My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 161KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  52. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  53. //Implemented Codes
  54. //-------------------
  55. // G0 -> G1
  56. // G1 - Coordinated Movement X Y Z E
  57. // G2 - CW ARC
  58. // G3 - CCW ARC
  59. // G4 - Dwell S<seconds> or P<milliseconds>
  60. // G10 - retract filament according to settings of M207
  61. // G11 - retract recover filament according to settings of M208
  62. // G28 - Home all Axis
  63. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  64. // G30 - Single Z Probe, probes bed at current XY location.
  65. // G31 - Dock sled (Z_PROBE_SLED only)
  66. // G32 - Undock sled (Z_PROBE_SLED only)
  67. // G90 - Use Absolute Coordinates
  68. // G91 - Use Relative Coordinates
  69. // G92 - Set current position to coordinates given
  70. // M Codes
  71. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  72. // M1 - Same as M0
  73. // M17 - Enable/Power all stepper motors
  74. // M18 - Disable all stepper motors; same as M84
  75. // M20 - List SD card
  76. // M21 - Init SD card
  77. // M22 - Release SD card
  78. // M23 - Select SD file (M23 filename.g)
  79. // M24 - Start/resume SD print
  80. // M25 - Pause SD print
  81. // M26 - Set SD position in bytes (M26 S12345)
  82. // M27 - Report SD print status
  83. // M28 - Start SD write (M28 filename.g)
  84. // M29 - Stop SD write
  85. // M30 - Delete file from SD (M30 filename.g)
  86. // M31 - Output time since last M109 or SD card start to serial
  87. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  88. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  89. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  90. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  91. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  92. // M80 - Turn on Power Supply
  93. // M81 - Turn off Power Supply
  94. // M82 - Set E codes absolute (default)
  95. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  96. // M84 - Disable steppers until next move,
  97. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  98. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  99. // M92 - Set axis_steps_per_unit - same syntax as G92
  100. // M104 - Set extruder target temp
  101. // M105 - Read current temp
  102. // M106 - Fan on
  103. // M107 - Fan off
  104. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  105. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  106. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  107. // M112 - Emergency stop
  108. // M114 - Output current position to serial port
  109. // M115 - Capabilities string
  110. // M117 - display message
  111. // M119 - Output Endstop status to serial port
  112. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  113. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  114. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  115. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M140 - Set bed target temp
  117. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  118. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  119. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  120. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  121. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  122. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  123. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  124. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  125. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  126. // M206 - Set additional homing offset
  127. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  128. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  129. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  130. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  131. // M220 S<factor in percent>- set speed factor override percentage
  132. // M221 S<factor in percent>- set extrude factor override percentage
  133. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  134. // M240 - Trigger a camera to take a photograph
  135. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  136. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  137. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  138. // M301 - Set PID parameters P I and D
  139. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  140. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  141. // M304 - Set bed PID parameters P I and D
  142. // M400 - Finish all moves
  143. // M401 - Lower z-probe if present
  144. // M402 - Raise z-probe if present
  145. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  146. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  147. // M406 - Turn off Filament Sensor extrusion control
  148. // M407 - Displays measured filament diameter
  149. // M500 - Store parameters in EEPROM
  150. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  151. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  152. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  153. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  154. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  155. // M665 - Set delta configurations
  156. // M666 - Set delta endstop adjustment
  157. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  158. // M907 - Set digital trimpot motor current using axis codes.
  159. // M908 - Control digital trimpot directly.
  160. // M350 - Set microstepping mode.
  161. // M351 - Toggle MS1 MS2 pins directly.
  162. // ************ SCARA Specific - This can change to suit future G-code regulations
  163. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  164. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  165. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  166. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  167. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  168. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  169. //************* SCARA End ***************
  170. // M928 - Start SD logging (M928 filename.g) - ended by M29
  171. // M999 - Restart after being stopped by error
  172. #ifdef SDSUPPORT
  173. CardReader card;
  174. #endif
  175. float homing_feedrate[] = HOMING_FEEDRATE;
  176. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  177. int feedmultiply = 100; //100->1 200->2
  178. int saved_feedmultiply;
  179. int extrudemultiply = 100; //100->1 200->2
  180. int extruder_multiply[EXTRUDERS] = { 100
  181. #if EXTRUDERS > 1
  182. , 100
  183. #if EXTRUDERS > 2
  184. , 100
  185. #if EXTRUDERS > 3
  186. , 100
  187. #endif
  188. #endif
  189. #endif
  190. };
  191. bool volumetric_enabled = false;
  192. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  193. #if EXTRUDERS > 1
  194. , DEFAULT_NOMINAL_FILAMENT_DIA
  195. #if EXTRUDERS > 2
  196. , DEFAULT_NOMINAL_FILAMENT_DIA
  197. #if EXTRUDERS > 3
  198. , DEFAULT_NOMINAL_FILAMENT_DIA
  199. #endif
  200. #endif
  201. #endif
  202. };
  203. float volumetric_multiplier[EXTRUDERS] = {1.0
  204. #if EXTRUDERS > 1
  205. , 1.0
  206. #if EXTRUDERS > 2
  207. , 1.0
  208. #if EXTRUDERS > 3
  209. , 1.0
  210. #endif
  211. #endif
  212. #endif
  213. };
  214. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  215. float add_homing[3] = { 0, 0, 0 };
  216. #ifdef DELTA
  217. float endstop_adj[3] = { 0, 0, 0 };
  218. #endif
  219. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  220. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  221. bool axis_known_position[3] = { false, false, false };
  222. float zprobe_zoffset;
  223. // Extruder offset
  224. #if EXTRUDERS > 1
  225. #ifndef DUAL_X_CARRIAGE
  226. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  227. #else
  228. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  229. #endif
  230. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  231. #if defined(EXTRUDER_OFFSET_X)
  232. EXTRUDER_OFFSET_X
  233. #else
  234. 0
  235. #endif
  236. ,
  237. #if defined(EXTRUDER_OFFSET_Y)
  238. EXTRUDER_OFFSET_Y
  239. #else
  240. 0
  241. #endif
  242. };
  243. #endif
  244. uint8_t active_extruder = 0;
  245. int fanSpeed = 0;
  246. #ifdef SERVO_ENDSTOPS
  247. int servo_endstops[] = SERVO_ENDSTOPS;
  248. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  249. #endif
  250. #ifdef BARICUDA
  251. int ValvePressure = 0;
  252. int EtoPPressure = 0;
  253. #endif
  254. #ifdef FWRETRACT
  255. bool autoretract_enabled = false;
  256. bool retracted[EXTRUDERS] = { false
  257. #if EXTRUDERS > 1
  258. , false
  259. #if EXTRUDERS > 2
  260. , false
  261. #if EXTRUDERS > 3
  262. , false
  263. #endif
  264. #endif
  265. #endif
  266. };
  267. bool retracted_swap[EXTRUDERS] = { false
  268. #if EXTRUDERS > 1
  269. , false
  270. #if EXTRUDERS > 2
  271. , false
  272. #if EXTRUDERS > 3
  273. , false
  274. #endif
  275. #endif
  276. #endif
  277. };
  278. float retract_length = RETRACT_LENGTH;
  279. float retract_length_swap = RETRACT_LENGTH_SWAP;
  280. float retract_feedrate = RETRACT_FEEDRATE;
  281. float retract_zlift = RETRACT_ZLIFT;
  282. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  283. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  284. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  285. #endif // FWRETRACT
  286. #ifdef ULTIPANEL
  287. bool powersupply =
  288. #ifdef PS_DEFAULT_OFF
  289. false
  290. #else
  291. true
  292. #endif
  293. ;
  294. #endif
  295. #ifdef DELTA
  296. float delta[3] = { 0, 0, 0 };
  297. #define SIN_60 0.8660254037844386
  298. #define COS_60 0.5
  299. // these are the default values, can be overriden with M665
  300. float delta_radius = DELTA_RADIUS;
  301. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  302. float delta_tower1_y = -COS_60 * delta_radius;
  303. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  304. float delta_tower2_y = -COS_60 * delta_radius;
  305. float delta_tower3_x = 0; // back middle tower
  306. float delta_tower3_y = delta_radius;
  307. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  308. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  309. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  310. #endif
  311. #ifdef SCARA
  312. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  313. #endif
  314. bool cancel_heatup = false;
  315. #ifdef FILAMENT_SENSOR
  316. //Variables for Filament Sensor input
  317. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  318. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  319. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  320. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  321. int delay_index1=0; //index into ring buffer
  322. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  323. float delay_dist=0; //delay distance counter
  324. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  325. #endif
  326. const char errormagic[] PROGMEM = "Error:";
  327. const char echomagic[] PROGMEM = "echo:";
  328. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  329. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  330. #ifndef DELTA
  331. static float delta[3] = { 0, 0, 0 };
  332. #endif
  333. static float offset[3] = { 0, 0, 0 };
  334. static bool home_all_axis = true;
  335. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  336. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  337. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  338. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  339. static bool fromsd[BUFSIZE];
  340. static int bufindr = 0;
  341. static int bufindw = 0;
  342. static int buflen = 0;
  343. static char serial_char;
  344. static int serial_count = 0;
  345. static boolean comment_mode = false;
  346. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  347. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  348. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  349. // Inactivity shutdown
  350. static unsigned long previous_millis_cmd = 0;
  351. static unsigned long max_inactive_time = 0;
  352. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  353. unsigned long starttime = 0; ///< Print job start time
  354. unsigned long stoptime = 0; ///< Print job stop time
  355. static uint8_t tmp_extruder;
  356. bool Stopped = false;
  357. #if NUM_SERVOS > 0
  358. Servo servos[NUM_SERVOS];
  359. #endif
  360. bool CooldownNoWait = true;
  361. bool target_direction;
  362. #ifdef CHDK
  363. unsigned long chdkHigh = 0;
  364. boolean chdkActive = false;
  365. #endif
  366. //===========================================================================
  367. //=============================Routines======================================
  368. //===========================================================================
  369. void get_arc_coordinates();
  370. bool setTargetedHotend(int code);
  371. void serial_echopair_P(const char *s_P, float v)
  372. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  373. void serial_echopair_P(const char *s_P, double v)
  374. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  375. void serial_echopair_P(const char *s_P, unsigned long v)
  376. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  377. #ifdef SDSUPPORT
  378. #include "SdFatUtil.h"
  379. int freeMemory() { return SdFatUtil::FreeRam(); }
  380. #else
  381. extern "C" {
  382. extern unsigned int __bss_end;
  383. extern unsigned int __heap_start;
  384. extern void *__brkval;
  385. int freeMemory() {
  386. int free_memory;
  387. if ((int)__brkval == 0)
  388. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  389. else
  390. free_memory = ((int)&free_memory) - ((int)__brkval);
  391. return free_memory;
  392. }
  393. }
  394. #endif //!SDSUPPORT
  395. //Injects the next command from the pending sequence of commands, when possible
  396. //Return false if and only if no command was pending
  397. static bool drain_queued_commands_P()
  398. {
  399. char cmd[30];
  400. if(!queued_commands_P)
  401. return false;
  402. // Get the next 30 chars from the sequence of gcodes to run
  403. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  404. cmd[sizeof(cmd)-1]= 0;
  405. // Look for the end of line, or the end of sequence
  406. size_t i= 0;
  407. char c;
  408. while( (c= cmd[i]) && c!='\n' )
  409. ++i; // look for the end of this gcode command
  410. cmd[i]= 0;
  411. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  412. {
  413. if(c)
  414. queued_commands_P+= i+1; // move to next command
  415. else
  416. queued_commands_P= NULL; // will have no more commands in the sequence
  417. }
  418. return true;
  419. }
  420. //Record one or many commands to run from program memory.
  421. //Aborts the current queue, if any.
  422. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  423. void enquecommands_P(const char* pgcode)
  424. {
  425. queued_commands_P= pgcode;
  426. drain_queued_commands_P(); // first command exectuted asap (when possible)
  427. }
  428. //adds a single command to the main command buffer, from RAM
  429. //that is really done in a non-safe way.
  430. //needs overworking someday
  431. //Returns false if it failed to do so
  432. bool enquecommand(const char *cmd)
  433. {
  434. if(*cmd==';')
  435. return false;
  436. if(buflen >= BUFSIZE)
  437. return false;
  438. //this is dangerous if a mixing of serial and this happens
  439. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  440. SERIAL_ECHO_START;
  441. SERIAL_ECHOPGM(MSG_Enqueing);
  442. SERIAL_ECHO(cmdbuffer[bufindw]);
  443. SERIAL_ECHOLNPGM("\"");
  444. bufindw= (bufindw + 1)%BUFSIZE;
  445. buflen += 1;
  446. return true;
  447. }
  448. void setup_killpin()
  449. {
  450. #if defined(KILL_PIN) && KILL_PIN > -1
  451. SET_INPUT(KILL_PIN);
  452. WRITE(KILL_PIN,HIGH);
  453. #endif
  454. }
  455. // Set home pin
  456. void setup_homepin(void)
  457. {
  458. #if defined(HOME_PIN) && HOME_PIN > -1
  459. SET_INPUT(HOME_PIN);
  460. WRITE(HOME_PIN,HIGH);
  461. #endif
  462. }
  463. void setup_photpin()
  464. {
  465. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  466. SET_OUTPUT(PHOTOGRAPH_PIN);
  467. WRITE(PHOTOGRAPH_PIN, LOW);
  468. #endif
  469. }
  470. void setup_powerhold()
  471. {
  472. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  473. SET_OUTPUT(SUICIDE_PIN);
  474. WRITE(SUICIDE_PIN, HIGH);
  475. #endif
  476. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  477. SET_OUTPUT(PS_ON_PIN);
  478. #if defined(PS_DEFAULT_OFF)
  479. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  480. #else
  481. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  482. #endif
  483. #endif
  484. }
  485. void suicide()
  486. {
  487. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  488. SET_OUTPUT(SUICIDE_PIN);
  489. WRITE(SUICIDE_PIN, LOW);
  490. #endif
  491. }
  492. void servo_init()
  493. {
  494. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  495. servos[0].attach(SERVO0_PIN);
  496. #endif
  497. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  498. servos[1].attach(SERVO1_PIN);
  499. #endif
  500. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  501. servos[2].attach(SERVO2_PIN);
  502. #endif
  503. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  504. servos[3].attach(SERVO3_PIN);
  505. #endif
  506. #if (NUM_SERVOS >= 5)
  507. #error "TODO: enter initalisation code for more servos"
  508. #endif
  509. // Set position of Servo Endstops that are defined
  510. #ifdef SERVO_ENDSTOPS
  511. for(int8_t i = 0; i < 3; i++)
  512. {
  513. if(servo_endstops[i] > -1) {
  514. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  515. }
  516. }
  517. #endif
  518. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  519. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  520. servos[servo_endstops[Z_AXIS]].detach();
  521. #endif
  522. }
  523. void setup()
  524. {
  525. setup_killpin();
  526. setup_powerhold();
  527. MYSERIAL.begin(BAUDRATE);
  528. SERIAL_PROTOCOLLNPGM("start");
  529. SERIAL_ECHO_START;
  530. // Check startup - does nothing if bootloader sets MCUSR to 0
  531. byte mcu = MCUSR;
  532. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  533. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  534. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  535. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  536. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  537. MCUSR=0;
  538. SERIAL_ECHOPGM(MSG_MARLIN);
  539. SERIAL_ECHOLNPGM(STRING_VERSION);
  540. #ifdef STRING_VERSION_CONFIG_H
  541. #ifdef STRING_CONFIG_H_AUTHOR
  542. SERIAL_ECHO_START;
  543. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  544. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  545. SERIAL_ECHOPGM(MSG_AUTHOR);
  546. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  547. SERIAL_ECHOPGM("Compiled: ");
  548. SERIAL_ECHOLNPGM(__DATE__);
  549. #endif // STRING_CONFIG_H_AUTHOR
  550. #endif // STRING_VERSION_CONFIG_H
  551. SERIAL_ECHO_START;
  552. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  553. SERIAL_ECHO(freeMemory());
  554. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  555. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  556. for(int8_t i = 0; i < BUFSIZE; i++)
  557. {
  558. fromsd[i] = false;
  559. }
  560. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  561. Config_RetrieveSettings();
  562. tp_init(); // Initialize temperature loop
  563. plan_init(); // Initialize planner;
  564. watchdog_init();
  565. st_init(); // Initialize stepper, this enables interrupts!
  566. setup_photpin();
  567. servo_init();
  568. lcd_init();
  569. _delay_ms(1000); // wait 1sec to display the splash screen
  570. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  571. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  572. #endif
  573. #ifdef DIGIPOT_I2C
  574. digipot_i2c_init();
  575. #endif
  576. #ifdef Z_PROBE_SLED
  577. pinMode(SERVO0_PIN, OUTPUT);
  578. digitalWrite(SERVO0_PIN, LOW); // turn it off
  579. #endif // Z_PROBE_SLED
  580. setup_homepin();
  581. #ifdef STAT_LED_RED
  582. pinMode(STAT_LED_RED, OUTPUT);
  583. digitalWrite(STAT_LED_RED, LOW); // turn it off
  584. #endif
  585. #ifdef STAT_LED_BLUE
  586. pinMode(STAT_LED_BLUE, OUTPUT);
  587. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  588. #endif
  589. }
  590. void loop()
  591. {
  592. if(buflen < (BUFSIZE-1))
  593. get_command();
  594. #ifdef SDSUPPORT
  595. card.checkautostart(false);
  596. #endif
  597. if(buflen)
  598. {
  599. #ifdef SDSUPPORT
  600. if(card.saving)
  601. {
  602. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  603. {
  604. card.write_command(cmdbuffer[bufindr]);
  605. if(card.logging)
  606. {
  607. process_commands();
  608. }
  609. else
  610. {
  611. SERIAL_PROTOCOLLNPGM(MSG_OK);
  612. }
  613. }
  614. else
  615. {
  616. card.closefile();
  617. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  618. }
  619. }
  620. else
  621. {
  622. process_commands();
  623. }
  624. #else
  625. process_commands();
  626. #endif //SDSUPPORT
  627. buflen = (buflen-1);
  628. bufindr = (bufindr + 1)%BUFSIZE;
  629. }
  630. //check heater every n milliseconds
  631. manage_heater();
  632. manage_inactivity();
  633. checkHitEndstops();
  634. lcd_update();
  635. }
  636. void get_command()
  637. {
  638. if(drain_queued_commands_P()) // priority is given to non-serial commands
  639. return;
  640. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  641. serial_char = MYSERIAL.read();
  642. if(serial_char == '\n' ||
  643. serial_char == '\r' ||
  644. (serial_char == ':' && comment_mode == false) ||
  645. serial_count >= (MAX_CMD_SIZE - 1) )
  646. {
  647. if(!serial_count) { //if empty line
  648. comment_mode = false; //for new command
  649. return;
  650. }
  651. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  652. if(!comment_mode){
  653. comment_mode = false; //for new command
  654. fromsd[bufindw] = false;
  655. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  656. {
  657. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  658. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  659. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  660. SERIAL_ERROR_START;
  661. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  662. SERIAL_ERRORLN(gcode_LastN);
  663. //Serial.println(gcode_N);
  664. FlushSerialRequestResend();
  665. serial_count = 0;
  666. return;
  667. }
  668. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  669. {
  670. byte checksum = 0;
  671. byte count = 0;
  672. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  673. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  674. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. FlushSerialRequestResend();
  679. serial_count = 0;
  680. return;
  681. }
  682. //if no errors, continue parsing
  683. }
  684. else
  685. {
  686. SERIAL_ERROR_START;
  687. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  688. SERIAL_ERRORLN(gcode_LastN);
  689. FlushSerialRequestResend();
  690. serial_count = 0;
  691. return;
  692. }
  693. gcode_LastN = gcode_N;
  694. //if no errors, continue parsing
  695. }
  696. else // if we don't receive 'N' but still see '*'
  697. {
  698. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  699. {
  700. SERIAL_ERROR_START;
  701. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  702. SERIAL_ERRORLN(gcode_LastN);
  703. serial_count = 0;
  704. return;
  705. }
  706. }
  707. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  708. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  709. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  710. case 0:
  711. case 1:
  712. case 2:
  713. case 3:
  714. if (Stopped == true) {
  715. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  716. LCD_MESSAGEPGM(MSG_STOPPED);
  717. }
  718. break;
  719. default:
  720. break;
  721. }
  722. }
  723. //If command was e-stop process now
  724. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  725. kill();
  726. bufindw = (bufindw + 1)%BUFSIZE;
  727. buflen += 1;
  728. }
  729. serial_count = 0; //clear buffer
  730. }
  731. else
  732. {
  733. if(serial_char == ';') comment_mode = true;
  734. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  735. }
  736. }
  737. #ifdef SDSUPPORT
  738. if(!card.sdprinting || serial_count!=0){
  739. return;
  740. }
  741. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  742. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  743. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  744. static bool stop_buffering=false;
  745. if(buflen==0) stop_buffering=false;
  746. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  747. int16_t n=card.get();
  748. serial_char = (char)n;
  749. if(serial_char == '\n' ||
  750. serial_char == '\r' ||
  751. (serial_char == '#' && comment_mode == false) ||
  752. (serial_char == ':' && comment_mode == false) ||
  753. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  754. {
  755. if(card.eof()){
  756. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  757. stoptime=millis();
  758. char time[30];
  759. unsigned long t=(stoptime-starttime)/1000;
  760. int hours, minutes;
  761. minutes=(t/60)%60;
  762. hours=t/60/60;
  763. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  764. SERIAL_ECHO_START;
  765. SERIAL_ECHOLN(time);
  766. lcd_setstatus(time);
  767. card.printingHasFinished();
  768. card.checkautostart(true);
  769. }
  770. if(serial_char=='#')
  771. stop_buffering=true;
  772. if(!serial_count)
  773. {
  774. comment_mode = false; //for new command
  775. return; //if empty line
  776. }
  777. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  778. // if(!comment_mode){
  779. fromsd[bufindw] = true;
  780. buflen += 1;
  781. bufindw = (bufindw + 1)%BUFSIZE;
  782. // }
  783. comment_mode = false; //for new command
  784. serial_count = 0; //clear buffer
  785. }
  786. else
  787. {
  788. if(serial_char == ';') comment_mode = true;
  789. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  790. }
  791. }
  792. #endif //SDSUPPORT
  793. }
  794. float code_value()
  795. {
  796. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  797. }
  798. long code_value_long()
  799. {
  800. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  801. }
  802. bool code_seen(char code)
  803. {
  804. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  805. return (strchr_pointer != NULL); //Return True if a character was found
  806. }
  807. #define DEFINE_PGM_READ_ANY(type, reader) \
  808. static inline type pgm_read_any(const type *p) \
  809. { return pgm_read_##reader##_near(p); }
  810. DEFINE_PGM_READ_ANY(float, float);
  811. DEFINE_PGM_READ_ANY(signed char, byte);
  812. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  813. static const PROGMEM type array##_P[3] = \
  814. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  815. static inline type array(int axis) \
  816. { return pgm_read_any(&array##_P[axis]); }
  817. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  818. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  819. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  820. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  821. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  822. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  823. #ifdef DUAL_X_CARRIAGE
  824. #if EXTRUDERS == 1 || defined(COREXY) \
  825. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  826. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  827. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  828. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  829. #endif
  830. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  831. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  832. #endif
  833. #define DXC_FULL_CONTROL_MODE 0
  834. #define DXC_AUTO_PARK_MODE 1
  835. #define DXC_DUPLICATION_MODE 2
  836. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  837. static float x_home_pos(int extruder) {
  838. if (extruder == 0)
  839. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  840. else
  841. // In dual carriage mode the extruder offset provides an override of the
  842. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  843. // This allow soft recalibration of the second extruder offset position without firmware reflash
  844. // (through the M218 command).
  845. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  846. }
  847. static int x_home_dir(int extruder) {
  848. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  849. }
  850. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  851. static bool active_extruder_parked = false; // used in mode 1 & 2
  852. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  853. static unsigned long delayed_move_time = 0; // used in mode 1
  854. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  855. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  856. bool extruder_duplication_enabled = false; // used in mode 2
  857. #endif //DUAL_X_CARRIAGE
  858. static void axis_is_at_home(int axis) {
  859. #ifdef DUAL_X_CARRIAGE
  860. if (axis == X_AXIS) {
  861. if (active_extruder != 0) {
  862. current_position[X_AXIS] = x_home_pos(active_extruder);
  863. min_pos[X_AXIS] = X2_MIN_POS;
  864. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  865. return;
  866. }
  867. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  868. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  869. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  870. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  871. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  872. return;
  873. }
  874. }
  875. #endif
  876. #ifdef SCARA
  877. float homeposition[3];
  878. char i;
  879. if (axis < 2)
  880. {
  881. for (i=0; i<3; i++)
  882. {
  883. homeposition[i] = base_home_pos(i);
  884. }
  885. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  886. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  887. // Works out real Homeposition angles using inverse kinematics,
  888. // and calculates homing offset using forward kinematics
  889. calculate_delta(homeposition);
  890. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  891. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  892. for (i=0; i<2; i++)
  893. {
  894. delta[i] -= add_homing[i];
  895. }
  896. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  897. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  898. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  899. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  900. calculate_SCARA_forward_Transform(delta);
  901. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  902. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  903. current_position[axis] = delta[axis];
  904. // SCARA home positions are based on configuration since the actual limits are determined by the
  905. // inverse kinematic transform.
  906. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  907. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  908. }
  909. else
  910. {
  911. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  912. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  913. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  914. }
  915. #else
  916. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  917. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  918. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  919. #endif
  920. }
  921. #ifdef ENABLE_AUTO_BED_LEVELING
  922. #ifdef AUTO_BED_LEVELING_GRID
  923. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  924. {
  925. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  926. planeNormal.debug("planeNormal");
  927. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  928. //bedLevel.debug("bedLevel");
  929. //plan_bed_level_matrix.debug("bed level before");
  930. //vector_3 uncorrected_position = plan_get_position_mm();
  931. //uncorrected_position.debug("position before");
  932. vector_3 corrected_position = plan_get_position();
  933. // corrected_position.debug("position after");
  934. current_position[X_AXIS] = corrected_position.x;
  935. current_position[Y_AXIS] = corrected_position.y;
  936. current_position[Z_AXIS] = corrected_position.z;
  937. // put the bed at 0 so we don't go below it.
  938. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  939. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  940. }
  941. #else // not AUTO_BED_LEVELING_GRID
  942. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  943. plan_bed_level_matrix.set_to_identity();
  944. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  945. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  946. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  947. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  948. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  949. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  950. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  951. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  952. vector_3 corrected_position = plan_get_position();
  953. current_position[X_AXIS] = corrected_position.x;
  954. current_position[Y_AXIS] = corrected_position.y;
  955. current_position[Z_AXIS] = corrected_position.z;
  956. // put the bed at 0 so we don't go below it.
  957. current_position[Z_AXIS] = zprobe_zoffset;
  958. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  959. }
  960. #endif // AUTO_BED_LEVELING_GRID
  961. static void run_z_probe() {
  962. plan_bed_level_matrix.set_to_identity();
  963. feedrate = homing_feedrate[Z_AXIS];
  964. // move down until you find the bed
  965. float zPosition = -10;
  966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  967. st_synchronize();
  968. // we have to let the planner know where we are right now as it is not where we said to go.
  969. zPosition = st_get_position_mm(Z_AXIS);
  970. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  971. // move up the retract distance
  972. zPosition += home_retract_mm(Z_AXIS);
  973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  974. st_synchronize();
  975. // move back down slowly to find bed
  976. feedrate = homing_feedrate[Z_AXIS]/4;
  977. zPosition -= home_retract_mm(Z_AXIS) * 2;
  978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  979. st_synchronize();
  980. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  981. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  982. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  983. }
  984. static void do_blocking_move_to(float x, float y, float z) {
  985. float oldFeedRate = feedrate;
  986. feedrate = homing_feedrate[Z_AXIS];
  987. current_position[Z_AXIS] = z;
  988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  989. st_synchronize();
  990. feedrate = XY_TRAVEL_SPEED;
  991. current_position[X_AXIS] = x;
  992. current_position[Y_AXIS] = y;
  993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  994. st_synchronize();
  995. feedrate = oldFeedRate;
  996. }
  997. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  998. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  999. }
  1000. static void setup_for_endstop_move() {
  1001. saved_feedrate = feedrate;
  1002. saved_feedmultiply = feedmultiply;
  1003. feedmultiply = 100;
  1004. previous_millis_cmd = millis();
  1005. enable_endstops(true);
  1006. }
  1007. static void clean_up_after_endstop_move() {
  1008. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1009. enable_endstops(false);
  1010. #endif
  1011. feedrate = saved_feedrate;
  1012. feedmultiply = saved_feedmultiply;
  1013. previous_millis_cmd = millis();
  1014. }
  1015. static void engage_z_probe() {
  1016. // Engage Z Servo endstop if enabled
  1017. #ifdef SERVO_ENDSTOPS
  1018. if (servo_endstops[Z_AXIS] > -1) {
  1019. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1020. servos[servo_endstops[Z_AXIS]].attach(0);
  1021. #endif
  1022. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1023. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1024. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1025. servos[servo_endstops[Z_AXIS]].detach();
  1026. #endif
  1027. }
  1028. #endif
  1029. }
  1030. static void retract_z_probe() {
  1031. // Retract Z Servo endstop if enabled
  1032. #ifdef SERVO_ENDSTOPS
  1033. if (servo_endstops[Z_AXIS] > -1) {
  1034. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1035. servos[servo_endstops[Z_AXIS]].attach(0);
  1036. #endif
  1037. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1038. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1039. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1040. servos[servo_endstops[Z_AXIS]].detach();
  1041. #endif
  1042. }
  1043. #endif
  1044. }
  1045. enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
  1046. /// Probe bed height at position (x,y), returns the measured z value
  1047. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract) {
  1048. // move to right place
  1049. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1050. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1051. #ifndef Z_PROBE_SLED
  1052. if (retract_action & ProbeEngage) engage_z_probe();
  1053. #endif
  1054. run_z_probe();
  1055. float measured_z = current_position[Z_AXIS];
  1056. #ifndef Z_PROBE_SLED
  1057. if (retract_action & ProbeRetract) retract_z_probe();
  1058. #endif
  1059. SERIAL_PROTOCOLPGM(MSG_BED);
  1060. SERIAL_PROTOCOLPGM(" x: ");
  1061. SERIAL_PROTOCOL(x);
  1062. SERIAL_PROTOCOLPGM(" y: ");
  1063. SERIAL_PROTOCOL(y);
  1064. SERIAL_PROTOCOLPGM(" z: ");
  1065. SERIAL_PROTOCOL(measured_z);
  1066. SERIAL_PROTOCOLPGM("\n");
  1067. return measured_z;
  1068. }
  1069. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1070. static void homeaxis(int axis) {
  1071. #define HOMEAXIS_DO(LETTER) \
  1072. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1073. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1074. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1075. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1076. 0) {
  1077. int axis_home_dir = home_dir(axis);
  1078. #ifdef DUAL_X_CARRIAGE
  1079. if (axis == X_AXIS)
  1080. axis_home_dir = x_home_dir(active_extruder);
  1081. #endif
  1082. current_position[axis] = 0;
  1083. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1084. #ifndef Z_PROBE_SLED
  1085. // Engage Servo endstop if enabled
  1086. #ifdef SERVO_ENDSTOPS
  1087. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1088. if (axis==Z_AXIS) {
  1089. engage_z_probe();
  1090. }
  1091. else
  1092. #endif
  1093. if (servo_endstops[axis] > -1) {
  1094. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1095. }
  1096. #endif
  1097. #endif // Z_PROBE_SLED
  1098. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1099. feedrate = homing_feedrate[axis];
  1100. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1101. st_synchronize();
  1102. current_position[axis] = 0;
  1103. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1104. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1105. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1106. st_synchronize();
  1107. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1108. #ifdef DELTA
  1109. feedrate = homing_feedrate[axis]/10;
  1110. #else
  1111. feedrate = homing_feedrate[axis]/2 ;
  1112. #endif
  1113. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1114. st_synchronize();
  1115. #ifdef DELTA
  1116. // retrace by the amount specified in endstop_adj
  1117. if (endstop_adj[axis] * axis_home_dir < 0) {
  1118. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1119. destination[axis] = endstop_adj[axis];
  1120. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1121. st_synchronize();
  1122. }
  1123. #endif
  1124. axis_is_at_home(axis);
  1125. destination[axis] = current_position[axis];
  1126. feedrate = 0.0;
  1127. endstops_hit_on_purpose();
  1128. axis_known_position[axis] = true;
  1129. // Retract Servo endstop if enabled
  1130. #ifdef SERVO_ENDSTOPS
  1131. if (servo_endstops[axis] > -1) {
  1132. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1133. }
  1134. #endif
  1135. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1136. #ifndef Z_PROBE_SLED
  1137. if (axis==Z_AXIS) retract_z_probe();
  1138. #endif
  1139. #endif
  1140. }
  1141. }
  1142. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1143. void refresh_cmd_timeout(void)
  1144. {
  1145. previous_millis_cmd = millis();
  1146. }
  1147. #ifdef FWRETRACT
  1148. void retract(bool retracting, bool swapretract = false) {
  1149. if(retracting && !retracted[active_extruder]) {
  1150. destination[X_AXIS]=current_position[X_AXIS];
  1151. destination[Y_AXIS]=current_position[Y_AXIS];
  1152. destination[Z_AXIS]=current_position[Z_AXIS];
  1153. destination[E_AXIS]=current_position[E_AXIS];
  1154. if (swapretract) {
  1155. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1156. } else {
  1157. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1158. }
  1159. plan_set_e_position(current_position[E_AXIS]);
  1160. float oldFeedrate = feedrate;
  1161. feedrate=retract_feedrate*60;
  1162. retracted[active_extruder]=true;
  1163. prepare_move();
  1164. if(retract_zlift > 0.01) {
  1165. current_position[Z_AXIS]-=retract_zlift;
  1166. #ifdef DELTA
  1167. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1168. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1169. #else
  1170. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1171. #endif
  1172. prepare_move();
  1173. }
  1174. feedrate = oldFeedrate;
  1175. } else if(!retracting && retracted[active_extruder]) {
  1176. destination[X_AXIS]=current_position[X_AXIS];
  1177. destination[Y_AXIS]=current_position[Y_AXIS];
  1178. destination[Z_AXIS]=current_position[Z_AXIS];
  1179. destination[E_AXIS]=current_position[E_AXIS];
  1180. if(retract_zlift > 0.01) {
  1181. current_position[Z_AXIS]+=retract_zlift;
  1182. #ifdef DELTA
  1183. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1184. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1185. #else
  1186. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1187. #endif
  1188. //prepare_move();
  1189. }
  1190. if (swapretract) {
  1191. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1192. } else {
  1193. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1194. }
  1195. plan_set_e_position(current_position[E_AXIS]);
  1196. float oldFeedrate = feedrate;
  1197. feedrate=retract_recover_feedrate*60;
  1198. retracted[active_extruder]=false;
  1199. prepare_move();
  1200. feedrate = oldFeedrate;
  1201. }
  1202. } //retract
  1203. #endif //FWRETRACT
  1204. #ifdef Z_PROBE_SLED
  1205. #ifndef SLED_DOCKING_OFFSET
  1206. #define SLED_DOCKING_OFFSET 0
  1207. #endif
  1208. //
  1209. // Method to dock/undock a sled designed by Charles Bell.
  1210. //
  1211. // dock[in] If true, move to MAX_X and engage the electromagnet
  1212. // offset[in] The additional distance to move to adjust docking location
  1213. //
  1214. static void dock_sled(bool dock, int offset=0) {
  1215. int z_loc;
  1216. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1217. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1218. SERIAL_ECHO_START;
  1219. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1220. return;
  1221. }
  1222. if (dock) {
  1223. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1224. current_position[Y_AXIS],
  1225. current_position[Z_AXIS]);
  1226. // turn off magnet
  1227. digitalWrite(SERVO0_PIN, LOW);
  1228. } else {
  1229. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1230. z_loc = Z_RAISE_BEFORE_PROBING;
  1231. else
  1232. z_loc = current_position[Z_AXIS];
  1233. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1234. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1235. // turn on magnet
  1236. digitalWrite(SERVO0_PIN, HIGH);
  1237. }
  1238. }
  1239. #endif
  1240. void process_commands()
  1241. {
  1242. unsigned long codenum; //throw away variable
  1243. char *starpos = NULL;
  1244. #ifdef ENABLE_AUTO_BED_LEVELING
  1245. float x_tmp, y_tmp, z_tmp, real_z;
  1246. #endif
  1247. if(code_seen('G'))
  1248. {
  1249. switch((int)code_value())
  1250. {
  1251. case 0: // G0 -> G1
  1252. case 1: // G1
  1253. if(Stopped == false) {
  1254. get_coordinates(); // For X Y Z E F
  1255. #ifdef FWRETRACT
  1256. if(autoretract_enabled)
  1257. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1258. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1259. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1260. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1261. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1262. retract(!retracted);
  1263. return;
  1264. }
  1265. }
  1266. #endif //FWRETRACT
  1267. prepare_move();
  1268. //ClearToSend();
  1269. }
  1270. break;
  1271. #ifndef SCARA //disable arc support
  1272. case 2: // G2 - CW ARC
  1273. if(Stopped == false) {
  1274. get_arc_coordinates();
  1275. prepare_arc_move(true);
  1276. }
  1277. break;
  1278. case 3: // G3 - CCW ARC
  1279. if(Stopped == false) {
  1280. get_arc_coordinates();
  1281. prepare_arc_move(false);
  1282. }
  1283. break;
  1284. #endif
  1285. case 4: // G4 dwell
  1286. LCD_MESSAGEPGM(MSG_DWELL);
  1287. codenum = 0;
  1288. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1289. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1290. st_synchronize();
  1291. codenum += millis(); // keep track of when we started waiting
  1292. previous_millis_cmd = millis();
  1293. while(millis() < codenum) {
  1294. manage_heater();
  1295. manage_inactivity();
  1296. lcd_update();
  1297. }
  1298. break;
  1299. #ifdef FWRETRACT
  1300. case 10: // G10 retract
  1301. #if EXTRUDERS > 1
  1302. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1303. retract(true,retracted_swap[active_extruder]);
  1304. #else
  1305. retract(true);
  1306. #endif
  1307. break;
  1308. case 11: // G11 retract_recover
  1309. #if EXTRUDERS > 1
  1310. retract(false,retracted_swap[active_extruder]);
  1311. #else
  1312. retract(false);
  1313. #endif
  1314. break;
  1315. #endif //FWRETRACT
  1316. case 28: //G28 Home all Axis one at a time
  1317. #ifdef ENABLE_AUTO_BED_LEVELING
  1318. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1319. #endif //ENABLE_AUTO_BED_LEVELING
  1320. saved_feedrate = feedrate;
  1321. saved_feedmultiply = feedmultiply;
  1322. feedmultiply = 100;
  1323. previous_millis_cmd = millis();
  1324. enable_endstops(true);
  1325. for(int8_t i=0; i < NUM_AXIS; i++) {
  1326. destination[i] = current_position[i];
  1327. }
  1328. feedrate = 0.0;
  1329. #ifdef DELTA
  1330. // A delta can only safely home all axis at the same time
  1331. // all axis have to home at the same time
  1332. // Move all carriages up together until the first endstop is hit.
  1333. current_position[X_AXIS] = 0;
  1334. current_position[Y_AXIS] = 0;
  1335. current_position[Z_AXIS] = 0;
  1336. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1337. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1338. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1339. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1340. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1341. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1342. st_synchronize();
  1343. endstops_hit_on_purpose();
  1344. current_position[X_AXIS] = destination[X_AXIS];
  1345. current_position[Y_AXIS] = destination[Y_AXIS];
  1346. current_position[Z_AXIS] = destination[Z_AXIS];
  1347. // take care of back off and rehome now we are all at the top
  1348. HOMEAXIS(X);
  1349. HOMEAXIS(Y);
  1350. HOMEAXIS(Z);
  1351. calculate_delta(current_position);
  1352. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1353. #else // NOT DELTA
  1354. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1355. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1356. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1357. HOMEAXIS(Z);
  1358. }
  1359. #endif
  1360. #ifdef QUICK_HOME
  1361. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1362. {
  1363. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1364. #ifndef DUAL_X_CARRIAGE
  1365. int x_axis_home_dir = home_dir(X_AXIS);
  1366. #else
  1367. int x_axis_home_dir = x_home_dir(active_extruder);
  1368. extruder_duplication_enabled = false;
  1369. #endif
  1370. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1371. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1372. feedrate = homing_feedrate[X_AXIS];
  1373. if(homing_feedrate[Y_AXIS]<feedrate)
  1374. feedrate = homing_feedrate[Y_AXIS];
  1375. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1376. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1377. } else {
  1378. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1379. }
  1380. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1381. st_synchronize();
  1382. axis_is_at_home(X_AXIS);
  1383. axis_is_at_home(Y_AXIS);
  1384. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1385. destination[X_AXIS] = current_position[X_AXIS];
  1386. destination[Y_AXIS] = current_position[Y_AXIS];
  1387. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1388. feedrate = 0.0;
  1389. st_synchronize();
  1390. endstops_hit_on_purpose();
  1391. current_position[X_AXIS] = destination[X_AXIS];
  1392. current_position[Y_AXIS] = destination[Y_AXIS];
  1393. #ifndef SCARA
  1394. current_position[Z_AXIS] = destination[Z_AXIS];
  1395. #endif
  1396. }
  1397. #endif
  1398. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1399. {
  1400. #ifdef DUAL_X_CARRIAGE
  1401. int tmp_extruder = active_extruder;
  1402. extruder_duplication_enabled = false;
  1403. active_extruder = !active_extruder;
  1404. HOMEAXIS(X);
  1405. inactive_extruder_x_pos = current_position[X_AXIS];
  1406. active_extruder = tmp_extruder;
  1407. HOMEAXIS(X);
  1408. // reset state used by the different modes
  1409. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1410. delayed_move_time = 0;
  1411. active_extruder_parked = true;
  1412. #else
  1413. HOMEAXIS(X);
  1414. #endif
  1415. }
  1416. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1417. HOMEAXIS(Y);
  1418. }
  1419. if(code_seen(axis_codes[X_AXIS]))
  1420. {
  1421. if(code_value_long() != 0) {
  1422. #ifdef SCARA
  1423. current_position[X_AXIS]=code_value();
  1424. #else
  1425. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1426. #endif
  1427. }
  1428. }
  1429. if(code_seen(axis_codes[Y_AXIS])) {
  1430. if(code_value_long() != 0) {
  1431. #ifdef SCARA
  1432. current_position[Y_AXIS]=code_value();
  1433. #else
  1434. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1435. #endif
  1436. }
  1437. }
  1438. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1439. #ifndef Z_SAFE_HOMING
  1440. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1441. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1442. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1443. feedrate = max_feedrate[Z_AXIS];
  1444. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1445. st_synchronize();
  1446. #endif
  1447. HOMEAXIS(Z);
  1448. }
  1449. #else // Z Safe mode activated.
  1450. if(home_all_axis) {
  1451. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1452. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1453. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1454. feedrate = XY_TRAVEL_SPEED/60;
  1455. current_position[Z_AXIS] = 0;
  1456. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1457. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1458. st_synchronize();
  1459. current_position[X_AXIS] = destination[X_AXIS];
  1460. current_position[Y_AXIS] = destination[Y_AXIS];
  1461. HOMEAXIS(Z);
  1462. }
  1463. // Let's see if X and Y are homed and probe is inside bed area.
  1464. if(code_seen(axis_codes[Z_AXIS])) {
  1465. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1466. && (current_position[X_AXIS] >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER) \
  1467. && (current_position[X_AXIS] <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER) \
  1468. && (current_position[Y_AXIS] >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) \
  1469. && (current_position[Y_AXIS] <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  1470. current_position[Z_AXIS] = 0;
  1471. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1472. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1473. feedrate = max_feedrate[Z_AXIS];
  1474. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1475. st_synchronize();
  1476. HOMEAXIS(Z);
  1477. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1478. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1479. SERIAL_ECHO_START;
  1480. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1481. } else {
  1482. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1483. SERIAL_ECHO_START;
  1484. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1485. }
  1486. }
  1487. #endif
  1488. #endif
  1489. if(code_seen(axis_codes[Z_AXIS])) {
  1490. if(code_value_long() != 0) {
  1491. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1492. }
  1493. }
  1494. #ifdef ENABLE_AUTO_BED_LEVELING
  1495. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1496. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1497. }
  1498. #endif
  1499. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1500. #endif // else DELTA
  1501. #ifdef SCARA
  1502. calculate_delta(current_position);
  1503. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1504. #endif // SCARA
  1505. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1506. enable_endstops(false);
  1507. #endif
  1508. feedrate = saved_feedrate;
  1509. feedmultiply = saved_feedmultiply;
  1510. previous_millis_cmd = millis();
  1511. endstops_hit_on_purpose();
  1512. break;
  1513. #ifdef ENABLE_AUTO_BED_LEVELING
  1514. #if Z_MIN_PIN == -1
  1515. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling!!! Z_MIN_PIN must point to a valid hardware pin."
  1516. #endif
  1517. /**
  1518. * Enhanced G29 Auto Bed Leveling Probe Routine
  1519. *
  1520. * Parameters With AUTO_BED_LEVELING_GRID:
  1521. *
  1522. * P Set the size of the grid that will be probed (P x P points).
  1523. * Example: "G29 P4"
  1524. *
  1525. * V Set the verbose level (0-4). Example: "G29 V3"
  1526. *
  1527. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1528. * This is useful for manual bed leveling and finding flaws in the bed (to
  1529. * assist with part placement).
  1530. *
  1531. * F Set the Front limit of the probing grid
  1532. * B Set the Back limit of the probing grid
  1533. * L Set the Left limit of the probing grid
  1534. * R Set the Right limit of the probing grid
  1535. *
  1536. * Global Parameters:
  1537. *
  1538. * E/e By default G29 engages / disengages the probe for each point.
  1539. * Include "E" to engage and disengage the probe just once.
  1540. * There's no extra effect if you have a fixed probe.
  1541. * Usage: "G29 E" or "G29 e"
  1542. *
  1543. */
  1544. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1545. {
  1546. // Use one of these defines to specify the origin
  1547. // for a topographical map to be printed for your bed.
  1548. #define ORIGIN_BACK_LEFT 1
  1549. #define ORIGIN_FRONT_RIGHT 2
  1550. #define ORIGIN_BACK_RIGHT 3
  1551. #define ORIGIN_FRONT_LEFT 4
  1552. #define TOPO_ORIGIN ORIGIN_FRONT_LEFT
  1553. // Prevent user from running a G29 without first homing in X and Y
  1554. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS])) {
  1555. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1556. SERIAL_ECHO_START;
  1557. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1558. break; // abort G29, since we don't know where we are
  1559. }
  1560. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1561. #ifdef AUTO_BED_LEVELING_GRID
  1562. // Example Syntax: G29 N4 V2 E T
  1563. int verbose_level = 1;
  1564. bool topo_flag = code_seen('T') || code_seen('t');
  1565. if (code_seen('V') || code_seen('v')) {
  1566. verbose_level = code_value();
  1567. if (verbose_level < 0 || verbose_level > 4) {
  1568. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1569. break;
  1570. }
  1571. if (verbose_level > 0) {
  1572. SERIAL_PROTOCOLPGM("G29 Enhanced Auto Bed Leveling Code V1.25:\n");
  1573. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1574. if (verbose_level > 2) topo_flag = true;
  1575. }
  1576. }
  1577. int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
  1578. if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
  1579. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1580. break;
  1581. }
  1582. // Define the possible boundaries for probing based on the set limits.
  1583. // Code above (in G28) might have these limits wrong, or I am wrong here.
  1584. #define MIN_PROBE_EDGE 10 // Edges of the probe square can be no less
  1585. const int min_probe_x = max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
  1586. max_probe_x = min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
  1587. min_probe_y = max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER),
  1588. max_probe_y = min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER);
  1589. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1590. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1591. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1592. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1593. bool left_out_l = left_probe_bed_position < min_probe_x,
  1594. left_out_r = left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1595. left_out = left_out_l || left_out_r,
  1596. right_out_r = right_probe_bed_position > max_probe_x,
  1597. right_out_l =right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1598. right_out = right_out_l || right_out_r,
  1599. front_out_f = front_probe_bed_position < min_probe_y,
  1600. front_out_b = front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1601. front_out = front_out_f || front_out_b,
  1602. back_out_b = back_probe_bed_position > max_probe_y,
  1603. back_out_f = back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE,
  1604. back_out = back_out_f || back_out_b;
  1605. if (left_out || right_out || front_out || back_out) {
  1606. if (left_out) {
  1607. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1608. left_probe_bed_position = left_out_l ? min_probe_x : right_probe_bed_position - MIN_PROBE_EDGE;
  1609. }
  1610. if (right_out) {
  1611. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1612. right_probe_bed_position = right_out_r ? max_probe_x : left_probe_bed_position + MIN_PROBE_EDGE;
  1613. }
  1614. if (front_out) {
  1615. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1616. front_probe_bed_position = front_out_f ? min_probe_y : back_probe_bed_position - MIN_PROBE_EDGE;
  1617. }
  1618. if (back_out) {
  1619. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1620. back_probe_bed_position = back_out_b ? max_probe_y : front_probe_bed_position + MIN_PROBE_EDGE;
  1621. }
  1622. break;
  1623. }
  1624. #endif
  1625. #ifdef Z_PROBE_SLED
  1626. dock_sled(false); // engage (un-dock) the probe
  1627. #endif
  1628. st_synchronize();
  1629. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1630. //vector_3 corrected_position = plan_get_position_mm();
  1631. //corrected_position.debug("position before G29");
  1632. plan_bed_level_matrix.set_to_identity();
  1633. vector_3 uncorrected_position = plan_get_position();
  1634. //uncorrected_position.debug("position durring G29");
  1635. current_position[X_AXIS] = uncorrected_position.x;
  1636. current_position[Y_AXIS] = uncorrected_position.y;
  1637. current_position[Z_AXIS] = uncorrected_position.z;
  1638. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1639. setup_for_endstop_move();
  1640. feedrate = homing_feedrate[Z_AXIS];
  1641. #ifdef AUTO_BED_LEVELING_GRID
  1642. // probe at the points of a lattice grid
  1643. int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1644. int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1645. // solve the plane equation ax + by + d = z
  1646. // A is the matrix with rows [x y 1] for all the probed points
  1647. // B is the vector of the Z positions
  1648. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1649. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1650. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1651. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1652. eqnBVector[abl2], // "B" vector of Z points
  1653. mean = 0.0;
  1654. int probePointCounter = 0;
  1655. bool zig = true;
  1656. for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
  1657. int xProbe, xInc;
  1658. if (zig)
  1659. xProbe = left_probe_bed_position, xInc = xGridSpacing;
  1660. else
  1661. xProbe = right_probe_bed_position, xInc = -xGridSpacing;
  1662. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1663. // This gets the probe points in more readable order.
  1664. if (!topo_flag) zig = !zig;
  1665. for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
  1666. // raise extruder
  1667. float z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  1668. measured_z;
  1669. // Enhanced G29 - Do not retract servo between probes
  1670. ProbeAction act;
  1671. if (enhanced_g29) {
  1672. if (yProbe == front_probe_bed_position && xCount == 0)
  1673. act = ProbeEngage;
  1674. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1675. act = ProbeRetract;
  1676. else
  1677. act = ProbeStay;
  1678. }
  1679. else
  1680. act = ProbeEngageRetract;
  1681. measured_z = probe_pt(xProbe, yProbe, z_before, act);
  1682. mean += measured_z;
  1683. eqnBVector[probePointCounter] = measured_z;
  1684. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1685. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1686. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1687. probePointCounter++;
  1688. xProbe += xInc;
  1689. } //xProbe
  1690. } //yProbe
  1691. clean_up_after_endstop_move();
  1692. // solve lsq problem
  1693. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1694. mean /= abl2;
  1695. if (verbose_level) {
  1696. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1697. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1698. SERIAL_PROTOCOLPGM(" b: ");
  1699. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1700. SERIAL_PROTOCOLPGM(" d: ");
  1701. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1702. if (verbose_level > 2) {
  1703. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1704. SERIAL_PROTOCOL_F(mean, 6);
  1705. SERIAL_PROTOCOLPGM(" \n");
  1706. }
  1707. }
  1708. if (topo_flag) {
  1709. int xx, yy;
  1710. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1711. #if TOPO_ORIGIN == ORIGIN_FRONT_LEFT
  1712. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  1713. #else
  1714. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  1715. #endif
  1716. {
  1717. #if TOPO_ORIGIN == ORIGIN_BACK_RIGHT
  1718. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  1719. #else
  1720. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  1721. #endif
  1722. {
  1723. int ind =
  1724. #if TOPO_ORIGIN == ORIGIN_BACK_RIGHT || TOPO_ORIGIN == ORIGIN_FRONT_LEFT
  1725. yy * auto_bed_leveling_grid_points + xx
  1726. #elif TOPO_ORIGIN == ORIGIN_BACK_LEFT
  1727. xx * auto_bed_leveling_grid_points + yy
  1728. #elif TOPO_ORIGIN == ORIGIN_FRONT_RIGHT
  1729. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  1730. #endif
  1731. ;
  1732. float diff = eqnBVector[ind] - mean;
  1733. if (diff >= 0.0)
  1734. SERIAL_PROTOCOLPGM(" +"); // Watch column alignment in Pronterface
  1735. else
  1736. SERIAL_PROTOCOLPGM(" -");
  1737. SERIAL_PROTOCOL_F(diff, 5);
  1738. } // xx
  1739. SERIAL_PROTOCOLPGM("\n");
  1740. } // yy
  1741. SERIAL_PROTOCOLPGM("\n");
  1742. } //topo_flag
  1743. set_bed_level_equation_lsq(plane_equation_coefficients);
  1744. free(plane_equation_coefficients);
  1745. #else // !AUTO_BED_LEVELING_GRID
  1746. // Probe at 3 arbitrary points
  1747. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  1748. if (enhanced_g29) {
  1749. // Basic Enhanced G29
  1750. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage);
  1751. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay);
  1752. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract);
  1753. }
  1754. else {
  1755. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1756. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1757. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1758. }
  1759. clean_up_after_endstop_move();
  1760. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1761. #endif // !AUTO_BED_LEVELING_GRID
  1762. st_synchronize();
  1763. if (verbose_level > 0)
  1764. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  1765. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1766. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1767. // When the bed is uneven, this height must be corrected.
  1768. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1769. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1770. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1771. z_tmp = current_position[Z_AXIS];
  1772. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1773. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1774. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1775. #ifdef Z_PROBE_SLED
  1776. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  1777. #endif
  1778. }
  1779. break;
  1780. #ifndef Z_PROBE_SLED
  1781. case 30: // G30 Single Z Probe
  1782. {
  1783. engage_z_probe(); // Engage Z Servo endstop if available
  1784. st_synchronize();
  1785. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1786. setup_for_endstop_move();
  1787. feedrate = homing_feedrate[Z_AXIS];
  1788. run_z_probe();
  1789. SERIAL_PROTOCOLPGM(MSG_BED);
  1790. SERIAL_PROTOCOLPGM(" X: ");
  1791. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1792. SERIAL_PROTOCOLPGM(" Y: ");
  1793. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1794. SERIAL_PROTOCOLPGM(" Z: ");
  1795. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1796. SERIAL_PROTOCOLPGM("\n");
  1797. clean_up_after_endstop_move();
  1798. retract_z_probe(); // Retract Z Servo endstop if available
  1799. }
  1800. break;
  1801. #else
  1802. case 31: // dock the sled
  1803. dock_sled(true);
  1804. break;
  1805. case 32: // undock the sled
  1806. dock_sled(false);
  1807. break;
  1808. #endif // Z_PROBE_SLED
  1809. #endif // ENABLE_AUTO_BED_LEVELING
  1810. case 90: // G90
  1811. relative_mode = false;
  1812. break;
  1813. case 91: // G91
  1814. relative_mode = true;
  1815. break;
  1816. case 92: // G92
  1817. if(!code_seen(axis_codes[E_AXIS]))
  1818. st_synchronize();
  1819. for(int8_t i=0; i < NUM_AXIS; i++) {
  1820. if(code_seen(axis_codes[i])) {
  1821. if(i == E_AXIS) {
  1822. current_position[i] = code_value();
  1823. plan_set_e_position(current_position[E_AXIS]);
  1824. }
  1825. else {
  1826. #ifdef SCARA
  1827. if (i == X_AXIS || i == Y_AXIS) {
  1828. current_position[i] = code_value();
  1829. }
  1830. else {
  1831. current_position[i] = code_value()+add_homing[i];
  1832. }
  1833. #else
  1834. current_position[i] = code_value()+add_homing[i];
  1835. #endif
  1836. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1837. }
  1838. }
  1839. }
  1840. break;
  1841. }
  1842. }
  1843. else if(code_seen('M'))
  1844. {
  1845. switch( (int)code_value() )
  1846. {
  1847. #ifdef ULTIPANEL
  1848. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1849. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1850. {
  1851. char *src = strchr_pointer + 2;
  1852. codenum = 0;
  1853. bool hasP = false, hasS = false;
  1854. if (code_seen('P')) {
  1855. codenum = code_value(); // milliseconds to wait
  1856. hasP = codenum > 0;
  1857. }
  1858. if (code_seen('S')) {
  1859. codenum = code_value() * 1000; // seconds to wait
  1860. hasS = codenum > 0;
  1861. }
  1862. starpos = strchr(src, '*');
  1863. if (starpos != NULL) *(starpos) = '\0';
  1864. while (*src == ' ') ++src;
  1865. if (!hasP && !hasS && *src != '\0') {
  1866. lcd_setstatus(src);
  1867. } else {
  1868. LCD_MESSAGEPGM(MSG_USERWAIT);
  1869. }
  1870. lcd_ignore_click();
  1871. st_synchronize();
  1872. previous_millis_cmd = millis();
  1873. if (codenum > 0){
  1874. codenum += millis(); // keep track of when we started waiting
  1875. while(millis() < codenum && !lcd_clicked()){
  1876. manage_heater();
  1877. manage_inactivity();
  1878. lcd_update();
  1879. }
  1880. lcd_ignore_click(false);
  1881. }else{
  1882. if (!lcd_detected())
  1883. break;
  1884. while(!lcd_clicked()){
  1885. manage_heater();
  1886. manage_inactivity();
  1887. lcd_update();
  1888. }
  1889. }
  1890. if (IS_SD_PRINTING)
  1891. LCD_MESSAGEPGM(MSG_RESUMING);
  1892. else
  1893. LCD_MESSAGEPGM(WELCOME_MSG);
  1894. }
  1895. break;
  1896. #endif
  1897. case 17:
  1898. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1899. enable_x();
  1900. enable_y();
  1901. enable_z();
  1902. enable_e0();
  1903. enable_e1();
  1904. enable_e2();
  1905. break;
  1906. #ifdef SDSUPPORT
  1907. case 20: // M20 - list SD card
  1908. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1909. card.ls();
  1910. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1911. break;
  1912. case 21: // M21 - init SD card
  1913. card.initsd();
  1914. break;
  1915. case 22: //M22 - release SD card
  1916. card.release();
  1917. break;
  1918. case 23: //M23 - Select file
  1919. starpos = (strchr(strchr_pointer + 4,'*'));
  1920. if(starpos!=NULL)
  1921. *(starpos)='\0';
  1922. card.openFile(strchr_pointer + 4,true);
  1923. break;
  1924. case 24: //M24 - Start SD print
  1925. card.startFileprint();
  1926. starttime=millis();
  1927. break;
  1928. case 25: //M25 - Pause SD print
  1929. card.pauseSDPrint();
  1930. break;
  1931. case 26: //M26 - Set SD index
  1932. if(card.cardOK && code_seen('S')) {
  1933. card.setIndex(code_value_long());
  1934. }
  1935. break;
  1936. case 27: //M27 - Get SD status
  1937. card.getStatus();
  1938. break;
  1939. case 28: //M28 - Start SD write
  1940. starpos = (strchr(strchr_pointer + 4,'*'));
  1941. if(starpos != NULL){
  1942. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1943. strchr_pointer = strchr(npos,' ') + 1;
  1944. *(starpos) = '\0';
  1945. }
  1946. card.openFile(strchr_pointer+4,false);
  1947. break;
  1948. case 29: //M29 - Stop SD write
  1949. //processed in write to file routine above
  1950. //card,saving = false;
  1951. break;
  1952. case 30: //M30 <filename> Delete File
  1953. if (card.cardOK){
  1954. card.closefile();
  1955. starpos = (strchr(strchr_pointer + 4,'*'));
  1956. if(starpos != NULL){
  1957. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1958. strchr_pointer = strchr(npos,' ') + 1;
  1959. *(starpos) = '\0';
  1960. }
  1961. card.removeFile(strchr_pointer + 4);
  1962. }
  1963. break;
  1964. case 32: //M32 - Select file and start SD print
  1965. {
  1966. if(card.sdprinting) {
  1967. st_synchronize();
  1968. }
  1969. starpos = (strchr(strchr_pointer + 4,'*'));
  1970. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1971. if(namestartpos==NULL)
  1972. {
  1973. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1974. }
  1975. else
  1976. namestartpos++; //to skip the '!'
  1977. if(starpos!=NULL)
  1978. *(starpos)='\0';
  1979. bool call_procedure=(code_seen('P'));
  1980. if(strchr_pointer>namestartpos)
  1981. call_procedure=false; //false alert, 'P' found within filename
  1982. if( card.cardOK )
  1983. {
  1984. card.openFile(namestartpos,true,!call_procedure);
  1985. if(code_seen('S'))
  1986. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1987. card.setIndex(code_value_long());
  1988. card.startFileprint();
  1989. if(!call_procedure)
  1990. starttime=millis(); //procedure calls count as normal print time.
  1991. }
  1992. } break;
  1993. case 928: //M928 - Start SD write
  1994. starpos = (strchr(strchr_pointer + 5,'*'));
  1995. if(starpos != NULL){
  1996. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1997. strchr_pointer = strchr(npos,' ') + 1;
  1998. *(starpos) = '\0';
  1999. }
  2000. card.openLogFile(strchr_pointer+5);
  2001. break;
  2002. #endif //SDSUPPORT
  2003. case 31: //M31 take time since the start of the SD print or an M109 command
  2004. {
  2005. stoptime=millis();
  2006. char time[30];
  2007. unsigned long t=(stoptime-starttime)/1000;
  2008. int sec,min;
  2009. min=t/60;
  2010. sec=t%60;
  2011. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2012. SERIAL_ECHO_START;
  2013. SERIAL_ECHOLN(time);
  2014. lcd_setstatus(time);
  2015. autotempShutdown();
  2016. }
  2017. break;
  2018. case 42: //M42 -Change pin status via gcode
  2019. if (code_seen('S'))
  2020. {
  2021. int pin_status = code_value();
  2022. int pin_number = LED_PIN;
  2023. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2024. pin_number = code_value();
  2025. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2026. {
  2027. if (sensitive_pins[i] == pin_number)
  2028. {
  2029. pin_number = -1;
  2030. break;
  2031. }
  2032. }
  2033. #if defined(FAN_PIN) && FAN_PIN > -1
  2034. if (pin_number == FAN_PIN)
  2035. fanSpeed = pin_status;
  2036. #endif
  2037. if (pin_number > -1)
  2038. {
  2039. pinMode(pin_number, OUTPUT);
  2040. digitalWrite(pin_number, pin_status);
  2041. analogWrite(pin_number, pin_status);
  2042. }
  2043. }
  2044. break;
  2045. // M48 Z-Probe repeatability measurement function.
  2046. //
  2047. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  2048. //
  2049. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2050. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2051. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2052. // regenerated.
  2053. //
  2054. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2055. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2056. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2057. //
  2058. #ifdef ENABLE_AUTO_BED_LEVELING
  2059. #ifdef Z_PROBE_REPEATABILITY_TEST
  2060. case 48: // M48 Z-Probe repeatability
  2061. {
  2062. #if Z_MIN_PIN == -1
  2063. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2064. #endif
  2065. double sum=0.0;
  2066. double mean=0.0;
  2067. double sigma=0.0;
  2068. double sample_set[50];
  2069. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  2070. double X_current, Y_current, Z_current;
  2071. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2072. if (code_seen('V') || code_seen('v')) {
  2073. verbose_level = code_value();
  2074. if (verbose_level<0 || verbose_level>4 ) {
  2075. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2076. goto Sigma_Exit;
  2077. }
  2078. }
  2079. if (verbose_level > 0) {
  2080. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2081. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2082. }
  2083. if (code_seen('n')) {
  2084. n_samples = code_value();
  2085. if (n_samples<4 || n_samples>50 ) {
  2086. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2087. goto Sigma_Exit;
  2088. }
  2089. }
  2090. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2091. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2092. Z_current = st_get_position_mm(Z_AXIS);
  2093. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2094. ext_position = st_get_position_mm(E_AXIS);
  2095. if (code_seen('E') || code_seen('e') )
  2096. engage_probe_for_each_reading++;
  2097. if (code_seen('X') || code_seen('x') ) {
  2098. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2099. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2100. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2101. goto Sigma_Exit;
  2102. }
  2103. }
  2104. if (code_seen('Y') || code_seen('y') ) {
  2105. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2106. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2107. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2108. goto Sigma_Exit;
  2109. }
  2110. }
  2111. if (code_seen('L') || code_seen('l') ) {
  2112. n_legs = code_value();
  2113. if ( n_legs==1 )
  2114. n_legs = 2;
  2115. if ( n_legs<0 || n_legs>15 ) {
  2116. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2117. goto Sigma_Exit;
  2118. }
  2119. }
  2120. //
  2121. // Do all the preliminary setup work. First raise the probe.
  2122. //
  2123. st_synchronize();
  2124. plan_bed_level_matrix.set_to_identity();
  2125. plan_buffer_line( X_current, Y_current, Z_start_location,
  2126. ext_position,
  2127. homing_feedrate[Z_AXIS]/60,
  2128. active_extruder);
  2129. st_synchronize();
  2130. //
  2131. // Now get everything to the specified probe point So we can safely do a probe to
  2132. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2133. // use that as a starting point for each probe.
  2134. //
  2135. if (verbose_level > 2)
  2136. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2137. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2138. ext_position,
  2139. homing_feedrate[X_AXIS]/60,
  2140. active_extruder);
  2141. st_synchronize();
  2142. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2143. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2144. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2145. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2146. //
  2147. // OK, do the inital probe to get us close to the bed.
  2148. // Then retrace the right amount and use that in subsequent probes
  2149. //
  2150. engage_z_probe();
  2151. setup_for_endstop_move();
  2152. run_z_probe();
  2153. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2154. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2155. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2156. ext_position,
  2157. homing_feedrate[X_AXIS]/60,
  2158. active_extruder);
  2159. st_synchronize();
  2160. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2161. if (engage_probe_for_each_reading)
  2162. retract_z_probe();
  2163. for( n=0; n<n_samples; n++) {
  2164. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2165. if ( n_legs) {
  2166. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2167. int rotational_direction, l;
  2168. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2169. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2170. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2171. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2172. //SERIAL_ECHOPAIR(" theta: ",theta);
  2173. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2174. //SERIAL_PROTOCOLLNPGM("");
  2175. for( l=0; l<n_legs-1; l++) {
  2176. if (rotational_direction==1)
  2177. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2178. else
  2179. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2180. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2181. if ( radius<0.0 )
  2182. radius = -radius;
  2183. X_current = X_probe_location + cos(theta) * radius;
  2184. Y_current = Y_probe_location + sin(theta) * radius;
  2185. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2186. X_current = X_MIN_POS;
  2187. if ( X_current>X_MAX_POS)
  2188. X_current = X_MAX_POS;
  2189. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2190. Y_current = Y_MIN_POS;
  2191. if ( Y_current>Y_MAX_POS)
  2192. Y_current = Y_MAX_POS;
  2193. if (verbose_level>3 ) {
  2194. SERIAL_ECHOPAIR("x: ", X_current);
  2195. SERIAL_ECHOPAIR("y: ", Y_current);
  2196. SERIAL_PROTOCOLLNPGM("");
  2197. }
  2198. do_blocking_move_to( X_current, Y_current, Z_current );
  2199. }
  2200. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2201. }
  2202. if (engage_probe_for_each_reading) {
  2203. engage_z_probe();
  2204. delay(1000);
  2205. }
  2206. setup_for_endstop_move();
  2207. run_z_probe();
  2208. sample_set[n] = current_position[Z_AXIS];
  2209. //
  2210. // Get the current mean for the data points we have so far
  2211. //
  2212. sum=0.0;
  2213. for( j=0; j<=n; j++) {
  2214. sum = sum + sample_set[j];
  2215. }
  2216. mean = sum / (double (n+1));
  2217. //
  2218. // Now, use that mean to calculate the standard deviation for the
  2219. // data points we have so far
  2220. //
  2221. sum=0.0;
  2222. for( j=0; j<=n; j++) {
  2223. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2224. }
  2225. sigma = sqrt( sum / (double (n+1)) );
  2226. if (verbose_level > 1) {
  2227. SERIAL_PROTOCOL(n+1);
  2228. SERIAL_PROTOCOL(" of ");
  2229. SERIAL_PROTOCOL(n_samples);
  2230. SERIAL_PROTOCOLPGM(" z: ");
  2231. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2232. }
  2233. if (verbose_level > 2) {
  2234. SERIAL_PROTOCOL(" mean: ");
  2235. SERIAL_PROTOCOL_F(mean,6);
  2236. SERIAL_PROTOCOL(" sigma: ");
  2237. SERIAL_PROTOCOL_F(sigma,6);
  2238. }
  2239. if (verbose_level > 0)
  2240. SERIAL_PROTOCOLPGM("\n");
  2241. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2242. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2243. st_synchronize();
  2244. if (engage_probe_for_each_reading) {
  2245. retract_z_probe();
  2246. delay(1000);
  2247. }
  2248. }
  2249. retract_z_probe();
  2250. delay(1000);
  2251. clean_up_after_endstop_move();
  2252. // enable_endstops(true);
  2253. if (verbose_level > 0) {
  2254. SERIAL_PROTOCOLPGM("Mean: ");
  2255. SERIAL_PROTOCOL_F(mean, 6);
  2256. SERIAL_PROTOCOLPGM("\n");
  2257. }
  2258. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2259. SERIAL_PROTOCOL_F(sigma, 6);
  2260. SERIAL_PROTOCOLPGM("\n\n");
  2261. Sigma_Exit:
  2262. break;
  2263. }
  2264. #endif // Z_PROBE_REPEATABILITY_TEST
  2265. #endif // ENABLE_AUTO_BED_LEVELING
  2266. case 104: // M104
  2267. if(setTargetedHotend(104)){
  2268. break;
  2269. }
  2270. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2271. #ifdef DUAL_X_CARRIAGE
  2272. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2273. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2274. #endif
  2275. setWatch();
  2276. break;
  2277. case 112: // M112 -Emergency Stop
  2278. kill();
  2279. break;
  2280. case 140: // M140 set bed temp
  2281. if (code_seen('S')) setTargetBed(code_value());
  2282. break;
  2283. case 105 : // M105
  2284. if(setTargetedHotend(105)){
  2285. break;
  2286. }
  2287. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2288. SERIAL_PROTOCOLPGM("ok T:");
  2289. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2290. SERIAL_PROTOCOLPGM(" /");
  2291. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2292. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2293. SERIAL_PROTOCOLPGM(" B:");
  2294. SERIAL_PROTOCOL_F(degBed(),1);
  2295. SERIAL_PROTOCOLPGM(" /");
  2296. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2297. #endif //TEMP_BED_PIN
  2298. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2299. SERIAL_PROTOCOLPGM(" T");
  2300. SERIAL_PROTOCOL(cur_extruder);
  2301. SERIAL_PROTOCOLPGM(":");
  2302. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2303. SERIAL_PROTOCOLPGM(" /");
  2304. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2305. }
  2306. #else
  2307. SERIAL_ERROR_START;
  2308. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2309. #endif
  2310. SERIAL_PROTOCOLPGM(" @:");
  2311. #ifdef EXTRUDER_WATTS
  2312. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2313. SERIAL_PROTOCOLPGM("W");
  2314. #else
  2315. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2316. #endif
  2317. SERIAL_PROTOCOLPGM(" B@:");
  2318. #ifdef BED_WATTS
  2319. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2320. SERIAL_PROTOCOLPGM("W");
  2321. #else
  2322. SERIAL_PROTOCOL(getHeaterPower(-1));
  2323. #endif
  2324. #ifdef SHOW_TEMP_ADC_VALUES
  2325. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2326. SERIAL_PROTOCOLPGM(" ADC B:");
  2327. SERIAL_PROTOCOL_F(degBed(),1);
  2328. SERIAL_PROTOCOLPGM("C->");
  2329. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2330. #endif
  2331. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2332. SERIAL_PROTOCOLPGM(" T");
  2333. SERIAL_PROTOCOL(cur_extruder);
  2334. SERIAL_PROTOCOLPGM(":");
  2335. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2336. SERIAL_PROTOCOLPGM("C->");
  2337. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2338. }
  2339. #endif
  2340. SERIAL_PROTOCOLLN("");
  2341. return;
  2342. break;
  2343. case 109:
  2344. {// M109 - Wait for extruder heater to reach target.
  2345. if(setTargetedHotend(109)){
  2346. break;
  2347. }
  2348. LCD_MESSAGEPGM(MSG_HEATING);
  2349. #ifdef AUTOTEMP
  2350. autotemp_enabled=false;
  2351. #endif
  2352. if (code_seen('S')) {
  2353. setTargetHotend(code_value(), tmp_extruder);
  2354. #ifdef DUAL_X_CARRIAGE
  2355. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2356. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2357. #endif
  2358. CooldownNoWait = true;
  2359. } else if (code_seen('R')) {
  2360. setTargetHotend(code_value(), tmp_extruder);
  2361. #ifdef DUAL_X_CARRIAGE
  2362. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2363. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2364. #endif
  2365. CooldownNoWait = false;
  2366. }
  2367. #ifdef AUTOTEMP
  2368. if (code_seen('S')) autotemp_min=code_value();
  2369. if (code_seen('B')) autotemp_max=code_value();
  2370. if (code_seen('F'))
  2371. {
  2372. autotemp_factor=code_value();
  2373. autotemp_enabled=true;
  2374. }
  2375. #endif
  2376. setWatch();
  2377. codenum = millis();
  2378. /* See if we are heating up or cooling down */
  2379. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2380. cancel_heatup = false;
  2381. #ifdef TEMP_RESIDENCY_TIME
  2382. long residencyStart;
  2383. residencyStart = -1;
  2384. /* continue to loop until we have reached the target temp
  2385. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2386. while((!cancel_heatup)&&((residencyStart == -1) ||
  2387. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2388. #else
  2389. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2390. #endif //TEMP_RESIDENCY_TIME
  2391. if( (millis() - codenum) > 1000UL )
  2392. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2393. SERIAL_PROTOCOLPGM("T:");
  2394. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2395. SERIAL_PROTOCOLPGM(" E:");
  2396. SERIAL_PROTOCOL((int)tmp_extruder);
  2397. #ifdef TEMP_RESIDENCY_TIME
  2398. SERIAL_PROTOCOLPGM(" W:");
  2399. if(residencyStart > -1)
  2400. {
  2401. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2402. SERIAL_PROTOCOLLN( codenum );
  2403. }
  2404. else
  2405. {
  2406. SERIAL_PROTOCOLLN( "?" );
  2407. }
  2408. #else
  2409. SERIAL_PROTOCOLLN("");
  2410. #endif
  2411. codenum = millis();
  2412. }
  2413. manage_heater();
  2414. manage_inactivity();
  2415. lcd_update();
  2416. #ifdef TEMP_RESIDENCY_TIME
  2417. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2418. or when current temp falls outside the hysteresis after target temp was reached */
  2419. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2420. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2421. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2422. {
  2423. residencyStart = millis();
  2424. }
  2425. #endif //TEMP_RESIDENCY_TIME
  2426. }
  2427. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2428. starttime=millis();
  2429. previous_millis_cmd = millis();
  2430. }
  2431. break;
  2432. case 190: // M190 - Wait for bed heater to reach target.
  2433. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2434. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2435. if (code_seen('S')) {
  2436. setTargetBed(code_value());
  2437. CooldownNoWait = true;
  2438. } else if (code_seen('R')) {
  2439. setTargetBed(code_value());
  2440. CooldownNoWait = false;
  2441. }
  2442. codenum = millis();
  2443. cancel_heatup = false;
  2444. target_direction = isHeatingBed(); // true if heating, false if cooling
  2445. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2446. {
  2447. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2448. {
  2449. float tt=degHotend(active_extruder);
  2450. SERIAL_PROTOCOLPGM("T:");
  2451. SERIAL_PROTOCOL(tt);
  2452. SERIAL_PROTOCOLPGM(" E:");
  2453. SERIAL_PROTOCOL((int)active_extruder);
  2454. SERIAL_PROTOCOLPGM(" B:");
  2455. SERIAL_PROTOCOL_F(degBed(),1);
  2456. SERIAL_PROTOCOLLN("");
  2457. codenum = millis();
  2458. }
  2459. manage_heater();
  2460. manage_inactivity();
  2461. lcd_update();
  2462. }
  2463. LCD_MESSAGEPGM(MSG_BED_DONE);
  2464. previous_millis_cmd = millis();
  2465. #endif
  2466. break;
  2467. #if defined(FAN_PIN) && FAN_PIN > -1
  2468. case 106: //M106 Fan On
  2469. if (code_seen('S')){
  2470. fanSpeed=constrain(code_value(),0,255);
  2471. }
  2472. else {
  2473. fanSpeed=255;
  2474. }
  2475. break;
  2476. case 107: //M107 Fan Off
  2477. fanSpeed = 0;
  2478. break;
  2479. #endif //FAN_PIN
  2480. #ifdef BARICUDA
  2481. // PWM for HEATER_1_PIN
  2482. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2483. case 126: //M126 valve open
  2484. if (code_seen('S')){
  2485. ValvePressure=constrain(code_value(),0,255);
  2486. }
  2487. else {
  2488. ValvePressure=255;
  2489. }
  2490. break;
  2491. case 127: //M127 valve closed
  2492. ValvePressure = 0;
  2493. break;
  2494. #endif //HEATER_1_PIN
  2495. // PWM for HEATER_2_PIN
  2496. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2497. case 128: //M128 valve open
  2498. if (code_seen('S')){
  2499. EtoPPressure=constrain(code_value(),0,255);
  2500. }
  2501. else {
  2502. EtoPPressure=255;
  2503. }
  2504. break;
  2505. case 129: //M129 valve closed
  2506. EtoPPressure = 0;
  2507. break;
  2508. #endif //HEATER_2_PIN
  2509. #endif
  2510. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2511. case 80: // M80 - Turn on Power Supply
  2512. SET_OUTPUT(PS_ON_PIN); //GND
  2513. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2514. // If you have a switch on suicide pin, this is useful
  2515. // if you want to start another print with suicide feature after
  2516. // a print without suicide...
  2517. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2518. SET_OUTPUT(SUICIDE_PIN);
  2519. WRITE(SUICIDE_PIN, HIGH);
  2520. #endif
  2521. #ifdef ULTIPANEL
  2522. powersupply = true;
  2523. LCD_MESSAGEPGM(WELCOME_MSG);
  2524. lcd_update();
  2525. #endif
  2526. break;
  2527. #endif
  2528. case 81: // M81 - Turn off Power Supply
  2529. disable_heater();
  2530. st_synchronize();
  2531. disable_e0();
  2532. disable_e1();
  2533. disable_e2();
  2534. finishAndDisableSteppers();
  2535. fanSpeed = 0;
  2536. delay(1000); // Wait a little before to switch off
  2537. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2538. st_synchronize();
  2539. suicide();
  2540. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2541. SET_OUTPUT(PS_ON_PIN);
  2542. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2543. #endif
  2544. #ifdef ULTIPANEL
  2545. powersupply = false;
  2546. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2547. lcd_update();
  2548. #endif
  2549. break;
  2550. case 82:
  2551. axis_relative_modes[3] = false;
  2552. break;
  2553. case 83:
  2554. axis_relative_modes[3] = true;
  2555. break;
  2556. case 18: //compatibility
  2557. case 84: // M84
  2558. if(code_seen('S')){
  2559. stepper_inactive_time = code_value() * 1000;
  2560. }
  2561. else
  2562. {
  2563. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2564. if(all_axis)
  2565. {
  2566. st_synchronize();
  2567. disable_e0();
  2568. disable_e1();
  2569. disable_e2();
  2570. finishAndDisableSteppers();
  2571. }
  2572. else
  2573. {
  2574. st_synchronize();
  2575. if(code_seen('X')) disable_x();
  2576. if(code_seen('Y')) disable_y();
  2577. if(code_seen('Z')) disable_z();
  2578. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2579. if(code_seen('E')) {
  2580. disable_e0();
  2581. disable_e1();
  2582. disable_e2();
  2583. }
  2584. #endif
  2585. }
  2586. }
  2587. break;
  2588. case 85: // M85
  2589. if(code_seen('S')) {
  2590. max_inactive_time = code_value() * 1000;
  2591. }
  2592. break;
  2593. case 92: // M92
  2594. for(int8_t i=0; i < NUM_AXIS; i++)
  2595. {
  2596. if(code_seen(axis_codes[i]))
  2597. {
  2598. if(i == 3) { // E
  2599. float value = code_value();
  2600. if(value < 20.0) {
  2601. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2602. max_e_jerk *= factor;
  2603. max_feedrate[i] *= factor;
  2604. axis_steps_per_sqr_second[i] *= factor;
  2605. }
  2606. axis_steps_per_unit[i] = value;
  2607. }
  2608. else {
  2609. axis_steps_per_unit[i] = code_value();
  2610. }
  2611. }
  2612. }
  2613. break;
  2614. case 115: // M115
  2615. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2616. break;
  2617. case 117: // M117 display message
  2618. starpos = (strchr(strchr_pointer + 5,'*'));
  2619. if(starpos!=NULL)
  2620. *(starpos)='\0';
  2621. lcd_setstatus(strchr_pointer + 5);
  2622. break;
  2623. case 114: // M114
  2624. SERIAL_PROTOCOLPGM("X:");
  2625. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2626. SERIAL_PROTOCOLPGM(" Y:");
  2627. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2628. SERIAL_PROTOCOLPGM(" Z:");
  2629. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2630. SERIAL_PROTOCOLPGM(" E:");
  2631. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2632. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2633. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2634. SERIAL_PROTOCOLPGM(" Y:");
  2635. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2636. SERIAL_PROTOCOLPGM(" Z:");
  2637. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2638. SERIAL_PROTOCOLLN("");
  2639. #ifdef SCARA
  2640. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2641. SERIAL_PROTOCOL(delta[X_AXIS]);
  2642. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2643. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2644. SERIAL_PROTOCOLLN("");
  2645. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2646. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2647. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2648. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2649. SERIAL_PROTOCOLLN("");
  2650. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2651. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2652. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2653. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2654. SERIAL_PROTOCOLLN("");
  2655. SERIAL_PROTOCOLLN("");
  2656. #endif
  2657. break;
  2658. case 120: // M120
  2659. enable_endstops(false) ;
  2660. break;
  2661. case 121: // M121
  2662. enable_endstops(true) ;
  2663. break;
  2664. case 119: // M119
  2665. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2666. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2667. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2668. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2669. #endif
  2670. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2671. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2672. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2673. #endif
  2674. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2675. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2676. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2677. #endif
  2678. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2679. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2680. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2681. #endif
  2682. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2683. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2684. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2685. #endif
  2686. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2687. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2688. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2689. #endif
  2690. break;
  2691. //TODO: update for all axis, use for loop
  2692. #ifdef BLINKM
  2693. case 150: // M150
  2694. {
  2695. byte red;
  2696. byte grn;
  2697. byte blu;
  2698. if(code_seen('R')) red = code_value();
  2699. if(code_seen('U')) grn = code_value();
  2700. if(code_seen('B')) blu = code_value();
  2701. SendColors(red,grn,blu);
  2702. }
  2703. break;
  2704. #endif //BLINKM
  2705. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2706. {
  2707. tmp_extruder = active_extruder;
  2708. if(code_seen('T')) {
  2709. tmp_extruder = code_value();
  2710. if(tmp_extruder >= EXTRUDERS) {
  2711. SERIAL_ECHO_START;
  2712. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2713. break;
  2714. }
  2715. }
  2716. float area = .0;
  2717. if(code_seen('D')) {
  2718. float diameter = code_value();
  2719. // setting any extruder filament size disables volumetric on the assumption that
  2720. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2721. // for all extruders
  2722. volumetric_enabled = (diameter != 0.0);
  2723. if (volumetric_enabled) {
  2724. filament_size[tmp_extruder] = diameter;
  2725. // make sure all extruders have some sane value for the filament size
  2726. for (int i=0; i<EXTRUDERS; i++)
  2727. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2728. }
  2729. } else {
  2730. //reserved for setting filament diameter via UFID or filament measuring device
  2731. break;
  2732. }
  2733. calculate_volumetric_multipliers();
  2734. }
  2735. break;
  2736. case 201: // M201
  2737. for(int8_t i=0; i < NUM_AXIS; i++)
  2738. {
  2739. if(code_seen(axis_codes[i]))
  2740. {
  2741. max_acceleration_units_per_sq_second[i] = code_value();
  2742. }
  2743. }
  2744. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2745. reset_acceleration_rates();
  2746. break;
  2747. #if 0 // Not used for Sprinter/grbl gen6
  2748. case 202: // M202
  2749. for(int8_t i=0; i < NUM_AXIS; i++) {
  2750. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2751. }
  2752. break;
  2753. #endif
  2754. case 203: // M203 max feedrate mm/sec
  2755. for(int8_t i=0; i < NUM_AXIS; i++) {
  2756. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2757. }
  2758. break;
  2759. case 204: // M204 acclereration S normal moves T filmanent only moves
  2760. {
  2761. if(code_seen('S')) acceleration = code_value() ;
  2762. if(code_seen('T')) retract_acceleration = code_value() ;
  2763. }
  2764. break;
  2765. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2766. {
  2767. if(code_seen('S')) minimumfeedrate = code_value();
  2768. if(code_seen('T')) mintravelfeedrate = code_value();
  2769. if(code_seen('B')) minsegmenttime = code_value() ;
  2770. if(code_seen('X')) max_xy_jerk = code_value() ;
  2771. if(code_seen('Z')) max_z_jerk = code_value() ;
  2772. if(code_seen('E')) max_e_jerk = code_value() ;
  2773. }
  2774. break;
  2775. case 206: // M206 additional homing offset
  2776. for(int8_t i=0; i < 3; i++)
  2777. {
  2778. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2779. }
  2780. #ifdef SCARA
  2781. if(code_seen('T')) // Theta
  2782. {
  2783. add_homing[X_AXIS] = code_value() ;
  2784. }
  2785. if(code_seen('P')) // Psi
  2786. {
  2787. add_homing[Y_AXIS] = code_value() ;
  2788. }
  2789. #endif
  2790. break;
  2791. #ifdef DELTA
  2792. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2793. if(code_seen('L')) {
  2794. delta_diagonal_rod= code_value();
  2795. }
  2796. if(code_seen('R')) {
  2797. delta_radius= code_value();
  2798. }
  2799. if(code_seen('S')) {
  2800. delta_segments_per_second= code_value();
  2801. }
  2802. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2803. break;
  2804. case 666: // M666 set delta endstop adjustemnt
  2805. for(int8_t i=0; i < 3; i++)
  2806. {
  2807. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2808. }
  2809. break;
  2810. #endif
  2811. #ifdef FWRETRACT
  2812. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2813. {
  2814. if(code_seen('S'))
  2815. {
  2816. retract_length = code_value() ;
  2817. }
  2818. if(code_seen('F'))
  2819. {
  2820. retract_feedrate = code_value()/60 ;
  2821. }
  2822. if(code_seen('Z'))
  2823. {
  2824. retract_zlift = code_value() ;
  2825. }
  2826. }break;
  2827. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2828. {
  2829. if(code_seen('S'))
  2830. {
  2831. retract_recover_length = code_value() ;
  2832. }
  2833. if(code_seen('F'))
  2834. {
  2835. retract_recover_feedrate = code_value()/60 ;
  2836. }
  2837. }break;
  2838. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2839. {
  2840. if(code_seen('S'))
  2841. {
  2842. int t= code_value() ;
  2843. switch(t)
  2844. {
  2845. case 0:
  2846. case 1:
  2847. {
  2848. autoretract_enabled = (t == 1);
  2849. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  2850. }break;
  2851. default:
  2852. SERIAL_ECHO_START;
  2853. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2854. SERIAL_ECHO(cmdbuffer[bufindr]);
  2855. SERIAL_ECHOLNPGM("\"");
  2856. }
  2857. }
  2858. }break;
  2859. #endif // FWRETRACT
  2860. #if EXTRUDERS > 1
  2861. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2862. {
  2863. if(setTargetedHotend(218)){
  2864. break;
  2865. }
  2866. if(code_seen('X'))
  2867. {
  2868. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2869. }
  2870. if(code_seen('Y'))
  2871. {
  2872. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2873. }
  2874. #ifdef DUAL_X_CARRIAGE
  2875. if(code_seen('Z'))
  2876. {
  2877. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2878. }
  2879. #endif
  2880. SERIAL_ECHO_START;
  2881. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2882. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2883. {
  2884. SERIAL_ECHO(" ");
  2885. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2886. SERIAL_ECHO(",");
  2887. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2888. #ifdef DUAL_X_CARRIAGE
  2889. SERIAL_ECHO(",");
  2890. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2891. #endif
  2892. }
  2893. SERIAL_ECHOLN("");
  2894. }break;
  2895. #endif
  2896. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2897. {
  2898. if(code_seen('S'))
  2899. {
  2900. feedmultiply = code_value() ;
  2901. }
  2902. }
  2903. break;
  2904. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2905. {
  2906. if(code_seen('S'))
  2907. {
  2908. int tmp_code = code_value();
  2909. if (code_seen('T'))
  2910. {
  2911. if(setTargetedHotend(221)){
  2912. break;
  2913. }
  2914. extruder_multiply[tmp_extruder] = tmp_code;
  2915. }
  2916. else
  2917. {
  2918. extrudemultiply = tmp_code ;
  2919. }
  2920. }
  2921. }
  2922. break;
  2923. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2924. {
  2925. if(code_seen('P')){
  2926. int pin_number = code_value(); // pin number
  2927. int pin_state = -1; // required pin state - default is inverted
  2928. if(code_seen('S')) pin_state = code_value(); // required pin state
  2929. if(pin_state >= -1 && pin_state <= 1){
  2930. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2931. {
  2932. if (sensitive_pins[i] == pin_number)
  2933. {
  2934. pin_number = -1;
  2935. break;
  2936. }
  2937. }
  2938. if (pin_number > -1)
  2939. {
  2940. int target = LOW;
  2941. st_synchronize();
  2942. pinMode(pin_number, INPUT);
  2943. switch(pin_state){
  2944. case 1:
  2945. target = HIGH;
  2946. break;
  2947. case 0:
  2948. target = LOW;
  2949. break;
  2950. case -1:
  2951. target = !digitalRead(pin_number);
  2952. break;
  2953. }
  2954. while(digitalRead(pin_number) != target){
  2955. manage_heater();
  2956. manage_inactivity();
  2957. lcd_update();
  2958. }
  2959. }
  2960. }
  2961. }
  2962. }
  2963. break;
  2964. #if NUM_SERVOS > 0
  2965. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2966. {
  2967. int servo_index = -1;
  2968. int servo_position = 0;
  2969. if (code_seen('P'))
  2970. servo_index = code_value();
  2971. if (code_seen('S')) {
  2972. servo_position = code_value();
  2973. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2974. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2975. servos[servo_index].attach(0);
  2976. #endif
  2977. servos[servo_index].write(servo_position);
  2978. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2979. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2980. servos[servo_index].detach();
  2981. #endif
  2982. }
  2983. else {
  2984. SERIAL_ECHO_START;
  2985. SERIAL_ECHO("Servo ");
  2986. SERIAL_ECHO(servo_index);
  2987. SERIAL_ECHOLN(" out of range");
  2988. }
  2989. }
  2990. else if (servo_index >= 0) {
  2991. SERIAL_PROTOCOL(MSG_OK);
  2992. SERIAL_PROTOCOL(" Servo ");
  2993. SERIAL_PROTOCOL(servo_index);
  2994. SERIAL_PROTOCOL(": ");
  2995. SERIAL_PROTOCOL(servos[servo_index].read());
  2996. SERIAL_PROTOCOLLN("");
  2997. }
  2998. }
  2999. break;
  3000. #endif // NUM_SERVOS > 0
  3001. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3002. case 300: // M300
  3003. {
  3004. int beepS = code_seen('S') ? code_value() : 110;
  3005. int beepP = code_seen('P') ? code_value() : 1000;
  3006. if (beepS > 0)
  3007. {
  3008. #if BEEPER > 0
  3009. tone(BEEPER, beepS);
  3010. delay(beepP);
  3011. noTone(BEEPER);
  3012. #elif defined(ULTRALCD)
  3013. lcd_buzz(beepS, beepP);
  3014. #elif defined(LCD_USE_I2C_BUZZER)
  3015. lcd_buzz(beepP, beepS);
  3016. #endif
  3017. }
  3018. else
  3019. {
  3020. delay(beepP);
  3021. }
  3022. }
  3023. break;
  3024. #endif // M300
  3025. #ifdef PIDTEMP
  3026. case 301: // M301
  3027. {
  3028. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3029. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3030. int e = 0; // extruder being updated
  3031. if (code_seen('E'))
  3032. {
  3033. e = (int)code_value();
  3034. }
  3035. if (e < EXTRUDERS) // catch bad input value
  3036. {
  3037. if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
  3038. if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
  3039. if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
  3040. #ifdef PID_ADD_EXTRUSION_RATE
  3041. if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
  3042. #endif
  3043. updatePID();
  3044. SERIAL_PROTOCOL(MSG_OK);
  3045. #ifdef PID_PARAMS_PER_EXTRUDER
  3046. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3047. SERIAL_PROTOCOL(e);
  3048. #endif // PID_PARAMS_PER_EXTRUDER
  3049. SERIAL_PROTOCOL(" p:");
  3050. SERIAL_PROTOCOL(PID_PARAM(Kp,e));
  3051. SERIAL_PROTOCOL(" i:");
  3052. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
  3053. SERIAL_PROTOCOL(" d:");
  3054. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
  3055. #ifdef PID_ADD_EXTRUSION_RATE
  3056. SERIAL_PROTOCOL(" c:");
  3057. //Kc does not have scaling applied above, or in resetting defaults
  3058. SERIAL_PROTOCOL(PID_PARAM(Kc,e));
  3059. #endif
  3060. SERIAL_PROTOCOLLN("");
  3061. }
  3062. else
  3063. {
  3064. SERIAL_ECHO_START;
  3065. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3066. }
  3067. }
  3068. break;
  3069. #endif //PIDTEMP
  3070. #ifdef PIDTEMPBED
  3071. case 304: // M304
  3072. {
  3073. if(code_seen('P')) bedKp = code_value();
  3074. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3075. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3076. updatePID();
  3077. SERIAL_PROTOCOL(MSG_OK);
  3078. SERIAL_PROTOCOL(" p:");
  3079. SERIAL_PROTOCOL(bedKp);
  3080. SERIAL_PROTOCOL(" i:");
  3081. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3082. SERIAL_PROTOCOL(" d:");
  3083. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3084. SERIAL_PROTOCOLLN("");
  3085. }
  3086. break;
  3087. #endif //PIDTEMP
  3088. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3089. {
  3090. #ifdef CHDK
  3091. SET_OUTPUT(CHDK);
  3092. WRITE(CHDK, HIGH);
  3093. chdkHigh = millis();
  3094. chdkActive = true;
  3095. #else
  3096. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3097. const uint8_t NUM_PULSES=16;
  3098. const float PULSE_LENGTH=0.01524;
  3099. for(int i=0; i < NUM_PULSES; i++) {
  3100. WRITE(PHOTOGRAPH_PIN, HIGH);
  3101. _delay_ms(PULSE_LENGTH);
  3102. WRITE(PHOTOGRAPH_PIN, LOW);
  3103. _delay_ms(PULSE_LENGTH);
  3104. }
  3105. delay(7.33);
  3106. for(int i=0; i < NUM_PULSES; i++) {
  3107. WRITE(PHOTOGRAPH_PIN, HIGH);
  3108. _delay_ms(PULSE_LENGTH);
  3109. WRITE(PHOTOGRAPH_PIN, LOW);
  3110. _delay_ms(PULSE_LENGTH);
  3111. }
  3112. #endif
  3113. #endif //chdk end if
  3114. }
  3115. break;
  3116. #ifdef DOGLCD
  3117. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3118. {
  3119. if (code_seen('C')) {
  3120. lcd_setcontrast( ((int)code_value())&63 );
  3121. }
  3122. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3123. SERIAL_PROTOCOL(lcd_contrast);
  3124. SERIAL_PROTOCOLLN("");
  3125. }
  3126. break;
  3127. #endif
  3128. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3129. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3130. {
  3131. float temp = .0;
  3132. if (code_seen('S')) temp=code_value();
  3133. set_extrude_min_temp(temp);
  3134. }
  3135. break;
  3136. #endif
  3137. case 303: // M303 PID autotune
  3138. {
  3139. float temp = 150.0;
  3140. int e=0;
  3141. int c=5;
  3142. if (code_seen('E')) e=code_value();
  3143. if (e<0)
  3144. temp=70;
  3145. if (code_seen('S')) temp=code_value();
  3146. if (code_seen('C')) c=code_value();
  3147. PID_autotune(temp, e, c);
  3148. }
  3149. break;
  3150. #ifdef SCARA
  3151. case 360: // M360 SCARA Theta pos1
  3152. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3153. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3154. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3155. if(Stopped == false) {
  3156. //get_coordinates(); // For X Y Z E F
  3157. delta[X_AXIS] = 0;
  3158. delta[Y_AXIS] = 120;
  3159. calculate_SCARA_forward_Transform(delta);
  3160. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3161. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3162. prepare_move();
  3163. //ClearToSend();
  3164. return;
  3165. }
  3166. break;
  3167. case 361: // SCARA Theta pos2
  3168. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3169. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3170. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3171. if(Stopped == false) {
  3172. //get_coordinates(); // For X Y Z E F
  3173. delta[X_AXIS] = 90;
  3174. delta[Y_AXIS] = 130;
  3175. calculate_SCARA_forward_Transform(delta);
  3176. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3177. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3178. prepare_move();
  3179. //ClearToSend();
  3180. return;
  3181. }
  3182. break;
  3183. case 362: // SCARA Psi pos1
  3184. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3185. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3186. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3187. if(Stopped == false) {
  3188. //get_coordinates(); // For X Y Z E F
  3189. delta[X_AXIS] = 60;
  3190. delta[Y_AXIS] = 180;
  3191. calculate_SCARA_forward_Transform(delta);
  3192. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3193. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3194. prepare_move();
  3195. //ClearToSend();
  3196. return;
  3197. }
  3198. break;
  3199. case 363: // SCARA Psi pos2
  3200. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3201. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3202. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3203. if(Stopped == false) {
  3204. //get_coordinates(); // For X Y Z E F
  3205. delta[X_AXIS] = 50;
  3206. delta[Y_AXIS] = 90;
  3207. calculate_SCARA_forward_Transform(delta);
  3208. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3209. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3210. prepare_move();
  3211. //ClearToSend();
  3212. return;
  3213. }
  3214. break;
  3215. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3216. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3217. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3218. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3219. if(Stopped == false) {
  3220. //get_coordinates(); // For X Y Z E F
  3221. delta[X_AXIS] = 45;
  3222. delta[Y_AXIS] = 135;
  3223. calculate_SCARA_forward_Transform(delta);
  3224. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3225. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3226. prepare_move();
  3227. //ClearToSend();
  3228. return;
  3229. }
  3230. break;
  3231. case 365: // M364 Set SCARA scaling for X Y Z
  3232. for(int8_t i=0; i < 3; i++)
  3233. {
  3234. if(code_seen(axis_codes[i]))
  3235. {
  3236. axis_scaling[i] = code_value();
  3237. }
  3238. }
  3239. break;
  3240. #endif
  3241. case 400: // M400 finish all moves
  3242. {
  3243. st_synchronize();
  3244. }
  3245. break;
  3246. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3247. case 401:
  3248. {
  3249. engage_z_probe(); // Engage Z Servo endstop if available
  3250. }
  3251. break;
  3252. case 402:
  3253. {
  3254. retract_z_probe(); // Retract Z Servo endstop if enabled
  3255. }
  3256. break;
  3257. #endif
  3258. #ifdef FILAMENT_SENSOR
  3259. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3260. {
  3261. #if (FILWIDTH_PIN > -1)
  3262. if(code_seen('N')) filament_width_nominal=code_value();
  3263. else{
  3264. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3265. SERIAL_PROTOCOLLN(filament_width_nominal);
  3266. }
  3267. #endif
  3268. }
  3269. break;
  3270. case 405: //M405 Turn on filament sensor for control
  3271. {
  3272. if(code_seen('D')) meas_delay_cm=code_value();
  3273. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3274. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3275. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3276. {
  3277. int temp_ratio = widthFil_to_size_ratio();
  3278. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3279. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3280. }
  3281. delay_index1=0;
  3282. delay_index2=0;
  3283. }
  3284. filament_sensor = true ;
  3285. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3286. //SERIAL_PROTOCOL(filament_width_meas);
  3287. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3288. //SERIAL_PROTOCOL(extrudemultiply);
  3289. }
  3290. break;
  3291. case 406: //M406 Turn off filament sensor for control
  3292. {
  3293. filament_sensor = false ;
  3294. }
  3295. break;
  3296. case 407: //M407 Display measured filament diameter
  3297. {
  3298. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3299. SERIAL_PROTOCOLLN(filament_width_meas);
  3300. }
  3301. break;
  3302. #endif
  3303. case 500: // M500 Store settings in EEPROM
  3304. {
  3305. Config_StoreSettings();
  3306. }
  3307. break;
  3308. case 501: // M501 Read settings from EEPROM
  3309. {
  3310. Config_RetrieveSettings();
  3311. }
  3312. break;
  3313. case 502: // M502 Revert to default settings
  3314. {
  3315. Config_ResetDefault();
  3316. }
  3317. break;
  3318. case 503: // M503 print settings currently in memory
  3319. {
  3320. Config_PrintSettings(code_seen('S') && code_value == 0);
  3321. }
  3322. break;
  3323. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3324. case 540:
  3325. {
  3326. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3327. }
  3328. break;
  3329. #endif
  3330. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3331. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3332. {
  3333. float value;
  3334. if (code_seen('Z'))
  3335. {
  3336. value = code_value();
  3337. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3338. {
  3339. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3340. SERIAL_ECHO_START;
  3341. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3342. SERIAL_PROTOCOLLN("");
  3343. }
  3344. else
  3345. {
  3346. SERIAL_ECHO_START;
  3347. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3348. SERIAL_ECHOPGM(MSG_Z_MIN);
  3349. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3350. SERIAL_ECHOPGM(MSG_Z_MAX);
  3351. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3352. SERIAL_PROTOCOLLN("");
  3353. }
  3354. }
  3355. else
  3356. {
  3357. SERIAL_ECHO_START;
  3358. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3359. SERIAL_ECHO(-zprobe_zoffset);
  3360. SERIAL_PROTOCOLLN("");
  3361. }
  3362. break;
  3363. }
  3364. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3365. #ifdef FILAMENTCHANGEENABLE
  3366. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3367. {
  3368. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate/60;
  3369. for (int i=0; i<NUM_AXIS; i++)
  3370. target[i] = lastpos[i] = current_position[i];
  3371. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3372. #ifdef DELTA
  3373. #define RUNPLAN calculate_delta(target); BASICPLAN
  3374. #else
  3375. #define RUNPLAN BASICPLAN
  3376. #endif
  3377. //retract by E
  3378. if(code_seen('E'))
  3379. {
  3380. target[E_AXIS]+= code_value();
  3381. }
  3382. else
  3383. {
  3384. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3385. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3386. #endif
  3387. }
  3388. RUNPLAN;
  3389. //lift Z
  3390. if(code_seen('Z'))
  3391. {
  3392. target[Z_AXIS]+= code_value();
  3393. }
  3394. else
  3395. {
  3396. #ifdef FILAMENTCHANGE_ZADD
  3397. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3398. #endif
  3399. }
  3400. RUNPLAN;
  3401. //move xy
  3402. if(code_seen('X'))
  3403. {
  3404. target[X_AXIS]= code_value();
  3405. }
  3406. else
  3407. {
  3408. #ifdef FILAMENTCHANGE_XPOS
  3409. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3410. #endif
  3411. }
  3412. if(code_seen('Y'))
  3413. {
  3414. target[Y_AXIS]= code_value();
  3415. }
  3416. else
  3417. {
  3418. #ifdef FILAMENTCHANGE_YPOS
  3419. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3420. #endif
  3421. }
  3422. RUNPLAN;
  3423. if(code_seen('L'))
  3424. {
  3425. target[E_AXIS]+= code_value();
  3426. }
  3427. else
  3428. {
  3429. #ifdef FILAMENTCHANGE_FINALRETRACT
  3430. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3431. #endif
  3432. }
  3433. RUNPLAN;
  3434. //finish moves
  3435. st_synchronize();
  3436. //disable extruder steppers so filament can be removed
  3437. disable_e0();
  3438. disable_e1();
  3439. disable_e2();
  3440. delay(100);
  3441. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3442. uint8_t cnt=0;
  3443. while(!lcd_clicked()){
  3444. cnt++;
  3445. manage_heater();
  3446. manage_inactivity(true);
  3447. lcd_update();
  3448. if(cnt==0)
  3449. {
  3450. #if BEEPER > 0
  3451. SET_OUTPUT(BEEPER);
  3452. WRITE(BEEPER,HIGH);
  3453. delay(3);
  3454. WRITE(BEEPER,LOW);
  3455. delay(3);
  3456. #else
  3457. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3458. lcd_buzz(1000/6,100);
  3459. #else
  3460. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3461. #endif
  3462. #endif
  3463. }
  3464. }
  3465. //return to normal
  3466. if(code_seen('L'))
  3467. {
  3468. target[E_AXIS]+= -code_value();
  3469. }
  3470. else
  3471. {
  3472. #ifdef FILAMENTCHANGE_FINALRETRACT
  3473. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3474. #endif
  3475. }
  3476. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3477. plan_set_e_position(current_position[E_AXIS]);
  3478. RUNPLAN; //should do nothing
  3479. //reset LCD alert message
  3480. lcd_reset_alert_level();
  3481. #ifdef DELTA
  3482. calculate_delta(lastpos);
  3483. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3484. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3485. #else
  3486. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3487. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3488. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3489. #endif
  3490. }
  3491. break;
  3492. #endif //FILAMENTCHANGEENABLE
  3493. #ifdef DUAL_X_CARRIAGE
  3494. case 605: // Set dual x-carriage movement mode:
  3495. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3496. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3497. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3498. // millimeters x-offset and an optional differential hotend temperature of
  3499. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3500. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3501. //
  3502. // Note: the X axis should be homed after changing dual x-carriage mode.
  3503. {
  3504. st_synchronize();
  3505. if (code_seen('S'))
  3506. dual_x_carriage_mode = code_value();
  3507. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3508. {
  3509. if (code_seen('X'))
  3510. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3511. if (code_seen('R'))
  3512. duplicate_extruder_temp_offset = code_value();
  3513. SERIAL_ECHO_START;
  3514. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3515. SERIAL_ECHO(" ");
  3516. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3517. SERIAL_ECHO(",");
  3518. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3519. SERIAL_ECHO(" ");
  3520. SERIAL_ECHO(duplicate_extruder_x_offset);
  3521. SERIAL_ECHO(",");
  3522. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3523. }
  3524. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3525. {
  3526. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3527. }
  3528. active_extruder_parked = false;
  3529. extruder_duplication_enabled = false;
  3530. delayed_move_time = 0;
  3531. }
  3532. break;
  3533. #endif //DUAL_X_CARRIAGE
  3534. case 907: // M907 Set digital trimpot motor current using axis codes.
  3535. {
  3536. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3537. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3538. if(code_seen('B')) digipot_current(4,code_value());
  3539. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3540. #endif
  3541. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3542. if(code_seen('X')) digipot_current(0, code_value());
  3543. #endif
  3544. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3545. if(code_seen('Z')) digipot_current(1, code_value());
  3546. #endif
  3547. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3548. if(code_seen('E')) digipot_current(2, code_value());
  3549. #endif
  3550. #ifdef DIGIPOT_I2C
  3551. // this one uses actual amps in floating point
  3552. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3553. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3554. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3555. #endif
  3556. }
  3557. break;
  3558. case 908: // M908 Control digital trimpot directly.
  3559. {
  3560. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3561. uint8_t channel,current;
  3562. if(code_seen('P')) channel=code_value();
  3563. if(code_seen('S')) current=code_value();
  3564. digitalPotWrite(channel, current);
  3565. #endif
  3566. }
  3567. break;
  3568. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3569. {
  3570. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3571. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3572. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3573. if(code_seen('B')) microstep_mode(4,code_value());
  3574. microstep_readings();
  3575. #endif
  3576. }
  3577. break;
  3578. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3579. {
  3580. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3581. if(code_seen('S')) switch((int)code_value())
  3582. {
  3583. case 1:
  3584. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3585. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3586. break;
  3587. case 2:
  3588. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3589. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3590. break;
  3591. }
  3592. microstep_readings();
  3593. #endif
  3594. }
  3595. break;
  3596. case 999: // M999: Restart after being stopped
  3597. Stopped = false;
  3598. lcd_reset_alert_level();
  3599. gcode_LastN = Stopped_gcode_LastN;
  3600. FlushSerialRequestResend();
  3601. break;
  3602. }
  3603. }
  3604. else if(code_seen('T'))
  3605. {
  3606. tmp_extruder = code_value();
  3607. if(tmp_extruder >= EXTRUDERS) {
  3608. SERIAL_ECHO_START;
  3609. SERIAL_ECHO("T");
  3610. SERIAL_ECHO(tmp_extruder);
  3611. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3612. }
  3613. else {
  3614. boolean make_move = false;
  3615. if(code_seen('F')) {
  3616. make_move = true;
  3617. next_feedrate = code_value();
  3618. if(next_feedrate > 0.0) {
  3619. feedrate = next_feedrate;
  3620. }
  3621. }
  3622. #if EXTRUDERS > 1
  3623. if(tmp_extruder != active_extruder) {
  3624. // Save current position to return to after applying extruder offset
  3625. memcpy(destination, current_position, sizeof(destination));
  3626. #ifdef DUAL_X_CARRIAGE
  3627. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3628. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3629. {
  3630. // Park old head: 1) raise 2) move to park position 3) lower
  3631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3632. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3633. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3634. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3635. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3636. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3637. st_synchronize();
  3638. }
  3639. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3640. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3641. extruder_offset[Y_AXIS][active_extruder] +
  3642. extruder_offset[Y_AXIS][tmp_extruder];
  3643. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3644. extruder_offset[Z_AXIS][active_extruder] +
  3645. extruder_offset[Z_AXIS][tmp_extruder];
  3646. active_extruder = tmp_extruder;
  3647. // This function resets the max/min values - the current position may be overwritten below.
  3648. axis_is_at_home(X_AXIS);
  3649. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3650. {
  3651. current_position[X_AXIS] = inactive_extruder_x_pos;
  3652. inactive_extruder_x_pos = destination[X_AXIS];
  3653. }
  3654. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3655. {
  3656. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3657. if (active_extruder == 0 || active_extruder_parked)
  3658. current_position[X_AXIS] = inactive_extruder_x_pos;
  3659. else
  3660. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3661. inactive_extruder_x_pos = destination[X_AXIS];
  3662. extruder_duplication_enabled = false;
  3663. }
  3664. else
  3665. {
  3666. // record raised toolhead position for use by unpark
  3667. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3668. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3669. active_extruder_parked = true;
  3670. delayed_move_time = 0;
  3671. }
  3672. #else
  3673. // Offset extruder (only by XY)
  3674. int i;
  3675. for(i = 0; i < 2; i++) {
  3676. current_position[i] = current_position[i] -
  3677. extruder_offset[i][active_extruder] +
  3678. extruder_offset[i][tmp_extruder];
  3679. }
  3680. // Set the new active extruder and position
  3681. active_extruder = tmp_extruder;
  3682. #endif //else DUAL_X_CARRIAGE
  3683. #ifdef DELTA
  3684. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3685. //sent position to plan_set_position();
  3686. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3687. #else
  3688. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3689. #endif
  3690. // Move to the old position if 'F' was in the parameters
  3691. if(make_move && Stopped == false) {
  3692. prepare_move();
  3693. }
  3694. }
  3695. #endif
  3696. SERIAL_ECHO_START;
  3697. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3698. SERIAL_PROTOCOLLN((int)active_extruder);
  3699. }
  3700. }
  3701. else
  3702. {
  3703. SERIAL_ECHO_START;
  3704. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3705. SERIAL_ECHO(cmdbuffer[bufindr]);
  3706. SERIAL_ECHOLNPGM("\"");
  3707. }
  3708. ClearToSend();
  3709. }
  3710. void FlushSerialRequestResend()
  3711. {
  3712. //char cmdbuffer[bufindr][100]="Resend:";
  3713. MYSERIAL.flush();
  3714. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3715. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3716. ClearToSend();
  3717. }
  3718. void ClearToSend()
  3719. {
  3720. previous_millis_cmd = millis();
  3721. #ifdef SDSUPPORT
  3722. if(fromsd[bufindr])
  3723. return;
  3724. #endif //SDSUPPORT
  3725. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3726. }
  3727. void get_coordinates()
  3728. {
  3729. bool seen[4]={false,false,false,false};
  3730. for(int8_t i=0; i < NUM_AXIS; i++) {
  3731. if(code_seen(axis_codes[i]))
  3732. {
  3733. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3734. seen[i]=true;
  3735. }
  3736. else destination[i] = current_position[i]; //Are these else lines really needed?
  3737. }
  3738. if(code_seen('F')) {
  3739. next_feedrate = code_value();
  3740. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3741. }
  3742. }
  3743. void get_arc_coordinates()
  3744. {
  3745. #ifdef SF_ARC_FIX
  3746. bool relative_mode_backup = relative_mode;
  3747. relative_mode = true;
  3748. #endif
  3749. get_coordinates();
  3750. #ifdef SF_ARC_FIX
  3751. relative_mode=relative_mode_backup;
  3752. #endif
  3753. if(code_seen('I')) {
  3754. offset[0] = code_value();
  3755. }
  3756. else {
  3757. offset[0] = 0.0;
  3758. }
  3759. if(code_seen('J')) {
  3760. offset[1] = code_value();
  3761. }
  3762. else {
  3763. offset[1] = 0.0;
  3764. }
  3765. }
  3766. void clamp_to_software_endstops(float target[3])
  3767. {
  3768. if (min_software_endstops) {
  3769. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3770. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3771. float negative_z_offset = 0;
  3772. #ifdef ENABLE_AUTO_BED_LEVELING
  3773. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3774. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3775. #endif
  3776. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3777. }
  3778. if (max_software_endstops) {
  3779. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3780. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3781. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3782. }
  3783. }
  3784. #ifdef DELTA
  3785. void recalc_delta_settings(float radius, float diagonal_rod)
  3786. {
  3787. delta_tower1_x= -SIN_60*radius; // front left tower
  3788. delta_tower1_y= -COS_60*radius;
  3789. delta_tower2_x= SIN_60*radius; // front right tower
  3790. delta_tower2_y= -COS_60*radius;
  3791. delta_tower3_x= 0.0; // back middle tower
  3792. delta_tower3_y= radius;
  3793. delta_diagonal_rod_2= sq(diagonal_rod);
  3794. }
  3795. void calculate_delta(float cartesian[3])
  3796. {
  3797. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3798. - sq(delta_tower1_x-cartesian[X_AXIS])
  3799. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3800. ) + cartesian[Z_AXIS];
  3801. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3802. - sq(delta_tower2_x-cartesian[X_AXIS])
  3803. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3804. ) + cartesian[Z_AXIS];
  3805. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3806. - sq(delta_tower3_x-cartesian[X_AXIS])
  3807. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3808. ) + cartesian[Z_AXIS];
  3809. /*
  3810. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3811. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3812. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3813. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3814. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3815. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3816. */
  3817. }
  3818. #endif
  3819. void prepare_move()
  3820. {
  3821. clamp_to_software_endstops(destination);
  3822. previous_millis_cmd = millis();
  3823. #ifdef SCARA //for now same as delta-code
  3824. float difference[NUM_AXIS];
  3825. for (int8_t i=0; i < NUM_AXIS; i++) {
  3826. difference[i] = destination[i] - current_position[i];
  3827. }
  3828. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3829. sq(difference[Y_AXIS]) +
  3830. sq(difference[Z_AXIS]));
  3831. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3832. if (cartesian_mm < 0.000001) { return; }
  3833. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3834. int steps = max(1, int(scara_segments_per_second * seconds));
  3835. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3836. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3837. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3838. for (int s = 1; s <= steps; s++) {
  3839. float fraction = float(s) / float(steps);
  3840. for(int8_t i=0; i < NUM_AXIS; i++) {
  3841. destination[i] = current_position[i] + difference[i] * fraction;
  3842. }
  3843. calculate_delta(destination);
  3844. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3845. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3846. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3847. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3848. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3849. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3850. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3851. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3852. active_extruder);
  3853. }
  3854. #endif // SCARA
  3855. #ifdef DELTA
  3856. float difference[NUM_AXIS];
  3857. for (int8_t i=0; i < NUM_AXIS; i++) {
  3858. difference[i] = destination[i] - current_position[i];
  3859. }
  3860. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3861. sq(difference[Y_AXIS]) +
  3862. sq(difference[Z_AXIS]));
  3863. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3864. if (cartesian_mm < 0.000001) { return; }
  3865. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3866. int steps = max(1, int(delta_segments_per_second * seconds));
  3867. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3868. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3869. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3870. for (int s = 1; s <= steps; s++) {
  3871. float fraction = float(s) / float(steps);
  3872. for(int8_t i=0; i < NUM_AXIS; i++) {
  3873. destination[i] = current_position[i] + difference[i] * fraction;
  3874. }
  3875. calculate_delta(destination);
  3876. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3877. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3878. active_extruder);
  3879. }
  3880. #endif // DELTA
  3881. #ifdef DUAL_X_CARRIAGE
  3882. if (active_extruder_parked)
  3883. {
  3884. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3885. {
  3886. // move duplicate extruder into correct duplication position.
  3887. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3888. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3889. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3890. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3891. st_synchronize();
  3892. extruder_duplication_enabled = true;
  3893. active_extruder_parked = false;
  3894. }
  3895. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3896. {
  3897. if (current_position[E_AXIS] == destination[E_AXIS])
  3898. {
  3899. // this is a travel move - skit it but keep track of current position (so that it can later
  3900. // be used as start of first non-travel move)
  3901. if (delayed_move_time != 0xFFFFFFFFUL)
  3902. {
  3903. memcpy(current_position, destination, sizeof(current_position));
  3904. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3905. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3906. delayed_move_time = millis();
  3907. return;
  3908. }
  3909. }
  3910. delayed_move_time = 0;
  3911. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3912. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3913. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3914. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3915. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3916. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3917. active_extruder_parked = false;
  3918. }
  3919. }
  3920. #endif //DUAL_X_CARRIAGE
  3921. #if ! (defined DELTA || defined SCARA)
  3922. // Do not use feedmultiply for E or Z only moves
  3923. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3924. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3925. }
  3926. else {
  3927. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3928. }
  3929. #endif // !(DELTA || SCARA)
  3930. for(int8_t i=0; i < NUM_AXIS; i++) {
  3931. current_position[i] = destination[i];
  3932. }
  3933. }
  3934. void prepare_arc_move(char isclockwise) {
  3935. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3936. // Trace the arc
  3937. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3938. // As far as the parser is concerned, the position is now == target. In reality the
  3939. // motion control system might still be processing the action and the real tool position
  3940. // in any intermediate location.
  3941. for(int8_t i=0; i < NUM_AXIS; i++) {
  3942. current_position[i] = destination[i];
  3943. }
  3944. previous_millis_cmd = millis();
  3945. }
  3946. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3947. #if defined(FAN_PIN)
  3948. #if CONTROLLERFAN_PIN == FAN_PIN
  3949. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3950. #endif
  3951. #endif
  3952. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3953. unsigned long lastMotorCheck = 0;
  3954. void controllerFan()
  3955. {
  3956. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3957. {
  3958. lastMotorCheck = millis();
  3959. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3960. #if EXTRUDERS > 2
  3961. || !READ(E2_ENABLE_PIN)
  3962. #endif
  3963. #if EXTRUDER > 1
  3964. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3965. || !READ(X2_ENABLE_PIN)
  3966. #endif
  3967. || !READ(E1_ENABLE_PIN)
  3968. #endif
  3969. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3970. {
  3971. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3972. }
  3973. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3974. {
  3975. digitalWrite(CONTROLLERFAN_PIN, 0);
  3976. analogWrite(CONTROLLERFAN_PIN, 0);
  3977. }
  3978. else
  3979. {
  3980. // allows digital or PWM fan output to be used (see M42 handling)
  3981. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3982. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3983. }
  3984. }
  3985. }
  3986. #endif
  3987. #ifdef SCARA
  3988. void calculate_SCARA_forward_Transform(float f_scara[3])
  3989. {
  3990. // Perform forward kinematics, and place results in delta[3]
  3991. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3992. float x_sin, x_cos, y_sin, y_cos;
  3993. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3994. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3995. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3996. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3997. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3998. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3999. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4000. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4001. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4002. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4003. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4004. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4005. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4006. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4007. }
  4008. void calculate_delta(float cartesian[3]){
  4009. //reverse kinematics.
  4010. // Perform reversed kinematics, and place results in delta[3]
  4011. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4012. float SCARA_pos[2];
  4013. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4014. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4015. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4016. #if (Linkage_1 == Linkage_2)
  4017. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4018. #else
  4019. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4020. #endif
  4021. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4022. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4023. SCARA_K2 = Linkage_2 * SCARA_S2;
  4024. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4025. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4026. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4027. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4028. delta[Z_AXIS] = cartesian[Z_AXIS];
  4029. /*
  4030. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4031. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4032. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4033. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4034. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4035. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4036. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4037. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4038. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4039. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4040. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4041. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4042. SERIAL_ECHOLN(" ");*/
  4043. }
  4044. #endif
  4045. #ifdef TEMP_STAT_LEDS
  4046. static bool blue_led = false;
  4047. static bool red_led = false;
  4048. static uint32_t stat_update = 0;
  4049. void handle_status_leds(void) {
  4050. float max_temp = 0.0;
  4051. if(millis() > stat_update) {
  4052. stat_update += 500; // Update every 0.5s
  4053. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4054. max_temp = max(max_temp, degHotend(cur_extruder));
  4055. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4056. }
  4057. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4058. max_temp = max(max_temp, degTargetBed());
  4059. max_temp = max(max_temp, degBed());
  4060. #endif
  4061. if((max_temp > 55.0) && (red_led == false)) {
  4062. digitalWrite(STAT_LED_RED, 1);
  4063. digitalWrite(STAT_LED_BLUE, 0);
  4064. red_led = true;
  4065. blue_led = false;
  4066. }
  4067. if((max_temp < 54.0) && (blue_led == false)) {
  4068. digitalWrite(STAT_LED_RED, 0);
  4069. digitalWrite(STAT_LED_BLUE, 1);
  4070. red_led = false;
  4071. blue_led = true;
  4072. }
  4073. }
  4074. }
  4075. #endif
  4076. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4077. {
  4078. #if defined(KILL_PIN) && KILL_PIN > -1
  4079. static int killCount = 0; // make the inactivity button a bit less responsive
  4080. const int KILL_DELAY = 10000;
  4081. #endif
  4082. #if defined(HOME_PIN) && HOME_PIN > -1
  4083. static int homeDebounceCount = 0; // poor man's debouncing count
  4084. const int HOME_DEBOUNCE_DELAY = 10000;
  4085. #endif
  4086. if(buflen < (BUFSIZE-1))
  4087. get_command();
  4088. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4089. if(max_inactive_time)
  4090. kill();
  4091. if(stepper_inactive_time) {
  4092. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4093. {
  4094. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4095. disable_x();
  4096. disable_y();
  4097. disable_z();
  4098. disable_e0();
  4099. disable_e1();
  4100. disable_e2();
  4101. }
  4102. }
  4103. }
  4104. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4105. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4106. {
  4107. chdkActive = false;
  4108. WRITE(CHDK, LOW);
  4109. }
  4110. #endif
  4111. #if defined(KILL_PIN) && KILL_PIN > -1
  4112. // Check if the kill button was pressed and wait just in case it was an accidental
  4113. // key kill key press
  4114. // -------------------------------------------------------------------------------
  4115. if( 0 == READ(KILL_PIN) )
  4116. {
  4117. killCount++;
  4118. }
  4119. else if (killCount > 0)
  4120. {
  4121. killCount--;
  4122. }
  4123. // Exceeded threshold and we can confirm that it was not accidental
  4124. // KILL the machine
  4125. // ----------------------------------------------------------------
  4126. if ( killCount >= KILL_DELAY)
  4127. {
  4128. kill();
  4129. }
  4130. #endif
  4131. #if defined(HOME_PIN) && HOME_PIN > -1
  4132. // Check to see if we have to home, use poor man's debouncer
  4133. // ---------------------------------------------------------
  4134. if ( 0 == READ(HOME_PIN) )
  4135. {
  4136. if (homeDebounceCount == 0)
  4137. {
  4138. enquecommands_P((PSTR("G28")));
  4139. homeDebounceCount++;
  4140. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4141. }
  4142. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4143. {
  4144. homeDebounceCount++;
  4145. }
  4146. else
  4147. {
  4148. homeDebounceCount = 0;
  4149. }
  4150. }
  4151. #endif
  4152. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4153. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4154. #endif
  4155. #ifdef EXTRUDER_RUNOUT_PREVENT
  4156. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4157. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4158. {
  4159. bool oldstatus=READ(E0_ENABLE_PIN);
  4160. enable_e0();
  4161. float oldepos=current_position[E_AXIS];
  4162. float oldedes=destination[E_AXIS];
  4163. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4164. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4165. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4166. current_position[E_AXIS]=oldepos;
  4167. destination[E_AXIS]=oldedes;
  4168. plan_set_e_position(oldepos);
  4169. previous_millis_cmd=millis();
  4170. st_synchronize();
  4171. WRITE(E0_ENABLE_PIN,oldstatus);
  4172. }
  4173. #endif
  4174. #if defined(DUAL_X_CARRIAGE)
  4175. // handle delayed move timeout
  4176. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4177. {
  4178. // travel moves have been received so enact them
  4179. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4180. memcpy(destination,current_position,sizeof(destination));
  4181. prepare_move();
  4182. }
  4183. #endif
  4184. #ifdef TEMP_STAT_LEDS
  4185. handle_status_leds();
  4186. #endif
  4187. check_axes_activity();
  4188. }
  4189. void kill()
  4190. {
  4191. cli(); // Stop interrupts
  4192. disable_heater();
  4193. disable_x();
  4194. disable_y();
  4195. disable_z();
  4196. disable_e0();
  4197. disable_e1();
  4198. disable_e2();
  4199. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4200. pinMode(PS_ON_PIN,INPUT);
  4201. #endif
  4202. SERIAL_ERROR_START;
  4203. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4204. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4205. // FMC small patch to update the LCD before ending
  4206. sei(); // enable interrupts
  4207. for ( int i=5; i--; lcd_update())
  4208. {
  4209. delay(200);
  4210. }
  4211. cli(); // disable interrupts
  4212. suicide();
  4213. while(1) { /* Intentionally left empty */ } // Wait for reset
  4214. }
  4215. void Stop()
  4216. {
  4217. disable_heater();
  4218. if(Stopped == false) {
  4219. Stopped = true;
  4220. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4221. SERIAL_ERROR_START;
  4222. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4223. LCD_MESSAGEPGM(MSG_STOPPED);
  4224. }
  4225. }
  4226. bool IsStopped() { return Stopped; };
  4227. #ifdef FAST_PWM_FAN
  4228. void setPwmFrequency(uint8_t pin, int val)
  4229. {
  4230. val &= 0x07;
  4231. switch(digitalPinToTimer(pin))
  4232. {
  4233. #if defined(TCCR0A)
  4234. case TIMER0A:
  4235. case TIMER0B:
  4236. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4237. // TCCR0B |= val;
  4238. break;
  4239. #endif
  4240. #if defined(TCCR1A)
  4241. case TIMER1A:
  4242. case TIMER1B:
  4243. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4244. // TCCR1B |= val;
  4245. break;
  4246. #endif
  4247. #if defined(TCCR2)
  4248. case TIMER2:
  4249. case TIMER2:
  4250. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4251. TCCR2 |= val;
  4252. break;
  4253. #endif
  4254. #if defined(TCCR2A)
  4255. case TIMER2A:
  4256. case TIMER2B:
  4257. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4258. TCCR2B |= val;
  4259. break;
  4260. #endif
  4261. #if defined(TCCR3A)
  4262. case TIMER3A:
  4263. case TIMER3B:
  4264. case TIMER3C:
  4265. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4266. TCCR3B |= val;
  4267. break;
  4268. #endif
  4269. #if defined(TCCR4A)
  4270. case TIMER4A:
  4271. case TIMER4B:
  4272. case TIMER4C:
  4273. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4274. TCCR4B |= val;
  4275. break;
  4276. #endif
  4277. #if defined(TCCR5A)
  4278. case TIMER5A:
  4279. case TIMER5B:
  4280. case TIMER5C:
  4281. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4282. TCCR5B |= val;
  4283. break;
  4284. #endif
  4285. }
  4286. }
  4287. #endif //FAST_PWM_FAN
  4288. bool setTargetedHotend(int code){
  4289. tmp_extruder = active_extruder;
  4290. if(code_seen('T')) {
  4291. tmp_extruder = code_value();
  4292. if(tmp_extruder >= EXTRUDERS) {
  4293. SERIAL_ECHO_START;
  4294. switch(code){
  4295. case 104:
  4296. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4297. break;
  4298. case 105:
  4299. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4300. break;
  4301. case 109:
  4302. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4303. break;
  4304. case 218:
  4305. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4306. break;
  4307. case 221:
  4308. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4309. break;
  4310. }
  4311. SERIAL_ECHOLN(tmp_extruder);
  4312. return true;
  4313. }
  4314. }
  4315. return false;
  4316. }
  4317. float calculate_volumetric_multiplier(float diameter) {
  4318. if (!volumetric_enabled || diameter == 0) return 1.0;
  4319. float d2 = diameter * 0.5;
  4320. return 1.0 / (M_PI * d2 * d2);
  4321. }
  4322. void calculate_volumetric_multipliers() {
  4323. for (int i=0; i<EXTRUDERS; i++)
  4324. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  4325. }