) {
  7891. float offs = parser.value_axis_units(a);
  7892. constrain(offs, -2, 2);
  7893. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7894. if (a == Z_AXIS) {
  7895. zprobe_zoffset += offs;
  7896. refresh_zprobe_zoffset(true); // 'true' to not babystep
  7897. }
  7898. #endif
  7899. thermalManager.babystep_axis(a, offs * planner.axis_steps_per_mm[a]);
  7900. }
  7901. #else
  7902. if (parser.seenval('Z') || parser.seenval('S')) {
  7903. float offs = parser.value_axis_units(Z_AXIS);
  7904. constrain(offs, -2, 2);
  7905. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7906. zprobe_zoffset += offs;
  7907. refresh_zprobe_zoffset(); // This will babystep the axis
  7908. #else
  7909. thermalManager.babystep_axis(Z_AXIS, parser.value_axis_units(Z_AXIS) * planner.axis_steps_per_mm[Z_AXIS]);
  7910. #endif
  7911. }
  7912. #endif
  7913. }
  7914. #endif // BABYSTEPPING
  7915. #if HAS_BUZZER
  7916. /**
  7917. * M300: Play beep sound S<frequency Hz> P<duration ms>
  7918. */
  7919. inline void gcode_M300() {
  7920. uint16_t const frequency = parser.ushortval('S', 260);
  7921. uint16_t duration = parser.ushortval('P', 1000);
  7922. // Limits the tone duration to 0-5 seconds.
  7923. NOMORE(duration, 5000);
  7924. BUZZ(duration, frequency);
  7925. }
  7926. #endif // HAS_BUZZER
  7927. #if ENABLED(PIDTEMP)
  7928. /**
  7929. * M301: Set PID parameters P I D (and optionally C, L)
  7930. *
  7931. * P[float] Kp term
  7932. * I[float] Ki term (unscaled)
  7933. * D[float] Kd term (unscaled)
  7934. *
  7935. * With PID_EXTRUSION_SCALING:
  7936. *
  7937. * C[float] Kc term
  7938. * L[float] LPQ length
  7939. */
  7940. inline void gcode_M301() {
  7941. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  7942. // default behaviour (omitting E parameter) is to update for extruder 0 only
  7943. const uint8_t e = parser.byteval('E'); // extruder being updated
  7944. if (e < HOTENDS) { // catch bad input value
  7945. if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
  7946. if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
  7947. if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
  7948. #if ENABLED(PID_EXTRUSION_SCALING)
  7949. if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
  7950. if (parser.seen('L')) lpq_len = parser.value_float();
  7951. NOMORE(lpq_len, LPQ_MAX_LEN);
  7952. #endif
  7953. thermalManager.updatePID();
  7954. SERIAL_ECHO_START();
  7955. #if ENABLED(PID_PARAMS_PER_HOTEND)
  7956. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  7957. #endif // PID_PARAMS_PER_HOTEND
  7958. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  7959. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  7960. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  7961. #if ENABLED(PID_EXTRUSION_SCALING)
  7962. //Kc does not have scaling applied above, or in resetting defaults
  7963. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  7964. #endif
  7965. SERIAL_EOL();
  7966. }
  7967. else {
  7968. SERIAL_ERROR_START();
  7969. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  7970. }
  7971. }
  7972. #endif // PIDTEMP
  7973. #if ENABLED(PIDTEMPBED)
  7974. inline void gcode_M304() {
  7975. if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
  7976. if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
  7977. if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
  7978. SERIAL_ECHO_START();
  7979. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  7980. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  7981. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  7982. }
  7983. #endif // PIDTEMPBED
  7984. #if defined(CHDK) || HAS_PHOTOGRAPH
  7985. /**
  7986. * M240: Trigger a camera by emulating a Canon RC-1
  7987. * See http://www.doc-diy.net/photo/rc-1_hacked/
  7988. */
  7989. inline void gcode_M240() {
  7990. #ifdef CHDK
  7991. OUT_WRITE(CHDK, HIGH);
  7992. chdkHigh = millis();
  7993. chdkActive = true;
  7994. #elif HAS_PHOTOGRAPH
  7995. const uint8_t NUM_PULSES = 16;
  7996. const float PULSE_LENGTH = 0.01524;
  7997. for (int i = 0; i < NUM_PULSES; i++) {
  7998. WRITE(PHOTOGRAPH_PIN, HIGH);
  7999. _delay_ms(PULSE_LENGTH);
  8000. WRITE(PHOTOGRAPH_PIN, LOW);
  8001. _delay_ms(PULSE_LENGTH);
  8002. }
  8003. delay(7.33);
  8004. for (int i = 0; i < NUM_PULSES; i++) {
  8005. WRITE(PHOTOGRAPH_PIN, HIGH);
  8006. _delay_ms(PULSE_LENGTH);
  8007. WRITE(PHOTOGRAPH_PIN, LOW);
  8008. _delay_ms(PULSE_LENGTH);
  8009. }
  8010. #endif // !CHDK && HAS_PHOTOGRAPH
  8011. }
  8012. #endif // CHDK || PHOTOGRAPH_PIN
  8013. #if HAS_LCD_CONTRAST
  8014. /**
  8015. * M250: Read and optionally set the LCD contrast
  8016. */
  8017. inline void gcode_M250() {
  8018. if (parser.seen('C')) set_lcd_contrast(parser.value_int());
  8019. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  8020. SERIAL_PROTOCOL(lcd_contrast);
  8021. SERIAL_EOL();
  8022. }
  8023. #endif // HAS_LCD_CONTRAST
  8024. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8025. /**
  8026. * M302: Allow cold extrudes, or set the minimum extrude temperature
  8027. *
  8028. * S<temperature> sets the minimum extrude temperature
  8029. * P<bool> enables (1) or disables (0) cold extrusion
  8030. *
  8031. * Examples:
  8032. *
  8033. * M302 ; report current cold extrusion state
  8034. * M302 P0 ; enable cold extrusion checking
  8035. * M302 P1 ; disables cold extrusion checking
  8036. * M302 S0 ; always allow extrusion (disables checking)
  8037. * M302 S170 ; only allow extrusion above 170
  8038. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  8039. */
  8040. inline void gcode_M302() {
  8041. const bool seen_S = parser.seen('S');
  8042. if (seen_S) {
  8043. thermalManager.extrude_min_temp = parser.value_celsius();
  8044. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  8045. }
  8046. if (parser.seen('P'))
  8047. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
  8048. else if (!seen_S) {
  8049. // Report current state
  8050. SERIAL_ECHO_START();
  8051. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  8052. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  8053. SERIAL_ECHOLNPGM("C)");
  8054. }
  8055. }
  8056. #endif // PREVENT_COLD_EXTRUSION
  8057. /**
  8058. * M303: PID relay autotune
  8059. *
  8060. * S<temperature> sets the target temperature. (default 150C)
  8061. * E<extruder> (-1 for the bed) (default 0)
  8062. * C<cycles>
  8063. * U<bool> with a non-zero value will apply the result to current settings
  8064. */
  8065. inline void gcode_M303() {
  8066. #if HAS_PID_HEATING
  8067. const int e = parser.intval('E'), c = parser.intval('C', 5);
  8068. const bool u = parser.boolval('U');
  8069. int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
  8070. if (WITHIN(e, 0, HOTENDS - 1))
  8071. target_extruder = e;
  8072. #if DISABLED(BUSY_WHILE_HEATING)
  8073. KEEPALIVE_STATE(NOT_BUSY);
  8074. #endif
  8075. thermalManager.PID_autotune(temp, e, c, u);
  8076. #if DISABLED(BUSY_WHILE_HEATING)
  8077. KEEPALIVE_STATE(IN_HANDLER);
  8078. #endif
  8079. #else
  8080. SERIAL_ERROR_START();
  8081. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  8082. #endif
  8083. }
  8084. #if ENABLED(MORGAN_SCARA)
  8085. bool SCARA_move_to_cal(const uint8_t delta_a, const uint8_t delta_b) {
  8086. if (IsRunning()) {
  8087. forward_kinematics_SCARA(delta_a, delta_b);
  8088. destination[X_AXIS] = cartes[X_AXIS];
  8089. destination[Y_AXIS] = cartes[Y_AXIS];
  8090. destination[Z_AXIS] = current_position[Z_AXIS];
  8091. prepare_move_to_destination();
  8092. return true;
  8093. }
  8094. return false;
  8095. }
  8096. /**
  8097. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  8098. */
  8099. inline bool gcode_M360() {
  8100. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  8101. return SCARA_move_to_cal(0, 120);
  8102. }
  8103. /**
  8104. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  8105. */
  8106. inline bool gcode_M361() {
  8107. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  8108. return SCARA_move_to_cal(90, 130);
  8109. }
  8110. /**
  8111. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  8112. */
  8113. inline bool gcode_M362() {
  8114. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  8115. return SCARA_move_to_cal(60, 180);
  8116. }
  8117. /**
  8118. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  8119. */
  8120. inline bool gcode_M363() {
  8121. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  8122. return SCARA_move_to_cal(50, 90);
  8123. }
  8124. /**
  8125. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  8126. */
  8127. inline bool gcode_M364() {
  8128. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  8129. return SCARA_move_to_cal(45, 135);
  8130. }
  8131. #endif // SCARA
  8132. #if ENABLED(EXT_SOLENOID)
  8133. void enable_solenoid(const uint8_t num) {
  8134. switch (num) {
  8135. case 0:
  8136. OUT_WRITE(SOL0_PIN, HIGH);
  8137. break;
  8138. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  8139. case 1:
  8140. OUT_WRITE(SOL1_PIN, HIGH);
  8141. break;
  8142. #endif
  8143. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  8144. case 2:
  8145. OUT_WRITE(SOL2_PIN, HIGH);
  8146. break;
  8147. #endif
  8148. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  8149. case 3:
  8150. OUT_WRITE(SOL3_PIN, HIGH);
  8151. break;
  8152. #endif
  8153. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  8154. case 4:
  8155. OUT_WRITE(SOL4_PIN, HIGH);
  8156. break;
  8157. #endif
  8158. default:
  8159. SERIAL_ECHO_START();
  8160. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  8161. break;
  8162. }
  8163. }
  8164. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  8165. void disable_all_solenoids() {
  8166. OUT_WRITE(SOL0_PIN, LOW);
  8167. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  8168. OUT_WRITE(SOL1_PIN, LOW);
  8169. #endif
  8170. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  8171. OUT_WRITE(SOL2_PIN, LOW);
  8172. #endif
  8173. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  8174. OUT_WRITE(SOL3_PIN, LOW);
  8175. #endif
  8176. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  8177. OUT_WRITE(SOL4_PIN, LOW);
  8178. #endif
  8179. }
  8180. /**
  8181. * M380: Enable solenoid on the active extruder
  8182. */
  8183. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  8184. /**
  8185. * M381: Disable all solenoids
  8186. */
  8187. inline void gcode_M381() { disable_all_solenoids(); }
  8188. #endif // EXT_SOLENOID
  8189. /**
  8190. * M400: Finish all moves
  8191. */
  8192. inline void gcode_M400() { stepper.synchronize(); }
  8193. #if HAS_BED_PROBE
  8194. /**
  8195. * M401: Engage Z Servo endstop if available
  8196. */
  8197. inline void gcode_M401() { DEPLOY_PROBE(); }
  8198. /**
  8199. * M402: Retract Z Servo endstop if enabled
  8200. */
  8201. inline void gcode_M402() { STOW_PROBE(); }
  8202. #endif // HAS_BED_PROBE
  8203. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8204. /**
  8205. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  8206. */
  8207. inline void gcode_M404() {
  8208. if (parser.seen('W')) {
  8209. filament_width_nominal = parser.value_linear_units();
  8210. }
  8211. else {
  8212. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  8213. SERIAL_PROTOCOLLN(filament_width_nominal);
  8214. }
  8215. }
  8216. /**
  8217. * M405: Turn on filament sensor for control
  8218. */
  8219. inline void gcode_M405() {
  8220. // This is technically a linear measurement, but since it's quantized to centimeters and is a different
  8221. // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
  8222. if (parser.seen('D')) {
  8223. meas_delay_cm = parser.value_byte();
  8224. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  8225. }
  8226. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  8227. const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  8228. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  8229. measurement_delay[i] = temp_ratio;
  8230. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  8231. }
  8232. filament_sensor = true;
  8233. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  8234. //SERIAL_PROTOCOL(filament_width_meas);
  8235. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  8236. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  8237. }
  8238. /**
  8239. * M406: Turn off filament sensor for control
  8240. */
  8241. inline void gcode_M406() {
  8242. filament_sensor = false;
  8243. calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
  8244. }
  8245. /**
  8246. * M407: Get measured filament diameter on serial output
  8247. */
  8248. inline void gcode_M407() {
  8249. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  8250. SERIAL_PROTOCOLLN(filament_width_meas);
  8251. }
  8252. #endif // FILAMENT_WIDTH_SENSOR
  8253. void quickstop_stepper() {
  8254. stepper.quick_stop();
  8255. stepper.synchronize();
  8256. set_current_from_steppers_for_axis(ALL_AXES);
  8257. SYNC_PLAN_POSITION_KINEMATIC();
  8258. }
  8259. #if HAS_LEVELING
  8260. /**
  8261. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  8262. *
  8263. * S[bool] Turns leveling on or off
  8264. * Z[height] Sets the Z fade height (0 or none to disable)
  8265. * V[bool] Verbose - Print the leveling grid
  8266. *
  8267. * With AUTO_BED_LEVELING_UBL only:
  8268. *
  8269. * L[index] Load UBL mesh from index (0 is default)
  8270. */
  8271. inline void gcode_M420() {
  8272. #if ENABLED(AUTO_BED_LEVELING_UBL)
  8273. // L to load a mesh from the EEPROM
  8274. if (parser.seen('L')) {
  8275. #if ENABLED(EEPROM_SETTINGS)
  8276. const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot;
  8277. const int16_t a = settings.calc_num_meshes();
  8278. if (!a) {
  8279. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  8280. return;
  8281. }
  8282. if (!WITHIN(storage_slot, 0, a - 1)) {
  8283. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  8284. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  8285. return;
  8286. }
  8287. settings.load_mesh(storage_slot);
  8288. ubl.storage_slot = storage_slot;
  8289. #else
  8290. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  8291. return;
  8292. #endif
  8293. }
  8294. // L to load a mesh from the EEPROM
  8295. if (parser.seen('L') || parser.seen('V')) {
  8296. ubl.display_map(0); // Currently only supports one map type
  8297. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  8298. SERIAL_ECHOLNPAIR("ubl.storage_slot = ", ubl.storage_slot);
  8299. }
  8300. #endif // AUTO_BED_LEVELING_UBL
  8301. // V to print the matrix or mesh
  8302. if (parser.seen('V')) {
  8303. #if ABL_PLANAR
  8304. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  8305. #else
  8306. if (leveling_is_valid()) {
  8307. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8308. print_bilinear_leveling_grid();
  8309. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8310. print_bilinear_leveling_grid_virt();
  8311. #endif
  8312. #elif ENABLED(MESH_BED_LEVELING)
  8313. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  8314. mbl_mesh_report();
  8315. #endif
  8316. }
  8317. #endif
  8318. }
  8319. const bool to_enable = parser.boolval('S');
  8320. if (parser.seen('S'))
  8321. set_bed_leveling_enabled(to_enable);
  8322. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  8323. if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
  8324. #endif
  8325. const bool new_status = planner.leveling_active;
  8326. if (to_enable && !new_status) {
  8327. SERIAL_ERROR_START();
  8328. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  8329. }
  8330. SERIAL_ECHO_START();
  8331. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  8332. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  8333. SERIAL_ECHO_START();
  8334. SERIAL_ECHOPGM("Fade Height ");
  8335. if (planner.z_fade_height > 0.0)
  8336. SERIAL_ECHOLN(planner.z_fade_height);
  8337. else
  8338. SERIAL_ECHOLNPGM(MSG_OFF);
  8339. #endif
  8340. }
  8341. #endif
  8342. #if ENABLED(MESH_BED_LEVELING)
  8343. /**
  8344. * M421: Set a single Mesh Bed Leveling Z coordinate
  8345. *
  8346. * Usage:
  8347. * M421 X<linear> Y<linear> Z<linear>
  8348. * M421 X<linear> Y<linear> Q<offset>
  8349. * M421 I<xindex> J<yindex> Z<linear>
  8350. * M421 I<xindex> J<yindex> Q<offset>
  8351. */
  8352. inline void gcode_M421() {
  8353. const bool hasX = parser.seen('X'), hasI = parser.seen('I');
  8354. const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(parser.value_linear_units()) : -1;
  8355. const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
  8356. const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(parser.value_linear_units()) : -1;
  8357. const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
  8358. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  8359. SERIAL_ERROR_START();
  8360. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8361. }
  8362. else if (ix < 0 || iy < 0) {
  8363. SERIAL_ERROR_START();
  8364. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8365. }
  8366. else
  8367. mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  8368. }
  8369. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8370. /**
  8371. * M421: Set a single Mesh Bed Leveling Z coordinate
  8372. *
  8373. * Usage:
  8374. * M421 I<xindex> J<yindex> Z<linear>
  8375. * M421 I<xindex> J<yindex> Q<offset>
  8376. */
  8377. inline void gcode_M421() {
  8378. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8379. const bool hasI = ix >= 0,
  8380. hasJ = iy >= 0,
  8381. hasZ = parser.seen('Z'),
  8382. hasQ = !hasZ && parser.seen('Q');
  8383. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  8384. SERIAL_ERROR_START();
  8385. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8386. }
  8387. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8388. SERIAL_ERROR_START();
  8389. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8390. }
  8391. else {
  8392. z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  8393. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8394. bed_level_virt_interpolate();
  8395. #endif
  8396. }
  8397. }
  8398. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8399. /**
  8400. * M421: Set a single Mesh Bed Leveling Z coordinate
  8401. *
  8402. * Usage:
  8403. * M421 I<xindex> J<yindex> Z<linear>
  8404. * M421 I<xindex> J<yindex> Q<offset>
  8405. * M421 C Z<linear>
  8406. * M421 C Q<offset>
  8407. */
  8408. inline void gcode_M421() {
  8409. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8410. const bool hasI = ix >= 0,
  8411. hasJ = iy >= 0,
  8412. hasC = parser.seen('C'),
  8413. hasZ = parser.seen('Z'),
  8414. hasQ = !hasZ && parser.seen('Q');
  8415. if (hasC) {
  8416. const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL);
  8417. ix = location.x_index;
  8418. iy = location.y_index;
  8419. }
  8420. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  8421. SERIAL_ERROR_START();
  8422. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8423. }
  8424. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8425. SERIAL_ERROR_START();
  8426. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8427. }
  8428. else
  8429. ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  8430. }
  8431. #endif // AUTO_BED_LEVELING_UBL
  8432. #if HAS_M206_COMMAND
  8433. /**
  8434. * M428: Set home_offset based on the distance between the
  8435. * current_position and the nearest "reference point."
  8436. * If an axis is past center its endstop position
  8437. * is the reference-point. Otherwise it uses 0. This allows
  8438. * the Z offset to be set near the bed when using a max endstop.
  8439. *
  8440. * M428 can't be used more than 2cm away from 0 or an endstop.
  8441. *
  8442. * Use M206 to set these values directly.
  8443. */
  8444. inline void gcode_M428() {
  8445. bool err = false;
  8446. LOOP_XYZ(i) {
  8447. if (axis_homed[i]) {
  8448. const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  8449. diff = base - current_position[i];
  8450. if (WITHIN(diff, -20, 20)) {
  8451. set_home_offset((AxisEnum)i, diff);
  8452. }
  8453. else {
  8454. SERIAL_ERROR_START();
  8455. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  8456. LCD_ALERTMESSAGEPGM("Err: Too far!");
  8457. BUZZ(200, 40);
  8458. err = true;
  8459. break;
  8460. }
  8461. }
  8462. }
  8463. if (!err) {
  8464. report_current_position();
  8465. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  8466. BUZZ(100, 659);
  8467. BUZZ(100, 698);
  8468. }
  8469. }
  8470. #endif // HAS_M206_COMMAND
  8471. /**
  8472. * M500: Store settings in EEPROM
  8473. */
  8474. inline void gcode_M500() {
  8475. (void)settings.save();
  8476. }
  8477. /**
  8478. * M501: Read settings from EEPROM
  8479. */
  8480. inline void gcode_M501() {
  8481. (void)settings.load();
  8482. }
  8483. /**
  8484. * M502: Revert to default settings
  8485. */
  8486. inline void gcode_M502() {
  8487. (void)settings.reset();
  8488. }
  8489. #if DISABLED(DISABLE_M503)
  8490. /**
  8491. * M503: print settings currently in memory
  8492. */
  8493. inline void gcode_M503() {
  8494. (void)settings.report(parser.boolval('S'));
  8495. }
  8496. #endif
  8497. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8498. /**
  8499. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  8500. */
  8501. inline void gcode_M540() {
  8502. if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  8503. }
  8504. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  8505. #if HAS_BED_PROBE
  8506. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  8507. static float last_zoffset = NAN;
  8508. if (!isnan(last_zoffset)) {
  8509. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  8510. const float diff = zprobe_zoffset - last_zoffset;
  8511. #endif
  8512. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8513. // Correct bilinear grid for new probe offset
  8514. if (diff) {
  8515. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  8516. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  8517. z_values[x][y] -= diff;
  8518. }
  8519. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8520. bed_level_virt_interpolate();
  8521. #endif
  8522. #endif
  8523. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  8524. if (!no_babystep && planner.leveling_active)
  8525. thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
  8526. #else
  8527. UNUSED(no_babystep);
  8528. #endif
  8529. #if ENABLED(DELTA) // correct the delta_height
  8530. delta_height -= diff;
  8531. #endif
  8532. }
  8533. last_zoffset = zprobe_zoffset;
  8534. }
  8535. inline void gcode_M851() {
  8536. SERIAL_ECHO_START();
  8537. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  8538. if (parser.seen('Z')) {
  8539. const float value = parser.value_linear_units();
  8540. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  8541. zprobe_zoffset = value;
  8542. refresh_zprobe_zoffset();
  8543. SERIAL_ECHO(zprobe_zoffset);
  8544. }
  8545. else
  8546. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  8547. }
  8548. else
  8549. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  8550. SERIAL_EOL();
  8551. }
  8552. #endif // HAS_BED_PROBE
  8553. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  8554. /**
  8555. * M600: Pause for filament change
  8556. *
  8557. * E[distance] - Retract the filament this far (negative value)
  8558. * Z[distance] - Move the Z axis by this distance
  8559. * X[position] - Move to this X position, with Y
  8560. * Y[position] - Move to this Y position, with X
  8561. * U[distance] - Retract distance for removal (negative value) (manual reload)
  8562. * L[distance] - Extrude distance for insertion (positive value) (manual reload)
  8563. * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
  8564. *
  8565. * Default values are used for omitted arguments.
  8566. *
  8567. */
  8568. inline void gcode_M600() {
  8569. #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
  8570. // Don't allow filament change without homing first
  8571. if (axis_unhomed_error()) home_all_axes();
  8572. #endif
  8573. // Initial retract before move to filament change position
  8574. const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
  8575. #ifdef PAUSE_PARK_RETRACT_LENGTH
  8576. - (PAUSE_PARK_RETRACT_LENGTH)
  8577. #endif
  8578. ;
  8579. // Lift Z axis
  8580. const float z_lift = parser.linearval('Z', 0
  8581. #ifdef PAUSE_PARK_Z_ADD
  8582. + PAUSE_PARK_Z_ADD
  8583. #endif
  8584. );
  8585. // Move XY axes to filament exchange position
  8586. const float x_pos = parser.linearval('X', 0
  8587. #ifdef PAUSE_PARK_X_POS
  8588. + PAUSE_PARK_X_POS
  8589. #endif
  8590. );
  8591. const float y_pos = parser.linearval('Y', 0
  8592. #ifdef PAUSE_PARK_Y_POS
  8593. + PAUSE_PARK_Y_POS
  8594. #endif
  8595. );
  8596. // Unload filament
  8597. const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
  8598. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  8599. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  8600. #endif
  8601. ;
  8602. // Load filament
  8603. const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  8604. #ifdef FILAMENT_CHANGE_LOAD_LENGTH
  8605. + FILAMENT_CHANGE_LOAD_LENGTH
  8606. #endif
  8607. ;
  8608. const int beep_count = parser.intval('B',
  8609. #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8610. FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8611. #else
  8612. -1
  8613. #endif
  8614. );
  8615. const bool job_running = print_job_timer.isRunning();
  8616. if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
  8617. wait_for_filament_reload(beep_count);
  8618. resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
  8619. }
  8620. // Resume the print job timer if it was running
  8621. if (job_running) print_job_timer.start();
  8622. }
  8623. #endif // ADVANCED_PAUSE_FEATURE
  8624. #if ENABLED(MK2_MULTIPLEXER)
  8625. inline void select_multiplexed_stepper(const uint8_t e) {
  8626. stepper.synchronize();
  8627. disable_e_steppers();
  8628. WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8629. WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8630. WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
  8631. safe_delay(100);
  8632. }
  8633. /**
  8634. * M702: Unload all extruders
  8635. */
  8636. inline void gcode_M702() {
  8637. for (uint8_t s = 0; s < E_STEPPERS; s++) {
  8638. select_multiplexed_stepper(e);
  8639. // TODO: standard unload filament function
  8640. // MK2 firmware behavior:
  8641. // - Make sure temperature is high enough
  8642. // - Raise Z to at least 15 to make room
  8643. // - Extrude 1cm of filament in 1 second
  8644. // - Under 230C quickly purge ~12mm, over 230C purge ~10mm
  8645. // - Change E max feedrate to 80, eject the filament from the tube. Sync.
  8646. // - Restore E max feedrate to 50
  8647. }
  8648. // Go back to the last active extruder
  8649. select_multiplexed_stepper(active_extruder);
  8650. disable_e_steppers();
  8651. }
  8652. #endif // MK2_MULTIPLEXER
  8653. #if ENABLED(DUAL_X_CARRIAGE)
  8654. /**
  8655. * M605: Set dual x-carriage movement mode
  8656. *
  8657. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  8658. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  8659. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  8660. * units x-offset and an optional differential hotend temperature of
  8661. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  8662. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  8663. *
  8664. * Note: the X axis should be homed after changing dual x-carriage mode.
  8665. */
  8666. inline void gcode_M605() {
  8667. stepper.synchronize();
  8668. if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
  8669. switch (dual_x_carriage_mode) {
  8670. case DXC_FULL_CONTROL_MODE:
  8671. case DXC_AUTO_PARK_MODE:
  8672. break;
  8673. case DXC_DUPLICATION_MODE:
  8674. if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
  8675. if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
  8676. SERIAL_ECHO_START();
  8677. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  8678. SERIAL_CHAR(' ');
  8679. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  8680. SERIAL_CHAR(',');
  8681. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  8682. SERIAL_CHAR(' ');
  8683. SERIAL_ECHO(duplicate_extruder_x_offset);
  8684. SERIAL_CHAR(',');
  8685. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  8686. break;
  8687. default:
  8688. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  8689. break;
  8690. }
  8691. active_extruder_parked = false;
  8692. extruder_duplication_enabled = false;
  8693. delayed_move_time = 0;
  8694. }
  8695. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  8696. inline void gcode_M605() {
  8697. stepper.synchronize();
  8698. extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
  8699. SERIAL_ECHO_START();
  8700. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  8701. }
  8702. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  8703. #if ENABLED(LIN_ADVANCE)
  8704. /**
  8705. * M900: Set and/or Get advance K factor and WH/D ratio
  8706. *
  8707. * K<factor> Set advance K factor
  8708. * R<ratio> Set ratio directly (overrides WH/D)
  8709. * W<width> H<height> D<diam> Set ratio from WH/D
  8710. */
  8711. inline void gcode_M900() {
  8712. stepper.synchronize();
  8713. const float newK = parser.floatval('K', -1);
  8714. if (newK >= 0) planner.extruder_advance_k = newK;
  8715. float newR = parser.floatval('R', -1);
  8716. if (newR < 0) {
  8717. const float newD = parser.floatval('D', -1),
  8718. newW = parser.floatval('W', -1),
  8719. newH = parser.floatval('H', -1);
  8720. if (newD >= 0 && newW >= 0 && newH >= 0)
  8721. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  8722. }
  8723. if (newR >= 0) planner.advance_ed_ratio = newR;
  8724. SERIAL_ECHO_START();
  8725. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  8726. SERIAL_ECHOPGM(" E/D=");
  8727. const float ratio = planner.advance_ed_ratio;
  8728. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  8729. SERIAL_EOL();
  8730. }
  8731. #endif // LIN_ADVANCE
  8732. #if ENABLED(HAVE_TMC2130)
  8733. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  8734. SERIAL_CHAR(name);
  8735. SERIAL_ECHOPGM(" axis driver current: ");
  8736. SERIAL_ECHOLN(st.getCurrent());
  8737. }
  8738. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  8739. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  8740. tmc2130_get_current(st, name);
  8741. }
  8742. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  8743. SERIAL_CHAR(name);
  8744. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  8745. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  8746. SERIAL_EOL();
  8747. }
  8748. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  8749. st.clear_otpw();
  8750. SERIAL_CHAR(name);
  8751. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  8752. }
  8753. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  8754. SERIAL_CHAR(name);
  8755. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  8756. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  8757. }
  8758. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  8759. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  8760. tmc2130_get_pwmthrs(st, name, spmm);
  8761. }
  8762. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  8763. SERIAL_CHAR(name);
  8764. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  8765. SERIAL_ECHOLN(st.sgt());
  8766. }
  8767. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  8768. st.sgt(sgt_val);
  8769. tmc2130_get_sgt(st, name);
  8770. }
  8771. /**
  8772. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8773. * Report driver currents when no axis specified
  8774. *
  8775. * S1: Enable automatic current control
  8776. * S0: Disable
  8777. */
  8778. inline void gcode_M906() {
  8779. uint16_t values[XYZE];
  8780. LOOP_XYZE(i)
  8781. values[i] = parser.intval(axis_codes[i]);
  8782. #if ENABLED(X_IS_TMC2130)
  8783. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  8784. else tmc2130_get_current(stepperX, 'X');
  8785. #endif
  8786. #if ENABLED(Y_IS_TMC2130)
  8787. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  8788. else tmc2130_get_current(stepperY, 'Y');
  8789. #endif
  8790. #if ENABLED(Z_IS_TMC2130)
  8791. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  8792. else tmc2130_get_current(stepperZ, 'Z');
  8793. #endif
  8794. #if ENABLED(E0_IS_TMC2130)
  8795. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  8796. else tmc2130_get_current(stepperE0, 'E');
  8797. #endif
  8798. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8799. if (parser.seen('S')) auto_current_control = parser.value_bool();
  8800. #endif
  8801. }
  8802. /**
  8803. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  8804. * The flag is held by the library and persist until manually cleared by M912
  8805. */
  8806. inline void gcode_M911() {
  8807. const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
  8808. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  8809. #if ENABLED(X_IS_TMC2130)
  8810. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  8811. #endif
  8812. #if ENABLED(Y_IS_TMC2130)
  8813. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  8814. #endif
  8815. #if ENABLED(Z_IS_TMC2130)
  8816. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  8817. #endif
  8818. #if ENABLED(E0_IS_TMC2130)
  8819. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  8820. #endif
  8821. }
  8822. /**
  8823. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  8824. */
  8825. inline void gcode_M912() {
  8826. const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
  8827. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  8828. #if ENABLED(X_IS_TMC2130)
  8829. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  8830. #endif
  8831. #if ENABLED(Y_IS_TMC2130)
  8832. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  8833. #endif
  8834. #if ENABLED(Z_IS_TMC2130)
  8835. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  8836. #endif
  8837. #if ENABLED(E0_IS_TMC2130)
  8838. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  8839. #endif
  8840. }
  8841. /**
  8842. * M913: Set HYBRID_THRESHOLD speed.
  8843. */
  8844. #if ENABLED(HYBRID_THRESHOLD)
  8845. inline void gcode_M913() {
  8846. uint16_t values[XYZE];
  8847. LOOP_XYZE(i)
  8848. values[i] = parser.intval(axis_codes[i]);
  8849. #if ENABLED(X_IS_TMC2130)
  8850. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  8851. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  8852. #endif
  8853. #if ENABLED(Y_IS_TMC2130)
  8854. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  8855. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  8856. #endif
  8857. #if ENABLED(Z_IS_TMC2130)
  8858. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  8859. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  8860. #endif
  8861. #if ENABLED(E0_IS_TMC2130)
  8862. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  8863. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  8864. #endif
  8865. }
  8866. #endif // HYBRID_THRESHOLD
  8867. /**
  8868. * M914: Set SENSORLESS_HOMING sensitivity.
  8869. */
  8870. #if ENABLED(SENSORLESS_HOMING)
  8871. inline void gcode_M914() {
  8872. #if ENABLED(X_IS_TMC2130)
  8873. if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
  8874. else tmc2130_get_sgt(stepperX, 'X');
  8875. #endif
  8876. #if ENABLED(Y_IS_TMC2130)
  8877. if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
  8878. else tmc2130_get_sgt(stepperY, 'Y');
  8879. #endif
  8880. }
  8881. #endif // SENSORLESS_HOMING
  8882. #endif // HAVE_TMC2130
  8883. /**
  8884. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  8885. */
  8886. inline void gcode_M907() {
  8887. #if HAS_DIGIPOTSS
  8888. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
  8889. if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
  8890. if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  8891. #elif HAS_MOTOR_CURRENT_PWM
  8892. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  8893. if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
  8894. #endif
  8895. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  8896. if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
  8897. #endif
  8898. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  8899. if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
  8900. #endif
  8901. #endif
  8902. #if ENABLED(DIGIPOT_I2C)
  8903. // this one uses actual amps in floating point
  8904. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
  8905. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  8906. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  8907. #endif
  8908. #if ENABLED(DAC_STEPPER_CURRENT)
  8909. if (parser.seen('S')) {
  8910. const float dac_percent = parser.value_float();
  8911. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  8912. }
  8913. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  8914. #endif
  8915. }
  8916. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8917. /**
  8918. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  8919. */
  8920. inline void gcode_M908() {
  8921. #if HAS_DIGIPOTSS
  8922. stepper.digitalPotWrite(
  8923. parser.intval('P'),
  8924. parser.intval('S')
  8925. );
  8926. #endif
  8927. #ifdef DAC_STEPPER_CURRENT
  8928. dac_current_raw(
  8929. parser.byteval('P', -1),
  8930. parser.ushortval('S', 0)
  8931. );
  8932. #endif
  8933. }
  8934. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8935. inline void gcode_M909() { dac_print_values(); }
  8936. inline void gcode_M910() { dac_commit_eeprom(); }
  8937. #endif
  8938. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8939. #if HAS_MICROSTEPS
  8940. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8941. inline void gcode_M350() {
  8942. if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
  8943. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
  8944. if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
  8945. stepper.microstep_readings();
  8946. }
  8947. /**
  8948. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  8949. * S# determines MS1 or MS2, X# sets the pin high/low.
  8950. */
  8951. inline void gcode_M351() {
  8952. if (parser.seenval('S')) switch (parser.value_byte()) {
  8953. case 1:
  8954. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
  8955. if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
  8956. break;
  8957. case 2:
  8958. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
  8959. if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
  8960. break;
  8961. }
  8962. stepper.microstep_readings();
  8963. }
  8964. #endif // HAS_MICROSTEPS
  8965. #if HAS_CASE_LIGHT
  8966. #ifndef INVERT_CASE_LIGHT
  8967. #define INVERT_CASE_LIGHT false
  8968. #endif
  8969. uint8_t case_light_brightness; // LCD routine wants INT
  8970. bool case_light_on;
  8971. void update_case_light() {
  8972. pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
  8973. if (case_light_on) {
  8974. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
  8975. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness);
  8976. else
  8977. WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
  8978. }
  8979. else {
  8980. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
  8981. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 : 0);
  8982. else
  8983. WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  8984. }
  8985. }
  8986. #endif // HAS_CASE_LIGHT
  8987. /**
  8988. * M355: Turn case light on/off and set brightness
  8989. *
  8990. * P<byte> Set case light brightness (PWM pin required - ignored otherwise)
  8991. *
  8992. * S<bool> Set case light on/off
  8993. *
  8994. * When S turns on the light on a PWM pin then the current brightness level is used/restored
  8995. *
  8996. * M355 P200 S0 turns off the light & sets the brightness level
  8997. * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
  8998. */
  8999. inline void gcode_M355() {
  9000. #if HAS_CASE_LIGHT
  9001. uint8_t args = 0;
  9002. if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
  9003. if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
  9004. if (args) update_case_light();
  9005. // always report case light status
  9006. SERIAL_ECHO_START();
  9007. if (!case_light_on) {
  9008. SERIAL_ECHOLN("Case light: off");
  9009. }
  9010. else {
  9011. if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
  9012. else SERIAL_ECHOLNPAIR("Case light: ", (int)case_light_brightness);
  9013. }
  9014. #else
  9015. SERIAL_ERROR_START();
  9016. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  9017. #endif // HAS_CASE_LIGHT
  9018. }
  9019. #if ENABLED(MIXING_EXTRUDER)
  9020. /**
  9021. * M163: Set a single mix factor for a mixing extruder
  9022. * This is called "weight" by some systems.
  9023. *
  9024. * S[index] The channel index to set
  9025. * P[float] The mix value
  9026. *
  9027. */
  9028. inline void gcode_M163() {
  9029. const int mix_index = parser.intval('S');
  9030. if (mix_index < MIXING_STEPPERS) {
  9031. float mix_value = parser.floatval('P');
  9032. NOLESS(mix_value, 0.0);
  9033. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  9034. }
  9035. }
  9036. #if MIXING_VIRTUAL_TOOLS > 1
  9037. /**
  9038. * M164: Store the current mix factors as a virtual tool.
  9039. *
  9040. * S[index] The virtual tool to store
  9041. *
  9042. */
  9043. inline void gcode_M164() {
  9044. const int tool_index = parser.intval('S');
  9045. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  9046. normalize_mix();
  9047. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9048. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  9049. }
  9050. }
  9051. #endif
  9052. #if ENABLED(DIRECT_MIXING_IN_G1)
  9053. /**
  9054. * M165: Set multiple mix factors for a mixing extruder.
  9055. * Factors that are left out will be set to 0.
  9056. * All factors together must add up to 1.0.
  9057. *
  9058. * A[factor] Mix factor for extruder stepper 1
  9059. * B[factor] Mix factor for extruder stepper 2
  9060. * C[factor] Mix factor for extruder stepper 3
  9061. * D[factor] Mix factor for extruder stepper 4
  9062. * H[factor] Mix factor for extruder stepper 5
  9063. * I[factor] Mix factor for extruder stepper 6
  9064. *
  9065. */
  9066. inline void gcode_M165() { gcode_get_mix(); }
  9067. #endif
  9068. #endif // MIXING_EXTRUDER
  9069. /**
  9070. * M999: Restart after being stopped
  9071. *
  9072. * Default behaviour is to flush the serial buffer and request
  9073. * a resend to the host starting on the last N line received.
  9074. *
  9075. * Sending "M999 S1" will resume printing without flushing the
  9076. * existing command buffer.
  9077. *
  9078. */
  9079. inline void gcode_M999() {
  9080. Running = true;
  9081. lcd_reset_alert_level();
  9082. if (parser.boolval('S')) return;
  9083. // gcode_LastN = Stopped_gcode_LastN;
  9084. FlushSerialRequestResend();
  9085. }
  9086. #if ENABLED(SWITCHING_EXTRUDER)
  9087. #if EXTRUDERS > 3
  9088. #define REQ_ANGLES 4
  9089. #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
  9090. #else
  9091. #define REQ_ANGLES 2
  9092. #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
  9093. #endif
  9094. inline void move_extruder_servo(const uint8_t e) {
  9095. constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  9096. static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  9097. stepper.synchronize();
  9098. #if EXTRUDERS & 1
  9099. if (e < EXTRUDERS - 1)
  9100. #endif
  9101. {
  9102. MOVE_SERVO(_SERVO_NR, angles[e]);
  9103. safe_delay(500);
  9104. }
  9105. }
  9106. #endif // SWITCHING_EXTRUDER
  9107. #if ENABLED(SWITCHING_NOZZLE)
  9108. inline void move_nozzle_servo(const uint8_t e) {
  9109. const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  9110. stepper.synchronize();
  9111. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  9112. safe_delay(500);
  9113. }
  9114. #endif
  9115. inline void invalid_extruder_error(const uint8_t e) {
  9116. SERIAL_ECHO_START();
  9117. SERIAL_CHAR('T');
  9118. SERIAL_ECHO_F(e, DEC);
  9119. SERIAL_CHAR(' ');
  9120. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  9121. }
  9122. #if ENABLED(PARKING_EXTRUDER)
  9123. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9124. #define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  9125. #else
  9126. #define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  9127. #endif
  9128. void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
  9129. switch (extruder_num) {
  9130. case 1: OUT_WRITE(SOL1_PIN, state); break;
  9131. default: OUT_WRITE(SOL0_PIN, state); break;
  9132. }
  9133. #if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
  9134. dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
  9135. #endif
  9136. }
  9137. inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
  9138. inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
  9139. #endif // PARKING_EXTRUDER
  9140. #if HAS_FANMUX
  9141. void fanmux_switch(const uint8_t e) {
  9142. WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  9143. #if PIN_EXISTS(FANMUX1)
  9144. WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  9145. #if PIN_EXISTS(FANMUX2)
  9146. WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
  9147. #endif
  9148. #endif
  9149. }
  9150. FORCE_INLINE void fanmux_init(void) {
  9151. SET_OUTPUT(FANMUX0_PIN);
  9152. #if PIN_EXISTS(FANMUX1)
  9153. SET_OUTPUT(FANMUX1_PIN);
  9154. #if PIN_EXISTS(FANMUX2)
  9155. SET_OUTPUT(FANMUX2_PIN);
  9156. #endif
  9157. #endif
  9158. fanmux_switch(0);
  9159. }
  9160. #endif // HAS_FANMUX
  9161. /**
  9162. * Perform a tool-change, which may result in moving the
  9163. * previous tool out of the way and the new tool into place.
  9164. */
  9165. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  9166. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9167. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  9168. return invalid_extruder_error(tmp_extruder);
  9169. // T0-Tnnn: Switch virtual tool by changing the mix
  9170. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  9171. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  9172. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9173. if (tmp_extruder >= EXTRUDERS)
  9174. return invalid_extruder_error(tmp_extruder);
  9175. #if HOTENDS > 1
  9176. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  9177. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  9178. if (tmp_extruder != active_extruder) {
  9179. if (!no_move && axis_unhomed_error()) {
  9180. no_move = true;
  9181. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9182. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
  9183. #endif
  9184. }
  9185. // Save current position to destination, for use later
  9186. set_destination_from_current();
  9187. #if ENABLED(DUAL_X_CARRIAGE)
  9188. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9189. if (DEBUGGING(LEVELING)) {
  9190. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  9191. switch (dual_x_carriage_mode) {
  9192. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  9193. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  9194. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  9195. }
  9196. }
  9197. #endif
  9198. const float xhome = x_home_pos(active_extruder);
  9199. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  9200. && IsRunning()
  9201. && (delayed_move_time || current_position[X_AXIS] != xhome)
  9202. ) {
  9203. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  9204. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9205. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  9206. #endif
  9207. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9208. if (DEBUGGING(LEVELING)) {
  9209. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  9210. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  9211. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  9212. }
  9213. #endif
  9214. // Park old head: 1) raise 2) move to park position 3) lower
  9215. for (uint8_t i = 0; i < 3; i++)
  9216. planner.buffer_line(
  9217. i == 0 ? current_position[X_AXIS] : xhome,
  9218. current_position[Y_AXIS],
  9219. i == 2 ? current_position[Z_AXIS] : raised_z,
  9220. current_position[E_AXIS],
  9221. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  9222. active_extruder
  9223. );
  9224. stepper.synchronize();
  9225. }
  9226. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  9227. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  9228. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  9229. // Activate the new extruder ahead of calling set_axis_is_at_home!
  9230. active_extruder = tmp_extruder;
  9231. // This function resets the max/min values - the current position may be overwritten below.
  9232. set_axis_is_at_home(X_AXIS);
  9233. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9234. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  9235. #endif
  9236. // Only when auto-parking are carriages safe to move
  9237. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  9238. switch (dual_x_carriage_mode) {
  9239. case DXC_FULL_CONTROL_MODE:
  9240. // New current position is the position of the activated extruder
  9241. current_position[X_AXIS] = inactive_extruder_x_pos;
  9242. // Save the inactive extruder's position (from the old current_position)
  9243. inactive_extruder_x_pos = destination[X_AXIS];
  9244. break;
  9245. case DXC_AUTO_PARK_MODE:
  9246. // record raised toolhead position for use by unpark
  9247. COPY(raised_parked_position, current_position);
  9248. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  9249. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9250. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9251. #endif
  9252. active_extruder_parked = true;
  9253. delayed_move_time = 0;
  9254. break;
  9255. case DXC_DUPLICATION_MODE:
  9256. // If the new extruder is the left one, set it "parked"
  9257. // This triggers the second extruder to move into the duplication position
  9258. active_extruder_parked = (active_extruder == 0);
  9259. if (active_extruder_parked)
  9260. current_position[X_AXIS] = inactive_extruder_x_pos;
  9261. else
  9262. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  9263. inactive_extruder_x_pos = destination[X_AXIS];
  9264. extruder_duplication_enabled = false;
  9265. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9266. if (DEBUGGING(LEVELING)) {
  9267. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  9268. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  9269. }
  9270. #endif
  9271. break;
  9272. }
  9273. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9274. if (DEBUGGING(LEVELING)) {
  9275. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  9276. DEBUG_POS("New extruder (parked)", current_position);
  9277. }
  9278. #endif
  9279. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  9280. #else // !DUAL_X_CARRIAGE
  9281. #if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder
  9282. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  9283. float z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
  9284. if (!no_move) {
  9285. const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
  9286. midpos = ((parkingposx[1] - parkingposx[0])/2) + parkingposx[0] + hotend_offset[X_AXIS][active_extruder],
  9287. grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
  9288. + (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
  9289. /**
  9290. * Steps:
  9291. * 1. Raise Z-Axis to give enough clearance
  9292. * 2. Move to park position of old extruder
  9293. * 3. Disengage magnetic field, wait for delay
  9294. * 4. Move near new extruder
  9295. * 5. Engage magnetic field for new extruder
  9296. * 6. Move to parking incl. offset of new extruder
  9297. * 7. Lower Z-Axis
  9298. */
  9299. // STEP 1
  9300. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9301. SERIAL_ECHOLNPGM("Starting Autopark");
  9302. if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
  9303. #endif
  9304. current_position[Z_AXIS] += z_raise;
  9305. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9306. SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
  9307. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
  9308. #endif
  9309. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9310. stepper.synchronize();
  9311. // STEP 2
  9312. current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
  9313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9314. SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
  9315. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
  9316. #endif
  9317. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9318. stepper.synchronize();
  9319. // STEP 3
  9320. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9321. SERIAL_ECHOLNPGM("(3) Disengage magnet ");
  9322. #endif
  9323. pe_deactivate_magnet(active_extruder);
  9324. // STEP 4
  9325. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9326. SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
  9327. #endif
  9328. current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
  9329. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9330. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
  9331. #endif
  9332. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9333. stepper.synchronize();
  9334. // STEP 5
  9335. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9336. SERIAL_ECHOLNPGM("(5) Engage magnetic field");
  9337. #endif
  9338. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9339. pe_activate_magnet(active_extruder); //just save power for inverted magnets
  9340. #endif
  9341. pe_activate_magnet(tmp_extruder);
  9342. // STEP 6
  9343. current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
  9344. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9345. current_position[X_AXIS] = grabpos;
  9346. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9347. SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
  9348. if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
  9349. #endif
  9350. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
  9351. stepper.synchronize();
  9352. // Step 7
  9353. current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
  9354. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9355. SERIAL_ECHOLNPGM("(7) Move midway between hotends");
  9356. if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
  9357. #endif
  9358. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9359. stepper.synchronize();
  9360. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9361. SERIAL_ECHOLNPGM("Autopark done.");
  9362. #endif
  9363. }
  9364. else { // nomove == true
  9365. // Only engage magnetic field for new extruder
  9366. pe_activate_magnet(tmp_extruder);
  9367. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9368. pe_activate_magnet(active_extruder); // Just save power for inverted magnets
  9369. #endif
  9370. }
  9371. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; // Apply Zoffset
  9372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9373. if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
  9374. #endif
  9375. #endif // dualParking extruder
  9376. #if ENABLED(SWITCHING_NOZZLE)
  9377. #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
  9378. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  9379. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  9380. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  9381. // Always raise by some amount (destination copied from current_position earlier)
  9382. current_position[Z_AXIS] += z_raise;
  9383. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9384. move_nozzle_servo(tmp_extruder);
  9385. #endif
  9386. /**
  9387. * Set current_position to the position of the new nozzle.
  9388. * Offsets are based on linear distance, so we need to get
  9389. * the resulting position in coordinate space.
  9390. *
  9391. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  9392. * - With mesh leveling, update Z for the new position
  9393. * - Otherwise, just use the raw linear distance
  9394. *
  9395. * Software endstops are altered here too. Consider a case where:
  9396. * E0 at X=0 ... E1 at X=10
  9397. * When we switch to E1 now X=10, but E1 can't move left.
  9398. * To express this we apply the change in XY to the software endstops.
  9399. * E1 can move farther right than E0, so the right limit is extended.
  9400. *
  9401. * Note that we don't adjust the Z software endstops. Why not?
  9402. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  9403. * because the bed is 1mm lower at the new position. As long as
  9404. * the first nozzle is out of the way, the carriage should be
  9405. * allowed to move 1mm lower. This technically "breaks" the
  9406. * Z software endstop. But this is technically correct (and
  9407. * there is no viable alternative).
  9408. */
  9409. #if ABL_PLANAR
  9410. // Offset extruder, make sure to apply the bed level rotation matrix
  9411. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  9412. hotend_offset[Y_AXIS][tmp_extruder],
  9413. 0),
  9414. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  9415. hotend_offset[Y_AXIS][active_extruder],
  9416. 0),
  9417. offset_vec = tmp_offset_vec - act_offset_vec;
  9418. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9419. if (DEBUGGING(LEVELING)) {
  9420. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  9421. act_offset_vec.debug(PSTR("act_offset_vec"));
  9422. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  9423. }
  9424. #endif
  9425. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  9426. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9427. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  9428. #endif
  9429. // Adjustments to the current position
  9430. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  9431. current_position[Z_AXIS] += offset_vec.z;
  9432. #else // !ABL_PLANAR
  9433. const float xydiff[2] = {
  9434. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  9435. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  9436. };
  9437. #if ENABLED(MESH_BED_LEVELING)
  9438. if (planner.leveling_active) {
  9439. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9440. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  9441. #endif
  9442. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  9443. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  9444. z1 = current_position[Z_AXIS], z2 = z1;
  9445. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  9446. planner.apply_leveling(x2, y2, z2);
  9447. current_position[Z_AXIS] += z2 - z1;
  9448. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9449. if (DEBUGGING(LEVELING))
  9450. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  9451. #endif
  9452. }
  9453. #endif // MESH_BED_LEVELING
  9454. #endif // !HAS_ABL
  9455. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9456. if (DEBUGGING(LEVELING)) {
  9457. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  9458. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  9459. SERIAL_ECHOLNPGM(" }");
  9460. }
  9461. #endif
  9462. // The newly-selected extruder XY is actually at...
  9463. current_position[X_AXIS] += xydiff[X_AXIS];
  9464. current_position[Y_AXIS] += xydiff[Y_AXIS];
  9465. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(PARKING_EXTRUDER)
  9466. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  9467. #if HAS_POSITION_SHIFT
  9468. position_shift[i] += xydiff[i];
  9469. #endif
  9470. update_software_endstops((AxisEnum)i);
  9471. }
  9472. #endif
  9473. // Set the new active extruder
  9474. active_extruder = tmp_extruder;
  9475. #endif // !DUAL_X_CARRIAGE
  9476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9477. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  9478. #endif
  9479. // Tell the planner the new "current position"
  9480. SYNC_PLAN_POSITION_KINEMATIC();
  9481. // Move to the "old position" (move the extruder into place)
  9482. if (!no_move && IsRunning()) {
  9483. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9484. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  9485. #endif
  9486. prepare_move_to_destination();
  9487. }
  9488. #if ENABLED(SWITCHING_NOZZLE)
  9489. // Move back down, if needed. (Including when the new tool is higher.)
  9490. if (z_raise != z_diff) {
  9491. destination[Z_AXIS] += z_diff;
  9492. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  9493. prepare_move_to_destination();
  9494. }
  9495. #endif
  9496. } // (tmp_extruder != active_extruder)
  9497. stepper.synchronize();
  9498. #if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
  9499. disable_all_solenoids();
  9500. enable_solenoid_on_active_extruder();
  9501. #endif // EXT_SOLENOID
  9502. feedrate_mm_s = old_feedrate_mm_s;
  9503. #else // HOTENDS <= 1
  9504. UNUSED(fr_mm_s);
  9505. UNUSED(no_move);
  9506. #if ENABLED(MK2_MULTIPLEXER)
  9507. if (tmp_extruder >= E_STEPPERS)
  9508. return invalid_extruder_error(tmp_extruder);
  9509. select_multiplexed_stepper(tmp_extruder);
  9510. #endif
  9511. // Set the new active extruder
  9512. active_extruder = tmp_extruder;
  9513. #endif // HOTENDS <= 1
  9514. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  9515. stepper.synchronize();
  9516. move_extruder_servo(active_extruder);
  9517. #endif
  9518. #if HAS_FANMUX
  9519. fanmux_switch(active_extruder);
  9520. #endif
  9521. SERIAL_ECHO_START();
  9522. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  9523. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9524. }
  9525. /**
  9526. * T0-T3: Switch tool, usually switching extruders
  9527. *
  9528. * F[units/min] Set the movement feedrate
  9529. * S1 Don't move the tool in XY after change
  9530. */
  9531. inline void gcode_T(const uint8_t tmp_extruder) {
  9532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9533. if (DEBUGGING(LEVELING)) {
  9534. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  9535. SERIAL_CHAR(')');
  9536. SERIAL_EOL();
  9537. DEBUG_POS("BEFORE", current_position);
  9538. }
  9539. #endif
  9540. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  9541. tool_change(tmp_extruder);
  9542. #elif HOTENDS > 1
  9543. tool_change(
  9544. tmp_extruder,
  9545. MMM_TO_MMS(parser.linearval('F')),
  9546. (tmp_extruder == active_extruder) || parser.boolval('S')
  9547. );
  9548. #endif
  9549. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9550. if (DEBUGGING(LEVELING)) {
  9551. DEBUG_POS("AFTER", current_position);
  9552. SERIAL_ECHOLNPGM("<<< gcode_T");
  9553. }
  9554. #endif
  9555. }
  9556. /**
  9557. * Process the parsed command and dispatch it to its handler
  9558. */
  9559. void process_parsed_command() {
  9560. KEEPALIVE_STATE(IN_HANDLER);
  9561. // Handle a known G, M, or T
  9562. switch (parser.command_letter) {
  9563. case 'G': switch (parser.codenum) {
  9564. // G0, G1
  9565. case 0:
  9566. case 1:
  9567. #if IS_SCARA
  9568. gcode_G0_G1(parser.codenum == 0);
  9569. #else
  9570. gcode_G0_G1();
  9571. #endif
  9572. break;
  9573. // G2, G3
  9574. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  9575. case 2: // G2: CW ARC
  9576. case 3: // G3: CCW ARC
  9577. gcode_G2_G3(parser.codenum == 2);
  9578. break;
  9579. #endif
  9580. // G4 Dwell
  9581. case 4:
  9582. gcode_G4();
  9583. break;
  9584. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9585. case 5: // G5: Cubic B_spline
  9586. gcode_G5();
  9587. break;
  9588. #endif // BEZIER_CURVE_SUPPORT
  9589. #if ENABLED(FWRETRACT)
  9590. case 10: // G10: retract
  9591. gcode_G10();
  9592. break;
  9593. case 11: // G11: retract_recover
  9594. gcode_G11();
  9595. break;
  9596. #endif // FWRETRACT
  9597. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  9598. case 12:
  9599. gcode_G12(); // G12: Nozzle Clean
  9600. break;
  9601. #endif // NOZZLE_CLEAN_FEATURE
  9602. #if ENABLED(CNC_WORKSPACE_PLANES)
  9603. case 17: // G17: Select Plane XY
  9604. gcode_G17();
  9605. break;
  9606. case 18: // G18: Select Plane ZX
  9607. gcode_G18();
  9608. break;
  9609. case 19: // G19: Select Plane YZ
  9610. gcode_G19();
  9611. break;
  9612. #endif // CNC_WORKSPACE_PLANES
  9613. #if ENABLED(INCH_MODE_SUPPORT)
  9614. case 20: // G20: Inch Mode
  9615. gcode_G20();
  9616. break;
  9617. case 21: // G21: MM Mode
  9618. gcode_G21();
  9619. break;
  9620. #endif // INCH_MODE_SUPPORT
  9621. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  9622. case 26: // G26: Mesh Validation Pattern generation
  9623. gcode_G26();
  9624. break;
  9625. #endif // AUTO_BED_LEVELING_UBL
  9626. #if ENABLED(NOZZLE_PARK_FEATURE)
  9627. case 27: // G27: Nozzle Park
  9628. gcode_G27();
  9629. break;
  9630. #endif // NOZZLE_PARK_FEATURE
  9631. case 28: // G28: Home all axes, one at a time
  9632. gcode_G28(false);
  9633. break;
  9634. #if HAS_LEVELING
  9635. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  9636. // or provides access to the UBL System if enabled.
  9637. gcode_G29();
  9638. break;
  9639. #endif // HAS_LEVELING
  9640. #if HAS_BED_PROBE
  9641. case 30: // G30 Single Z probe
  9642. gcode_G30();
  9643. break;
  9644. #if ENABLED(Z_PROBE_SLED)
  9645. case 31: // G31: dock the sled
  9646. gcode_G31();
  9647. break;
  9648. case 32: // G32: undock the sled
  9649. gcode_G32();
  9650. break;
  9651. #endif // Z_PROBE_SLED
  9652. #endif // HAS_BED_PROBE
  9653. #if ENABLED(DELTA_AUTO_CALIBRATION)
  9654. case 33: // G33: Delta Auto-Calibration
  9655. gcode_G33();
  9656. break;
  9657. #endif // DELTA_AUTO_CALIBRATION
  9658. #if ENABLED(G38_PROBE_TARGET)
  9659. case 38: // G38.2 & G38.3
  9660. if (parser.subcode == 2 || parser.subcode == 3)
  9661. gcode_G38(parser.subcode == 2);
  9662. break;
  9663. #endif
  9664. case 90: // G90
  9665. relative_mode = false;
  9666. break;
  9667. case 91: // G91
  9668. relative_mode = true;
  9669. break;
  9670. case 92: // G92
  9671. gcode_G92();
  9672. break;
  9673. #if HAS_MESH
  9674. case 42:
  9675. gcode_G42();
  9676. break;
  9677. #endif
  9678. #if ENABLED(DEBUG_GCODE_PARSER)
  9679. case 800:
  9680. parser.debug(); // GCode Parser Test for G
  9681. break;
  9682. #endif
  9683. }
  9684. break;
  9685. case 'M': switch (parser.codenum) {
  9686. #if HAS_RESUME_CONTINUE
  9687. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  9688. case 1: // M1: Conditional stop - Wait for user button press on LCD
  9689. gcode_M0_M1();
  9690. break;
  9691. #endif // ULTIPANEL
  9692. #if ENABLED(SPINDLE_LASER_ENABLE)
  9693. case 3:
  9694. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  9695. break; // synchronizes with movement commands
  9696. case 4:
  9697. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  9698. break; // synchronizes with movement commands
  9699. case 5:
  9700. gcode_M5(); // M5 - turn spindle/laser off
  9701. break; // synchronizes with movement commands
  9702. #endif
  9703. case 17: // M17: Enable all stepper motors
  9704. gcode_M17();
  9705. break;
  9706. #if ENABLED(SDSUPPORT)
  9707. case 20: // M20: list SD card
  9708. gcode_M20(); break;
  9709. case 21: // M21: init SD card
  9710. gcode_M21(); break;
  9711. case 22: // M22: release SD card
  9712. gcode_M22(); break;
  9713. case 23: // M23: Select file
  9714. gcode_M23(); break;
  9715. case 24: // M24: Start SD print
  9716. gcode_M24(); break;
  9717. case 25: // M25: Pause SD print
  9718. gcode_M25(); break;
  9719. case 26: // M26: Set SD index
  9720. gcode_M26(); break;
  9721. case 27: // M27: Get SD status
  9722. gcode_M27(); break;
  9723. case 28: // M28: Start SD write
  9724. gcode_M28(); break;
  9725. case 29: // M29: Stop SD write
  9726. gcode_M29(); break;
  9727. case 30: // M30 <filename> Delete File
  9728. gcode_M30(); break;
  9729. case 32: // M32: Select file and start SD print
  9730. gcode_M32(); break;
  9731. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  9732. case 33: // M33: Get the long full path to a file or folder
  9733. gcode_M33(); break;
  9734. #endif
  9735. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  9736. case 34: // M34: Set SD card sorting options
  9737. gcode_M34(); break;
  9738. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  9739. case 928: // M928: Start SD write
  9740. gcode_M928(); break;
  9741. #endif // SDSUPPORT
  9742. case 31: // M31: Report time since the start of SD print or last M109
  9743. gcode_M31(); break;
  9744. case 42: // M42: Change pin state
  9745. gcode_M42(); break;
  9746. #if ENABLED(PINS_DEBUGGING)
  9747. case 43: // M43: Read pin state
  9748. gcode_M43(); break;
  9749. #endif
  9750. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  9751. case 48: // M48: Z probe repeatability test
  9752. gcode_M48();
  9753. break;
  9754. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  9755. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  9756. case 49: // M49: Turn on or off G26 debug flag for verbose output
  9757. gcode_M49();
  9758. break;
  9759. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  9760. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  9761. case 73: // M73: Set print progress percentage
  9762. gcode_M73(); break;
  9763. #endif
  9764. case 75: // M75: Start print timer
  9765. gcode_M75(); break;
  9766. case 76: // M76: Pause print timer
  9767. gcode_M76(); break;
  9768. case 77: // M77: Stop print timer
  9769. gcode_M77(); break;
  9770. #if ENABLED(PRINTCOUNTER)
  9771. case 78: // M78: Show print statistics
  9772. gcode_M78(); break;
  9773. #endif
  9774. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9775. case 100: // M100: Free Memory Report
  9776. gcode_M100();
  9777. break;
  9778. #endif
  9779. case 104: // M104: Set hot end temperature
  9780. gcode_M104();
  9781. break;
  9782. case 110: // M110: Set Current Line Number
  9783. gcode_M110();
  9784. break;
  9785. case 111: // M111: Set debug level
  9786. gcode_M111();
  9787. break;
  9788. #if DISABLED(EMERGENCY_PARSER)
  9789. case 108: // M108: Cancel Waiting
  9790. gcode_M108();
  9791. break;
  9792. case 112: // M112: Emergency Stop
  9793. gcode_M112();
  9794. break;
  9795. case 410: // M410 quickstop - Abort all the planned moves.
  9796. gcode_M410();
  9797. break;
  9798. #endif
  9799. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  9800. case 113: // M113: Set Host Keepalive interval
  9801. gcode_M113();
  9802. break;
  9803. #endif
  9804. case 140: // M140: Set bed temperature
  9805. gcode_M140();
  9806. break;
  9807. case 105: // M105: Report current temperature
  9808. gcode_M105();
  9809. KEEPALIVE_STATE(NOT_BUSY);
  9810. return; // "ok" already printed
  9811. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9812. case 155: // M155: Set temperature auto-report interval
  9813. gcode_M155();
  9814. break;
  9815. #endif
  9816. case 109: // M109: Wait for hotend temperature to reach target
  9817. gcode_M109();
  9818. break;
  9819. #if HAS_TEMP_BED
  9820. case 190: // M190: Wait for bed temperature to reach target
  9821. gcode_M190();
  9822. break;
  9823. #endif // HAS_TEMP_BED
  9824. #if FAN_COUNT > 0
  9825. case 106: // M106: Fan On
  9826. gcode_M106();
  9827. break;
  9828. case 107: // M107: Fan Off
  9829. gcode_M107();
  9830. break;
  9831. #endif // FAN_COUNT > 0
  9832. #if ENABLED(PARK_HEAD_ON_PAUSE)
  9833. case 125: // M125: Store current position and move to filament change position
  9834. gcode_M125(); break;
  9835. #endif
  9836. #if ENABLED(BARICUDA)
  9837. // PWM for HEATER_1_PIN
  9838. #if HAS_HEATER_1
  9839. case 126: // M126: valve open
  9840. gcode_M126();
  9841. break;
  9842. case 127: // M127: valve closed
  9843. gcode_M127();
  9844. break;
  9845. #endif // HAS_HEATER_1
  9846. // PWM for HEATER_2_PIN
  9847. #if HAS_HEATER_2
  9848. case 128: // M128: valve open
  9849. gcode_M128();
  9850. break;
  9851. case 129: // M129: valve closed
  9852. gcode_M129();
  9853. break;
  9854. #endif // HAS_HEATER_2
  9855. #endif // BARICUDA
  9856. #if HAS_POWER_SWITCH
  9857. case 80: // M80: Turn on Power Supply
  9858. gcode_M80();
  9859. break;
  9860. #endif // HAS_POWER_SWITCH
  9861. case 81: // M81: Turn off Power, including Power Supply, if possible
  9862. gcode_M81();
  9863. break;
  9864. case 82: // M82: Set E axis normal mode (same as other axes)
  9865. gcode_M82();
  9866. break;
  9867. case 83: // M83: Set E axis relative mode
  9868. gcode_M83();
  9869. break;
  9870. case 18: // M18 => M84
  9871. case 84: // M84: Disable all steppers or set timeout
  9872. gcode_M18_M84();
  9873. break;
  9874. case 85: // M85: Set inactivity stepper shutdown timeout
  9875. gcode_M85();
  9876. break;
  9877. case 92: // M92: Set the steps-per-unit for one or more axes
  9878. gcode_M92();
  9879. break;
  9880. case 114: // M114: Report current position
  9881. gcode_M114();
  9882. break;
  9883. case 115: // M115: Report capabilities
  9884. gcode_M115();
  9885. break;
  9886. case 117: // M117: Set LCD message text, if possible
  9887. gcode_M117();
  9888. break;
  9889. case 118: // M118: Display a message in the host console
  9890. gcode_M118();
  9891. break;
  9892. case 119: // M119: Report endstop states
  9893. gcode_M119();
  9894. break;
  9895. case 120: // M120: Enable endstops
  9896. gcode_M120();
  9897. break;
  9898. case 121: // M121: Disable endstops
  9899. gcode_M121();
  9900. break;
  9901. #if ENABLED(ULTIPANEL)
  9902. case 145: // M145: Set material heatup parameters
  9903. gcode_M145();
  9904. break;
  9905. #endif
  9906. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  9907. case 149: // M149: Set temperature units
  9908. gcode_M149();
  9909. break;
  9910. #endif
  9911. #if HAS_COLOR_LEDS
  9912. case 150: // M150: Set Status LED Color
  9913. gcode_M150();
  9914. break;
  9915. #endif // HAS_COLOR_LEDS
  9916. #if ENABLED(MIXING_EXTRUDER)
  9917. case 163: // M163: Set a component weight for mixing extruder
  9918. gcode_M163();
  9919. break;
  9920. #if MIXING_VIRTUAL_TOOLS > 1
  9921. case 164: // M164: Save current mix as a virtual extruder
  9922. gcode_M164();
  9923. break;
  9924. #endif
  9925. #if ENABLED(DIRECT_MIXING_IN_G1)
  9926. case 165: // M165: Set multiple mix weights
  9927. gcode_M165();
  9928. break;
  9929. #endif
  9930. #endif
  9931. case 200: // M200: Set filament diameter, E to cubic units
  9932. gcode_M200();
  9933. break;
  9934. case 201: // M201: Set max acceleration for print moves (units/s^2)
  9935. gcode_M201();
  9936. break;
  9937. #if 0 // Not used for Sprinter/grbl gen6
  9938. case 202: // M202
  9939. gcode_M202();
  9940. break;
  9941. #endif
  9942. case 203: // M203: Set max feedrate (units/sec)
  9943. gcode_M203();
  9944. break;
  9945. case 204: // M204: Set acceleration
  9946. gcode_M204();
  9947. break;
  9948. case 205: // M205: Set advanced settings
  9949. gcode_M205();
  9950. break;
  9951. #if HAS_M206_COMMAND
  9952. case 206: // M206: Set home offsets
  9953. gcode_M206();
  9954. break;
  9955. #endif
  9956. #if ENABLED(DELTA)
  9957. case 665: // M665: Set delta configurations
  9958. gcode_M665();
  9959. break;
  9960. #endif
  9961. #if ENABLED(DELTA) || ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  9962. case 666: // M666: Set delta or dual endstop adjustment
  9963. gcode_M666();
  9964. break;
  9965. #endif
  9966. #if ENABLED(FWRETRACT)
  9967. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  9968. gcode_M207();
  9969. break;
  9970. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  9971. gcode_M208();
  9972. break;
  9973. case 209: // M209: Turn Automatic Retract Detection on/off
  9974. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209();
  9975. break;
  9976. #endif // FWRETRACT
  9977. case 211: // M211: Enable, Disable, and/or Report software endstops
  9978. gcode_M211();
  9979. break;
  9980. #if HOTENDS > 1
  9981. case 218: // M218: Set a tool offset
  9982. gcode_M218();
  9983. break;
  9984. #endif // HOTENDS > 1
  9985. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  9986. gcode_M220();
  9987. break;
  9988. case 221: // M221: Set Flow Percentage
  9989. gcode_M221();
  9990. break;
  9991. case 226: // M226: Wait until a pin reaches a state
  9992. gcode_M226();
  9993. break;
  9994. #if HAS_SERVOS
  9995. case 280: // M280: Set servo position absolute
  9996. gcode_M280();
  9997. break;
  9998. #endif // HAS_SERVOS
  9999. #if ENABLED(BABYSTEPPING)
  10000. case 290: // M290: Babystepping
  10001. gcode_M290();
  10002. break;
  10003. #endif // BABYSTEPPING
  10004. #if HAS_BUZZER
  10005. case 300: // M300: Play beep tone
  10006. gcode_M300();
  10007. break;
  10008. #endif // HAS_BUZZER
  10009. #if ENABLED(PIDTEMP)
  10010. case 301: // M301: Set hotend PID parameters
  10011. gcode_M301();
  10012. break;
  10013. #endif // PIDTEMP
  10014. #if ENABLED(PIDTEMPBED)
  10015. case 304: // M304: Set bed PID parameters
  10016. gcode_M304();
  10017. break;
  10018. #endif // PIDTEMPBED
  10019. #if defined(CHDK) || HAS_PHOTOGRAPH
  10020. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  10021. gcode_M240();
  10022. break;
  10023. #endif // CHDK || PHOTOGRAPH_PIN
  10024. #if HAS_LCD_CONTRAST
  10025. case 250: // M250: Set LCD contrast
  10026. gcode_M250();
  10027. break;
  10028. #endif // HAS_LCD_CONTRAST
  10029. #if ENABLED(EXPERIMENTAL_I2CBUS)
  10030. case 260: // M260: Send data to an i2c slave
  10031. gcode_M260();
  10032. break;
  10033. case 261: // M261: Request data from an i2c slave
  10034. gcode_M261();
  10035. break;
  10036. #endif // EXPERIMENTAL_I2CBUS
  10037. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10038. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  10039. gcode_M302();
  10040. break;
  10041. #endif // PREVENT_COLD_EXTRUSION
  10042. case 303: // M303: PID autotune
  10043. gcode_M303();
  10044. break;
  10045. #if ENABLED(MORGAN_SCARA)
  10046. case 360: // M360: SCARA Theta pos1
  10047. if (gcode_M360()) return;
  10048. break;
  10049. case 361: // M361: SCARA Theta pos2
  10050. if (gcode_M361()) return;
  10051. break;
  10052. case 362: // M362: SCARA Psi pos1
  10053. if (gcode_M362()) return;
  10054. break;
  10055. case 363: // M363: SCARA Psi pos2
  10056. if (gcode_M363()) return;
  10057. break;
  10058. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  10059. if (gcode_M364()) return;
  10060. break;
  10061. #endif // SCARA
  10062. case 400: // M400: Finish all moves
  10063. gcode_M400();
  10064. break;
  10065. #if HAS_BED_PROBE
  10066. case 401: // M401: Deploy probe
  10067. gcode_M401();
  10068. break;
  10069. case 402: // M402: Stow probe
  10070. gcode_M402();
  10071. break;
  10072. #endif // HAS_BED_PROBE
  10073. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  10074. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  10075. gcode_M404();
  10076. break;
  10077. case 405: // M405: Turn on filament sensor for control
  10078. gcode_M405();
  10079. break;
  10080. case 406: // M406: Turn off filament sensor for control
  10081. gcode_M406();
  10082. break;
  10083. case 407: // M407: Display measured filament diameter
  10084. gcode_M407();
  10085. break;
  10086. #endif // FILAMENT_WIDTH_SENSOR
  10087. #if HAS_LEVELING
  10088. case 420: // M420: Enable/Disable Bed Leveling
  10089. gcode_M420();
  10090. break;
  10091. #endif
  10092. #if HAS_MESH
  10093. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  10094. gcode_M421();
  10095. break;
  10096. #endif
  10097. #if HAS_M206_COMMAND
  10098. case 428: // M428: Apply current_position to home_offset
  10099. gcode_M428();
  10100. break;
  10101. #endif
  10102. case 500: // M500: Store settings in EEPROM
  10103. gcode_M500();
  10104. break;
  10105. case 501: // M501: Read settings from EEPROM
  10106. gcode_M501();
  10107. break;
  10108. case 502: // M502: Revert to default settings
  10109. gcode_M502();
  10110. break;
  10111. #if DISABLED(DISABLE_M503)
  10112. case 503: // M503: print settings currently in memory
  10113. gcode_M503();
  10114. break;
  10115. #endif
  10116. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  10117. case 540: // M540: Set abort on endstop hit for SD printing
  10118. gcode_M540();
  10119. break;
  10120. #endif
  10121. #if HAS_BED_PROBE
  10122. case 851: // M851: Set Z Probe Z Offset
  10123. gcode_M851();
  10124. break;
  10125. #endif // HAS_BED_PROBE
  10126. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  10127. case 600: // M600: Pause for filament change
  10128. gcode_M600();
  10129. break;
  10130. #endif // ADVANCED_PAUSE_FEATURE
  10131. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  10132. case 605: // M605: Set Dual X Carriage movement mode
  10133. gcode_M605();
  10134. break;
  10135. #endif // DUAL_X_CARRIAGE
  10136. #if ENABLED(MK2_MULTIPLEXER)
  10137. case 702: // M702: Unload all extruders
  10138. gcode_M702();
  10139. break;
  10140. #endif
  10141. #if ENABLED(LIN_ADVANCE)
  10142. case 900: // M900: Set advance K factor.
  10143. gcode_M900();
  10144. break;
  10145. #endif
  10146. #if ENABLED(HAVE_TMC2130)
  10147. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  10148. gcode_M906();
  10149. break;
  10150. #endif
  10151. case 907: // M907: Set digital trimpot motor current using axis codes.
  10152. gcode_M907();
  10153. break;
  10154. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  10155. case 908: // M908: Control digital trimpot directly.
  10156. gcode_M908();
  10157. break;
  10158. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  10159. case 909: // M909: Print digipot/DAC current value
  10160. gcode_M909();
  10161. break;
  10162. case 910: // M910: Commit digipot/DAC value to external EEPROM
  10163. gcode_M910();
  10164. break;
  10165. #endif
  10166. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  10167. #if ENABLED(HAVE_TMC2130)
  10168. case 911: // M911: Report TMC2130 prewarn triggered flags
  10169. gcode_M911();
  10170. break;
  10171. case 912: // M911: Clear TMC2130 prewarn triggered flags
  10172. gcode_M912();
  10173. break;
  10174. #if ENABLED(HYBRID_THRESHOLD)
  10175. case 913: // M913: Set HYBRID_THRESHOLD speed.
  10176. gcode_M913();
  10177. break;
  10178. #endif
  10179. #if ENABLED(SENSORLESS_HOMING)
  10180. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  10181. gcode_M914();
  10182. break;
  10183. #endif
  10184. #endif
  10185. #if HAS_MICROSTEPS
  10186. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  10187. gcode_M350();
  10188. break;
  10189. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  10190. gcode_M351();
  10191. break;
  10192. #endif // HAS_MICROSTEPS
  10193. case 355: // M355 set case light brightness
  10194. gcode_M355();
  10195. break;
  10196. #if ENABLED(DEBUG_GCODE_PARSER)
  10197. case 800:
  10198. parser.debug(); // GCode Parser Test for M
  10199. break;
  10200. #endif
  10201. #if ENABLED(I2C_POSITION_ENCODERS)
  10202. case 860: // M860 Report encoder module position
  10203. gcode_M860();
  10204. break;
  10205. case 861: // M861 Report encoder module status
  10206. gcode_M861();
  10207. break;
  10208. case 862: // M862 Perform axis test
  10209. gcode_M862();
  10210. break;
  10211. case 863: // M863 Calibrate steps/mm
  10212. gcode_M863();
  10213. break;
  10214. case 864: // M864 Change module address
  10215. gcode_M864();
  10216. break;
  10217. case 865: // M865 Check module firmware version
  10218. gcode_M865();
  10219. break;
  10220. case 866: // M866 Report axis error count
  10221. gcode_M866();
  10222. break;
  10223. case 867: // M867 Toggle error correction
  10224. gcode_M867();
  10225. break;
  10226. case 868: // M868 Set error correction threshold
  10227. gcode_M868();
  10228. break;
  10229. case 869: // M869 Report axis error
  10230. gcode_M869();
  10231. break;
  10232. #endif // I2C_POSITION_ENCODERS
  10233. case 999: // M999: Restart after being Stopped
  10234. gcode_M999();
  10235. break;
  10236. }
  10237. break;
  10238. case 'T':
  10239. gcode_T(parser.codenum);
  10240. break;
  10241. default: parser.unknown_command_error();
  10242. }
  10243. KEEPALIVE_STATE(NOT_BUSY);
  10244. ok_to_send();
  10245. }
  10246. void process_next_command() {
  10247. char * const current_command = command_queue[cmd_queue_index_r];
  10248. if (DEBUGGING(ECHO)) {
  10249. SERIAL_ECHO_START();
  10250. SERIAL_ECHOLN(current_command);
  10251. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  10252. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  10253. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  10254. #endif
  10255. }
  10256. // Parse the next command in the queue
  10257. parser.parse(current_command);
  10258. process_parsed_command();
  10259. }
  10260. /**
  10261. * Send a "Resend: nnn" message to the host to
  10262. * indicate that a command needs to be re-sent.
  10263. */
  10264. void FlushSerialRequestResend() {
  10265. //char command_queue[cmd_queue_index_r][100]="Resend:";
  10266. MYSERIAL.flush();
  10267. SERIAL_PROTOCOLPGM(MSG_RESEND);
  10268. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  10269. ok_to_send();
  10270. }
  10271. /**
  10272. * Send an "ok" message to the host, indicating
  10273. * that a command was successfully processed.
  10274. *
  10275. * If ADVANCED_OK is enabled also include:
  10276. * N<int> Line number of the command, if any
  10277. * P<int> Planner space remaining
  10278. * B<int> Block queue space remaining
  10279. */
  10280. void ok_to_send() {
  10281. refresh_cmd_timeout();
  10282. if (!send_ok[cmd_queue_index_r]) return;
  10283. SERIAL_PROTOCOLPGM(MSG_OK);
  10284. #if ENABLED(ADVANCED_OK)
  10285. char* p = command_queue[cmd_queue_index_r];
  10286. if (*p == 'N') {
  10287. SERIAL_PROTOCOL(' ');
  10288. SERIAL_ECHO(*p++);
  10289. while (NUMERIC_SIGNED(*p))
  10290. SERIAL_ECHO(*p++);
  10291. }
  10292. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  10293. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  10294. #endif
  10295. SERIAL_EOL();
  10296. }
  10297. #if HAS_SOFTWARE_ENDSTOPS
  10298. /**
  10299. * Constrain the given coordinates to the software endstops.
  10300. *
  10301. * For DELTA/SCARA the XY constraint is based on the smallest
  10302. * radius within the set software endstops.
  10303. */
  10304. void clamp_to_software_endstops(float target[XYZ]) {
  10305. if (!soft_endstops_enabled) return;
  10306. #if IS_KINEMATIC
  10307. const float dist_2 = HYPOT2(target[X_AXIS], target[Y_AXIS]);
  10308. if (dist_2 > soft_endstop_radius_2) {
  10309. const float ratio = soft_endstop_radius / SQRT(dist_2); // 200 / 300 = 0.66
  10310. target[X_AXIS] *= ratio;
  10311. target[Y_AXIS] *= ratio;
  10312. }
  10313. #else
  10314. #if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
  10315. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  10316. #endif
  10317. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
  10318. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  10319. #endif
  10320. #if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
  10321. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  10322. #endif
  10323. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
  10324. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  10325. #endif
  10326. #endif
  10327. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
  10328. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  10329. #endif
  10330. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
  10331. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  10332. #endif
  10333. }
  10334. #endif
  10335. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10336. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  10337. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  10338. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  10339. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  10340. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  10341. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  10342. #else
  10343. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  10344. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  10345. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  10346. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  10347. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  10348. #endif
  10349. // Get the Z adjustment for non-linear bed leveling
  10350. float bilinear_z_offset(const float raw[XYZ]) {
  10351. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  10352. last_x = -999.999, last_y = -999.999;
  10353. // Whole units for the grid line indices. Constrained within bounds.
  10354. static int8_t gridx, gridy, nextx, nexty,
  10355. last_gridx = -99, last_gridy = -99;
  10356. // XY relative to the probed area
  10357. const float rx = raw[X_AXIS] - bilinear_start[X_AXIS],
  10358. ry = raw[Y_AXIS] - bilinear_start[Y_AXIS];
  10359. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  10360. // Keep using the last grid box
  10361. #define FAR_EDGE_OR_BOX 2
  10362. #else
  10363. // Just use the grid far edge
  10364. #define FAR_EDGE_OR_BOX 1
  10365. #endif
  10366. if (last_x != rx) {
  10367. last_x = rx;
  10368. ratio_x = rx * ABL_BG_FACTOR(X_AXIS);
  10369. const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  10370. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  10371. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10372. // Beyond the grid maintain height at grid edges
  10373. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  10374. #endif
  10375. gridx = gx;
  10376. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  10377. }
  10378. if (last_y != ry || last_gridx != gridx) {
  10379. if (last_y != ry) {
  10380. last_y = ry;
  10381. ratio_y = ry * ABL_BG_FACTOR(Y_AXIS);
  10382. const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  10383. ratio_y -= gy;
  10384. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10385. // Beyond the grid maintain height at grid edges
  10386. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  10387. #endif
  10388. gridy = gy;
  10389. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  10390. }
  10391. if (last_gridx != gridx || last_gridy != gridy) {
  10392. last_gridx = gridx;
  10393. last_gridy = gridy;
  10394. // Z at the box corners
  10395. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  10396. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  10397. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  10398. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  10399. }
  10400. // Bilinear interpolate. Needed since ry or gridx has changed.
  10401. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  10402. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  10403. D = R - L;
  10404. }
  10405. const float offset = L + ratio_x * D; // the offset almost always changes
  10406. /*
  10407. static float last_offset = 0;
  10408. if (FABS(last_offset - offset) > 0.2) {
  10409. SERIAL_ECHOPGM("Sudden Shift at ");
  10410. SERIAL_ECHOPAIR("x=", rx);
  10411. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  10412. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  10413. SERIAL_ECHOPAIR(" y=", ry);
  10414. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  10415. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  10416. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  10417. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  10418. SERIAL_ECHOPAIR(" z1=", z1);
  10419. SERIAL_ECHOPAIR(" z2=", z2);
  10420. SERIAL_ECHOPAIR(" z3=", z3);
  10421. SERIAL_ECHOLNPAIR(" z4=", z4);
  10422. SERIAL_ECHOPAIR(" L=", L);
  10423. SERIAL_ECHOPAIR(" R=", R);
  10424. SERIAL_ECHOLNPAIR(" offset=", offset);
  10425. }
  10426. last_offset = offset;
  10427. //*/
  10428. return offset;
  10429. }
  10430. #endif // AUTO_BED_LEVELING_BILINEAR
  10431. #if ENABLED(DELTA)
  10432. /**
  10433. * Recalculate factors used for delta kinematics whenever
  10434. * settings have been changed (e.g., by M665).
  10435. */
  10436. void recalc_delta_settings() {
  10437. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  10438. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  10439. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]); // front left tower
  10440. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]);
  10441. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]); // front right tower
  10442. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]);
  10443. delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]); // back middle tower
  10444. delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]);
  10445. delta_diagonal_rod_2_tower[A_AXIS] = sq(delta_diagonal_rod + drt[A_AXIS]);
  10446. delta_diagonal_rod_2_tower[B_AXIS] = sq(delta_diagonal_rod + drt[B_AXIS]);
  10447. delta_diagonal_rod_2_tower[C_AXIS] = sq(delta_diagonal_rod + drt[C_AXIS]);
  10448. update_software_endstops(Z_AXIS);
  10449. axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
  10450. }
  10451. #if ENABLED(DELTA_FAST_SQRT)
  10452. /**
  10453. * Fast inverse sqrt from Quake III Arena
  10454. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  10455. */
  10456. float Q_rsqrt(float number) {
  10457. long i;
  10458. float x2, y;
  10459. const float threehalfs = 1.5f;
  10460. x2 = number * 0.5f;
  10461. y = number;
  10462. i = * ( long * ) &y; // evil floating point bit level hacking
  10463. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  10464. y = * ( float * ) &i;
  10465. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  10466. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  10467. return y;
  10468. }
  10469. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  10470. #else
  10471. #define _SQRT(n) SQRT(n)
  10472. #endif
  10473. /**
  10474. * Delta Inverse Kinematics
  10475. *
  10476. * Calculate the tower positions for a given machine
  10477. * position, storing the result in the delta[] array.
  10478. *
  10479. * This is an expensive calculation, requiring 3 square
  10480. * roots per segmented linear move, and strains the limits
  10481. * of a Mega2560 with a Graphical Display.
  10482. *
  10483. * Suggested optimizations include:
  10484. *
  10485. * - Disable the home_offset (M206) and/or position_shift (G92)
  10486. * features to remove up to 12 float additions.
  10487. *
  10488. * - Use a fast-inverse-sqrt function and add the reciprocal.
  10489. * (see above)
  10490. */
  10491. // Macro to obtain the Z position of an individual tower
  10492. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  10493. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  10494. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  10495. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  10496. ) \
  10497. )
  10498. #define DELTA_RAW_IK() do { \
  10499. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  10500. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  10501. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  10502. }while(0)
  10503. #define DELTA_DEBUG() do { \
  10504. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  10505. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  10506. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  10507. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  10508. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  10509. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  10510. }while(0)
  10511. void inverse_kinematics(const float raw[XYZ]) {
  10512. DELTA_RAW_IK();
  10513. // DELTA_DEBUG();
  10514. }
  10515. /**
  10516. * Calculate the highest Z position where the
  10517. * effector has the full range of XY motion.
  10518. */
  10519. float delta_safe_distance_from_top() {
  10520. float cartesian[XYZ] = { 0, 0, 0 };
  10521. inverse_kinematics(cartesian);
  10522. float distance = delta[A_AXIS];
  10523. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  10524. inverse_kinematics(cartesian);
  10525. return FABS(distance - delta[A_AXIS]);
  10526. }
  10527. /**
  10528. * Delta Forward Kinematics
  10529. *
  10530. * See the Wikipedia article "Trilateration"
  10531. * https://en.wikipedia.org/wiki/Trilateration
  10532. *
  10533. * Establish a new coordinate system in the plane of the
  10534. * three carriage points. This system has its origin at
  10535. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  10536. * plane with a Z component of zero.
  10537. * We will define unit vectors in this coordinate system
  10538. * in our original coordinate system. Then when we calculate
  10539. * the Xnew, Ynew and Znew values, we can translate back into
  10540. * the original system by moving along those unit vectors
  10541. * by the corresponding values.
  10542. *
  10543. * Variable names matched to Marlin, c-version, and avoid the
  10544. * use of any vector library.
  10545. *
  10546. * by Andreas Hardtung 2016-06-07
  10547. * based on a Java function from "Delta Robot Kinematics V3"
  10548. * by Steve Graves
  10549. *
  10550. * The result is stored in the cartes[] array.
  10551. */
  10552. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  10553. // Create a vector in old coordinates along x axis of new coordinate
  10554. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  10555. // Get the Magnitude of vector.
  10556. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  10557. // Create unit vector by dividing by magnitude.
  10558. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  10559. // Get the vector from the origin of the new system to the third point.
  10560. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  10561. // Use the dot product to find the component of this vector on the X axis.
  10562. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  10563. // Create a vector along the x axis that represents the x component of p13.
  10564. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  10565. // Subtract the X component from the original vector leaving only Y. We use the
  10566. // variable that will be the unit vector after we scale it.
  10567. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  10568. // The magnitude of Y component
  10569. float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  10570. // Convert to a unit vector
  10571. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  10572. // The cross product of the unit x and y is the unit z
  10573. // float[] ez = vectorCrossProd(ex, ey);
  10574. float ez[3] = {
  10575. ex[1] * ey[2] - ex[2] * ey[1],
  10576. ex[2] * ey[0] - ex[0] * ey[2],
  10577. ex[0] * ey[1] - ex[1] * ey[0]
  10578. };
  10579. // We now have the d, i and j values defined in Wikipedia.
  10580. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  10581. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  10582. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  10583. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  10584. // Start from the origin of the old coordinates and add vectors in the
  10585. // old coords that represent the Xnew, Ynew and Znew to find the point
  10586. // in the old system.
  10587. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  10588. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  10589. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  10590. }
  10591. void forward_kinematics_DELTA(float point[ABC]) {
  10592. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  10593. }
  10594. #endif // DELTA
  10595. /**
  10596. * Get the stepper positions in the cartes[] array.
  10597. * Forward kinematics are applied for DELTA and SCARA.
  10598. *
  10599. * The result is in the current coordinate space with
  10600. * leveling applied. The coordinates need to be run through
  10601. * unapply_leveling to obtain machine coordinates suitable
  10602. * for current_position, etc.
  10603. */
  10604. void get_cartesian_from_steppers() {
  10605. #if ENABLED(DELTA)
  10606. forward_kinematics_DELTA(
  10607. stepper.get_axis_position_mm(A_AXIS),
  10608. stepper.get_axis_position_mm(B_AXIS),
  10609. stepper.get_axis_position_mm(C_AXIS)
  10610. );
  10611. #else
  10612. #if IS_SCARA
  10613. forward_kinematics_SCARA(
  10614. stepper.get_axis_position_degrees(A_AXIS),
  10615. stepper.get_axis_position_degrees(B_AXIS)
  10616. );
  10617. #else
  10618. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  10619. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  10620. #endif
  10621. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10622. #endif
  10623. }
  10624. /**
  10625. * Set the current_position for an axis based on
  10626. * the stepper positions, removing any leveling that
  10627. * may have been applied.
  10628. */
  10629. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  10630. get_cartesian_from_steppers();
  10631. #if PLANNER_LEVELING
  10632. planner.unapply_leveling(cartes);
  10633. #endif
  10634. if (axis == ALL_AXES)
  10635. COPY(current_position, cartes);
  10636. else
  10637. current_position[axis] = cartes[axis];
  10638. }
  10639. #if ENABLED(MESH_BED_LEVELING)
  10640. /**
  10641. * Prepare a mesh-leveled linear move in a Cartesian setup,
  10642. * splitting the move where it crosses mesh borders.
  10643. */
  10644. void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  10645. int cx1 = mbl.cell_index_x(current_position[X_AXIS]),
  10646. cy1 = mbl.cell_index_y(current_position[Y_AXIS]),
  10647. cx2 = mbl.cell_index_x(destination[X_AXIS]),
  10648. cy2 = mbl.cell_index_y(destination[Y_AXIS]);
  10649. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  10650. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  10651. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  10652. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  10653. if (cx1 == cx2 && cy1 == cy2) {
  10654. // Start and end on same mesh square
  10655. buffer_line_to_destination(fr_mm_s);
  10656. set_current_from_destination();
  10657. return;
  10658. }
  10659. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10660. float normalized_dist, end[XYZE];
  10661. // Split at the left/front border of the right/top square
  10662. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10663. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10664. COPY(end, destination);
  10665. destination[X_AXIS] = mbl.index_to_xpos[gcx];
  10666. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10667. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  10668. CBI(x_splits, gcx);
  10669. }
  10670. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10671. COPY(end, destination);
  10672. destination[Y_AXIS] = mbl.index_to_ypos[gcy];
  10673. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10674. destination[X_AXIS] = MBL_SEGMENT_END(X);
  10675. CBI(y_splits, gcy);
  10676. }
  10677. else {
  10678. // Already split on a border
  10679. buffer_line_to_destination(fr_mm_s);
  10680. set_current_from_destination();
  10681. return;
  10682. }
  10683. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  10684. destination[E_AXIS] = MBL_SEGMENT_END(E);
  10685. // Do the split and look for more borders
  10686. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10687. // Restore destination from stack
  10688. COPY(destination, end);
  10689. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10690. }
  10691. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  10692. #define CELL_INDEX(A,V) ((V - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  10693. /**
  10694. * Prepare a bilinear-leveled linear move on Cartesian,
  10695. * splitting the move where it crosses grid borders.
  10696. */
  10697. void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  10698. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  10699. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  10700. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  10701. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  10702. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  10703. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  10704. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  10705. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  10706. if (cx1 == cx2 && cy1 == cy2) {
  10707. // Start and end on same mesh square
  10708. buffer_line_to_destination(fr_mm_s);
  10709. set_current_from_destination();
  10710. return;
  10711. }
  10712. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10713. float normalized_dist, end[XYZE];
  10714. // Split at the left/front border of the right/top square
  10715. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10716. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10717. COPY(end, destination);
  10718. destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx;
  10719. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10720. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  10721. CBI(x_splits, gcx);
  10722. }
  10723. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10724. COPY(end, destination);
  10725. destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy;
  10726. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10727. destination[X_AXIS] = LINE_SEGMENT_END(X);
  10728. CBI(y_splits, gcy);
  10729. }
  10730. else {
  10731. // Already split on a border
  10732. buffer_line_to_destination(fr_mm_s);
  10733. set_current_from_destination();
  10734. return;
  10735. }
  10736. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  10737. destination[E_AXIS] = LINE_SEGMENT_END(E);
  10738. // Do the split and look for more borders
  10739. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10740. // Restore destination from stack
  10741. COPY(destination, end);
  10742. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10743. }
  10744. #endif // AUTO_BED_LEVELING_BILINEAR
  10745. #if !UBL_DELTA
  10746. #if IS_KINEMATIC
  10747. /**
  10748. * Prepare a linear move in a DELTA or SCARA setup.
  10749. *
  10750. * This calls planner.buffer_line several times, adding
  10751. * small incremental moves for DELTA or SCARA.
  10752. *
  10753. * For Unified Bed Leveling (Delta or Segmented Cartesian)
  10754. * the ubl.prepare_segmented_line_to method replaces this.
  10755. */
  10756. inline bool prepare_kinematic_move_to(float rtarget[XYZE]) {
  10757. // Get the top feedrate of the move in the XY plane
  10758. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  10759. // If the move is only in Z/E don't split up the move
  10760. if (rtarget[X_AXIS] == current_position[X_AXIS] && rtarget[Y_AXIS] == current_position[Y_AXIS]) {
  10761. planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
  10762. return false;
  10763. }
  10764. // Fail if attempting move outside printable radius
  10765. if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) return true;
  10766. // Get the cartesian distances moved in XYZE
  10767. const float difference[XYZE] = {
  10768. rtarget[X_AXIS] - current_position[X_AXIS],
  10769. rtarget[Y_AXIS] - current_position[Y_AXIS],
  10770. rtarget[Z_AXIS] - current_position[Z_AXIS],
  10771. rtarget[E_AXIS] - current_position[E_AXIS]
  10772. };
  10773. // Get the linear distance in XYZ
  10774. float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  10775. // If the move is very short, check the E move distance
  10776. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
  10777. // No E move either? Game over.
  10778. if (UNEAR_ZERO(cartesian_mm)) return true;
  10779. // Minimum number of seconds to move the given distance
  10780. const float seconds = cartesian_mm / _feedrate_mm_s;
  10781. // The number of segments-per-second times the duration
  10782. // gives the number of segments
  10783. uint16_t segments = delta_segments_per_second * seconds;
  10784. // For SCARA minimum segment size is 0.25mm
  10785. #if IS_SCARA
  10786. NOMORE(segments, cartesian_mm * 4);
  10787. #endif
  10788. // At least one segment is required
  10789. NOLESS(segments, 1);
  10790. // The approximate length of each segment
  10791. const float inv_segments = 1.0 / float(segments),
  10792. segment_distance[XYZE] = {
  10793. difference[X_AXIS] * inv_segments,
  10794. difference[Y_AXIS] * inv_segments,
  10795. difference[Z_AXIS] * inv_segments,
  10796. difference[E_AXIS] * inv_segments
  10797. };
  10798. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  10799. // SERIAL_ECHOPAIR(" seconds=", seconds);
  10800. // SERIAL_ECHOLNPAIR(" segments=", segments);
  10801. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10802. // SCARA needs to scale the feed rate from mm/s to degrees/s
  10803. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  10804. feed_factor = inv_segment_length * _feedrate_mm_s;
  10805. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  10806. oldB = stepper.get_axis_position_degrees(B_AXIS);
  10807. #endif
  10808. // Get the raw current position as starting point
  10809. float raw[XYZE];
  10810. COPY(raw, current_position);
  10811. // Drop one segment so the last move is to the exact target.
  10812. // If there's only 1 segment, loops will be skipped entirely.
  10813. --segments;
  10814. // Calculate and execute the segments
  10815. for (uint16_t s = segments + 1; --s;) {
  10816. LOOP_XYZE(i) raw[i] += segment_distance[i];
  10817. #if ENABLED(DELTA)
  10818. DELTA_RAW_IK(); // Delta can inline its kinematics
  10819. #else
  10820. inverse_kinematics(raw);
  10821. #endif
  10822. ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
  10823. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10824. // For SCARA scale the feed rate from mm/s to degrees/s
  10825. // Use ratio between the length of the move and the larger angle change
  10826. const float adiff = abs(delta[A_AXIS] - oldA),
  10827. bdiff = abs(delta[B_AXIS] - oldB);
  10828. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10829. oldA = delta[A_AXIS];
  10830. oldB = delta[B_AXIS];
  10831. #else
  10832. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder);
  10833. #endif
  10834. }
  10835. // Since segment_distance is only approximate,
  10836. // the final move must be to the exact destination.
  10837. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10838. // For SCARA scale the feed rate from mm/s to degrees/s
  10839. // With segments > 1 length is 1 segment, otherwise total length
  10840. inverse_kinematics(rtarget);
  10841. ADJUST_DELTA(rtarget);
  10842. const float adiff = abs(delta[A_AXIS] - oldA),
  10843. bdiff = abs(delta[B_AXIS] - oldB);
  10844. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10845. #else
  10846. planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
  10847. #endif
  10848. return false;
  10849. }
  10850. #else // !IS_KINEMATIC
  10851. /**
  10852. * Prepare a linear move in a Cartesian setup.
  10853. *
  10854. * When a mesh-based leveling system is active, moves are segmented
  10855. * according to the configuration of the leveling system.
  10856. *
  10857. * Returns true if current_position[] was set to destination[]
  10858. */
  10859. inline bool prepare_move_to_destination_cartesian() {
  10860. #if HAS_MESH
  10861. if (planner.leveling_active) {
  10862. #if ENABLED(AUTO_BED_LEVELING_UBL)
  10863. ubl.line_to_destination_cartesian(MMS_SCALED(feedrate_mm_s), active_extruder); // UBL's motion routine needs to know about
  10864. return true; // all moves, including Z-only moves.
  10865. #else
  10866. /**
  10867. * For MBL and ABL-BILINEAR only segment moves when X or Y are involved.
  10868. * Otherwise fall through to do a direct single move.
  10869. */
  10870. if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
  10871. #if ENABLED(MESH_BED_LEVELING)
  10872. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  10873. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10874. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  10875. #endif
  10876. return true;
  10877. }
  10878. #endif
  10879. }
  10880. #endif // HAS_MESH
  10881. buffer_line_to_destination(MMS_SCALED(feedrate_mm_s));
  10882. return false;
  10883. }
  10884. #endif // !IS_KINEMATIC
  10885. #endif // !UBL_DELTA
  10886. #if ENABLED(DUAL_X_CARRIAGE)
  10887. /**
  10888. * Prepare a linear move in a dual X axis setup
  10889. */
  10890. inline bool prepare_move_to_destination_dualx() {
  10891. if (active_extruder_parked) {
  10892. switch (dual_x_carriage_mode) {
  10893. case DXC_FULL_CONTROL_MODE:
  10894. break;
  10895. case DXC_AUTO_PARK_MODE:
  10896. if (current_position[E_AXIS] == destination[E_AXIS]) {
  10897. // This is a travel move (with no extrusion)
  10898. // Skip it, but keep track of the current position
  10899. // (so it can be used as the start of the next non-travel move)
  10900. if (delayed_move_time != 0xFFFFFFFFUL) {
  10901. set_current_from_destination();
  10902. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  10903. delayed_move_time = millis();
  10904. return true;
  10905. }
  10906. }
  10907. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  10908. for (uint8_t i = 0; i < 3; i++)
  10909. planner.buffer_line(
  10910. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  10911. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  10912. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  10913. current_position[E_AXIS],
  10914. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  10915. active_extruder
  10916. );
  10917. delayed_move_time = 0;
  10918. active_extruder_parked = false;
  10919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10920. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  10921. #endif
  10922. break;
  10923. case DXC_DUPLICATION_MODE:
  10924. if (active_extruder == 0) {
  10925. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10926. if (DEBUGGING(LEVELING)) {
  10927. SERIAL_ECHOPAIR("Set planner X", inactive_extruder_x_pos);
  10928. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  10929. }
  10930. #endif
  10931. // move duplicate extruder into correct duplication position.
  10932. planner.set_position_mm(
  10933. inactive_extruder_x_pos,
  10934. current_position[Y_AXIS],
  10935. current_position[Z_AXIS],
  10936. current_position[E_AXIS]
  10937. );
  10938. planner.buffer_line(
  10939. current_position[X_AXIS] + duplicate_extruder_x_offset,
  10940. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  10941. planner.max_feedrate_mm_s[X_AXIS], 1
  10942. );
  10943. SYNC_PLAN_POSITION_KINEMATIC();
  10944. stepper.synchronize();
  10945. extruder_duplication_enabled = true;
  10946. active_extruder_parked = false;
  10947. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10948. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  10949. #endif
  10950. }
  10951. else {
  10952. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10953. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  10954. #endif
  10955. }
  10956. break;
  10957. }
  10958. }
  10959. return prepare_move_to_destination_cartesian();
  10960. }
  10961. #endif // DUAL_X_CARRIAGE
  10962. /**
  10963. * Prepare a single move and get ready for the next one
  10964. *
  10965. * This may result in several calls to planner.buffer_line to
  10966. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  10967. */
  10968. void prepare_move_to_destination() {
  10969. clamp_to_software_endstops(destination);
  10970. refresh_cmd_timeout();
  10971. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10972. if (!DEBUGGING(DRYRUN)) {
  10973. if (destination[E_AXIS] != current_position[E_AXIS]) {
  10974. if (thermalManager.tooColdToExtrude(active_extruder)) {
  10975. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10976. SERIAL_ECHO_START();
  10977. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  10978. }
  10979. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10980. if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) {
  10981. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10982. SERIAL_ECHO_START();
  10983. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  10984. }
  10985. #endif
  10986. }
  10987. }
  10988. #endif
  10989. if (
  10990. #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
  10991. ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s))
  10992. #elif IS_KINEMATIC
  10993. prepare_kinematic_move_to(destination)
  10994. #elif ENABLED(DUAL_X_CARRIAGE)
  10995. prepare_move_to_destination_dualx()
  10996. #else
  10997. prepare_move_to_destination_cartesian()
  10998. #endif
  10999. ) return;
  11000. set_current_from_destination();
  11001. }
  11002. #if ENABLED(ARC_SUPPORT)
  11003. #if N_ARC_CORRECTION < 1
  11004. #undef N_ARC_CORRECTION
  11005. #define N_ARC_CORRECTION 1
  11006. #endif
  11007. /**
  11008. * Plan an arc in 2 dimensions
  11009. *
  11010. * The arc is approximated by generating many small linear segments.
  11011. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  11012. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  11013. * larger segments will tend to be more efficient. Your slicer should have
  11014. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  11015. */
  11016. void plan_arc(
  11017. float raw[XYZE], // Destination position
  11018. float *offset, // Center of rotation relative to current_position
  11019. uint8_t clockwise // Clockwise?
  11020. ) {
  11021. #if ENABLED(CNC_WORKSPACE_PLANES)
  11022. AxisEnum p_axis, q_axis, l_axis;
  11023. switch (workspace_plane) {
  11024. default:
  11025. case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  11026. case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  11027. case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  11028. }
  11029. #else
  11030. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  11031. #endif
  11032. // Radius vector from center to current location
  11033. float r_P = -offset[0], r_Q = -offset[1];
  11034. const float radius = HYPOT(r_P, r_Q),
  11035. center_P = current_position[p_axis] - r_P,
  11036. center_Q = current_position[q_axis] - r_Q,
  11037. rt_X = raw[p_axis] - center_P,
  11038. rt_Y = raw[q_axis] - center_Q,
  11039. linear_travel = raw[l_axis] - current_position[l_axis],
  11040. extruder_travel = raw[E_AXIS] - current_position[E_AXIS];
  11041. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  11042. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
  11043. if (angular_travel < 0) angular_travel += RADIANS(360);
  11044. if (clockwise) angular_travel -= RADIANS(360);
  11045. // Make a circle if the angular rotation is 0 and the target is current position
  11046. if (angular_travel == 0 && current_position[p_axis] == raw[p_axis] && current_position[q_axis] == raw[q_axis])
  11047. angular_travel = RADIANS(360);
  11048. const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
  11049. if (mm_of_travel < 0.001) return;
  11050. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  11051. if (segments == 0) segments = 1;
  11052. /**
  11053. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  11054. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  11055. * r_T = [cos(phi) -sin(phi);
  11056. * sin(phi) cos(phi)] * r ;
  11057. *
  11058. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  11059. * defined from the circle center to the initial position. Each line segment is formed by successive
  11060. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  11061. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  11062. * all double numbers are single precision on the Arduino. (True double precision will not have
  11063. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  11064. * tool precision in some cases. Therefore, arc path correction is implemented.
  11065. *
  11066. * Small angle approximation may be used to reduce computation overhead further. This approximation
  11067. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  11068. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  11069. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  11070. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  11071. * issue for CNC machines with the single precision Arduino calculations.
  11072. *
  11073. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  11074. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  11075. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  11076. * This is important when there are successive arc motions.
  11077. */
  11078. // Vector rotation matrix values
  11079. float arc_target[XYZE];
  11080. const float theta_per_segment = angular_travel / segments,
  11081. linear_per_segment = linear_travel / segments,
  11082. extruder_per_segment = extruder_travel / segments,
  11083. sin_T = theta_per_segment,
  11084. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  11085. // Initialize the linear axis
  11086. arc_target[l_axis] = current_position[l_axis];
  11087. // Initialize the extruder axis
  11088. arc_target[E_AXIS] = current_position[E_AXIS];
  11089. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  11090. millis_t next_idle_ms = millis() + 200UL;
  11091. #if N_ARC_CORRECTION > 1
  11092. int8_t arc_recalc_count = N_ARC_CORRECTION;
  11093. #endif
  11094. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  11095. thermalManager.manage_heater();
  11096. if (ELAPSED(millis(), next_idle_ms)) {
  11097. next_idle_ms = millis() + 200UL;
  11098. idle();
  11099. }
  11100. #if N_ARC_CORRECTION > 1
  11101. if (--arc_recalc_count) {
  11102. // Apply vector rotation matrix to previous r_P / 1
  11103. const float r_new_Y = r_P * sin_T + r_Q * cos_T;
  11104. r_P = r_P * cos_T - r_Q * sin_T;
  11105. r_Q = r_new_Y;
  11106. }
  11107. else
  11108. #endif
  11109. {
  11110. #if N_ARC_CORRECTION > 1
  11111. arc_recalc_count = N_ARC_CORRECTION;
  11112. #endif
  11113. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  11114. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  11115. // To reduce stuttering, the sin and cos could be computed at different times.
  11116. // For now, compute both at the same time.
  11117. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  11118. r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  11119. r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  11120. }
  11121. // Update arc_target location
  11122. arc_target[p_axis] = center_P + r_P;
  11123. arc_target[q_axis] = center_Q + r_Q;
  11124. arc_target[l_axis] += linear_per_segment;
  11125. arc_target[E_AXIS] += extruder_per_segment;
  11126. clamp_to_software_endstops(arc_target);
  11127. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  11128. }
  11129. // Ensure last segment arrives at target location.
  11130. planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
  11131. // As far as the parser is concerned, the position is now == target. In reality the
  11132. // motion control system might still be processing the action and the real tool position
  11133. // in any intermediate location.
  11134. set_current_from_destination();
  11135. } // plan_arc
  11136. #endif // ARC_SUPPORT
  11137. #if ENABLED(BEZIER_CURVE_SUPPORT)
  11138. void plan_cubic_move(const float offset[4]) {
  11139. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  11140. // As far as the parser is concerned, the position is now == destination. In reality the
  11141. // motion control system might still be processing the action and the real tool position
  11142. // in any intermediate location.
  11143. set_current_from_destination();
  11144. }
  11145. #endif // BEZIER_CURVE_SUPPORT
  11146. #if ENABLED(USE_CONTROLLER_FAN)
  11147. void controllerFan() {
  11148. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  11149. nextMotorCheck = 0; // Last time the state was checked
  11150. const millis_t ms = millis();
  11151. if (ELAPSED(ms, nextMotorCheck)) {
  11152. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  11153. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  11154. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  11155. #if E_STEPPERS > 1
  11156. || E1_ENABLE_READ == E_ENABLE_ON
  11157. #if HAS_X2_ENABLE
  11158. || X2_ENABLE_READ == X_ENABLE_ON
  11159. #endif
  11160. #if E_STEPPERS > 2
  11161. || E2_ENABLE_READ == E_ENABLE_ON
  11162. #if E_STEPPERS > 3
  11163. || E3_ENABLE_READ == E_ENABLE_ON
  11164. #if E_STEPPERS > 4
  11165. || E4_ENABLE_READ == E_ENABLE_ON
  11166. #endif // E_STEPPERS > 4
  11167. #endif // E_STEPPERS > 3
  11168. #endif // E_STEPPERS > 2
  11169. #endif // E_STEPPERS > 1
  11170. ) {
  11171. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  11172. }
  11173. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  11174. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  11175. // allows digital or PWM fan output to be used (see M42 handling)
  11176. WRITE(CONTROLLER_FAN_PIN, speed);
  11177. analogWrite(CONTROLLER_FAN_PIN, speed);
  11178. }
  11179. }
  11180. #endif // USE_CONTROLLER_FAN
  11181. #if ENABLED(MORGAN_SCARA)
  11182. /**
  11183. * Morgan SCARA Forward Kinematics. Results in cartes[].
  11184. * Maths and first version by QHARLEY.
  11185. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  11186. */
  11187. void forward_kinematics_SCARA(const float &a, const float &b) {
  11188. float a_sin = sin(RADIANS(a)) * L1,
  11189. a_cos = cos(RADIANS(a)) * L1,
  11190. b_sin = sin(RADIANS(b)) * L2,
  11191. b_cos = cos(RADIANS(b)) * L2;
  11192. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  11193. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  11194. /*
  11195. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  11196. SERIAL_ECHOPAIR(" b=", b);
  11197. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  11198. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  11199. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  11200. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  11201. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  11202. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  11203. //*/
  11204. }
  11205. /**
  11206. * Morgan SCARA Inverse Kinematics. Results in delta[].
  11207. *
  11208. * See http://forums.reprap.org/read.php?185,283327
  11209. *
  11210. * Maths and first version by QHARLEY.
  11211. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  11212. */
  11213. void inverse_kinematics(const float raw[XYZ]) {
  11214. static float C2, S2, SK1, SK2, THETA, PSI;
  11215. float sx = raw[X_AXIS] - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  11216. sy = raw[Y_AXIS] - SCARA_OFFSET_Y; // With scaling factor.
  11217. if (L1 == L2)
  11218. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  11219. else
  11220. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  11221. S2 = SQRT(1 - sq(C2));
  11222. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  11223. SK1 = L1 + L2 * C2;
  11224. // Rotated Arm2 gives the distance from Arm1 to Arm2
  11225. SK2 = L2 * S2;
  11226. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  11227. THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
  11228. // Angle of Arm2
  11229. PSI = ATAN2(S2, C2);
  11230. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  11231. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  11232. delta[C_AXIS] = raw[Z_AXIS];
  11233. /*
  11234. DEBUG_POS("SCARA IK", raw);
  11235. DEBUG_POS("SCARA IK", delta);
  11236. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  11237. SERIAL_ECHOPAIR(",", sy);
  11238. SERIAL_ECHOPAIR(" C2=", C2);
  11239. SERIAL_ECHOPAIR(" S2=", S2);
  11240. SERIAL_ECHOPAIR(" Theta=", THETA);
  11241. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  11242. //*/
  11243. }
  11244. #endif // MORGAN_SCARA
  11245. #if ENABLED(TEMP_STAT_LEDS)
  11246. static bool red_led = false;
  11247. static millis_t next_status_led_update_ms = 0;
  11248. void handle_status_leds(void) {
  11249. if (ELAPSED(millis(), next_status_led_update_ms)) {
  11250. next_status_led_update_ms += 500; // Update every 0.5s
  11251. float max_temp = 0.0;
  11252. #if HAS_TEMP_BED
  11253. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  11254. #endif
  11255. HOTEND_LOOP()
  11256. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  11257. const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  11258. if (new_led != red_led) {
  11259. red_led = new_led;
  11260. #if PIN_EXISTS(STAT_LED_RED)
  11261. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  11262. #if PIN_EXISTS(STAT_LED_BLUE)
  11263. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  11264. #endif
  11265. #else
  11266. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  11267. #endif
  11268. }
  11269. }
  11270. }
  11271. #endif
  11272. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11273. void handle_filament_runout() {
  11274. if (!filament_ran_out) {
  11275. filament_ran_out = true;
  11276. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  11277. stepper.synchronize();
  11278. }
  11279. }
  11280. #endif // FILAMENT_RUNOUT_SENSOR
  11281. #if ENABLED(FAST_PWM_FAN)
  11282. void setPwmFrequency(uint8_t pin, int val) {
  11283. val &= 0x07;
  11284. switch (digitalPinToTimer(pin)) {
  11285. #ifdef TCCR0A
  11286. #if !AVR_AT90USB1286_FAMILY
  11287. case TIMER0A:
  11288. #endif
  11289. case TIMER0B:
  11290. //_SET_CS(0, val);
  11291. break;
  11292. #endif
  11293. #ifdef TCCR1A
  11294. case TIMER1A:
  11295. case TIMER1B:
  11296. //_SET_CS(1, val);
  11297. break;
  11298. #endif
  11299. #ifdef TCCR2
  11300. case TIMER2:
  11301. case TIMER2:
  11302. _SET_CS(2, val);
  11303. break;
  11304. #endif
  11305. #ifdef TCCR2A
  11306. case TIMER2A:
  11307. case TIMER2B:
  11308. _SET_CS(2, val);
  11309. break;
  11310. #endif
  11311. #ifdef TCCR3A
  11312. case TIMER3A:
  11313. case TIMER3B:
  11314. case TIMER3C:
  11315. _SET_CS(3, val);
  11316. break;
  11317. #endif
  11318. #ifdef TCCR4A
  11319. case TIMER4A:
  11320. case TIMER4B:
  11321. case TIMER4C:
  11322. _SET_CS(4, val);
  11323. break;
  11324. #endif
  11325. #ifdef TCCR5A
  11326. case TIMER5A:
  11327. case TIMER5B:
  11328. case TIMER5C:
  11329. _SET_CS(5, val);
  11330. break;
  11331. #endif
  11332. }
  11333. }
  11334. #endif // FAST_PWM_FAN
  11335. float calculate_volumetric_multiplier(const float diameter) {
  11336. if (!volumetric_enabled || diameter == 0) return 1.0;
  11337. return 1.0 / (M_PI * sq(diameter * 0.5));
  11338. }
  11339. void calculate_volumetric_multipliers() {
  11340. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  11341. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  11342. }
  11343. void enable_all_steppers() {
  11344. enable_X();
  11345. enable_Y();
  11346. enable_Z();
  11347. enable_E0();
  11348. enable_E1();
  11349. enable_E2();
  11350. enable_E3();
  11351. enable_E4();
  11352. }
  11353. void disable_e_steppers() {
  11354. disable_E0();
  11355. disable_E1();
  11356. disable_E2();
  11357. disable_E3();
  11358. disable_E4();
  11359. }
  11360. void disable_all_steppers() {
  11361. disable_X();
  11362. disable_Y();
  11363. disable_Z();
  11364. disable_e_steppers();
  11365. }
  11366. #if ENABLED(HAVE_TMC2130)
  11367. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  11368. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  11369. const bool is_otpw = st.checkOT();
  11370. // Report if a warning was triggered
  11371. static bool previous_otpw = false;
  11372. if (is_otpw && !previous_otpw) {
  11373. char timestamp[10];
  11374. duration_t elapsed = print_job_timer.duration();
  11375. const bool has_days = (elapsed.value > 60*60*24L);
  11376. (void)elapsed.toDigital(timestamp, has_days);
  11377. SERIAL_ECHO(timestamp);
  11378. SERIAL_ECHOPGM(": ");
  11379. SERIAL_ECHO(axisID);
  11380. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  11381. }
  11382. previous_otpw = is_otpw;
  11383. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  11384. // Return if user has not enabled current control start with M906 S1.
  11385. if (!auto_current_control) return;
  11386. /**
  11387. * Decrease current if is_otpw is true.
  11388. * Bail out if driver is disabled.
  11389. * Increase current if OTPW has not been triggered yet.
  11390. */
  11391. uint16_t current = st.getCurrent();
  11392. if (is_otpw) {
  11393. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  11394. #if ENABLED(REPORT_CURRENT_CHANGE)
  11395. SERIAL_ECHO(axisID);
  11396. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  11397. #endif
  11398. }
  11399. else if (!st.isEnabled())
  11400. return;
  11401. else if (!is_otpw && !st.getOTPW()) {
  11402. current += CURRENT_STEP;
  11403. if (current <= AUTO_ADJUST_MAX) {
  11404. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  11405. #if ENABLED(REPORT_CURRENT_CHANGE)
  11406. SERIAL_ECHO(axisID);
  11407. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  11408. #endif
  11409. }
  11410. }
  11411. SERIAL_EOL();
  11412. #endif
  11413. }
  11414. void checkOverTemp() {
  11415. static millis_t next_cOT = 0;
  11416. if (ELAPSED(millis(), next_cOT)) {
  11417. next_cOT = millis() + 5000;
  11418. #if ENABLED(X_IS_TMC2130)
  11419. automatic_current_control(stepperX, "X");
  11420. #endif
  11421. #if ENABLED(Y_IS_TMC2130)
  11422. automatic_current_control(stepperY, "Y");
  11423. #endif
  11424. #if ENABLED(Z_IS_TMC2130)
  11425. automatic_current_control(stepperZ, "Z");
  11426. #endif
  11427. #if ENABLED(X2_IS_TMC2130)
  11428. automatic_current_control(stepperX2, "X2");
  11429. #endif
  11430. #if ENABLED(Y2_IS_TMC2130)
  11431. automatic_current_control(stepperY2, "Y2");
  11432. #endif
  11433. #if ENABLED(Z2_IS_TMC2130)
  11434. automatic_current_control(stepperZ2, "Z2");
  11435. #endif
  11436. #if ENABLED(E0_IS_TMC2130)
  11437. automatic_current_control(stepperE0, "E0");
  11438. #endif
  11439. #if ENABLED(E1_IS_TMC2130)
  11440. automatic_current_control(stepperE1, "E1");
  11441. #endif
  11442. #if ENABLED(E2_IS_TMC2130)
  11443. automatic_current_control(stepperE2, "E2");
  11444. #endif
  11445. #if ENABLED(E3_IS_TMC2130)
  11446. automatic_current_control(stepperE3, "E3");
  11447. #endif
  11448. #if ENABLED(E4_IS_TMC2130)
  11449. automatic_current_control(stepperE4, "E4");
  11450. #endif
  11451. }
  11452. }
  11453. #endif // HAVE_TMC2130
  11454. /**
  11455. * Manage several activities:
  11456. * - Check for Filament Runout
  11457. * - Keep the command buffer full
  11458. * - Check for maximum inactive time between commands
  11459. * - Check for maximum inactive time between stepper commands
  11460. * - Check if pin CHDK needs to go LOW
  11461. * - Check for KILL button held down
  11462. * - Check for HOME button held down
  11463. * - Check if cooling fan needs to be switched on
  11464. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  11465. */
  11466. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  11467. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11468. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  11469. handle_filament_runout();
  11470. #endif
  11471. if (commands_in_queue < BUFSIZE) get_available_commands();
  11472. const millis_t ms = millis();
  11473. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  11474. SERIAL_ERROR_START();
  11475. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
  11476. kill(PSTR(MSG_KILLED));
  11477. }
  11478. // Prevent steppers timing-out in the middle of M600
  11479. #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
  11480. #define MOVE_AWAY_TEST !move_away_flag
  11481. #else
  11482. #define MOVE_AWAY_TEST true
  11483. #endif
  11484. if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  11485. && !ignore_stepper_queue && !planner.blocks_queued()) {
  11486. #if ENABLED(DISABLE_INACTIVE_X)
  11487. disable_X();
  11488. #endif
  11489. #if ENABLED(DISABLE_INACTIVE_Y)
  11490. disable_Y();
  11491. #endif
  11492. #if ENABLED(DISABLE_INACTIVE_Z)
  11493. disable_Z();
  11494. #endif
  11495. #if ENABLED(DISABLE_INACTIVE_E)
  11496. disable_e_steppers();
  11497. #endif
  11498. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  11499. ubl_lcd_map_control = defer_return_to_status = false;
  11500. #endif
  11501. }
  11502. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  11503. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  11504. chdkActive = false;
  11505. WRITE(CHDK, LOW);
  11506. }
  11507. #endif
  11508. #if HAS_KILL
  11509. // Check if the kill button was pressed and wait just in case it was an accidental
  11510. // key kill key press
  11511. // -------------------------------------------------------------------------------
  11512. static int killCount = 0; // make the inactivity button a bit less responsive
  11513. const int KILL_DELAY = 750;
  11514. if (!READ(KILL_PIN))
  11515. killCount++;
  11516. else if (killCount > 0)
  11517. killCount--;
  11518. // Exceeded threshold and we can confirm that it was not accidental
  11519. // KILL the machine
  11520. // ----------------------------------------------------------------
  11521. if (killCount >= KILL_DELAY) {
  11522. SERIAL_ERROR_START();
  11523. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  11524. kill(PSTR(MSG_KILLED));
  11525. }
  11526. #endif
  11527. #if HAS_HOME
  11528. // Check to see if we have to home, use poor man's debouncer
  11529. // ---------------------------------------------------------
  11530. static int homeDebounceCount = 0; // poor man's debouncing count
  11531. const int HOME_DEBOUNCE_DELAY = 2500;
  11532. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  11533. if (!homeDebounceCount) {
  11534. enqueue_and_echo_commands_P(PSTR("G28"));
  11535. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  11536. }
  11537. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  11538. homeDebounceCount++;
  11539. else
  11540. homeDebounceCount = 0;
  11541. }
  11542. #endif
  11543. #if ENABLED(USE_CONTROLLER_FAN)
  11544. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  11545. #endif
  11546. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  11547. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  11548. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  11549. #if ENABLED(SWITCHING_EXTRUDER)
  11550. const bool oldstatus = E0_ENABLE_READ;
  11551. enable_E0();
  11552. #else // !SWITCHING_EXTRUDER
  11553. bool oldstatus;
  11554. switch (active_extruder) {
  11555. default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  11556. #if E_STEPPERS > 1
  11557. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  11558. #if E_STEPPERS > 2
  11559. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  11560. #if E_STEPPERS > 3
  11561. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  11562. #if E_STEPPERS > 4
  11563. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  11564. #endif // E_STEPPERS > 4
  11565. #endif // E_STEPPERS > 3
  11566. #endif // E_STEPPERS > 2
  11567. #endif // E_STEPPERS > 1
  11568. }
  11569. #endif // !SWITCHING_EXTRUDER
  11570. previous_cmd_ms = ms; // refresh_cmd_timeout()
  11571. const float olde = current_position[E_AXIS];
  11572. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  11573. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  11574. current_position[E_AXIS] = olde;
  11575. planner.set_e_position_mm(olde);
  11576. stepper.synchronize();
  11577. #if ENABLED(SWITCHING_EXTRUDER)
  11578. E0_ENABLE_WRITE(oldstatus);
  11579. #else
  11580. switch (active_extruder) {
  11581. case 0: E0_ENABLE_WRITE(oldstatus); break;
  11582. #if E_STEPPERS > 1
  11583. case 1: E1_ENABLE_WRITE(oldstatus); break;
  11584. #if E_STEPPERS > 2
  11585. case 2: E2_ENABLE_WRITE(oldstatus); break;
  11586. #if E_STEPPERS > 3
  11587. case 3: E3_ENABLE_WRITE(oldstatus); break;
  11588. #if E_STEPPERS > 4
  11589. case 4: E4_ENABLE_WRITE(oldstatus); break;
  11590. #endif // E_STEPPERS > 4
  11591. #endif // E_STEPPERS > 3
  11592. #endif // E_STEPPERS > 2
  11593. #endif // E_STEPPERS > 1
  11594. }
  11595. #endif // !SWITCHING_EXTRUDER
  11596. }
  11597. #endif // EXTRUDER_RUNOUT_PREVENT
  11598. #if ENABLED(DUAL_X_CARRIAGE)
  11599. // handle delayed move timeout
  11600. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  11601. // travel moves have been received so enact them
  11602. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  11603. set_destination_from_current();
  11604. prepare_move_to_destination();
  11605. }
  11606. #endif
  11607. #if ENABLED(TEMP_STAT_LEDS)
  11608. handle_status_leds();
  11609. #endif
  11610. #if ENABLED(HAVE_TMC2130)
  11611. checkOverTemp();
  11612. #endif
  11613. planner.check_axes_activity();
  11614. }
  11615. /**
  11616. * Standard idle routine keeps the machine alive
  11617. */
  11618. void idle(
  11619. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11620. bool no_stepper_sleep/*=false*/
  11621. #endif
  11622. ) {
  11623. #if ENABLED(MAX7219_DEBUG)
  11624. Max7219_idle_tasks();
  11625. #endif // MAX7219_DEBUG
  11626. lcd_update();
  11627. host_keepalive();
  11628. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  11629. auto_report_temperatures();
  11630. #endif
  11631. manage_inactivity(
  11632. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11633. no_stepper_sleep
  11634. #endif
  11635. );
  11636. thermalManager.manage_heater();
  11637. #if ENABLED(PRINTCOUNTER)
  11638. print_job_timer.tick();
  11639. #endif
  11640. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  11641. buzzer.tick();
  11642. #endif
  11643. #if ENABLED(I2C_POSITION_ENCODERS)
  11644. if (planner.blocks_queued() &&
  11645. ( (blockBufferIndexRef != planner.block_buffer_head) ||
  11646. ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
  11647. blockBufferIndexRef = planner.block_buffer_head;
  11648. I2CPEM.update();
  11649. lastUpdateMillis = millis();
  11650. }
  11651. #endif
  11652. }
  11653. /**
  11654. * Kill all activity and lock the machine.
  11655. * After this the machine will need to be reset.
  11656. */
  11657. void kill(const char* lcd_msg) {
  11658. SERIAL_ERROR_START();
  11659. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  11660. thermalManager.disable_all_heaters();
  11661. disable_all_steppers();
  11662. #if ENABLED(ULTRA_LCD)
  11663. kill_screen(lcd_msg);
  11664. #else
  11665. UNUSED(lcd_msg);
  11666. #endif
  11667. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  11668. cli(); // Stop interrupts
  11669. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  11670. thermalManager.disable_all_heaters(); //turn off heaters again
  11671. #ifdef ACTION_ON_KILL
  11672. SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
  11673. #endif
  11674. #if HAS_POWER_SWITCH
  11675. SET_INPUT(PS_ON_PIN);
  11676. #endif
  11677. suicide();
  11678. while (1) {
  11679. #if ENABLED(USE_WATCHDOG)
  11680. watchdog_reset();
  11681. #endif
  11682. } // Wait for reset
  11683. }
  11684. /**
  11685. * Turn off heaters and stop the print in progress
  11686. * After a stop the machine may be resumed with M999
  11687. */
  11688. void stop() {
  11689. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  11690. #if ENABLED(PROBING_FANS_OFF)
  11691. if (fans_paused) fans_pause(false); // put things back the way they were
  11692. #endif
  11693. if (IsRunning()) {
  11694. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  11695. SERIAL_ERROR_START();
  11696. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  11697. LCD_MESSAGEPGM(MSG_STOPPED);
  11698. safe_delay(350); // allow enough time for messages to get out before stopping
  11699. Running = false;
  11700. }
  11701. }
  11702. /**
  11703. * Marlin entry-point: Set up before the program loop
  11704. * - Set up the kill pin, filament runout, power hold
  11705. * - Start the serial port
  11706. * - Print startup messages and diagnostics
  11707. * - Get EEPROM or default settings
  11708. * - Initialize managers for:
  11709. * • temperature
  11710. * • planner
  11711. * • watchdog
  11712. * • stepper
  11713. * • photo pin
  11714. * • servos
  11715. * • LCD controller
  11716. * • Digipot I2C
  11717. * • Z probe sled
  11718. * • status LEDs
  11719. */
  11720. void setup() {
  11721. #if ENABLED(MAX7219_DEBUG)
  11722. Max7219_init();
  11723. #endif
  11724. #ifdef DISABLE_JTAG
  11725. // Disable JTAG on AT90USB chips to free up pins for IO
  11726. MCUCR = 0x80;
  11727. MCUCR = 0x80;
  11728. #endif
  11729. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11730. setup_filrunoutpin();
  11731. #endif
  11732. setup_killpin();
  11733. setup_powerhold();
  11734. #if HAS_STEPPER_RESET
  11735. disableStepperDrivers();
  11736. #endif
  11737. MYSERIAL.begin(BAUDRATE);
  11738. SERIAL_PROTOCOLLNPGM("start");
  11739. SERIAL_ECHO_START();
  11740. // Check startup - does nothing if bootloader sets MCUSR to 0
  11741. byte mcu = MCUSR;
  11742. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  11743. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  11744. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  11745. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  11746. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  11747. MCUSR = 0;
  11748. SERIAL_ECHOPGM(MSG_MARLIN);
  11749. SERIAL_CHAR(' ');
  11750. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  11751. SERIAL_EOL();
  11752. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  11753. SERIAL_ECHO_START();
  11754. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  11755. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  11756. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  11757. SERIAL_ECHO_START();
  11758. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  11759. #endif
  11760. SERIAL_ECHO_START();
  11761. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  11762. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  11763. // Send "ok" after commands by default
  11764. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  11765. // Load data from EEPROM if available (or use defaults)
  11766. // This also updates variables in the planner, elsewhere
  11767. (void)settings.load();
  11768. #if HAS_M206_COMMAND
  11769. // Initialize current position based on home_offset
  11770. COPY(current_position, home_offset);
  11771. #else
  11772. ZERO(current_position);
  11773. #endif
  11774. // Vital to init stepper/planner equivalent for current_position
  11775. SYNC_PLAN_POSITION_KINEMATIC();
  11776. thermalManager.init(); // Initialize temperature loop
  11777. #if ENABLED(USE_WATCHDOG)
  11778. watchdog_init();
  11779. #endif
  11780. stepper.init(); // Initialize stepper, this enables interrupts!
  11781. servo_init();
  11782. #if HAS_PHOTOGRAPH
  11783. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  11784. #endif
  11785. #if HAS_CASE_LIGHT
  11786. case_light_on = CASE_LIGHT_DEFAULT_ON;
  11787. case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
  11788. update_case_light();
  11789. #endif
  11790. #if ENABLED(SPINDLE_LASER_ENABLE)
  11791. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  11792. #if SPINDLE_DIR_CHANGE
  11793. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  11794. #endif
  11795. #if ENABLED(SPINDLE_LASER_PWM)
  11796. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  11797. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  11798. #endif
  11799. #endif
  11800. #if HAS_BED_PROBE
  11801. endstops.enable_z_probe(false);
  11802. #endif
  11803. #if ENABLED(USE_CONTROLLER_FAN)
  11804. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  11805. #endif
  11806. #if HAS_STEPPER_RESET
  11807. enableStepperDrivers();
  11808. #endif
  11809. #if ENABLED(DIGIPOT_I2C)
  11810. digipot_i2c_init();
  11811. #endif
  11812. #if ENABLED(DAC_STEPPER_CURRENT)
  11813. dac_init();
  11814. #endif
  11815. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  11816. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  11817. #endif
  11818. #if HAS_HOME
  11819. SET_INPUT_PULLUP(HOME_PIN);
  11820. #endif
  11821. #if PIN_EXISTS(STAT_LED_RED)
  11822. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  11823. #endif
  11824. #if PIN_EXISTS(STAT_LED_BLUE)
  11825. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  11826. #endif
  11827. #if ENABLED(NEOPIXEL_LED)
  11828. SET_OUTPUT(NEOPIXEL_PIN);
  11829. setup_neopixel();
  11830. #endif
  11831. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  11832. SET_OUTPUT(RGB_LED_R_PIN);
  11833. SET_OUTPUT(RGB_LED_G_PIN);
  11834. SET_OUTPUT(RGB_LED_B_PIN);
  11835. #if ENABLED(RGBW_LED)
  11836. SET_OUTPUT(RGB_LED_W_PIN);
  11837. #endif
  11838. #endif
  11839. #if ENABLED(MK2_MULTIPLEXER)
  11840. SET_OUTPUT(E_MUX0_PIN);
  11841. SET_OUTPUT(E_MUX1_PIN);
  11842. SET_OUTPUT(E_MUX2_PIN);
  11843. #endif
  11844. #if HAS_FANMUX
  11845. fanmux_init();
  11846. #endif
  11847. lcd_init();
  11848. #if ENABLED(SHOW_BOOTSCREEN)
  11849. lcd_bootscreen();
  11850. #if ENABLED(ULTRA_LCD) && DISABLED(SDSUPPORT)
  11851. lcd_init();
  11852. #endif
  11853. #endif
  11854. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  11855. // Initialize mixing to 100% color 1
  11856. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11857. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  11858. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  11859. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11860. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  11861. #endif
  11862. #if ENABLED(BLTOUCH)
  11863. // Make sure any BLTouch error condition is cleared
  11864. bltouch_command(BLTOUCH_RESET);
  11865. set_bltouch_deployed(true);
  11866. set_bltouch_deployed(false);
  11867. #endif
  11868. #if ENABLED(I2C_POSITION_ENCODERS)
  11869. I2CPEM.init();
  11870. #endif
  11871. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  11872. i2c.onReceive(i2c_on_receive);
  11873. i2c.onRequest(i2c_on_request);
  11874. #endif
  11875. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  11876. setup_endstop_interrupts();
  11877. #endif
  11878. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  11879. move_extruder_servo(0); // Initialize extruder servo
  11880. #endif
  11881. #if ENABLED(SWITCHING_NOZZLE)
  11882. move_nozzle_servo(0); // Initialize nozzle servo
  11883. #endif
  11884. #if ENABLED(PARKING_EXTRUDER)
  11885. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  11886. pe_activate_magnet(0);
  11887. pe_activate_magnet(1);
  11888. #else
  11889. pe_deactivate_magnet(0);
  11890. pe_deactivate_magnet(1);
  11891. #endif
  11892. #endif
  11893. #if ENABLED(MKS_12864OLED)
  11894. SET_OUTPUT(LCD_PINS_DC);
  11895. OUT_WRITE(LCD_PINS_RS, LOW);
  11896. delay(1000);
  11897. WRITE(LCD_PINS_RS, HIGH);
  11898. #endif
  11899. }
  11900. /**
  11901. * The main Marlin program loop
  11902. *
  11903. * - Save or log commands to SD
  11904. * - Process available commands (if not saving)
  11905. * - Call heater manager
  11906. * - Call inactivity manager
  11907. * - Call endstop manager
  11908. * - Call LCD update
  11909. */
  11910. void loop() {
  11911. if (commands_in_queue < BUFSIZE) get_available_commands();
  11912. #if ENABLED(SDSUPPORT)
  11913. card.checkautostart(false);
  11914. #endif
  11915. if (commands_in_queue) {
  11916. #if ENABLED(SDSUPPORT)
  11917. if (card.saving) {
  11918. char* command = command_queue[cmd_queue_index_r];
  11919. if (strstr_P(command, PSTR("M29"))) {
  11920. // M29 closes the file
  11921. card.closefile();
  11922. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  11923. #if ENABLED(SERIAL_STATS_DROPPED_RX)
  11924. SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped());
  11925. #endif
  11926. #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
  11927. SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued());
  11928. #endif
  11929. ok_to_send();
  11930. }
  11931. else {
  11932. // Write the string from the read buffer to SD
  11933. card.write_command(command);
  11934. if (card.logging)
  11935. process_next_command(); // The card is saving because it's logging
  11936. else
  11937. ok_to_send();
  11938. }
  11939. }
  11940. else
  11941. process_next_command();
  11942. #else
  11943. process_next_command();
  11944. #endif // SDSUPPORT
  11945. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  11946. if (commands_in_queue) {
  11947. --commands_in_queue;
  11948. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  11949. }
  11950. }
  11951. endstops.report_state();
  11952. idle();
  11953. }