My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 352KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  63. * G90 - Use Absolute Coordinates
  64. * G91 - Use Relative Coordinates
  65. * G92 - Set current position to coordinates given
  66. *
  67. * "M" Codes
  68. *
  69. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  70. * M1 - Same as M0
  71. * M17 - Enable/Power all stepper motors
  72. * M18 - Disable all stepper motors; same as M84
  73. * M20 - List SD card. (Requires SDSUPPORT)
  74. * M21 - Init SD card. (Requires SDSUPPORT)
  75. * M22 - Release SD card. (Requires SDSUPPORT)
  76. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  77. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  78. * M25 - Pause SD print. (Requires SDSUPPORT)
  79. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  80. * M27 - Report SD print status. (Requires SDSUPPORT)
  81. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  82. * M29 - Stop SD write. (Requires SDSUPPORT)
  83. * M30 - Delete file from SD: "M30 /path/file.gco"
  84. * M31 - Report time since last M109 or SD card start to serial.
  85. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  86. * Use P to run other files as sub-programs: "M32 P !filename#"
  87. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  88. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  89. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  90. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  91. * M43 - Monitor pins & report changes - report active pins
  92. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  93. * M75 - Start the print job timer.
  94. * M76 - Pause the print job timer.
  95. * M77 - Stop the print job timer.
  96. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  97. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  98. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  99. * M82 - Set E codes absolute (default).
  100. * M83 - Set E codes relative while in Absolute (G90) mode.
  101. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  102. * duration after which steppers should turn off. S0 disables the timeout.
  103. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  105. * M104 - Set extruder target temp.
  106. * M105 - Report current temperatures.
  107. * M106 - Fan on.
  108. * M107 - Fan off.
  109. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  110. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  111. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  112. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  113. * M110 - Set the current line number. (Used by host printing)
  114. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  115. * M112 - Emergency stop.
  116. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  117. * M114 - Report current position.
  118. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  119. * M117 - Display a message on the controller screen. (Requires an LCD)
  120. * M119 - Report endstops status.
  121. * M120 - Enable endstops detection.
  122. * M121 - Disable endstops detection.
  123. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  124. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  125. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  126. * M128 - EtoP Open. (Requires BARICUDA)
  127. * M129 - EtoP Closed. (Requires BARICUDA)
  128. * M140 - Set bed target temp. S<temp>
  129. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  130. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  131. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  132. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  133. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  134. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  135. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  136. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  137. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  138. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  139. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  140. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  141. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  142. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  143. * M205 - Set advanced settings. Current units apply:
  144. S<print> T<travel> minimum speeds
  145. B<minimum segment time>
  146. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  147. * M206 - Set additional homing offset.
  148. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  149. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  150. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  151. Every normal extrude-only move will be classified as retract depending on the direction.
  152. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  153. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  154. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  155. * M221 - Set Flow Percentage: "M221 S<percent>"
  156. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  157. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  158. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  159. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  160. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  162. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  163. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  164. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  165. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  166. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  167. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  168. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  169. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  170. * M400 - Finish all moves.
  171. * M401 - Lower Z probe. (Requires a probe)
  172. * M402 - Raise Z probe. (Requires a probe)
  173. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  174. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  176. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M410 - Quickstop. Abort all planned moves.
  178. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  179. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  180. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  181. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  182. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  183. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  184. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  185. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  186. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  187. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  188. * M666 - Set delta endstop adjustment. (Requires DELTA)
  189. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  190. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  191. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  197. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  198. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  199. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  200. *
  201. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  202. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  203. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  204. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  205. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if HAS_ABL
  232. #include "vector_3.h"
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. #include "qr_solve.h"
  235. #endif
  236. #elif ENABLED(MESH_BED_LEVELING)
  237. #include "mesh_bed_leveling.h"
  238. #endif
  239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  240. #include "planner_bezier.h"
  241. #endif
  242. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  243. #include "buzzer.h"
  244. #endif
  245. #if ENABLED(USE_WATCHDOG)
  246. #include "watchdog.h"
  247. #endif
  248. #if ENABLED(BLINKM)
  249. #include "blinkm.h"
  250. #include "Wire.h"
  251. #endif
  252. #if HAS_SERVOS
  253. #include "servo.h"
  254. #endif
  255. #if HAS_DIGIPOTSS
  256. #include <SPI.h>
  257. #endif
  258. #if ENABLED(DAC_STEPPER_CURRENT)
  259. #include "stepper_dac.h"
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. #include "twibus.h"
  263. #endif
  264. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  265. #include "endstop_interrupts.h"
  266. #endif
  267. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  268. void gcode_M100();
  269. #endif
  270. #if ENABLED(SDSUPPORT)
  271. CardReader card;
  272. #endif
  273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  274. TWIBus i2c;
  275. #endif
  276. #if ENABLED(G38_PROBE_TARGET)
  277. bool G38_move = false,
  278. G38_endstop_hit = false;
  279. #endif
  280. #if ENABLED(AUTO_BED_LEVELING_UBL)
  281. #include "UBL.h"
  282. unified_bed_leveling ubl;
  283. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  284. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  285. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  286. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  287. || isnan(ubl.z_values[0][0]))
  288. #endif
  289. bool Running = true;
  290. uint8_t marlin_debug_flags = DEBUG_NONE;
  291. /**
  292. * Cartesian Current Position
  293. * Used to track the logical position as moves are queued.
  294. * Used by 'line_to_current_position' to do a move after changing it.
  295. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  296. */
  297. float current_position[XYZE] = { 0.0 };
  298. /**
  299. * Cartesian Destination
  300. * A temporary position, usually applied to 'current_position'.
  301. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  302. * 'line_to_destination' sets 'current_position' to 'destination'.
  303. */
  304. float destination[XYZE] = { 0.0 };
  305. /**
  306. * axis_homed
  307. * Flags that each linear axis was homed.
  308. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  309. *
  310. * axis_known_position
  311. * Flags that the position is known in each linear axis. Set when homed.
  312. * Cleared whenever a stepper powers off, potentially losing its position.
  313. */
  314. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  315. /**
  316. * GCode line number handling. Hosts may opt to include line numbers when
  317. * sending commands to Marlin, and lines will be checked for sequentiality.
  318. * M110 N<int> sets the current line number.
  319. */
  320. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  321. /**
  322. * GCode Command Queue
  323. * A simple ring buffer of BUFSIZE command strings.
  324. *
  325. * Commands are copied into this buffer by the command injectors
  326. * (immediate, serial, sd card) and they are processed sequentially by
  327. * the main loop. The process_next_command function parses the next
  328. * command and hands off execution to individual handler functions.
  329. */
  330. uint8_t commands_in_queue = 0; // Count of commands in the queue
  331. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  332. cmd_queue_index_w = 0; // Ring buffer write position
  333. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  334. /**
  335. * Current GCode Command
  336. * When a GCode handler is running, these will be set
  337. */
  338. static char *current_command, // The command currently being executed
  339. *current_command_args, // The address where arguments begin
  340. *seen_pointer; // Set by code_seen(), used by the code_value functions
  341. /**
  342. * Next Injected Command pointer. NULL if no commands are being injected.
  343. * Used by Marlin internally to ensure that commands initiated from within
  344. * are enqueued ahead of any pending serial or sd card commands.
  345. */
  346. static const char *injected_commands_P = NULL;
  347. #if ENABLED(INCH_MODE_SUPPORT)
  348. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  349. #endif
  350. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  351. TempUnit input_temp_units = TEMPUNIT_C;
  352. #endif
  353. /**
  354. * Feed rates are often configured with mm/m
  355. * but the planner and stepper like mm/s units.
  356. */
  357. float constexpr homing_feedrate_mm_s[] = {
  358. #if ENABLED(DELTA)
  359. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  360. #else
  361. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  362. #endif
  363. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  364. };
  365. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  366. int feedrate_percentage = 100, saved_feedrate_percentage,
  367. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  368. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  369. volumetric_enabled =
  370. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  371. true
  372. #else
  373. false
  374. #endif
  375. ;
  376. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  377. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  378. #if DISABLED(NO_WORKSPACE_OFFSETS)
  379. // The distance that XYZ has been offset by G92. Reset by G28.
  380. float position_shift[XYZ] = { 0 };
  381. // This offset is added to the configured home position.
  382. // Set by M206, M428, or menu item. Saved to EEPROM.
  383. float home_offset[XYZ] = { 0 };
  384. // The above two are combined to save on computes
  385. float workspace_offset[XYZ] = { 0 };
  386. #endif
  387. // Software Endstops are based on the configured limits.
  388. #if HAS_SOFTWARE_ENDSTOPS
  389. bool soft_endstops_enabled = true;
  390. #endif
  391. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  392. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  393. #if FAN_COUNT > 0
  394. int fanSpeeds[FAN_COUNT] = { 0 };
  395. #endif
  396. // The active extruder (tool). Set with T<extruder> command.
  397. uint8_t active_extruder = 0;
  398. // Relative Mode. Enable with G91, disable with G90.
  399. static bool relative_mode = false;
  400. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  401. volatile bool wait_for_heatup = true;
  402. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  403. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  404. volatile bool wait_for_user = false;
  405. #endif
  406. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  407. // Number of characters read in the current line of serial input
  408. static int serial_count = 0;
  409. // Inactivity shutdown
  410. millis_t previous_cmd_ms = 0;
  411. static millis_t max_inactive_time = 0;
  412. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  413. // Print Job Timer
  414. #if ENABLED(PRINTCOUNTER)
  415. PrintCounter print_job_timer = PrintCounter();
  416. #else
  417. Stopwatch print_job_timer = Stopwatch();
  418. #endif
  419. // Buzzer - I2C on the LCD or a BEEPER_PIN
  420. #if ENABLED(LCD_USE_I2C_BUZZER)
  421. #define BUZZ(d,f) lcd_buzz(d, f)
  422. #elif PIN_EXISTS(BEEPER)
  423. Buzzer buzzer;
  424. #define BUZZ(d,f) buzzer.tone(d, f)
  425. #else
  426. #define BUZZ(d,f) NOOP
  427. #endif
  428. static uint8_t target_extruder;
  429. #if HAS_BED_PROBE
  430. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  431. #endif
  432. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  433. #if HAS_ABL
  434. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  435. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  436. #elif defined(XY_PROBE_SPEED)
  437. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  438. #else
  439. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  440. #endif
  441. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  442. #if ENABLED(DELTA)
  443. #define ADJUST_DELTA(V) \
  444. if (planner.abl_enabled) { \
  445. const float zadj = bilinear_z_offset(V); \
  446. delta[A_AXIS] += zadj; \
  447. delta[B_AXIS] += zadj; \
  448. delta[C_AXIS] += zadj; \
  449. }
  450. #else
  451. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  452. #endif
  453. #elif IS_KINEMATIC
  454. #define ADJUST_DELTA(V) NOOP
  455. #endif
  456. #if ENABLED(Z_DUAL_ENDSTOPS)
  457. float z_endstop_adj =
  458. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  459. Z_DUAL_ENDSTOPS_ADJUSTMENT
  460. #else
  461. 0
  462. #endif
  463. ;
  464. #endif
  465. // Extruder offsets
  466. #if HOTENDS > 1
  467. float hotend_offset[XYZ][HOTENDS];
  468. #endif
  469. #if HAS_Z_SERVO_ENDSTOP
  470. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  471. #endif
  472. #if ENABLED(BARICUDA)
  473. int baricuda_valve_pressure = 0;
  474. int baricuda_e_to_p_pressure = 0;
  475. #endif
  476. #if ENABLED(FWRETRACT)
  477. bool autoretract_enabled = false;
  478. bool retracted[EXTRUDERS] = { false };
  479. bool retracted_swap[EXTRUDERS] = { false };
  480. float retract_length = RETRACT_LENGTH;
  481. float retract_length_swap = RETRACT_LENGTH_SWAP;
  482. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  483. float retract_zlift = RETRACT_ZLIFT;
  484. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  485. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  486. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  487. #endif // FWRETRACT
  488. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  489. bool powersupply =
  490. #if ENABLED(PS_DEFAULT_OFF)
  491. false
  492. #else
  493. true
  494. #endif
  495. ;
  496. #endif
  497. #if HAS_CASE_LIGHT
  498. bool case_light_on =
  499. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  500. true
  501. #else
  502. false
  503. #endif
  504. ;
  505. #endif
  506. #if ENABLED(DELTA)
  507. float delta[ABC],
  508. endstop_adj[ABC] = { 0 };
  509. // These values are loaded or reset at boot time when setup() calls
  510. // Config_RetrieveSettings(), which calls recalc_delta_settings().
  511. float delta_radius,
  512. delta_tower_angle_trim[ABC],
  513. delta_tower[ABC][2],
  514. delta_diagonal_rod,
  515. delta_diagonal_rod_trim[ABC],
  516. delta_diagonal_rod_2_tower[ABC],
  517. delta_segments_per_second,
  518. delta_clip_start_height = Z_MAX_POS;
  519. float delta_safe_distance_from_top();
  520. #endif
  521. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  522. #define UNPROBED 9999.0f
  523. int bilinear_grid_spacing[2], bilinear_start[2];
  524. float bed_level_grid[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y];
  525. #endif
  526. #if IS_SCARA
  527. // Float constants for SCARA calculations
  528. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  529. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  530. L2_2 = sq(float(L2));
  531. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  532. delta[ABC];
  533. #endif
  534. float cartes[XYZ] = { 0 };
  535. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  536. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  537. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  538. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  539. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  540. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  541. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  542. #endif
  543. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  544. static bool filament_ran_out = false;
  545. #endif
  546. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  547. FilamentChangeMenuResponse filament_change_menu_response;
  548. #endif
  549. #if ENABLED(MIXING_EXTRUDER)
  550. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  551. #if MIXING_VIRTUAL_TOOLS > 1
  552. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  553. #endif
  554. #endif
  555. static bool send_ok[BUFSIZE];
  556. #if HAS_SERVOS
  557. Servo servo[NUM_SERVOS];
  558. #define MOVE_SERVO(I, P) servo[I].move(P)
  559. #if HAS_Z_SERVO_ENDSTOP
  560. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  561. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  562. #endif
  563. #endif
  564. #ifdef CHDK
  565. millis_t chdkHigh = 0;
  566. bool chdkActive = false;
  567. #endif
  568. #if ENABLED(PID_EXTRUSION_SCALING)
  569. int lpq_len = 20;
  570. #endif
  571. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  572. MarlinBusyState busy_state = NOT_BUSY;
  573. static millis_t next_busy_signal_ms = 0;
  574. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  575. #else
  576. #define host_keepalive() NOOP
  577. #endif
  578. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  579. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  580. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  581. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  582. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); }
  583. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  584. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  585. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  586. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  587. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  588. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  589. /**
  590. * ***************************************************************************
  591. * ******************************** FUNCTIONS ********************************
  592. * ***************************************************************************
  593. */
  594. void stop();
  595. void get_available_commands();
  596. void process_next_command();
  597. void prepare_move_to_destination();
  598. void get_cartesian_from_steppers();
  599. void set_current_from_steppers_for_axis(const AxisEnum axis);
  600. #if ENABLED(ARC_SUPPORT)
  601. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  602. #endif
  603. #if ENABLED(BEZIER_CURVE_SUPPORT)
  604. void plan_cubic_move(const float offset[4]);
  605. #endif
  606. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  607. static void report_current_position();
  608. #if ENABLED(DEBUG_LEVELING_FEATURE)
  609. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  610. serialprintPGM(prefix);
  611. SERIAL_ECHOPAIR("(", x);
  612. SERIAL_ECHOPAIR(", ", y);
  613. SERIAL_ECHOPAIR(", ", z);
  614. SERIAL_CHAR(')');
  615. if (suffix) serialprintPGM(suffix);
  616. else SERIAL_EOL;
  617. }
  618. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  619. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  620. }
  621. #if HAS_ABL
  622. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  623. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  624. }
  625. #endif
  626. #define DEBUG_POS(SUFFIX,VAR) do { \
  627. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  628. #endif
  629. /**
  630. * sync_plan_position
  631. *
  632. * Set the planner/stepper positions directly from current_position with
  633. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  634. */
  635. inline void sync_plan_position() {
  636. #if ENABLED(DEBUG_LEVELING_FEATURE)
  637. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  638. #endif
  639. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  640. }
  641. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  642. #if IS_KINEMATIC
  643. inline void sync_plan_position_kinematic() {
  644. #if ENABLED(DEBUG_LEVELING_FEATURE)
  645. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  646. #endif
  647. planner.set_position_mm_kinematic(current_position);
  648. }
  649. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  650. #else
  651. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  652. #endif
  653. #if ENABLED(SDSUPPORT)
  654. #include "SdFatUtil.h"
  655. int freeMemory() { return SdFatUtil::FreeRam(); }
  656. #else
  657. extern "C" {
  658. extern char __bss_end;
  659. extern char __heap_start;
  660. extern void* __brkval;
  661. int freeMemory() {
  662. int free_memory;
  663. if ((int)__brkval == 0)
  664. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  665. else
  666. free_memory = ((int)&free_memory) - ((int)__brkval);
  667. return free_memory;
  668. }
  669. }
  670. #endif //!SDSUPPORT
  671. #if ENABLED(DIGIPOT_I2C)
  672. extern void digipot_i2c_set_current(int channel, float current);
  673. extern void digipot_i2c_init();
  674. #endif
  675. inline void echo_command(const char* cmd) {
  676. SERIAL_ECHO_START;
  677. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  678. SERIAL_CHAR('"');
  679. SERIAL_EOL;
  680. }
  681. /**
  682. * Inject the next "immediate" command, when possible, onto the front of the queue.
  683. * Return true if any immediate commands remain to inject.
  684. */
  685. static bool drain_injected_commands_P() {
  686. if (injected_commands_P != NULL) {
  687. size_t i = 0;
  688. char c, cmd[30];
  689. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  690. cmd[sizeof(cmd) - 1] = '\0';
  691. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  692. cmd[i] = '\0';
  693. if (enqueue_and_echo_command(cmd)) // success?
  694. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  695. }
  696. return (injected_commands_P != NULL); // return whether any more remain
  697. }
  698. /**
  699. * Record one or many commands to run from program memory.
  700. * Aborts the current queue, if any.
  701. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  702. */
  703. void enqueue_and_echo_commands_P(const char* pgcode) {
  704. injected_commands_P = pgcode;
  705. drain_injected_commands_P(); // first command executed asap (when possible)
  706. }
  707. /**
  708. * Clear the Marlin command queue
  709. */
  710. void clear_command_queue() {
  711. cmd_queue_index_r = cmd_queue_index_w;
  712. commands_in_queue = 0;
  713. }
  714. /**
  715. * Once a new command is in the ring buffer, call this to commit it
  716. */
  717. inline void _commit_command(bool say_ok) {
  718. send_ok[cmd_queue_index_w] = say_ok;
  719. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  720. commands_in_queue++;
  721. }
  722. /**
  723. * Copy a command from RAM into the main command buffer.
  724. * Return true if the command was successfully added.
  725. * Return false for a full buffer, or if the 'command' is a comment.
  726. */
  727. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  728. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  729. strcpy(command_queue[cmd_queue_index_w], cmd);
  730. _commit_command(say_ok);
  731. return true;
  732. }
  733. /**
  734. * Enqueue with Serial Echo
  735. */
  736. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  737. if (_enqueuecommand(cmd, say_ok)) {
  738. echo_command(cmd);
  739. return true;
  740. }
  741. return false;
  742. }
  743. void setup_killpin() {
  744. #if HAS_KILL
  745. SET_INPUT_PULLUP(KILL_PIN);
  746. #endif
  747. }
  748. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  749. void setup_filrunoutpin() {
  750. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  751. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  752. #else
  753. SET_INPUT(FIL_RUNOUT_PIN);
  754. #endif
  755. }
  756. #endif
  757. void setup_homepin(void) {
  758. #if HAS_HOME
  759. SET_INPUT_PULLUP(HOME_PIN);
  760. #endif
  761. }
  762. void setup_powerhold() {
  763. #if HAS_SUICIDE
  764. OUT_WRITE(SUICIDE_PIN, HIGH);
  765. #endif
  766. #if HAS_POWER_SWITCH
  767. #if ENABLED(PS_DEFAULT_OFF)
  768. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  769. #else
  770. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  771. #endif
  772. #endif
  773. }
  774. void suicide() {
  775. #if HAS_SUICIDE
  776. OUT_WRITE(SUICIDE_PIN, LOW);
  777. #endif
  778. }
  779. void servo_init() {
  780. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  781. servo[0].attach(SERVO0_PIN);
  782. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  783. #endif
  784. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  785. servo[1].attach(SERVO1_PIN);
  786. servo[1].detach();
  787. #endif
  788. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  789. servo[2].attach(SERVO2_PIN);
  790. servo[2].detach();
  791. #endif
  792. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  793. servo[3].attach(SERVO3_PIN);
  794. servo[3].detach();
  795. #endif
  796. #if HAS_Z_SERVO_ENDSTOP
  797. /**
  798. * Set position of Z Servo Endstop
  799. *
  800. * The servo might be deployed and positioned too low to stow
  801. * when starting up the machine or rebooting the board.
  802. * There's no way to know where the nozzle is positioned until
  803. * homing has been done - no homing with z-probe without init!
  804. *
  805. */
  806. STOW_Z_SERVO();
  807. #endif
  808. }
  809. /**
  810. * Stepper Reset (RigidBoard, et.al.)
  811. */
  812. #if HAS_STEPPER_RESET
  813. void disableStepperDrivers() {
  814. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  815. }
  816. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  817. #endif
  818. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  819. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  820. i2c.receive(bytes);
  821. }
  822. void i2c_on_request() { // just send dummy data for now
  823. i2c.reply("Hello World!\n");
  824. }
  825. #endif
  826. void gcode_line_error(const char* err, bool doFlush = true) {
  827. SERIAL_ERROR_START;
  828. serialprintPGM(err);
  829. SERIAL_ERRORLN(gcode_LastN);
  830. //Serial.println(gcode_N);
  831. if (doFlush) FlushSerialRequestResend();
  832. serial_count = 0;
  833. }
  834. /**
  835. * Get all commands waiting on the serial port and queue them.
  836. * Exit when the buffer is full or when no more characters are
  837. * left on the serial port.
  838. */
  839. inline void get_serial_commands() {
  840. static char serial_line_buffer[MAX_CMD_SIZE];
  841. static bool serial_comment_mode = false;
  842. // If the command buffer is empty for too long,
  843. // send "wait" to indicate Marlin is still waiting.
  844. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  845. static millis_t last_command_time = 0;
  846. const millis_t ms = millis();
  847. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  848. SERIAL_ECHOLNPGM(MSG_WAIT);
  849. last_command_time = ms;
  850. }
  851. #endif
  852. /**
  853. * Loop while serial characters are incoming and the queue is not full
  854. */
  855. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  856. char serial_char = MYSERIAL.read();
  857. /**
  858. * If the character ends the line
  859. */
  860. if (serial_char == '\n' || serial_char == '\r') {
  861. serial_comment_mode = false; // end of line == end of comment
  862. if (!serial_count) continue; // skip empty lines
  863. serial_line_buffer[serial_count] = 0; // terminate string
  864. serial_count = 0; //reset buffer
  865. char* command = serial_line_buffer;
  866. while (*command == ' ') command++; // skip any leading spaces
  867. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  868. char* apos = strchr(command, '*');
  869. if (npos) {
  870. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  871. if (M110) {
  872. char* n2pos = strchr(command + 4, 'N');
  873. if (n2pos) npos = n2pos;
  874. }
  875. gcode_N = strtol(npos + 1, NULL, 10);
  876. if (gcode_N != gcode_LastN + 1 && !M110) {
  877. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  878. return;
  879. }
  880. if (apos) {
  881. byte checksum = 0, count = 0;
  882. while (command[count] != '*') checksum ^= command[count++];
  883. if (strtol(apos + 1, NULL, 10) != checksum) {
  884. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  885. return;
  886. }
  887. // if no errors, continue parsing
  888. }
  889. else {
  890. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  891. return;
  892. }
  893. gcode_LastN = gcode_N;
  894. // if no errors, continue parsing
  895. }
  896. else if (apos) { // No '*' without 'N'
  897. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  898. return;
  899. }
  900. // Movement commands alert when stopped
  901. if (IsStopped()) {
  902. char* gpos = strchr(command, 'G');
  903. if (gpos) {
  904. int codenum = strtol(gpos + 1, NULL, 10);
  905. switch (codenum) {
  906. case 0:
  907. case 1:
  908. case 2:
  909. case 3:
  910. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  911. LCD_MESSAGEPGM(MSG_STOPPED);
  912. break;
  913. }
  914. }
  915. }
  916. #if DISABLED(EMERGENCY_PARSER)
  917. // If command was e-stop process now
  918. if (strcmp(command, "M108") == 0) {
  919. wait_for_heatup = false;
  920. #if ENABLED(ULTIPANEL)
  921. wait_for_user = false;
  922. #endif
  923. }
  924. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  925. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  926. #endif
  927. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  928. last_command_time = ms;
  929. #endif
  930. // Add the command to the queue
  931. _enqueuecommand(serial_line_buffer, true);
  932. }
  933. else if (serial_count >= MAX_CMD_SIZE - 1) {
  934. // Keep fetching, but ignore normal characters beyond the max length
  935. // The command will be injected when EOL is reached
  936. }
  937. else if (serial_char == '\\') { // Handle escapes
  938. if (MYSERIAL.available() > 0) {
  939. // if we have one more character, copy it over
  940. serial_char = MYSERIAL.read();
  941. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  942. }
  943. // otherwise do nothing
  944. }
  945. else { // it's not a newline, carriage return or escape char
  946. if (serial_char == ';') serial_comment_mode = true;
  947. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  948. }
  949. } // queue has space, serial has data
  950. }
  951. #if ENABLED(SDSUPPORT)
  952. /**
  953. * Get commands from the SD Card until the command buffer is full
  954. * or until the end of the file is reached. The special character '#'
  955. * can also interrupt buffering.
  956. */
  957. inline void get_sdcard_commands() {
  958. static bool stop_buffering = false,
  959. sd_comment_mode = false;
  960. if (!card.sdprinting) return;
  961. /**
  962. * '#' stops reading from SD to the buffer prematurely, so procedural
  963. * macro calls are possible. If it occurs, stop_buffering is triggered
  964. * and the buffer is run dry; this character _can_ occur in serial com
  965. * due to checksums, however, no checksums are used in SD printing.
  966. */
  967. if (commands_in_queue == 0) stop_buffering = false;
  968. uint16_t sd_count = 0;
  969. bool card_eof = card.eof();
  970. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  971. const int16_t n = card.get();
  972. char sd_char = (char)n;
  973. card_eof = card.eof();
  974. if (card_eof || n == -1
  975. || sd_char == '\n' || sd_char == '\r'
  976. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  977. ) {
  978. if (card_eof) {
  979. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  980. card.printingHasFinished();
  981. card.checkautostart(true);
  982. }
  983. else if (n == -1) {
  984. SERIAL_ERROR_START;
  985. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  986. }
  987. if (sd_char == '#') stop_buffering = true;
  988. sd_comment_mode = false; // for new command
  989. if (!sd_count) continue; // skip empty lines (and comment lines)
  990. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  991. sd_count = 0; // clear sd line buffer
  992. _commit_command(false);
  993. }
  994. else if (sd_count >= MAX_CMD_SIZE - 1) {
  995. /**
  996. * Keep fetching, but ignore normal characters beyond the max length
  997. * The command will be injected when EOL is reached
  998. */
  999. }
  1000. else {
  1001. if (sd_char == ';') sd_comment_mode = true;
  1002. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1003. }
  1004. }
  1005. }
  1006. #endif // SDSUPPORT
  1007. /**
  1008. * Add to the circular command queue the next command from:
  1009. * - The command-injection queue (injected_commands_P)
  1010. * - The active serial input (usually USB)
  1011. * - The SD card file being actively printed
  1012. */
  1013. void get_available_commands() {
  1014. // if any immediate commands remain, don't get other commands yet
  1015. if (drain_injected_commands_P()) return;
  1016. get_serial_commands();
  1017. #if ENABLED(SDSUPPORT)
  1018. get_sdcard_commands();
  1019. #endif
  1020. }
  1021. inline bool code_has_value() {
  1022. int i = 1;
  1023. char c = seen_pointer[i];
  1024. while (c == ' ') c = seen_pointer[++i];
  1025. if (c == '-' || c == '+') c = seen_pointer[++i];
  1026. if (c == '.') c = seen_pointer[++i];
  1027. return NUMERIC(c);
  1028. }
  1029. inline float code_value_float() {
  1030. char* e = strchr(seen_pointer, 'E');
  1031. if (!e) return strtod(seen_pointer + 1, NULL);
  1032. *e = 0;
  1033. float ret = strtod(seen_pointer + 1, NULL);
  1034. *e = 'E';
  1035. return ret;
  1036. }
  1037. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1038. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1039. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1040. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1041. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1042. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1043. #if ENABLED(INCH_MODE_SUPPORT)
  1044. inline void set_input_linear_units(LinearUnit units) {
  1045. switch (units) {
  1046. case LINEARUNIT_INCH:
  1047. linear_unit_factor = 25.4;
  1048. break;
  1049. case LINEARUNIT_MM:
  1050. default:
  1051. linear_unit_factor = 1.0;
  1052. break;
  1053. }
  1054. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1055. }
  1056. inline float axis_unit_factor(int axis) {
  1057. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1058. }
  1059. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1060. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1061. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1062. #else
  1063. inline float code_value_linear_units() { return code_value_float(); }
  1064. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1065. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1066. #endif
  1067. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1068. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1069. float code_value_temp_abs() {
  1070. switch (input_temp_units) {
  1071. case TEMPUNIT_C:
  1072. return code_value_float();
  1073. case TEMPUNIT_F:
  1074. return (code_value_float() - 32) * 0.5555555556;
  1075. case TEMPUNIT_K:
  1076. return code_value_float() - 273.15;
  1077. default:
  1078. return code_value_float();
  1079. }
  1080. }
  1081. float code_value_temp_diff() {
  1082. switch (input_temp_units) {
  1083. case TEMPUNIT_C:
  1084. case TEMPUNIT_K:
  1085. return code_value_float();
  1086. case TEMPUNIT_F:
  1087. return code_value_float() * 0.5555555556;
  1088. default:
  1089. return code_value_float();
  1090. }
  1091. }
  1092. #else
  1093. float code_value_temp_abs() { return code_value_float(); }
  1094. float code_value_temp_diff() { return code_value_float(); }
  1095. #endif
  1096. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1097. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1098. bool code_seen(char code) {
  1099. seen_pointer = strchr(current_command_args, code);
  1100. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1101. }
  1102. /**
  1103. * Set target_extruder from the T parameter or the active_extruder
  1104. *
  1105. * Returns TRUE if the target is invalid
  1106. */
  1107. bool get_target_extruder_from_command(int code) {
  1108. if (code_seen('T')) {
  1109. if (code_value_byte() >= EXTRUDERS) {
  1110. SERIAL_ECHO_START;
  1111. SERIAL_CHAR('M');
  1112. SERIAL_ECHO(code);
  1113. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1114. return true;
  1115. }
  1116. target_extruder = code_value_byte();
  1117. }
  1118. else
  1119. target_extruder = active_extruder;
  1120. return false;
  1121. }
  1122. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1123. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1124. #endif
  1125. #if ENABLED(DUAL_X_CARRIAGE)
  1126. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1127. static float x_home_pos(const int extruder) {
  1128. if (extruder == 0)
  1129. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1130. else
  1131. /**
  1132. * In dual carriage mode the extruder offset provides an override of the
  1133. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1134. * This allows soft recalibration of the second extruder home position
  1135. * without firmware reflash (through the M218 command).
  1136. */
  1137. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1138. }
  1139. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1140. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1141. static bool active_extruder_parked = false; // used in mode 1 & 2
  1142. static float raised_parked_position[XYZE]; // used in mode 1
  1143. static millis_t delayed_move_time = 0; // used in mode 1
  1144. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1145. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1146. #endif // DUAL_X_CARRIAGE
  1147. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
  1148. /**
  1149. * Software endstops can be used to monitor the open end of
  1150. * an axis that has a hardware endstop on the other end. Or
  1151. * they can prevent axes from moving past endstops and grinding.
  1152. *
  1153. * To keep doing their job as the coordinate system changes,
  1154. * the software endstop positions must be refreshed to remain
  1155. * at the same positions relative to the machine.
  1156. */
  1157. void update_software_endstops(const AxisEnum axis) {
  1158. const float offs = workspace_offset[axis] = LOGICAL_POSITION(0, axis);
  1159. #if ENABLED(DUAL_X_CARRIAGE)
  1160. if (axis == X_AXIS) {
  1161. // In Dual X mode hotend_offset[X] is T1's home position
  1162. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1163. if (active_extruder != 0) {
  1164. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1165. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1166. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1167. }
  1168. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1169. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1170. // but not so far to the right that T1 would move past the end
  1171. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1172. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1173. }
  1174. else {
  1175. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1176. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1177. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1178. }
  1179. }
  1180. #else
  1181. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1182. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1183. #endif
  1184. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1185. if (DEBUGGING(LEVELING)) {
  1186. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1187. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1188. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1189. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1190. #endif
  1191. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1192. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1193. }
  1194. #endif
  1195. #if ENABLED(DELTA)
  1196. if (axis == Z_AXIS)
  1197. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1198. #endif
  1199. }
  1200. #endif // NO_WORKSPACE_OFFSETS
  1201. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1202. /**
  1203. * Change the home offset for an axis, update the current
  1204. * position and the software endstops to retain the same
  1205. * relative distance to the new home.
  1206. *
  1207. * Since this changes the current_position, code should
  1208. * call sync_plan_position soon after this.
  1209. */
  1210. static void set_home_offset(const AxisEnum axis, const float v) {
  1211. current_position[axis] += v - home_offset[axis];
  1212. home_offset[axis] = v;
  1213. update_software_endstops(axis);
  1214. }
  1215. #endif // NO_WORKSPACE_OFFSETS
  1216. /**
  1217. * Set an axis' current position to its home position (after homing).
  1218. *
  1219. * For Core and Cartesian robots this applies one-to-one when an
  1220. * individual axis has been homed.
  1221. *
  1222. * DELTA should wait until all homing is done before setting the XYZ
  1223. * current_position to home, because homing is a single operation.
  1224. * In the case where the axis positions are already known and previously
  1225. * homed, DELTA could home to X or Y individually by moving either one
  1226. * to the center. However, homing Z always homes XY and Z.
  1227. *
  1228. * SCARA should wait until all XY homing is done before setting the XY
  1229. * current_position to home, because neither X nor Y is at home until
  1230. * both are at home. Z can however be homed individually.
  1231. *
  1232. * Callers must sync the planner position after calling this!
  1233. */
  1234. static void set_axis_is_at_home(AxisEnum axis) {
  1235. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1236. if (DEBUGGING(LEVELING)) {
  1237. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1238. SERIAL_CHAR(')');
  1239. SERIAL_EOL;
  1240. }
  1241. #endif
  1242. axis_known_position[axis] = axis_homed[axis] = true;
  1243. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1244. position_shift[axis] = 0;
  1245. update_software_endstops(axis);
  1246. #endif
  1247. #if ENABLED(DUAL_X_CARRIAGE)
  1248. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1249. current_position[X_AXIS] = x_home_pos(active_extruder);
  1250. return;
  1251. }
  1252. #endif
  1253. #if ENABLED(MORGAN_SCARA)
  1254. /**
  1255. * Morgan SCARA homes XY at the same time
  1256. */
  1257. if (axis == X_AXIS || axis == Y_AXIS) {
  1258. float homeposition[XYZ];
  1259. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1260. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1261. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1262. /**
  1263. * Get Home position SCARA arm angles using inverse kinematics,
  1264. * and calculate homing offset using forward kinematics
  1265. */
  1266. inverse_kinematics(homeposition);
  1267. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1268. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1269. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1270. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1271. /**
  1272. * SCARA home positions are based on configuration since the actual
  1273. * limits are determined by the inverse kinematic transform.
  1274. */
  1275. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1276. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1277. }
  1278. else
  1279. #endif
  1280. {
  1281. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1282. }
  1283. /**
  1284. * Z Probe Z Homing? Account for the probe's Z offset.
  1285. */
  1286. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1287. if (axis == Z_AXIS) {
  1288. #if HOMING_Z_WITH_PROBE
  1289. current_position[Z_AXIS] -= zprobe_zoffset;
  1290. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1291. if (DEBUGGING(LEVELING)) {
  1292. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1293. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1294. }
  1295. #endif
  1296. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1297. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1298. #endif
  1299. }
  1300. #endif
  1301. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1302. if (DEBUGGING(LEVELING)) {
  1303. #if DISABLED(NO_WORKSPACE_OFFSETS)
  1304. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1305. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1306. #endif
  1307. DEBUG_POS("", current_position);
  1308. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1309. SERIAL_CHAR(')');
  1310. SERIAL_EOL;
  1311. }
  1312. #endif
  1313. }
  1314. /**
  1315. * Some planner shorthand inline functions
  1316. */
  1317. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1318. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1319. int hbd = homing_bump_divisor[axis];
  1320. if (hbd < 1) {
  1321. hbd = 10;
  1322. SERIAL_ECHO_START;
  1323. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1324. }
  1325. return homing_feedrate_mm_s[axis] / hbd;
  1326. }
  1327. //
  1328. // line_to_current_position
  1329. // Move the planner to the current position from wherever it last moved
  1330. // (or from wherever it has been told it is located).
  1331. //
  1332. inline void line_to_current_position() {
  1333. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1334. }
  1335. //
  1336. // line_to_destination
  1337. // Move the planner, not necessarily synced with current_position
  1338. //
  1339. inline void line_to_destination(float fr_mm_s) {
  1340. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1341. }
  1342. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1343. inline void set_current_to_destination() { COPY(current_position, destination); }
  1344. inline void set_destination_to_current() { COPY(destination, current_position); }
  1345. #if IS_KINEMATIC
  1346. /**
  1347. * Calculate delta, start a line, and set current_position to destination
  1348. */
  1349. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1350. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1351. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1352. #endif
  1353. if ( current_position[X_AXIS] == destination[X_AXIS]
  1354. && current_position[Y_AXIS] == destination[Y_AXIS]
  1355. && current_position[Z_AXIS] == destination[Z_AXIS]
  1356. && current_position[E_AXIS] == destination[E_AXIS]
  1357. ) return;
  1358. refresh_cmd_timeout();
  1359. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1360. set_current_to_destination();
  1361. }
  1362. #endif // IS_KINEMATIC
  1363. /**
  1364. * Plan a move to (X, Y, Z) and set the current_position
  1365. * The final current_position may not be the one that was requested
  1366. */
  1367. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1368. const float old_feedrate_mm_s = feedrate_mm_s;
  1369. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1370. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1371. #endif
  1372. #if ENABLED(DELTA)
  1373. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1374. set_destination_to_current(); // sync destination at the start
  1375. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1376. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1377. #endif
  1378. // when in the danger zone
  1379. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1380. if (z > delta_clip_start_height) { // staying in the danger zone
  1381. destination[X_AXIS] = x; // move directly (uninterpolated)
  1382. destination[Y_AXIS] = y;
  1383. destination[Z_AXIS] = z;
  1384. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1385. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1386. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1387. #endif
  1388. return;
  1389. }
  1390. else {
  1391. destination[Z_AXIS] = delta_clip_start_height;
  1392. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1394. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1395. #endif
  1396. }
  1397. }
  1398. if (z > current_position[Z_AXIS]) { // raising?
  1399. destination[Z_AXIS] = z;
  1400. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1401. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1402. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1403. #endif
  1404. }
  1405. destination[X_AXIS] = x;
  1406. destination[Y_AXIS] = y;
  1407. prepare_move_to_destination(); // set_current_to_destination
  1408. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1409. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1410. #endif
  1411. if (z < current_position[Z_AXIS]) { // lowering?
  1412. destination[Z_AXIS] = z;
  1413. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1414. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1415. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1416. #endif
  1417. }
  1418. #elif IS_SCARA
  1419. set_destination_to_current();
  1420. // If Z needs to raise, do it before moving XY
  1421. if (destination[Z_AXIS] < z) {
  1422. destination[Z_AXIS] = z;
  1423. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1424. }
  1425. destination[X_AXIS] = x;
  1426. destination[Y_AXIS] = y;
  1427. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1428. // If Z needs to lower, do it after moving XY
  1429. if (destination[Z_AXIS] > z) {
  1430. destination[Z_AXIS] = z;
  1431. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1432. }
  1433. #else
  1434. // If Z needs to raise, do it before moving XY
  1435. if (current_position[Z_AXIS] < z) {
  1436. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1437. current_position[Z_AXIS] = z;
  1438. line_to_current_position();
  1439. }
  1440. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1441. current_position[X_AXIS] = x;
  1442. current_position[Y_AXIS] = y;
  1443. line_to_current_position();
  1444. // If Z needs to lower, do it after moving XY
  1445. if (current_position[Z_AXIS] > z) {
  1446. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1447. current_position[Z_AXIS] = z;
  1448. line_to_current_position();
  1449. }
  1450. #endif
  1451. stepper.synchronize();
  1452. feedrate_mm_s = old_feedrate_mm_s;
  1453. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1454. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1455. #endif
  1456. }
  1457. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1458. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1459. }
  1460. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1461. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1462. }
  1463. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1464. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1465. }
  1466. //
  1467. // Prepare to do endstop or probe moves
  1468. // with custom feedrates.
  1469. //
  1470. // - Save current feedrates
  1471. // - Reset the rate multiplier
  1472. // - Reset the command timeout
  1473. // - Enable the endstops (for endstop moves)
  1474. //
  1475. static void setup_for_endstop_or_probe_move() {
  1476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1477. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1478. #endif
  1479. saved_feedrate_mm_s = feedrate_mm_s;
  1480. saved_feedrate_percentage = feedrate_percentage;
  1481. feedrate_percentage = 100;
  1482. refresh_cmd_timeout();
  1483. }
  1484. static void clean_up_after_endstop_or_probe_move() {
  1485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1486. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1487. #endif
  1488. feedrate_mm_s = saved_feedrate_mm_s;
  1489. feedrate_percentage = saved_feedrate_percentage;
  1490. refresh_cmd_timeout();
  1491. }
  1492. #if HAS_BED_PROBE
  1493. /**
  1494. * Raise Z to a minimum height to make room for a probe to move
  1495. */
  1496. inline void do_probe_raise(float z_raise) {
  1497. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1498. if (DEBUGGING(LEVELING)) {
  1499. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1500. SERIAL_CHAR(')');
  1501. SERIAL_EOL;
  1502. }
  1503. #endif
  1504. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1505. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1506. if (z_dest > current_position[Z_AXIS])
  1507. do_blocking_move_to_z(z_dest);
  1508. }
  1509. #endif //HAS_BED_PROBE
  1510. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1511. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1512. const bool xx = x && !axis_homed[X_AXIS],
  1513. yy = y && !axis_homed[Y_AXIS],
  1514. zz = z && !axis_homed[Z_AXIS];
  1515. if (xx || yy || zz) {
  1516. SERIAL_ECHO_START;
  1517. SERIAL_ECHOPGM(MSG_HOME " ");
  1518. if (xx) SERIAL_ECHOPGM(MSG_X);
  1519. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1520. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1521. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1522. #if ENABLED(ULTRA_LCD)
  1523. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1524. #endif
  1525. return true;
  1526. }
  1527. return false;
  1528. }
  1529. #endif
  1530. #if ENABLED(Z_PROBE_SLED)
  1531. #ifndef SLED_DOCKING_OFFSET
  1532. #define SLED_DOCKING_OFFSET 0
  1533. #endif
  1534. /**
  1535. * Method to dock/undock a sled designed by Charles Bell.
  1536. *
  1537. * stow[in] If false, move to MAX_X and engage the solenoid
  1538. * If true, move to MAX_X and release the solenoid
  1539. */
  1540. static void dock_sled(bool stow) {
  1541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1542. if (DEBUGGING(LEVELING)) {
  1543. SERIAL_ECHOPAIR("dock_sled(", stow);
  1544. SERIAL_CHAR(')');
  1545. SERIAL_EOL;
  1546. }
  1547. #endif
  1548. // Dock sled a bit closer to ensure proper capturing
  1549. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1550. #if PIN_EXISTS(SLED)
  1551. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1552. #endif
  1553. }
  1554. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1555. void run_deploy_moves_script() {
  1556. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1557. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1558. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1559. #endif
  1560. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1561. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1562. #endif
  1563. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1564. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1565. #endif
  1566. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1567. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1568. #endif
  1569. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1570. #endif
  1571. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1572. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1573. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1574. #endif
  1575. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1576. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1577. #endif
  1578. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1579. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1580. #endif
  1581. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1582. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1583. #endif
  1584. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1585. #endif
  1586. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1587. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1588. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1589. #endif
  1590. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1591. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1592. #endif
  1593. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1594. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1595. #endif
  1596. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1597. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1598. #endif
  1599. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1600. #endif
  1601. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1602. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1603. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1607. #endif
  1608. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1609. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1610. #endif
  1611. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1612. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1613. #endif
  1614. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1615. #endif
  1616. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1617. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1618. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1619. #endif
  1620. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1621. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1622. #endif
  1623. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1624. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1625. #endif
  1626. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1627. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1628. #endif
  1629. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1630. #endif
  1631. }
  1632. void run_stow_moves_script() {
  1633. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1634. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1635. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1638. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1639. #endif
  1640. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1641. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1642. #endif
  1643. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1644. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1645. #endif
  1646. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1647. #endif
  1648. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1649. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1650. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1653. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1656. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1657. #endif
  1658. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1659. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1660. #endif
  1661. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1662. #endif
  1663. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1664. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1665. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1668. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1671. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1672. #endif
  1673. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1674. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1675. #endif
  1676. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1677. #endif
  1678. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1679. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1680. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1681. #endif
  1682. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1683. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1684. #endif
  1685. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1686. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1687. #endif
  1688. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1689. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1690. #endif
  1691. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1692. #endif
  1693. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1694. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1695. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1696. #endif
  1697. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1698. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1699. #endif
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1701. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1702. #endif
  1703. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1704. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1705. #endif
  1706. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1707. #endif
  1708. }
  1709. #endif
  1710. #if HAS_BED_PROBE
  1711. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1712. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1713. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1714. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1715. #else
  1716. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1717. #endif
  1718. #endif
  1719. #define DEPLOY_PROBE() set_probe_deployed(true)
  1720. #define STOW_PROBE() set_probe_deployed(false)
  1721. #if ENABLED(BLTOUCH)
  1722. void bltouch_command(int angle) {
  1723. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1724. safe_delay(375);
  1725. }
  1726. void set_bltouch_deployed(const bool deploy) {
  1727. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1728. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1729. if (DEBUGGING(LEVELING)) {
  1730. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1731. SERIAL_CHAR(')');
  1732. SERIAL_EOL;
  1733. }
  1734. #endif
  1735. }
  1736. #endif
  1737. // returns false for ok and true for failure
  1738. bool set_probe_deployed(bool deploy) {
  1739. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1740. if (DEBUGGING(LEVELING)) {
  1741. DEBUG_POS("set_probe_deployed", current_position);
  1742. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1743. }
  1744. #endif
  1745. if (endstops.z_probe_enabled == deploy) return false;
  1746. // Make room for probe
  1747. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1748. // When deploying make sure BLTOUCH is not already triggered
  1749. #if ENABLED(BLTOUCH)
  1750. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1751. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1752. set_bltouch_deployed(true); // Also needs to deploy and stow to
  1753. set_bltouch_deployed(false); // clear the triggered condition.
  1754. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1755. SERIAL_ERROR_START;
  1756. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1757. stop(); // punt!
  1758. return true;
  1759. }
  1760. }
  1761. #elif ENABLED(Z_PROBE_SLED)
  1762. if (axis_unhomed_error(true, false, false)) {
  1763. SERIAL_ERROR_START;
  1764. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1765. stop();
  1766. return true;
  1767. }
  1768. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1769. if (axis_unhomed_error(true, true, true )) {
  1770. SERIAL_ERROR_START;
  1771. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1772. stop();
  1773. return true;
  1774. }
  1775. #endif
  1776. const float oldXpos = current_position[X_AXIS],
  1777. oldYpos = current_position[Y_AXIS];
  1778. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1779. // If endstop is already false, the Z probe is deployed
  1780. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1781. // Would a goto be less ugly?
  1782. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1783. // for a triggered when stowed manual probe.
  1784. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1785. // otherwise an Allen-Key probe can't be stowed.
  1786. #endif
  1787. #if ENABLED(Z_PROBE_SLED)
  1788. dock_sled(!deploy);
  1789. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1790. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1791. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1792. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1793. #endif
  1794. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1795. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1796. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1797. if (IsRunning()) {
  1798. SERIAL_ERROR_START;
  1799. SERIAL_ERRORLNPGM("Z-Probe failed");
  1800. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1801. }
  1802. stop();
  1803. return true;
  1804. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1805. #endif
  1806. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1807. endstops.enable_z_probe(deploy);
  1808. return false;
  1809. }
  1810. static void do_probe_move(float z, float fr_mm_m) {
  1811. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1812. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1813. #endif
  1814. // Deploy BLTouch at the start of any probe
  1815. #if ENABLED(BLTOUCH)
  1816. set_bltouch_deployed(true);
  1817. #endif
  1818. // Move down until probe triggered
  1819. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1820. // Retract BLTouch immediately after a probe
  1821. #if ENABLED(BLTOUCH)
  1822. set_bltouch_deployed(false);
  1823. #endif
  1824. // Clear endstop flags
  1825. endstops.hit_on_purpose();
  1826. // Get Z where the steppers were interrupted
  1827. set_current_from_steppers_for_axis(Z_AXIS);
  1828. // Tell the planner where we actually are
  1829. SYNC_PLAN_POSITION_KINEMATIC();
  1830. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1831. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1832. #endif
  1833. }
  1834. // Do a single Z probe and return with current_position[Z_AXIS]
  1835. // at the height where the probe triggered.
  1836. static float run_z_probe() {
  1837. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1838. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1839. #endif
  1840. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1841. refresh_cmd_timeout();
  1842. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1843. // Do a first probe at the fast speed
  1844. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1845. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1846. float first_probe_z = current_position[Z_AXIS];
  1847. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1848. #endif
  1849. // move up by the bump distance
  1850. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1851. #else
  1852. // If the nozzle is above the travel height then
  1853. // move down quickly before doing the slow probe
  1854. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1855. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1856. if (z < current_position[Z_AXIS])
  1857. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1858. #endif
  1859. // move down slowly to find bed
  1860. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1861. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1862. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1863. #endif
  1864. // Debug: compare probe heights
  1865. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1866. if (DEBUGGING(LEVELING)) {
  1867. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1868. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1869. }
  1870. #endif
  1871. return current_position[Z_AXIS] + zprobe_zoffset;
  1872. }
  1873. //
  1874. // - Move to the given XY
  1875. // - Deploy the probe, if not already deployed
  1876. // - Probe the bed, get the Z position
  1877. // - Depending on the 'stow' flag
  1878. // - Stow the probe, or
  1879. // - Raise to the BETWEEN height
  1880. // - Return the probed Z position
  1881. //
  1882. //float probe_pt(const float &x, const float &y, const bool stow = true, const int verbose_level = 1) {
  1883. float probe_pt(const float x, const float y, const bool stow, const int verbose_level) {
  1884. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1885. if (DEBUGGING(LEVELING)) {
  1886. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1887. SERIAL_ECHOPAIR(", ", y);
  1888. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1889. SERIAL_ECHOLNPGM("stow)");
  1890. DEBUG_POS("", current_position);
  1891. }
  1892. #endif
  1893. const float old_feedrate_mm_s = feedrate_mm_s;
  1894. #if ENABLED(DELTA)
  1895. if (current_position[Z_AXIS] > delta_clip_start_height)
  1896. do_blocking_move_to_z(delta_clip_start_height);
  1897. #endif
  1898. // Ensure a minimum height before moving the probe
  1899. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1900. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1901. // Move the probe to the given XY
  1902. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1903. if (DEPLOY_PROBE()) return NAN;
  1904. const float measured_z = run_z_probe();
  1905. if (!stow)
  1906. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1907. else
  1908. if (STOW_PROBE()) return NAN;
  1909. if (verbose_level > 2) {
  1910. SERIAL_PROTOCOLPGM("Bed X: ");
  1911. SERIAL_PROTOCOL_F(x, 3);
  1912. SERIAL_PROTOCOLPGM(" Y: ");
  1913. SERIAL_PROTOCOL_F(y, 3);
  1914. SERIAL_PROTOCOLPGM(" Z: ");
  1915. SERIAL_PROTOCOL_F(FIXFLOAT(measured_z), 3);
  1916. SERIAL_EOL;
  1917. }
  1918. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1919. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1920. #endif
  1921. feedrate_mm_s = old_feedrate_mm_s;
  1922. return measured_z;
  1923. }
  1924. #endif // HAS_BED_PROBE
  1925. #if PLANNER_LEVELING
  1926. /**
  1927. * Turn bed leveling on or off, fixing the current
  1928. * position as-needed.
  1929. *
  1930. * Disable: Current position = physical position
  1931. * Enable: Current position = "unleveled" physical position
  1932. */
  1933. void set_bed_leveling_enabled(bool enable/*=true*/) {
  1934. #if ENABLED(MESH_BED_LEVELING)
  1935. if (enable != mbl.active()) {
  1936. if (!enable)
  1937. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  1938. mbl.set_active(enable && mbl.has_mesh());
  1939. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  1940. }
  1941. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  1942. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1943. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  1944. #else
  1945. constexpr bool can_change = true;
  1946. #endif
  1947. if (can_change && enable != planner.abl_enabled) {
  1948. planner.abl_enabled = enable;
  1949. if (!enable)
  1950. set_current_from_steppers_for_axis(
  1951. #if ABL_PLANAR
  1952. ALL_AXES
  1953. #else
  1954. Z_AXIS
  1955. #endif
  1956. );
  1957. else
  1958. planner.unapply_leveling(current_position);
  1959. }
  1960. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1961. ubl.state.active = enable;
  1962. //set_current_from_steppers_for_axis(Z_AXIS);
  1963. #endif
  1964. }
  1965. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1966. void set_z_fade_height(const float zfh) {
  1967. planner.z_fade_height = zfh;
  1968. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  1969. if (
  1970. #if ENABLED(MESH_BED_LEVELING)
  1971. mbl.active()
  1972. #else
  1973. planner.abl_enabled
  1974. #endif
  1975. ) {
  1976. set_current_from_steppers_for_axis(
  1977. #if ABL_PLANAR
  1978. ALL_AXES
  1979. #else
  1980. Z_AXIS
  1981. #endif
  1982. );
  1983. }
  1984. }
  1985. #endif // LEVELING_FADE_HEIGHT
  1986. /**
  1987. * Reset calibration results to zero.
  1988. */
  1989. void reset_bed_level() {
  1990. set_bed_leveling_enabled(false);
  1991. #if ENABLED(MESH_BED_LEVELING)
  1992. if (mbl.has_mesh()) {
  1993. mbl.reset();
  1994. mbl.set_has_mesh(false);
  1995. }
  1996. #else
  1997. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1998. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1999. #endif
  2000. #if ABL_PLANAR
  2001. planner.bed_level_matrix.set_to_identity();
  2002. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2003. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2004. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2005. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2006. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2007. bed_level_grid[x][y] = UNPROBED;
  2008. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2009. ubl.reset();
  2010. #endif
  2011. #endif
  2012. }
  2013. #endif // PLANNER_LEVELING
  2014. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2015. /**
  2016. * Extrapolate a single point from its neighbors
  2017. */
  2018. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2019. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2020. if (DEBUGGING(LEVELING)) {
  2021. SERIAL_ECHOPGM("Extrapolate [");
  2022. if (x < 10) SERIAL_CHAR(' ');
  2023. SERIAL_ECHO((int)x);
  2024. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2025. SERIAL_CHAR(' ');
  2026. if (y < 10) SERIAL_CHAR(' ');
  2027. SERIAL_ECHO((int)y);
  2028. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2029. SERIAL_CHAR(']');
  2030. }
  2031. #endif
  2032. if (bed_level_grid[x][y] != UNPROBED) {
  2033. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2034. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2035. #endif
  2036. return; // Don't overwrite good values.
  2037. }
  2038. SERIAL_EOL;
  2039. // Get X neighbors, Y neighbors, and XY neighbors
  2040. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2041. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2042. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2043. // Treat far unprobed points as zero, near as equal to far
  2044. if (a2 == UNPROBED) a2 = 0.0; if (a1 == UNPROBED) a1 = a2;
  2045. if (b2 == UNPROBED) b2 = 0.0; if (b1 == UNPROBED) b1 = b2;
  2046. if (c2 == UNPROBED) c2 = 0.0; if (c1 == UNPROBED) c1 = c2;
  2047. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2048. // Take the average instead of the median
  2049. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2050. // Median is robust (ignores outliers).
  2051. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2052. // : ((c < b) ? b : (a < c) ? a : c);
  2053. }
  2054. //Enable this if your SCARA uses 180° of total area
  2055. //#define EXTRAPOLATE_FROM_EDGE
  2056. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2057. #if ABL_GRID_MAX_POINTS_X < ABL_GRID_MAX_POINTS_Y
  2058. #define HALF_IN_X
  2059. #elif ABL_GRID_MAX_POINTS_Y < ABL_GRID_MAX_POINTS_X
  2060. #define HALF_IN_Y
  2061. #endif
  2062. #endif
  2063. /**
  2064. * Fill in the unprobed points (corners of circular print surface)
  2065. * using linear extrapolation, away from the center.
  2066. */
  2067. static void extrapolate_unprobed_bed_level() {
  2068. #ifdef HALF_IN_X
  2069. const uint8_t ctrx2 = 0, xlen = ABL_GRID_MAX_POINTS_X - 1;
  2070. #else
  2071. const uint8_t ctrx1 = (ABL_GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2072. ctrx2 = ABL_GRID_MAX_POINTS_X / 2, // right-of-center
  2073. xlen = ctrx1;
  2074. #endif
  2075. #ifdef HALF_IN_Y
  2076. const uint8_t ctry2 = 0, ylen = ABL_GRID_MAX_POINTS_Y - 1;
  2077. #else
  2078. const uint8_t ctry1 = (ABL_GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2079. ctry2 = ABL_GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2080. ylen = ctry1;
  2081. #endif
  2082. for (uint8_t xo = 0; xo <= xlen; xo++)
  2083. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2084. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2085. #ifndef HALF_IN_X
  2086. const uint8_t x1 = ctrx1 - xo;
  2087. #endif
  2088. #ifndef HALF_IN_Y
  2089. const uint8_t y1 = ctry1 - yo;
  2090. #ifndef HALF_IN_X
  2091. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2092. #endif
  2093. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2094. #endif
  2095. #ifndef HALF_IN_X
  2096. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2097. #endif
  2098. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2099. }
  2100. }
  2101. /**
  2102. * Print calibration results for plotting or manual frame adjustment.
  2103. */
  2104. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2105. for (uint8_t x = 0; x < sx; x++) {
  2106. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2107. SERIAL_PROTOCOLCHAR(' ');
  2108. SERIAL_PROTOCOL((int)x);
  2109. }
  2110. SERIAL_EOL;
  2111. for (uint8_t y = 0; y < sy; y++) {
  2112. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2113. SERIAL_PROTOCOL((int)y);
  2114. for (uint8_t x = 0; x < sx; x++) {
  2115. SERIAL_PROTOCOLCHAR(' ');
  2116. float offset = fn(x, y);
  2117. if (offset != UNPROBED) {
  2118. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2119. SERIAL_PROTOCOL_F(offset, precision);
  2120. }
  2121. else
  2122. for (uint8_t i = 0; i < precision + 3; i++)
  2123. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2124. }
  2125. SERIAL_EOL;
  2126. }
  2127. SERIAL_EOL;
  2128. }
  2129. static void print_bilinear_leveling_grid() {
  2130. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2131. print_2d_array(ABL_GRID_MAX_POINTS_X, ABL_GRID_MAX_POINTS_Y, 2,
  2132. [](const uint8_t x, const uint8_t y) { return bed_level_grid[x][y]; }
  2133. );
  2134. }
  2135. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2136. #define ABL_GRID_POINTS_VIRT_X (ABL_GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2137. #define ABL_GRID_POINTS_VIRT_Y (ABL_GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2138. #define ABL_TEMP_POINTS_X (ABL_GRID_MAX_POINTS_X + 2)
  2139. #define ABL_TEMP_POINTS_Y (ABL_GRID_MAX_POINTS_Y + 2)
  2140. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2141. int bilinear_grid_spacing_virt[2] = { 0 };
  2142. static void bed_level_virt_print() {
  2143. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2144. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2145. [](const uint8_t x, const uint8_t y) { return bed_level_grid_virt[x][y]; }
  2146. );
  2147. }
  2148. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2149. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2150. uint8_t ep = 0, ip = 1;
  2151. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2152. if (x) {
  2153. ep = ABL_GRID_MAX_POINTS_X - 1;
  2154. ip = ABL_GRID_MAX_POINTS_X - 2;
  2155. }
  2156. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2157. return LINEAR_EXTRAPOLATION(
  2158. bed_level_grid[ep][y - 1],
  2159. bed_level_grid[ip][y - 1]
  2160. );
  2161. else
  2162. return LINEAR_EXTRAPOLATION(
  2163. bed_level_virt_coord(ep + 1, y),
  2164. bed_level_virt_coord(ip + 1, y)
  2165. );
  2166. }
  2167. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2168. if (y) {
  2169. ep = ABL_GRID_MAX_POINTS_Y - 1;
  2170. ip = ABL_GRID_MAX_POINTS_Y - 2;
  2171. }
  2172. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2173. return LINEAR_EXTRAPOLATION(
  2174. bed_level_grid[x - 1][ep],
  2175. bed_level_grid[x - 1][ip]
  2176. );
  2177. else
  2178. return LINEAR_EXTRAPOLATION(
  2179. bed_level_virt_coord(x, ep + 1),
  2180. bed_level_virt_coord(x, ip + 1)
  2181. );
  2182. }
  2183. return bed_level_grid[x - 1][y - 1];
  2184. }
  2185. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2186. return (
  2187. p[i-1] * -t * sq(1 - t)
  2188. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2189. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2190. - p[i+2] * sq(t) * (1 - t)
  2191. ) * 0.5;
  2192. }
  2193. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2194. float row[4], column[4];
  2195. for (uint8_t i = 0; i < 4; i++) {
  2196. for (uint8_t j = 0; j < 4; j++) {
  2197. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2198. }
  2199. row[i] = bed_level_virt_cmr(column, 1, ty);
  2200. }
  2201. return bed_level_virt_cmr(row, 1, tx);
  2202. }
  2203. void bed_level_virt_interpolate() {
  2204. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  2205. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  2206. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2207. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2208. if ((ty && y == ABL_GRID_MAX_POINTS_Y - 1) || (tx && x == ABL_GRID_MAX_POINTS_X - 1))
  2209. continue;
  2210. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2211. bed_level_virt_2cmr(
  2212. x + 1,
  2213. y + 1,
  2214. (float)tx / (BILINEAR_SUBDIVISIONS),
  2215. (float)ty / (BILINEAR_SUBDIVISIONS)
  2216. );
  2217. }
  2218. }
  2219. #endif // ABL_BILINEAR_SUBDIVISION
  2220. #endif // AUTO_BED_LEVELING_BILINEAR
  2221. /**
  2222. * Home an individual linear axis
  2223. */
  2224. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2225. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2226. if (DEBUGGING(LEVELING)) {
  2227. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2228. SERIAL_ECHOPAIR(", ", distance);
  2229. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2230. SERIAL_CHAR(')');
  2231. SERIAL_EOL;
  2232. }
  2233. #endif
  2234. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2235. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2236. if (deploy_bltouch) set_bltouch_deployed(true);
  2237. #endif
  2238. // Tell the planner we're at Z=0
  2239. current_position[axis] = 0;
  2240. #if IS_SCARA
  2241. SYNC_PLAN_POSITION_KINEMATIC();
  2242. current_position[axis] = distance;
  2243. inverse_kinematics(current_position);
  2244. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2245. #else
  2246. sync_plan_position();
  2247. current_position[axis] = distance;
  2248. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2249. #endif
  2250. stepper.synchronize();
  2251. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2252. if (deploy_bltouch) set_bltouch_deployed(false);
  2253. #endif
  2254. endstops.hit_on_purpose();
  2255. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2256. if (DEBUGGING(LEVELING)) {
  2257. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2258. SERIAL_CHAR(')');
  2259. SERIAL_EOL;
  2260. }
  2261. #endif
  2262. }
  2263. /**
  2264. * Home an individual "raw axis" to its endstop.
  2265. * This applies to XYZ on Cartesian and Core robots, and
  2266. * to the individual ABC steppers on DELTA and SCARA.
  2267. *
  2268. * At the end of the procedure the axis is marked as
  2269. * homed and the current position of that axis is updated.
  2270. * Kinematic robots should wait till all axes are homed
  2271. * before updating the current position.
  2272. */
  2273. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2274. static void homeaxis(const AxisEnum axis) {
  2275. #if IS_SCARA
  2276. // Only Z homing (with probe) is permitted
  2277. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2278. #else
  2279. #define CAN_HOME(A) \
  2280. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2281. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2282. #endif
  2283. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2284. if (DEBUGGING(LEVELING)) {
  2285. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2286. SERIAL_CHAR(')');
  2287. SERIAL_EOL;
  2288. }
  2289. #endif
  2290. const int axis_home_dir =
  2291. #if ENABLED(DUAL_X_CARRIAGE)
  2292. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2293. #endif
  2294. home_dir(axis);
  2295. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2296. #if HOMING_Z_WITH_PROBE
  2297. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2298. #endif
  2299. // Set a flag for Z motor locking
  2300. #if ENABLED(Z_DUAL_ENDSTOPS)
  2301. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2302. #endif
  2303. // Fast move towards endstop until triggered
  2304. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2305. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2306. #endif
  2307. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2308. // When homing Z with probe respect probe clearance
  2309. const float bump = axis_home_dir * (
  2310. #if HOMING_Z_WITH_PROBE
  2311. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2312. #endif
  2313. home_bump_mm(axis)
  2314. );
  2315. // If a second homing move is configured...
  2316. if (bump) {
  2317. // Move away from the endstop by the axis HOME_BUMP_MM
  2318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2319. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2320. #endif
  2321. do_homing_move(axis, -bump);
  2322. // Slow move towards endstop until triggered
  2323. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2324. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2325. #endif
  2326. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2327. }
  2328. #if ENABLED(Z_DUAL_ENDSTOPS)
  2329. if (axis == Z_AXIS) {
  2330. float adj = fabs(z_endstop_adj);
  2331. bool lockZ1;
  2332. if (axis_home_dir > 0) {
  2333. adj = -adj;
  2334. lockZ1 = (z_endstop_adj > 0);
  2335. }
  2336. else
  2337. lockZ1 = (z_endstop_adj < 0);
  2338. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2339. // Move to the adjusted endstop height
  2340. do_homing_move(axis, adj);
  2341. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2342. stepper.set_homing_flag(false);
  2343. } // Z_AXIS
  2344. #endif
  2345. #if IS_SCARA
  2346. set_axis_is_at_home(axis);
  2347. SYNC_PLAN_POSITION_KINEMATIC();
  2348. #elif ENABLED(DELTA)
  2349. // Delta has already moved all three towers up in G28
  2350. // so here it re-homes each tower in turn.
  2351. // Delta homing treats the axes as normal linear axes.
  2352. // retrace by the amount specified in endstop_adj
  2353. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2354. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2355. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2356. #endif
  2357. do_homing_move(axis, endstop_adj[axis]);
  2358. }
  2359. #else
  2360. // For cartesian/core machines,
  2361. // set the axis to its home position
  2362. set_axis_is_at_home(axis);
  2363. sync_plan_position();
  2364. destination[axis] = current_position[axis];
  2365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2366. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2367. #endif
  2368. #endif
  2369. // Put away the Z probe
  2370. #if HOMING_Z_WITH_PROBE
  2371. if (axis == Z_AXIS && STOW_PROBE()) return;
  2372. #endif
  2373. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2374. if (DEBUGGING(LEVELING)) {
  2375. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2376. SERIAL_CHAR(')');
  2377. SERIAL_EOL;
  2378. }
  2379. #endif
  2380. } // homeaxis()
  2381. #if ENABLED(FWRETRACT)
  2382. void retract(const bool retracting, const bool swapping = false) {
  2383. static float hop_height;
  2384. if (retracting == retracted[active_extruder]) return;
  2385. const float old_feedrate_mm_s = feedrate_mm_s;
  2386. set_destination_to_current();
  2387. if (retracting) {
  2388. feedrate_mm_s = retract_feedrate_mm_s;
  2389. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2390. sync_plan_position_e();
  2391. prepare_move_to_destination();
  2392. if (retract_zlift > 0.01) {
  2393. hop_height = current_position[Z_AXIS];
  2394. // Pretend current position is lower
  2395. current_position[Z_AXIS] -= retract_zlift;
  2396. SYNC_PLAN_POSITION_KINEMATIC();
  2397. // Raise up to the old current_position
  2398. prepare_move_to_destination();
  2399. }
  2400. }
  2401. else {
  2402. // If the height hasn't been altered, undo the Z hop
  2403. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2404. // Pretend current position is higher. Z will lower on the next move
  2405. current_position[Z_AXIS] += retract_zlift;
  2406. SYNC_PLAN_POSITION_KINEMATIC();
  2407. }
  2408. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2409. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2410. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2411. sync_plan_position_e();
  2412. // Lower Z and recover E
  2413. prepare_move_to_destination();
  2414. }
  2415. feedrate_mm_s = old_feedrate_mm_s;
  2416. retracted[active_extruder] = retracting;
  2417. } // retract()
  2418. #endif // FWRETRACT
  2419. #if ENABLED(MIXING_EXTRUDER)
  2420. void normalize_mix() {
  2421. float mix_total = 0.0;
  2422. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2423. // Scale all values if they don't add up to ~1.0
  2424. if (!NEAR(mix_total, 1.0)) {
  2425. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2426. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2427. }
  2428. }
  2429. #if ENABLED(DIRECT_MIXING_IN_G1)
  2430. // Get mixing parameters from the GCode
  2431. // The total "must" be 1.0 (but it will be normalized)
  2432. // If no mix factors are given, the old mix is preserved
  2433. void gcode_get_mix() {
  2434. const char* mixing_codes = "ABCDHI";
  2435. byte mix_bits = 0;
  2436. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2437. if (code_seen(mixing_codes[i])) {
  2438. SBI(mix_bits, i);
  2439. float v = code_value_float();
  2440. NOLESS(v, 0.0);
  2441. mixing_factor[i] = RECIPROCAL(v);
  2442. }
  2443. }
  2444. // If any mixing factors were included, clear the rest
  2445. // If none were included, preserve the last mix
  2446. if (mix_bits) {
  2447. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2448. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2449. normalize_mix();
  2450. }
  2451. }
  2452. #endif
  2453. #endif
  2454. /**
  2455. * ***************************************************************************
  2456. * ***************************** G-CODE HANDLING *****************************
  2457. * ***************************************************************************
  2458. */
  2459. /**
  2460. * Set XYZE destination and feedrate from the current GCode command
  2461. *
  2462. * - Set destination from included axis codes
  2463. * - Set to current for missing axis codes
  2464. * - Set the feedrate, if included
  2465. */
  2466. void gcode_get_destination() {
  2467. LOOP_XYZE(i) {
  2468. if (code_seen(axis_codes[i]))
  2469. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2470. else
  2471. destination[i] = current_position[i];
  2472. }
  2473. if (code_seen('F') && code_value_linear_units() > 0.0)
  2474. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2475. #if ENABLED(PRINTCOUNTER)
  2476. if (!DEBUGGING(DRYRUN))
  2477. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2478. #endif
  2479. // Get ABCDHI mixing factors
  2480. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2481. gcode_get_mix();
  2482. #endif
  2483. }
  2484. void unknown_command_error() {
  2485. SERIAL_ECHO_START;
  2486. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2487. SERIAL_CHAR('"');
  2488. SERIAL_EOL;
  2489. }
  2490. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2491. /**
  2492. * Output a "busy" message at regular intervals
  2493. * while the machine is not accepting commands.
  2494. */
  2495. void host_keepalive() {
  2496. const millis_t ms = millis();
  2497. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2498. if (PENDING(ms, next_busy_signal_ms)) return;
  2499. switch (busy_state) {
  2500. case IN_HANDLER:
  2501. case IN_PROCESS:
  2502. SERIAL_ECHO_START;
  2503. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2504. break;
  2505. case PAUSED_FOR_USER:
  2506. SERIAL_ECHO_START;
  2507. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2508. break;
  2509. case PAUSED_FOR_INPUT:
  2510. SERIAL_ECHO_START;
  2511. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2512. break;
  2513. default:
  2514. break;
  2515. }
  2516. }
  2517. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2518. }
  2519. #endif //HOST_KEEPALIVE_FEATURE
  2520. bool position_is_reachable(float target[XYZ]
  2521. #if HAS_BED_PROBE
  2522. , bool by_probe=false
  2523. #endif
  2524. ) {
  2525. float dx = RAW_X_POSITION(target[X_AXIS]),
  2526. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2527. #if HAS_BED_PROBE
  2528. if (by_probe) {
  2529. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2530. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2531. }
  2532. #endif
  2533. #if IS_SCARA
  2534. #if MIDDLE_DEAD_ZONE_R > 0
  2535. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2536. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2537. #else
  2538. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2539. #endif
  2540. #elif ENABLED(DELTA)
  2541. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2542. #else
  2543. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2544. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2545. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2546. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2547. #endif
  2548. }
  2549. /**************************************************
  2550. ***************** GCode Handlers *****************
  2551. **************************************************/
  2552. /**
  2553. * G0, G1: Coordinated movement of X Y Z E axes
  2554. */
  2555. inline void gcode_G0_G1(
  2556. #if IS_SCARA
  2557. bool fast_move=false
  2558. #endif
  2559. ) {
  2560. if (IsRunning()) {
  2561. gcode_get_destination(); // For X Y Z E F
  2562. #if ENABLED(FWRETRACT)
  2563. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2564. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2565. // Is this move an attempt to retract or recover?
  2566. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2567. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2568. sync_plan_position_e(); // AND from the planner
  2569. retract(!retracted[active_extruder]);
  2570. return;
  2571. }
  2572. }
  2573. #endif //FWRETRACT
  2574. #if IS_SCARA
  2575. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2576. #else
  2577. prepare_move_to_destination();
  2578. #endif
  2579. }
  2580. }
  2581. /**
  2582. * G2: Clockwise Arc
  2583. * G3: Counterclockwise Arc
  2584. *
  2585. * This command has two forms: IJ-form and R-form.
  2586. *
  2587. * - I specifies an X offset. J specifies a Y offset.
  2588. * At least one of the IJ parameters is required.
  2589. * X and Y can be omitted to do a complete circle.
  2590. * The given XY is not error-checked. The arc ends
  2591. * based on the angle of the destination.
  2592. * Mixing I or J with R will throw an error.
  2593. *
  2594. * - R specifies the radius. X or Y is required.
  2595. * Omitting both X and Y will throw an error.
  2596. * X or Y must differ from the current XY.
  2597. * Mixing R with I or J will throw an error.
  2598. *
  2599. * Examples:
  2600. *
  2601. * G2 I10 ; CW circle centered at X+10
  2602. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2603. */
  2604. #if ENABLED(ARC_SUPPORT)
  2605. inline void gcode_G2_G3(bool clockwise) {
  2606. if (IsRunning()) {
  2607. #if ENABLED(SF_ARC_FIX)
  2608. const bool relative_mode_backup = relative_mode;
  2609. relative_mode = true;
  2610. #endif
  2611. gcode_get_destination();
  2612. #if ENABLED(SF_ARC_FIX)
  2613. relative_mode = relative_mode_backup;
  2614. #endif
  2615. float arc_offset[2] = { 0.0, 0.0 };
  2616. if (code_seen('R')) {
  2617. const float r = code_value_axis_units(X_AXIS),
  2618. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2619. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2620. if (r && (x2 != x1 || y2 != y1)) {
  2621. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2622. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2623. d = HYPOT(dx, dy), // Linear distance between the points
  2624. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2625. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2626. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2627. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2628. arc_offset[X_AXIS] = cx - x1;
  2629. arc_offset[Y_AXIS] = cy - y1;
  2630. }
  2631. }
  2632. else {
  2633. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2634. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2635. }
  2636. if (arc_offset[0] || arc_offset[1]) {
  2637. // Send an arc to the planner
  2638. plan_arc(destination, arc_offset, clockwise);
  2639. refresh_cmd_timeout();
  2640. }
  2641. else {
  2642. // Bad arguments
  2643. SERIAL_ERROR_START;
  2644. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2645. }
  2646. }
  2647. }
  2648. #endif
  2649. /**
  2650. * G4: Dwell S<seconds> or P<milliseconds>
  2651. */
  2652. inline void gcode_G4() {
  2653. millis_t dwell_ms = 0;
  2654. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2655. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2656. stepper.synchronize();
  2657. refresh_cmd_timeout();
  2658. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2659. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2660. while (PENDING(millis(), dwell_ms)) idle();
  2661. }
  2662. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2663. /**
  2664. * Parameters interpreted according to:
  2665. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2666. * However I, J omission is not supported at this point; all
  2667. * parameters can be omitted and default to zero.
  2668. */
  2669. /**
  2670. * G5: Cubic B-spline
  2671. */
  2672. inline void gcode_G5() {
  2673. if (IsRunning()) {
  2674. gcode_get_destination();
  2675. const float offset[] = {
  2676. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2677. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2678. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2679. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2680. };
  2681. plan_cubic_move(offset);
  2682. }
  2683. }
  2684. #endif // BEZIER_CURVE_SUPPORT
  2685. #if ENABLED(FWRETRACT)
  2686. /**
  2687. * G10 - Retract filament according to settings of M207
  2688. * G11 - Recover filament according to settings of M208
  2689. */
  2690. inline void gcode_G10_G11(bool doRetract=false) {
  2691. #if EXTRUDERS > 1
  2692. if (doRetract) {
  2693. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2694. }
  2695. #endif
  2696. retract(doRetract
  2697. #if EXTRUDERS > 1
  2698. , retracted_swap[active_extruder]
  2699. #endif
  2700. );
  2701. }
  2702. #endif //FWRETRACT
  2703. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2704. /**
  2705. * G12: Clean the nozzle
  2706. */
  2707. inline void gcode_G12() {
  2708. // Don't allow nozzle cleaning without homing first
  2709. if (axis_unhomed_error(true, true, true)) return;
  2710. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2711. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2712. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2713. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2714. Nozzle::clean(pattern, strokes, radius, objects);
  2715. }
  2716. #endif
  2717. #if ENABLED(INCH_MODE_SUPPORT)
  2718. /**
  2719. * G20: Set input mode to inches
  2720. */
  2721. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2722. /**
  2723. * G21: Set input mode to millimeters
  2724. */
  2725. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2726. #endif
  2727. #if ENABLED(NOZZLE_PARK_FEATURE)
  2728. /**
  2729. * G27: Park the nozzle
  2730. */
  2731. inline void gcode_G27() {
  2732. // Don't allow nozzle parking without homing first
  2733. if (axis_unhomed_error(true, true, true)) return;
  2734. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2735. }
  2736. #endif // NOZZLE_PARK_FEATURE
  2737. #if ENABLED(QUICK_HOME)
  2738. static void quick_home_xy() {
  2739. // Pretend the current position is 0,0
  2740. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2741. sync_plan_position();
  2742. const int x_axis_home_dir =
  2743. #if ENABLED(DUAL_X_CARRIAGE)
  2744. x_home_dir(active_extruder)
  2745. #else
  2746. home_dir(X_AXIS)
  2747. #endif
  2748. ;
  2749. const float mlx = max_length(X_AXIS),
  2750. mly = max_length(Y_AXIS),
  2751. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2752. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2753. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2754. endstops.hit_on_purpose(); // clear endstop hit flags
  2755. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2756. }
  2757. #endif // QUICK_HOME
  2758. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2759. void log_machine_info() {
  2760. SERIAL_ECHOPGM("Machine Type: ");
  2761. #if ENABLED(DELTA)
  2762. SERIAL_ECHOLNPGM("Delta");
  2763. #elif IS_SCARA
  2764. SERIAL_ECHOLNPGM("SCARA");
  2765. #elif IS_CORE
  2766. SERIAL_ECHOLNPGM("Core");
  2767. #else
  2768. SERIAL_ECHOLNPGM("Cartesian");
  2769. #endif
  2770. SERIAL_ECHOPGM("Probe: ");
  2771. #if ENABLED(PROBE_MANUALLY)
  2772. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2773. #elif ENABLED(FIX_MOUNTED_PROBE)
  2774. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2775. #elif ENABLED(BLTOUCH)
  2776. SERIAL_ECHOLNPGM("BLTOUCH");
  2777. #elif HAS_Z_SERVO_ENDSTOP
  2778. SERIAL_ECHOLNPGM("SERVO PROBE");
  2779. #elif ENABLED(Z_PROBE_SLED)
  2780. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2781. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2782. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2783. #else
  2784. SERIAL_ECHOLNPGM("NONE");
  2785. #endif
  2786. #if HAS_BED_PROBE
  2787. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2788. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2789. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2790. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2791. SERIAL_ECHOPGM(" (Right");
  2792. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2793. SERIAL_ECHOPGM(" (Left");
  2794. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2795. SERIAL_ECHOPGM(" (Middle");
  2796. #else
  2797. SERIAL_ECHOPGM(" (Aligned With");
  2798. #endif
  2799. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2800. SERIAL_ECHOPGM("-Back");
  2801. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2802. SERIAL_ECHOPGM("-Front");
  2803. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2804. SERIAL_ECHOPGM("-Center");
  2805. #endif
  2806. if (zprobe_zoffset < 0)
  2807. SERIAL_ECHOPGM(" & Below");
  2808. else if (zprobe_zoffset > 0)
  2809. SERIAL_ECHOPGM(" & Above");
  2810. else
  2811. SERIAL_ECHOPGM(" & Same Z as");
  2812. SERIAL_ECHOLNPGM(" Nozzle)");
  2813. #endif
  2814. #if HAS_ABL
  2815. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2816. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2817. SERIAL_ECHOPGM("LINEAR");
  2818. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2819. SERIAL_ECHOPGM("BILINEAR");
  2820. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2821. SERIAL_ECHOPGM("3POINT");
  2822. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2823. SERIAL_ECHOPGM("UBL");
  2824. #endif
  2825. if (planner.abl_enabled) {
  2826. SERIAL_ECHOLNPGM(" (enabled)");
  2827. #if ABL_PLANAR
  2828. float diff[XYZ] = {
  2829. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2830. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2831. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2832. };
  2833. SERIAL_ECHOPGM("ABL Adjustment X");
  2834. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2835. SERIAL_ECHO(diff[X_AXIS]);
  2836. SERIAL_ECHOPGM(" Y");
  2837. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2838. SERIAL_ECHO(diff[Y_AXIS]);
  2839. SERIAL_ECHOPGM(" Z");
  2840. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2841. SERIAL_ECHO(diff[Z_AXIS]);
  2842. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2843. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  2844. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2845. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2846. #endif
  2847. }
  2848. else
  2849. SERIAL_ECHOLNPGM(" (disabled)");
  2850. SERIAL_EOL;
  2851. #elif ENABLED(MESH_BED_LEVELING)
  2852. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2853. if (mbl.active()) {
  2854. float lz = current_position[Z_AXIS];
  2855. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  2856. SERIAL_ECHOLNPGM(" (enabled)");
  2857. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  2858. }
  2859. else
  2860. SERIAL_ECHOPGM(" (disabled)");
  2861. SERIAL_EOL;
  2862. #endif // MESH_BED_LEVELING
  2863. }
  2864. #endif // DEBUG_LEVELING_FEATURE
  2865. #if ENABLED(DELTA)
  2866. /**
  2867. * A delta can only safely home all axes at the same time
  2868. * This is like quick_home_xy() but for 3 towers.
  2869. */
  2870. inline void home_delta() {
  2871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2872. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2873. #endif
  2874. // Init the current position of all carriages to 0,0,0
  2875. ZERO(current_position);
  2876. sync_plan_position();
  2877. // Move all carriages together linearly until an endstop is hit.
  2878. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2879. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2880. line_to_current_position();
  2881. stepper.synchronize();
  2882. endstops.hit_on_purpose(); // clear endstop hit flags
  2883. // At least one carriage has reached the top.
  2884. // Now re-home each carriage separately.
  2885. HOMEAXIS(A);
  2886. HOMEAXIS(B);
  2887. HOMEAXIS(C);
  2888. // Set all carriages to their home positions
  2889. // Do this here all at once for Delta, because
  2890. // XYZ isn't ABC. Applying this per-tower would
  2891. // give the impression that they are the same.
  2892. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2893. SYNC_PLAN_POSITION_KINEMATIC();
  2894. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2895. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2896. #endif
  2897. }
  2898. #endif // DELTA
  2899. #if ENABLED(Z_SAFE_HOMING)
  2900. inline void home_z_safely() {
  2901. // Disallow Z homing if X or Y are unknown
  2902. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2903. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2904. SERIAL_ECHO_START;
  2905. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2906. return;
  2907. }
  2908. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2909. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2910. #endif
  2911. SYNC_PLAN_POSITION_KINEMATIC();
  2912. /**
  2913. * Move the Z probe (or just the nozzle) to the safe homing point
  2914. */
  2915. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2916. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2917. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2918. if (position_is_reachable(
  2919. destination
  2920. #if HOMING_Z_WITH_PROBE
  2921. , true
  2922. #endif
  2923. )
  2924. ) {
  2925. #if HOMING_Z_WITH_PROBE
  2926. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2927. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2928. #endif
  2929. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2930. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2931. #endif
  2932. // This causes the carriage on Dual X to unpark
  2933. #if ENABLED(DUAL_X_CARRIAGE)
  2934. active_extruder_parked = false;
  2935. #endif
  2936. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2937. HOMEAXIS(Z);
  2938. }
  2939. else {
  2940. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2941. SERIAL_ECHO_START;
  2942. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2943. }
  2944. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2945. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2946. #endif
  2947. }
  2948. #endif // Z_SAFE_HOMING
  2949. #if ENABLED(PROBE_MANUALLY)
  2950. bool g29_in_progress = false;
  2951. #else
  2952. constexpr bool g29_in_progress = false;
  2953. #endif
  2954. /**
  2955. * G28: Home all axes according to settings
  2956. *
  2957. * Parameters
  2958. *
  2959. * None Home to all axes with no parameters.
  2960. * With QUICK_HOME enabled XY will home together, then Z.
  2961. *
  2962. * Cartesian parameters
  2963. *
  2964. * X Home to the X endstop
  2965. * Y Home to the Y endstop
  2966. * Z Home to the Z endstop
  2967. *
  2968. */
  2969. inline void gcode_G28() {
  2970. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2971. if (DEBUGGING(LEVELING)) {
  2972. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2973. log_machine_info();
  2974. }
  2975. #endif
  2976. // Wait for planner moves to finish!
  2977. stepper.synchronize();
  2978. // Cancel the active G29 session
  2979. #if ENABLED(PROBE_MANUALLY)
  2980. g29_in_progress = false;
  2981. #endif
  2982. // Disable the leveling matrix before homing
  2983. #if PLANNER_LEVELING
  2984. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2985. const bool bed_leveling_state_at_entry = ubl.state.active;
  2986. #endif
  2987. set_bed_leveling_enabled(false);
  2988. #endif
  2989. // Always home with tool 0 active
  2990. #if HOTENDS > 1
  2991. const uint8_t old_tool_index = active_extruder;
  2992. tool_change(0, 0, true);
  2993. #endif
  2994. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2995. extruder_duplication_enabled = false;
  2996. #endif
  2997. setup_for_endstop_or_probe_move();
  2998. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2999. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3000. #endif
  3001. endstops.enable(true); // Enable endstops for next homing move
  3002. #if ENABLED(DELTA)
  3003. home_delta();
  3004. #else // NOT DELTA
  3005. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3006. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3007. set_destination_to_current();
  3008. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3009. if (home_all_axis || homeZ) {
  3010. HOMEAXIS(Z);
  3011. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3012. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3013. #endif
  3014. }
  3015. #else
  3016. if (home_all_axis || homeX || homeY) {
  3017. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3018. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3019. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3020. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3021. if (DEBUGGING(LEVELING))
  3022. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3023. #endif
  3024. do_blocking_move_to_z(destination[Z_AXIS]);
  3025. }
  3026. }
  3027. #endif
  3028. #if ENABLED(QUICK_HOME)
  3029. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3030. #endif
  3031. #if ENABLED(HOME_Y_BEFORE_X)
  3032. // Home Y
  3033. if (home_all_axis || homeY) {
  3034. HOMEAXIS(Y);
  3035. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3036. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3037. #endif
  3038. }
  3039. #endif
  3040. // Home X
  3041. if (home_all_axis || homeX) {
  3042. #if ENABLED(DUAL_X_CARRIAGE)
  3043. // Always home the 2nd (right) extruder first
  3044. active_extruder = 1;
  3045. HOMEAXIS(X);
  3046. // Remember this extruder's position for later tool change
  3047. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3048. // Home the 1st (left) extruder
  3049. active_extruder = 0;
  3050. HOMEAXIS(X);
  3051. // Consider the active extruder to be parked
  3052. COPY(raised_parked_position, current_position);
  3053. delayed_move_time = 0;
  3054. active_extruder_parked = true;
  3055. #else
  3056. HOMEAXIS(X);
  3057. #endif
  3058. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3059. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3060. #endif
  3061. }
  3062. #if DISABLED(HOME_Y_BEFORE_X)
  3063. // Home Y
  3064. if (home_all_axis || homeY) {
  3065. HOMEAXIS(Y);
  3066. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3067. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3068. #endif
  3069. }
  3070. #endif
  3071. // Home Z last if homing towards the bed
  3072. #if Z_HOME_DIR < 0
  3073. if (home_all_axis || homeZ) {
  3074. #if ENABLED(Z_SAFE_HOMING)
  3075. home_z_safely();
  3076. #else
  3077. HOMEAXIS(Z);
  3078. #endif
  3079. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3080. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3081. #endif
  3082. } // home_all_axis || homeZ
  3083. #endif // Z_HOME_DIR < 0
  3084. SYNC_PLAN_POSITION_KINEMATIC();
  3085. #endif // !DELTA (gcode_G28)
  3086. endstops.not_homing();
  3087. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3088. // move to a height where we can use the full xy-area
  3089. do_blocking_move_to_z(delta_clip_start_height);
  3090. #endif
  3091. // Enable mesh leveling again
  3092. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3093. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3094. #endif
  3095. #if ENABLED(MESH_BED_LEVELING)
  3096. if (mbl.reactivate()) {
  3097. set_bed_leveling_enabled(true);
  3098. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3099. #if ENABLED(MESH_G28_REST_ORIGIN)
  3100. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3101. set_destination_to_current();
  3102. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3103. stepper.synchronize();
  3104. #endif
  3105. }
  3106. }
  3107. #endif
  3108. clean_up_after_endstop_or_probe_move();
  3109. // Restore the active tool after homing
  3110. #if HOTENDS > 1
  3111. tool_change(old_tool_index, 0, true);
  3112. #endif
  3113. report_current_position();
  3114. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3115. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3116. #endif
  3117. }
  3118. #if HAS_PROBING_PROCEDURE
  3119. void out_of_range_error(const char* p_edge) {
  3120. SERIAL_PROTOCOLPGM("?Probe ");
  3121. serialprintPGM(p_edge);
  3122. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3123. }
  3124. #endif
  3125. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3126. inline void _manual_goto_xy(const float &x, const float &y) {
  3127. const float old_feedrate_mm_s = feedrate_mm_s;
  3128. #if MANUAL_PROBE_HEIGHT > 0
  3129. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3130. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3131. line_to_current_position();
  3132. #endif
  3133. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3134. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3135. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3136. line_to_current_position();
  3137. #if MANUAL_PROBE_HEIGHT > 0
  3138. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3139. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3140. line_to_current_position();
  3141. #endif
  3142. feedrate_mm_s = old_feedrate_mm_s;
  3143. stepper.synchronize();
  3144. }
  3145. #endif
  3146. #if ENABLED(MESH_BED_LEVELING)
  3147. // Save 130 bytes with non-duplication of PSTR
  3148. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3149. void mbl_mesh_report() {
  3150. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  3151. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3152. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3153. for (uint8_t py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3154. for (uint8_t px = 0; px < MESH_NUM_X_POINTS; px++) {
  3155. SERIAL_PROTOCOLPGM(" ");
  3156. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3157. }
  3158. SERIAL_EOL;
  3159. }
  3160. }
  3161. /**
  3162. * G29: Mesh-based Z probe, probes a grid and produces a
  3163. * mesh to compensate for variable bed height
  3164. *
  3165. * Parameters With MESH_BED_LEVELING:
  3166. *
  3167. * S0 Produce a mesh report
  3168. * S1 Start probing mesh points
  3169. * S2 Probe the next mesh point
  3170. * S3 Xn Yn Zn.nn Manually modify a single point
  3171. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3172. * S5 Reset and disable mesh
  3173. *
  3174. * The S0 report the points as below
  3175. *
  3176. * +----> X-axis 1-n
  3177. * |
  3178. * |
  3179. * v Y-axis 1-n
  3180. *
  3181. */
  3182. inline void gcode_G29() {
  3183. static int mbl_probe_index = -1;
  3184. #if HAS_SOFTWARE_ENDSTOPS
  3185. static bool enable_soft_endstops;
  3186. #endif
  3187. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3188. if (!WITHIN(state, 0, 5)) {
  3189. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3190. return;
  3191. }
  3192. int8_t px, py;
  3193. switch (state) {
  3194. case MeshReport:
  3195. if (mbl.has_mesh()) {
  3196. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3197. mbl_mesh_report();
  3198. }
  3199. else
  3200. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3201. break;
  3202. case MeshStart:
  3203. mbl.reset();
  3204. mbl_probe_index = 0;
  3205. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3206. break;
  3207. case MeshNext:
  3208. if (mbl_probe_index < 0) {
  3209. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3210. return;
  3211. }
  3212. // For each G29 S2...
  3213. if (mbl_probe_index == 0) {
  3214. #if HAS_SOFTWARE_ENDSTOPS
  3215. // For the initial G29 S2 save software endstop state
  3216. enable_soft_endstops = soft_endstops_enabled;
  3217. #endif
  3218. }
  3219. else {
  3220. // For G29 S2 after adjusting Z.
  3221. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3222. #if HAS_SOFTWARE_ENDSTOPS
  3223. soft_endstops_enabled = enable_soft_endstops;
  3224. #endif
  3225. }
  3226. // If there's another point to sample, move there with optional lift.
  3227. if (mbl_probe_index < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3228. mbl.zigzag(mbl_probe_index, px, py);
  3229. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3230. #if HAS_SOFTWARE_ENDSTOPS
  3231. // Disable software endstops to allow manual adjustment
  3232. // If G29 is not completed, they will not be re-enabled
  3233. soft_endstops_enabled = false;
  3234. #endif
  3235. mbl_probe_index++;
  3236. }
  3237. else {
  3238. // One last "return to the bed" (as originally coded) at completion
  3239. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3240. line_to_current_position();
  3241. stepper.synchronize();
  3242. // After recording the last point, activate the mbl and home
  3243. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3244. mbl_probe_index = -1;
  3245. mbl.set_has_mesh(true);
  3246. mbl.set_reactivate(true);
  3247. enqueue_and_echo_commands_P(PSTR("G28"));
  3248. BUZZ(100, 659);
  3249. BUZZ(100, 698);
  3250. }
  3251. break;
  3252. case MeshSet:
  3253. if (code_seen('X')) {
  3254. px = code_value_int() - 1;
  3255. if (!WITHIN(px, 0, MESH_NUM_X_POINTS - 1)) {
  3256. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3257. return;
  3258. }
  3259. }
  3260. else {
  3261. SERIAL_CHAR('X'); say_not_entered();
  3262. return;
  3263. }
  3264. if (code_seen('Y')) {
  3265. py = code_value_int() - 1;
  3266. if (!WITHIN(py, 0, MESH_NUM_Y_POINTS - 1)) {
  3267. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3268. return;
  3269. }
  3270. }
  3271. else {
  3272. SERIAL_CHAR('Y'); say_not_entered();
  3273. return;
  3274. }
  3275. if (code_seen('Z')) {
  3276. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3277. }
  3278. else {
  3279. SERIAL_CHAR('Z'); say_not_entered();
  3280. return;
  3281. }
  3282. break;
  3283. case MeshSetZOffset:
  3284. if (code_seen('Z')) {
  3285. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3286. }
  3287. else {
  3288. SERIAL_CHAR('Z'); say_not_entered();
  3289. return;
  3290. }
  3291. break;
  3292. case MeshReset:
  3293. reset_bed_level();
  3294. break;
  3295. } // switch(state)
  3296. report_current_position();
  3297. }
  3298. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3299. #if ABL_GRID
  3300. #if ENABLED(PROBE_Y_FIRST)
  3301. #define PR_OUTER_VAR xCount
  3302. #define PR_OUTER_END abl_grid_points_x
  3303. #define PR_INNER_VAR yCount
  3304. #define PR_INNER_END abl_grid_points_y
  3305. #else
  3306. #define PR_OUTER_VAR yCount
  3307. #define PR_OUTER_END abl_grid_points_y
  3308. #define PR_INNER_VAR xCount
  3309. #define PR_INNER_END abl_grid_points_x
  3310. #endif
  3311. #endif
  3312. /**
  3313. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3314. * Will fail if the printer has not been homed with G28.
  3315. *
  3316. * Enhanced G29 Auto Bed Leveling Probe Routine
  3317. *
  3318. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3319. * or alter the bed level data. Useful to check the topology
  3320. * after a first run of G29.
  3321. *
  3322. * J Jettison current bed leveling data
  3323. *
  3324. * V Set the verbose level (0-4). Example: "G29 V3"
  3325. *
  3326. * Parameters With LINEAR leveling only:
  3327. *
  3328. * P Set the size of the grid that will be probed (P x P points).
  3329. * Example: "G29 P4"
  3330. *
  3331. * X Set the X size of the grid that will be probed (X x Y points).
  3332. * Example: "G29 X7 Y5"
  3333. *
  3334. * Y Set the Y size of the grid that will be probed (X x Y points).
  3335. *
  3336. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3337. * This is useful for manual bed leveling and finding flaws in the bed (to
  3338. * assist with part placement).
  3339. * Not supported by non-linear delta printer bed leveling.
  3340. *
  3341. * Parameters With LINEAR and BILINEAR leveling only:
  3342. *
  3343. * S Set the XY travel speed between probe points (in units/min)
  3344. *
  3345. * F Set the Front limit of the probing grid
  3346. * B Set the Back limit of the probing grid
  3347. * L Set the Left limit of the probing grid
  3348. * R Set the Right limit of the probing grid
  3349. *
  3350. * Parameters with BILINEAR leveling only:
  3351. *
  3352. * Z Supply an additional Z probe offset
  3353. *
  3354. * Extra parameters with PROBE_MANUALLY:
  3355. *
  3356. * To do manual probing simply repeat G29 until the procedure is complete.
  3357. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3358. *
  3359. * Q Query leveling and G29 state
  3360. *
  3361. * A Abort current leveling procedure
  3362. *
  3363. * W Write a mesh point. (Ignored during leveling.)
  3364. * X Required X for mesh point
  3365. * Y Required Y for mesh point
  3366. * Z Required Z for mesh point
  3367. *
  3368. * Without PROBE_MANUALLY:
  3369. *
  3370. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3371. * Include "E" to engage/disengage the Z probe for each sample.
  3372. * There's no extra effect if you have a fixed Z probe.
  3373. *
  3374. */
  3375. inline void gcode_G29() {
  3376. // G29 Q is also available if debugging
  3377. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3378. const bool query = code_seen('Q');
  3379. const uint8_t old_debug_flags = marlin_debug_flags;
  3380. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3381. if (DEBUGGING(LEVELING)) {
  3382. DEBUG_POS(">>> gcode_G29", current_position);
  3383. log_machine_info();
  3384. }
  3385. marlin_debug_flags = old_debug_flags;
  3386. #if DISABLED(PROBE_MANUALLY)
  3387. if (query) return;
  3388. #endif
  3389. #endif
  3390. // Don't allow auto-leveling without homing first
  3391. if (axis_unhomed_error(true, true, true)) return;
  3392. // Define local vars 'static' for manual probing, 'auto' otherwise
  3393. #if ENABLED(PROBE_MANUALLY)
  3394. #define ABL_VAR static
  3395. #else
  3396. #define ABL_VAR
  3397. #endif
  3398. ABL_VAR int verbose_level, abl_probe_index;
  3399. ABL_VAR float xProbe, yProbe, measured_z;
  3400. ABL_VAR bool dryrun, abl_should_enable;
  3401. #if HAS_SOFTWARE_ENDSTOPS
  3402. ABL_VAR bool enable_soft_endstops = true;
  3403. #endif
  3404. #if ABL_GRID
  3405. ABL_VAR uint8_t PR_OUTER_VAR;
  3406. ABL_VAR int8_t PR_INNER_VAR;
  3407. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3408. ABL_VAR float xGridSpacing, yGridSpacing;
  3409. #define ABL_GRID_MAX (ABL_GRID_MAX_POINTS_X) * (ABL_GRID_MAX_POINTS_Y)
  3410. #if ABL_PLANAR
  3411. ABL_VAR uint8_t abl_grid_points_x = ABL_GRID_MAX_POINTS_X,
  3412. abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
  3413. ABL_VAR int abl2;
  3414. ABL_VAR bool do_topography_map;
  3415. #else // 3-point
  3416. uint8_t constexpr abl_grid_points_x = ABL_GRID_MAX_POINTS_X,
  3417. abl_grid_points_y = ABL_GRID_MAX_POINTS_Y;
  3418. int constexpr abl2 = ABL_GRID_MAX;
  3419. #endif
  3420. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3421. ABL_VAR float zoffset;
  3422. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3423. ABL_VAR int indexIntoAB[ABL_GRID_MAX_POINTS_X][ABL_GRID_MAX_POINTS_Y];
  3424. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3425. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3426. mean;
  3427. #endif
  3428. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3429. // Probe at 3 arbitrary points
  3430. ABL_VAR vector_3 points[3] = {
  3431. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3432. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3433. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3434. };
  3435. #endif // AUTO_BED_LEVELING_3POINT
  3436. /**
  3437. * On the initial G29 fetch command parameters.
  3438. */
  3439. if (!g29_in_progress) {
  3440. abl_probe_index = 0;
  3441. abl_should_enable = planner.abl_enabled;
  3442. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3443. if (code_seen('W')) {
  3444. if (!bilinear_grid_spacing[X_AXIS]) {
  3445. SERIAL_ERROR_START;
  3446. SERIAL_ERRORLNPGM("No bilinear grid");
  3447. return;
  3448. }
  3449. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3450. if (!WITHIN(z, -10, 10)) {
  3451. SERIAL_ERROR_START;
  3452. SERIAL_ERRORLNPGM("Bad Z value");
  3453. return;
  3454. }
  3455. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3456. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3457. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3458. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3459. if (x < 99998 && y < 99998) {
  3460. // Get nearest i / j from x / y
  3461. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3462. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3463. i = constrain(i, 0, ABL_GRID_MAX_POINTS_X - 1);
  3464. j = constrain(j, 0, ABL_GRID_MAX_POINTS_Y - 1);
  3465. }
  3466. if (WITHIN(i, 0, ABL_GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, ABL_GRID_MAX_POINTS_Y)) {
  3467. set_bed_leveling_enabled(false);
  3468. bed_level_grid[i][j] = z;
  3469. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3470. bed_level_virt_interpolate();
  3471. #endif
  3472. set_bed_leveling_enabled(abl_should_enable);
  3473. }
  3474. return;
  3475. } // code_seen('W')
  3476. #endif
  3477. #if PLANNER_LEVELING
  3478. // Jettison bed leveling data
  3479. if (code_seen('J')) {
  3480. reset_bed_level();
  3481. return;
  3482. }
  3483. #endif
  3484. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3485. if (!WITHIN(verbose_level, 0, 4)) {
  3486. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3487. return;
  3488. }
  3489. dryrun = code_seen('D') ? code_value_bool() : false;
  3490. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3491. do_topography_map = verbose_level > 2 || code_seen('T');
  3492. // X and Y specify points in each direction, overriding the default
  3493. // These values may be saved with the completed mesh
  3494. abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_MAX_POINTS_X;
  3495. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_MAX_POINTS_Y;
  3496. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3497. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3498. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3499. return;
  3500. }
  3501. abl2 = abl_grid_points_x * abl_grid_points_y;
  3502. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3503. zoffset = code_seen('Z') ? code_value_axis_units(Z_AXIS) : 0;
  3504. #if HAS_BED_PROBE
  3505. zoffset += zprobe_zoffset;
  3506. #endif
  3507. #endif
  3508. #if ABL_GRID
  3509. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3510. left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3511. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3512. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3513. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3514. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3515. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3516. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3517. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3518. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3519. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3520. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3521. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3522. if (left_out || right_out || front_out || back_out) {
  3523. if (left_out) {
  3524. out_of_range_error(PSTR("(L)eft"));
  3525. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3526. }
  3527. if (right_out) {
  3528. out_of_range_error(PSTR("(R)ight"));
  3529. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3530. }
  3531. if (front_out) {
  3532. out_of_range_error(PSTR("(F)ront"));
  3533. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3534. }
  3535. if (back_out) {
  3536. out_of_range_error(PSTR("(B)ack"));
  3537. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3538. }
  3539. return;
  3540. }
  3541. // probe at the points of a lattice grid
  3542. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3543. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3544. #endif // ABL_GRID
  3545. if (verbose_level > 0) {
  3546. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3547. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3548. }
  3549. stepper.synchronize();
  3550. // Disable auto bed leveling during G29
  3551. planner.abl_enabled = false;
  3552. if (!dryrun) {
  3553. // Re-orient the current position without leveling
  3554. // based on where the steppers are positioned.
  3555. set_current_from_steppers_for_axis(ALL_AXES);
  3556. // Sync the planner to where the steppers stopped
  3557. SYNC_PLAN_POSITION_KINEMATIC();
  3558. }
  3559. setup_for_endstop_or_probe_move();
  3560. //xProbe = yProbe = measured_z = 0;
  3561. #if HAS_BED_PROBE
  3562. // Deploy the probe. Probe will raise if needed.
  3563. if (DEPLOY_PROBE()) {
  3564. planner.abl_enabled = abl_should_enable;
  3565. return;
  3566. }
  3567. #endif
  3568. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3569. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3570. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3571. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3572. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3573. ) {
  3574. if (dryrun) {
  3575. // Before reset bed level, re-enable to correct the position
  3576. planner.abl_enabled = abl_should_enable;
  3577. }
  3578. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3579. reset_bed_level();
  3580. // Initialize a grid with the given dimensions
  3581. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3582. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3583. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3584. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3585. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3586. bilinear_grid_spacing_virt[X_AXIS] = xGridSpacing / (BILINEAR_SUBDIVISIONS);
  3587. bilinear_grid_spacing_virt[Y_AXIS] = yGridSpacing / (BILINEAR_SUBDIVISIONS);
  3588. #endif
  3589. // Can't re-enable (on error) until the new grid is written
  3590. abl_should_enable = false;
  3591. }
  3592. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3593. mean = 0.0;
  3594. #endif // AUTO_BED_LEVELING_LINEAR
  3595. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3596. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3597. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3598. #endif
  3599. // Probe at 3 arbitrary points
  3600. points[0].z = points[1].z = points[2].z = 0;
  3601. #endif // AUTO_BED_LEVELING_3POINT
  3602. } // !g29_in_progress
  3603. #if ENABLED(PROBE_MANUALLY)
  3604. // Abort current G29 procedure, go back to ABLStart
  3605. if (code_seen('A') && g29_in_progress) {
  3606. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3607. #if HAS_SOFTWARE_ENDSTOPS
  3608. soft_endstops_enabled = enable_soft_endstops;
  3609. #endif
  3610. planner.abl_enabled = abl_should_enable;
  3611. g29_in_progress = false;
  3612. }
  3613. // Query G29 status
  3614. if (code_seen('Q')) {
  3615. if (!g29_in_progress)
  3616. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3617. else {
  3618. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3619. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3620. }
  3621. }
  3622. if (code_seen('A') || code_seen('Q')) return;
  3623. // Fall through to probe the first point
  3624. g29_in_progress = true;
  3625. if (abl_probe_index == 0) {
  3626. // For the initial G29 S2 save software endstop state
  3627. #if HAS_SOFTWARE_ENDSTOPS
  3628. enable_soft_endstops = soft_endstops_enabled;
  3629. #endif
  3630. }
  3631. else {
  3632. // For G29 after adjusting Z.
  3633. // Save the previous Z before going to the next point
  3634. measured_z = current_position[Z_AXIS];
  3635. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3636. mean += measured_z;
  3637. eqnBVector[abl_probe_index] = measured_z;
  3638. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3639. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3640. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3641. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3642. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3643. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3644. points[i].z = measured_z;
  3645. #endif
  3646. }
  3647. //
  3648. // If there's another point to sample, move there with optional lift.
  3649. //
  3650. #if ABL_GRID
  3651. // Find a next point to probe
  3652. // On the first G29 this will be the first probe point
  3653. while (abl_probe_index < abl2) {
  3654. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3655. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3656. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3657. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3658. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3659. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3660. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3661. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3662. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3663. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3664. indexIntoAB[xCount][yCount] = abl_probe_index;
  3665. #endif
  3666. float pos[XYZ] = { xProbe, yProbe, 0 };
  3667. if (position_is_reachable(pos)) break;
  3668. ++abl_probe_index;
  3669. }
  3670. // Is there a next point to move to?
  3671. if (abl_probe_index < abl2) {
  3672. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3673. ++abl_probe_index;
  3674. #if HAS_SOFTWARE_ENDSTOPS
  3675. // Disable software endstops to allow manual adjustment
  3676. // If G29 is not completed, they will not be re-enabled
  3677. soft_endstops_enabled = false;
  3678. #endif
  3679. return;
  3680. }
  3681. else {
  3682. // Then leveling is done!
  3683. // G29 finishing code goes here
  3684. // After recording the last point, activate abl
  3685. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3686. g29_in_progress = false;
  3687. // Re-enable software endstops, if needed
  3688. #if HAS_SOFTWARE_ENDSTOPS
  3689. soft_endstops_enabled = enable_soft_endstops;
  3690. #endif
  3691. }
  3692. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3693. // Probe at 3 arbitrary points
  3694. if (abl_probe_index < 3) {
  3695. xProbe = LOGICAL_X_POSITION(points[i].x);
  3696. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3697. ++abl_probe_index;
  3698. #if HAS_SOFTWARE_ENDSTOPS
  3699. // Disable software endstops to allow manual adjustment
  3700. // If G29 is not completed, they will not be re-enabled
  3701. soft_endstops_enabled = false;
  3702. #endif
  3703. return;
  3704. }
  3705. else {
  3706. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3707. g29_in_progress = false;
  3708. // Re-enable software endstops, if needed
  3709. #if HAS_SOFTWARE_ENDSTOPS
  3710. soft_endstops_enabled = enable_soft_endstops;
  3711. #endif
  3712. if (!dryrun) {
  3713. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3714. if (planeNormal.z < 0) {
  3715. planeNormal.x *= -1;
  3716. planeNormal.y *= -1;
  3717. planeNormal.z *= -1;
  3718. }
  3719. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3720. // Can't re-enable (on error) until the new grid is written
  3721. abl_should_enable = false;
  3722. }
  3723. }
  3724. #endif // AUTO_BED_LEVELING_3POINT
  3725. #else // !PROBE_MANUALLY
  3726. bool stow_probe_after_each = code_seen('E');
  3727. #if ABL_GRID
  3728. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3729. // Outer loop is Y with PROBE_Y_FIRST disabled
  3730. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3731. int8_t inStart, inStop, inInc;
  3732. if (zig) { // away from origin
  3733. inStart = 0;
  3734. inStop = PR_INNER_END;
  3735. inInc = 1;
  3736. }
  3737. else { // towards origin
  3738. inStart = PR_INNER_END - 1;
  3739. inStop = -1;
  3740. inInc = -1;
  3741. }
  3742. zig = !zig; // zag
  3743. // Inner loop is Y with PROBE_Y_FIRST enabled
  3744. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3745. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3746. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3747. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3748. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3749. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3750. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3751. #endif
  3752. #if IS_KINEMATIC
  3753. // Avoid probing outside the round or hexagonal area
  3754. float pos[XYZ] = { xProbe, yProbe, 0 };
  3755. if (!position_is_reachable(pos, true)) continue;
  3756. #endif
  3757. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3758. if (measured_z == NAN) {
  3759. planner.abl_enabled = abl_should_enable;
  3760. return;
  3761. }
  3762. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3763. mean += measured_z;
  3764. eqnBVector[abl_probe_index] = measured_z;
  3765. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3766. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3767. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3768. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3769. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3770. #endif
  3771. abl_should_enable = false;
  3772. idle();
  3773. } // inner
  3774. } // outer
  3775. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3776. // Probe at 3 arbitrary points
  3777. for (uint8_t i = 0; i < 3; ++i) {
  3778. // Retain the last probe position
  3779. xProbe = LOGICAL_X_POSITION(points[i].x);
  3780. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3781. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3782. }
  3783. if (measured_z == NAN) {
  3784. planner.abl_enabled = abl_should_enable;
  3785. return;
  3786. }
  3787. if (!dryrun) {
  3788. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3789. if (planeNormal.z < 0) {
  3790. planeNormal.x *= -1;
  3791. planeNormal.y *= -1;
  3792. planeNormal.z *= -1;
  3793. }
  3794. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3795. // Can't re-enable (on error) until the new grid is written
  3796. abl_should_enable = false;
  3797. }
  3798. #endif // AUTO_BED_LEVELING_3POINT
  3799. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3800. if (STOW_PROBE()) {
  3801. planner.abl_enabled = abl_should_enable;
  3802. return;
  3803. }
  3804. #endif // !PROBE_MANUALLY
  3805. //
  3806. // G29 Finishing Code
  3807. //
  3808. // Unless this is a dry run, auto bed leveling will
  3809. // definitely be enabled after this point
  3810. //
  3811. // Restore state after probing
  3812. clean_up_after_endstop_or_probe_move();
  3813. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3814. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3815. #endif
  3816. // Calculate leveling, print reports, correct the position
  3817. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3818. if (!dryrun) extrapolate_unprobed_bed_level();
  3819. print_bilinear_leveling_grid();
  3820. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3821. bed_level_virt_interpolate();
  3822. bed_level_virt_print();
  3823. #endif
  3824. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3825. // For LINEAR leveling calculate matrix, print reports, correct the position
  3826. /**
  3827. * solve the plane equation ax + by + d = z
  3828. * A is the matrix with rows [x y 1] for all the probed points
  3829. * B is the vector of the Z positions
  3830. * the normal vector to the plane is formed by the coefficients of the
  3831. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3832. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3833. */
  3834. float plane_equation_coefficients[3];
  3835. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3836. mean /= abl2;
  3837. if (verbose_level) {
  3838. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3839. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3840. SERIAL_PROTOCOLPGM(" b: ");
  3841. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3842. SERIAL_PROTOCOLPGM(" d: ");
  3843. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3844. SERIAL_EOL;
  3845. if (verbose_level > 2) {
  3846. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3847. SERIAL_PROTOCOL_F(mean, 8);
  3848. SERIAL_EOL;
  3849. }
  3850. }
  3851. // Create the matrix but don't correct the position yet
  3852. if (!dryrun) {
  3853. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3854. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3855. );
  3856. }
  3857. // Show the Topography map if enabled
  3858. if (do_topography_map) {
  3859. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3860. " +--- BACK --+\n"
  3861. " | |\n"
  3862. " L | (+) | R\n"
  3863. " E | | I\n"
  3864. " F | (-) N (+) | G\n"
  3865. " T | | H\n"
  3866. " | (-) | T\n"
  3867. " | |\n"
  3868. " O-- FRONT --+\n"
  3869. " (0,0)");
  3870. float min_diff = 999;
  3871. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3872. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3873. int ind = indexIntoAB[xx][yy];
  3874. float diff = eqnBVector[ind] - mean,
  3875. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3876. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3877. z_tmp = 0;
  3878. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3879. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3880. if (diff >= 0.0)
  3881. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3882. else
  3883. SERIAL_PROTOCOLCHAR(' ');
  3884. SERIAL_PROTOCOL_F(diff, 5);
  3885. } // xx
  3886. SERIAL_EOL;
  3887. } // yy
  3888. SERIAL_EOL;
  3889. if (verbose_level > 3) {
  3890. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3891. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3892. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3893. int ind = indexIntoAB[xx][yy];
  3894. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3895. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3896. z_tmp = 0;
  3897. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3898. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3899. if (diff >= 0.0)
  3900. SERIAL_PROTOCOLPGM(" +");
  3901. // Include + for column alignment
  3902. else
  3903. SERIAL_PROTOCOLCHAR(' ');
  3904. SERIAL_PROTOCOL_F(diff, 5);
  3905. } // xx
  3906. SERIAL_EOL;
  3907. } // yy
  3908. SERIAL_EOL;
  3909. }
  3910. } //do_topography_map
  3911. #endif // AUTO_BED_LEVELING_LINEAR
  3912. #if ABL_PLANAR
  3913. // For LINEAR and 3POINT leveling correct the current position
  3914. if (verbose_level > 0)
  3915. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3916. if (!dryrun) {
  3917. //
  3918. // Correct the current XYZ position based on the tilted plane.
  3919. //
  3920. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3921. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3922. #endif
  3923. float converted[XYZ];
  3924. COPY(converted, current_position);
  3925. planner.abl_enabled = true;
  3926. planner.unapply_leveling(converted); // use conversion machinery
  3927. planner.abl_enabled = false;
  3928. // Use the last measured distance to the bed, if possible
  3929. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3930. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3931. ) {
  3932. float simple_z = current_position[Z_AXIS] - measured_z;
  3933. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3934. if (DEBUGGING(LEVELING)) {
  3935. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3936. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  3937. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  3938. }
  3939. #endif
  3940. converted[Z_AXIS] = simple_z;
  3941. }
  3942. // The rotated XY and corrected Z are now current_position
  3943. COPY(current_position, converted);
  3944. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3945. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3946. #endif
  3947. }
  3948. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3949. if (!dryrun) {
  3950. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3951. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3952. #endif
  3953. // Unapply the offset because it is going to be immediately applied
  3954. // and cause compensation movement in Z
  3955. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3956. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3957. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3958. #endif
  3959. }
  3960. #endif // ABL_PLANAR
  3961. #ifdef Z_PROBE_END_SCRIPT
  3962. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3963. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3964. #endif
  3965. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3966. stepper.synchronize();
  3967. #endif
  3968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3969. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3970. #endif
  3971. report_current_position();
  3972. KEEPALIVE_STATE(IN_HANDLER);
  3973. // Auto Bed Leveling is complete! Enable if possible.
  3974. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3975. if (planner.abl_enabled)
  3976. SYNC_PLAN_POSITION_KINEMATIC();
  3977. }
  3978. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3979. #if HAS_BED_PROBE
  3980. /**
  3981. * G30: Do a single Z probe at the current XY
  3982. * Usage:
  3983. * G30 <X#> <Y#> <S#>
  3984. * X = Probe X position (default=current probe position)
  3985. * Y = Probe Y position (default=current probe position)
  3986. * S = Stows the probe if 1 (default=1)
  3987. */
  3988. inline void gcode_G30() {
  3989. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3990. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3991. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  3992. if (!position_is_reachable(pos, true)) return;
  3993. bool stow = code_seen('S') ? code_value_bool() : true;
  3994. // Disable leveling so the planner won't mess with us
  3995. #if PLANNER_LEVELING
  3996. set_bed_leveling_enabled(false);
  3997. #endif
  3998. setup_for_endstop_or_probe_move();
  3999. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  4000. SERIAL_PROTOCOLPGM("Bed X: ");
  4001. SERIAL_PROTOCOL(FIXFLOAT(X_probe_location));
  4002. SERIAL_PROTOCOLPGM(" Y: ");
  4003. SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location));
  4004. SERIAL_PROTOCOLPGM(" Z: ");
  4005. SERIAL_PROTOCOLLN(FIXFLOAT(measured_z));
  4006. clean_up_after_endstop_or_probe_move();
  4007. report_current_position();
  4008. }
  4009. #if ENABLED(Z_PROBE_SLED)
  4010. /**
  4011. * G31: Deploy the Z probe
  4012. */
  4013. inline void gcode_G31() { DEPLOY_PROBE(); }
  4014. /**
  4015. * G32: Stow the Z probe
  4016. */
  4017. inline void gcode_G32() { STOW_PROBE(); }
  4018. #endif // Z_PROBE_SLED
  4019. #endif // HAS_BED_PROBE
  4020. #if ENABLED(G38_PROBE_TARGET)
  4021. static bool G38_run_probe() {
  4022. bool G38_pass_fail = false;
  4023. // Get direction of move and retract
  4024. float retract_mm[XYZ];
  4025. LOOP_XYZ(i) {
  4026. float dist = destination[i] - current_position[i];
  4027. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4028. }
  4029. stepper.synchronize(); // wait until the machine is idle
  4030. // Move until destination reached or target hit
  4031. endstops.enable(true);
  4032. G38_move = true;
  4033. G38_endstop_hit = false;
  4034. prepare_move_to_destination();
  4035. stepper.synchronize();
  4036. G38_move = false;
  4037. endstops.hit_on_purpose();
  4038. set_current_from_steppers_for_axis(ALL_AXES);
  4039. SYNC_PLAN_POSITION_KINEMATIC();
  4040. // Only do remaining moves if target was hit
  4041. if (G38_endstop_hit) {
  4042. G38_pass_fail = true;
  4043. // Move away by the retract distance
  4044. set_destination_to_current();
  4045. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4046. endstops.enable(false);
  4047. prepare_move_to_destination();
  4048. stepper.synchronize();
  4049. feedrate_mm_s /= 4;
  4050. // Bump the target more slowly
  4051. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4052. endstops.enable(true);
  4053. G38_move = true;
  4054. prepare_move_to_destination();
  4055. stepper.synchronize();
  4056. G38_move = false;
  4057. set_current_from_steppers_for_axis(ALL_AXES);
  4058. SYNC_PLAN_POSITION_KINEMATIC();
  4059. }
  4060. endstops.hit_on_purpose();
  4061. endstops.not_homing();
  4062. return G38_pass_fail;
  4063. }
  4064. /**
  4065. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4066. * G38.3 - probe toward workpiece, stop on contact
  4067. *
  4068. * Like G28 except uses Z min endstop for all axes
  4069. */
  4070. inline void gcode_G38(bool is_38_2) {
  4071. // Get X Y Z E F
  4072. gcode_get_destination();
  4073. setup_for_endstop_or_probe_move();
  4074. // If any axis has enough movement, do the move
  4075. LOOP_XYZ(i)
  4076. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4077. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4078. // If G38.2 fails throw an error
  4079. if (!G38_run_probe() && is_38_2) {
  4080. SERIAL_ERROR_START;
  4081. SERIAL_ERRORLNPGM("Failed to reach target");
  4082. }
  4083. break;
  4084. }
  4085. clean_up_after_endstop_or_probe_move();
  4086. }
  4087. #endif // G38_PROBE_TARGET
  4088. /**
  4089. * G92: Set current position to given X Y Z E
  4090. */
  4091. inline void gcode_G92() {
  4092. bool didXYZ = false,
  4093. didE = code_seen('E');
  4094. if (!didE) stepper.synchronize();
  4095. LOOP_XYZE(i) {
  4096. if (code_seen(axis_codes[i])) {
  4097. #if IS_SCARA
  4098. current_position[i] = code_value_axis_units(i);
  4099. if (i != E_AXIS) didXYZ = true;
  4100. #else
  4101. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4102. float p = current_position[i];
  4103. #endif
  4104. float v = code_value_axis_units(i);
  4105. current_position[i] = v;
  4106. if (i != E_AXIS) {
  4107. didXYZ = true;
  4108. #if DISABLED(NO_WORKSPACE_OFFSETS)
  4109. position_shift[i] += v - p; // Offset the coordinate space
  4110. update_software_endstops((AxisEnum)i);
  4111. #endif
  4112. }
  4113. #endif
  4114. }
  4115. }
  4116. if (didXYZ)
  4117. SYNC_PLAN_POSITION_KINEMATIC();
  4118. else if (didE)
  4119. sync_plan_position_e();
  4120. report_current_position();
  4121. }
  4122. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4123. /**
  4124. * M0: Unconditional stop - Wait for user button press on LCD
  4125. * M1: Conditional stop - Wait for user button press on LCD
  4126. */
  4127. inline void gcode_M0_M1() {
  4128. char* args = current_command_args;
  4129. millis_t codenum = 0;
  4130. bool hasP = false, hasS = false;
  4131. if (code_seen('P')) {
  4132. codenum = code_value_millis(); // milliseconds to wait
  4133. hasP = codenum > 0;
  4134. }
  4135. if (code_seen('S')) {
  4136. codenum = code_value_millis_from_seconds(); // seconds to wait
  4137. hasS = codenum > 0;
  4138. }
  4139. #if ENABLED(ULTIPANEL)
  4140. if (!hasP && !hasS && *args != '\0')
  4141. lcd_setstatus(args, true);
  4142. else {
  4143. LCD_MESSAGEPGM(MSG_USERWAIT);
  4144. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4145. dontExpireStatus();
  4146. #endif
  4147. }
  4148. #else
  4149. if (!hasP && !hasS && *args != '\0') {
  4150. SERIAL_ECHO_START;
  4151. SERIAL_ECHOLN(args);
  4152. }
  4153. #endif
  4154. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4155. wait_for_user = true;
  4156. stepper.synchronize();
  4157. refresh_cmd_timeout();
  4158. if (codenum > 0) {
  4159. codenum += previous_cmd_ms; // wait until this time for a click
  4160. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4161. }
  4162. else {
  4163. #if ENABLED(ULTIPANEL)
  4164. if (lcd_detected()) {
  4165. while (wait_for_user) idle();
  4166. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4167. }
  4168. #else
  4169. while (wait_for_user) idle();
  4170. #endif
  4171. }
  4172. wait_for_user = false;
  4173. KEEPALIVE_STATE(IN_HANDLER);
  4174. }
  4175. #endif // EMERGENCY_PARSER || ULTIPANEL
  4176. /**
  4177. * M17: Enable power on all stepper motors
  4178. */
  4179. inline void gcode_M17() {
  4180. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4181. enable_all_steppers();
  4182. }
  4183. #if IS_KINEMATIC
  4184. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4185. #else
  4186. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4187. #endif
  4188. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4189. float resume_position[XYZE];
  4190. bool move_away_flag = false;
  4191. inline void move_back_on_resume() {
  4192. if (!move_away_flag) return;
  4193. move_away_flag = false;
  4194. // Set extruder to saved position
  4195. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4196. planner.set_e_position_mm(current_position[E_AXIS]);
  4197. #if IS_KINEMATIC
  4198. // Move XYZ to starting position
  4199. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4200. #else
  4201. // Move XY to starting position, then Z
  4202. destination[X_AXIS] = resume_position[X_AXIS];
  4203. destination[Y_AXIS] = resume_position[Y_AXIS];
  4204. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4205. destination[Z_AXIS] = resume_position[Z_AXIS];
  4206. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4207. #endif
  4208. stepper.synchronize();
  4209. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4210. filament_ran_out = false;
  4211. #endif
  4212. set_current_to_destination();
  4213. }
  4214. #endif // PARK_HEAD_ON_PAUSE
  4215. #if ENABLED(SDSUPPORT)
  4216. /**
  4217. * M20: List SD card to serial output
  4218. */
  4219. inline void gcode_M20() {
  4220. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4221. card.ls();
  4222. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4223. }
  4224. /**
  4225. * M21: Init SD Card
  4226. */
  4227. inline void gcode_M21() { card.initsd(); }
  4228. /**
  4229. * M22: Release SD Card
  4230. */
  4231. inline void gcode_M22() { card.release(); }
  4232. /**
  4233. * M23: Open a file
  4234. */
  4235. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4236. /**
  4237. * M24: Start or Resume SD Print
  4238. */
  4239. inline void gcode_M24() {
  4240. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4241. move_back_on_resume();
  4242. #endif
  4243. card.startFileprint();
  4244. print_job_timer.start();
  4245. }
  4246. /**
  4247. * M25: Pause SD Print
  4248. */
  4249. inline void gcode_M25() {
  4250. card.pauseSDPrint();
  4251. print_job_timer.pause();
  4252. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4253. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4254. #endif
  4255. }
  4256. /**
  4257. * M26: Set SD Card file index
  4258. */
  4259. inline void gcode_M26() {
  4260. if (card.cardOK && code_seen('S'))
  4261. card.setIndex(code_value_long());
  4262. }
  4263. /**
  4264. * M27: Get SD Card status
  4265. */
  4266. inline void gcode_M27() { card.getStatus(); }
  4267. /**
  4268. * M28: Start SD Write
  4269. */
  4270. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4271. /**
  4272. * M29: Stop SD Write
  4273. * Processed in write to file routine above
  4274. */
  4275. inline void gcode_M29() {
  4276. // card.saving = false;
  4277. }
  4278. /**
  4279. * M30 <filename>: Delete SD Card file
  4280. */
  4281. inline void gcode_M30() {
  4282. if (card.cardOK) {
  4283. card.closefile();
  4284. card.removeFile(current_command_args);
  4285. }
  4286. }
  4287. #endif // SDSUPPORT
  4288. /**
  4289. * M31: Get the time since the start of SD Print (or last M109)
  4290. */
  4291. inline void gcode_M31() {
  4292. char buffer[21];
  4293. duration_t elapsed = print_job_timer.duration();
  4294. elapsed.toString(buffer);
  4295. lcd_setstatus(buffer);
  4296. SERIAL_ECHO_START;
  4297. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4298. #if ENABLED(AUTOTEMP)
  4299. thermalManager.autotempShutdown();
  4300. #endif
  4301. }
  4302. #if ENABLED(SDSUPPORT)
  4303. /**
  4304. * M32: Select file and start SD Print
  4305. */
  4306. inline void gcode_M32() {
  4307. if (card.sdprinting)
  4308. stepper.synchronize();
  4309. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4310. if (!namestartpos)
  4311. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4312. else
  4313. namestartpos++; //to skip the '!'
  4314. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4315. if (card.cardOK) {
  4316. card.openFile(namestartpos, true, call_procedure);
  4317. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4318. card.setIndex(code_value_long());
  4319. card.startFileprint();
  4320. // Procedure calls count as normal print time.
  4321. if (!call_procedure) print_job_timer.start();
  4322. }
  4323. }
  4324. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4325. /**
  4326. * M33: Get the long full path of a file or folder
  4327. *
  4328. * Parameters:
  4329. * <dospath> Case-insensitive DOS-style path to a file or folder
  4330. *
  4331. * Example:
  4332. * M33 miscel~1/armchair/armcha~1.gco
  4333. *
  4334. * Output:
  4335. * /Miscellaneous/Armchair/Armchair.gcode
  4336. */
  4337. inline void gcode_M33() {
  4338. card.printLongPath(current_command_args);
  4339. }
  4340. #endif
  4341. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4342. /**
  4343. * M34: Set SD Card Sorting Options
  4344. */
  4345. inline void gcode_M34() {
  4346. if (code_seen('S')) card.setSortOn(code_value_bool());
  4347. if (code_seen('F')) {
  4348. int v = code_value_long();
  4349. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4350. }
  4351. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4352. }
  4353. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4354. /**
  4355. * M928: Start SD Write
  4356. */
  4357. inline void gcode_M928() {
  4358. card.openLogFile(current_command_args);
  4359. }
  4360. #endif // SDSUPPORT
  4361. /**
  4362. * Sensitive pin test for M42, M226
  4363. */
  4364. static bool pin_is_protected(uint8_t pin) {
  4365. static const int sensitive_pins[] = SENSITIVE_PINS;
  4366. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4367. if (sensitive_pins[i] == pin) return true;
  4368. return false;
  4369. }
  4370. /**
  4371. * M42: Change pin status via GCode
  4372. *
  4373. * P<pin> Pin number (LED if omitted)
  4374. * S<byte> Pin status from 0 - 255
  4375. */
  4376. inline void gcode_M42() {
  4377. if (!code_seen('S')) return;
  4378. int pin_status = code_value_int();
  4379. if (!WITHIN(pin_status, 0, 255)) return;
  4380. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4381. if (pin_number < 0) return;
  4382. if (pin_is_protected(pin_number)) {
  4383. SERIAL_ERROR_START;
  4384. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4385. return;
  4386. }
  4387. pinMode(pin_number, OUTPUT);
  4388. digitalWrite(pin_number, pin_status);
  4389. analogWrite(pin_number, pin_status);
  4390. #if FAN_COUNT > 0
  4391. switch (pin_number) {
  4392. #if HAS_FAN0
  4393. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4394. #endif
  4395. #if HAS_FAN1
  4396. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4397. #endif
  4398. #if HAS_FAN2
  4399. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4400. #endif
  4401. }
  4402. #endif
  4403. }
  4404. #if ENABLED(PINS_DEBUGGING)
  4405. #include "pinsDebug.h"
  4406. /**
  4407. * M43: Pin report and debug
  4408. *
  4409. * E<bool> Enable / disable background endstop monitoring
  4410. * - Machine continues to operate
  4411. * - Reports changes to endstops
  4412. * - Toggles LED when an endstop changes
  4413. *
  4414. * or
  4415. *
  4416. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  4417. * W<bool> Watch pins -reporting changes- until reset, click, or M108.
  4418. * I<bool> Flag to ignore Marlin's pin protection.
  4419. *
  4420. */
  4421. inline void gcode_M43() {
  4422. // Enable or disable endstop monitoring
  4423. if (code_seen('E')) {
  4424. endstop_monitor_flag = code_value_bool();
  4425. SERIAL_PROTOCOLPGM("endstop monitor ");
  4426. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  4427. SERIAL_PROTOCOLLNPGM("abled");
  4428. return;
  4429. }
  4430. // Get the range of pins to test or watch
  4431. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  4432. if (code_seen('P')) {
  4433. first_pin = last_pin = code_value_byte();
  4434. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  4435. }
  4436. const bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  4437. // Watch until click, M108, or reset
  4438. if (code_seen('W') && code_value_bool()) { // watch digital pins
  4439. byte pin_state[last_pin - first_pin + 1];
  4440. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4441. if (pin_is_protected(pin) && !ignore_protection) continue;
  4442. pinMode(pin, INPUT_PULLUP);
  4443. // if (IS_ANALOG(pin))
  4444. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  4445. // else
  4446. pin_state[pin - first_pin] = digitalRead(pin);
  4447. }
  4448. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4449. wait_for_user = true;
  4450. #endif
  4451. for(;;) {
  4452. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4453. if (pin_is_protected(pin)) continue;
  4454. byte val;
  4455. // if (IS_ANALOG(pin))
  4456. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4457. // else
  4458. val = digitalRead(pin);
  4459. if (val != pin_state[pin - first_pin]) {
  4460. report_pin_state(pin);
  4461. pin_state[pin - first_pin] = val;
  4462. }
  4463. }
  4464. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4465. if (!wait_for_user) break;
  4466. #endif
  4467. safe_delay(500);
  4468. }
  4469. return;
  4470. }
  4471. // Report current state of selected pin(s)
  4472. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4473. report_pin_state_extended(pin, ignore_protection);
  4474. }
  4475. #endif // PINS_DEBUGGING
  4476. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4477. /**
  4478. * M48: Z probe repeatability measurement function.
  4479. *
  4480. * Usage:
  4481. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4482. * P = Number of sampled points (4-50, default 10)
  4483. * X = Sample X position
  4484. * Y = Sample Y position
  4485. * V = Verbose level (0-4, default=1)
  4486. * E = Engage Z probe for each reading
  4487. * L = Number of legs of movement before probe
  4488. * S = Schizoid (Or Star if you prefer)
  4489. *
  4490. * This function assumes the bed has been homed. Specifically, that a G28 command
  4491. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4492. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4493. * regenerated.
  4494. */
  4495. inline void gcode_M48() {
  4496. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4497. bool bed_leveling_state_at_entry=0;
  4498. bed_leveling_state_at_entry = ubl.state.active;
  4499. #endif
  4500. if (axis_unhomed_error(true, true, true)) return;
  4501. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4502. if (!WITHIN(verbose_level, 0, 4)) {
  4503. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4504. return;
  4505. }
  4506. if (verbose_level > 0)
  4507. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4508. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4509. if (!WITHIN(n_samples, 4, 50)) {
  4510. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4511. return;
  4512. }
  4513. float X_current = current_position[X_AXIS],
  4514. Y_current = current_position[Y_AXIS];
  4515. bool stow_probe_after_each = code_seen('E');
  4516. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4517. #if DISABLED(DELTA)
  4518. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  4519. out_of_range_error(PSTR("X"));
  4520. return;
  4521. }
  4522. #endif
  4523. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4524. #if DISABLED(DELTA)
  4525. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  4526. out_of_range_error(PSTR("Y"));
  4527. return;
  4528. }
  4529. #else
  4530. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4531. if (!position_is_reachable(pos, true)) {
  4532. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4533. return;
  4534. }
  4535. #endif
  4536. bool seen_L = code_seen('L');
  4537. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4538. if (n_legs > 15) {
  4539. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4540. return;
  4541. }
  4542. if (n_legs == 1) n_legs = 2;
  4543. bool schizoid_flag = code_seen('S');
  4544. if (schizoid_flag && !seen_L) n_legs = 7;
  4545. /**
  4546. * Now get everything to the specified probe point So we can safely do a
  4547. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4548. * we don't want to use that as a starting point for each probe.
  4549. */
  4550. if (verbose_level > 2)
  4551. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4552. // Disable bed level correction in M48 because we want the raw data when we probe
  4553. #if HAS_ABL
  4554. const bool abl_was_enabled = planner.abl_enabled;
  4555. set_bed_leveling_enabled(false);
  4556. #endif
  4557. setup_for_endstop_or_probe_move();
  4558. // Move to the first point, deploy, and probe
  4559. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4560. randomSeed(millis());
  4561. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4562. for (uint8_t n = 0; n < n_samples; n++) {
  4563. if (n_legs) {
  4564. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4565. float angle = random(0.0, 360.0),
  4566. radius = random(
  4567. #if ENABLED(DELTA)
  4568. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4569. #else
  4570. 5, X_MAX_LENGTH / 8
  4571. #endif
  4572. );
  4573. if (verbose_level > 3) {
  4574. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4575. SERIAL_ECHOPAIR(" angle: ", angle);
  4576. SERIAL_ECHOPGM(" Direction: ");
  4577. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4578. SERIAL_ECHOLNPGM("Clockwise");
  4579. }
  4580. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4581. double delta_angle;
  4582. if (schizoid_flag)
  4583. // The points of a 5 point star are 72 degrees apart. We need to
  4584. // skip a point and go to the next one on the star.
  4585. delta_angle = dir * 2.0 * 72.0;
  4586. else
  4587. // If we do this line, we are just trying to move further
  4588. // around the circle.
  4589. delta_angle = dir * (float) random(25, 45);
  4590. angle += delta_angle;
  4591. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4592. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4593. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4594. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4595. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4596. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4597. #if DISABLED(DELTA)
  4598. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4599. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4600. #else
  4601. // If we have gone out too far, we can do a simple fix and scale the numbers
  4602. // back in closer to the origin.
  4603. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4604. X_current /= 1.25;
  4605. Y_current /= 1.25;
  4606. if (verbose_level > 3) {
  4607. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4608. SERIAL_ECHOLNPAIR(", ", Y_current);
  4609. }
  4610. }
  4611. #endif
  4612. if (verbose_level > 3) {
  4613. SERIAL_PROTOCOLPGM("Going to:");
  4614. SERIAL_ECHOPAIR(" X", X_current);
  4615. SERIAL_ECHOPAIR(" Y", Y_current);
  4616. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4617. }
  4618. do_blocking_move_to_xy(X_current, Y_current);
  4619. } // n_legs loop
  4620. } // n_legs
  4621. // Probe a single point
  4622. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4623. /**
  4624. * Get the current mean for the data points we have so far
  4625. */
  4626. double sum = 0.0;
  4627. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4628. mean = sum / (n + 1);
  4629. NOMORE(min, sample_set[n]);
  4630. NOLESS(max, sample_set[n]);
  4631. /**
  4632. * Now, use that mean to calculate the standard deviation for the
  4633. * data points we have so far
  4634. */
  4635. sum = 0.0;
  4636. for (uint8_t j = 0; j <= n; j++)
  4637. sum += sq(sample_set[j] - mean);
  4638. sigma = sqrt(sum / (n + 1));
  4639. if (verbose_level > 0) {
  4640. if (verbose_level > 1) {
  4641. SERIAL_PROTOCOL(n + 1);
  4642. SERIAL_PROTOCOLPGM(" of ");
  4643. SERIAL_PROTOCOL((int)n_samples);
  4644. SERIAL_PROTOCOLPGM(": z: ");
  4645. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4646. if (verbose_level > 2) {
  4647. SERIAL_PROTOCOLPGM(" mean: ");
  4648. SERIAL_PROTOCOL_F(mean, 4);
  4649. SERIAL_PROTOCOLPGM(" sigma: ");
  4650. SERIAL_PROTOCOL_F(sigma, 6);
  4651. SERIAL_PROTOCOLPGM(" min: ");
  4652. SERIAL_PROTOCOL_F(min, 3);
  4653. SERIAL_PROTOCOLPGM(" max: ");
  4654. SERIAL_PROTOCOL_F(max, 3);
  4655. SERIAL_PROTOCOLPGM(" range: ");
  4656. SERIAL_PROTOCOL_F(max-min, 3);
  4657. }
  4658. SERIAL_EOL;
  4659. }
  4660. }
  4661. } // End of probe loop
  4662. if (STOW_PROBE()) return;
  4663. SERIAL_PROTOCOLPGM("Finished!");
  4664. SERIAL_EOL;
  4665. if (verbose_level > 0) {
  4666. SERIAL_PROTOCOLPGM("Mean: ");
  4667. SERIAL_PROTOCOL_F(mean, 6);
  4668. SERIAL_PROTOCOLPGM(" Min: ");
  4669. SERIAL_PROTOCOL_F(min, 3);
  4670. SERIAL_PROTOCOLPGM(" Max: ");
  4671. SERIAL_PROTOCOL_F(max, 3);
  4672. SERIAL_PROTOCOLPGM(" Range: ");
  4673. SERIAL_PROTOCOL_F(max-min, 3);
  4674. SERIAL_EOL;
  4675. }
  4676. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4677. SERIAL_PROTOCOL_F(sigma, 6);
  4678. SERIAL_EOL;
  4679. SERIAL_EOL;
  4680. clean_up_after_endstop_or_probe_move();
  4681. // Re-enable bed level correction if it has been on
  4682. #if HAS_ABL
  4683. set_bed_leveling_enabled(abl_was_enabled);
  4684. #endif
  4685. #if ENABLED(AUTO_BED_LEVELING_UBL)
  4686. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  4687. ubl.state.active = bed_leveling_state_at_entry;
  4688. #endif
  4689. report_current_position();
  4690. }
  4691. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4692. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  4693. inline void gcode_M49() {
  4694. ubl.g26_debug_flag = !ubl.g26_debug_flag;
  4695. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  4696. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  4697. }
  4698. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  4699. /**
  4700. * M75: Start print timer
  4701. */
  4702. inline void gcode_M75() { print_job_timer.start(); }
  4703. /**
  4704. * M76: Pause print timer
  4705. */
  4706. inline void gcode_M76() { print_job_timer.pause(); }
  4707. /**
  4708. * M77: Stop print timer
  4709. */
  4710. inline void gcode_M77() { print_job_timer.stop(); }
  4711. #if ENABLED(PRINTCOUNTER)
  4712. /**
  4713. * M78: Show print statistics
  4714. */
  4715. inline void gcode_M78() {
  4716. // "M78 S78" will reset the statistics
  4717. if (code_seen('S') && code_value_int() == 78)
  4718. print_job_timer.initStats();
  4719. else
  4720. print_job_timer.showStats();
  4721. }
  4722. #endif
  4723. /**
  4724. * M104: Set hot end temperature
  4725. */
  4726. inline void gcode_M104() {
  4727. if (get_target_extruder_from_command(104)) return;
  4728. if (DEBUGGING(DRYRUN)) return;
  4729. #if ENABLED(SINGLENOZZLE)
  4730. if (target_extruder != active_extruder) return;
  4731. #endif
  4732. if (code_seen('S')) {
  4733. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4734. #if ENABLED(DUAL_X_CARRIAGE)
  4735. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4736. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4737. #endif
  4738. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4739. /**
  4740. * Stop the timer at the end of print, starting is managed by
  4741. * 'heat and wait' M109.
  4742. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4743. * stand by mode, for instance in a dual extruder setup, without affecting
  4744. * the running print timer.
  4745. */
  4746. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4747. print_job_timer.stop();
  4748. LCD_MESSAGEPGM(WELCOME_MSG);
  4749. }
  4750. #endif
  4751. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4752. }
  4753. #if ENABLED(AUTOTEMP)
  4754. planner.autotemp_M104_M109();
  4755. #endif
  4756. }
  4757. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4758. void print_heaterstates() {
  4759. #if HAS_TEMP_HOTEND
  4760. SERIAL_PROTOCOLPGM(" T:");
  4761. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4762. SERIAL_PROTOCOLPGM(" /");
  4763. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4764. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4765. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4766. SERIAL_PROTOCOLCHAR(')');
  4767. #endif
  4768. #endif
  4769. #if HAS_TEMP_BED
  4770. SERIAL_PROTOCOLPGM(" B:");
  4771. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4772. SERIAL_PROTOCOLPGM(" /");
  4773. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4774. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4775. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4776. SERIAL_PROTOCOLCHAR(')');
  4777. #endif
  4778. #endif
  4779. #if HOTENDS > 1
  4780. HOTEND_LOOP() {
  4781. SERIAL_PROTOCOLPAIR(" T", e);
  4782. SERIAL_PROTOCOLCHAR(':');
  4783. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4784. SERIAL_PROTOCOLPGM(" /");
  4785. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4786. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4787. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4788. SERIAL_PROTOCOLCHAR(')');
  4789. #endif
  4790. }
  4791. #endif
  4792. SERIAL_PROTOCOLPGM(" @:");
  4793. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4794. #if HAS_TEMP_BED
  4795. SERIAL_PROTOCOLPGM(" B@:");
  4796. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4797. #endif
  4798. #if HOTENDS > 1
  4799. HOTEND_LOOP() {
  4800. SERIAL_PROTOCOLPAIR(" @", e);
  4801. SERIAL_PROTOCOLCHAR(':');
  4802. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4803. }
  4804. #endif
  4805. }
  4806. #endif
  4807. /**
  4808. * M105: Read hot end and bed temperature
  4809. */
  4810. inline void gcode_M105() {
  4811. if (get_target_extruder_from_command(105)) return;
  4812. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4813. SERIAL_PROTOCOLPGM(MSG_OK);
  4814. print_heaterstates();
  4815. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4816. SERIAL_ERROR_START;
  4817. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4818. #endif
  4819. SERIAL_EOL;
  4820. }
  4821. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  4822. static uint8_t auto_report_temp_interval;
  4823. static millis_t next_temp_report_ms;
  4824. /**
  4825. * M155: Set temperature auto-report interval. M155 S<seconds>
  4826. */
  4827. inline void gcode_M155() {
  4828. if (code_seen('S')) {
  4829. auto_report_temp_interval = code_value_byte();
  4830. NOMORE(auto_report_temp_interval, 60);
  4831. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4832. }
  4833. }
  4834. inline void auto_report_temperatures() {
  4835. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  4836. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4837. print_heaterstates();
  4838. SERIAL_EOL;
  4839. }
  4840. }
  4841. #endif // AUTO_REPORT_TEMPERATURES
  4842. #if FAN_COUNT > 0
  4843. /**
  4844. * M106: Set Fan Speed
  4845. *
  4846. * S<int> Speed between 0-255
  4847. * P<index> Fan index, if more than one fan
  4848. */
  4849. inline void gcode_M106() {
  4850. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4851. p = code_seen('P') ? code_value_ushort() : 0;
  4852. NOMORE(s, 255);
  4853. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4854. }
  4855. /**
  4856. * M107: Fan Off
  4857. */
  4858. inline void gcode_M107() {
  4859. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4860. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4861. }
  4862. #endif // FAN_COUNT > 0
  4863. #if DISABLED(EMERGENCY_PARSER)
  4864. /**
  4865. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4866. */
  4867. inline void gcode_M108() { wait_for_heatup = false; }
  4868. /**
  4869. * M112: Emergency Stop
  4870. */
  4871. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4872. /**
  4873. * M410: Quickstop - Abort all planned moves
  4874. *
  4875. * This will stop the carriages mid-move, so most likely they
  4876. * will be out of sync with the stepper position after this.
  4877. */
  4878. inline void gcode_M410() { quickstop_stepper(); }
  4879. #endif
  4880. #ifndef MIN_COOLING_SLOPE_DEG
  4881. #define MIN_COOLING_SLOPE_DEG 1.50
  4882. #endif
  4883. #ifndef MIN_COOLING_SLOPE_TIME
  4884. #define MIN_COOLING_SLOPE_TIME 60
  4885. #endif
  4886. /**
  4887. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4888. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4889. */
  4890. inline void gcode_M109() {
  4891. if (get_target_extruder_from_command(109)) return;
  4892. if (DEBUGGING(DRYRUN)) return;
  4893. #if ENABLED(SINGLENOZZLE)
  4894. if (target_extruder != active_extruder) return;
  4895. #endif
  4896. bool no_wait_for_cooling = code_seen('S');
  4897. if (no_wait_for_cooling || code_seen('R')) {
  4898. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4899. #if ENABLED(DUAL_X_CARRIAGE)
  4900. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4901. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4902. #endif
  4903. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4904. /**
  4905. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4906. * stand by mode, for instance in a dual extruder setup, without affecting
  4907. * the running print timer.
  4908. */
  4909. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4910. print_job_timer.stop();
  4911. LCD_MESSAGEPGM(WELCOME_MSG);
  4912. }
  4913. /**
  4914. * We do not check if the timer is already running because this check will
  4915. * be done for us inside the Stopwatch::start() method thus a running timer
  4916. * will not restart.
  4917. */
  4918. else print_job_timer.start();
  4919. #endif
  4920. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  4921. }
  4922. #if ENABLED(AUTOTEMP)
  4923. planner.autotemp_M104_M109();
  4924. #endif
  4925. #if TEMP_RESIDENCY_TIME > 0
  4926. millis_t residency_start_ms = 0;
  4927. // Loop until the temperature has stabilized
  4928. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4929. #else
  4930. // Loop until the temperature is very close target
  4931. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4932. #endif //TEMP_RESIDENCY_TIME > 0
  4933. float theTarget = -1.0, old_temp = 9999.0;
  4934. bool wants_to_cool = false;
  4935. wait_for_heatup = true;
  4936. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4937. KEEPALIVE_STATE(NOT_BUSY);
  4938. do {
  4939. // Target temperature might be changed during the loop
  4940. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4941. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4942. theTarget = thermalManager.degTargetHotend(target_extruder);
  4943. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4944. if (no_wait_for_cooling && wants_to_cool) break;
  4945. }
  4946. now = millis();
  4947. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4948. next_temp_ms = now + 1000UL;
  4949. print_heaterstates();
  4950. #if TEMP_RESIDENCY_TIME > 0
  4951. SERIAL_PROTOCOLPGM(" W:");
  4952. if (residency_start_ms) {
  4953. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4954. SERIAL_PROTOCOLLN(rem);
  4955. }
  4956. else {
  4957. SERIAL_PROTOCOLLNPGM("?");
  4958. }
  4959. #else
  4960. SERIAL_EOL;
  4961. #endif
  4962. }
  4963. idle();
  4964. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4965. float temp = thermalManager.degHotend(target_extruder);
  4966. #if TEMP_RESIDENCY_TIME > 0
  4967. float temp_diff = fabs(theTarget - temp);
  4968. if (!residency_start_ms) {
  4969. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4970. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4971. }
  4972. else if (temp_diff > TEMP_HYSTERESIS) {
  4973. // Restart the timer whenever the temperature falls outside the hysteresis.
  4974. residency_start_ms = now;
  4975. }
  4976. #endif //TEMP_RESIDENCY_TIME > 0
  4977. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4978. if (wants_to_cool) {
  4979. // break after MIN_COOLING_SLOPE_TIME seconds
  4980. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4981. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4982. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4983. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4984. old_temp = temp;
  4985. }
  4986. }
  4987. } while (wait_for_heatup && TEMP_CONDITIONS);
  4988. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4989. KEEPALIVE_STATE(IN_HANDLER);
  4990. }
  4991. #if HAS_TEMP_BED
  4992. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4993. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4994. #endif
  4995. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4996. #define MIN_COOLING_SLOPE_TIME_BED 60
  4997. #endif
  4998. /**
  4999. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5000. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5001. */
  5002. inline void gcode_M190() {
  5003. if (DEBUGGING(DRYRUN)) return;
  5004. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5005. bool no_wait_for_cooling = code_seen('S');
  5006. if (no_wait_for_cooling || code_seen('R')) {
  5007. thermalManager.setTargetBed(code_value_temp_abs());
  5008. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5009. if (code_value_temp_abs() > BED_MINTEMP) {
  5010. /**
  5011. * We start the timer when 'heating and waiting' command arrives, LCD
  5012. * functions never wait. Cooling down managed by extruders.
  5013. *
  5014. * We do not check if the timer is already running because this check will
  5015. * be done for us inside the Stopwatch::start() method thus a running timer
  5016. * will not restart.
  5017. */
  5018. print_job_timer.start();
  5019. }
  5020. #endif
  5021. }
  5022. #if TEMP_BED_RESIDENCY_TIME > 0
  5023. millis_t residency_start_ms = 0;
  5024. // Loop until the temperature has stabilized
  5025. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5026. #else
  5027. // Loop until the temperature is very close target
  5028. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5029. #endif //TEMP_BED_RESIDENCY_TIME > 0
  5030. float theTarget = -1.0, old_temp = 9999.0;
  5031. bool wants_to_cool = false;
  5032. wait_for_heatup = true;
  5033. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5034. KEEPALIVE_STATE(NOT_BUSY);
  5035. target_extruder = active_extruder; // for print_heaterstates
  5036. do {
  5037. // Target temperature might be changed during the loop
  5038. if (theTarget != thermalManager.degTargetBed()) {
  5039. wants_to_cool = thermalManager.isCoolingBed();
  5040. theTarget = thermalManager.degTargetBed();
  5041. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5042. if (no_wait_for_cooling && wants_to_cool) break;
  5043. }
  5044. now = millis();
  5045. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5046. next_temp_ms = now + 1000UL;
  5047. print_heaterstates();
  5048. #if TEMP_BED_RESIDENCY_TIME > 0
  5049. SERIAL_PROTOCOLPGM(" W:");
  5050. if (residency_start_ms) {
  5051. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5052. SERIAL_PROTOCOLLN(rem);
  5053. }
  5054. else {
  5055. SERIAL_PROTOCOLLNPGM("?");
  5056. }
  5057. #else
  5058. SERIAL_EOL;
  5059. #endif
  5060. }
  5061. idle();
  5062. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5063. float temp = thermalManager.degBed();
  5064. #if TEMP_BED_RESIDENCY_TIME > 0
  5065. float temp_diff = fabs(theTarget - temp);
  5066. if (!residency_start_ms) {
  5067. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5068. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5069. }
  5070. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5071. // Restart the timer whenever the temperature falls outside the hysteresis.
  5072. residency_start_ms = now;
  5073. }
  5074. #endif //TEMP_BED_RESIDENCY_TIME > 0
  5075. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5076. if (wants_to_cool) {
  5077. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  5078. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5079. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5080. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5081. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5082. old_temp = temp;
  5083. }
  5084. }
  5085. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5086. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5087. KEEPALIVE_STATE(IN_HANDLER);
  5088. }
  5089. #endif // HAS_TEMP_BED
  5090. /**
  5091. * M110: Set Current Line Number
  5092. */
  5093. inline void gcode_M110() {
  5094. if (code_seen('N')) gcode_LastN = code_value_long();
  5095. }
  5096. /**
  5097. * M111: Set the debug level
  5098. */
  5099. inline void gcode_M111() {
  5100. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  5101. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5102. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5103. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5104. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5105. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5106. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5107. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5108. #endif
  5109. const static char* const debug_strings[] PROGMEM = {
  5110. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5111. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5112. str_debug_32
  5113. #endif
  5114. };
  5115. SERIAL_ECHO_START;
  5116. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5117. if (marlin_debug_flags) {
  5118. uint8_t comma = 0;
  5119. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5120. if (TEST(marlin_debug_flags, i)) {
  5121. if (comma++) SERIAL_CHAR(',');
  5122. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5123. }
  5124. }
  5125. }
  5126. else {
  5127. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5128. }
  5129. SERIAL_EOL;
  5130. }
  5131. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5132. /**
  5133. * M113: Get or set Host Keepalive interval (0 to disable)
  5134. *
  5135. * S<seconds> Optional. Set the keepalive interval.
  5136. */
  5137. inline void gcode_M113() {
  5138. if (code_seen('S')) {
  5139. host_keepalive_interval = code_value_byte();
  5140. NOMORE(host_keepalive_interval, 60);
  5141. }
  5142. else {
  5143. SERIAL_ECHO_START;
  5144. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5145. }
  5146. }
  5147. #endif
  5148. #if ENABLED(BARICUDA)
  5149. #if HAS_HEATER_1
  5150. /**
  5151. * M126: Heater 1 valve open
  5152. */
  5153. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5154. /**
  5155. * M127: Heater 1 valve close
  5156. */
  5157. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5158. #endif
  5159. #if HAS_HEATER_2
  5160. /**
  5161. * M128: Heater 2 valve open
  5162. */
  5163. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5164. /**
  5165. * M129: Heater 2 valve close
  5166. */
  5167. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5168. #endif
  5169. #endif //BARICUDA
  5170. /**
  5171. * M140: Set bed temperature
  5172. */
  5173. inline void gcode_M140() {
  5174. if (DEBUGGING(DRYRUN)) return;
  5175. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5176. }
  5177. #if ENABLED(ULTIPANEL)
  5178. /**
  5179. * M145: Set the heatup state for a material in the LCD menu
  5180. * S<material> (0=PLA, 1=ABS)
  5181. * H<hotend temp>
  5182. * B<bed temp>
  5183. * F<fan speed>
  5184. */
  5185. inline void gcode_M145() {
  5186. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5187. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5188. SERIAL_ERROR_START;
  5189. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5190. }
  5191. else {
  5192. int v;
  5193. if (code_seen('H')) {
  5194. v = code_value_int();
  5195. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5196. }
  5197. if (code_seen('F')) {
  5198. v = code_value_int();
  5199. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5200. }
  5201. #if TEMP_SENSOR_BED != 0
  5202. if (code_seen('B')) {
  5203. v = code_value_int();
  5204. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5205. }
  5206. #endif
  5207. }
  5208. }
  5209. #endif // ULTIPANEL
  5210. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5211. /**
  5212. * M149: Set temperature units
  5213. */
  5214. inline void gcode_M149() {
  5215. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5216. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5217. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5218. }
  5219. #endif
  5220. #if HAS_POWER_SWITCH
  5221. /**
  5222. * M80: Turn on Power Supply
  5223. */
  5224. inline void gcode_M80() {
  5225. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5226. /**
  5227. * If you have a switch on suicide pin, this is useful
  5228. * if you want to start another print with suicide feature after
  5229. * a print without suicide...
  5230. */
  5231. #if HAS_SUICIDE
  5232. OUT_WRITE(SUICIDE_PIN, HIGH);
  5233. #endif
  5234. #if ENABLED(ULTIPANEL)
  5235. powersupply = true;
  5236. LCD_MESSAGEPGM(WELCOME_MSG);
  5237. lcd_update();
  5238. #endif
  5239. }
  5240. #endif // HAS_POWER_SWITCH
  5241. /**
  5242. * M81: Turn off Power, including Power Supply, if there is one.
  5243. *
  5244. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5245. */
  5246. inline void gcode_M81() {
  5247. thermalManager.disable_all_heaters();
  5248. stepper.finish_and_disable();
  5249. #if FAN_COUNT > 0
  5250. #if FAN_COUNT > 1
  5251. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5252. #else
  5253. fanSpeeds[0] = 0;
  5254. #endif
  5255. #endif
  5256. safe_delay(1000); // Wait 1 second before switching off
  5257. #if HAS_SUICIDE
  5258. stepper.synchronize();
  5259. suicide();
  5260. #elif HAS_POWER_SWITCH
  5261. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5262. #endif
  5263. #if ENABLED(ULTIPANEL)
  5264. #if HAS_POWER_SWITCH
  5265. powersupply = false;
  5266. #endif
  5267. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5268. lcd_update();
  5269. #endif
  5270. }
  5271. /**
  5272. * M82: Set E codes absolute (default)
  5273. */
  5274. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5275. /**
  5276. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5277. */
  5278. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5279. /**
  5280. * M18, M84: Disable all stepper motors
  5281. */
  5282. inline void gcode_M18_M84() {
  5283. if (code_seen('S')) {
  5284. stepper_inactive_time = code_value_millis_from_seconds();
  5285. }
  5286. else {
  5287. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5288. if (all_axis) {
  5289. stepper.finish_and_disable();
  5290. }
  5291. else {
  5292. stepper.synchronize();
  5293. if (code_seen('X')) disable_x();
  5294. if (code_seen('Y')) disable_y();
  5295. if (code_seen('Z')) disable_z();
  5296. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5297. if (code_seen('E')) disable_e_steppers();
  5298. #endif
  5299. }
  5300. }
  5301. }
  5302. /**
  5303. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  5304. */
  5305. inline void gcode_M85() {
  5306. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  5307. }
  5308. /**
  5309. * Multi-stepper support for M92, M201, M203
  5310. */
  5311. #if ENABLED(DISTINCT_E_FACTORS)
  5312. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  5313. #define TARGET_EXTRUDER target_extruder
  5314. #else
  5315. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5316. #define TARGET_EXTRUDER 0
  5317. #endif
  5318. /**
  5319. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5320. * (Follows the same syntax as G92)
  5321. *
  5322. * With multiple extruders use T to specify which one.
  5323. */
  5324. inline void gcode_M92() {
  5325. GET_TARGET_EXTRUDER(92);
  5326. LOOP_XYZE(i) {
  5327. if (code_seen(axis_codes[i])) {
  5328. if (i == E_AXIS) {
  5329. float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5330. if (value < 20.0) {
  5331. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5332. planner.max_jerk[E_AXIS] *= factor;
  5333. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5334. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5335. }
  5336. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5337. }
  5338. else {
  5339. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5340. }
  5341. }
  5342. }
  5343. planner.refresh_positioning();
  5344. }
  5345. /**
  5346. * Output the current position to serial
  5347. */
  5348. static void report_current_position() {
  5349. SERIAL_PROTOCOLPGM("X:");
  5350. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5351. SERIAL_PROTOCOLPGM(" Y:");
  5352. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5353. SERIAL_PROTOCOLPGM(" Z:");
  5354. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5355. SERIAL_PROTOCOLPGM(" E:");
  5356. SERIAL_PROTOCOL(current_position[E_AXIS]);
  5357. stepper.report_positions();
  5358. #if IS_SCARA
  5359. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  5360. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  5361. SERIAL_EOL;
  5362. #endif
  5363. }
  5364. /**
  5365. * M114: Output current position to serial port
  5366. */
  5367. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  5368. /**
  5369. * M115: Capabilities string
  5370. */
  5371. inline void gcode_M115() {
  5372. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  5373. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  5374. // EEPROM (M500, M501)
  5375. #if ENABLED(EEPROM_SETTINGS)
  5376. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  5377. #else
  5378. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  5379. #endif
  5380. // AUTOREPORT_TEMP (M155)
  5381. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  5382. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  5383. #else
  5384. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  5385. #endif
  5386. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  5387. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  5388. // AUTOLEVEL (G29)
  5389. #if HAS_ABL
  5390. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  5391. #else
  5392. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  5393. #endif
  5394. // Z_PROBE (G30)
  5395. #if HAS_BED_PROBE
  5396. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  5397. #else
  5398. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  5399. #endif
  5400. // SOFTWARE_POWER (G30)
  5401. #if HAS_POWER_SWITCH
  5402. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  5403. #else
  5404. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  5405. #endif
  5406. // TOGGLE_LIGHTS (M355)
  5407. #if HAS_CASE_LIGHT
  5408. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  5409. #else
  5410. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  5411. #endif
  5412. // EMERGENCY_PARSER (M108, M112, M410)
  5413. #if ENABLED(EMERGENCY_PARSER)
  5414. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  5415. #else
  5416. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  5417. #endif
  5418. #endif // EXTENDED_CAPABILITIES_REPORT
  5419. }
  5420. /**
  5421. * M117: Set LCD Status Message
  5422. */
  5423. inline void gcode_M117() {
  5424. lcd_setstatus(current_command_args);
  5425. }
  5426. /**
  5427. * M119: Output endstop states to serial output
  5428. */
  5429. inline void gcode_M119() { endstops.M119(); }
  5430. /**
  5431. * M120: Enable endstops and set non-homing endstop state to "enabled"
  5432. */
  5433. inline void gcode_M120() { endstops.enable_globally(true); }
  5434. /**
  5435. * M121: Disable endstops and set non-homing endstop state to "disabled"
  5436. */
  5437. inline void gcode_M121() { endstops.enable_globally(false); }
  5438. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5439. /**
  5440. * M125: Store current position and move to filament change position.
  5441. * Called on pause (by M25) to prevent material leaking onto the
  5442. * object. On resume (M24) the head will be moved back and the
  5443. * print will resume.
  5444. *
  5445. * If Marlin is compiled without SD Card support, M125 can be
  5446. * used directly to pause the print and move to park position,
  5447. * resuming with a button click or M108.
  5448. *
  5449. * L = override retract length
  5450. * X = override X
  5451. * Y = override Y
  5452. * Z = override Z raise
  5453. */
  5454. inline void gcode_M125() {
  5455. if (move_away_flag) return; // already paused
  5456. const bool job_running = print_job_timer.isRunning();
  5457. // there are blocks after this one, or sd printing
  5458. move_away_flag = job_running || planner.blocks_queued()
  5459. #if ENABLED(SDSUPPORT)
  5460. || card.sdprinting
  5461. #endif
  5462. ;
  5463. if (!move_away_flag) return; // nothing to pause
  5464. // M125 can be used to pause a print too
  5465. #if ENABLED(SDSUPPORT)
  5466. card.pauseSDPrint();
  5467. #endif
  5468. print_job_timer.pause();
  5469. // Save current position
  5470. COPY(resume_position, current_position);
  5471. set_destination_to_current();
  5472. // Initial retract before move to filament change position
  5473. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  5474. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5475. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  5476. #endif
  5477. ;
  5478. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5479. // Lift Z axis
  5480. const float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5481. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5482. FILAMENT_CHANGE_Z_ADD
  5483. #else
  5484. 0
  5485. #endif
  5486. ;
  5487. if (z_lift > 0) {
  5488. destination[Z_AXIS] += z_lift;
  5489. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5490. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5491. }
  5492. // Move XY axes to filament change position or given position
  5493. destination[X_AXIS] = code_seen('X') ? code_value_axis_units(X_AXIS) : 0
  5494. #ifdef FILAMENT_CHANGE_X_POS
  5495. + FILAMENT_CHANGE_X_POS
  5496. #endif
  5497. ;
  5498. destination[Y_AXIS] = code_seen('Y') ? code_value_axis_units(Y_AXIS) : 0
  5499. #ifdef FILAMENT_CHANGE_Y_POS
  5500. + FILAMENT_CHANGE_Y_POS
  5501. #endif
  5502. ;
  5503. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  5504. if (active_extruder > 0) {
  5505. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  5506. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  5507. }
  5508. #endif
  5509. clamp_to_software_endstops(destination);
  5510. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5511. set_current_to_destination();
  5512. stepper.synchronize();
  5513. disable_e_steppers();
  5514. #if DISABLED(SDSUPPORT)
  5515. // Wait for lcd click or M108
  5516. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5517. wait_for_user = true;
  5518. while (wait_for_user) idle();
  5519. KEEPALIVE_STATE(IN_HANDLER);
  5520. // Return to print position and continue
  5521. move_back_on_resume();
  5522. if (job_running) print_job_timer.start();
  5523. move_away_flag = false;
  5524. #endif
  5525. }
  5526. #endif // PARK_HEAD_ON_PAUSE
  5527. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  5528. void set_led_color(const uint8_t r, const uint8_t g, const uint8_t b) {
  5529. #if ENABLED(BLINKM)
  5530. // This variant uses i2c to send the RGB components to the device.
  5531. SendColors(r, g, b);
  5532. #else
  5533. // This variant uses 3 separate pins for the RGB components.
  5534. // If the pins can do PWM then their intensity will be set.
  5535. digitalWrite(RGB_LED_R_PIN, r ? HIGH : LOW);
  5536. digitalWrite(RGB_LED_G_PIN, g ? HIGH : LOW);
  5537. digitalWrite(RGB_LED_B_PIN, b ? HIGH : LOW);
  5538. analogWrite(RGB_LED_R_PIN, r);
  5539. analogWrite(RGB_LED_G_PIN, g);
  5540. analogWrite(RGB_LED_B_PIN, b);
  5541. #endif
  5542. }
  5543. /**
  5544. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5545. *
  5546. * Always sets all 3 components. If a component is left out, set to 0.
  5547. *
  5548. * Examples:
  5549. *
  5550. * M150 R255 ; Turn LED red
  5551. * M150 R255 U127 ; Turn LED orange (PWM only)
  5552. * M150 ; Turn LED off
  5553. * M150 R U B ; Turn LED white
  5554. *
  5555. */
  5556. inline void gcode_M150() {
  5557. set_led_color(
  5558. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5559. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  5560. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  5561. );
  5562. }
  5563. #endif // BLINKM || RGB_LED
  5564. /**
  5565. * M200: Set filament diameter and set E axis units to cubic units
  5566. *
  5567. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5568. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5569. */
  5570. inline void gcode_M200() {
  5571. if (get_target_extruder_from_command(200)) return;
  5572. if (code_seen('D')) {
  5573. // setting any extruder filament size disables volumetric on the assumption that
  5574. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5575. // for all extruders
  5576. volumetric_enabled = (code_value_linear_units() != 0.0);
  5577. if (volumetric_enabled) {
  5578. filament_size[target_extruder] = code_value_linear_units();
  5579. // make sure all extruders have some sane value for the filament size
  5580. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5581. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5582. }
  5583. }
  5584. else {
  5585. //reserved for setting filament diameter via UFID or filament measuring device
  5586. return;
  5587. }
  5588. calculate_volumetric_multipliers();
  5589. }
  5590. /**
  5591. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5592. *
  5593. * With multiple extruders use T to specify which one.
  5594. */
  5595. inline void gcode_M201() {
  5596. GET_TARGET_EXTRUDER(201);
  5597. LOOP_XYZE(i) {
  5598. if (code_seen(axis_codes[i])) {
  5599. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5600. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units(a);
  5601. }
  5602. }
  5603. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5604. planner.reset_acceleration_rates();
  5605. }
  5606. #if 0 // Not used for Sprinter/grbl gen6
  5607. inline void gcode_M202() {
  5608. LOOP_XYZE(i) {
  5609. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5610. }
  5611. }
  5612. #endif
  5613. /**
  5614. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5615. *
  5616. * With multiple extruders use T to specify which one.
  5617. */
  5618. inline void gcode_M203() {
  5619. GET_TARGET_EXTRUDER(203);
  5620. LOOP_XYZE(i)
  5621. if (code_seen(axis_codes[i])) {
  5622. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  5623. planner.max_feedrate_mm_s[a] = code_value_axis_units(a);
  5624. }
  5625. }
  5626. /**
  5627. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5628. *
  5629. * P = Printing moves
  5630. * R = Retract only (no X, Y, Z) moves
  5631. * T = Travel (non printing) moves
  5632. *
  5633. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5634. */
  5635. inline void gcode_M204() {
  5636. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5637. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5638. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5639. }
  5640. if (code_seen('P')) {
  5641. planner.acceleration = code_value_linear_units();
  5642. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5643. }
  5644. if (code_seen('R')) {
  5645. planner.retract_acceleration = code_value_linear_units();
  5646. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5647. }
  5648. if (code_seen('T')) {
  5649. planner.travel_acceleration = code_value_linear_units();
  5650. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5651. }
  5652. }
  5653. /**
  5654. * M205: Set Advanced Settings
  5655. *
  5656. * S = Min Feed Rate (units/s)
  5657. * T = Min Travel Feed Rate (units/s)
  5658. * B = Min Segment Time (µs)
  5659. * X = Max X Jerk (units/sec^2)
  5660. * Y = Max Y Jerk (units/sec^2)
  5661. * Z = Max Z Jerk (units/sec^2)
  5662. * E = Max E Jerk (units/sec^2)
  5663. */
  5664. inline void gcode_M205() {
  5665. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5666. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5667. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5668. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5669. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5670. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5671. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5672. }
  5673. #if DISABLED(NO_WORKSPACE_OFFSETS)
  5674. /**
  5675. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5676. */
  5677. inline void gcode_M206() {
  5678. LOOP_XYZ(i)
  5679. if (code_seen(axis_codes[i]))
  5680. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5681. #if ENABLED(MORGAN_SCARA)
  5682. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5683. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5684. #endif
  5685. SYNC_PLAN_POSITION_KINEMATIC();
  5686. report_current_position();
  5687. }
  5688. #endif // NO_WORKSPACE_OFFSETS
  5689. #if ENABLED(DELTA)
  5690. /**
  5691. * M665: Set delta configurations
  5692. *
  5693. * L = diagonal rod
  5694. * R = delta radius
  5695. * S = segments per second
  5696. * A = Alpha (Tower 1) diagonal rod trim
  5697. * B = Beta (Tower 2) diagonal rod trim
  5698. * C = Gamma (Tower 3) diagonal rod trim
  5699. */
  5700. inline void gcode_M665() {
  5701. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5702. if (code_seen('R')) delta_radius = code_value_linear_units();
  5703. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5704. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  5705. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  5706. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  5707. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  5708. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  5709. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  5710. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5711. }
  5712. /**
  5713. * M666: Set delta endstop adjustment
  5714. */
  5715. inline void gcode_M666() {
  5716. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5717. if (DEBUGGING(LEVELING)) {
  5718. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5719. }
  5720. #endif
  5721. LOOP_XYZ(i) {
  5722. if (code_seen(axis_codes[i])) {
  5723. endstop_adj[i] = code_value_axis_units(i);
  5724. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5725. if (DEBUGGING(LEVELING)) {
  5726. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5727. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5728. }
  5729. #endif
  5730. }
  5731. }
  5732. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5733. if (DEBUGGING(LEVELING)) {
  5734. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5735. }
  5736. #endif
  5737. }
  5738. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5739. /**
  5740. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5741. */
  5742. inline void gcode_M666() {
  5743. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5744. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5745. }
  5746. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5747. #if ENABLED(FWRETRACT)
  5748. /**
  5749. * M207: Set firmware retraction values
  5750. *
  5751. * S[+units] retract_length
  5752. * W[+units] retract_length_swap (multi-extruder)
  5753. * F[units/min] retract_feedrate_mm_s
  5754. * Z[units] retract_zlift
  5755. */
  5756. inline void gcode_M207() {
  5757. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5758. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5759. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5760. #if EXTRUDERS > 1
  5761. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5762. #endif
  5763. }
  5764. /**
  5765. * M208: Set firmware un-retraction values
  5766. *
  5767. * S[+units] retract_recover_length (in addition to M207 S*)
  5768. * W[+units] retract_recover_length_swap (multi-extruder)
  5769. * F[units/min] retract_recover_feedrate_mm_s
  5770. */
  5771. inline void gcode_M208() {
  5772. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5773. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5774. #if EXTRUDERS > 1
  5775. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5776. #endif
  5777. }
  5778. /**
  5779. * M209: Enable automatic retract (M209 S1)
  5780. * For slicers that don't support G10/11, reversed extrude-only
  5781. * moves will be classified as retraction.
  5782. */
  5783. inline void gcode_M209() {
  5784. if (code_seen('S')) {
  5785. autoretract_enabled = code_value_bool();
  5786. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5787. }
  5788. }
  5789. #endif // FWRETRACT
  5790. /**
  5791. * M211: Enable, Disable, and/or Report software endstops
  5792. *
  5793. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5794. */
  5795. inline void gcode_M211() {
  5796. SERIAL_ECHO_START;
  5797. #if HAS_SOFTWARE_ENDSTOPS
  5798. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5799. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5800. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5801. #else
  5802. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5803. SERIAL_ECHOPGM(MSG_OFF);
  5804. #endif
  5805. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5806. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5807. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5808. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5809. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5810. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5811. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5812. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5813. }
  5814. #if HOTENDS > 1
  5815. /**
  5816. * M218 - set hotend offset (in linear units)
  5817. *
  5818. * T<tool>
  5819. * X<xoffset>
  5820. * Y<yoffset>
  5821. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5822. */
  5823. inline void gcode_M218() {
  5824. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  5825. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5826. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5827. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5828. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5829. #endif
  5830. SERIAL_ECHO_START;
  5831. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5832. HOTEND_LOOP() {
  5833. SERIAL_CHAR(' ');
  5834. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5835. SERIAL_CHAR(',');
  5836. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5837. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5838. SERIAL_CHAR(',');
  5839. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5840. #endif
  5841. }
  5842. SERIAL_EOL;
  5843. }
  5844. #endif // HOTENDS > 1
  5845. /**
  5846. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5847. */
  5848. inline void gcode_M220() {
  5849. if (code_seen('S')) feedrate_percentage = code_value_int();
  5850. }
  5851. /**
  5852. * M221: Set extrusion percentage (M221 T0 S95)
  5853. */
  5854. inline void gcode_M221() {
  5855. if (get_target_extruder_from_command(221)) return;
  5856. if (code_seen('S'))
  5857. flow_percentage[target_extruder] = code_value_int();
  5858. }
  5859. /**
  5860. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5861. */
  5862. inline void gcode_M226() {
  5863. if (code_seen('P')) {
  5864. int pin_number = code_value_int(),
  5865. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5866. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5867. int target = LOW;
  5868. stepper.synchronize();
  5869. pinMode(pin_number, INPUT);
  5870. switch (pin_state) {
  5871. case 1:
  5872. target = HIGH;
  5873. break;
  5874. case 0:
  5875. target = LOW;
  5876. break;
  5877. case -1:
  5878. target = !digitalRead(pin_number);
  5879. break;
  5880. }
  5881. while (digitalRead(pin_number) != target) idle();
  5882. } // pin_state -1 0 1 && pin_number > -1
  5883. } // code_seen('P')
  5884. }
  5885. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5886. /**
  5887. * M260: Send data to a I2C slave device
  5888. *
  5889. * This is a PoC, the formating and arguments for the GCODE will
  5890. * change to be more compatible, the current proposal is:
  5891. *
  5892. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  5893. *
  5894. * M260 B<byte-1 value in base 10>
  5895. * M260 B<byte-2 value in base 10>
  5896. * M260 B<byte-3 value in base 10>
  5897. *
  5898. * M260 S1 ; Send the buffered data and reset the buffer
  5899. * M260 R1 ; Reset the buffer without sending data
  5900. *
  5901. */
  5902. inline void gcode_M260() {
  5903. // Set the target address
  5904. if (code_seen('A')) i2c.address(code_value_byte());
  5905. // Add a new byte to the buffer
  5906. if (code_seen('B')) i2c.addbyte(code_value_byte());
  5907. // Flush the buffer to the bus
  5908. if (code_seen('S')) i2c.send();
  5909. // Reset and rewind the buffer
  5910. else if (code_seen('R')) i2c.reset();
  5911. }
  5912. /**
  5913. * M261: Request X bytes from I2C slave device
  5914. *
  5915. * Usage: M261 A<slave device address base 10> B<number of bytes>
  5916. */
  5917. inline void gcode_M261() {
  5918. if (code_seen('A')) i2c.address(code_value_byte());
  5919. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  5920. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  5921. i2c.relay(bytes);
  5922. }
  5923. else {
  5924. SERIAL_ERROR_START;
  5925. SERIAL_ERRORLN("Bad i2c request");
  5926. }
  5927. }
  5928. #endif // EXPERIMENTAL_I2CBUS
  5929. #if HAS_SERVOS
  5930. /**
  5931. * M280: Get or set servo position. P<index> [S<angle>]
  5932. */
  5933. inline void gcode_M280() {
  5934. if (!code_seen('P')) return;
  5935. int servo_index = code_value_int();
  5936. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  5937. if (code_seen('S'))
  5938. MOVE_SERVO(servo_index, code_value_int());
  5939. else {
  5940. SERIAL_ECHO_START;
  5941. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5942. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5943. }
  5944. }
  5945. else {
  5946. SERIAL_ERROR_START;
  5947. SERIAL_ECHOPAIR("Servo ", servo_index);
  5948. SERIAL_ECHOLNPGM(" out of range");
  5949. }
  5950. }
  5951. #endif // HAS_SERVOS
  5952. #if HAS_BUZZER
  5953. /**
  5954. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5955. */
  5956. inline void gcode_M300() {
  5957. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5958. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5959. // Limits the tone duration to 0-5 seconds.
  5960. NOMORE(duration, 5000);
  5961. BUZZ(duration, frequency);
  5962. }
  5963. #endif // HAS_BUZZER
  5964. #if ENABLED(PIDTEMP)
  5965. /**
  5966. * M301: Set PID parameters P I D (and optionally C, L)
  5967. *
  5968. * P[float] Kp term
  5969. * I[float] Ki term (unscaled)
  5970. * D[float] Kd term (unscaled)
  5971. *
  5972. * With PID_EXTRUSION_SCALING:
  5973. *
  5974. * C[float] Kc term
  5975. * L[float] LPQ length
  5976. */
  5977. inline void gcode_M301() {
  5978. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5979. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5980. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5981. if (e < HOTENDS) { // catch bad input value
  5982. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5983. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5984. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5985. #if ENABLED(PID_EXTRUSION_SCALING)
  5986. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5987. if (code_seen('L')) lpq_len = code_value_float();
  5988. NOMORE(lpq_len, LPQ_MAX_LEN);
  5989. #endif
  5990. thermalManager.updatePID();
  5991. SERIAL_ECHO_START;
  5992. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5993. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5994. #endif // PID_PARAMS_PER_HOTEND
  5995. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5996. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5997. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5998. #if ENABLED(PID_EXTRUSION_SCALING)
  5999. //Kc does not have scaling applied above, or in resetting defaults
  6000. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6001. #endif
  6002. SERIAL_EOL;
  6003. }
  6004. else {
  6005. SERIAL_ERROR_START;
  6006. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6007. }
  6008. }
  6009. #endif // PIDTEMP
  6010. #if ENABLED(PIDTEMPBED)
  6011. inline void gcode_M304() {
  6012. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6013. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6014. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6015. thermalManager.updatePID();
  6016. SERIAL_ECHO_START;
  6017. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6018. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6019. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6020. }
  6021. #endif // PIDTEMPBED
  6022. #if defined(CHDK) || HAS_PHOTOGRAPH
  6023. /**
  6024. * M240: Trigger a camera by emulating a Canon RC-1
  6025. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6026. */
  6027. inline void gcode_M240() {
  6028. #ifdef CHDK
  6029. OUT_WRITE(CHDK, HIGH);
  6030. chdkHigh = millis();
  6031. chdkActive = true;
  6032. #elif HAS_PHOTOGRAPH
  6033. const uint8_t NUM_PULSES = 16;
  6034. const float PULSE_LENGTH = 0.01524;
  6035. for (int i = 0; i < NUM_PULSES; i++) {
  6036. WRITE(PHOTOGRAPH_PIN, HIGH);
  6037. _delay_ms(PULSE_LENGTH);
  6038. WRITE(PHOTOGRAPH_PIN, LOW);
  6039. _delay_ms(PULSE_LENGTH);
  6040. }
  6041. delay(7.33);
  6042. for (int i = 0; i < NUM_PULSES; i++) {
  6043. WRITE(PHOTOGRAPH_PIN, HIGH);
  6044. _delay_ms(PULSE_LENGTH);
  6045. WRITE(PHOTOGRAPH_PIN, LOW);
  6046. _delay_ms(PULSE_LENGTH);
  6047. }
  6048. #endif // !CHDK && HAS_PHOTOGRAPH
  6049. }
  6050. #endif // CHDK || PHOTOGRAPH_PIN
  6051. #if HAS_LCD_CONTRAST
  6052. /**
  6053. * M250: Read and optionally set the LCD contrast
  6054. */
  6055. inline void gcode_M250() {
  6056. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6057. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6058. SERIAL_PROTOCOL(lcd_contrast);
  6059. SERIAL_EOL;
  6060. }
  6061. #endif // HAS_LCD_CONTRAST
  6062. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6063. /**
  6064. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6065. *
  6066. * S<temperature> sets the minimum extrude temperature
  6067. * P<bool> enables (1) or disables (0) cold extrusion
  6068. *
  6069. * Examples:
  6070. *
  6071. * M302 ; report current cold extrusion state
  6072. * M302 P0 ; enable cold extrusion checking
  6073. * M302 P1 ; disables cold extrusion checking
  6074. * M302 S0 ; always allow extrusion (disables checking)
  6075. * M302 S170 ; only allow extrusion above 170
  6076. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6077. */
  6078. inline void gcode_M302() {
  6079. bool seen_S = code_seen('S');
  6080. if (seen_S) {
  6081. thermalManager.extrude_min_temp = code_value_temp_abs();
  6082. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6083. }
  6084. if (code_seen('P'))
  6085. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6086. else if (!seen_S) {
  6087. // Report current state
  6088. SERIAL_ECHO_START;
  6089. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6090. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6091. SERIAL_ECHOLNPGM("C)");
  6092. }
  6093. }
  6094. #endif // PREVENT_COLD_EXTRUSION
  6095. /**
  6096. * M303: PID relay autotune
  6097. *
  6098. * S<temperature> sets the target temperature. (default 150C)
  6099. * E<extruder> (-1 for the bed) (default 0)
  6100. * C<cycles>
  6101. * U<bool> with a non-zero value will apply the result to current settings
  6102. */
  6103. inline void gcode_M303() {
  6104. #if HAS_PID_HEATING
  6105. int e = code_seen('E') ? code_value_int() : 0;
  6106. int c = code_seen('C') ? code_value_int() : 5;
  6107. bool u = code_seen('U') && code_value_bool();
  6108. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6109. if (WITHIN(e, 0, HOTENDS - 1))
  6110. target_extruder = e;
  6111. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6112. thermalManager.PID_autotune(temp, e, c, u);
  6113. KEEPALIVE_STATE(IN_HANDLER);
  6114. #else
  6115. SERIAL_ERROR_START;
  6116. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6117. #endif
  6118. }
  6119. #if ENABLED(MORGAN_SCARA)
  6120. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6121. if (IsRunning()) {
  6122. forward_kinematics_SCARA(delta_a, delta_b);
  6123. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6124. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6125. destination[Z_AXIS] = current_position[Z_AXIS];
  6126. prepare_move_to_destination();
  6127. return true;
  6128. }
  6129. return false;
  6130. }
  6131. /**
  6132. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6133. */
  6134. inline bool gcode_M360() {
  6135. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6136. return SCARA_move_to_cal(0, 120);
  6137. }
  6138. /**
  6139. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6140. */
  6141. inline bool gcode_M361() {
  6142. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6143. return SCARA_move_to_cal(90, 130);
  6144. }
  6145. /**
  6146. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6147. */
  6148. inline bool gcode_M362() {
  6149. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6150. return SCARA_move_to_cal(60, 180);
  6151. }
  6152. /**
  6153. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6154. */
  6155. inline bool gcode_M363() {
  6156. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6157. return SCARA_move_to_cal(50, 90);
  6158. }
  6159. /**
  6160. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6161. */
  6162. inline bool gcode_M364() {
  6163. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6164. return SCARA_move_to_cal(45, 135);
  6165. }
  6166. #endif // SCARA
  6167. #if ENABLED(EXT_SOLENOID)
  6168. void enable_solenoid(uint8_t num) {
  6169. switch (num) {
  6170. case 0:
  6171. OUT_WRITE(SOL0_PIN, HIGH);
  6172. break;
  6173. #if HAS_SOLENOID_1
  6174. case 1:
  6175. OUT_WRITE(SOL1_PIN, HIGH);
  6176. break;
  6177. #endif
  6178. #if HAS_SOLENOID_2
  6179. case 2:
  6180. OUT_WRITE(SOL2_PIN, HIGH);
  6181. break;
  6182. #endif
  6183. #if HAS_SOLENOID_3
  6184. case 3:
  6185. OUT_WRITE(SOL3_PIN, HIGH);
  6186. break;
  6187. #endif
  6188. default:
  6189. SERIAL_ECHO_START;
  6190. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6191. break;
  6192. }
  6193. }
  6194. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6195. void disable_all_solenoids() {
  6196. OUT_WRITE(SOL0_PIN, LOW);
  6197. OUT_WRITE(SOL1_PIN, LOW);
  6198. OUT_WRITE(SOL2_PIN, LOW);
  6199. OUT_WRITE(SOL3_PIN, LOW);
  6200. }
  6201. /**
  6202. * M380: Enable solenoid on the active extruder
  6203. */
  6204. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6205. /**
  6206. * M381: Disable all solenoids
  6207. */
  6208. inline void gcode_M381() { disable_all_solenoids(); }
  6209. #endif // EXT_SOLENOID
  6210. /**
  6211. * M400: Finish all moves
  6212. */
  6213. inline void gcode_M400() { stepper.synchronize(); }
  6214. #if HAS_BED_PROBE
  6215. /**
  6216. * M401: Engage Z Servo endstop if available
  6217. */
  6218. inline void gcode_M401() { DEPLOY_PROBE(); }
  6219. /**
  6220. * M402: Retract Z Servo endstop if enabled
  6221. */
  6222. inline void gcode_M402() { STOW_PROBE(); }
  6223. #endif // HAS_BED_PROBE
  6224. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6225. /**
  6226. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6227. */
  6228. inline void gcode_M404() {
  6229. if (code_seen('W')) {
  6230. filament_width_nominal = code_value_linear_units();
  6231. }
  6232. else {
  6233. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6234. SERIAL_PROTOCOLLN(filament_width_nominal);
  6235. }
  6236. }
  6237. /**
  6238. * M405: Turn on filament sensor for control
  6239. */
  6240. inline void gcode_M405() {
  6241. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6242. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6243. if (code_seen('D')) meas_delay_cm = code_value_int();
  6244. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6245. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6246. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  6247. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6248. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  6249. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6250. }
  6251. filament_sensor = true;
  6252. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6253. //SERIAL_PROTOCOL(filament_width_meas);
  6254. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6255. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6256. }
  6257. /**
  6258. * M406: Turn off filament sensor for control
  6259. */
  6260. inline void gcode_M406() { filament_sensor = false; }
  6261. /**
  6262. * M407: Get measured filament diameter on serial output
  6263. */
  6264. inline void gcode_M407() {
  6265. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6266. SERIAL_PROTOCOLLN(filament_width_meas);
  6267. }
  6268. #endif // FILAMENT_WIDTH_SENSOR
  6269. void quickstop_stepper() {
  6270. stepper.quick_stop();
  6271. stepper.synchronize();
  6272. set_current_from_steppers_for_axis(ALL_AXES);
  6273. SYNC_PLAN_POSITION_KINEMATIC();
  6274. }
  6275. #if PLANNER_LEVELING
  6276. /**
  6277. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6278. *
  6279. * S[bool] Turns leveling on or off
  6280. * Z[height] Sets the Z fade height (0 or none to disable)
  6281. * V[bool] Verbose - Print the leveling grid
  6282. *
  6283. * With AUTO_BED_LEVELING_UBL only:
  6284. *
  6285. * L[index] Load UBL mesh from index (0 is default)
  6286. */
  6287. inline void gcode_M420() {
  6288. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6289. // L to load a mesh from the EEPROM
  6290. if (code_seen('L')) {
  6291. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  6292. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  6293. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  6294. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  6295. return;
  6296. }
  6297. ubl.load_mesh(storage_slot);
  6298. if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state();
  6299. ubl.state.eeprom_storage_slot = storage_slot;
  6300. ubl.display_map(0); // Right now, we only support one type of map
  6301. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  6302. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  6303. }
  6304. #endif // AUTO_BED_LEVELING_UBL
  6305. // V to print the matrix or mesh
  6306. if (code_seen('V')) {
  6307. #if ABL_PLANAR
  6308. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  6309. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6310. if (bilinear_grid_spacing[X_AXIS]) {
  6311. print_bilinear_leveling_grid();
  6312. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6313. bed_level_virt_print();
  6314. #endif
  6315. }
  6316. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6317. ubl.display_map(0); // Currently only supports one map type
  6318. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  6319. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  6320. #elif ENABLED(MESH_BED_LEVELING)
  6321. if (mbl.has_mesh()) {
  6322. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  6323. mbl_mesh_report();
  6324. }
  6325. #endif
  6326. }
  6327. bool to_enable = false;
  6328. if (code_seen('S')) {
  6329. to_enable = code_value_bool();
  6330. set_bed_leveling_enabled(to_enable);
  6331. }
  6332. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  6333. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  6334. #endif
  6335. const bool new_status =
  6336. #if ENABLED(MESH_BED_LEVELING)
  6337. mbl.active()
  6338. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6339. ubl.state.active
  6340. #else
  6341. planner.abl_enabled
  6342. #endif
  6343. ;
  6344. if (to_enable && !new_status) {
  6345. SERIAL_ERROR_START;
  6346. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  6347. }
  6348. SERIAL_ECHO_START;
  6349. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  6350. }
  6351. #endif
  6352. #if ENABLED(MESH_BED_LEVELING)
  6353. /**
  6354. * M421: Set a single Mesh Bed Leveling Z coordinate
  6355. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  6356. */
  6357. inline void gcode_M421() {
  6358. int8_t px = 0, py = 0;
  6359. float z = 0;
  6360. bool hasX, hasY, hasZ, hasI, hasJ;
  6361. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  6362. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  6363. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6364. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6365. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6366. if (hasX && hasY && hasZ) {
  6367. if (px >= 0 && py >= 0)
  6368. mbl.set_z(px, py, z);
  6369. else {
  6370. SERIAL_ERROR_START;
  6371. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6372. }
  6373. }
  6374. else if (hasI && hasJ && hasZ) {
  6375. if (WITHIN(px, 0, MESH_NUM_X_POINTS - 1) && WITHIN(py, 0, MESH_NUM_Y_POINTS - 1))
  6376. mbl.set_z(px, py, z);
  6377. else {
  6378. SERIAL_ERROR_START;
  6379. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6380. }
  6381. }
  6382. else {
  6383. SERIAL_ERROR_START;
  6384. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6385. }
  6386. }
  6387. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6388. /**
  6389. * M421: Set a single Mesh Bed Leveling Z coordinate
  6390. *
  6391. * M421 I<xindex> J<yindex> Z<linear>
  6392. */
  6393. inline void gcode_M421() {
  6394. int8_t px = 0, py = 0;
  6395. float z = 0;
  6396. bool hasI, hasJ, hasZ;
  6397. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6398. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6399. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  6400. if (hasI && hasJ && hasZ) {
  6401. if (WITHIN(px, 0, ABL_GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, ABL_GRID_MAX_POINTS_X - 1)) {
  6402. bed_level_grid[px][py] = z;
  6403. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6404. bed_level_virt_interpolate();
  6405. #endif
  6406. }
  6407. else {
  6408. SERIAL_ERROR_START;
  6409. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  6410. }
  6411. }
  6412. else {
  6413. SERIAL_ERROR_START;
  6414. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  6415. }
  6416. }
  6417. #endif
  6418. #if DISABLED(NO_WORKSPACE_OFFSETS)
  6419. /**
  6420. * M428: Set home_offset based on the distance between the
  6421. * current_position and the nearest "reference point."
  6422. * If an axis is past center its endstop position
  6423. * is the reference-point. Otherwise it uses 0. This allows
  6424. * the Z offset to be set near the bed when using a max endstop.
  6425. *
  6426. * M428 can't be used more than 2cm away from 0 or an endstop.
  6427. *
  6428. * Use M206 to set these values directly.
  6429. */
  6430. inline void gcode_M428() {
  6431. bool err = false;
  6432. LOOP_XYZ(i) {
  6433. if (axis_homed[i]) {
  6434. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  6435. diff = current_position[i] - LOGICAL_POSITION(base, i);
  6436. if (WITHIN(diff, -20, 20)) {
  6437. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  6438. }
  6439. else {
  6440. SERIAL_ERROR_START;
  6441. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  6442. LCD_ALERTMESSAGEPGM("Err: Too far!");
  6443. BUZZ(200, 40);
  6444. err = true;
  6445. break;
  6446. }
  6447. }
  6448. }
  6449. if (!err) {
  6450. SYNC_PLAN_POSITION_KINEMATIC();
  6451. report_current_position();
  6452. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  6453. BUZZ(100, 659);
  6454. BUZZ(100, 698);
  6455. }
  6456. }
  6457. #endif // NO_WORKSPACE_OFFSETS
  6458. /**
  6459. * M500: Store settings in EEPROM
  6460. */
  6461. inline void gcode_M500() {
  6462. (void)Config_StoreSettings();
  6463. }
  6464. /**
  6465. * M501: Read settings from EEPROM
  6466. */
  6467. inline void gcode_M501() {
  6468. (void)Config_RetrieveSettings();
  6469. }
  6470. /**
  6471. * M502: Revert to default settings
  6472. */
  6473. inline void gcode_M502() {
  6474. (void)Config_ResetDefault();
  6475. }
  6476. /**
  6477. * M503: print settings currently in memory
  6478. */
  6479. inline void gcode_M503() {
  6480. (void)Config_PrintSettings(code_seen('S') && !code_value_bool());
  6481. }
  6482. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6483. /**
  6484. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  6485. */
  6486. inline void gcode_M540() {
  6487. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  6488. }
  6489. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6490. #if HAS_BED_PROBE
  6491. inline void gcode_M851() {
  6492. SERIAL_ECHO_START;
  6493. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  6494. SERIAL_CHAR(' ');
  6495. if (code_seen('Z')) {
  6496. float value = code_value_axis_units(Z_AXIS);
  6497. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  6498. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6499. // Correct bilinear grid for new probe offset
  6500. const float diff = value - zprobe_zoffset;
  6501. if (diff) {
  6502. for (uint8_t x = 0; x < ABL_GRID_MAX_POINTS_X; x++)
  6503. for (uint8_t y = 0; y < ABL_GRID_MAX_POINTS_Y; y++)
  6504. bed_level_grid[x][y] += diff;
  6505. }
  6506. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6507. bed_level_virt_interpolate();
  6508. #endif
  6509. #endif
  6510. zprobe_zoffset = value;
  6511. SERIAL_ECHO(zprobe_zoffset);
  6512. }
  6513. else {
  6514. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  6515. SERIAL_CHAR(' ');
  6516. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  6517. }
  6518. }
  6519. else {
  6520. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  6521. }
  6522. SERIAL_EOL;
  6523. }
  6524. #endif // HAS_BED_PROBE
  6525. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6526. void filament_change_beep(const bool init=false) {
  6527. static millis_t next_buzz = 0;
  6528. static uint16_t runout_beep = 0;
  6529. if (init) next_buzz = runout_beep = 0;
  6530. const millis_t ms = millis();
  6531. if (ELAPSED(ms, next_buzz)) {
  6532. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  6533. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  6534. BUZZ(300, 2000);
  6535. runout_beep++;
  6536. }
  6537. }
  6538. }
  6539. static bool busy_doing_M600 = false;
  6540. /**
  6541. * M600: Pause for filament change
  6542. *
  6543. * E[distance] - Retract the filament this far (negative value)
  6544. * Z[distance] - Move the Z axis by this distance
  6545. * X[position] - Move to this X position, with Y
  6546. * Y[position] - Move to this Y position, with X
  6547. * L[distance] - Retract distance for removal (manual reload)
  6548. *
  6549. * Default values are used for omitted arguments.
  6550. *
  6551. */
  6552. inline void gcode_M600() {
  6553. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  6554. SERIAL_ERROR_START;
  6555. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  6556. return;
  6557. }
  6558. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  6559. // Pause the print job timer
  6560. const bool job_running = print_job_timer.isRunning();
  6561. print_job_timer.pause();
  6562. // Show initial message and wait for synchronize steppers
  6563. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  6564. stepper.synchronize();
  6565. // Save current position of all axes
  6566. float lastpos[XYZE];
  6567. COPY(lastpos, current_position);
  6568. set_destination_to_current();
  6569. // Initial retract before move to filament change position
  6570. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  6571. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6572. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6573. #endif
  6574. ;
  6575. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6576. // Lift Z axis
  6577. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  6578. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6579. FILAMENT_CHANGE_Z_ADD
  6580. #else
  6581. 0
  6582. #endif
  6583. ;
  6584. if (z_lift > 0) {
  6585. destination[Z_AXIS] += z_lift;
  6586. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6587. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6588. }
  6589. // Move XY axes to filament exchange position
  6590. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  6591. #ifdef FILAMENT_CHANGE_X_POS
  6592. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  6593. #endif
  6594. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  6595. #ifdef FILAMENT_CHANGE_Y_POS
  6596. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  6597. #endif
  6598. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6599. stepper.synchronize();
  6600. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  6601. idle();
  6602. // Unload filament
  6603. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6604. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  6605. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  6606. #endif
  6607. ;
  6608. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  6609. // Synchronize steppers and then disable extruders steppers for manual filament changing
  6610. stepper.synchronize();
  6611. disable_e_steppers();
  6612. safe_delay(100);
  6613. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  6614. bool nozzle_timed_out = false;
  6615. float temps[4];
  6616. // Wait for filament insert by user and press button
  6617. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6618. #if HAS_BUZZER
  6619. filament_change_beep(true);
  6620. #endif
  6621. idle();
  6622. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  6623. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6624. wait_for_user = true; // LCD click or M108 will clear this
  6625. while (wait_for_user) {
  6626. if (nozzle_timed_out)
  6627. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6628. #if HAS_BUZZER
  6629. filament_change_beep();
  6630. #endif
  6631. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  6632. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  6633. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  6634. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  6635. }
  6636. idle(true);
  6637. }
  6638. KEEPALIVE_STATE(IN_HANDLER);
  6639. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  6640. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  6641. // Show "wait for heating"
  6642. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  6643. wait_for_heatup = true;
  6644. while (wait_for_heatup) {
  6645. idle();
  6646. wait_for_heatup = false;
  6647. HOTEND_LOOP() {
  6648. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  6649. wait_for_heatup = true;
  6650. break;
  6651. }
  6652. }
  6653. }
  6654. // Show "insert filament"
  6655. if (nozzle_timed_out)
  6656. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  6657. #if HAS_BUZZER
  6658. filament_change_beep(true);
  6659. #endif
  6660. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6661. wait_for_user = true; // LCD click or M108 will clear this
  6662. while (wait_for_user && nozzle_timed_out) {
  6663. #if HAS_BUZZER
  6664. filament_change_beep();
  6665. #endif
  6666. idle(true);
  6667. }
  6668. KEEPALIVE_STATE(IN_HANDLER);
  6669. // Show "load" message
  6670. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  6671. // Load filament
  6672. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  6673. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  6674. + FILAMENT_CHANGE_LOAD_LENGTH
  6675. #endif
  6676. ;
  6677. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  6678. stepper.synchronize();
  6679. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  6680. do {
  6681. // "Wait for filament extrude"
  6682. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  6683. // Extrude filament to get into hotend
  6684. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  6685. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  6686. stepper.synchronize();
  6687. // Show "Extrude More" / "Resume" menu and wait for reply
  6688. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6689. wait_for_user = false;
  6690. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  6691. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  6692. KEEPALIVE_STATE(IN_HANDLER);
  6693. // Keep looping if "Extrude More" was selected
  6694. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  6695. #endif
  6696. // "Wait for print to resume"
  6697. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  6698. // Set extruder to saved position
  6699. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  6700. planner.set_e_position_mm(current_position[E_AXIS]);
  6701. #if IS_KINEMATIC
  6702. // Move XYZ to starting position
  6703. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  6704. #else
  6705. // Move XY to starting position, then Z
  6706. destination[X_AXIS] = lastpos[X_AXIS];
  6707. destination[Y_AXIS] = lastpos[Y_AXIS];
  6708. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6709. destination[Z_AXIS] = lastpos[Z_AXIS];
  6710. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6711. #endif
  6712. stepper.synchronize();
  6713. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6714. filament_ran_out = false;
  6715. #endif
  6716. // Show status screen
  6717. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  6718. // Resume the print job timer if it was running
  6719. if (job_running) print_job_timer.start();
  6720. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  6721. }
  6722. #endif // FILAMENT_CHANGE_FEATURE
  6723. #if ENABLED(DUAL_X_CARRIAGE)
  6724. /**
  6725. * M605: Set dual x-carriage movement mode
  6726. *
  6727. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6728. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6729. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6730. * units x-offset and an optional differential hotend temperature of
  6731. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6732. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6733. *
  6734. * Note: the X axis should be homed after changing dual x-carriage mode.
  6735. */
  6736. inline void gcode_M605() {
  6737. stepper.synchronize();
  6738. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6739. switch (dual_x_carriage_mode) {
  6740. case DXC_FULL_CONTROL_MODE:
  6741. case DXC_AUTO_PARK_MODE:
  6742. break;
  6743. case DXC_DUPLICATION_MODE:
  6744. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6745. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6746. SERIAL_ECHO_START;
  6747. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6748. SERIAL_CHAR(' ');
  6749. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6750. SERIAL_CHAR(',');
  6751. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6752. SERIAL_CHAR(' ');
  6753. SERIAL_ECHO(duplicate_extruder_x_offset);
  6754. SERIAL_CHAR(',');
  6755. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6756. break;
  6757. default:
  6758. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6759. break;
  6760. }
  6761. active_extruder_parked = false;
  6762. extruder_duplication_enabled = false;
  6763. delayed_move_time = 0;
  6764. }
  6765. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  6766. inline void gcode_M605() {
  6767. stepper.synchronize();
  6768. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  6769. SERIAL_ECHO_START;
  6770. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  6771. }
  6772. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  6773. #if ENABLED(LIN_ADVANCE)
  6774. /**
  6775. * M905: Set advance factor
  6776. */
  6777. inline void gcode_M905() {
  6778. stepper.synchronize();
  6779. const float newK = code_seen('K') ? code_value_float() : -1,
  6780. newD = code_seen('D') ? code_value_float() : -1,
  6781. newW = code_seen('W') ? code_value_float() : -1,
  6782. newH = code_seen('H') ? code_value_float() : -1;
  6783. if (newK >= 0.0) planner.set_extruder_advance_k(newK);
  6784. SERIAL_ECHO_START;
  6785. SERIAL_ECHOLNPAIR("Advance factor: ", planner.get_extruder_advance_k());
  6786. if (newD >= 0 || newW >= 0 || newH >= 0) {
  6787. const float ratio = (!newD || !newW || !newH) ? 0 : (newW * newH) / (sq(newD * 0.5) * M_PI);
  6788. planner.set_advance_ed_ratio(ratio);
  6789. SERIAL_ECHO_START;
  6790. SERIAL_ECHOPGM("E/D ratio: ");
  6791. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Automatic");
  6792. }
  6793. }
  6794. #endif // LIN_ADVANCE
  6795. #if ENABLED(HAVE_TMC2130)
  6796. static void tmc2130_print_current(const int mA, const char name) {
  6797. SERIAL_CHAR(name);
  6798. SERIAL_ECHOPGM(" axis driver current: ");
  6799. SERIAL_ECHOLN(mA);
  6800. }
  6801. static void tmc2130_set_current(const int mA, TMC2130Stepper &st, const char name) {
  6802. tmc2130_print_current(mA, name);
  6803. st.setCurrent(mA, 0.11, 0.5);
  6804. }
  6805. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  6806. tmc2130_print_current(st.getCurrent(), name);
  6807. }
  6808. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  6809. SERIAL_CHAR(name);
  6810. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  6811. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  6812. }
  6813. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  6814. st.clear_otpw();
  6815. SERIAL_CHAR(name);
  6816. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  6817. }
  6818. /**
  6819. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  6820. *
  6821. * Report driver currents when no axis specified
  6822. */
  6823. inline void gcode_M906() {
  6824. uint16_t values[XYZE];
  6825. LOOP_XYZE(i)
  6826. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  6827. #if ENABLED(X_IS_TMC2130)
  6828. if (values[X_AXIS]) tmc2130_set_current(values[X_AXIS], stepperX, 'X');
  6829. else tmc2130_get_current(stepperX, 'X');
  6830. #endif
  6831. #if ENABLED(Y_IS_TMC2130)
  6832. if (values[Y_AXIS]) tmc2130_set_current(values[Y_AXIS], stepperY, 'Y');
  6833. else tmc2130_get_current(stepperY, 'Y');
  6834. #endif
  6835. #if ENABLED(Z_IS_TMC2130)
  6836. if (values[Z_AXIS]) tmc2130_set_current(values[Z_AXIS], stepperZ, 'Z');
  6837. else tmc2130_get_current(stepperZ, 'Z');
  6838. #endif
  6839. #if ENABLED(E0_IS_TMC2130)
  6840. if (values[E_AXIS]) tmc2130_set_current(values[E_AXIS], stepperE0, 'E');
  6841. else tmc2130_get_current(stepperE0, 'E');
  6842. #endif
  6843. }
  6844. /**
  6845. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  6846. * The flag is held by the library and persist until manually cleared by M912
  6847. */
  6848. inline void gcode_M911() {
  6849. #if ENABLED(X_IS_TMC2130)
  6850. tmc2130_report_otpw(stepperX, 'X');
  6851. #endif
  6852. #if ENABLED(Y_IS_TMC2130)
  6853. tmc2130_report_otpw(stepperY, 'Y');
  6854. #endif
  6855. #if ENABLED(Z_IS_TMC2130)
  6856. tmc2130_report_otpw(stepperZ, 'Z');
  6857. #endif
  6858. #if ENABLED(E0_IS_TMC2130)
  6859. tmc2130_report_otpw(stepperE0, 'E');
  6860. #endif
  6861. }
  6862. /**
  6863. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  6864. */
  6865. inline void gcode_M912() {
  6866. #if ENABLED(X_IS_TMC2130)
  6867. if (code_seen('X')) tmc2130_clear_otpw(stepperX, 'X');
  6868. #endif
  6869. #if ENABLED(Y_IS_TMC2130)
  6870. if (code_seen('Y')) tmc2130_clear_otpw(stepperY, 'Y');
  6871. #endif
  6872. #if ENABLED(Z_IS_TMC2130)
  6873. if (code_seen('Z')) tmc2130_clear_otpw(stepperZ, 'Z');
  6874. #endif
  6875. #if ENABLED(E0_IS_TMC2130)
  6876. if (code_seen('E')) tmc2130_clear_otpw(stepperE0, 'E');
  6877. #endif
  6878. }
  6879. #endif // HAVE_TMC2130
  6880. /**
  6881. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  6882. */
  6883. inline void gcode_M907() {
  6884. #if HAS_DIGIPOTSS
  6885. LOOP_XYZE(i)
  6886. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  6887. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  6888. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  6889. #elif HAS_MOTOR_CURRENT_PWM
  6890. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  6891. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  6892. #endif
  6893. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  6894. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  6895. #endif
  6896. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  6897. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  6898. #endif
  6899. #endif
  6900. #if ENABLED(DIGIPOT_I2C)
  6901. // this one uses actual amps in floating point
  6902. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  6903. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  6904. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  6905. #endif
  6906. #if ENABLED(DAC_STEPPER_CURRENT)
  6907. if (code_seen('S')) {
  6908. float dac_percent = code_value_float();
  6909. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  6910. }
  6911. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  6912. #endif
  6913. }
  6914. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6915. /**
  6916. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  6917. */
  6918. inline void gcode_M908() {
  6919. #if HAS_DIGIPOTSS
  6920. stepper.digitalPotWrite(
  6921. code_seen('P') ? code_value_int() : 0,
  6922. code_seen('S') ? code_value_int() : 0
  6923. );
  6924. #endif
  6925. #ifdef DAC_STEPPER_CURRENT
  6926. dac_current_raw(
  6927. code_seen('P') ? code_value_byte() : -1,
  6928. code_seen('S') ? code_value_ushort() : 0
  6929. );
  6930. #endif
  6931. }
  6932. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6933. inline void gcode_M909() { dac_print_values(); }
  6934. inline void gcode_M910() { dac_commit_eeprom(); }
  6935. #endif
  6936. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6937. #if HAS_MICROSTEPS
  6938. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6939. inline void gcode_M350() {
  6940. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  6941. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  6942. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  6943. stepper.microstep_readings();
  6944. }
  6945. /**
  6946. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  6947. * S# determines MS1 or MS2, X# sets the pin high/low.
  6948. */
  6949. inline void gcode_M351() {
  6950. if (code_seen('S')) switch (code_value_byte()) {
  6951. case 1:
  6952. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  6953. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  6954. break;
  6955. case 2:
  6956. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  6957. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  6958. break;
  6959. }
  6960. stepper.microstep_readings();
  6961. }
  6962. #endif // HAS_MICROSTEPS
  6963. #if HAS_CASE_LIGHT
  6964. uint8_t case_light_brightness = 255;
  6965. void update_case_light() {
  6966. digitalWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  6967. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  6968. }
  6969. #endif // HAS_CASE_LIGHT
  6970. /**
  6971. * M355: Turn case lights on/off and set brightness
  6972. *
  6973. * S<bool> Turn case light on or off
  6974. * P<byte> Set case light brightness (PWM pin required)
  6975. */
  6976. inline void gcode_M355() {
  6977. #if HAS_CASE_LIGHT
  6978. if (code_seen('P')) case_light_brightness = code_value_byte();
  6979. if (code_seen('S')) case_light_on = code_value_bool();
  6980. update_case_light();
  6981. SERIAL_ECHO_START;
  6982. SERIAL_ECHOPGM("Case lights ");
  6983. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  6984. #else
  6985. SERIAL_ERROR_START;
  6986. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  6987. #endif // HAS_CASE_LIGHT
  6988. }
  6989. #if ENABLED(MIXING_EXTRUDER)
  6990. /**
  6991. * M163: Set a single mix factor for a mixing extruder
  6992. * This is called "weight" by some systems.
  6993. *
  6994. * S[index] The channel index to set
  6995. * P[float] The mix value
  6996. *
  6997. */
  6998. inline void gcode_M163() {
  6999. int mix_index = code_seen('S') ? code_value_int() : 0;
  7000. if (mix_index < MIXING_STEPPERS) {
  7001. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7002. NOLESS(mix_value, 0.0);
  7003. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7004. }
  7005. }
  7006. #if MIXING_VIRTUAL_TOOLS > 1
  7007. /**
  7008. * M164: Store the current mix factors as a virtual tool.
  7009. *
  7010. * S[index] The virtual tool to store
  7011. *
  7012. */
  7013. inline void gcode_M164() {
  7014. int tool_index = code_seen('S') ? code_value_int() : 0;
  7015. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7016. normalize_mix();
  7017. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7018. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7019. }
  7020. }
  7021. #endif
  7022. #if ENABLED(DIRECT_MIXING_IN_G1)
  7023. /**
  7024. * M165: Set multiple mix factors for a mixing extruder.
  7025. * Factors that are left out will be set to 0.
  7026. * All factors together must add up to 1.0.
  7027. *
  7028. * A[factor] Mix factor for extruder stepper 1
  7029. * B[factor] Mix factor for extruder stepper 2
  7030. * C[factor] Mix factor for extruder stepper 3
  7031. * D[factor] Mix factor for extruder stepper 4
  7032. * H[factor] Mix factor for extruder stepper 5
  7033. * I[factor] Mix factor for extruder stepper 6
  7034. *
  7035. */
  7036. inline void gcode_M165() { gcode_get_mix(); }
  7037. #endif
  7038. #endif // MIXING_EXTRUDER
  7039. /**
  7040. * M999: Restart after being stopped
  7041. *
  7042. * Default behaviour is to flush the serial buffer and request
  7043. * a resend to the host starting on the last N line received.
  7044. *
  7045. * Sending "M999 S1" will resume printing without flushing the
  7046. * existing command buffer.
  7047. *
  7048. */
  7049. inline void gcode_M999() {
  7050. Running = true;
  7051. lcd_reset_alert_level();
  7052. if (code_seen('S') && code_value_bool()) return;
  7053. // gcode_LastN = Stopped_gcode_LastN;
  7054. FlushSerialRequestResend();
  7055. }
  7056. #if ENABLED(SWITCHING_EXTRUDER)
  7057. inline void move_extruder_servo(uint8_t e) {
  7058. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7059. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7060. safe_delay(500);
  7061. }
  7062. #endif
  7063. inline void invalid_extruder_error(const uint8_t &e) {
  7064. SERIAL_ECHO_START;
  7065. SERIAL_CHAR('T');
  7066. SERIAL_ECHO_F(e, DEC);
  7067. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7068. }
  7069. /**
  7070. * Perform a tool-change, which may result in moving the
  7071. * previous tool out of the way and the new tool into place.
  7072. */
  7073. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7074. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7075. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7076. return invalid_extruder_error(tmp_extruder);
  7077. // T0-Tnnn: Switch virtual tool by changing the mix
  7078. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7079. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7080. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7081. #if HOTENDS > 1
  7082. if (tmp_extruder >= EXTRUDERS)
  7083. return invalid_extruder_error(tmp_extruder);
  7084. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7085. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7086. if (tmp_extruder != active_extruder) {
  7087. if (!no_move && axis_unhomed_error(true, true, true)) {
  7088. SERIAL_ECHOLNPGM("No move on toolchange");
  7089. no_move = true;
  7090. }
  7091. // Save current position to destination, for use later
  7092. set_destination_to_current();
  7093. #if ENABLED(DUAL_X_CARRIAGE)
  7094. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7095. if (DEBUGGING(LEVELING)) {
  7096. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7097. switch (dual_x_carriage_mode) {
  7098. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7099. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7100. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7101. }
  7102. }
  7103. #endif
  7104. const float xhome = x_home_pos(active_extruder);
  7105. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7106. && IsRunning()
  7107. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7108. ) {
  7109. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7110. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7111. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7112. #endif
  7113. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7114. if (DEBUGGING(LEVELING)) {
  7115. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7116. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7117. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7118. }
  7119. #endif
  7120. // Park old head: 1) raise 2) move to park position 3) lower
  7121. for (uint8_t i = 0; i < 3; i++)
  7122. planner.buffer_line(
  7123. i == 0 ? current_position[X_AXIS] : xhome,
  7124. current_position[Y_AXIS],
  7125. i == 2 ? current_position[Z_AXIS] : raised_z,
  7126. current_position[E_AXIS],
  7127. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7128. active_extruder
  7129. );
  7130. stepper.synchronize();
  7131. }
  7132. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7133. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7134. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7135. // Activate the new extruder
  7136. active_extruder = tmp_extruder;
  7137. // This function resets the max/min values - the current position may be overwritten below.
  7138. set_axis_is_at_home(X_AXIS);
  7139. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7140. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7141. #endif
  7142. // Only when auto-parking are carriages safe to move
  7143. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7144. switch (dual_x_carriage_mode) {
  7145. case DXC_FULL_CONTROL_MODE:
  7146. // New current position is the position of the activated extruder
  7147. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7148. // Save the inactive extruder's position (from the old current_position)
  7149. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7150. break;
  7151. case DXC_AUTO_PARK_MODE:
  7152. // record raised toolhead position for use by unpark
  7153. COPY(raised_parked_position, current_position);
  7154. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7155. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7156. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7157. #endif
  7158. active_extruder_parked = true;
  7159. delayed_move_time = 0;
  7160. break;
  7161. case DXC_DUPLICATION_MODE:
  7162. // If the new extruder is the left one, set it "parked"
  7163. // This triggers the second extruder to move into the duplication position
  7164. active_extruder_parked = (active_extruder == 0);
  7165. if (active_extruder_parked)
  7166. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7167. else
  7168. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7169. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7170. extruder_duplication_enabled = false;
  7171. break;
  7172. }
  7173. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7174. if (DEBUGGING(LEVELING)) {
  7175. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  7176. DEBUG_POS("New extruder (parked)", current_position);
  7177. }
  7178. #endif
  7179. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  7180. #else // !DUAL_X_CARRIAGE
  7181. #if ENABLED(SWITCHING_EXTRUDER)
  7182. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  7183. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  7184. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  7185. // Always raise by some amount (destination copied from current_position earlier)
  7186. current_position[Z_AXIS] += z_raise;
  7187. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7188. stepper.synchronize();
  7189. move_extruder_servo(active_extruder);
  7190. #endif
  7191. /**
  7192. * Set current_position to the position of the new nozzle.
  7193. * Offsets are based on linear distance, so we need to get
  7194. * the resulting position in coordinate space.
  7195. *
  7196. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  7197. * - With mesh leveling, update Z for the new position
  7198. * - Otherwise, just use the raw linear distance
  7199. *
  7200. * Software endstops are altered here too. Consider a case where:
  7201. * E0 at X=0 ... E1 at X=10
  7202. * When we switch to E1 now X=10, but E1 can't move left.
  7203. * To express this we apply the change in XY to the software endstops.
  7204. * E1 can move farther right than E0, so the right limit is extended.
  7205. *
  7206. * Note that we don't adjust the Z software endstops. Why not?
  7207. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  7208. * because the bed is 1mm lower at the new position. As long as
  7209. * the first nozzle is out of the way, the carriage should be
  7210. * allowed to move 1mm lower. This technically "breaks" the
  7211. * Z software endstop. But this is technically correct (and
  7212. * there is no viable alternative).
  7213. */
  7214. #if ABL_PLANAR
  7215. // Offset extruder, make sure to apply the bed level rotation matrix
  7216. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  7217. hotend_offset[Y_AXIS][tmp_extruder],
  7218. 0),
  7219. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  7220. hotend_offset[Y_AXIS][active_extruder],
  7221. 0),
  7222. offset_vec = tmp_offset_vec - act_offset_vec;
  7223. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7224. if (DEBUGGING(LEVELING)) {
  7225. tmp_offset_vec.debug("tmp_offset_vec");
  7226. act_offset_vec.debug("act_offset_vec");
  7227. offset_vec.debug("offset_vec (BEFORE)");
  7228. }
  7229. #endif
  7230. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  7231. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7232. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  7233. #endif
  7234. // Adjustments to the current position
  7235. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  7236. current_position[Z_AXIS] += offset_vec.z;
  7237. #else // !ABL_PLANAR
  7238. const float xydiff[2] = {
  7239. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  7240. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  7241. };
  7242. #if ENABLED(MESH_BED_LEVELING)
  7243. if (mbl.active()) {
  7244. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7245. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  7246. #endif
  7247. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  7248. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  7249. z1 = current_position[Z_AXIS], z2 = z1;
  7250. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  7251. planner.apply_leveling(x2, y2, z2);
  7252. current_position[Z_AXIS] += z2 - z1;
  7253. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7254. if (DEBUGGING(LEVELING))
  7255. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  7256. #endif
  7257. }
  7258. #endif // MESH_BED_LEVELING
  7259. #endif // !HAS_ABL
  7260. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7261. if (DEBUGGING(LEVELING)) {
  7262. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  7263. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  7264. SERIAL_ECHOLNPGM(" }");
  7265. }
  7266. #endif
  7267. // The newly-selected extruder XY is actually at...
  7268. current_position[X_AXIS] += xydiff[X_AXIS];
  7269. current_position[Y_AXIS] += xydiff[Y_AXIS];
  7270. #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE)
  7271. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  7272. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7273. position_shift[i] += xydiff[i];
  7274. #endif
  7275. update_software_endstops((AxisEnum)i);
  7276. }
  7277. #endif
  7278. // Set the new active extruder
  7279. active_extruder = tmp_extruder;
  7280. #endif // !DUAL_X_CARRIAGE
  7281. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7282. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  7283. #endif
  7284. // Tell the planner the new "current position"
  7285. SYNC_PLAN_POSITION_KINEMATIC();
  7286. // Move to the "old position" (move the extruder into place)
  7287. if (!no_move && IsRunning()) {
  7288. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7289. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  7290. #endif
  7291. prepare_move_to_destination();
  7292. }
  7293. #if ENABLED(SWITCHING_EXTRUDER)
  7294. // Move back down, if needed. (Including when the new tool is higher.)
  7295. if (z_raise != z_diff) {
  7296. destination[Z_AXIS] += z_diff;
  7297. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  7298. prepare_move_to_destination();
  7299. }
  7300. #endif
  7301. } // (tmp_extruder != active_extruder)
  7302. stepper.synchronize();
  7303. #if ENABLED(EXT_SOLENOID)
  7304. disable_all_solenoids();
  7305. enable_solenoid_on_active_extruder();
  7306. #endif // EXT_SOLENOID
  7307. feedrate_mm_s = old_feedrate_mm_s;
  7308. #else // HOTENDS <= 1
  7309. // Set the new active extruder
  7310. active_extruder = tmp_extruder;
  7311. UNUSED(fr_mm_s);
  7312. UNUSED(no_move);
  7313. #endif // HOTENDS <= 1
  7314. SERIAL_ECHO_START;
  7315. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  7316. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7317. }
  7318. /**
  7319. * T0-T3: Switch tool, usually switching extruders
  7320. *
  7321. * F[units/min] Set the movement feedrate
  7322. * S1 Don't move the tool in XY after change
  7323. */
  7324. inline void gcode_T(uint8_t tmp_extruder) {
  7325. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7326. if (DEBUGGING(LEVELING)) {
  7327. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  7328. SERIAL_CHAR(')');
  7329. SERIAL_EOL;
  7330. DEBUG_POS("BEFORE", current_position);
  7331. }
  7332. #endif
  7333. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  7334. tool_change(tmp_extruder);
  7335. #elif HOTENDS > 1
  7336. tool_change(
  7337. tmp_extruder,
  7338. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  7339. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  7340. );
  7341. #endif
  7342. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7343. if (DEBUGGING(LEVELING)) {
  7344. DEBUG_POS("AFTER", current_position);
  7345. SERIAL_ECHOLNPGM("<<< gcode_T");
  7346. }
  7347. #endif
  7348. }
  7349. /**
  7350. * Process a single command and dispatch it to its handler
  7351. * This is called from the main loop()
  7352. */
  7353. void process_next_command() {
  7354. current_command = command_queue[cmd_queue_index_r];
  7355. if (DEBUGGING(ECHO)) {
  7356. SERIAL_ECHO_START;
  7357. SERIAL_ECHOLN(current_command);
  7358. }
  7359. // Sanitize the current command:
  7360. // - Skip leading spaces
  7361. // - Bypass N[-0-9][0-9]*[ ]*
  7362. // - Overwrite * with nul to mark the end
  7363. while (*current_command == ' ') ++current_command;
  7364. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  7365. current_command += 2; // skip N[-0-9]
  7366. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  7367. while (*current_command == ' ') ++current_command; // skip [ ]*
  7368. }
  7369. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  7370. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  7371. char *cmd_ptr = current_command;
  7372. // Get the command code, which must be G, M, or T
  7373. char command_code = *cmd_ptr++;
  7374. // Skip spaces to get the numeric part
  7375. while (*cmd_ptr == ' ') cmd_ptr++;
  7376. // Allow for decimal point in command
  7377. #if ENABLED(G38_PROBE_TARGET)
  7378. uint8_t subcode = 0;
  7379. #endif
  7380. uint16_t codenum = 0; // define ahead of goto
  7381. // Bail early if there's no code
  7382. bool code_is_good = NUMERIC(*cmd_ptr);
  7383. if (!code_is_good) goto ExitUnknownCommand;
  7384. // Get and skip the code number
  7385. do {
  7386. codenum = (codenum * 10) + (*cmd_ptr - '0');
  7387. cmd_ptr++;
  7388. } while (NUMERIC(*cmd_ptr));
  7389. // Allow for decimal point in command
  7390. #if ENABLED(G38_PROBE_TARGET)
  7391. if (*cmd_ptr == '.') {
  7392. cmd_ptr++;
  7393. while (NUMERIC(*cmd_ptr))
  7394. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  7395. }
  7396. #endif
  7397. // Skip all spaces to get to the first argument, or nul
  7398. while (*cmd_ptr == ' ') cmd_ptr++;
  7399. // The command's arguments (if any) start here, for sure!
  7400. current_command_args = cmd_ptr;
  7401. KEEPALIVE_STATE(IN_HANDLER);
  7402. // Handle a known G, M, or T
  7403. switch (command_code) {
  7404. case 'G': switch (codenum) {
  7405. // G0, G1
  7406. case 0:
  7407. case 1:
  7408. #if IS_SCARA
  7409. gcode_G0_G1(codenum == 0);
  7410. #else
  7411. gcode_G0_G1();
  7412. #endif
  7413. break;
  7414. // G2, G3
  7415. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  7416. case 2: // G2 - CW ARC
  7417. case 3: // G3 - CCW ARC
  7418. gcode_G2_G3(codenum == 2);
  7419. break;
  7420. #endif
  7421. // G4 Dwell
  7422. case 4:
  7423. gcode_G4();
  7424. break;
  7425. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7426. // G5
  7427. case 5: // G5 - Cubic B_spline
  7428. gcode_G5();
  7429. break;
  7430. #endif // BEZIER_CURVE_SUPPORT
  7431. #if ENABLED(FWRETRACT)
  7432. case 10: // G10: retract
  7433. case 11: // G11: retract_recover
  7434. gcode_G10_G11(codenum == 10);
  7435. break;
  7436. #endif // FWRETRACT
  7437. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  7438. case 12:
  7439. gcode_G12(); // G12: Nozzle Clean
  7440. break;
  7441. #endif // NOZZLE_CLEAN_FEATURE
  7442. #if ENABLED(INCH_MODE_SUPPORT)
  7443. case 20: //G20: Inch Mode
  7444. gcode_G20();
  7445. break;
  7446. case 21: //G21: MM Mode
  7447. gcode_G21();
  7448. break;
  7449. #endif // INCH_MODE_SUPPORT
  7450. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7451. case 26: // G26: Mesh Validation Pattern generation
  7452. gcode_G26();
  7453. break;
  7454. #endif // AUTO_BED_LEVELING_UBL
  7455. #if ENABLED(NOZZLE_PARK_FEATURE)
  7456. case 27: // G27: Nozzle Park
  7457. gcode_G27();
  7458. break;
  7459. #endif // NOZZLE_PARK_FEATURE
  7460. case 28: // G28: Home all axes, one at a time
  7461. gcode_G28();
  7462. break;
  7463. #if PLANNER_LEVELING || ENABLED(AUTO_BED_LEVELING_UBL)
  7464. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  7465. // or provides access to the UBL System if enabled.
  7466. gcode_G29();
  7467. break;
  7468. #endif // PLANNER_LEVELING
  7469. #if HAS_BED_PROBE
  7470. case 30: // G30 Single Z probe
  7471. gcode_G30();
  7472. break;
  7473. #if ENABLED(Z_PROBE_SLED)
  7474. case 31: // G31: dock the sled
  7475. gcode_G31();
  7476. break;
  7477. case 32: // G32: undock the sled
  7478. gcode_G32();
  7479. break;
  7480. #endif // Z_PROBE_SLED
  7481. #endif // HAS_BED_PROBE
  7482. #if ENABLED(G38_PROBE_TARGET)
  7483. case 38: // G38.2 & G38.3
  7484. if (subcode == 2 || subcode == 3)
  7485. gcode_G38(subcode == 2);
  7486. break;
  7487. #endif
  7488. case 90: // G90
  7489. relative_mode = false;
  7490. break;
  7491. case 91: // G91
  7492. relative_mode = true;
  7493. break;
  7494. case 92: // G92
  7495. gcode_G92();
  7496. break;
  7497. }
  7498. break;
  7499. case 'M': switch (codenum) {
  7500. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  7501. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  7502. case 1: // M1: Conditional stop - Wait for user button press on LCD
  7503. gcode_M0_M1();
  7504. break;
  7505. #endif // ULTIPANEL
  7506. case 17: // M17: Enable all stepper motors
  7507. gcode_M17();
  7508. break;
  7509. #if ENABLED(SDSUPPORT)
  7510. case 20: // M20: list SD card
  7511. gcode_M20(); break;
  7512. case 21: // M21: init SD card
  7513. gcode_M21(); break;
  7514. case 22: // M22: release SD card
  7515. gcode_M22(); break;
  7516. case 23: // M23: Select file
  7517. gcode_M23(); break;
  7518. case 24: // M24: Start SD print
  7519. gcode_M24(); break;
  7520. case 25: // M25: Pause SD print
  7521. gcode_M25(); break;
  7522. case 26: // M26: Set SD index
  7523. gcode_M26(); break;
  7524. case 27: // M27: Get SD status
  7525. gcode_M27(); break;
  7526. case 28: // M28: Start SD write
  7527. gcode_M28(); break;
  7528. case 29: // M29: Stop SD write
  7529. gcode_M29(); break;
  7530. case 30: // M30 <filename> Delete File
  7531. gcode_M30(); break;
  7532. case 32: // M32: Select file and start SD print
  7533. gcode_M32(); break;
  7534. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  7535. case 33: // M33: Get the long full path to a file or folder
  7536. gcode_M33(); break;
  7537. #endif
  7538. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  7539. case 34: //M34 - Set SD card sorting options
  7540. gcode_M34(); break;
  7541. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  7542. case 928: // M928: Start SD write
  7543. gcode_M928(); break;
  7544. #endif //SDSUPPORT
  7545. case 31: // M31: Report time since the start of SD print or last M109
  7546. gcode_M31(); break;
  7547. case 42: // M42: Change pin state
  7548. gcode_M42(); break;
  7549. #if ENABLED(PINS_DEBUGGING)
  7550. case 43: // M43: Read pin state
  7551. gcode_M43(); break;
  7552. #endif
  7553. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  7554. case 48: // M48: Z probe repeatability test
  7555. gcode_M48();
  7556. break;
  7557. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  7558. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  7559. case 49: // M49: Turn on or off G26 debug flag for verbose output
  7560. gcode_M49();
  7561. break;
  7562. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  7563. case 75: // M75: Start print timer
  7564. gcode_M75(); break;
  7565. case 76: // M76: Pause print timer
  7566. gcode_M76(); break;
  7567. case 77: // M77: Stop print timer
  7568. gcode_M77(); break;
  7569. #if ENABLED(PRINTCOUNTER)
  7570. case 78: // M78: Show print statistics
  7571. gcode_M78(); break;
  7572. #endif
  7573. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  7574. case 100: // M100: Free Memory Report
  7575. gcode_M100();
  7576. break;
  7577. #endif
  7578. case 104: // M104: Set hot end temperature
  7579. gcode_M104();
  7580. break;
  7581. case 110: // M110: Set Current Line Number
  7582. gcode_M110();
  7583. break;
  7584. case 111: // M111: Set debug level
  7585. gcode_M111();
  7586. break;
  7587. #if DISABLED(EMERGENCY_PARSER)
  7588. case 108: // M108: Cancel Waiting
  7589. gcode_M108();
  7590. break;
  7591. case 112: // M112: Emergency Stop
  7592. gcode_M112();
  7593. break;
  7594. case 410: // M410 quickstop - Abort all the planned moves.
  7595. gcode_M410();
  7596. break;
  7597. #endif
  7598. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  7599. case 113: // M113: Set Host Keepalive interval
  7600. gcode_M113();
  7601. break;
  7602. #endif
  7603. case 140: // M140: Set bed temperature
  7604. gcode_M140();
  7605. break;
  7606. case 105: // M105: Report current temperature
  7607. gcode_M105();
  7608. KEEPALIVE_STATE(NOT_BUSY);
  7609. return; // "ok" already printed
  7610. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  7611. case 155: // M155: Set temperature auto-report interval
  7612. gcode_M155();
  7613. break;
  7614. #endif
  7615. case 109: // M109: Wait for hotend temperature to reach target
  7616. gcode_M109();
  7617. break;
  7618. #if HAS_TEMP_BED
  7619. case 190: // M190: Wait for bed temperature to reach target
  7620. gcode_M190();
  7621. break;
  7622. #endif // HAS_TEMP_BED
  7623. #if FAN_COUNT > 0
  7624. case 106: // M106: Fan On
  7625. gcode_M106();
  7626. break;
  7627. case 107: // M107: Fan Off
  7628. gcode_M107();
  7629. break;
  7630. #endif // FAN_COUNT > 0
  7631. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7632. case 125: // M125: Store current position and move to filament change position
  7633. gcode_M125(); break;
  7634. #endif
  7635. #if ENABLED(BARICUDA)
  7636. // PWM for HEATER_1_PIN
  7637. #if HAS_HEATER_1
  7638. case 126: // M126: valve open
  7639. gcode_M126();
  7640. break;
  7641. case 127: // M127: valve closed
  7642. gcode_M127();
  7643. break;
  7644. #endif // HAS_HEATER_1
  7645. // PWM for HEATER_2_PIN
  7646. #if HAS_HEATER_2
  7647. case 128: // M128: valve open
  7648. gcode_M128();
  7649. break;
  7650. case 129: // M129: valve closed
  7651. gcode_M129();
  7652. break;
  7653. #endif // HAS_HEATER_2
  7654. #endif // BARICUDA
  7655. #if HAS_POWER_SWITCH
  7656. case 80: // M80: Turn on Power Supply
  7657. gcode_M80();
  7658. break;
  7659. #endif // HAS_POWER_SWITCH
  7660. case 81: // M81: Turn off Power, including Power Supply, if possible
  7661. gcode_M81();
  7662. break;
  7663. case 82: // M83: Set E axis normal mode (same as other axes)
  7664. gcode_M82();
  7665. break;
  7666. case 83: // M83: Set E axis relative mode
  7667. gcode_M83();
  7668. break;
  7669. case 18: // M18 => M84
  7670. case 84: // M84: Disable all steppers or set timeout
  7671. gcode_M18_M84();
  7672. break;
  7673. case 85: // M85: Set inactivity stepper shutdown timeout
  7674. gcode_M85();
  7675. break;
  7676. case 92: // M92: Set the steps-per-unit for one or more axes
  7677. gcode_M92();
  7678. break;
  7679. case 114: // M114: Report current position
  7680. gcode_M114();
  7681. break;
  7682. case 115: // M115: Report capabilities
  7683. gcode_M115();
  7684. break;
  7685. case 117: // M117: Set LCD message text, if possible
  7686. gcode_M117();
  7687. break;
  7688. case 119: // M119: Report endstop states
  7689. gcode_M119();
  7690. break;
  7691. case 120: // M120: Enable endstops
  7692. gcode_M120();
  7693. break;
  7694. case 121: // M121: Disable endstops
  7695. gcode_M121();
  7696. break;
  7697. #if ENABLED(ULTIPANEL)
  7698. case 145: // M145: Set material heatup parameters
  7699. gcode_M145();
  7700. break;
  7701. #endif
  7702. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7703. case 149: // M149: Set temperature units
  7704. gcode_M149();
  7705. break;
  7706. #endif
  7707. #if ENABLED(BLINKM) || ENABLED(RGB_LED)
  7708. case 150: // M150: Set Status LED Color
  7709. gcode_M150();
  7710. break;
  7711. #endif // BLINKM
  7712. #if ENABLED(MIXING_EXTRUDER)
  7713. case 163: // M163: Set a component weight for mixing extruder
  7714. gcode_M163();
  7715. break;
  7716. #if MIXING_VIRTUAL_TOOLS > 1
  7717. case 164: // M164: Save current mix as a virtual extruder
  7718. gcode_M164();
  7719. break;
  7720. #endif
  7721. #if ENABLED(DIRECT_MIXING_IN_G1)
  7722. case 165: // M165: Set multiple mix weights
  7723. gcode_M165();
  7724. break;
  7725. #endif
  7726. #endif
  7727. case 200: // M200: Set filament diameter, E to cubic units
  7728. gcode_M200();
  7729. break;
  7730. case 201: // M201: Set max acceleration for print moves (units/s^2)
  7731. gcode_M201();
  7732. break;
  7733. #if 0 // Not used for Sprinter/grbl gen6
  7734. case 202: // M202
  7735. gcode_M202();
  7736. break;
  7737. #endif
  7738. case 203: // M203: Set max feedrate (units/sec)
  7739. gcode_M203();
  7740. break;
  7741. case 204: // M204: Set acceleration
  7742. gcode_M204();
  7743. break;
  7744. case 205: //M205: Set advanced settings
  7745. gcode_M205();
  7746. break;
  7747. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7748. case 206: // M206: Set home offsets
  7749. gcode_M206();
  7750. break;
  7751. #endif
  7752. #if ENABLED(DELTA)
  7753. case 665: // M665: Set delta configurations
  7754. gcode_M665();
  7755. break;
  7756. #endif
  7757. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  7758. case 666: // M666: Set delta or dual endstop adjustment
  7759. gcode_M666();
  7760. break;
  7761. #endif
  7762. #if ENABLED(FWRETRACT)
  7763. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  7764. gcode_M207();
  7765. break;
  7766. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  7767. gcode_M208();
  7768. break;
  7769. case 209: // M209: Turn Automatic Retract Detection on/off
  7770. gcode_M209();
  7771. break;
  7772. #endif // FWRETRACT
  7773. case 211: // M211: Enable, Disable, and/or Report software endstops
  7774. gcode_M211();
  7775. break;
  7776. #if HOTENDS > 1
  7777. case 218: // M218: Set a tool offset
  7778. gcode_M218();
  7779. break;
  7780. #endif
  7781. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  7782. gcode_M220();
  7783. break;
  7784. case 221: // M221: Set Flow Percentage
  7785. gcode_M221();
  7786. break;
  7787. case 226: // M226: Wait until a pin reaches a state
  7788. gcode_M226();
  7789. break;
  7790. #if HAS_SERVOS
  7791. case 280: // M280: Set servo position absolute
  7792. gcode_M280();
  7793. break;
  7794. #endif // HAS_SERVOS
  7795. #if HAS_BUZZER
  7796. case 300: // M300: Play beep tone
  7797. gcode_M300();
  7798. break;
  7799. #endif // HAS_BUZZER
  7800. #if ENABLED(PIDTEMP)
  7801. case 301: // M301: Set hotend PID parameters
  7802. gcode_M301();
  7803. break;
  7804. #endif // PIDTEMP
  7805. #if ENABLED(PIDTEMPBED)
  7806. case 304: // M304: Set bed PID parameters
  7807. gcode_M304();
  7808. break;
  7809. #endif // PIDTEMPBED
  7810. #if defined(CHDK) || HAS_PHOTOGRAPH
  7811. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  7812. gcode_M240();
  7813. break;
  7814. #endif // CHDK || PHOTOGRAPH_PIN
  7815. #if HAS_LCD_CONTRAST
  7816. case 250: // M250: Set LCD contrast
  7817. gcode_M250();
  7818. break;
  7819. #endif // HAS_LCD_CONTRAST
  7820. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7821. case 260: // M260: Send data to an i2c slave
  7822. gcode_M260();
  7823. break;
  7824. case 261: // M261: Request data from an i2c slave
  7825. gcode_M261();
  7826. break;
  7827. #endif // EXPERIMENTAL_I2CBUS
  7828. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7829. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  7830. gcode_M302();
  7831. break;
  7832. #endif // PREVENT_COLD_EXTRUSION
  7833. case 303: // M303: PID autotune
  7834. gcode_M303();
  7835. break;
  7836. #if ENABLED(MORGAN_SCARA)
  7837. case 360: // M360: SCARA Theta pos1
  7838. if (gcode_M360()) return;
  7839. break;
  7840. case 361: // M361: SCARA Theta pos2
  7841. if (gcode_M361()) return;
  7842. break;
  7843. case 362: // M362: SCARA Psi pos1
  7844. if (gcode_M362()) return;
  7845. break;
  7846. case 363: // M363: SCARA Psi pos2
  7847. if (gcode_M363()) return;
  7848. break;
  7849. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  7850. if (gcode_M364()) return;
  7851. break;
  7852. #endif // SCARA
  7853. case 400: // M400: Finish all moves
  7854. gcode_M400();
  7855. break;
  7856. #if HAS_BED_PROBE
  7857. case 401: // M401: Deploy probe
  7858. gcode_M401();
  7859. break;
  7860. case 402: // M402: Stow probe
  7861. gcode_M402();
  7862. break;
  7863. #endif // HAS_BED_PROBE
  7864. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7865. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  7866. gcode_M404();
  7867. break;
  7868. case 405: // M405: Turn on filament sensor for control
  7869. gcode_M405();
  7870. break;
  7871. case 406: // M406: Turn off filament sensor for control
  7872. gcode_M406();
  7873. break;
  7874. case 407: // M407: Display measured filament diameter
  7875. gcode_M407();
  7876. break;
  7877. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  7878. #if PLANNER_LEVELING
  7879. case 420: // M420: Enable/Disable Bed Leveling
  7880. gcode_M420();
  7881. break;
  7882. #endif
  7883. #if ENABLED(MESH_BED_LEVELING)
  7884. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  7885. gcode_M421();
  7886. break;
  7887. #endif
  7888. #if DISABLED(NO_WORKSPACE_OFFSETS)
  7889. case 428: // M428: Apply current_position to home_offset
  7890. gcode_M428();
  7891. break;
  7892. #endif
  7893. case 500: // M500: Store settings in EEPROM
  7894. gcode_M500();
  7895. break;
  7896. case 501: // M501: Read settings from EEPROM
  7897. gcode_M501();
  7898. break;
  7899. case 502: // M502: Revert to default settings
  7900. gcode_M502();
  7901. break;
  7902. case 503: // M503: print settings currently in memory
  7903. gcode_M503();
  7904. break;
  7905. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7906. case 540: // M540: Set abort on endstop hit for SD printing
  7907. gcode_M540();
  7908. break;
  7909. #endif
  7910. #if HAS_BED_PROBE
  7911. case 851: // M851: Set Z Probe Z Offset
  7912. gcode_M851();
  7913. break;
  7914. #endif // HAS_BED_PROBE
  7915. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7916. case 600: // M600: Pause for filament change
  7917. gcode_M600();
  7918. break;
  7919. #endif // FILAMENT_CHANGE_FEATURE
  7920. #if ENABLED(DUAL_X_CARRIAGE)
  7921. case 605: // M605: Set Dual X Carriage movement mode
  7922. gcode_M605();
  7923. break;
  7924. #endif // DUAL_X_CARRIAGE
  7925. #if ENABLED(LIN_ADVANCE)
  7926. case 905: // M905: Set advance K factor.
  7927. gcode_M905();
  7928. break;
  7929. #endif
  7930. #if ENABLED(HAVE_TMC2130)
  7931. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7932. gcode_M906();
  7933. break;
  7934. #endif
  7935. case 907: // M907: Set digital trimpot motor current using axis codes.
  7936. gcode_M907();
  7937. break;
  7938. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7939. case 908: // M908: Control digital trimpot directly.
  7940. gcode_M908();
  7941. break;
  7942. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7943. case 909: // M909: Print digipot/DAC current value
  7944. gcode_M909();
  7945. break;
  7946. case 910: // M910: Commit digipot/DAC value to external EEPROM
  7947. gcode_M910();
  7948. break;
  7949. #endif
  7950. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7951. #if ENABLED(HAVE_TMC2130)
  7952. case 911: // M911: Report TMC2130 prewarn triggered flags
  7953. gcode_M911();
  7954. break;
  7955. case 912: // M911: Clear TMC2130 prewarn triggered flags
  7956. gcode_M912();
  7957. break;
  7958. #endif
  7959. #if HAS_MICROSTEPS
  7960. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7961. gcode_M350();
  7962. break;
  7963. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7964. gcode_M351();
  7965. break;
  7966. #endif // HAS_MICROSTEPS
  7967. case 355: // M355 Turn case lights on/off
  7968. gcode_M355();
  7969. break;
  7970. case 999: // M999: Restart after being Stopped
  7971. gcode_M999();
  7972. break;
  7973. }
  7974. break;
  7975. case 'T':
  7976. gcode_T(codenum);
  7977. break;
  7978. default: code_is_good = false;
  7979. }
  7980. KEEPALIVE_STATE(NOT_BUSY);
  7981. ExitUnknownCommand:
  7982. // Still unknown command? Throw an error
  7983. if (!code_is_good) unknown_command_error();
  7984. ok_to_send();
  7985. }
  7986. /**
  7987. * Send a "Resend: nnn" message to the host to
  7988. * indicate that a command needs to be re-sent.
  7989. */
  7990. void FlushSerialRequestResend() {
  7991. //char command_queue[cmd_queue_index_r][100]="Resend:";
  7992. MYSERIAL.flush();
  7993. SERIAL_PROTOCOLPGM(MSG_RESEND);
  7994. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  7995. ok_to_send();
  7996. }
  7997. /**
  7998. * Send an "ok" message to the host, indicating
  7999. * that a command was successfully processed.
  8000. *
  8001. * If ADVANCED_OK is enabled also include:
  8002. * N<int> Line number of the command, if any
  8003. * P<int> Planner space remaining
  8004. * B<int> Block queue space remaining
  8005. */
  8006. void ok_to_send() {
  8007. refresh_cmd_timeout();
  8008. if (!send_ok[cmd_queue_index_r]) return;
  8009. SERIAL_PROTOCOLPGM(MSG_OK);
  8010. #if ENABLED(ADVANCED_OK)
  8011. char* p = command_queue[cmd_queue_index_r];
  8012. if (*p == 'N') {
  8013. SERIAL_PROTOCOL(' ');
  8014. SERIAL_ECHO(*p++);
  8015. while (NUMERIC_SIGNED(*p))
  8016. SERIAL_ECHO(*p++);
  8017. }
  8018. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8019. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8020. #endif
  8021. SERIAL_EOL;
  8022. }
  8023. #if HAS_SOFTWARE_ENDSTOPS
  8024. /**
  8025. * Constrain the given coordinates to the software endstops.
  8026. */
  8027. void clamp_to_software_endstops(float target[XYZ]) {
  8028. if (!soft_endstops_enabled) return;
  8029. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8030. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8031. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8032. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8033. #endif
  8034. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8035. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8036. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8037. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8038. #endif
  8039. }
  8040. #endif
  8041. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8042. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8043. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8044. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8045. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8046. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  8047. #else
  8048. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8049. #define ABL_BG_POINTS_X ABL_GRID_MAX_POINTS_X
  8050. #define ABL_BG_POINTS_Y ABL_GRID_MAX_POINTS_Y
  8051. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  8052. #endif
  8053. // Get the Z adjustment for non-linear bed leveling
  8054. float bilinear_z_offset(float cartesian[XYZ]) {
  8055. // XY relative to the probed area
  8056. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  8057. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  8058. // Convert to grid box units
  8059. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  8060. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  8061. // Whole units for the grid line indices. Constrained within bounds.
  8062. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  8063. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  8064. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  8065. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8066. // Subtract whole to get the ratio within the grid box
  8067. ratio_x -= gridx; ratio_y -= gridy;
  8068. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  8069. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  8070. // Z at the box corners
  8071. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  8072. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  8073. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  8074. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  8075. // Bilinear interpolate
  8076. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  8077. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  8078. offset = L + ratio_x * (R - L);
  8079. /*
  8080. static float last_offset = 0;
  8081. if (fabs(last_offset - offset) > 0.2) {
  8082. SERIAL_ECHOPGM("Sudden Shift at ");
  8083. SERIAL_ECHOPAIR("x=", x);
  8084. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8085. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8086. SERIAL_ECHOPAIR(" y=", y);
  8087. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8088. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8089. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8090. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8091. SERIAL_ECHOPAIR(" z1=", z1);
  8092. SERIAL_ECHOPAIR(" z2=", z2);
  8093. SERIAL_ECHOPAIR(" z3=", z3);
  8094. SERIAL_ECHOLNPAIR(" z4=", z4);
  8095. SERIAL_ECHOPAIR(" L=", L);
  8096. SERIAL_ECHOPAIR(" R=", R);
  8097. SERIAL_ECHOLNPAIR(" offset=", offset);
  8098. }
  8099. last_offset = offset;
  8100. */
  8101. return offset;
  8102. }
  8103. #endif // AUTO_BED_LEVELING_BILINEAR
  8104. #if ENABLED(DELTA)
  8105. /**
  8106. * Recalculate factors used for delta kinematics whenever
  8107. * settings have been changed (e.g., by M665).
  8108. */
  8109. void recalc_delta_settings(float radius, float diagonal_rod) {
  8110. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  8111. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  8112. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  8113. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  8114. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower
  8115. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3);
  8116. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  8117. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  8118. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  8119. }
  8120. #if ENABLED(DELTA_FAST_SQRT)
  8121. /**
  8122. * Fast inverse sqrt from Quake III Arena
  8123. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  8124. */
  8125. float Q_rsqrt(float number) {
  8126. long i;
  8127. float x2, y;
  8128. const float threehalfs = 1.5f;
  8129. x2 = number * 0.5f;
  8130. y = number;
  8131. i = * ( long * ) &y; // evil floating point bit level hacking
  8132. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  8133. y = * ( float * ) &i;
  8134. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  8135. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  8136. return y;
  8137. }
  8138. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  8139. #else
  8140. #define _SQRT(n) sqrt(n)
  8141. #endif
  8142. /**
  8143. * Delta Inverse Kinematics
  8144. *
  8145. * Calculate the tower positions for a given logical
  8146. * position, storing the result in the delta[] array.
  8147. *
  8148. * This is an expensive calculation, requiring 3 square
  8149. * roots per segmented linear move, and strains the limits
  8150. * of a Mega2560 with a Graphical Display.
  8151. *
  8152. * Suggested optimizations include:
  8153. *
  8154. * - Disable the home_offset (M206) and/or position_shift (G92)
  8155. * features to remove up to 12 float additions.
  8156. *
  8157. * - Use a fast-inverse-sqrt function and add the reciprocal.
  8158. * (see above)
  8159. */
  8160. // Macro to obtain the Z position of an individual tower
  8161. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  8162. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  8163. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  8164. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  8165. ) \
  8166. )
  8167. #define DELTA_RAW_IK() do { \
  8168. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  8169. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  8170. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  8171. } while(0)
  8172. #define DELTA_LOGICAL_IK() do { \
  8173. const float raw[XYZ] = { \
  8174. RAW_X_POSITION(logical[X_AXIS]), \
  8175. RAW_Y_POSITION(logical[Y_AXIS]), \
  8176. RAW_Z_POSITION(logical[Z_AXIS]) \
  8177. }; \
  8178. DELTA_RAW_IK(); \
  8179. } while(0)
  8180. #define DELTA_DEBUG() do { \
  8181. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  8182. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  8183. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  8184. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  8185. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  8186. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  8187. } while(0)
  8188. void inverse_kinematics(const float logical[XYZ]) {
  8189. DELTA_LOGICAL_IK();
  8190. // DELTA_DEBUG();
  8191. }
  8192. /**
  8193. * Calculate the highest Z position where the
  8194. * effector has the full range of XY motion.
  8195. */
  8196. float delta_safe_distance_from_top() {
  8197. float cartesian[XYZ] = {
  8198. LOGICAL_X_POSITION(0),
  8199. LOGICAL_Y_POSITION(0),
  8200. LOGICAL_Z_POSITION(0)
  8201. };
  8202. inverse_kinematics(cartesian);
  8203. float distance = delta[A_AXIS];
  8204. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  8205. inverse_kinematics(cartesian);
  8206. return abs(distance - delta[A_AXIS]);
  8207. }
  8208. /**
  8209. * Delta Forward Kinematics
  8210. *
  8211. * See the Wikipedia article "Trilateration"
  8212. * https://en.wikipedia.org/wiki/Trilateration
  8213. *
  8214. * Establish a new coordinate system in the plane of the
  8215. * three carriage points. This system has its origin at
  8216. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  8217. * plane with a Z component of zero.
  8218. * We will define unit vectors in this coordinate system
  8219. * in our original coordinate system. Then when we calculate
  8220. * the Xnew, Ynew and Znew values, we can translate back into
  8221. * the original system by moving along those unit vectors
  8222. * by the corresponding values.
  8223. *
  8224. * Variable names matched to Marlin, c-version, and avoid the
  8225. * use of any vector library.
  8226. *
  8227. * by Andreas Hardtung 2016-06-07
  8228. * based on a Java function from "Delta Robot Kinematics V3"
  8229. * by Steve Graves
  8230. *
  8231. * The result is stored in the cartes[] array.
  8232. */
  8233. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  8234. // Create a vector in old coordinates along x axis of new coordinate
  8235. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  8236. // Get the Magnitude of vector.
  8237. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  8238. // Create unit vector by dividing by magnitude.
  8239. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  8240. // Get the vector from the origin of the new system to the third point.
  8241. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  8242. // Use the dot product to find the component of this vector on the X axis.
  8243. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  8244. // Create a vector along the x axis that represents the x component of p13.
  8245. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  8246. // Subtract the X component from the original vector leaving only Y. We use the
  8247. // variable that will be the unit vector after we scale it.
  8248. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  8249. // The magnitude of Y component
  8250. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  8251. // Convert to a unit vector
  8252. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  8253. // The cross product of the unit x and y is the unit z
  8254. // float[] ez = vectorCrossProd(ex, ey);
  8255. float ez[3] = {
  8256. ex[1] * ey[2] - ex[2] * ey[1],
  8257. ex[2] * ey[0] - ex[0] * ey[2],
  8258. ex[0] * ey[1] - ex[1] * ey[0]
  8259. };
  8260. // We now have the d, i and j values defined in Wikipedia.
  8261. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  8262. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  8263. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  8264. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  8265. // Start from the origin of the old coordinates and add vectors in the
  8266. // old coords that represent the Xnew, Ynew and Znew to find the point
  8267. // in the old system.
  8268. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  8269. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  8270. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  8271. }
  8272. void forward_kinematics_DELTA(float point[ABC]) {
  8273. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  8274. }
  8275. #endif // DELTA
  8276. /**
  8277. * Get the stepper positions in the cartes[] array.
  8278. * Forward kinematics are applied for DELTA and SCARA.
  8279. *
  8280. * The result is in the current coordinate space with
  8281. * leveling applied. The coordinates need to be run through
  8282. * unapply_leveling to obtain the "ideal" coordinates
  8283. * suitable for current_position, etc.
  8284. */
  8285. void get_cartesian_from_steppers() {
  8286. #if ENABLED(DELTA)
  8287. forward_kinematics_DELTA(
  8288. stepper.get_axis_position_mm(A_AXIS),
  8289. stepper.get_axis_position_mm(B_AXIS),
  8290. stepper.get_axis_position_mm(C_AXIS)
  8291. );
  8292. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8293. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8294. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  8295. #elif IS_SCARA
  8296. forward_kinematics_SCARA(
  8297. stepper.get_axis_position_degrees(A_AXIS),
  8298. stepper.get_axis_position_degrees(B_AXIS)
  8299. );
  8300. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  8301. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  8302. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8303. #else
  8304. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  8305. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  8306. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  8307. #endif
  8308. }
  8309. /**
  8310. * Set the current_position for an axis based on
  8311. * the stepper positions, removing any leveling that
  8312. * may have been applied.
  8313. */
  8314. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  8315. get_cartesian_from_steppers();
  8316. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  8317. planner.unapply_leveling(cartes);
  8318. #endif
  8319. if (axis == ALL_AXES)
  8320. COPY(current_position, cartes);
  8321. else
  8322. current_position[axis] = cartes[axis];
  8323. }
  8324. #if ENABLED(MESH_BED_LEVELING)
  8325. /**
  8326. * Prepare a mesh-leveled linear move in a Cartesian setup,
  8327. * splitting the move where it crosses mesh borders.
  8328. */
  8329. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  8330. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  8331. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  8332. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  8333. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  8334. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  8335. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  8336. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  8337. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  8338. if (cx1 == cx2 && cy1 == cy2) {
  8339. // Start and end on same mesh square
  8340. line_to_destination(fr_mm_s);
  8341. set_current_to_destination();
  8342. return;
  8343. }
  8344. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8345. float normalized_dist, end[XYZE];
  8346. // Split at the left/front border of the right/top square
  8347. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8348. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8349. COPY(end, destination);
  8350. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  8351. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8352. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  8353. CBI(x_splits, gcx);
  8354. }
  8355. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8356. COPY(end, destination);
  8357. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  8358. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8359. destination[X_AXIS] = MBL_SEGMENT_END(X);
  8360. CBI(y_splits, gcy);
  8361. }
  8362. else {
  8363. // Already split on a border
  8364. line_to_destination(fr_mm_s);
  8365. set_current_to_destination();
  8366. return;
  8367. }
  8368. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  8369. destination[E_AXIS] = MBL_SEGMENT_END(E);
  8370. // Do the split and look for more borders
  8371. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8372. // Restore destination from stack
  8373. COPY(destination, end);
  8374. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  8375. }
  8376. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  8377. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  8378. /**
  8379. * Prepare a bilinear-leveled linear move on Cartesian,
  8380. * splitting the move where it crosses grid borders.
  8381. */
  8382. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  8383. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  8384. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  8385. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  8386. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  8387. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  8388. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  8389. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  8390. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  8391. if (cx1 == cx2 && cy1 == cy2) {
  8392. // Start and end on same mesh square
  8393. line_to_destination(fr_mm_s);
  8394. set_current_to_destination();
  8395. return;
  8396. }
  8397. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  8398. float normalized_dist, end[XYZE];
  8399. // Split at the left/front border of the right/top square
  8400. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  8401. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  8402. COPY(end, destination);
  8403. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  8404. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  8405. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  8406. CBI(x_splits, gcx);
  8407. }
  8408. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  8409. COPY(end, destination);
  8410. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  8411. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  8412. destination[X_AXIS] = LINE_SEGMENT_END(X);
  8413. CBI(y_splits, gcy);
  8414. }
  8415. else {
  8416. // Already split on a border
  8417. line_to_destination(fr_mm_s);
  8418. set_current_to_destination();
  8419. return;
  8420. }
  8421. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  8422. destination[E_AXIS] = LINE_SEGMENT_END(E);
  8423. // Do the split and look for more borders
  8424. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8425. // Restore destination from stack
  8426. COPY(destination, end);
  8427. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  8428. }
  8429. #endif // AUTO_BED_LEVELING_BILINEAR
  8430. #if IS_KINEMATIC
  8431. /**
  8432. * Prepare a linear move in a DELTA or SCARA setup.
  8433. *
  8434. * This calls planner.buffer_line several times, adding
  8435. * small incremental moves for DELTA or SCARA.
  8436. */
  8437. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  8438. // Get the top feedrate of the move in the XY plane
  8439. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  8440. // If the move is only in Z/E don't split up the move
  8441. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  8442. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8443. return true;
  8444. }
  8445. // Get the cartesian distances moved in XYZE
  8446. float difference[XYZE];
  8447. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  8448. // Get the linear distance in XYZ
  8449. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  8450. // If the move is very short, check the E move distance
  8451. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  8452. // No E move either? Game over.
  8453. if (UNEAR_ZERO(cartesian_mm)) return false;
  8454. // Minimum number of seconds to move the given distance
  8455. float seconds = cartesian_mm / _feedrate_mm_s;
  8456. // The number of segments-per-second times the duration
  8457. // gives the number of segments
  8458. uint16_t segments = delta_segments_per_second * seconds;
  8459. // For SCARA minimum segment size is 0.25mm
  8460. #if IS_SCARA
  8461. NOMORE(segments, cartesian_mm * 4);
  8462. #endif
  8463. // At least one segment is required
  8464. NOLESS(segments, 1);
  8465. // The approximate length of each segment
  8466. const float inv_segments = 1.0 / float(segments),
  8467. segment_distance[XYZE] = {
  8468. difference[X_AXIS] * inv_segments,
  8469. difference[Y_AXIS] * inv_segments,
  8470. difference[Z_AXIS] * inv_segments,
  8471. difference[E_AXIS] * inv_segments
  8472. };
  8473. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  8474. // SERIAL_ECHOPAIR(" seconds=", seconds);
  8475. // SERIAL_ECHOLNPAIR(" segments=", segments);
  8476. #if IS_SCARA
  8477. // SCARA needs to scale the feed rate from mm/s to degrees/s
  8478. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  8479. feed_factor = inv_segment_length * _feedrate_mm_s;
  8480. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  8481. oldB = stepper.get_axis_position_degrees(B_AXIS);
  8482. #endif
  8483. // Get the logical current position as starting point
  8484. float logical[XYZE];
  8485. COPY(logical, current_position);
  8486. // Drop one segment so the last move is to the exact target.
  8487. // If there's only 1 segment, loops will be skipped entirely.
  8488. --segments;
  8489. // Calculate and execute the segments
  8490. for (uint16_t s = segments + 1; --s;) {
  8491. LOOP_XYZE(i) logical[i] += segment_distance[i];
  8492. #if ENABLED(DELTA)
  8493. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  8494. #else
  8495. inverse_kinematics(logical);
  8496. #endif
  8497. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  8498. #if IS_SCARA
  8499. // For SCARA scale the feed rate from mm/s to degrees/s
  8500. // Use ratio between the length of the move and the larger angle change
  8501. const float adiff = abs(delta[A_AXIS] - oldA),
  8502. bdiff = abs(delta[B_AXIS] - oldB);
  8503. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8504. oldA = delta[A_AXIS];
  8505. oldB = delta[B_AXIS];
  8506. #else
  8507. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  8508. #endif
  8509. }
  8510. // Since segment_distance is only approximate,
  8511. // the final move must be to the exact destination.
  8512. #if IS_SCARA
  8513. // For SCARA scale the feed rate from mm/s to degrees/s
  8514. // With segments > 1 length is 1 segment, otherwise total length
  8515. inverse_kinematics(ltarget);
  8516. ADJUST_DELTA(logical);
  8517. const float adiff = abs(delta[A_AXIS] - oldA),
  8518. bdiff = abs(delta[B_AXIS] - oldB);
  8519. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  8520. #else
  8521. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  8522. #endif
  8523. return true;
  8524. }
  8525. #else // !IS_KINEMATIC
  8526. /**
  8527. * Prepare a linear move in a Cartesian setup.
  8528. * If Mesh Bed Leveling is enabled, perform a mesh move.
  8529. *
  8530. * Returns true if the caller didn't update current_position.
  8531. */
  8532. inline bool prepare_move_to_destination_cartesian() {
  8533. // Do not use feedrate_percentage for E or Z only moves
  8534. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  8535. line_to_destination();
  8536. }
  8537. else {
  8538. #if ENABLED(MESH_BED_LEVELING)
  8539. if (mbl.active()) {
  8540. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8541. return false;
  8542. }
  8543. else
  8544. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8545. if (ubl.state.active) {
  8546. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  8547. return false;
  8548. }
  8549. else
  8550. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8551. if (planner.abl_enabled) {
  8552. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  8553. return false;
  8554. }
  8555. else
  8556. #endif
  8557. line_to_destination(MMS_SCALED(feedrate_mm_s));
  8558. }
  8559. return true;
  8560. }
  8561. #endif // !IS_KINEMATIC
  8562. #if ENABLED(DUAL_X_CARRIAGE)
  8563. /**
  8564. * Prepare a linear move in a dual X axis setup
  8565. */
  8566. inline bool prepare_move_to_destination_dualx() {
  8567. if (active_extruder_parked) {
  8568. switch (dual_x_carriage_mode) {
  8569. case DXC_FULL_CONTROL_MODE:
  8570. break;
  8571. case DXC_AUTO_PARK_MODE:
  8572. if (current_position[E_AXIS] == destination[E_AXIS]) {
  8573. // This is a travel move (with no extrusion)
  8574. // Skip it, but keep track of the current position
  8575. // (so it can be used as the start of the next non-travel move)
  8576. if (delayed_move_time != 0xFFFFFFFFUL) {
  8577. set_current_to_destination();
  8578. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  8579. delayed_move_time = millis();
  8580. return false;
  8581. }
  8582. }
  8583. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  8584. for (uint8_t i = 0; i < 3; i++)
  8585. planner.buffer_line(
  8586. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  8587. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  8588. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  8589. current_position[E_AXIS],
  8590. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  8591. active_extruder
  8592. );
  8593. delayed_move_time = 0;
  8594. active_extruder_parked = false;
  8595. break;
  8596. case DXC_DUPLICATION_MODE:
  8597. if (active_extruder == 0) {
  8598. // move duplicate extruder into correct duplication position.
  8599. planner.set_position_mm(
  8600. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  8601. current_position[Y_AXIS],
  8602. current_position[Z_AXIS],
  8603. current_position[E_AXIS]
  8604. );
  8605. planner.buffer_line(
  8606. current_position[X_AXIS] + duplicate_extruder_x_offset,
  8607. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  8608. planner.max_feedrate_mm_s[X_AXIS], 1
  8609. );
  8610. SYNC_PLAN_POSITION_KINEMATIC();
  8611. stepper.synchronize();
  8612. extruder_duplication_enabled = true;
  8613. active_extruder_parked = false;
  8614. }
  8615. break;
  8616. }
  8617. }
  8618. return true;
  8619. }
  8620. #endif // DUAL_X_CARRIAGE
  8621. /**
  8622. * Prepare a single move and get ready for the next one
  8623. *
  8624. * This may result in several calls to planner.buffer_line to
  8625. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  8626. */
  8627. void prepare_move_to_destination() {
  8628. clamp_to_software_endstops(destination);
  8629. refresh_cmd_timeout();
  8630. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8631. if (!DEBUGGING(DRYRUN)) {
  8632. if (destination[E_AXIS] != current_position[E_AXIS]) {
  8633. if (thermalManager.tooColdToExtrude(active_extruder)) {
  8634. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8635. SERIAL_ECHO_START;
  8636. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  8637. }
  8638. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  8639. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  8640. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  8641. SERIAL_ECHO_START;
  8642. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  8643. }
  8644. #endif
  8645. }
  8646. }
  8647. #endif
  8648. #if IS_KINEMATIC
  8649. if (!prepare_kinematic_move_to(destination)) return;
  8650. #else
  8651. #if ENABLED(DUAL_X_CARRIAGE)
  8652. if (!prepare_move_to_destination_dualx()) return;
  8653. #endif
  8654. if (!prepare_move_to_destination_cartesian()) return;
  8655. #endif
  8656. set_current_to_destination();
  8657. }
  8658. #if ENABLED(ARC_SUPPORT)
  8659. /**
  8660. * Plan an arc in 2 dimensions
  8661. *
  8662. * The arc is approximated by generating many small linear segments.
  8663. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  8664. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  8665. * larger segments will tend to be more efficient. Your slicer should have
  8666. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  8667. */
  8668. void plan_arc(
  8669. float logical[XYZE], // Destination position
  8670. float* offset, // Center of rotation relative to current_position
  8671. uint8_t clockwise // Clockwise?
  8672. ) {
  8673. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  8674. center_X = current_position[X_AXIS] + offset[X_AXIS],
  8675. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  8676. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  8677. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  8678. r_X = -offset[X_AXIS], // Radius vector from center to current location
  8679. r_Y = -offset[Y_AXIS],
  8680. rt_X = logical[X_AXIS] - center_X,
  8681. rt_Y = logical[Y_AXIS] - center_Y;
  8682. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  8683. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  8684. if (angular_travel < 0) angular_travel += RADIANS(360);
  8685. if (clockwise) angular_travel -= RADIANS(360);
  8686. // Make a circle if the angular rotation is 0
  8687. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  8688. angular_travel += RADIANS(360);
  8689. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  8690. if (mm_of_travel < 0.001) return;
  8691. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  8692. if (segments == 0) segments = 1;
  8693. /**
  8694. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  8695. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  8696. * r_T = [cos(phi) -sin(phi);
  8697. * sin(phi) cos(phi)] * r ;
  8698. *
  8699. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  8700. * defined from the circle center to the initial position. Each line segment is formed by successive
  8701. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  8702. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  8703. * all double numbers are single precision on the Arduino. (True double precision will not have
  8704. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  8705. * tool precision in some cases. Therefore, arc path correction is implemented.
  8706. *
  8707. * Small angle approximation may be used to reduce computation overhead further. This approximation
  8708. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  8709. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  8710. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  8711. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  8712. * issue for CNC machines with the single precision Arduino calculations.
  8713. *
  8714. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  8715. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  8716. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  8717. * This is important when there are successive arc motions.
  8718. */
  8719. // Vector rotation matrix values
  8720. float arc_target[XYZE],
  8721. theta_per_segment = angular_travel / segments,
  8722. linear_per_segment = linear_travel / segments,
  8723. extruder_per_segment = extruder_travel / segments,
  8724. sin_T = theta_per_segment,
  8725. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  8726. // Initialize the linear axis
  8727. arc_target[Z_AXIS] = current_position[Z_AXIS];
  8728. // Initialize the extruder axis
  8729. arc_target[E_AXIS] = current_position[E_AXIS];
  8730. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  8731. millis_t next_idle_ms = millis() + 200UL;
  8732. int8_t count = 0;
  8733. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  8734. thermalManager.manage_heater();
  8735. if (ELAPSED(millis(), next_idle_ms)) {
  8736. next_idle_ms = millis() + 200UL;
  8737. idle();
  8738. }
  8739. if (++count < N_ARC_CORRECTION) {
  8740. // Apply vector rotation matrix to previous r_X / 1
  8741. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  8742. r_X = r_X * cos_T - r_Y * sin_T;
  8743. r_Y = r_new_Y;
  8744. }
  8745. else {
  8746. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  8747. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  8748. // To reduce stuttering, the sin and cos could be computed at different times.
  8749. // For now, compute both at the same time.
  8750. float cos_Ti = cos(i * theta_per_segment),
  8751. sin_Ti = sin(i * theta_per_segment);
  8752. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  8753. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  8754. count = 0;
  8755. }
  8756. // Update arc_target location
  8757. arc_target[X_AXIS] = center_X + r_X;
  8758. arc_target[Y_AXIS] = center_Y + r_Y;
  8759. arc_target[Z_AXIS] += linear_per_segment;
  8760. arc_target[E_AXIS] += extruder_per_segment;
  8761. clamp_to_software_endstops(arc_target);
  8762. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  8763. }
  8764. // Ensure last segment arrives at target location.
  8765. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  8766. // As far as the parser is concerned, the position is now == target. In reality the
  8767. // motion control system might still be processing the action and the real tool position
  8768. // in any intermediate location.
  8769. set_current_to_destination();
  8770. }
  8771. #endif
  8772. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8773. void plan_cubic_move(const float offset[4]) {
  8774. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  8775. // As far as the parser is concerned, the position is now == destination. In reality the
  8776. // motion control system might still be processing the action and the real tool position
  8777. // in any intermediate location.
  8778. set_current_to_destination();
  8779. }
  8780. #endif // BEZIER_CURVE_SUPPORT
  8781. #if HAS_CONTROLLERFAN
  8782. void controllerFan() {
  8783. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  8784. nextMotorCheck = 0; // Last time the state was checked
  8785. const millis_t ms = millis();
  8786. if (ELAPSED(ms, nextMotorCheck)) {
  8787. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  8788. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  8789. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  8790. #if E_STEPPERS > 1
  8791. || E1_ENABLE_READ == E_ENABLE_ON
  8792. #if HAS_X2_ENABLE
  8793. || X2_ENABLE_READ == X_ENABLE_ON
  8794. #endif
  8795. #if E_STEPPERS > 2
  8796. || E2_ENABLE_READ == E_ENABLE_ON
  8797. #if E_STEPPERS > 3
  8798. || E3_ENABLE_READ == E_ENABLE_ON
  8799. #endif
  8800. #endif
  8801. #endif
  8802. ) {
  8803. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  8804. }
  8805. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  8806. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  8807. // allows digital or PWM fan output to be used (see M42 handling)
  8808. digitalWrite(CONTROLLERFAN_PIN, speed);
  8809. analogWrite(CONTROLLERFAN_PIN, speed);
  8810. }
  8811. }
  8812. #endif // HAS_CONTROLLERFAN
  8813. #if ENABLED(MORGAN_SCARA)
  8814. /**
  8815. * Morgan SCARA Forward Kinematics. Results in cartes[].
  8816. * Maths and first version by QHARLEY.
  8817. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8818. */
  8819. void forward_kinematics_SCARA(const float &a, const float &b) {
  8820. float a_sin = sin(RADIANS(a)) * L1,
  8821. a_cos = cos(RADIANS(a)) * L1,
  8822. b_sin = sin(RADIANS(b)) * L2,
  8823. b_cos = cos(RADIANS(b)) * L2;
  8824. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  8825. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  8826. /*
  8827. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  8828. SERIAL_ECHOPAIR(" b=", b);
  8829. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  8830. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  8831. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  8832. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  8833. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  8834. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  8835. //*/
  8836. }
  8837. /**
  8838. * Morgan SCARA Inverse Kinematics. Results in delta[].
  8839. *
  8840. * See http://forums.reprap.org/read.php?185,283327
  8841. *
  8842. * Maths and first version by QHARLEY.
  8843. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  8844. */
  8845. void inverse_kinematics(const float logical[XYZ]) {
  8846. static float C2, S2, SK1, SK2, THETA, PSI;
  8847. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  8848. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  8849. if (L1 == L2)
  8850. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  8851. else
  8852. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  8853. S2 = sqrt(sq(C2) - 1);
  8854. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  8855. SK1 = L1 + L2 * C2;
  8856. // Rotated Arm2 gives the distance from Arm1 to Arm2
  8857. SK2 = L2 * S2;
  8858. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  8859. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  8860. // Angle of Arm2
  8861. PSI = atan2(S2, C2);
  8862. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  8863. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  8864. delta[C_AXIS] = logical[Z_AXIS];
  8865. /*
  8866. DEBUG_POS("SCARA IK", logical);
  8867. DEBUG_POS("SCARA IK", delta);
  8868. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  8869. SERIAL_ECHOPAIR(",", sy);
  8870. SERIAL_ECHOPAIR(" C2=", C2);
  8871. SERIAL_ECHOPAIR(" S2=", S2);
  8872. SERIAL_ECHOPAIR(" Theta=", THETA);
  8873. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  8874. //*/
  8875. }
  8876. #endif // MORGAN_SCARA
  8877. #if ENABLED(TEMP_STAT_LEDS)
  8878. static bool red_led = false;
  8879. static millis_t next_status_led_update_ms = 0;
  8880. void handle_status_leds(void) {
  8881. if (ELAPSED(millis(), next_status_led_update_ms)) {
  8882. next_status_led_update_ms += 500; // Update every 0.5s
  8883. float max_temp = 0.0;
  8884. #if HAS_TEMP_BED
  8885. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  8886. #endif
  8887. HOTEND_LOOP() {
  8888. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  8889. }
  8890. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  8891. if (new_led != red_led) {
  8892. red_led = new_led;
  8893. #if PIN_EXISTS(STAT_LED_RED)
  8894. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  8895. #if PIN_EXISTS(STAT_LED_BLUE)
  8896. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  8897. #endif
  8898. #else
  8899. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  8900. #endif
  8901. }
  8902. }
  8903. }
  8904. #endif
  8905. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8906. void handle_filament_runout() {
  8907. if (!filament_ran_out) {
  8908. filament_ran_out = true;
  8909. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  8910. stepper.synchronize();
  8911. }
  8912. }
  8913. #endif // FILAMENT_RUNOUT_SENSOR
  8914. #if ENABLED(FAST_PWM_FAN)
  8915. void setPwmFrequency(uint8_t pin, int val) {
  8916. val &= 0x07;
  8917. switch (digitalPinToTimer(pin)) {
  8918. #ifdef TCCR0A
  8919. case TIMER0A:
  8920. case TIMER0B:
  8921. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8922. // TCCR0B |= val;
  8923. break;
  8924. #endif
  8925. #ifdef TCCR1A
  8926. case TIMER1A:
  8927. case TIMER1B:
  8928. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8929. // TCCR1B |= val;
  8930. break;
  8931. #endif
  8932. #ifdef TCCR2
  8933. case TIMER2:
  8934. case TIMER2:
  8935. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8936. TCCR2 |= val;
  8937. break;
  8938. #endif
  8939. #ifdef TCCR2A
  8940. case TIMER2A:
  8941. case TIMER2B:
  8942. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8943. TCCR2B |= val;
  8944. break;
  8945. #endif
  8946. #ifdef TCCR3A
  8947. case TIMER3A:
  8948. case TIMER3B:
  8949. case TIMER3C:
  8950. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8951. TCCR3B |= val;
  8952. break;
  8953. #endif
  8954. #ifdef TCCR4A
  8955. case TIMER4A:
  8956. case TIMER4B:
  8957. case TIMER4C:
  8958. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8959. TCCR4B |= val;
  8960. break;
  8961. #endif
  8962. #ifdef TCCR5A
  8963. case TIMER5A:
  8964. case TIMER5B:
  8965. case TIMER5C:
  8966. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8967. TCCR5B |= val;
  8968. break;
  8969. #endif
  8970. }
  8971. }
  8972. #endif // FAST_PWM_FAN
  8973. float calculate_volumetric_multiplier(float diameter) {
  8974. if (!volumetric_enabled || diameter == 0) return 1.0;
  8975. return 1.0 / (M_PI * sq(diameter * 0.5));
  8976. }
  8977. void calculate_volumetric_multipliers() {
  8978. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  8979. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  8980. }
  8981. void enable_all_steppers() {
  8982. enable_x();
  8983. enable_y();
  8984. enable_z();
  8985. enable_e0();
  8986. enable_e1();
  8987. enable_e2();
  8988. enable_e3();
  8989. }
  8990. void disable_e_steppers() {
  8991. disable_e0();
  8992. disable_e1();
  8993. disable_e2();
  8994. disable_e3();
  8995. }
  8996. void disable_all_steppers() {
  8997. disable_x();
  8998. disable_y();
  8999. disable_z();
  9000. disable_e_steppers();
  9001. }
  9002. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9003. void automatic_current_control(const TMC2130Stepper &st) {
  9004. #if CURRENT_STEP > 0
  9005. const bool is_otpw = st.checkOT(), // Check otpw even if we don't adjust. Allows for flag inspection.
  9006. is_otpw_triggered = st.getOTPW();
  9007. if (!is_otpw && !is_otpw_triggered) {
  9008. // OTPW bit not triggered yet -> Increase current
  9009. const uint16_t current = st.getCurrent() + CURRENT_STEP;
  9010. if (current <= AUTO_ADJUST_MAX) st.SilentStepStick2130(current);
  9011. }
  9012. else if (is_otpw && is_otpw_triggered) {
  9013. // OTPW bit triggered, triggered flag raised -> Decrease current
  9014. st.SilentStepStick2130((float)st.getCurrent() - CURRENT_STEP);
  9015. }
  9016. // OTPW bit cleared (we've cooled down), triggered flag still raised until manually cleared -> Do nothing, we're good
  9017. #endif
  9018. }
  9019. void checkOverTemp() {
  9020. static millis_t next_cOT = 0;
  9021. if (ELAPSED(millis(), next_cOT)) {
  9022. next_cOT = millis() + 5000;
  9023. #if ENABLED(X_IS_TMC2130)
  9024. automatic_current_control(stepperX);
  9025. #endif
  9026. #if ENABLED(Y_IS_TMC2130)
  9027. automatic_current_control(stepperY);
  9028. #endif
  9029. #if ENABLED(Z_IS_TMC2130)
  9030. automatic_current_control(stepperZ);
  9031. #endif
  9032. #if ENABLED(X2_IS_TMC2130)
  9033. automatic_current_control(stepperX2);
  9034. #endif
  9035. #if ENABLED(Y2_IS_TMC2130)
  9036. automatic_current_control(stepperY2);
  9037. #endif
  9038. #if ENABLED(Z2_IS_TMC2130)
  9039. automatic_current_control(stepperZ2);
  9040. #endif
  9041. #if ENABLED(E0_IS_TMC2130)
  9042. automatic_current_control(stepperE0);
  9043. #endif
  9044. #if ENABLED(E1_IS_TMC2130)
  9045. automatic_current_control(stepperE1);
  9046. #endif
  9047. #if ENABLED(E2_IS_TMC2130)
  9048. automatic_current_control(stepperE2);
  9049. #endif
  9050. #if ENABLED(E3_IS_TMC2130)
  9051. automatic_current_control(stepperE3);
  9052. #endif
  9053. }
  9054. }
  9055. #endif // AUTOMATIC_CURRENT_CONTROL
  9056. /**
  9057. * Manage several activities:
  9058. * - Check for Filament Runout
  9059. * - Keep the command buffer full
  9060. * - Check for maximum inactive time between commands
  9061. * - Check for maximum inactive time between stepper commands
  9062. * - Check if pin CHDK needs to go LOW
  9063. * - Check for KILL button held down
  9064. * - Check for HOME button held down
  9065. * - Check if cooling fan needs to be switched on
  9066. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  9067. */
  9068. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  9069. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9070. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  9071. handle_filament_runout();
  9072. #endif
  9073. if (commands_in_queue < BUFSIZE) get_available_commands();
  9074. const millis_t ms = millis();
  9075. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  9076. SERIAL_ERROR_START;
  9077. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  9078. kill(PSTR(MSG_KILLED));
  9079. }
  9080. // Prevent steppers timing-out in the middle of M600
  9081. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  9082. #define M600_TEST !busy_doing_M600
  9083. #else
  9084. #define M600_TEST true
  9085. #endif
  9086. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  9087. && !ignore_stepper_queue && !planner.blocks_queued()) {
  9088. #if ENABLED(DISABLE_INACTIVE_X)
  9089. disable_x();
  9090. #endif
  9091. #if ENABLED(DISABLE_INACTIVE_Y)
  9092. disable_y();
  9093. #endif
  9094. #if ENABLED(DISABLE_INACTIVE_Z)
  9095. disable_z();
  9096. #endif
  9097. #if ENABLED(DISABLE_INACTIVE_E)
  9098. disable_e_steppers();
  9099. #endif
  9100. }
  9101. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  9102. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  9103. chdkActive = false;
  9104. WRITE(CHDK, LOW);
  9105. }
  9106. #endif
  9107. #if HAS_KILL
  9108. // Check if the kill button was pressed and wait just in case it was an accidental
  9109. // key kill key press
  9110. // -------------------------------------------------------------------------------
  9111. static int killCount = 0; // make the inactivity button a bit less responsive
  9112. const int KILL_DELAY = 750;
  9113. if (!READ(KILL_PIN))
  9114. killCount++;
  9115. else if (killCount > 0)
  9116. killCount--;
  9117. // Exceeded threshold and we can confirm that it was not accidental
  9118. // KILL the machine
  9119. // ----------------------------------------------------------------
  9120. if (killCount >= KILL_DELAY) {
  9121. SERIAL_ERROR_START;
  9122. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  9123. kill(PSTR(MSG_KILLED));
  9124. }
  9125. #endif
  9126. #if HAS_HOME
  9127. // Check to see if we have to home, use poor man's debouncer
  9128. // ---------------------------------------------------------
  9129. static int homeDebounceCount = 0; // poor man's debouncing count
  9130. const int HOME_DEBOUNCE_DELAY = 2500;
  9131. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  9132. if (!homeDebounceCount) {
  9133. enqueue_and_echo_commands_P(PSTR("G28"));
  9134. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  9135. }
  9136. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  9137. homeDebounceCount++;
  9138. else
  9139. homeDebounceCount = 0;
  9140. }
  9141. #endif
  9142. #if HAS_CONTROLLERFAN
  9143. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  9144. #endif
  9145. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  9146. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  9147. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  9148. bool oldstatus;
  9149. #if ENABLED(SWITCHING_EXTRUDER)
  9150. oldstatus = E0_ENABLE_READ;
  9151. enable_e0();
  9152. #else // !SWITCHING_EXTRUDER
  9153. switch (active_extruder) {
  9154. case 0:
  9155. oldstatus = E0_ENABLE_READ;
  9156. enable_e0();
  9157. break;
  9158. #if E_STEPPERS > 1
  9159. case 1:
  9160. oldstatus = E1_ENABLE_READ;
  9161. enable_e1();
  9162. break;
  9163. #if E_STEPPERS > 2
  9164. case 2:
  9165. oldstatus = E2_ENABLE_READ;
  9166. enable_e2();
  9167. break;
  9168. #if E_STEPPERS > 3
  9169. case 3:
  9170. oldstatus = E3_ENABLE_READ;
  9171. enable_e3();
  9172. break;
  9173. #endif
  9174. #endif
  9175. #endif
  9176. }
  9177. #endif // !SWITCHING_EXTRUDER
  9178. previous_cmd_ms = ms; // refresh_cmd_timeout()
  9179. const float olde = current_position[E_AXIS];
  9180. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  9181. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  9182. current_position[E_AXIS] = olde;
  9183. planner.set_e_position_mm(olde);
  9184. stepper.synchronize();
  9185. #if ENABLED(SWITCHING_EXTRUDER)
  9186. E0_ENABLE_WRITE(oldstatus);
  9187. #else
  9188. switch (active_extruder) {
  9189. case 0:
  9190. E0_ENABLE_WRITE(oldstatus);
  9191. break;
  9192. #if E_STEPPERS > 1
  9193. case 1:
  9194. E1_ENABLE_WRITE(oldstatus);
  9195. break;
  9196. #if E_STEPPERS > 2
  9197. case 2:
  9198. E2_ENABLE_WRITE(oldstatus);
  9199. break;
  9200. #if E_STEPPERS > 3
  9201. case 3:
  9202. E3_ENABLE_WRITE(oldstatus);
  9203. break;
  9204. #endif
  9205. #endif
  9206. #endif
  9207. }
  9208. #endif // !SWITCHING_EXTRUDER
  9209. }
  9210. #endif // EXTRUDER_RUNOUT_PREVENT
  9211. #if ENABLED(DUAL_X_CARRIAGE)
  9212. // handle delayed move timeout
  9213. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  9214. // travel moves have been received so enact them
  9215. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  9216. set_destination_to_current();
  9217. prepare_move_to_destination();
  9218. }
  9219. #endif
  9220. #if ENABLED(TEMP_STAT_LEDS)
  9221. handle_status_leds();
  9222. #endif
  9223. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9224. checkOverTemp();
  9225. #endif
  9226. planner.check_axes_activity();
  9227. }
  9228. /**
  9229. * Standard idle routine keeps the machine alive
  9230. */
  9231. void idle(
  9232. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9233. bool no_stepper_sleep/*=false*/
  9234. #endif
  9235. ) {
  9236. lcd_update();
  9237. host_keepalive();
  9238. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9239. auto_report_temperatures();
  9240. #endif
  9241. manage_inactivity(
  9242. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  9243. no_stepper_sleep
  9244. #endif
  9245. );
  9246. thermalManager.manage_heater();
  9247. #if ENABLED(PRINTCOUNTER)
  9248. print_job_timer.tick();
  9249. #endif
  9250. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  9251. buzzer.tick();
  9252. #endif
  9253. }
  9254. /**
  9255. * Kill all activity and lock the machine.
  9256. * After this the machine will need to be reset.
  9257. */
  9258. void kill(const char* lcd_msg) {
  9259. SERIAL_ERROR_START;
  9260. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  9261. thermalManager.disable_all_heaters();
  9262. disable_all_steppers();
  9263. #if ENABLED(ULTRA_LCD)
  9264. kill_screen(lcd_msg);
  9265. #else
  9266. UNUSED(lcd_msg);
  9267. #endif
  9268. _delay_ms(250); // Wait a short time
  9269. cli(); // Stop interrupts
  9270. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  9271. thermalManager.disable_all_heaters(); //turn off heaters again
  9272. #if HAS_POWER_SWITCH
  9273. SET_INPUT(PS_ON_PIN);
  9274. #endif
  9275. suicide();
  9276. while (1) {
  9277. #if ENABLED(USE_WATCHDOG)
  9278. watchdog_reset();
  9279. #endif
  9280. } // Wait for reset
  9281. }
  9282. /**
  9283. * Turn off heaters and stop the print in progress
  9284. * After a stop the machine may be resumed with M999
  9285. */
  9286. void stop() {
  9287. thermalManager.disable_all_heaters();
  9288. if (IsRunning()) {
  9289. Running = false;
  9290. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  9291. SERIAL_ERROR_START;
  9292. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  9293. LCD_MESSAGEPGM(MSG_STOPPED);
  9294. }
  9295. }
  9296. /**
  9297. * Marlin entry-point: Set up before the program loop
  9298. * - Set up the kill pin, filament runout, power hold
  9299. * - Start the serial port
  9300. * - Print startup messages and diagnostics
  9301. * - Get EEPROM or default settings
  9302. * - Initialize managers for:
  9303. * • temperature
  9304. * • planner
  9305. * • watchdog
  9306. * • stepper
  9307. * • photo pin
  9308. * • servos
  9309. * • LCD controller
  9310. * • Digipot I2C
  9311. * • Z probe sled
  9312. * • status LEDs
  9313. */
  9314. void setup() {
  9315. #ifdef DISABLE_JTAG
  9316. // Disable JTAG on AT90USB chips to free up pins for IO
  9317. MCUCR = 0x80;
  9318. MCUCR = 0x80;
  9319. #endif
  9320. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9321. setup_filrunoutpin();
  9322. #endif
  9323. setup_killpin();
  9324. setup_powerhold();
  9325. #if HAS_STEPPER_RESET
  9326. disableStepperDrivers();
  9327. #endif
  9328. MYSERIAL.begin(BAUDRATE);
  9329. SERIAL_PROTOCOLLNPGM("start");
  9330. SERIAL_ECHO_START;
  9331. // Check startup - does nothing if bootloader sets MCUSR to 0
  9332. byte mcu = MCUSR;
  9333. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  9334. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  9335. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  9336. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  9337. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  9338. MCUSR = 0;
  9339. SERIAL_ECHOPGM(MSG_MARLIN);
  9340. SERIAL_CHAR(' ');
  9341. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  9342. SERIAL_EOL;
  9343. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  9344. SERIAL_ECHO_START;
  9345. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  9346. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  9347. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  9348. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  9349. #endif
  9350. SERIAL_ECHO_START;
  9351. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  9352. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  9353. // Send "ok" after commands by default
  9354. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  9355. // Load data from EEPROM if available (or use defaults)
  9356. // This also updates variables in the planner, elsewhere
  9357. (void)Config_RetrieveSettings();
  9358. #if DISABLED(NO_WORKSPACE_OFFSETS)
  9359. // Initialize current position based on home_offset
  9360. COPY(current_position, home_offset);
  9361. #else
  9362. ZERO(current_position);
  9363. #endif
  9364. // Vital to init stepper/planner equivalent for current_position
  9365. SYNC_PLAN_POSITION_KINEMATIC();
  9366. thermalManager.init(); // Initialize temperature loop
  9367. #if ENABLED(USE_WATCHDOG)
  9368. watchdog_init();
  9369. #endif
  9370. stepper.init(); // Initialize stepper, this enables interrupts!
  9371. servo_init();
  9372. #if HAS_PHOTOGRAPH
  9373. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  9374. #endif
  9375. #if HAS_CASE_LIGHT
  9376. update_case_light();
  9377. #endif
  9378. #if HAS_BED_PROBE
  9379. endstops.enable_z_probe(false);
  9380. #endif
  9381. #if HAS_CONTROLLERFAN
  9382. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  9383. #endif
  9384. #if HAS_STEPPER_RESET
  9385. enableStepperDrivers();
  9386. #endif
  9387. #if ENABLED(DIGIPOT_I2C)
  9388. digipot_i2c_init();
  9389. #endif
  9390. #if ENABLED(DAC_STEPPER_CURRENT)
  9391. dac_init();
  9392. #endif
  9393. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  9394. OUT_WRITE(SLED_PIN, LOW); // turn it off
  9395. #endif // Z_PROBE_SLED
  9396. setup_homepin();
  9397. #if PIN_EXISTS(STAT_LED_RED)
  9398. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  9399. #endif
  9400. #if PIN_EXISTS(STAT_LED_BLUE)
  9401. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  9402. #endif
  9403. #if ENABLED(RGB_LED)
  9404. SET_OUTPUT(RGB_LED_R_PIN);
  9405. SET_OUTPUT(RGB_LED_G_PIN);
  9406. SET_OUTPUT(RGB_LED_B_PIN);
  9407. #endif
  9408. lcd_init();
  9409. #if ENABLED(SHOW_BOOTSCREEN)
  9410. #if ENABLED(DOGLCD)
  9411. safe_delay(BOOTSCREEN_TIMEOUT);
  9412. #elif ENABLED(ULTRA_LCD)
  9413. bootscreen();
  9414. #if DISABLED(SDSUPPORT)
  9415. lcd_init();
  9416. #endif
  9417. #endif
  9418. #endif
  9419. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9420. // Initialize mixing to 100% color 1
  9421. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9422. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  9423. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  9424. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9425. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  9426. #endif
  9427. #if ENABLED(BLTOUCH)
  9428. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  9429. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  9430. set_bltouch_deployed(false); // error condition.
  9431. #endif
  9432. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  9433. i2c.onReceive(i2c_on_receive);
  9434. i2c.onRequest(i2c_on_request);
  9435. #endif
  9436. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  9437. setup_endstop_interrupts();
  9438. #endif
  9439. }
  9440. /**
  9441. * The main Marlin program loop
  9442. *
  9443. * - Save or log commands to SD
  9444. * - Process available commands (if not saving)
  9445. * - Call heater manager
  9446. * - Call inactivity manager
  9447. * - Call endstop manager
  9448. * - Call LCD update
  9449. */
  9450. void loop() {
  9451. if (commands_in_queue < BUFSIZE) get_available_commands();
  9452. #if ENABLED(SDSUPPORT)
  9453. card.checkautostart(false);
  9454. #endif
  9455. if (commands_in_queue) {
  9456. #if ENABLED(SDSUPPORT)
  9457. if (card.saving) {
  9458. char* command = command_queue[cmd_queue_index_r];
  9459. if (strstr_P(command, PSTR("M29"))) {
  9460. // M29 closes the file
  9461. card.closefile();
  9462. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  9463. ok_to_send();
  9464. }
  9465. else {
  9466. // Write the string from the read buffer to SD
  9467. card.write_command(command);
  9468. if (card.logging)
  9469. process_next_command(); // The card is saving because it's logging
  9470. else
  9471. ok_to_send();
  9472. }
  9473. }
  9474. else
  9475. process_next_command();
  9476. #else
  9477. process_next_command();
  9478. #endif // SDSUPPORT
  9479. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  9480. if (commands_in_queue) {
  9481. --commands_in_queue;
  9482. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  9483. }
  9484. }
  9485. endstops.report_state();
  9486. idle();
  9487. }