My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 186KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  31. #ifdef MESH_BED_LEVELING
  32. #include "mesh_bed_leveling.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home one or more axes
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M48 - Measure Z_Probe repeatability. M48 [n # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  97. // M80 - Turn on Power Supply
  98. // M81 - Turn off Power Supply
  99. // M82 - Set E codes absolute (default)
  100. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  101. // M84 - Disable steppers until next move,
  102. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  103. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  104. // M92 - Set axis_steps_per_unit - same syntax as G92
  105. // M104 - Set extruder target temp
  106. // M105 - Read current temp
  107. // M106 - Fan on
  108. // M107 - Fan off
  109. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  110. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  111. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  112. // M112 - Emergency stop
  113. // M114 - Output current position to serial port
  114. // M115 - Capabilities string
  115. // M117 - display message
  116. // M119 - Output Endstop status to serial port
  117. // M120 - Enable endstop detection
  118. // M121 - Disable endstop detection
  119. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  120. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  121. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  123. // M140 - Set bed target temp
  124. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  125. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  126. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  127. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  128. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  129. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  130. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  131. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  132. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  133. // M206 - Set additional homing offset
  134. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  135. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  136. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  137. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  138. // M220 S<factor in percent>- set speed factor override percentage
  139. // M221 S<factor in percent>- set extrude factor override percentage
  140. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  141. // M240 - Trigger a camera to take a photograph
  142. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  143. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  144. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  145. // M301 - Set PID parameters P I and D
  146. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  147. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  148. // M304 - Set bed PID parameters P I and D
  149. // M380 - Activate solenoid on active extruder
  150. // M381 - Disable all solenoids
  151. // M400 - Finish all moves
  152. // M401 - Lower z-probe if present
  153. // M402 - Raise z-probe if present
  154. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  155. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  156. // M406 - Turn off Filament Sensor extrusion control
  157. // M407 - Display measured filament diameter
  158. // M500 - Store parameters in EEPROM
  159. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  160. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  161. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  162. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  163. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  164. // M665 - Set delta configurations
  165. // M666 - Set delta endstop adjustment
  166. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  167. // M907 - Set digital trimpot motor current using axis codes.
  168. // M908 - Control digital trimpot directly.
  169. // M350 - Set microstepping mode.
  170. // M351 - Toggle MS1 MS2 pins directly.
  171. // ************ SCARA Specific - This can change to suit future G-code regulations
  172. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  173. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  174. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  175. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  176. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  177. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  178. //************* SCARA End ***************
  179. // M928 - Start SD logging (M928 filename.g) - ended by M29
  180. // M999 - Restart after being stopped by error
  181. #ifdef SDSUPPORT
  182. CardReader card;
  183. #endif
  184. float homing_feedrate[] = HOMING_FEEDRATE;
  185. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  186. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  187. int feedmultiply = 100; //100->1 200->2
  188. int saved_feedmultiply;
  189. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  190. bool volumetric_enabled = false;
  191. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  192. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  193. float current_position[NUM_AXIS] = { 0.0 };
  194. float home_offset[3] = { 0 };
  195. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  196. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  197. bool axis_known_position[3] = { false };
  198. uint8_t active_extruder = 0;
  199. int fanSpeed = 0;
  200. bool cancel_heatup = false;
  201. const char errormagic[] PROGMEM = "Error:";
  202. const char echomagic[] PROGMEM = "echo:";
  203. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  204. static float destination[NUM_AXIS] = { 0 };
  205. static float offset[3] = { 0 };
  206. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  207. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  208. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  209. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  210. static int bufindr = 0;
  211. static int bufindw = 0;
  212. static int buflen = 0;
  213. static char serial_char;
  214. static int serial_count = 0;
  215. static boolean comment_mode = false;
  216. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  217. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  218. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  219. // Inactivity shutdown
  220. unsigned long previous_millis_cmd = 0;
  221. static unsigned long max_inactive_time = 0;
  222. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  223. unsigned long starttime = 0; ///< Print job start time
  224. unsigned long stoptime = 0; ///< Print job stop time
  225. static uint8_t target_extruder;
  226. bool Stopped = false;
  227. bool CooldownNoWait = true;
  228. bool target_direction;
  229. #ifdef ENABLE_AUTO_BED_LEVELING
  230. int xy_travel_speed = XY_TRAVEL_SPEED;
  231. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  232. #endif
  233. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  234. float z_endstop_adj = 0;
  235. #endif
  236. // Extruder offsets
  237. #if EXTRUDERS > 1
  238. #ifndef EXTRUDER_OFFSET_X
  239. #define EXTRUDER_OFFSET_X { 0 }
  240. #endif
  241. #ifndef EXTRUDER_OFFSET_Y
  242. #define EXTRUDER_OFFSET_Y { 0 }
  243. #endif
  244. float extruder_offset[][EXTRUDERS] = {
  245. EXTRUDER_OFFSET_X,
  246. EXTRUDER_OFFSET_Y
  247. #ifdef DUAL_X_CARRIAGE
  248. , { 0 } // supports offsets in XYZ plane
  249. #endif
  250. };
  251. #endif
  252. #ifdef SERVO_ENDSTOPS
  253. int servo_endstops[] = SERVO_ENDSTOPS;
  254. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  255. #endif
  256. #ifdef BARICUDA
  257. int ValvePressure = 0;
  258. int EtoPPressure = 0;
  259. #endif
  260. #ifdef FWRETRACT
  261. bool autoretract_enabled = false;
  262. bool retracted[EXTRUDERS] = { false };
  263. bool retracted_swap[EXTRUDERS] = { false };
  264. float retract_length = RETRACT_LENGTH;
  265. float retract_length_swap = RETRACT_LENGTH_SWAP;
  266. float retract_feedrate = RETRACT_FEEDRATE;
  267. float retract_zlift = RETRACT_ZLIFT;
  268. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  269. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  270. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  271. #endif // FWRETRACT
  272. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  273. bool powersupply =
  274. #ifdef PS_DEFAULT_OFF
  275. false
  276. #else
  277. true
  278. #endif
  279. ;
  280. #endif
  281. #ifdef DELTA
  282. float delta[3] = { 0 };
  283. #define SIN_60 0.8660254037844386
  284. #define COS_60 0.5
  285. float endstop_adj[3] = { 0 };
  286. // these are the default values, can be overriden with M665
  287. float delta_radius = DELTA_RADIUS;
  288. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  289. float delta_tower1_y = -COS_60 * delta_radius;
  290. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  291. float delta_tower2_y = -COS_60 * delta_radius;
  292. float delta_tower3_x = 0; // back middle tower
  293. float delta_tower3_y = delta_radius;
  294. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  295. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  296. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  297. #ifdef ENABLE_AUTO_BED_LEVELING
  298. int delta_grid_spacing[2] = { 0, 0 };
  299. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  300. #endif
  301. #else
  302. static bool home_all_axis = true;
  303. #endif
  304. #ifdef SCARA
  305. static float delta[3] = { 0 };
  306. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  307. #endif
  308. #ifdef FILAMENT_SENSOR
  309. //Variables for Filament Sensor input
  310. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  311. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  312. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  313. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  314. int delay_index1 = 0; //index into ring buffer
  315. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  316. float delay_dist = 0; //delay distance counter
  317. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  318. #endif
  319. #ifdef FILAMENT_RUNOUT_SENSOR
  320. static bool filrunoutEnqued = false;
  321. #endif
  322. #ifdef SDSUPPORT
  323. static bool fromsd[BUFSIZE];
  324. #endif
  325. #if NUM_SERVOS > 0
  326. Servo servos[NUM_SERVOS];
  327. #endif
  328. #ifdef CHDK
  329. unsigned long chdkHigh = 0;
  330. boolean chdkActive = false;
  331. #endif
  332. //===========================================================================
  333. //================================ Functions ================================
  334. //===========================================================================
  335. void get_arc_coordinates();
  336. bool setTargetedHotend(int code);
  337. void serial_echopair_P(const char *s_P, float v)
  338. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  339. void serial_echopair_P(const char *s_P, double v)
  340. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  341. void serial_echopair_P(const char *s_P, unsigned long v)
  342. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  343. #ifdef SDSUPPORT
  344. #include "SdFatUtil.h"
  345. int freeMemory() { return SdFatUtil::FreeRam(); }
  346. #else
  347. extern "C" {
  348. extern unsigned int __bss_end;
  349. extern unsigned int __heap_start;
  350. extern void *__brkval;
  351. int freeMemory() {
  352. int free_memory;
  353. if ((int)__brkval == 0)
  354. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  355. else
  356. free_memory = ((int)&free_memory) - ((int)__brkval);
  357. return free_memory;
  358. }
  359. }
  360. #endif //!SDSUPPORT
  361. //Injects the next command from the pending sequence of commands, when possible
  362. //Return false if and only if no command was pending
  363. static bool drain_queued_commands_P() {
  364. if (!queued_commands_P) return false;
  365. // Get the next 30 chars from the sequence of gcodes to run
  366. char cmd[30];
  367. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  368. cmd[sizeof(cmd) - 1] = '\0';
  369. // Look for the end of line, or the end of sequence
  370. size_t i = 0;
  371. char c;
  372. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  373. cmd[i] = '\0';
  374. if (enquecommand(cmd)) { // buffer was not full (else we will retry later)
  375. if (c)
  376. queued_commands_P += i + 1; // move to next command
  377. else
  378. queued_commands_P = NULL; // will have no more commands in the sequence
  379. }
  380. return true;
  381. }
  382. //Record one or many commands to run from program memory.
  383. //Aborts the current queue, if any.
  384. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  385. void enquecommands_P(const char* pgcode) {
  386. queued_commands_P = pgcode;
  387. drain_queued_commands_P(); // first command executed asap (when possible)
  388. }
  389. //adds a single command to the main command buffer, from RAM
  390. //that is really done in a non-safe way.
  391. //needs overworking someday
  392. //Returns false if it failed to do so
  393. bool enquecommand(const char *cmd)
  394. {
  395. if(*cmd==';')
  396. return false;
  397. if(buflen >= BUFSIZE)
  398. return false;
  399. //this is dangerous if a mixing of serial and this happens
  400. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  401. SERIAL_ECHO_START;
  402. SERIAL_ECHOPGM(MSG_Enqueing);
  403. SERIAL_ECHO(cmdbuffer[bufindw]);
  404. SERIAL_ECHOLNPGM("\"");
  405. bufindw= (bufindw + 1)%BUFSIZE;
  406. buflen += 1;
  407. return true;
  408. }
  409. void setup_killpin()
  410. {
  411. #if HAS_KILL
  412. SET_INPUT(KILL_PIN);
  413. WRITE(KILL_PIN, HIGH);
  414. #endif
  415. }
  416. void setup_filrunoutpin()
  417. {
  418. #if HAS_FILRUNOUT
  419. pinMode(FILRUNOUT_PIN, INPUT);
  420. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  421. WRITE(FILLRUNOUT_PIN, HIGH);
  422. #endif
  423. #endif
  424. }
  425. // Set home pin
  426. void setup_homepin(void)
  427. {
  428. #if HAS_HOME
  429. SET_INPUT(HOME_PIN);
  430. WRITE(HOME_PIN, HIGH);
  431. #endif
  432. }
  433. void setup_photpin()
  434. {
  435. #if HAS_PHOTOGRAPH
  436. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  437. #endif
  438. }
  439. void setup_powerhold()
  440. {
  441. #if HAS_SUICIDE
  442. OUT_WRITE(SUICIDE_PIN, HIGH);
  443. #endif
  444. #if HAS_POWER_SWITCH
  445. #ifdef PS_DEFAULT_OFF
  446. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  447. #else
  448. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  449. #endif
  450. #endif
  451. }
  452. void suicide()
  453. {
  454. #if HAS_SUICIDE
  455. OUT_WRITE(SUICIDE_PIN, LOW);
  456. #endif
  457. }
  458. void servo_init()
  459. {
  460. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  461. servos[0].attach(SERVO0_PIN);
  462. #endif
  463. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  464. servos[1].attach(SERVO1_PIN);
  465. #endif
  466. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  467. servos[2].attach(SERVO2_PIN);
  468. #endif
  469. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  470. servos[3].attach(SERVO3_PIN);
  471. #endif
  472. // Set position of Servo Endstops that are defined
  473. #ifdef SERVO_ENDSTOPS
  474. for (int i = 0; i < 3; i++)
  475. if (servo_endstops[i] >= 0)
  476. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  477. #endif
  478. #if SERVO_LEVELING
  479. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  480. servos[servo_endstops[Z_AXIS]].detach();
  481. #endif
  482. }
  483. void setup()
  484. {
  485. setup_killpin();
  486. setup_filrunoutpin();
  487. setup_powerhold();
  488. MYSERIAL.begin(BAUDRATE);
  489. SERIAL_PROTOCOLLNPGM("start");
  490. SERIAL_ECHO_START;
  491. // Check startup - does nothing if bootloader sets MCUSR to 0
  492. byte mcu = MCUSR;
  493. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  494. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  495. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  496. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  497. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  498. MCUSR=0;
  499. SERIAL_ECHOPGM(MSG_MARLIN);
  500. SERIAL_ECHOLNPGM(STRING_VERSION);
  501. #ifdef STRING_VERSION_CONFIG_H
  502. #ifdef STRING_CONFIG_H_AUTHOR
  503. SERIAL_ECHO_START;
  504. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  505. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  506. SERIAL_ECHOPGM(MSG_AUTHOR);
  507. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  508. SERIAL_ECHOPGM("Compiled: ");
  509. SERIAL_ECHOLNPGM(__DATE__);
  510. #endif // STRING_CONFIG_H_AUTHOR
  511. #endif // STRING_VERSION_CONFIG_H
  512. SERIAL_ECHO_START;
  513. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  514. SERIAL_ECHO(freeMemory());
  515. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  516. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  517. #ifdef SDSUPPORT
  518. for(int8_t i = 0; i < BUFSIZE; i++)
  519. {
  520. fromsd[i] = false;
  521. }
  522. #endif //!SDSUPPORT
  523. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  524. Config_RetrieveSettings();
  525. tp_init(); // Initialize temperature loop
  526. plan_init(); // Initialize planner;
  527. watchdog_init();
  528. st_init(); // Initialize stepper, this enables interrupts!
  529. setup_photpin();
  530. servo_init();
  531. lcd_init();
  532. _delay_ms(1000); // wait 1sec to display the splash screen
  533. #if HAS_CONTROLLERFAN
  534. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  535. #endif
  536. #ifdef DIGIPOT_I2C
  537. digipot_i2c_init();
  538. #endif
  539. #ifdef Z_PROBE_SLED
  540. pinMode(SERVO0_PIN, OUTPUT);
  541. digitalWrite(SERVO0_PIN, LOW); // turn it off
  542. #endif // Z_PROBE_SLED
  543. setup_homepin();
  544. #ifdef STAT_LED_RED
  545. pinMode(STAT_LED_RED, OUTPUT);
  546. digitalWrite(STAT_LED_RED, LOW); // turn it off
  547. #endif
  548. #ifdef STAT_LED_BLUE
  549. pinMode(STAT_LED_BLUE, OUTPUT);
  550. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  551. #endif
  552. }
  553. void loop() {
  554. if (buflen < BUFSIZE - 1) get_command();
  555. #ifdef SDSUPPORT
  556. card.checkautostart(false);
  557. #endif
  558. if (buflen) {
  559. #ifdef SDSUPPORT
  560. if (card.saving) {
  561. if (strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL) {
  562. card.write_command(cmdbuffer[bufindr]);
  563. if (card.logging)
  564. process_commands();
  565. else
  566. SERIAL_PROTOCOLLNPGM(MSG_OK);
  567. }
  568. else {
  569. card.closefile();
  570. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  571. }
  572. }
  573. else
  574. process_commands();
  575. #else
  576. process_commands();
  577. #endif // SDSUPPORT
  578. buflen--;
  579. bufindr = (bufindr + 1) % BUFSIZE;
  580. }
  581. // Check heater every n milliseconds
  582. manage_heater();
  583. manage_inactivity();
  584. checkHitEndstops();
  585. lcd_update();
  586. }
  587. void get_command()
  588. {
  589. if (drain_queued_commands_P()) // priority is given to non-serial commands
  590. return;
  591. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  592. serial_char = MYSERIAL.read();
  593. if(serial_char == '\n' ||
  594. serial_char == '\r' ||
  595. serial_count >= (MAX_CMD_SIZE - 1) )
  596. {
  597. // end of line == end of comment
  598. comment_mode = false;
  599. if(!serial_count) {
  600. // short cut for empty lines
  601. return;
  602. }
  603. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  604. #ifdef SDSUPPORT
  605. fromsd[bufindw] = false;
  606. #endif //!SDSUPPORT
  607. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  608. {
  609. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  610. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  611. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  612. SERIAL_ERROR_START;
  613. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  614. SERIAL_ERRORLN(gcode_LastN);
  615. //Serial.println(gcode_N);
  616. FlushSerialRequestResend();
  617. serial_count = 0;
  618. return;
  619. }
  620. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  621. {
  622. byte checksum = 0;
  623. byte count = 0;
  624. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  625. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  626. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  627. SERIAL_ERROR_START;
  628. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  629. SERIAL_ERRORLN(gcode_LastN);
  630. FlushSerialRequestResend();
  631. serial_count = 0;
  632. return;
  633. }
  634. //if no errors, continue parsing
  635. }
  636. else
  637. {
  638. SERIAL_ERROR_START;
  639. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  640. SERIAL_ERRORLN(gcode_LastN);
  641. FlushSerialRequestResend();
  642. serial_count = 0;
  643. return;
  644. }
  645. gcode_LastN = gcode_N;
  646. //if no errors, continue parsing
  647. }
  648. else // if we don't receive 'N' but still see '*'
  649. {
  650. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  651. {
  652. SERIAL_ERROR_START;
  653. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  654. SERIAL_ERRORLN(gcode_LastN);
  655. serial_count = 0;
  656. return;
  657. }
  658. }
  659. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  660. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  661. switch(strtol(strchr_pointer + 1, NULL, 10)){
  662. case 0:
  663. case 1:
  664. case 2:
  665. case 3:
  666. if (Stopped == true) {
  667. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  668. LCD_MESSAGEPGM(MSG_STOPPED);
  669. }
  670. break;
  671. default:
  672. break;
  673. }
  674. }
  675. //If command was e-stop process now
  676. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  677. kill();
  678. bufindw = (bufindw + 1)%BUFSIZE;
  679. buflen += 1;
  680. serial_count = 0; //clear buffer
  681. }
  682. else if(serial_char == '\\') { //Handle escapes
  683. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  684. // if we have one more character, copy it over
  685. serial_char = MYSERIAL.read();
  686. cmdbuffer[bufindw][serial_count++] = serial_char;
  687. }
  688. //otherwise do nothing
  689. }
  690. else { // its not a newline, carriage return or escape char
  691. if(serial_char == ';') comment_mode = true;
  692. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  693. }
  694. }
  695. #ifdef SDSUPPORT
  696. if(!card.sdprinting || serial_count!=0){
  697. return;
  698. }
  699. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  700. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  701. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  702. static bool stop_buffering=false;
  703. if(buflen==0) stop_buffering=false;
  704. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  705. int16_t n=card.get();
  706. serial_char = (char)n;
  707. if(serial_char == '\n' ||
  708. serial_char == '\r' ||
  709. (serial_char == '#' && comment_mode == false) ||
  710. (serial_char == ':' && comment_mode == false) ||
  711. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  712. {
  713. if(card.eof()){
  714. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  715. stoptime=millis();
  716. char time[30];
  717. unsigned long t=(stoptime-starttime)/1000;
  718. int hours, minutes;
  719. minutes=(t/60)%60;
  720. hours=t/60/60;
  721. sprintf_P(time, PSTR("%i "MSG_END_HOUR" %i "MSG_END_MINUTE),hours, minutes);
  722. SERIAL_ECHO_START;
  723. SERIAL_ECHOLN(time);
  724. lcd_setstatus(time, true);
  725. card.printingHasFinished();
  726. card.checkautostart(true);
  727. }
  728. if(serial_char=='#')
  729. stop_buffering=true;
  730. if(!serial_count)
  731. {
  732. comment_mode = false; //for new command
  733. return; //if empty line
  734. }
  735. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  736. // if(!comment_mode){
  737. fromsd[bufindw] = true;
  738. buflen += 1;
  739. bufindw = (bufindw + 1)%BUFSIZE;
  740. // }
  741. comment_mode = false; //for new command
  742. serial_count = 0; //clear buffer
  743. }
  744. else
  745. {
  746. if(serial_char == ';') comment_mode = true;
  747. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  748. }
  749. }
  750. #endif //SDSUPPORT
  751. }
  752. float code_value() {
  753. float ret;
  754. char *e = strchr(strchr_pointer, 'E');
  755. if (e) {
  756. *e = 0;
  757. ret = strtod(strchr_pointer+1, NULL);
  758. *e = 'E';
  759. }
  760. else
  761. ret = strtod(strchr_pointer+1, NULL);
  762. return ret;
  763. }
  764. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  765. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  766. bool code_seen(char code) {
  767. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  768. return (strchr_pointer != NULL); //Return True if a character was found
  769. }
  770. #define DEFINE_PGM_READ_ANY(type, reader) \
  771. static inline type pgm_read_any(const type *p) \
  772. { return pgm_read_##reader##_near(p); }
  773. DEFINE_PGM_READ_ANY(float, float);
  774. DEFINE_PGM_READ_ANY(signed char, byte);
  775. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  776. static const PROGMEM type array##_P[3] = \
  777. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  778. static inline type array(int axis) \
  779. { return pgm_read_any(&array##_P[axis]); }
  780. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  781. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  782. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  783. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  784. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  785. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  786. #ifdef DUAL_X_CARRIAGE
  787. #define DXC_FULL_CONTROL_MODE 0
  788. #define DXC_AUTO_PARK_MODE 1
  789. #define DXC_DUPLICATION_MODE 2
  790. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  791. static float x_home_pos(int extruder) {
  792. if (extruder == 0)
  793. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  794. else
  795. // In dual carriage mode the extruder offset provides an override of the
  796. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  797. // This allow soft recalibration of the second extruder offset position without firmware reflash
  798. // (through the M218 command).
  799. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  800. }
  801. static int x_home_dir(int extruder) {
  802. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  803. }
  804. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  805. static bool active_extruder_parked = false; // used in mode 1 & 2
  806. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  807. static unsigned long delayed_move_time = 0; // used in mode 1
  808. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  809. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  810. bool extruder_duplication_enabled = false; // used in mode 2
  811. #endif //DUAL_X_CARRIAGE
  812. static void axis_is_at_home(int axis) {
  813. #ifdef DUAL_X_CARRIAGE
  814. if (axis == X_AXIS) {
  815. if (active_extruder != 0) {
  816. current_position[X_AXIS] = x_home_pos(active_extruder);
  817. min_pos[X_AXIS] = X2_MIN_POS;
  818. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  819. return;
  820. }
  821. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  822. float xoff = home_offset[X_AXIS];
  823. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  824. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  825. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  826. return;
  827. }
  828. }
  829. #endif
  830. #ifdef SCARA
  831. float homeposition[3];
  832. if (axis < 2) {
  833. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  834. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  835. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  836. // Works out real Homeposition angles using inverse kinematics,
  837. // and calculates homing offset using forward kinematics
  838. calculate_delta(homeposition);
  839. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  840. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  841. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  842. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  843. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  844. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  845. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  846. calculate_SCARA_forward_Transform(delta);
  847. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  848. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  849. current_position[axis] = delta[axis];
  850. // SCARA home positions are based on configuration since the actual limits are determined by the
  851. // inverse kinematic transform.
  852. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  853. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  854. }
  855. else {
  856. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  857. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  858. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  859. }
  860. #else
  861. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  862. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  863. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  864. #endif
  865. }
  866. /**
  867. * Some planner shorthand inline functions
  868. */
  869. inline void line_to_current_position() {
  870. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  871. }
  872. inline void line_to_z(float zPosition) {
  873. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  874. }
  875. inline void line_to_destination() {
  876. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  877. }
  878. inline void sync_plan_position() {
  879. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  880. }
  881. #if defined(DELTA) || defined(SCARA)
  882. inline void sync_plan_position_delta() {
  883. calculate_delta(current_position);
  884. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  885. }
  886. #endif
  887. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  888. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  889. #ifdef ENABLE_AUTO_BED_LEVELING
  890. #ifdef DELTA
  891. /**
  892. * Calculate delta, start a line, and set current_position to destination
  893. */
  894. void prepare_move_raw() {
  895. refresh_cmd_timeout();
  896. calculate_delta(destination);
  897. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  898. set_current_to_destination();
  899. }
  900. #endif
  901. #ifdef AUTO_BED_LEVELING_GRID
  902. #ifndef DELTA
  903. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  904. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  905. planeNormal.debug("planeNormal");
  906. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  907. //bedLevel.debug("bedLevel");
  908. //plan_bed_level_matrix.debug("bed level before");
  909. //vector_3 uncorrected_position = plan_get_position_mm();
  910. //uncorrected_position.debug("position before");
  911. vector_3 corrected_position = plan_get_position();
  912. //corrected_position.debug("position after");
  913. current_position[X_AXIS] = corrected_position.x;
  914. current_position[Y_AXIS] = corrected_position.y;
  915. current_position[Z_AXIS] = corrected_position.z;
  916. sync_plan_position();
  917. }
  918. #endif // !DELTA
  919. #else // !AUTO_BED_LEVELING_GRID
  920. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  921. plan_bed_level_matrix.set_to_identity();
  922. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  923. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  924. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  925. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  926. if (planeNormal.z < 0) {
  927. planeNormal.x = -planeNormal.x;
  928. planeNormal.y = -planeNormal.y;
  929. planeNormal.z = -planeNormal.z;
  930. }
  931. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  932. vector_3 corrected_position = plan_get_position();
  933. current_position[X_AXIS] = corrected_position.x;
  934. current_position[Y_AXIS] = corrected_position.y;
  935. current_position[Z_AXIS] = corrected_position.z;
  936. sync_plan_position();
  937. }
  938. #endif // !AUTO_BED_LEVELING_GRID
  939. static void run_z_probe() {
  940. #ifdef DELTA
  941. float start_z = current_position[Z_AXIS];
  942. long start_steps = st_get_position(Z_AXIS);
  943. // move down slowly until you find the bed
  944. feedrate = homing_feedrate[Z_AXIS] / 4;
  945. destination[Z_AXIS] = -10;
  946. prepare_move_raw();
  947. st_synchronize();
  948. endstops_hit_on_purpose(); // clear endstop hit flags
  949. // we have to let the planner know where we are right now as it is not where we said to go.
  950. long stop_steps = st_get_position(Z_AXIS);
  951. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  952. current_position[Z_AXIS] = mm;
  953. sync_plan_position_delta();
  954. #else // !DELTA
  955. plan_bed_level_matrix.set_to_identity();
  956. feedrate = homing_feedrate[Z_AXIS];
  957. // move down until you find the bed
  958. float zPosition = -10;
  959. line_to_z(zPosition);
  960. st_synchronize();
  961. // we have to let the planner know where we are right now as it is not where we said to go.
  962. zPosition = st_get_position_mm(Z_AXIS);
  963. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  964. // move up the retract distance
  965. zPosition += home_bump_mm(Z_AXIS);
  966. line_to_z(zPosition);
  967. st_synchronize();
  968. endstops_hit_on_purpose(); // clear endstop hit flags
  969. // move back down slowly to find bed
  970. if (homing_bump_divisor[Z_AXIS] >= 1)
  971. feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
  972. else {
  973. feedrate = homing_feedrate[Z_AXIS] / 10;
  974. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  975. }
  976. zPosition -= home_bump_mm(Z_AXIS) * 2;
  977. line_to_z(zPosition);
  978. st_synchronize();
  979. endstops_hit_on_purpose(); // clear endstop hit flags
  980. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  981. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  982. sync_plan_position();
  983. #endif // !DELTA
  984. }
  985. /**
  986. *
  987. */
  988. static void do_blocking_move_to(float x, float y, float z) {
  989. float oldFeedRate = feedrate;
  990. #ifdef DELTA
  991. feedrate = XY_TRAVEL_SPEED;
  992. destination[X_AXIS] = x;
  993. destination[Y_AXIS] = y;
  994. destination[Z_AXIS] = z;
  995. prepare_move_raw();
  996. st_synchronize();
  997. #else
  998. feedrate = homing_feedrate[Z_AXIS];
  999. current_position[Z_AXIS] = z;
  1000. line_to_current_position();
  1001. st_synchronize();
  1002. feedrate = xy_travel_speed;
  1003. current_position[X_AXIS] = x;
  1004. current_position[Y_AXIS] = y;
  1005. line_to_current_position();
  1006. st_synchronize();
  1007. #endif
  1008. feedrate = oldFeedRate;
  1009. }
  1010. static void setup_for_endstop_move() {
  1011. saved_feedrate = feedrate;
  1012. saved_feedmultiply = feedmultiply;
  1013. feedmultiply = 100;
  1014. refresh_cmd_timeout();
  1015. enable_endstops(true);
  1016. }
  1017. static void clean_up_after_endstop_move() {
  1018. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1019. enable_endstops(false);
  1020. #endif
  1021. feedrate = saved_feedrate;
  1022. feedmultiply = saved_feedmultiply;
  1023. refresh_cmd_timeout();
  1024. }
  1025. static void deploy_z_probe() {
  1026. #ifdef SERVO_ENDSTOPS
  1027. // Engage Z Servo endstop if enabled
  1028. if (servo_endstops[Z_AXIS] >= 0) {
  1029. #if SERVO_LEVELING
  1030. servos[servo_endstops[Z_AXIS]].attach(0);
  1031. #endif
  1032. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1033. #if SERVO_LEVELING
  1034. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1035. servos[servo_endstops[Z_AXIS]].detach();
  1036. #endif
  1037. }
  1038. #elif defined(Z_PROBE_ALLEN_KEY)
  1039. feedrate = homing_feedrate[X_AXIS];
  1040. // Move to the start position to initiate deployment
  1041. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1042. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1043. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1044. prepare_move_raw();
  1045. // Home X to touch the belt
  1046. feedrate = homing_feedrate[X_AXIS]/10;
  1047. destination[X_AXIS] = 0;
  1048. prepare_move_raw();
  1049. // Home Y for safety
  1050. feedrate = homing_feedrate[X_AXIS]/2;
  1051. destination[Y_AXIS] = 0;
  1052. prepare_move_raw();
  1053. st_synchronize();
  1054. #ifdef Z_PROBE_ENDSTOP
  1055. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1056. if (z_probe_endstop)
  1057. #else
  1058. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1059. if (z_min_endstop)
  1060. #endif
  1061. {
  1062. if (!Stopped) {
  1063. SERIAL_ERROR_START;
  1064. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1065. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1066. }
  1067. Stop();
  1068. }
  1069. #endif // Z_PROBE_ALLEN_KEY
  1070. }
  1071. static void stow_z_probe() {
  1072. #ifdef SERVO_ENDSTOPS
  1073. // Retract Z Servo endstop if enabled
  1074. if (servo_endstops[Z_AXIS] >= 0) {
  1075. #if Z_RAISE_AFTER_PROBING > 0
  1076. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1077. st_synchronize();
  1078. #endif
  1079. #if SERVO_LEVELING
  1080. servos[servo_endstops[Z_AXIS]].attach(0);
  1081. #endif
  1082. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1083. #if SERVO_LEVELING
  1084. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1085. servos[servo_endstops[Z_AXIS]].detach();
  1086. #endif
  1087. }
  1088. #elif defined(Z_PROBE_ALLEN_KEY)
  1089. // Move up for safety
  1090. feedrate = homing_feedrate[X_AXIS];
  1091. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1092. prepare_move_raw();
  1093. // Move to the start position to initiate retraction
  1094. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1095. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1096. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1097. prepare_move_raw();
  1098. // Move the nozzle down to push the probe into retracted position
  1099. feedrate = homing_feedrate[Z_AXIS]/10;
  1100. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1101. prepare_move_raw();
  1102. // Move up for safety
  1103. feedrate = homing_feedrate[Z_AXIS]/2;
  1104. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1105. prepare_move_raw();
  1106. // Home XY for safety
  1107. feedrate = homing_feedrate[X_AXIS]/2;
  1108. destination[X_AXIS] = 0;
  1109. destination[Y_AXIS] = 0;
  1110. prepare_move_raw();
  1111. st_synchronize();
  1112. #ifdef Z_PROBE_ENDSTOP
  1113. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1114. if (!z_probe_endstop)
  1115. #else
  1116. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1117. if (!z_min_endstop)
  1118. #endif
  1119. {
  1120. if (!Stopped) {
  1121. SERIAL_ERROR_START;
  1122. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1123. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1124. }
  1125. Stop();
  1126. }
  1127. #endif
  1128. }
  1129. enum ProbeAction {
  1130. ProbeStay = 0,
  1131. ProbeDeploy = BIT(0),
  1132. ProbeStow = BIT(1),
  1133. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1134. };
  1135. // Probe bed height at position (x,y), returns the measured z value
  1136. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1137. // move to right place
  1138. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1139. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1140. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1141. if (retract_action & ProbeDeploy) deploy_z_probe();
  1142. #endif
  1143. run_z_probe();
  1144. float measured_z = current_position[Z_AXIS];
  1145. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1146. if (retract_action == ProbeStay) {
  1147. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1148. st_synchronize();
  1149. }
  1150. #endif
  1151. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1152. if (retract_action & ProbeStow) stow_z_probe();
  1153. #endif
  1154. if (verbose_level > 2) {
  1155. SERIAL_PROTOCOLPGM(MSG_BED);
  1156. SERIAL_PROTOCOLPGM(" X: ");
  1157. SERIAL_PROTOCOL_F(x, 3);
  1158. SERIAL_PROTOCOLPGM(" Y: ");
  1159. SERIAL_PROTOCOL_F(y, 3);
  1160. SERIAL_PROTOCOLPGM(" Z: ");
  1161. SERIAL_PROTOCOL_F(measured_z, 3);
  1162. SERIAL_EOL;
  1163. }
  1164. return measured_z;
  1165. }
  1166. #ifdef DELTA
  1167. /**
  1168. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1169. */
  1170. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1171. if (bed_level[x][y] != 0.0) {
  1172. return; // Don't overwrite good values.
  1173. }
  1174. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1175. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1176. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1177. float median = c; // Median is robust (ignores outliers).
  1178. if (a < b) {
  1179. if (b < c) median = b;
  1180. if (c < a) median = a;
  1181. } else { // b <= a
  1182. if (c < b) median = b;
  1183. if (a < c) median = a;
  1184. }
  1185. bed_level[x][y] = median;
  1186. }
  1187. // Fill in the unprobed points (corners of circular print surface)
  1188. // using linear extrapolation, away from the center.
  1189. static void extrapolate_unprobed_bed_level() {
  1190. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1191. for (int y = 0; y <= half; y++) {
  1192. for (int x = 0; x <= half; x++) {
  1193. if (x + y < 3) continue;
  1194. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1195. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1196. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1197. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1198. }
  1199. }
  1200. }
  1201. // Print calibration results for plotting or manual frame adjustment.
  1202. static void print_bed_level() {
  1203. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1204. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1205. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1206. SERIAL_PROTOCOLCHAR(' ');
  1207. }
  1208. SERIAL_EOL;
  1209. }
  1210. }
  1211. // Reset calibration results to zero.
  1212. void reset_bed_level() {
  1213. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1214. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1215. bed_level[x][y] = 0.0;
  1216. }
  1217. }
  1218. }
  1219. #endif // DELTA
  1220. #endif // ENABLE_AUTO_BED_LEVELING
  1221. /**
  1222. * Home an individual axis
  1223. */
  1224. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1225. static void homeaxis(int axis) {
  1226. #define HOMEAXIS_DO(LETTER) \
  1227. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1228. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1229. int axis_home_dir;
  1230. #ifdef DUAL_X_CARRIAGE
  1231. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1232. #else
  1233. axis_home_dir = home_dir(axis);
  1234. #endif
  1235. // Set the axis position as setup for the move
  1236. current_position[axis] = 0;
  1237. sync_plan_position();
  1238. // Engage Servo endstop if enabled
  1239. #if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
  1240. #if SERVO_LEVELING
  1241. if (axis == Z_AXIS) deploy_z_probe(); else
  1242. #endif
  1243. {
  1244. if (servo_endstops[axis] > -1)
  1245. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1246. }
  1247. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1248. #ifdef Z_DUAL_ENDSTOPS
  1249. if (axis == Z_AXIS) In_Homing_Process(true);
  1250. #endif
  1251. // Move towards the endstop until an endstop is triggered
  1252. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1253. feedrate = homing_feedrate[axis];
  1254. line_to_destination();
  1255. st_synchronize();
  1256. // Set the axis position as setup for the move
  1257. current_position[axis] = 0;
  1258. sync_plan_position();
  1259. // Move away from the endstop by the axis HOME_BUMP_MM
  1260. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1261. line_to_destination();
  1262. st_synchronize();
  1263. // Slow down the feedrate for the next move
  1264. if (homing_bump_divisor[axis] >= 1)
  1265. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  1266. else {
  1267. feedrate = homing_feedrate[axis] / 10;
  1268. SERIAL_ECHOLNPGM("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  1269. }
  1270. // Move slowly towards the endstop until triggered
  1271. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1272. line_to_destination();
  1273. st_synchronize();
  1274. #ifdef Z_DUAL_ENDSTOPS
  1275. if (axis == Z_AXIS) {
  1276. float adj = fabs(z_endstop_adj);
  1277. bool lockZ1;
  1278. if (axis_home_dir > 0) {
  1279. adj = -adj;
  1280. lockZ1 = (z_endstop_adj > 0);
  1281. }
  1282. else
  1283. lockZ1 = (z_endstop_adj < 0);
  1284. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1285. sync_plan_position();
  1286. // Move to the adjusted endstop height
  1287. feedrate = homing_feedrate[axis];
  1288. destination[Z_AXIS] = adj;
  1289. line_to_destination();
  1290. st_synchronize();
  1291. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1292. In_Homing_Process(false);
  1293. } // Z_AXIS
  1294. #endif
  1295. #ifdef DELTA
  1296. // retrace by the amount specified in endstop_adj
  1297. if (endstop_adj[axis] * axis_home_dir < 0) {
  1298. sync_plan_position();
  1299. destination[axis] = endstop_adj[axis];
  1300. line_to_destination();
  1301. st_synchronize();
  1302. }
  1303. #endif
  1304. // Set the axis position to its home position (plus home offsets)
  1305. axis_is_at_home(axis);
  1306. destination[axis] = current_position[axis];
  1307. feedrate = 0.0;
  1308. endstops_hit_on_purpose(); // clear endstop hit flags
  1309. axis_known_position[axis] = true;
  1310. // Retract Servo endstop if enabled
  1311. #ifdef SERVO_ENDSTOPS
  1312. if (servo_endstops[axis] > -1)
  1313. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1314. #endif
  1315. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1316. if (axis == Z_AXIS) stow_z_probe();
  1317. #endif
  1318. }
  1319. }
  1320. #ifdef FWRETRACT
  1321. void retract(bool retracting, bool swapretract = false) {
  1322. if (retracting == retracted[active_extruder]) return;
  1323. float oldFeedrate = feedrate;
  1324. set_destination_to_current();
  1325. if (retracting) {
  1326. feedrate = retract_feedrate * 60;
  1327. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1328. plan_set_e_position(current_position[E_AXIS]);
  1329. prepare_move();
  1330. if (retract_zlift > 0.01) {
  1331. current_position[Z_AXIS] -= retract_zlift;
  1332. #ifdef DELTA
  1333. sync_plan_position_delta();
  1334. #else
  1335. sync_plan_position();
  1336. #endif
  1337. prepare_move();
  1338. }
  1339. }
  1340. else {
  1341. if (retract_zlift > 0.01) {
  1342. current_position[Z_AXIS] += retract_zlift;
  1343. #ifdef DELTA
  1344. sync_plan_position_delta();
  1345. #else
  1346. sync_plan_position();
  1347. #endif
  1348. //prepare_move();
  1349. }
  1350. feedrate = retract_recover_feedrate * 60;
  1351. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1352. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1353. plan_set_e_position(current_position[E_AXIS]);
  1354. prepare_move();
  1355. }
  1356. feedrate = oldFeedrate;
  1357. retracted[active_extruder] = retract;
  1358. } // retract()
  1359. #endif // FWRETRACT
  1360. #ifdef Z_PROBE_SLED
  1361. #ifndef SLED_DOCKING_OFFSET
  1362. #define SLED_DOCKING_OFFSET 0
  1363. #endif
  1364. //
  1365. // Method to dock/undock a sled designed by Charles Bell.
  1366. //
  1367. // dock[in] If true, move to MAX_X and engage the electromagnet
  1368. // offset[in] The additional distance to move to adjust docking location
  1369. //
  1370. static void dock_sled(bool dock, int offset=0) {
  1371. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1372. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1373. SERIAL_ECHO_START;
  1374. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1375. return;
  1376. }
  1377. if (dock) {
  1378. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]);
  1379. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1380. } else {
  1381. float z_loc = current_position[Z_AXIS];
  1382. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1383. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1384. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1385. }
  1386. }
  1387. #endif // Z_PROBE_SLED
  1388. /**
  1389. *
  1390. * G-Code Handler functions
  1391. *
  1392. */
  1393. /**
  1394. * G0, G1: Coordinated movement of X Y Z E axes
  1395. */
  1396. inline void gcode_G0_G1() {
  1397. if (!Stopped) {
  1398. get_coordinates(); // For X Y Z E F
  1399. #ifdef FWRETRACT
  1400. if (autoretract_enabled)
  1401. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1402. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1403. // Is this move an attempt to retract or recover?
  1404. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1405. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1406. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1407. retract(!retracted[active_extruder]);
  1408. return;
  1409. }
  1410. }
  1411. #endif //FWRETRACT
  1412. prepare_move();
  1413. //ClearToSend();
  1414. }
  1415. }
  1416. /**
  1417. * G2: Clockwise Arc
  1418. * G3: Counterclockwise Arc
  1419. */
  1420. inline void gcode_G2_G3(bool clockwise) {
  1421. if (!Stopped) {
  1422. get_arc_coordinates();
  1423. prepare_arc_move(clockwise);
  1424. }
  1425. }
  1426. /**
  1427. * G4: Dwell S<seconds> or P<milliseconds>
  1428. */
  1429. inline void gcode_G4() {
  1430. unsigned long codenum = 0;
  1431. LCD_MESSAGEPGM(MSG_DWELL);
  1432. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1433. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1434. st_synchronize();
  1435. refresh_cmd_timeout();
  1436. codenum += previous_millis_cmd; // keep track of when we started waiting
  1437. while (millis() < codenum) {
  1438. manage_heater();
  1439. manage_inactivity();
  1440. lcd_update();
  1441. }
  1442. }
  1443. #ifdef FWRETRACT
  1444. /**
  1445. * G10 - Retract filament according to settings of M207
  1446. * G11 - Recover filament according to settings of M208
  1447. */
  1448. inline void gcode_G10_G11(bool doRetract=false) {
  1449. #if EXTRUDERS > 1
  1450. if (doRetract) {
  1451. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1452. }
  1453. #endif
  1454. retract(doRetract
  1455. #if EXTRUDERS > 1
  1456. , retracted_swap[active_extruder]
  1457. #endif
  1458. );
  1459. }
  1460. #endif //FWRETRACT
  1461. /**
  1462. * G28: Home all axes according to settings
  1463. *
  1464. * Parameters
  1465. *
  1466. * None Home to all axes with no parameters.
  1467. * With QUICK_HOME enabled XY will home together, then Z.
  1468. *
  1469. * Cartesian parameters
  1470. *
  1471. * X Home to the X endstop
  1472. * Y Home to the Y endstop
  1473. * Z Home to the Z endstop
  1474. *
  1475. * If numbers are included with XYZ set the position as with G92
  1476. * Currently adds the home_offset, which may be wrong and removed soon.
  1477. *
  1478. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1479. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1480. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1481. */
  1482. inline void gcode_G28() {
  1483. // For auto bed leveling, clear the level matrix
  1484. #ifdef ENABLE_AUTO_BED_LEVELING
  1485. plan_bed_level_matrix.set_to_identity();
  1486. #ifdef DELTA
  1487. reset_bed_level();
  1488. #endif
  1489. #endif
  1490. // For manual bed leveling deactivate the matrix temporarily
  1491. #ifdef MESH_BED_LEVELING
  1492. uint8_t mbl_was_active = mbl.active;
  1493. mbl.active = 0;
  1494. #endif
  1495. saved_feedrate = feedrate;
  1496. saved_feedmultiply = feedmultiply;
  1497. feedmultiply = 100;
  1498. refresh_cmd_timeout();
  1499. enable_endstops(true);
  1500. set_destination_to_current();
  1501. feedrate = 0.0;
  1502. #ifdef DELTA
  1503. // A delta can only safely home all axis at the same time
  1504. // all axis have to home at the same time
  1505. // Pretend the current position is 0,0,0
  1506. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1507. sync_plan_position();
  1508. // Move all carriages up together until the first endstop is hit.
  1509. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1510. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1511. line_to_destination();
  1512. st_synchronize();
  1513. endstops_hit_on_purpose(); // clear endstop hit flags
  1514. // Destination reached
  1515. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1516. // take care of back off and rehome now we are all at the top
  1517. HOMEAXIS(X);
  1518. HOMEAXIS(Y);
  1519. HOMEAXIS(Z);
  1520. sync_plan_position_delta();
  1521. #else // NOT DELTA
  1522. bool homeX = code_seen(axis_codes[X_AXIS]),
  1523. homeY = code_seen(axis_codes[Y_AXIS]),
  1524. homeZ = code_seen(axis_codes[Z_AXIS]);
  1525. home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
  1526. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1527. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1528. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1529. // Raise Z before homing any other axes
  1530. if (home_all_axis || homeZ) {
  1531. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1532. feedrate = max_feedrate[Z_AXIS] * 60;
  1533. line_to_destination();
  1534. st_synchronize();
  1535. }
  1536. #endif
  1537. #ifdef QUICK_HOME
  1538. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1539. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1540. #ifdef DUAL_X_CARRIAGE
  1541. int x_axis_home_dir = x_home_dir(active_extruder);
  1542. extruder_duplication_enabled = false;
  1543. #else
  1544. int x_axis_home_dir = home_dir(X_AXIS);
  1545. #endif
  1546. sync_plan_position();
  1547. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1548. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1549. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1550. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1551. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1552. line_to_destination();
  1553. st_synchronize();
  1554. axis_is_at_home(X_AXIS);
  1555. axis_is_at_home(Y_AXIS);
  1556. sync_plan_position();
  1557. destination[X_AXIS] = current_position[X_AXIS];
  1558. destination[Y_AXIS] = current_position[Y_AXIS];
  1559. line_to_destination();
  1560. feedrate = 0.0;
  1561. st_synchronize();
  1562. endstops_hit_on_purpose(); // clear endstop hit flags
  1563. current_position[X_AXIS] = destination[X_AXIS];
  1564. current_position[Y_AXIS] = destination[Y_AXIS];
  1565. #ifndef SCARA
  1566. current_position[Z_AXIS] = destination[Z_AXIS];
  1567. #endif
  1568. }
  1569. #endif // QUICK_HOME
  1570. // Home X
  1571. if (home_all_axis || homeX) {
  1572. #ifdef DUAL_X_CARRIAGE
  1573. int tmp_extruder = active_extruder;
  1574. extruder_duplication_enabled = false;
  1575. active_extruder = !active_extruder;
  1576. HOMEAXIS(X);
  1577. inactive_extruder_x_pos = current_position[X_AXIS];
  1578. active_extruder = tmp_extruder;
  1579. HOMEAXIS(X);
  1580. // reset state used by the different modes
  1581. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1582. delayed_move_time = 0;
  1583. active_extruder_parked = true;
  1584. #else
  1585. HOMEAXIS(X);
  1586. #endif
  1587. }
  1588. // Home Y
  1589. if (home_all_axis || homeY) HOMEAXIS(Y);
  1590. // Set the X position, if included
  1591. // Adds the home_offset as well, which may be wrong
  1592. if (code_seen(axis_codes[X_AXIS])) {
  1593. float v = code_value();
  1594. if (v) current_position[X_AXIS] = v
  1595. #ifndef SCARA
  1596. + home_offset[X_AXIS]
  1597. #endif
  1598. ;
  1599. }
  1600. // Set the Y position, if included
  1601. // Adds the home_offset as well, which may be wrong
  1602. if (code_seen(axis_codes[Y_AXIS])) {
  1603. float v = code_value();
  1604. if (v) current_position[Y_AXIS] = v
  1605. #ifndef SCARA
  1606. + home_offset[Y_AXIS]
  1607. #endif
  1608. ;
  1609. }
  1610. // Home Z last if homing towards the bed
  1611. #if Z_HOME_DIR < 0
  1612. #ifndef Z_SAFE_HOMING
  1613. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1614. #else // Z_SAFE_HOMING
  1615. if (home_all_axis) {
  1616. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1617. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1618. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1619. feedrate = XY_TRAVEL_SPEED;
  1620. current_position[Z_AXIS] = 0;
  1621. sync_plan_position();
  1622. line_to_destination();
  1623. st_synchronize();
  1624. current_position[X_AXIS] = destination[X_AXIS];
  1625. current_position[Y_AXIS] = destination[Y_AXIS];
  1626. HOMEAXIS(Z);
  1627. }
  1628. // Let's see if X and Y are homed and probe is inside bed area.
  1629. if (homeZ) {
  1630. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1631. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1632. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1633. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1634. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1635. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1636. current_position[Z_AXIS] = 0;
  1637. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]);
  1638. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1639. feedrate = max_feedrate[Z_AXIS] * 60; // max_feedrate is in mm/s. line_to_destination is feedrate/60.
  1640. line_to_destination();
  1641. st_synchronize();
  1642. HOMEAXIS(Z);
  1643. }
  1644. else {
  1645. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1646. SERIAL_ECHO_START;
  1647. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1648. }
  1649. }
  1650. else {
  1651. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1652. SERIAL_ECHO_START;
  1653. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1654. }
  1655. }
  1656. #endif // Z_SAFE_HOMING
  1657. #endif // Z_HOME_DIR < 0
  1658. // Set the Z position, if included
  1659. // Adds the home_offset as well, which may be wrong
  1660. if (code_seen(axis_codes[Z_AXIS])) {
  1661. float v = code_value();
  1662. if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
  1663. }
  1664. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1665. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1666. #endif
  1667. sync_plan_position();
  1668. #endif // else DELTA
  1669. #ifdef SCARA
  1670. sync_plan_position_delta();
  1671. #endif
  1672. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1673. enable_endstops(false);
  1674. #endif
  1675. // For manual leveling move back to 0,0
  1676. #ifdef MESH_BED_LEVELING
  1677. if (mbl_was_active) {
  1678. current_position[X_AXIS] = mbl.get_x(0);
  1679. current_position[Y_AXIS] = mbl.get_y(0);
  1680. set_destination_to_current();
  1681. feedrate = homing_feedrate[X_AXIS];
  1682. line_to_destination();
  1683. st_synchronize();
  1684. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1685. sync_plan_position();
  1686. mbl.active = 1;
  1687. }
  1688. #endif
  1689. feedrate = saved_feedrate;
  1690. feedmultiply = saved_feedmultiply;
  1691. refresh_cmd_timeout();
  1692. endstops_hit_on_purpose(); // clear endstop hit flags
  1693. }
  1694. #ifdef MESH_BED_LEVELING
  1695. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1696. /**
  1697. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1698. * mesh to compensate for variable bed height
  1699. *
  1700. * Parameters With MESH_BED_LEVELING:
  1701. *
  1702. * S0 Produce a mesh report
  1703. * S1 Start probing mesh points
  1704. * S2 Probe the next mesh point
  1705. * S3 Xn Yn Zn.nn Manually modify a single point
  1706. *
  1707. * The S0 report the points as below
  1708. *
  1709. * +----> X-axis
  1710. * |
  1711. * |
  1712. * v Y-axis
  1713. *
  1714. */
  1715. inline void gcode_G29() {
  1716. static int probe_point = -1;
  1717. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1718. if (state < 0 || state > 3) {
  1719. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1720. return;
  1721. }
  1722. int ix, iy;
  1723. float z;
  1724. switch(state) {
  1725. case MeshReport:
  1726. if (mbl.active) {
  1727. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1728. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1729. SERIAL_PROTOCOLCHAR(',');
  1730. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1731. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1732. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1733. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1734. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1735. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1736. SERIAL_PROTOCOLPGM(" ");
  1737. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1738. }
  1739. SERIAL_EOL;
  1740. }
  1741. }
  1742. else
  1743. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1744. break;
  1745. case MeshStart:
  1746. mbl.reset();
  1747. probe_point = 0;
  1748. enquecommands_P(PSTR("G28\nG29 S2"));
  1749. break;
  1750. case MeshNext:
  1751. if (probe_point < 0) {
  1752. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1753. return;
  1754. }
  1755. if (probe_point == 0) {
  1756. // Set Z to a positive value before recording the first Z.
  1757. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1758. sync_plan_position();
  1759. }
  1760. else {
  1761. // For others, save the Z of the previous point, then raise Z again.
  1762. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1763. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1764. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1765. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1766. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1767. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1768. st_synchronize();
  1769. }
  1770. // Is there another point to sample? Move there.
  1771. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1772. ix = probe_point % MESH_NUM_X_POINTS;
  1773. iy = probe_point / MESH_NUM_X_POINTS;
  1774. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1775. current_position[X_AXIS] = mbl.get_x(ix);
  1776. current_position[Y_AXIS] = mbl.get_y(iy);
  1777. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1778. st_synchronize();
  1779. probe_point++;
  1780. }
  1781. else {
  1782. // After recording the last point, activate the mbl and home
  1783. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1784. probe_point = -1;
  1785. mbl.active = 1;
  1786. enquecommands_P(PSTR("G28"));
  1787. }
  1788. break;
  1789. case MeshSet:
  1790. if (code_seen('X') || code_seen('x')) {
  1791. ix = code_value_long()-1;
  1792. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1793. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1794. return;
  1795. }
  1796. } else {
  1797. SERIAL_PROTOCOLPGM("X not entered.\n");
  1798. return;
  1799. }
  1800. if (code_seen('Y') || code_seen('y')) {
  1801. iy = code_value_long()-1;
  1802. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1803. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1804. return;
  1805. }
  1806. } else {
  1807. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1808. return;
  1809. }
  1810. if (code_seen('Z') || code_seen('z')) {
  1811. z = code_value();
  1812. } else {
  1813. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1814. return;
  1815. }
  1816. mbl.z_values[iy][ix] = z;
  1817. } // switch(state)
  1818. }
  1819. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1820. /**
  1821. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1822. * Will fail if the printer has not been homed with G28.
  1823. *
  1824. * Enhanced G29 Auto Bed Leveling Probe Routine
  1825. *
  1826. * Parameters With AUTO_BED_LEVELING_GRID:
  1827. *
  1828. * P Set the size of the grid that will be probed (P x P points).
  1829. * Not supported by non-linear delta printer bed leveling.
  1830. * Example: "G29 P4"
  1831. *
  1832. * S Set the XY travel speed between probe points (in mm/min)
  1833. *
  1834. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1835. * or clean the rotation Matrix. Useful to check the topology
  1836. * after a first run of G29.
  1837. *
  1838. * V Set the verbose level (0-4). Example: "G29 V3"
  1839. *
  1840. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1841. * This is useful for manual bed leveling and finding flaws in the bed (to
  1842. * assist with part placement).
  1843. * Not supported by non-linear delta printer bed leveling.
  1844. *
  1845. * F Set the Front limit of the probing grid
  1846. * B Set the Back limit of the probing grid
  1847. * L Set the Left limit of the probing grid
  1848. * R Set the Right limit of the probing grid
  1849. *
  1850. * Global Parameters:
  1851. *
  1852. * E/e By default G29 will engages the probe, test the bed, then disengage.
  1853. * Include "E" to engage/disengage the probe for each sample.
  1854. * There's no extra effect if you have a fixed probe.
  1855. * Usage: "G29 E" or "G29 e"
  1856. *
  1857. */
  1858. inline void gcode_G29() {
  1859. // Don't allow auto-leveling without homing first
  1860. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1861. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1862. SERIAL_ECHO_START;
  1863. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1864. return;
  1865. }
  1866. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1867. if (verbose_level < 0 || verbose_level > 4) {
  1868. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1869. return;
  1870. }
  1871. bool dryrun = code_seen('D') || code_seen('d'),
  1872. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1873. #ifdef AUTO_BED_LEVELING_GRID
  1874. #ifndef DELTA
  1875. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1876. #endif
  1877. if (verbose_level > 0) {
  1878. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1879. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1880. }
  1881. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1882. #ifndef DELTA
  1883. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1884. if (auto_bed_leveling_grid_points < 2) {
  1885. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1886. return;
  1887. }
  1888. #endif
  1889. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1890. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1891. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1892. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1893. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1894. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1895. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1896. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1897. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1898. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1899. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1900. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1901. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1902. if (left_out || right_out || front_out || back_out) {
  1903. if (left_out) {
  1904. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1905. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1906. }
  1907. if (right_out) {
  1908. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1909. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1910. }
  1911. if (front_out) {
  1912. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1913. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1914. }
  1915. if (back_out) {
  1916. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1917. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1918. }
  1919. return;
  1920. }
  1921. #endif // AUTO_BED_LEVELING_GRID
  1922. #ifdef Z_PROBE_SLED
  1923. dock_sled(false); // engage (un-dock) the probe
  1924. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1925. deploy_z_probe();
  1926. #endif
  1927. st_synchronize();
  1928. if (!dryrun) {
  1929. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1930. plan_bed_level_matrix.set_to_identity();
  1931. #ifdef DELTA
  1932. reset_bed_level();
  1933. #else //!DELTA
  1934. //vector_3 corrected_position = plan_get_position_mm();
  1935. //corrected_position.debug("position before G29");
  1936. vector_3 uncorrected_position = plan_get_position();
  1937. //uncorrected_position.debug("position during G29");
  1938. current_position[X_AXIS] = uncorrected_position.x;
  1939. current_position[Y_AXIS] = uncorrected_position.y;
  1940. current_position[Z_AXIS] = uncorrected_position.z;
  1941. sync_plan_position();
  1942. #endif // !DELTA
  1943. }
  1944. setup_for_endstop_move();
  1945. feedrate = homing_feedrate[Z_AXIS];
  1946. #ifdef AUTO_BED_LEVELING_GRID
  1947. // probe at the points of a lattice grid
  1948. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1949. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1950. #ifdef DELTA
  1951. delta_grid_spacing[0] = xGridSpacing;
  1952. delta_grid_spacing[1] = yGridSpacing;
  1953. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1954. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1955. #else // !DELTA
  1956. // solve the plane equation ax + by + d = z
  1957. // A is the matrix with rows [x y 1] for all the probed points
  1958. // B is the vector of the Z positions
  1959. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1960. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1961. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1962. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1963. eqnBVector[abl2], // "B" vector of Z points
  1964. mean = 0.0;
  1965. #endif // !DELTA
  1966. int probePointCounter = 0;
  1967. bool zig = true;
  1968. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1969. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1970. int xStart, xStop, xInc;
  1971. if (zig) {
  1972. xStart = 0;
  1973. xStop = auto_bed_leveling_grid_points;
  1974. xInc = 1;
  1975. }
  1976. else {
  1977. xStart = auto_bed_leveling_grid_points - 1;
  1978. xStop = -1;
  1979. xInc = -1;
  1980. }
  1981. #ifndef DELTA
  1982. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1983. // This gets the probe points in more readable order.
  1984. if (!do_topography_map) zig = !zig;
  1985. #endif
  1986. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1987. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1988. // raise extruder
  1989. float measured_z,
  1990. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  1991. #ifdef DELTA
  1992. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1993. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1994. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  1995. #endif //DELTA
  1996. ProbeAction act;
  1997. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  1998. act = ProbeDeployAndStow;
  1999. else if (yCount == 0 && xCount == 0)
  2000. act = ProbeDeploy;
  2001. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == auto_bed_leveling_grid_points - 1)
  2002. act = ProbeStow;
  2003. else
  2004. act = ProbeStay;
  2005. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2006. #ifndef DELTA
  2007. mean += measured_z;
  2008. eqnBVector[probePointCounter] = measured_z;
  2009. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2010. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2011. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2012. #else
  2013. bed_level[xCount][yCount] = measured_z + z_offset;
  2014. #endif
  2015. probePointCounter++;
  2016. manage_heater();
  2017. manage_inactivity();
  2018. lcd_update();
  2019. } //xProbe
  2020. } //yProbe
  2021. clean_up_after_endstop_move();
  2022. #ifdef DELTA
  2023. if (!dryrun) extrapolate_unprobed_bed_level();
  2024. print_bed_level();
  2025. #else // !DELTA
  2026. // solve lsq problem
  2027. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2028. mean /= abl2;
  2029. if (verbose_level) {
  2030. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2031. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2032. SERIAL_PROTOCOLPGM(" b: ");
  2033. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2034. SERIAL_PROTOCOLPGM(" d: ");
  2035. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2036. SERIAL_EOL;
  2037. if (verbose_level > 2) {
  2038. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2039. SERIAL_PROTOCOL_F(mean, 8);
  2040. SERIAL_EOL;
  2041. }
  2042. }
  2043. // Show the Topography map if enabled
  2044. if (do_topography_map) {
  2045. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2046. SERIAL_PROTOCOLPGM("+-----------+\n");
  2047. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2048. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2049. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2050. SERIAL_PROTOCOLPGM("+-----------+\n");
  2051. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2052. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2053. int ind = yy * auto_bed_leveling_grid_points + xx;
  2054. float diff = eqnBVector[ind] - mean;
  2055. if (diff >= 0.0)
  2056. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2057. else
  2058. SERIAL_PROTOCOLCHAR(' ');
  2059. SERIAL_PROTOCOL_F(diff, 5);
  2060. } // xx
  2061. SERIAL_EOL;
  2062. } // yy
  2063. SERIAL_EOL;
  2064. } //do_topography_map
  2065. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2066. free(plane_equation_coefficients);
  2067. #endif //!DELTA
  2068. #else // !AUTO_BED_LEVELING_GRID
  2069. // Actions for each probe
  2070. ProbeAction p1, p2, p3;
  2071. if (deploy_probe_for_each_reading)
  2072. p1 = p2 = p3 = ProbeDeployAndStow;
  2073. else
  2074. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2075. // Probe at 3 arbitrary points
  2076. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2077. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2078. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2079. clean_up_after_endstop_move();
  2080. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2081. #endif // !AUTO_BED_LEVELING_GRID
  2082. #ifndef DELTA
  2083. if (verbose_level > 0)
  2084. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2085. if (!dryrun) {
  2086. // Correct the Z height difference from z-probe position and hotend tip position.
  2087. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2088. // When the bed is uneven, this height must be corrected.
  2089. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2090. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2091. z_tmp = current_position[Z_AXIS],
  2092. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2093. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2094. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2095. sync_plan_position();
  2096. }
  2097. #endif // !DELTA
  2098. #ifdef Z_PROBE_SLED
  2099. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2100. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2101. stow_z_probe();
  2102. #endif
  2103. #ifdef Z_PROBE_END_SCRIPT
  2104. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2105. st_synchronize();
  2106. #endif
  2107. }
  2108. #ifndef Z_PROBE_SLED
  2109. inline void gcode_G30() {
  2110. deploy_z_probe(); // Engage Z Servo endstop if available
  2111. st_synchronize();
  2112. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2113. setup_for_endstop_move();
  2114. feedrate = homing_feedrate[Z_AXIS];
  2115. run_z_probe();
  2116. SERIAL_PROTOCOLPGM(MSG_BED);
  2117. SERIAL_PROTOCOLPGM(" X: ");
  2118. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2119. SERIAL_PROTOCOLPGM(" Y: ");
  2120. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2121. SERIAL_PROTOCOLPGM(" Z: ");
  2122. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2123. SERIAL_EOL;
  2124. clean_up_after_endstop_move();
  2125. stow_z_probe(); // Retract Z Servo endstop if available
  2126. }
  2127. #endif //!Z_PROBE_SLED
  2128. #endif //ENABLE_AUTO_BED_LEVELING
  2129. /**
  2130. * G92: Set current position to given X Y Z E
  2131. */
  2132. inline void gcode_G92() {
  2133. if (!code_seen(axis_codes[E_AXIS]))
  2134. st_synchronize();
  2135. bool didXYZ = false;
  2136. for (int i = 0; i < NUM_AXIS; i++) {
  2137. if (code_seen(axis_codes[i])) {
  2138. float v = current_position[i] = code_value();
  2139. if (i == E_AXIS)
  2140. plan_set_e_position(v);
  2141. else
  2142. didXYZ = true;
  2143. }
  2144. }
  2145. if (didXYZ) sync_plan_position();
  2146. }
  2147. #ifdef ULTIPANEL
  2148. /**
  2149. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2150. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2151. */
  2152. inline void gcode_M0_M1() {
  2153. char *src = strchr_pointer + 2;
  2154. unsigned long codenum = 0;
  2155. bool hasP = false, hasS = false;
  2156. if (code_seen('P')) {
  2157. codenum = code_value_short(); // milliseconds to wait
  2158. hasP = codenum > 0;
  2159. }
  2160. if (code_seen('S')) {
  2161. codenum = code_value_short() * 1000UL; // seconds to wait
  2162. hasS = codenum > 0;
  2163. }
  2164. char* starpos = strchr(src, '*');
  2165. if (starpos != NULL) *(starpos) = '\0';
  2166. while (*src == ' ') ++src;
  2167. if (!hasP && !hasS && *src != '\0')
  2168. lcd_setstatus(src, true);
  2169. else {
  2170. LCD_MESSAGEPGM(MSG_USERWAIT);
  2171. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2172. dontExpireStatus();
  2173. #endif
  2174. }
  2175. lcd_ignore_click();
  2176. st_synchronize();
  2177. refresh_cmd_timeout();
  2178. if (codenum > 0) {
  2179. codenum += previous_millis_cmd; // keep track of when we started waiting
  2180. while(millis() < codenum && !lcd_clicked()) {
  2181. manage_heater();
  2182. manage_inactivity();
  2183. lcd_update();
  2184. }
  2185. lcd_ignore_click(false);
  2186. }
  2187. else {
  2188. if (!lcd_detected()) return;
  2189. while (!lcd_clicked()) {
  2190. manage_heater();
  2191. manage_inactivity();
  2192. lcd_update();
  2193. }
  2194. }
  2195. if (IS_SD_PRINTING)
  2196. LCD_MESSAGEPGM(MSG_RESUMING);
  2197. else
  2198. LCD_MESSAGEPGM(WELCOME_MSG);
  2199. }
  2200. #endif // ULTIPANEL
  2201. /**
  2202. * M17: Enable power on all stepper motors
  2203. */
  2204. inline void gcode_M17() {
  2205. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2206. enable_all_steppers();
  2207. }
  2208. #ifdef SDSUPPORT
  2209. /**
  2210. * M20: List SD card to serial output
  2211. */
  2212. inline void gcode_M20() {
  2213. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2214. card.ls();
  2215. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2216. }
  2217. /**
  2218. * M21: Init SD Card
  2219. */
  2220. inline void gcode_M21() {
  2221. card.initsd();
  2222. }
  2223. /**
  2224. * M22: Release SD Card
  2225. */
  2226. inline void gcode_M22() {
  2227. card.release();
  2228. }
  2229. /**
  2230. * M23: Select a file
  2231. */
  2232. inline void gcode_M23() {
  2233. char* codepos = strchr_pointer + 4;
  2234. char* starpos = strchr(codepos, '*');
  2235. if (starpos) *starpos = '\0';
  2236. card.openFile(codepos, true);
  2237. }
  2238. /**
  2239. * M24: Start SD Print
  2240. */
  2241. inline void gcode_M24() {
  2242. card.startFileprint();
  2243. starttime = millis();
  2244. }
  2245. /**
  2246. * M25: Pause SD Print
  2247. */
  2248. inline void gcode_M25() {
  2249. card.pauseSDPrint();
  2250. }
  2251. /**
  2252. * M26: Set SD Card file index
  2253. */
  2254. inline void gcode_M26() {
  2255. if (card.cardOK && code_seen('S'))
  2256. card.setIndex(code_value_short());
  2257. }
  2258. /**
  2259. * M27: Get SD Card status
  2260. */
  2261. inline void gcode_M27() {
  2262. card.getStatus();
  2263. }
  2264. /**
  2265. * M28: Start SD Write
  2266. */
  2267. inline void gcode_M28() {
  2268. char* codepos = strchr_pointer + 4;
  2269. char* starpos = strchr(codepos, '*');
  2270. if (starpos) {
  2271. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2272. strchr_pointer = strchr(npos, ' ') + 1;
  2273. *(starpos) = '\0';
  2274. }
  2275. card.openFile(codepos, false);
  2276. }
  2277. /**
  2278. * M29: Stop SD Write
  2279. * Processed in write to file routine above
  2280. */
  2281. inline void gcode_M29() {
  2282. // card.saving = false;
  2283. }
  2284. /**
  2285. * M30 <filename>: Delete SD Card file
  2286. */
  2287. inline void gcode_M30() {
  2288. if (card.cardOK) {
  2289. card.closefile();
  2290. char* starpos = strchr(strchr_pointer + 4, '*');
  2291. if (starpos) {
  2292. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2293. strchr_pointer = strchr(npos, ' ') + 1;
  2294. *(starpos) = '\0';
  2295. }
  2296. card.removeFile(strchr_pointer + 4);
  2297. }
  2298. }
  2299. #endif
  2300. /**
  2301. * M31: Get the time since the start of SD Print (or last M109)
  2302. */
  2303. inline void gcode_M31() {
  2304. stoptime = millis();
  2305. unsigned long t = (stoptime - starttime) / 1000;
  2306. int min = t / 60, sec = t % 60;
  2307. char time[30];
  2308. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2309. SERIAL_ECHO_START;
  2310. SERIAL_ECHOLN(time);
  2311. lcd_setstatus(time);
  2312. autotempShutdown();
  2313. }
  2314. #ifdef SDSUPPORT
  2315. /**
  2316. * M32: Select file and start SD Print
  2317. */
  2318. inline void gcode_M32() {
  2319. if (card.sdprinting)
  2320. st_synchronize();
  2321. char* codepos = strchr_pointer + 4;
  2322. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2323. if (! namestartpos)
  2324. namestartpos = codepos; //default name position, 4 letters after the M
  2325. else
  2326. namestartpos++; //to skip the '!'
  2327. char* starpos = strchr(codepos, '*');
  2328. if (starpos) *(starpos) = '\0';
  2329. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2330. if (card.cardOK) {
  2331. card.openFile(namestartpos, true, !call_procedure);
  2332. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2333. card.setIndex(code_value_short());
  2334. card.startFileprint();
  2335. if (!call_procedure)
  2336. starttime = millis(); //procedure calls count as normal print time.
  2337. }
  2338. }
  2339. /**
  2340. * M928: Start SD Write
  2341. */
  2342. inline void gcode_M928() {
  2343. char* starpos = strchr(strchr_pointer + 5, '*');
  2344. if (starpos) {
  2345. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2346. strchr_pointer = strchr(npos, ' ') + 1;
  2347. *(starpos) = '\0';
  2348. }
  2349. card.openLogFile(strchr_pointer + 5);
  2350. }
  2351. #endif // SDSUPPORT
  2352. /**
  2353. * M42: Change pin status via GCode
  2354. */
  2355. inline void gcode_M42() {
  2356. if (code_seen('S')) {
  2357. int pin_status = code_value_short(),
  2358. pin_number = LED_PIN;
  2359. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2360. pin_number = code_value_short();
  2361. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2362. if (sensitive_pins[i] == pin_number) {
  2363. pin_number = -1;
  2364. break;
  2365. }
  2366. }
  2367. #if HAS_FAN
  2368. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2369. #endif
  2370. if (pin_number > -1) {
  2371. pinMode(pin_number, OUTPUT);
  2372. digitalWrite(pin_number, pin_status);
  2373. analogWrite(pin_number, pin_status);
  2374. }
  2375. } // code_seen('S')
  2376. }
  2377. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2378. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2379. #ifdef Z_PROBE_ENDSTOP
  2380. #if !HAS_Z_PROBE
  2381. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2382. #endif
  2383. #elif !HAS_Z_MIN
  2384. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2385. #endif
  2386. /**
  2387. * M48: Z-Probe repeatability measurement function.
  2388. *
  2389. * Usage:
  2390. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2391. * P = Number of sampled points (4-50, default 10)
  2392. * X = Sample X position
  2393. * Y = Sample Y position
  2394. * V = Verbose level (0-4, default=1)
  2395. * E = Engage probe for each reading
  2396. * L = Number of legs of movement before probe
  2397. *
  2398. * This function assumes the bed has been homed. Specifically, that a G28 command
  2399. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2400. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2401. * regenerated.
  2402. *
  2403. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2404. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2405. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2406. */
  2407. inline void gcode_M48() {
  2408. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2409. int verbose_level = 1, n_samples = 10, n_legs = 0;
  2410. if (code_seen('V') || code_seen('v')) {
  2411. verbose_level = code_value_short();
  2412. if (verbose_level < 0 || verbose_level > 4 ) {
  2413. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2414. return;
  2415. }
  2416. }
  2417. if (verbose_level > 0)
  2418. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2419. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2420. n_samples = code_value_short();
  2421. if (n_samples < 4 || n_samples > 50) {
  2422. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2423. return;
  2424. }
  2425. }
  2426. double X_probe_location, Y_probe_location,
  2427. X_current = X_probe_location = st_get_position_mm(X_AXIS),
  2428. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
  2429. Z_current = st_get_position_mm(Z_AXIS),
  2430. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
  2431. ext_position = st_get_position_mm(E_AXIS);
  2432. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2433. if (code_seen('X') || code_seen('x')) {
  2434. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2435. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2436. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2437. return;
  2438. }
  2439. }
  2440. if (code_seen('Y') || code_seen('y')) {
  2441. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2442. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2443. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2444. return;
  2445. }
  2446. }
  2447. if (code_seen('L') || code_seen('l')) {
  2448. n_legs = code_value_short();
  2449. if (n_legs == 1) n_legs = 2;
  2450. if (n_legs < 0 || n_legs > 15) {
  2451. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2452. return;
  2453. }
  2454. }
  2455. //
  2456. // Do all the preliminary setup work. First raise the probe.
  2457. //
  2458. st_synchronize();
  2459. plan_bed_level_matrix.set_to_identity();
  2460. plan_buffer_line(X_current, Y_current, Z_start_location,
  2461. ext_position,
  2462. homing_feedrate[Z_AXIS] / 60,
  2463. active_extruder);
  2464. st_synchronize();
  2465. //
  2466. // Now get everything to the specified probe point So we can safely do a probe to
  2467. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2468. // use that as a starting point for each probe.
  2469. //
  2470. if (verbose_level > 2)
  2471. SERIAL_PROTOCOL("Positioning the probe...\n");
  2472. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2473. ext_position,
  2474. homing_feedrate[X_AXIS]/60,
  2475. active_extruder);
  2476. st_synchronize();
  2477. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2478. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2479. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2480. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2481. //
  2482. // OK, do the inital probe to get us close to the bed.
  2483. // Then retrace the right amount and use that in subsequent probes
  2484. //
  2485. deploy_z_probe();
  2486. setup_for_endstop_move();
  2487. run_z_probe();
  2488. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2489. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2490. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2491. ext_position,
  2492. homing_feedrate[X_AXIS]/60,
  2493. active_extruder);
  2494. st_synchronize();
  2495. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2496. if (deploy_probe_for_each_reading) stow_z_probe();
  2497. for (uint16_t n=0; n < n_samples; n++) {
  2498. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2499. if (n_legs) {
  2500. unsigned long ms = millis();
  2501. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2502. theta = RADIANS(ms % 360L);
  2503. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2504. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2505. //SERIAL_ECHOPAIR(" theta: ",theta);
  2506. //SERIAL_ECHOPAIR(" direction: ",dir);
  2507. //SERIAL_EOL;
  2508. for (int l = 0; l < n_legs - 1; l++) {
  2509. ms = millis();
  2510. theta += RADIANS(dir * (ms % 20L));
  2511. radius += (ms % 10L) - 5L;
  2512. if (radius < 0.0) radius = -radius;
  2513. X_current = X_probe_location + cos(theta) * radius;
  2514. Y_current = Y_probe_location + sin(theta) * radius;
  2515. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2516. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2517. if (verbose_level > 3) {
  2518. SERIAL_ECHOPAIR("x: ", X_current);
  2519. SERIAL_ECHOPAIR("y: ", Y_current);
  2520. SERIAL_EOL;
  2521. }
  2522. do_blocking_move_to(X_current, Y_current, Z_current);
  2523. } // n_legs loop
  2524. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2525. } // n_legs
  2526. if (deploy_probe_for_each_reading) {
  2527. deploy_z_probe();
  2528. delay(1000);
  2529. }
  2530. setup_for_endstop_move();
  2531. run_z_probe();
  2532. sample_set[n] = current_position[Z_AXIS];
  2533. //
  2534. // Get the current mean for the data points we have so far
  2535. //
  2536. sum = 0.0;
  2537. for (int j = 0; j <= n; j++) sum += sample_set[j];
  2538. mean = sum / (n + 1);
  2539. //
  2540. // Now, use that mean to calculate the standard deviation for the
  2541. // data points we have so far
  2542. //
  2543. sum = 0.0;
  2544. for (int j = 0; j <= n; j++) {
  2545. float ss = sample_set[j] - mean;
  2546. sum += ss * ss;
  2547. }
  2548. sigma = sqrt(sum / (n + 1));
  2549. if (verbose_level > 1) {
  2550. SERIAL_PROTOCOL(n+1);
  2551. SERIAL_PROTOCOLPGM(" of ");
  2552. SERIAL_PROTOCOL(n_samples);
  2553. SERIAL_PROTOCOLPGM(" z: ");
  2554. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2555. if (verbose_level > 2) {
  2556. SERIAL_PROTOCOLPGM(" mean: ");
  2557. SERIAL_PROTOCOL_F(mean,6);
  2558. SERIAL_PROTOCOLPGM(" sigma: ");
  2559. SERIAL_PROTOCOL_F(sigma,6);
  2560. }
  2561. }
  2562. if (verbose_level > 0) SERIAL_EOL;
  2563. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2564. st_synchronize();
  2565. if (deploy_probe_for_each_reading) {
  2566. stow_z_probe();
  2567. delay(1000);
  2568. }
  2569. }
  2570. if (!deploy_probe_for_each_reading) {
  2571. stow_z_probe();
  2572. delay(1000);
  2573. }
  2574. clean_up_after_endstop_move();
  2575. // enable_endstops(true);
  2576. if (verbose_level > 0) {
  2577. SERIAL_PROTOCOLPGM("Mean: ");
  2578. SERIAL_PROTOCOL_F(mean, 6);
  2579. SERIAL_EOL;
  2580. }
  2581. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2582. SERIAL_PROTOCOL_F(sigma, 6);
  2583. SERIAL_EOL; SERIAL_EOL;
  2584. }
  2585. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2586. /**
  2587. * M104: Set hot end temperature
  2588. */
  2589. inline void gcode_M104() {
  2590. if (setTargetedHotend(104)) return;
  2591. if (code_seen('S')) {
  2592. float temp = code_value();
  2593. setTargetHotend(temp, target_extruder);
  2594. #ifdef DUAL_X_CARRIAGE
  2595. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2596. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2597. #endif
  2598. setWatch();
  2599. }
  2600. }
  2601. /**
  2602. * M105: Read hot end and bed temperature
  2603. */
  2604. inline void gcode_M105() {
  2605. if (setTargetedHotend(105)) return;
  2606. #if HAS_TEMP_0 || HAS_TEMP_BED
  2607. SERIAL_PROTOCOLPGM("ok");
  2608. #if HAS_TEMP_0
  2609. SERIAL_PROTOCOLPGM(" T:");
  2610. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2611. SERIAL_PROTOCOLPGM(" /");
  2612. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2613. #endif
  2614. #if HAS_TEMP_BED
  2615. SERIAL_PROTOCOLPGM(" B:");
  2616. SERIAL_PROTOCOL_F(degBed(), 1);
  2617. SERIAL_PROTOCOLPGM(" /");
  2618. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2619. #endif
  2620. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2621. SERIAL_PROTOCOLPGM(" T");
  2622. SERIAL_PROTOCOL(e);
  2623. SERIAL_PROTOCOLCHAR(':');
  2624. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2625. SERIAL_PROTOCOLPGM(" /");
  2626. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2627. }
  2628. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2629. SERIAL_ERROR_START;
  2630. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2631. #endif
  2632. SERIAL_PROTOCOLPGM(" @:");
  2633. #ifdef EXTRUDER_WATTS
  2634. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2635. SERIAL_PROTOCOLCHAR('W');
  2636. #else
  2637. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2638. #endif
  2639. SERIAL_PROTOCOLPGM(" B@:");
  2640. #ifdef BED_WATTS
  2641. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2642. SERIAL_PROTOCOLCHAR('W');
  2643. #else
  2644. SERIAL_PROTOCOL(getHeaterPower(-1));
  2645. #endif
  2646. #ifdef SHOW_TEMP_ADC_VALUES
  2647. #if HAS_TEMP_BED
  2648. SERIAL_PROTOCOLPGM(" ADC B:");
  2649. SERIAL_PROTOCOL_F(degBed(),1);
  2650. SERIAL_PROTOCOLPGM("C->");
  2651. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2652. #endif
  2653. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2654. SERIAL_PROTOCOLPGM(" T");
  2655. SERIAL_PROTOCOL(cur_extruder);
  2656. SERIAL_PROTOCOLCHAR(':');
  2657. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2658. SERIAL_PROTOCOLPGM("C->");
  2659. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2660. }
  2661. #endif
  2662. SERIAL_EOL;
  2663. }
  2664. #if HAS_FAN
  2665. /**
  2666. * M106: Set Fan Speed
  2667. */
  2668. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2669. /**
  2670. * M107: Fan Off
  2671. */
  2672. inline void gcode_M107() { fanSpeed = 0; }
  2673. #endif // HAS_FAN
  2674. /**
  2675. * M109: Wait for extruder(s) to reach temperature
  2676. */
  2677. inline void gcode_M109() {
  2678. if (setTargetedHotend(109)) return;
  2679. LCD_MESSAGEPGM(MSG_HEATING);
  2680. CooldownNoWait = code_seen('S');
  2681. if (CooldownNoWait || code_seen('R')) {
  2682. float temp = code_value();
  2683. setTargetHotend(temp, target_extruder);
  2684. #ifdef DUAL_X_CARRIAGE
  2685. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2686. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2687. #endif
  2688. }
  2689. #ifdef AUTOTEMP
  2690. autotemp_enabled = code_seen('F');
  2691. if (autotemp_enabled) autotemp_factor = code_value();
  2692. if (code_seen('S')) autotemp_min = code_value();
  2693. if (code_seen('B')) autotemp_max = code_value();
  2694. #endif
  2695. setWatch();
  2696. unsigned long timetemp = millis();
  2697. /* See if we are heating up or cooling down */
  2698. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2699. cancel_heatup = false;
  2700. #ifdef TEMP_RESIDENCY_TIME
  2701. long residencyStart = -1;
  2702. /* continue to loop until we have reached the target temp
  2703. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2704. while((!cancel_heatup)&&((residencyStart == -1) ||
  2705. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2706. #else
  2707. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(CooldownNoWait==false)) )
  2708. #endif //TEMP_RESIDENCY_TIME
  2709. { // while loop
  2710. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2711. SERIAL_PROTOCOLPGM("T:");
  2712. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2713. SERIAL_PROTOCOLPGM(" E:");
  2714. SERIAL_PROTOCOL((int)target_extruder);
  2715. #ifdef TEMP_RESIDENCY_TIME
  2716. SERIAL_PROTOCOLPGM(" W:");
  2717. if (residencyStart > -1) {
  2718. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2719. SERIAL_PROTOCOLLN( timetemp );
  2720. }
  2721. else {
  2722. SERIAL_PROTOCOLLNPGM("?");
  2723. }
  2724. #else
  2725. SERIAL_EOL;
  2726. #endif
  2727. timetemp = millis();
  2728. }
  2729. manage_heater();
  2730. manage_inactivity();
  2731. lcd_update();
  2732. #ifdef TEMP_RESIDENCY_TIME
  2733. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2734. // or when current temp falls outside the hysteresis after target temp was reached
  2735. if ((residencyStart == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2736. (residencyStart == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2737. (residencyStart > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2738. {
  2739. residencyStart = millis();
  2740. }
  2741. #endif //TEMP_RESIDENCY_TIME
  2742. }
  2743. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2744. refresh_cmd_timeout();
  2745. starttime = previous_millis_cmd;
  2746. }
  2747. #if HAS_TEMP_BED
  2748. /**
  2749. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2750. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2751. */
  2752. inline void gcode_M190() {
  2753. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2754. CooldownNoWait = code_seen('S');
  2755. if (CooldownNoWait || code_seen('R'))
  2756. setTargetBed(code_value());
  2757. unsigned long timetemp = millis();
  2758. cancel_heatup = false;
  2759. target_direction = isHeatingBed(); // true if heating, false if cooling
  2760. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2761. unsigned long ms = millis();
  2762. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2763. timetemp = ms;
  2764. float tt = degHotend(active_extruder);
  2765. SERIAL_PROTOCOLPGM("T:");
  2766. SERIAL_PROTOCOL(tt);
  2767. SERIAL_PROTOCOLPGM(" E:");
  2768. SERIAL_PROTOCOL((int)active_extruder);
  2769. SERIAL_PROTOCOLPGM(" B:");
  2770. SERIAL_PROTOCOL_F(degBed(), 1);
  2771. SERIAL_EOL;
  2772. }
  2773. manage_heater();
  2774. manage_inactivity();
  2775. lcd_update();
  2776. }
  2777. LCD_MESSAGEPGM(MSG_BED_DONE);
  2778. refresh_cmd_timeout();
  2779. }
  2780. #endif // HAS_TEMP_BED
  2781. /**
  2782. * M112: Emergency Stop
  2783. */
  2784. inline void gcode_M112() {
  2785. kill();
  2786. }
  2787. #ifdef BARICUDA
  2788. #if HAS_HEATER_1
  2789. /**
  2790. * M126: Heater 1 valve open
  2791. */
  2792. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2793. /**
  2794. * M127: Heater 1 valve close
  2795. */
  2796. inline void gcode_M127() { ValvePressure = 0; }
  2797. #endif
  2798. #if HAS_HEATER_2
  2799. /**
  2800. * M128: Heater 2 valve open
  2801. */
  2802. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2803. /**
  2804. * M129: Heater 2 valve close
  2805. */
  2806. inline void gcode_M129() { EtoPPressure = 0; }
  2807. #endif
  2808. #endif //BARICUDA
  2809. /**
  2810. * M140: Set bed temperature
  2811. */
  2812. inline void gcode_M140() {
  2813. if (code_seen('S')) setTargetBed(code_value());
  2814. }
  2815. #if HAS_POWER_SWITCH
  2816. /**
  2817. * M80: Turn on Power Supply
  2818. */
  2819. inline void gcode_M80() {
  2820. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2821. // If you have a switch on suicide pin, this is useful
  2822. // if you want to start another print with suicide feature after
  2823. // a print without suicide...
  2824. #if HAS_SUICIDE
  2825. OUT_WRITE(SUICIDE_PIN, HIGH);
  2826. #endif
  2827. #ifdef ULTIPANEL
  2828. powersupply = true;
  2829. LCD_MESSAGEPGM(WELCOME_MSG);
  2830. lcd_update();
  2831. #endif
  2832. }
  2833. #endif // HAS_POWER_SWITCH
  2834. /**
  2835. * M81: Turn off Power, including Power Supply, if there is one.
  2836. *
  2837. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2838. */
  2839. inline void gcode_M81() {
  2840. disable_heater();
  2841. st_synchronize();
  2842. disable_e0();
  2843. disable_e1();
  2844. disable_e2();
  2845. disable_e3();
  2846. finishAndDisableSteppers();
  2847. fanSpeed = 0;
  2848. delay(1000); // Wait 1 second before switching off
  2849. #if HAS_SUICIDE
  2850. st_synchronize();
  2851. suicide();
  2852. #elif HAS_POWER_SWITCH
  2853. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2854. #endif
  2855. #ifdef ULTIPANEL
  2856. #if HAS_POWER_SWITCH
  2857. powersupply = false;
  2858. #endif
  2859. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2860. lcd_update();
  2861. #endif
  2862. }
  2863. /**
  2864. * M82: Set E codes absolute (default)
  2865. */
  2866. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2867. /**
  2868. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2869. */
  2870. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2871. /**
  2872. * M18, M84: Disable all stepper motors
  2873. */
  2874. inline void gcode_M18_M84() {
  2875. if (code_seen('S')) {
  2876. stepper_inactive_time = code_value() * 1000;
  2877. }
  2878. else {
  2879. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2880. if (all_axis) {
  2881. st_synchronize();
  2882. disable_e0();
  2883. disable_e1();
  2884. disable_e2();
  2885. disable_e3();
  2886. finishAndDisableSteppers();
  2887. }
  2888. else {
  2889. st_synchronize();
  2890. if (code_seen('X')) disable_x();
  2891. if (code_seen('Y')) disable_y();
  2892. if (code_seen('Z')) disable_z();
  2893. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2894. if (code_seen('E')) {
  2895. disable_e0();
  2896. disable_e1();
  2897. disable_e2();
  2898. disable_e3();
  2899. }
  2900. #endif
  2901. }
  2902. }
  2903. }
  2904. /**
  2905. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2906. */
  2907. inline void gcode_M85() {
  2908. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2909. }
  2910. /**
  2911. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2912. */
  2913. inline void gcode_M92() {
  2914. for(int8_t i=0; i < NUM_AXIS; i++) {
  2915. if (code_seen(axis_codes[i])) {
  2916. if (i == E_AXIS) {
  2917. float value = code_value();
  2918. if (value < 20.0) {
  2919. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2920. max_e_jerk *= factor;
  2921. max_feedrate[i] *= factor;
  2922. axis_steps_per_sqr_second[i] *= factor;
  2923. }
  2924. axis_steps_per_unit[i] = value;
  2925. }
  2926. else {
  2927. axis_steps_per_unit[i] = code_value();
  2928. }
  2929. }
  2930. }
  2931. }
  2932. /**
  2933. * M114: Output current position to serial port
  2934. */
  2935. inline void gcode_M114() {
  2936. SERIAL_PROTOCOLPGM("X:");
  2937. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2938. SERIAL_PROTOCOLPGM(" Y:");
  2939. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2940. SERIAL_PROTOCOLPGM(" Z:");
  2941. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2942. SERIAL_PROTOCOLPGM(" E:");
  2943. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2944. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2945. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2946. SERIAL_PROTOCOLPGM(" Y:");
  2947. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2948. SERIAL_PROTOCOLPGM(" Z:");
  2949. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2950. SERIAL_EOL;
  2951. #ifdef SCARA
  2952. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2953. SERIAL_PROTOCOL(delta[X_AXIS]);
  2954. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2955. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2956. SERIAL_EOL;
  2957. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2958. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2959. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2960. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2961. SERIAL_EOL;
  2962. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2963. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2964. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2965. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2966. SERIAL_EOL; SERIAL_EOL;
  2967. #endif
  2968. }
  2969. /**
  2970. * M115: Capabilities string
  2971. */
  2972. inline void gcode_M115() {
  2973. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2974. }
  2975. /**
  2976. * M117: Set LCD Status Message
  2977. */
  2978. inline void gcode_M117() {
  2979. char* codepos = strchr_pointer + 5;
  2980. char* starpos = strchr(codepos, '*');
  2981. if (starpos) *starpos = '\0';
  2982. lcd_setstatus(codepos);
  2983. }
  2984. /**
  2985. * M119: Output endstop states to serial output
  2986. */
  2987. inline void gcode_M119() {
  2988. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2989. #if HAS_X_MIN
  2990. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2991. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2992. #endif
  2993. #if HAS_X_MAX
  2994. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2995. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2996. #endif
  2997. #if HAS_Y_MIN
  2998. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2999. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3000. #endif
  3001. #if HAS_Y_MAX
  3002. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3003. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3004. #endif
  3005. #if HAS_Z_MIN
  3006. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3007. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3008. #endif
  3009. #if HAS_Z_MAX
  3010. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3011. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3012. #endif
  3013. #if HAS_Z2_MAX
  3014. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3015. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3016. #endif
  3017. #if HAS_Z_PROBE
  3018. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3019. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3020. #endif
  3021. }
  3022. /**
  3023. * M120: Enable endstops
  3024. */
  3025. inline void gcode_M120() { enable_endstops(false); }
  3026. /**
  3027. * M121: Disable endstops
  3028. */
  3029. inline void gcode_M121() { enable_endstops(true); }
  3030. #ifdef BLINKM
  3031. /**
  3032. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3033. */
  3034. inline void gcode_M150() {
  3035. SendColors(
  3036. code_seen('R') ? (byte)code_value_short() : 0,
  3037. code_seen('U') ? (byte)code_value_short() : 0,
  3038. code_seen('B') ? (byte)code_value_short() : 0
  3039. );
  3040. }
  3041. #endif // BLINKM
  3042. /**
  3043. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3044. * T<extruder>
  3045. * D<millimeters>
  3046. */
  3047. inline void gcode_M200() {
  3048. int tmp_extruder = active_extruder;
  3049. if (code_seen('T')) {
  3050. tmp_extruder = code_value_short();
  3051. if (tmp_extruder >= EXTRUDERS) {
  3052. SERIAL_ECHO_START;
  3053. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3054. return;
  3055. }
  3056. }
  3057. if (code_seen('D')) {
  3058. float diameter = code_value();
  3059. // setting any extruder filament size disables volumetric on the assumption that
  3060. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3061. // for all extruders
  3062. volumetric_enabled = (diameter != 0.0);
  3063. if (volumetric_enabled) {
  3064. filament_size[tmp_extruder] = diameter;
  3065. // make sure all extruders have some sane value for the filament size
  3066. for (int i=0; i<EXTRUDERS; i++)
  3067. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3068. }
  3069. }
  3070. else {
  3071. //reserved for setting filament diameter via UFID or filament measuring device
  3072. return;
  3073. }
  3074. calculate_volumetric_multipliers();
  3075. }
  3076. /**
  3077. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3078. */
  3079. inline void gcode_M201() {
  3080. for (int8_t i=0; i < NUM_AXIS; i++) {
  3081. if (code_seen(axis_codes[i])) {
  3082. max_acceleration_units_per_sq_second[i] = code_value();
  3083. }
  3084. }
  3085. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3086. reset_acceleration_rates();
  3087. }
  3088. #if 0 // Not used for Sprinter/grbl gen6
  3089. inline void gcode_M202() {
  3090. for(int8_t i=0; i < NUM_AXIS; i++) {
  3091. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3092. }
  3093. }
  3094. #endif
  3095. /**
  3096. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3097. */
  3098. inline void gcode_M203() {
  3099. for (int8_t i=0; i < NUM_AXIS; i++) {
  3100. if (code_seen(axis_codes[i])) {
  3101. max_feedrate[i] = code_value();
  3102. }
  3103. }
  3104. }
  3105. /**
  3106. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3107. *
  3108. * P = Printing moves
  3109. * R = Retract only (no X, Y, Z) moves
  3110. * T = Travel (non printing) moves
  3111. *
  3112. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3113. */
  3114. inline void gcode_M204() {
  3115. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3116. acceleration = code_value();
  3117. travel_acceleration = acceleration;
  3118. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3119. SERIAL_EOL;
  3120. }
  3121. if (code_seen('P')) {
  3122. acceleration = code_value();
  3123. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3124. SERIAL_EOL;
  3125. }
  3126. if (code_seen('R')) {
  3127. retract_acceleration = code_value();
  3128. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3129. SERIAL_EOL;
  3130. }
  3131. if (code_seen('T')) {
  3132. travel_acceleration = code_value();
  3133. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3134. SERIAL_EOL;
  3135. }
  3136. }
  3137. /**
  3138. * M205: Set Advanced Settings
  3139. *
  3140. * S = Min Feed Rate (mm/s)
  3141. * T = Min Travel Feed Rate (mm/s)
  3142. * B = Min Segment Time (µs)
  3143. * X = Max XY Jerk (mm/s/s)
  3144. * Z = Max Z Jerk (mm/s/s)
  3145. * E = Max E Jerk (mm/s/s)
  3146. */
  3147. inline void gcode_M205() {
  3148. if (code_seen('S')) minimumfeedrate = code_value();
  3149. if (code_seen('T')) mintravelfeedrate = code_value();
  3150. if (code_seen('B')) minsegmenttime = code_value();
  3151. if (code_seen('X')) max_xy_jerk = code_value();
  3152. if (code_seen('Z')) max_z_jerk = code_value();
  3153. if (code_seen('E')) max_e_jerk = code_value();
  3154. }
  3155. /**
  3156. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3157. */
  3158. inline void gcode_M206() {
  3159. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3160. if (code_seen(axis_codes[i])) {
  3161. home_offset[i] = code_value();
  3162. }
  3163. }
  3164. #ifdef SCARA
  3165. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3166. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3167. #endif
  3168. }
  3169. #ifdef DELTA
  3170. /**
  3171. * M665: Set delta configurations
  3172. *
  3173. * L = diagonal rod
  3174. * R = delta radius
  3175. * S = segments per second
  3176. */
  3177. inline void gcode_M665() {
  3178. if (code_seen('L')) delta_diagonal_rod = code_value();
  3179. if (code_seen('R')) delta_radius = code_value();
  3180. if (code_seen('S')) delta_segments_per_second = code_value();
  3181. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3182. }
  3183. /**
  3184. * M666: Set delta endstop adjustment
  3185. */
  3186. inline void gcode_M666() {
  3187. for (int8_t i = 0; i < 3; i++) {
  3188. if (code_seen(axis_codes[i])) {
  3189. endstop_adj[i] = code_value();
  3190. }
  3191. }
  3192. }
  3193. #elif defined(Z_DUAL_ENDSTOPS)
  3194. /**
  3195. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3196. */
  3197. inline void gcode_M666() {
  3198. if (code_seen('Z')) z_endstop_adj = code_value();
  3199. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3200. SERIAL_EOL;
  3201. }
  3202. #endif // DELTA
  3203. #ifdef FWRETRACT
  3204. /**
  3205. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3206. */
  3207. inline void gcode_M207() {
  3208. if (code_seen('S')) retract_length = code_value();
  3209. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3210. if (code_seen('Z')) retract_zlift = code_value();
  3211. }
  3212. /**
  3213. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3214. */
  3215. inline void gcode_M208() {
  3216. if (code_seen('S')) retract_recover_length = code_value();
  3217. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3218. }
  3219. /**
  3220. * M209: Enable automatic retract (M209 S1)
  3221. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3222. */
  3223. inline void gcode_M209() {
  3224. if (code_seen('S')) {
  3225. int t = code_value_short();
  3226. switch(t) {
  3227. case 0:
  3228. autoretract_enabled = false;
  3229. break;
  3230. case 1:
  3231. autoretract_enabled = true;
  3232. break;
  3233. default:
  3234. SERIAL_ECHO_START;
  3235. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3236. SERIAL_ECHO(cmdbuffer[bufindr]);
  3237. SERIAL_ECHOLNPGM("\"");
  3238. return;
  3239. }
  3240. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3241. }
  3242. }
  3243. #endif // FWRETRACT
  3244. #if EXTRUDERS > 1
  3245. /**
  3246. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3247. */
  3248. inline void gcode_M218() {
  3249. if (setTargetedHotend(218)) return;
  3250. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3251. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3252. #ifdef DUAL_X_CARRIAGE
  3253. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3254. #endif
  3255. SERIAL_ECHO_START;
  3256. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3257. for (int e = 0; e < EXTRUDERS; e++) {
  3258. SERIAL_CHAR(' ');
  3259. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3260. SERIAL_CHAR(',');
  3261. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3262. #ifdef DUAL_X_CARRIAGE
  3263. SERIAL_CHAR(',');
  3264. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3265. #endif
  3266. }
  3267. SERIAL_EOL;
  3268. }
  3269. #endif // EXTRUDERS > 1
  3270. /**
  3271. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3272. */
  3273. inline void gcode_M220() {
  3274. if (code_seen('S')) feedmultiply = code_value();
  3275. }
  3276. /**
  3277. * M221: Set extrusion percentage (M221 T0 S95)
  3278. */
  3279. inline void gcode_M221() {
  3280. if (code_seen('S')) {
  3281. int sval = code_value();
  3282. if (code_seen('T')) {
  3283. if (setTargetedHotend(221)) return;
  3284. extruder_multiply[target_extruder] = sval;
  3285. }
  3286. else {
  3287. extruder_multiply[active_extruder] = sval;
  3288. }
  3289. }
  3290. }
  3291. /**
  3292. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3293. */
  3294. inline void gcode_M226() {
  3295. if (code_seen('P')) {
  3296. int pin_number = code_value();
  3297. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3298. if (pin_state >= -1 && pin_state <= 1) {
  3299. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3300. if (sensitive_pins[i] == pin_number) {
  3301. pin_number = -1;
  3302. break;
  3303. }
  3304. }
  3305. if (pin_number > -1) {
  3306. int target = LOW;
  3307. st_synchronize();
  3308. pinMode(pin_number, INPUT);
  3309. switch(pin_state){
  3310. case 1:
  3311. target = HIGH;
  3312. break;
  3313. case 0:
  3314. target = LOW;
  3315. break;
  3316. case -1:
  3317. target = !digitalRead(pin_number);
  3318. break;
  3319. }
  3320. while(digitalRead(pin_number) != target) {
  3321. manage_heater();
  3322. manage_inactivity();
  3323. lcd_update();
  3324. }
  3325. } // pin_number > -1
  3326. } // pin_state -1 0 1
  3327. } // code_seen('P')
  3328. }
  3329. #if NUM_SERVOS > 0
  3330. /**
  3331. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3332. */
  3333. inline void gcode_M280() {
  3334. int servo_index = code_seen('P') ? code_value() : -1;
  3335. int servo_position = 0;
  3336. if (code_seen('S')) {
  3337. servo_position = code_value();
  3338. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3339. #if SERVO_LEVELING
  3340. servos[servo_index].attach(0);
  3341. #endif
  3342. servos[servo_index].write(servo_position);
  3343. #if SERVO_LEVELING
  3344. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3345. servos[servo_index].detach();
  3346. #endif
  3347. }
  3348. else {
  3349. SERIAL_ECHO_START;
  3350. SERIAL_ECHO("Servo ");
  3351. SERIAL_ECHO(servo_index);
  3352. SERIAL_ECHOLN(" out of range");
  3353. }
  3354. }
  3355. else if (servo_index >= 0) {
  3356. SERIAL_PROTOCOL(MSG_OK);
  3357. SERIAL_PROTOCOL(" Servo ");
  3358. SERIAL_PROTOCOL(servo_index);
  3359. SERIAL_PROTOCOL(": ");
  3360. SERIAL_PROTOCOL(servos[servo_index].read());
  3361. SERIAL_EOL;
  3362. }
  3363. }
  3364. #endif // NUM_SERVOS > 0
  3365. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3366. /**
  3367. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3368. */
  3369. inline void gcode_M300() {
  3370. int beepS = code_seen('S') ? code_value() : 110;
  3371. int beepP = code_seen('P') ? code_value() : 1000;
  3372. if (beepS > 0) {
  3373. #if BEEPER > 0
  3374. tone(BEEPER, beepS);
  3375. delay(beepP);
  3376. noTone(BEEPER);
  3377. #elif defined(ULTRALCD)
  3378. lcd_buzz(beepS, beepP);
  3379. #elif defined(LCD_USE_I2C_BUZZER)
  3380. lcd_buzz(beepP, beepS);
  3381. #endif
  3382. }
  3383. else {
  3384. delay(beepP);
  3385. }
  3386. }
  3387. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3388. #ifdef PIDTEMP
  3389. /**
  3390. * M301: Set PID parameters P I D (and optionally C)
  3391. */
  3392. inline void gcode_M301() {
  3393. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3394. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3395. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3396. if (e < EXTRUDERS) { // catch bad input value
  3397. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3398. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3399. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3400. #ifdef PID_ADD_EXTRUSION_RATE
  3401. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3402. #endif
  3403. updatePID();
  3404. SERIAL_PROTOCOL(MSG_OK);
  3405. #ifdef PID_PARAMS_PER_EXTRUDER
  3406. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3407. SERIAL_PROTOCOL(e);
  3408. #endif // PID_PARAMS_PER_EXTRUDER
  3409. SERIAL_PROTOCOL(" p:");
  3410. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3411. SERIAL_PROTOCOL(" i:");
  3412. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3413. SERIAL_PROTOCOL(" d:");
  3414. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3415. #ifdef PID_ADD_EXTRUSION_RATE
  3416. SERIAL_PROTOCOL(" c:");
  3417. //Kc does not have scaling applied above, or in resetting defaults
  3418. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3419. #endif
  3420. SERIAL_EOL;
  3421. }
  3422. else {
  3423. SERIAL_ECHO_START;
  3424. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3425. }
  3426. }
  3427. #endif // PIDTEMP
  3428. #ifdef PIDTEMPBED
  3429. inline void gcode_M304() {
  3430. if (code_seen('P')) bedKp = code_value();
  3431. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3432. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3433. updatePID();
  3434. SERIAL_PROTOCOL(MSG_OK);
  3435. SERIAL_PROTOCOL(" p:");
  3436. SERIAL_PROTOCOL(bedKp);
  3437. SERIAL_PROTOCOL(" i:");
  3438. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3439. SERIAL_PROTOCOL(" d:");
  3440. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3441. SERIAL_EOL;
  3442. }
  3443. #endif // PIDTEMPBED
  3444. #if defined(CHDK) || HAS_PHOTOGRAPH
  3445. /**
  3446. * M240: Trigger a camera by emulating a Canon RC-1
  3447. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3448. */
  3449. inline void gcode_M240() {
  3450. #ifdef CHDK
  3451. OUT_WRITE(CHDK, HIGH);
  3452. chdkHigh = millis();
  3453. chdkActive = true;
  3454. #elif HAS_PHOTOGRAPH
  3455. const uint8_t NUM_PULSES = 16;
  3456. const float PULSE_LENGTH = 0.01524;
  3457. for (int i = 0; i < NUM_PULSES; i++) {
  3458. WRITE(PHOTOGRAPH_PIN, HIGH);
  3459. _delay_ms(PULSE_LENGTH);
  3460. WRITE(PHOTOGRAPH_PIN, LOW);
  3461. _delay_ms(PULSE_LENGTH);
  3462. }
  3463. delay(7.33);
  3464. for (int i = 0; i < NUM_PULSES; i++) {
  3465. WRITE(PHOTOGRAPH_PIN, HIGH);
  3466. _delay_ms(PULSE_LENGTH);
  3467. WRITE(PHOTOGRAPH_PIN, LOW);
  3468. _delay_ms(PULSE_LENGTH);
  3469. }
  3470. #endif // !CHDK && HAS_PHOTOGRAPH
  3471. }
  3472. #endif // CHDK || PHOTOGRAPH_PIN
  3473. #ifdef DOGLCD
  3474. /**
  3475. * M250: Read and optionally set the LCD contrast
  3476. */
  3477. inline void gcode_M250() {
  3478. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3479. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3480. SERIAL_PROTOCOL(lcd_contrast);
  3481. SERIAL_EOL;
  3482. }
  3483. #endif // DOGLCD
  3484. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3485. /**
  3486. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3487. */
  3488. inline void gcode_M302() {
  3489. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3490. }
  3491. #endif // PREVENT_DANGEROUS_EXTRUDE
  3492. /**
  3493. * M303: PID relay autotune
  3494. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3495. * E<extruder> (-1 for the bed)
  3496. * C<cycles>
  3497. */
  3498. inline void gcode_M303() {
  3499. int e = code_seen('E') ? code_value_short() : 0;
  3500. int c = code_seen('C') ? code_value_short() : 5;
  3501. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3502. PID_autotune(temp, e, c);
  3503. }
  3504. #ifdef SCARA
  3505. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3506. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3507. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3508. if (! Stopped) {
  3509. //get_coordinates(); // For X Y Z E F
  3510. delta[X_AXIS] = delta_x;
  3511. delta[Y_AXIS] = delta_y;
  3512. calculate_SCARA_forward_Transform(delta);
  3513. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3514. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3515. prepare_move();
  3516. //ClearToSend();
  3517. return true;
  3518. }
  3519. return false;
  3520. }
  3521. /**
  3522. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3523. */
  3524. inline bool gcode_M360() {
  3525. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3526. return SCARA_move_to_cal(0, 120);
  3527. }
  3528. /**
  3529. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3530. */
  3531. inline bool gcode_M361() {
  3532. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3533. return SCARA_move_to_cal(90, 130);
  3534. }
  3535. /**
  3536. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3537. */
  3538. inline bool gcode_M362() {
  3539. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3540. return SCARA_move_to_cal(60, 180);
  3541. }
  3542. /**
  3543. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3544. */
  3545. inline bool gcode_M363() {
  3546. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3547. return SCARA_move_to_cal(50, 90);
  3548. }
  3549. /**
  3550. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3551. */
  3552. inline bool gcode_M364() {
  3553. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3554. return SCARA_move_to_cal(45, 135);
  3555. }
  3556. /**
  3557. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3558. */
  3559. inline void gcode_M365() {
  3560. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3561. if (code_seen(axis_codes[i])) {
  3562. axis_scaling[i] = code_value();
  3563. }
  3564. }
  3565. }
  3566. #endif // SCARA
  3567. #ifdef EXT_SOLENOID
  3568. void enable_solenoid(uint8_t num) {
  3569. switch(num) {
  3570. case 0:
  3571. OUT_WRITE(SOL0_PIN, HIGH);
  3572. break;
  3573. #if HAS_SOLENOID_1
  3574. case 1:
  3575. OUT_WRITE(SOL1_PIN, HIGH);
  3576. break;
  3577. #endif
  3578. #if HAS_SOLENOID_2
  3579. case 2:
  3580. OUT_WRITE(SOL2_PIN, HIGH);
  3581. break;
  3582. #endif
  3583. #if HAS_SOLENOID_3
  3584. case 3:
  3585. OUT_WRITE(SOL3_PIN, HIGH);
  3586. break;
  3587. #endif
  3588. default:
  3589. SERIAL_ECHO_START;
  3590. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3591. break;
  3592. }
  3593. }
  3594. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3595. void disable_all_solenoids() {
  3596. OUT_WRITE(SOL0_PIN, LOW);
  3597. OUT_WRITE(SOL1_PIN, LOW);
  3598. OUT_WRITE(SOL2_PIN, LOW);
  3599. OUT_WRITE(SOL3_PIN, LOW);
  3600. }
  3601. /**
  3602. * M380: Enable solenoid on the active extruder
  3603. */
  3604. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3605. /**
  3606. * M381: Disable all solenoids
  3607. */
  3608. inline void gcode_M381() { disable_all_solenoids(); }
  3609. #endif // EXT_SOLENOID
  3610. /**
  3611. * M400: Finish all moves
  3612. */
  3613. inline void gcode_M400() { st_synchronize(); }
  3614. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3615. /**
  3616. * M401: Engage Z Servo endstop if available
  3617. */
  3618. inline void gcode_M401() { deploy_z_probe(); }
  3619. /**
  3620. * M402: Retract Z Servo endstop if enabled
  3621. */
  3622. inline void gcode_M402() { stow_z_probe(); }
  3623. #endif
  3624. #ifdef FILAMENT_SENSOR
  3625. /**
  3626. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3627. */
  3628. inline void gcode_M404() {
  3629. #if HAS_FILWIDTH
  3630. if (code_seen('W')) {
  3631. filament_width_nominal = code_value();
  3632. }
  3633. else {
  3634. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3635. SERIAL_PROTOCOLLN(filament_width_nominal);
  3636. }
  3637. #endif
  3638. }
  3639. /**
  3640. * M405: Turn on filament sensor for control
  3641. */
  3642. inline void gcode_M405() {
  3643. if (code_seen('D')) meas_delay_cm = code_value();
  3644. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3645. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3646. int temp_ratio = widthFil_to_size_ratio();
  3647. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3648. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3649. delay_index1 = delay_index2 = 0;
  3650. }
  3651. filament_sensor = true;
  3652. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3653. //SERIAL_PROTOCOL(filament_width_meas);
  3654. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3655. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3656. }
  3657. /**
  3658. * M406: Turn off filament sensor for control
  3659. */
  3660. inline void gcode_M406() { filament_sensor = false; }
  3661. /**
  3662. * M407: Get measured filament diameter on serial output
  3663. */
  3664. inline void gcode_M407() {
  3665. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3666. SERIAL_PROTOCOLLN(filament_width_meas);
  3667. }
  3668. #endif // FILAMENT_SENSOR
  3669. /**
  3670. * M500: Store settings in EEPROM
  3671. */
  3672. inline void gcode_M500() {
  3673. Config_StoreSettings();
  3674. }
  3675. /**
  3676. * M501: Read settings from EEPROM
  3677. */
  3678. inline void gcode_M501() {
  3679. Config_RetrieveSettings();
  3680. }
  3681. /**
  3682. * M502: Revert to default settings
  3683. */
  3684. inline void gcode_M502() {
  3685. Config_ResetDefault();
  3686. }
  3687. /**
  3688. * M503: print settings currently in memory
  3689. */
  3690. inline void gcode_M503() {
  3691. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3692. }
  3693. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3694. /**
  3695. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3696. */
  3697. inline void gcode_M540() {
  3698. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3699. }
  3700. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3701. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3702. inline void gcode_SET_Z_PROBE_OFFSET() {
  3703. float value;
  3704. if (code_seen('Z')) {
  3705. value = code_value();
  3706. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3707. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3708. SERIAL_ECHO_START;
  3709. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3710. SERIAL_EOL;
  3711. }
  3712. else {
  3713. SERIAL_ECHO_START;
  3714. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3715. SERIAL_ECHOPGM(MSG_Z_MIN);
  3716. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3717. SERIAL_ECHOPGM(MSG_Z_MAX);
  3718. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3719. SERIAL_EOL;
  3720. }
  3721. }
  3722. else {
  3723. SERIAL_ECHO_START;
  3724. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3725. SERIAL_ECHO(-zprobe_zoffset);
  3726. SERIAL_EOL;
  3727. }
  3728. }
  3729. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3730. #ifdef FILAMENTCHANGEENABLE
  3731. /**
  3732. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3733. */
  3734. inline void gcode_M600() {
  3735. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3736. for (int i=0; i<NUM_AXIS; i++)
  3737. target[i] = lastpos[i] = current_position[i];
  3738. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3739. #ifdef DELTA
  3740. #define RUNPLAN calculate_delta(target); BASICPLAN
  3741. #else
  3742. #define RUNPLAN BASICPLAN
  3743. #endif
  3744. //retract by E
  3745. if (code_seen('E')) target[E_AXIS] += code_value();
  3746. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3747. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3748. #endif
  3749. RUNPLAN;
  3750. //lift Z
  3751. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3752. #ifdef FILAMENTCHANGE_ZADD
  3753. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3754. #endif
  3755. RUNPLAN;
  3756. //move xy
  3757. if (code_seen('X')) target[X_AXIS] = code_value();
  3758. #ifdef FILAMENTCHANGE_XPOS
  3759. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3760. #endif
  3761. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3762. #ifdef FILAMENTCHANGE_YPOS
  3763. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3764. #endif
  3765. RUNPLAN;
  3766. if (code_seen('L')) target[E_AXIS] += code_value();
  3767. #ifdef FILAMENTCHANGE_FINALRETRACT
  3768. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3769. #endif
  3770. RUNPLAN;
  3771. //finish moves
  3772. st_synchronize();
  3773. //disable extruder steppers so filament can be removed
  3774. disable_e0();
  3775. disable_e1();
  3776. disable_e2();
  3777. disable_e3();
  3778. delay(100);
  3779. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3780. uint8_t cnt = 0;
  3781. while (!lcd_clicked()) {
  3782. cnt++;
  3783. manage_heater();
  3784. manage_inactivity(true);
  3785. lcd_update();
  3786. if (cnt == 0) {
  3787. #if BEEPER > 0
  3788. OUT_WRITE(BEEPER,HIGH);
  3789. delay(3);
  3790. WRITE(BEEPER,LOW);
  3791. delay(3);
  3792. #else
  3793. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3794. lcd_buzz(1000/6, 100);
  3795. #else
  3796. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3797. #endif
  3798. #endif
  3799. }
  3800. } // while(!lcd_clicked)
  3801. //return to normal
  3802. if (code_seen('L')) target[E_AXIS] -= code_value();
  3803. #ifdef FILAMENTCHANGE_FINALRETRACT
  3804. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3805. #endif
  3806. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3807. plan_set_e_position(current_position[E_AXIS]);
  3808. RUNPLAN; //should do nothing
  3809. lcd_reset_alert_level();
  3810. #ifdef DELTA
  3811. calculate_delta(lastpos);
  3812. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3813. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3814. #else
  3815. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3816. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3817. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3818. #endif
  3819. #ifdef FILAMENT_RUNOUT_SENSOR
  3820. filrunoutEnqued = false;
  3821. #endif
  3822. }
  3823. #endif // FILAMENTCHANGEENABLE
  3824. #ifdef DUAL_X_CARRIAGE
  3825. /**
  3826. * M605: Set dual x-carriage movement mode
  3827. *
  3828. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3829. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3830. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3831. * millimeters x-offset and an optional differential hotend temperature of
  3832. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3833. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3834. *
  3835. * Note: the X axis should be homed after changing dual x-carriage mode.
  3836. */
  3837. inline void gcode_M605() {
  3838. st_synchronize();
  3839. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3840. switch(dual_x_carriage_mode) {
  3841. case DXC_DUPLICATION_MODE:
  3842. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3843. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3844. SERIAL_ECHO_START;
  3845. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3846. SERIAL_CHAR(' ');
  3847. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3848. SERIAL_CHAR(',');
  3849. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3850. SERIAL_CHAR(' ');
  3851. SERIAL_ECHO(duplicate_extruder_x_offset);
  3852. SERIAL_CHAR(',');
  3853. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3854. break;
  3855. case DXC_FULL_CONTROL_MODE:
  3856. case DXC_AUTO_PARK_MODE:
  3857. break;
  3858. default:
  3859. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3860. break;
  3861. }
  3862. active_extruder_parked = false;
  3863. extruder_duplication_enabled = false;
  3864. delayed_move_time = 0;
  3865. }
  3866. #endif // DUAL_X_CARRIAGE
  3867. /**
  3868. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3869. */
  3870. inline void gcode_M907() {
  3871. #if HAS_DIGIPOTSS
  3872. for (int i=0;i<NUM_AXIS;i++)
  3873. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3874. if (code_seen('B')) digipot_current(4, code_value());
  3875. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3876. #endif
  3877. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3878. if (code_seen('X')) digipot_current(0, code_value());
  3879. #endif
  3880. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3881. if (code_seen('Z')) digipot_current(1, code_value());
  3882. #endif
  3883. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3884. if (code_seen('E')) digipot_current(2, code_value());
  3885. #endif
  3886. #ifdef DIGIPOT_I2C
  3887. // this one uses actual amps in floating point
  3888. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3889. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3890. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3891. #endif
  3892. }
  3893. #if HAS_DIGIPOTSS
  3894. /**
  3895. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3896. */
  3897. inline void gcode_M908() {
  3898. digitalPotWrite(
  3899. code_seen('P') ? code_value() : 0,
  3900. code_seen('S') ? code_value() : 0
  3901. );
  3902. }
  3903. #endif // HAS_DIGIPOTSS
  3904. #if HAS_MICROSTEPS
  3905. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3906. inline void gcode_M350() {
  3907. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3908. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3909. if(code_seen('B')) microstep_mode(4,code_value());
  3910. microstep_readings();
  3911. }
  3912. /**
  3913. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3914. * S# determines MS1 or MS2, X# sets the pin high/low.
  3915. */
  3916. inline void gcode_M351() {
  3917. if (code_seen('S')) switch(code_value_short()) {
  3918. case 1:
  3919. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3920. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3921. break;
  3922. case 2:
  3923. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3924. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3925. break;
  3926. }
  3927. microstep_readings();
  3928. }
  3929. #endif // HAS_MICROSTEPS
  3930. /**
  3931. * M999: Restart after being stopped
  3932. */
  3933. inline void gcode_M999() {
  3934. Stopped = false;
  3935. lcd_reset_alert_level();
  3936. gcode_LastN = Stopped_gcode_LastN;
  3937. FlushSerialRequestResend();
  3938. }
  3939. inline void gcode_T() {
  3940. int tmp_extruder = code_value();
  3941. if (tmp_extruder >= EXTRUDERS) {
  3942. SERIAL_ECHO_START;
  3943. SERIAL_CHAR('T');
  3944. SERIAL_ECHO(tmp_extruder);
  3945. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3946. }
  3947. else {
  3948. target_extruder = tmp_extruder;
  3949. #if EXTRUDERS > 1
  3950. bool make_move = false;
  3951. #endif
  3952. if (code_seen('F')) {
  3953. #if EXTRUDERS > 1
  3954. make_move = true;
  3955. #endif
  3956. next_feedrate = code_value();
  3957. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3958. }
  3959. #if EXTRUDERS > 1
  3960. if (tmp_extruder != active_extruder) {
  3961. // Save current position to return to after applying extruder offset
  3962. set_destination_to_current();
  3963. #ifdef DUAL_X_CARRIAGE
  3964. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3965. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3966. // Park old head: 1) raise 2) move to park position 3) lower
  3967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3968. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3969. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3970. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3971. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3972. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3973. st_synchronize();
  3974. }
  3975. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3976. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3977. extruder_offset[Y_AXIS][active_extruder] +
  3978. extruder_offset[Y_AXIS][tmp_extruder];
  3979. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3980. extruder_offset[Z_AXIS][active_extruder] +
  3981. extruder_offset[Z_AXIS][tmp_extruder];
  3982. active_extruder = tmp_extruder;
  3983. // This function resets the max/min values - the current position may be overwritten below.
  3984. axis_is_at_home(X_AXIS);
  3985. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3986. current_position[X_AXIS] = inactive_extruder_x_pos;
  3987. inactive_extruder_x_pos = destination[X_AXIS];
  3988. }
  3989. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3990. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3991. if (active_extruder == 0 || active_extruder_parked)
  3992. current_position[X_AXIS] = inactive_extruder_x_pos;
  3993. else
  3994. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3995. inactive_extruder_x_pos = destination[X_AXIS];
  3996. extruder_duplication_enabled = false;
  3997. }
  3998. else {
  3999. // record raised toolhead position for use by unpark
  4000. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4001. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4002. active_extruder_parked = true;
  4003. delayed_move_time = 0;
  4004. }
  4005. #else // !DUAL_X_CARRIAGE
  4006. // Offset extruder (only by XY)
  4007. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4008. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4009. // Set the new active extruder and position
  4010. active_extruder = tmp_extruder;
  4011. #endif // !DUAL_X_CARRIAGE
  4012. #ifdef DELTA
  4013. sync_plan_position_delta();
  4014. #else
  4015. sync_plan_position();
  4016. #endif
  4017. // Move to the old position if 'F' was in the parameters
  4018. if (make_move && !Stopped) prepare_move();
  4019. }
  4020. #ifdef EXT_SOLENOID
  4021. st_synchronize();
  4022. disable_all_solenoids();
  4023. enable_solenoid_on_active_extruder();
  4024. #endif // EXT_SOLENOID
  4025. #endif // EXTRUDERS > 1
  4026. SERIAL_ECHO_START;
  4027. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4028. SERIAL_PROTOCOLLN((int)active_extruder);
  4029. }
  4030. }
  4031. /**
  4032. * Process Commands and dispatch them to handlers
  4033. * This is called from the main loop()
  4034. */
  4035. void process_commands() {
  4036. if (code_seen('G')) {
  4037. int gCode = code_value_short();
  4038. switch(gCode) {
  4039. // G0, G1
  4040. case 0:
  4041. case 1:
  4042. gcode_G0_G1();
  4043. break;
  4044. // G2, G3
  4045. #ifndef SCARA
  4046. case 2: // G2 - CW ARC
  4047. case 3: // G3 - CCW ARC
  4048. gcode_G2_G3(gCode == 2);
  4049. break;
  4050. #endif
  4051. // G4 Dwell
  4052. case 4:
  4053. gcode_G4();
  4054. break;
  4055. #ifdef FWRETRACT
  4056. case 10: // G10: retract
  4057. case 11: // G11: retract_recover
  4058. gcode_G10_G11(gCode == 10);
  4059. break;
  4060. #endif //FWRETRACT
  4061. case 28: // G28: Home all axes, one at a time
  4062. gcode_G28();
  4063. break;
  4064. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4065. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4066. gcode_G29();
  4067. break;
  4068. #endif
  4069. #ifdef ENABLE_AUTO_BED_LEVELING
  4070. #ifndef Z_PROBE_SLED
  4071. case 30: // G30 Single Z Probe
  4072. gcode_G30();
  4073. break;
  4074. #else // Z_PROBE_SLED
  4075. case 31: // G31: dock the sled
  4076. case 32: // G32: undock the sled
  4077. dock_sled(gCode == 31);
  4078. break;
  4079. #endif // Z_PROBE_SLED
  4080. #endif // ENABLE_AUTO_BED_LEVELING
  4081. case 90: // G90
  4082. relative_mode = false;
  4083. break;
  4084. case 91: // G91
  4085. relative_mode = true;
  4086. break;
  4087. case 92: // G92
  4088. gcode_G92();
  4089. break;
  4090. }
  4091. }
  4092. else if (code_seen('M')) {
  4093. switch(code_value_short()) {
  4094. #ifdef ULTIPANEL
  4095. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4096. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4097. gcode_M0_M1();
  4098. break;
  4099. #endif // ULTIPANEL
  4100. case 17:
  4101. gcode_M17();
  4102. break;
  4103. #ifdef SDSUPPORT
  4104. case 20: // M20 - list SD card
  4105. gcode_M20(); break;
  4106. case 21: // M21 - init SD card
  4107. gcode_M21(); break;
  4108. case 22: //M22 - release SD card
  4109. gcode_M22(); break;
  4110. case 23: //M23 - Select file
  4111. gcode_M23(); break;
  4112. case 24: //M24 - Start SD print
  4113. gcode_M24(); break;
  4114. case 25: //M25 - Pause SD print
  4115. gcode_M25(); break;
  4116. case 26: //M26 - Set SD index
  4117. gcode_M26(); break;
  4118. case 27: //M27 - Get SD status
  4119. gcode_M27(); break;
  4120. case 28: //M28 - Start SD write
  4121. gcode_M28(); break;
  4122. case 29: //M29 - Stop SD write
  4123. gcode_M29(); break;
  4124. case 30: //M30 <filename> Delete File
  4125. gcode_M30(); break;
  4126. case 32: //M32 - Select file and start SD print
  4127. gcode_M32(); break;
  4128. case 928: //M928 - Start SD write
  4129. gcode_M928(); break;
  4130. #endif //SDSUPPORT
  4131. case 31: //M31 take time since the start of the SD print or an M109 command
  4132. gcode_M31();
  4133. break;
  4134. case 42: //M42 -Change pin status via gcode
  4135. gcode_M42();
  4136. break;
  4137. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4138. case 48: // M48 Z-Probe repeatability
  4139. gcode_M48();
  4140. break;
  4141. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4142. case 104: // M104
  4143. gcode_M104();
  4144. break;
  4145. case 112: // M112 Emergency Stop
  4146. gcode_M112();
  4147. break;
  4148. case 140: // M140 Set bed temp
  4149. gcode_M140();
  4150. break;
  4151. case 105: // M105 Read current temperature
  4152. gcode_M105();
  4153. return;
  4154. break;
  4155. case 109: // M109 Wait for temperature
  4156. gcode_M109();
  4157. break;
  4158. #if HAS_TEMP_BED
  4159. case 190: // M190 - Wait for bed heater to reach target.
  4160. gcode_M190();
  4161. break;
  4162. #endif // HAS_TEMP_BED
  4163. #if HAS_FAN
  4164. case 106: //M106 Fan On
  4165. gcode_M106();
  4166. break;
  4167. case 107: //M107 Fan Off
  4168. gcode_M107();
  4169. break;
  4170. #endif // HAS_FAN
  4171. #ifdef BARICUDA
  4172. // PWM for HEATER_1_PIN
  4173. #if HAS_HEATER_1
  4174. case 126: // M126 valve open
  4175. gcode_M126();
  4176. break;
  4177. case 127: // M127 valve closed
  4178. gcode_M127();
  4179. break;
  4180. #endif // HAS_HEATER_1
  4181. // PWM for HEATER_2_PIN
  4182. #if HAS_HEATER_2
  4183. case 128: // M128 valve open
  4184. gcode_M128();
  4185. break;
  4186. case 129: // M129 valve closed
  4187. gcode_M129();
  4188. break;
  4189. #endif // HAS_HEATER_2
  4190. #endif // BARICUDA
  4191. #if HAS_POWER_SWITCH
  4192. case 80: // M80 - Turn on Power Supply
  4193. gcode_M80();
  4194. break;
  4195. #endif // HAS_POWER_SWITCH
  4196. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4197. gcode_M81();
  4198. break;
  4199. case 82:
  4200. gcode_M82();
  4201. break;
  4202. case 83:
  4203. gcode_M83();
  4204. break;
  4205. case 18: //compatibility
  4206. case 84: // M84
  4207. gcode_M18_M84();
  4208. break;
  4209. case 85: // M85
  4210. gcode_M85();
  4211. break;
  4212. case 92: // M92
  4213. gcode_M92();
  4214. break;
  4215. case 115: // M115
  4216. gcode_M115();
  4217. break;
  4218. case 117: // M117 display message
  4219. gcode_M117();
  4220. break;
  4221. case 114: // M114
  4222. gcode_M114();
  4223. break;
  4224. case 120: // M120
  4225. gcode_M120();
  4226. break;
  4227. case 121: // M121
  4228. gcode_M121();
  4229. break;
  4230. case 119: // M119
  4231. gcode_M119();
  4232. break;
  4233. //TODO: update for all axis, use for loop
  4234. #ifdef BLINKM
  4235. case 150: // M150
  4236. gcode_M150();
  4237. break;
  4238. #endif //BLINKM
  4239. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4240. gcode_M200();
  4241. break;
  4242. case 201: // M201
  4243. gcode_M201();
  4244. break;
  4245. #if 0 // Not used for Sprinter/grbl gen6
  4246. case 202: // M202
  4247. gcode_M202();
  4248. break;
  4249. #endif
  4250. case 203: // M203 max feedrate mm/sec
  4251. gcode_M203();
  4252. break;
  4253. case 204: // M204 acclereration S normal moves T filmanent only moves
  4254. gcode_M204();
  4255. break;
  4256. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4257. gcode_M205();
  4258. break;
  4259. case 206: // M206 additional homing offset
  4260. gcode_M206();
  4261. break;
  4262. #ifdef DELTA
  4263. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4264. gcode_M665();
  4265. break;
  4266. #endif
  4267. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4268. case 666: // M666 set delta / dual endstop adjustment
  4269. gcode_M666();
  4270. break;
  4271. #endif
  4272. #ifdef FWRETRACT
  4273. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4274. gcode_M207();
  4275. break;
  4276. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4277. gcode_M208();
  4278. break;
  4279. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4280. gcode_M209();
  4281. break;
  4282. #endif // FWRETRACT
  4283. #if EXTRUDERS > 1
  4284. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4285. gcode_M218();
  4286. break;
  4287. #endif
  4288. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4289. gcode_M220();
  4290. break;
  4291. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4292. gcode_M221();
  4293. break;
  4294. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4295. gcode_M226();
  4296. break;
  4297. #if NUM_SERVOS > 0
  4298. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4299. gcode_M280();
  4300. break;
  4301. #endif // NUM_SERVOS > 0
  4302. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4303. case 300: // M300 - Play beep tone
  4304. gcode_M300();
  4305. break;
  4306. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4307. #ifdef PIDTEMP
  4308. case 301: // M301
  4309. gcode_M301();
  4310. break;
  4311. #endif // PIDTEMP
  4312. #ifdef PIDTEMPBED
  4313. case 304: // M304
  4314. gcode_M304();
  4315. break;
  4316. #endif // PIDTEMPBED
  4317. #if defined(CHDK) || HAS_PHOTOGRAPH
  4318. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4319. gcode_M240();
  4320. break;
  4321. #endif // CHDK || PHOTOGRAPH_PIN
  4322. #ifdef DOGLCD
  4323. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4324. gcode_M250();
  4325. break;
  4326. #endif // DOGLCD
  4327. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4328. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4329. gcode_M302();
  4330. break;
  4331. #endif // PREVENT_DANGEROUS_EXTRUDE
  4332. case 303: // M303 PID autotune
  4333. gcode_M303();
  4334. break;
  4335. #ifdef SCARA
  4336. case 360: // M360 SCARA Theta pos1
  4337. if (gcode_M360()) return;
  4338. break;
  4339. case 361: // M361 SCARA Theta pos2
  4340. if (gcode_M361()) return;
  4341. break;
  4342. case 362: // M362 SCARA Psi pos1
  4343. if (gcode_M362()) return;
  4344. break;
  4345. case 363: // M363 SCARA Psi pos2
  4346. if (gcode_M363()) return;
  4347. break;
  4348. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4349. if (gcode_M364()) return;
  4350. break;
  4351. case 365: // M365 Set SCARA scaling for X Y Z
  4352. gcode_M365();
  4353. break;
  4354. #endif // SCARA
  4355. case 400: // M400 finish all moves
  4356. gcode_M400();
  4357. break;
  4358. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4359. case 401:
  4360. gcode_M401();
  4361. break;
  4362. case 402:
  4363. gcode_M402();
  4364. break;
  4365. #endif
  4366. #ifdef FILAMENT_SENSOR
  4367. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4368. gcode_M404();
  4369. break;
  4370. case 405: //M405 Turn on filament sensor for control
  4371. gcode_M405();
  4372. break;
  4373. case 406: //M406 Turn off filament sensor for control
  4374. gcode_M406();
  4375. break;
  4376. case 407: //M407 Display measured filament diameter
  4377. gcode_M407();
  4378. break;
  4379. #endif // FILAMENT_SENSOR
  4380. case 500: // M500 Store settings in EEPROM
  4381. gcode_M500();
  4382. break;
  4383. case 501: // M501 Read settings from EEPROM
  4384. gcode_M501();
  4385. break;
  4386. case 502: // M502 Revert to default settings
  4387. gcode_M502();
  4388. break;
  4389. case 503: // M503 print settings currently in memory
  4390. gcode_M503();
  4391. break;
  4392. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4393. case 540:
  4394. gcode_M540();
  4395. break;
  4396. #endif
  4397. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4398. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4399. gcode_SET_Z_PROBE_OFFSET();
  4400. break;
  4401. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4402. #ifdef FILAMENTCHANGEENABLE
  4403. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4404. gcode_M600();
  4405. break;
  4406. #endif // FILAMENTCHANGEENABLE
  4407. #ifdef DUAL_X_CARRIAGE
  4408. case 605:
  4409. gcode_M605();
  4410. break;
  4411. #endif // DUAL_X_CARRIAGE
  4412. case 907: // M907 Set digital trimpot motor current using axis codes.
  4413. gcode_M907();
  4414. break;
  4415. #if HAS_DIGIPOTSS
  4416. case 908: // M908 Control digital trimpot directly.
  4417. gcode_M908();
  4418. break;
  4419. #endif // HAS_DIGIPOTSS
  4420. #if HAS_MICROSTEPS
  4421. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4422. gcode_M350();
  4423. break;
  4424. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4425. gcode_M351();
  4426. break;
  4427. #endif // HAS_MICROSTEPS
  4428. case 999: // M999: Restart after being Stopped
  4429. gcode_M999();
  4430. break;
  4431. }
  4432. }
  4433. else if (code_seen('T')) {
  4434. gcode_T();
  4435. }
  4436. else {
  4437. SERIAL_ECHO_START;
  4438. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4439. SERIAL_ECHO(cmdbuffer[bufindr]);
  4440. SERIAL_ECHOLNPGM("\"");
  4441. }
  4442. ClearToSend();
  4443. }
  4444. void FlushSerialRequestResend() {
  4445. //char cmdbuffer[bufindr][100]="Resend:";
  4446. MYSERIAL.flush();
  4447. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4448. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4449. ClearToSend();
  4450. }
  4451. void ClearToSend() {
  4452. refresh_cmd_timeout();
  4453. #ifdef SDSUPPORT
  4454. if (fromsd[bufindr]) return;
  4455. #endif
  4456. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4457. }
  4458. void get_coordinates() {
  4459. for (int i = 0; i < NUM_AXIS; i++) {
  4460. if (code_seen(axis_codes[i]))
  4461. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4462. else
  4463. destination[i] = current_position[i];
  4464. }
  4465. if (code_seen('F')) {
  4466. next_feedrate = code_value();
  4467. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4468. }
  4469. }
  4470. void get_arc_coordinates() {
  4471. #ifdef SF_ARC_FIX
  4472. bool relative_mode_backup = relative_mode;
  4473. relative_mode = true;
  4474. #endif
  4475. get_coordinates();
  4476. #ifdef SF_ARC_FIX
  4477. relative_mode = relative_mode_backup;
  4478. #endif
  4479. offset[0] = code_seen('I') ? code_value() : 0;
  4480. offset[1] = code_seen('J') ? code_value() : 0;
  4481. }
  4482. void clamp_to_software_endstops(float target[3])
  4483. {
  4484. if (min_software_endstops) {
  4485. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4486. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4487. float negative_z_offset = 0;
  4488. #ifdef ENABLE_AUTO_BED_LEVELING
  4489. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4490. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4491. #endif
  4492. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4493. }
  4494. if (max_software_endstops) {
  4495. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4496. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4497. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4498. }
  4499. }
  4500. #ifdef DELTA
  4501. void recalc_delta_settings(float radius, float diagonal_rod) {
  4502. delta_tower1_x = -SIN_60 * radius; // front left tower
  4503. delta_tower1_y = -COS_60 * radius;
  4504. delta_tower2_x = SIN_60 * radius; // front right tower
  4505. delta_tower2_y = -COS_60 * radius;
  4506. delta_tower3_x = 0.0; // back middle tower
  4507. delta_tower3_y = radius;
  4508. delta_diagonal_rod_2 = sq(diagonal_rod);
  4509. }
  4510. void calculate_delta(float cartesian[3]) {
  4511. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4512. - sq(delta_tower1_x-cartesian[X_AXIS])
  4513. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4514. ) + cartesian[Z_AXIS];
  4515. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4516. - sq(delta_tower2_x-cartesian[X_AXIS])
  4517. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4518. ) + cartesian[Z_AXIS];
  4519. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4520. - sq(delta_tower3_x-cartesian[X_AXIS])
  4521. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4522. ) + cartesian[Z_AXIS];
  4523. /*
  4524. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4525. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4526. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4527. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4528. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4529. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4530. */
  4531. }
  4532. #ifdef ENABLE_AUTO_BED_LEVELING
  4533. // Adjust print surface height by linear interpolation over the bed_level array.
  4534. void adjust_delta(float cartesian[3]) {
  4535. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4536. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4537. float h1 = 0.001 - half, h2 = half - 0.001,
  4538. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4539. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4540. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4541. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4542. z1 = bed_level[floor_x + half][floor_y + half],
  4543. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4544. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4545. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4546. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4547. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4548. offset = (1 - ratio_x) * left + ratio_x * right;
  4549. delta[X_AXIS] += offset;
  4550. delta[Y_AXIS] += offset;
  4551. delta[Z_AXIS] += offset;
  4552. /*
  4553. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4554. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4555. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4556. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4557. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4558. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4559. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4560. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4561. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4562. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4563. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4564. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4565. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4566. */
  4567. }
  4568. #endif // ENABLE_AUTO_BED_LEVELING
  4569. #endif // DELTA
  4570. #ifdef MESH_BED_LEVELING
  4571. #if !defined(MIN)
  4572. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4573. #endif // ! MIN
  4574. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4575. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4576. {
  4577. if (!mbl.active) {
  4578. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4579. set_current_to_destination();
  4580. return;
  4581. }
  4582. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4583. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4584. int ix = mbl.select_x_index(x);
  4585. int iy = mbl.select_y_index(y);
  4586. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4587. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4588. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4589. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4590. if (pix == ix && piy == iy) {
  4591. // Start and end on same mesh square
  4592. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4593. set_current_to_destination();
  4594. return;
  4595. }
  4596. float nx, ny, ne, normalized_dist;
  4597. if (ix > pix && (x_splits) & BIT(ix)) {
  4598. nx = mbl.get_x(ix);
  4599. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4600. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4601. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4602. x_splits ^= BIT(ix);
  4603. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4604. nx = mbl.get_x(pix);
  4605. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4606. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4607. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4608. x_splits ^= BIT(pix);
  4609. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4610. ny = mbl.get_y(iy);
  4611. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4612. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4613. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4614. y_splits ^= BIT(iy);
  4615. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4616. ny = mbl.get_y(piy);
  4617. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4618. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4619. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4620. y_splits ^= BIT(piy);
  4621. } else {
  4622. // Already split on a border
  4623. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4624. set_current_to_destination();
  4625. return;
  4626. }
  4627. // Do the split and look for more borders
  4628. destination[X_AXIS] = nx;
  4629. destination[Y_AXIS] = ny;
  4630. destination[E_AXIS] = ne;
  4631. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4632. destination[X_AXIS] = x;
  4633. destination[Y_AXIS] = y;
  4634. destination[E_AXIS] = e;
  4635. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4636. }
  4637. #endif // MESH_BED_LEVELING
  4638. void prepare_move() {
  4639. clamp_to_software_endstops(destination);
  4640. refresh_cmd_timeout();
  4641. #ifdef SCARA //for now same as delta-code
  4642. float difference[NUM_AXIS];
  4643. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4644. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4645. sq(difference[Y_AXIS]) +
  4646. sq(difference[Z_AXIS]));
  4647. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4648. if (cartesian_mm < 0.000001) { return; }
  4649. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4650. int steps = max(1, int(scara_segments_per_second * seconds));
  4651. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4652. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4653. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4654. for (int s = 1; s <= steps; s++) {
  4655. float fraction = float(s) / float(steps);
  4656. for(int8_t i = 0; i < NUM_AXIS; i++) {
  4657. destination[i] = current_position[i] + difference[i] * fraction;
  4658. }
  4659. calculate_delta(destination);
  4660. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4661. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4662. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4663. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4664. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4665. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4666. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4667. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4668. active_extruder);
  4669. }
  4670. #endif // SCARA
  4671. #ifdef DELTA
  4672. float difference[NUM_AXIS];
  4673. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4674. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4675. sq(difference[Y_AXIS]) +
  4676. sq(difference[Z_AXIS]));
  4677. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4678. if (cartesian_mm < 0.000001) return;
  4679. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4680. int steps = max(1, int(delta_segments_per_second * seconds));
  4681. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4682. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4683. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4684. for (int s = 1; s <= steps; s++) {
  4685. float fraction = float(s) / float(steps);
  4686. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4687. calculate_delta(destination);
  4688. #ifdef ENABLE_AUTO_BED_LEVELING
  4689. adjust_delta(destination);
  4690. #endif
  4691. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4692. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4693. active_extruder);
  4694. }
  4695. #endif // DELTA
  4696. #ifdef DUAL_X_CARRIAGE
  4697. if (active_extruder_parked) {
  4698. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4699. // move duplicate extruder into correct duplication position.
  4700. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4701. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4702. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4703. sync_plan_position();
  4704. st_synchronize();
  4705. extruder_duplication_enabled = true;
  4706. active_extruder_parked = false;
  4707. }
  4708. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4709. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4710. // this is a travel move - skit it but keep track of current position (so that it can later
  4711. // be used as start of first non-travel move)
  4712. if (delayed_move_time != 0xFFFFFFFFUL) {
  4713. set_current_to_destination();
  4714. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4715. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4716. delayed_move_time = millis();
  4717. return;
  4718. }
  4719. }
  4720. delayed_move_time = 0;
  4721. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4722. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4724. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4726. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4727. active_extruder_parked = false;
  4728. }
  4729. }
  4730. #endif // DUAL_X_CARRIAGE
  4731. #if !defined(DELTA) && !defined(SCARA)
  4732. // Do not use feedmultiply for E or Z only moves
  4733. if ( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4734. line_to_destination();
  4735. }
  4736. else {
  4737. #ifdef MESH_BED_LEVELING
  4738. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4739. return;
  4740. #else
  4741. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4742. #endif // MESH_BED_LEVELING
  4743. }
  4744. #endif // !(DELTA || SCARA)
  4745. set_current_to_destination();
  4746. }
  4747. void prepare_arc_move(char isclockwise) {
  4748. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4749. // Trace the arc
  4750. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4751. // As far as the parser is concerned, the position is now == target. In reality the
  4752. // motion control system might still be processing the action and the real tool position
  4753. // in any intermediate location.
  4754. set_current_to_destination();
  4755. refresh_cmd_timeout();
  4756. }
  4757. #if HAS_CONTROLLERFAN
  4758. unsigned long lastMotor = 0; // Last time a motor was turned on
  4759. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4760. void controllerFan() {
  4761. uint32_t ms = millis();
  4762. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4763. lastMotorCheck = ms;
  4764. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4765. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4766. #if EXTRUDERS > 1
  4767. || E1_ENABLE_READ == E_ENABLE_ON
  4768. #if HAS_X2_ENABLE
  4769. || X2_ENABLE_READ == X_ENABLE_ON
  4770. #endif
  4771. #if EXTRUDERS > 2
  4772. || E2_ENABLE_READ == E_ENABLE_ON
  4773. #if EXTRUDERS > 3
  4774. || E3_ENABLE_READ == E_ENABLE_ON
  4775. #endif
  4776. #endif
  4777. #endif
  4778. ) {
  4779. lastMotor = ms; //... set time to NOW so the fan will turn on
  4780. }
  4781. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4782. // allows digital or PWM fan output to be used (see M42 handling)
  4783. digitalWrite(CONTROLLERFAN_PIN, speed);
  4784. analogWrite(CONTROLLERFAN_PIN, speed);
  4785. }
  4786. }
  4787. #endif
  4788. #ifdef SCARA
  4789. void calculate_SCARA_forward_Transform(float f_scara[3])
  4790. {
  4791. // Perform forward kinematics, and place results in delta[3]
  4792. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4793. float x_sin, x_cos, y_sin, y_cos;
  4794. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4795. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4796. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4797. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4798. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4799. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4800. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4801. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4802. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4803. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4804. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4805. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4806. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4807. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4808. }
  4809. void calculate_delta(float cartesian[3]){
  4810. //reverse kinematics.
  4811. // Perform reversed kinematics, and place results in delta[3]
  4812. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4813. float SCARA_pos[2];
  4814. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4815. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4816. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4817. #if (Linkage_1 == Linkage_2)
  4818. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4819. #else
  4820. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4821. #endif
  4822. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4823. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4824. SCARA_K2 = Linkage_2 * SCARA_S2;
  4825. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4826. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4827. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4828. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4829. delta[Z_AXIS] = cartesian[Z_AXIS];
  4830. /*
  4831. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4832. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4833. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4834. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4835. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4836. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4837. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4838. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4839. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4840. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4841. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4842. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4843. SERIAL_ECHOLN(" ");*/
  4844. }
  4845. #endif
  4846. #ifdef TEMP_STAT_LEDS
  4847. static bool blue_led = false;
  4848. static bool red_led = false;
  4849. static uint32_t stat_update = 0;
  4850. void handle_status_leds(void) {
  4851. float max_temp = 0.0;
  4852. if(millis() > stat_update) {
  4853. stat_update += 500; // Update every 0.5s
  4854. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4855. max_temp = max(max_temp, degHotend(cur_extruder));
  4856. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4857. }
  4858. #if HAS_TEMP_BED
  4859. max_temp = max(max_temp, degTargetBed());
  4860. max_temp = max(max_temp, degBed());
  4861. #endif
  4862. if((max_temp > 55.0) && (red_led == false)) {
  4863. digitalWrite(STAT_LED_RED, 1);
  4864. digitalWrite(STAT_LED_BLUE, 0);
  4865. red_led = true;
  4866. blue_led = false;
  4867. }
  4868. if((max_temp < 54.0) && (blue_led == false)) {
  4869. digitalWrite(STAT_LED_RED, 0);
  4870. digitalWrite(STAT_LED_BLUE, 1);
  4871. red_led = false;
  4872. blue_led = true;
  4873. }
  4874. }
  4875. }
  4876. #endif
  4877. void enable_all_steppers() {
  4878. enable_x();
  4879. enable_y();
  4880. enable_z();
  4881. enable_e0();
  4882. enable_e1();
  4883. enable_e2();
  4884. enable_e3();
  4885. }
  4886. void disable_all_steppers() {
  4887. disable_x();
  4888. disable_y();
  4889. disable_z();
  4890. disable_e0();
  4891. disable_e1();
  4892. disable_e2();
  4893. disable_e3();
  4894. }
  4895. /**
  4896. * Manage several activities:
  4897. * - Check for Filament Runout
  4898. * - Keep the command buffer full
  4899. * - Check for maximum inactive time between commands
  4900. * - Check for maximum inactive time between stepper commands
  4901. * - Check if pin CHDK needs to go LOW
  4902. * - Check for KILL button held down
  4903. * - Check for HOME button held down
  4904. * - Check if cooling fan needs to be switched on
  4905. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  4906. */
  4907. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  4908. #if HAS_FILRUNOUT
  4909. if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  4910. filrunout();
  4911. #endif
  4912. if (buflen < BUFSIZE - 1) get_command();
  4913. unsigned long ms = millis();
  4914. if (max_inactive_time && ms > previous_millis_cmd + max_inactive_time) kill();
  4915. if (stepper_inactive_time && ms > previous_millis_cmd + stepper_inactive_time
  4916. && !ignore_stepper_queue && !blocks_queued())
  4917. disable_all_steppers();
  4918. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  4919. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  4920. chdkActive = false;
  4921. WRITE(CHDK, LOW);
  4922. }
  4923. #endif
  4924. #if HAS_KILL
  4925. // Check if the kill button was pressed and wait just in case it was an accidental
  4926. // key kill key press
  4927. // -------------------------------------------------------------------------------
  4928. static int killCount = 0; // make the inactivity button a bit less responsive
  4929. const int KILL_DELAY = 750;
  4930. if (!READ(KILL_PIN))
  4931. killCount++;
  4932. else if (killCount > 0)
  4933. killCount--;
  4934. // Exceeded threshold and we can confirm that it was not accidental
  4935. // KILL the machine
  4936. // ----------------------------------------------------------------
  4937. if (killCount >= KILL_DELAY) kill();
  4938. #endif
  4939. #if HAS_HOME
  4940. // Check to see if we have to home, use poor man's debouncer
  4941. // ---------------------------------------------------------
  4942. static int homeDebounceCount = 0; // poor man's debouncing count
  4943. const int HOME_DEBOUNCE_DELAY = 750;
  4944. if (!READ(HOME_PIN)) {
  4945. if (!homeDebounceCount) {
  4946. enquecommands_P(PSTR("G28"));
  4947. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4948. }
  4949. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4950. homeDebounceCount++;
  4951. else
  4952. homeDebounceCount = 0;
  4953. }
  4954. #endif
  4955. #if HAS_CONTROLLERFAN
  4956. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  4957. #endif
  4958. #ifdef EXTRUDER_RUNOUT_PREVENT
  4959. if (ms > previous_millis_cmd + EXTRUDER_RUNOUT_SECONDS * 1000)
  4960. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  4961. bool oldstatus;
  4962. switch(active_extruder) {
  4963. case 0:
  4964. oldstatus = E0_ENABLE_READ;
  4965. enable_e0();
  4966. break;
  4967. #if EXTRUDERS > 1
  4968. case 1:
  4969. oldstatus = E1_ENABLE_READ;
  4970. enable_e1();
  4971. break;
  4972. #if EXTRUDERS > 2
  4973. case 2:
  4974. oldstatus = E2_ENABLE_READ;
  4975. enable_e2();
  4976. break;
  4977. #if EXTRUDERS > 3
  4978. case 3:
  4979. oldstatus = E3_ENABLE_READ;
  4980. enable_e3();
  4981. break;
  4982. #endif
  4983. #endif
  4984. #endif
  4985. }
  4986. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  4987. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4988. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  4989. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  4990. current_position[E_AXIS] = oldepos;
  4991. destination[E_AXIS] = oldedes;
  4992. plan_set_e_position(oldepos);
  4993. previous_millis_cmd = ms; // refresh_cmd_timeout()
  4994. st_synchronize();
  4995. switch(active_extruder) {
  4996. case 0:
  4997. E0_ENABLE_WRITE(oldstatus);
  4998. break;
  4999. #if EXTRUDERS > 1
  5000. case 1:
  5001. E1_ENABLE_WRITE(oldstatus);
  5002. break;
  5003. #if EXTRUDERS > 2
  5004. case 2:
  5005. E2_ENABLE_WRITE(oldstatus);
  5006. break;
  5007. #if EXTRUDERS > 3
  5008. case 3:
  5009. E3_ENABLE_WRITE(oldstatus);
  5010. break;
  5011. #endif
  5012. #endif
  5013. #endif
  5014. }
  5015. }
  5016. #endif
  5017. #ifdef DUAL_X_CARRIAGE
  5018. // handle delayed move timeout
  5019. if (delayed_move_time && ms > delayed_move_time + 1000 && !Stopped) {
  5020. // travel moves have been received so enact them
  5021. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5022. set_destination_to_current();
  5023. prepare_move();
  5024. }
  5025. #endif
  5026. #ifdef TEMP_STAT_LEDS
  5027. handle_status_leds();
  5028. #endif
  5029. check_axes_activity();
  5030. }
  5031. void kill()
  5032. {
  5033. cli(); // Stop interrupts
  5034. disable_heater();
  5035. disable_all_steppers();
  5036. #if HAS_POWER_SWITCH
  5037. pinMode(PS_ON_PIN, INPUT);
  5038. #endif
  5039. SERIAL_ERROR_START;
  5040. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5041. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5042. // FMC small patch to update the LCD before ending
  5043. sei(); // enable interrupts
  5044. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5045. cli(); // disable interrupts
  5046. suicide();
  5047. while(1) { /* Intentionally left empty */ } // Wait for reset
  5048. }
  5049. #ifdef FILAMENT_RUNOUT_SENSOR
  5050. void filrunout()
  5051. {
  5052. if filrunoutEnqued == false {
  5053. filrunoutEnqued = true;
  5054. enquecommand("M600");
  5055. }
  5056. }
  5057. #endif
  5058. void Stop()
  5059. {
  5060. disable_heater();
  5061. if(Stopped == false) {
  5062. Stopped = true;
  5063. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5064. SERIAL_ERROR_START;
  5065. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5066. LCD_MESSAGEPGM(MSG_STOPPED);
  5067. }
  5068. }
  5069. bool IsStopped() { return Stopped; };
  5070. #ifdef FAST_PWM_FAN
  5071. void setPwmFrequency(uint8_t pin, int val)
  5072. {
  5073. val &= 0x07;
  5074. switch(digitalPinToTimer(pin))
  5075. {
  5076. #if defined(TCCR0A)
  5077. case TIMER0A:
  5078. case TIMER0B:
  5079. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5080. // TCCR0B |= val;
  5081. break;
  5082. #endif
  5083. #if defined(TCCR1A)
  5084. case TIMER1A:
  5085. case TIMER1B:
  5086. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5087. // TCCR1B |= val;
  5088. break;
  5089. #endif
  5090. #if defined(TCCR2)
  5091. case TIMER2:
  5092. case TIMER2:
  5093. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5094. TCCR2 |= val;
  5095. break;
  5096. #endif
  5097. #if defined(TCCR2A)
  5098. case TIMER2A:
  5099. case TIMER2B:
  5100. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5101. TCCR2B |= val;
  5102. break;
  5103. #endif
  5104. #if defined(TCCR3A)
  5105. case TIMER3A:
  5106. case TIMER3B:
  5107. case TIMER3C:
  5108. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5109. TCCR3B |= val;
  5110. break;
  5111. #endif
  5112. #if defined(TCCR4A)
  5113. case TIMER4A:
  5114. case TIMER4B:
  5115. case TIMER4C:
  5116. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5117. TCCR4B |= val;
  5118. break;
  5119. #endif
  5120. #if defined(TCCR5A)
  5121. case TIMER5A:
  5122. case TIMER5B:
  5123. case TIMER5C:
  5124. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5125. TCCR5B |= val;
  5126. break;
  5127. #endif
  5128. }
  5129. }
  5130. #endif //FAST_PWM_FAN
  5131. bool setTargetedHotend(int code){
  5132. target_extruder = active_extruder;
  5133. if (code_seen('T')) {
  5134. target_extruder = code_value_short();
  5135. if (target_extruder >= EXTRUDERS) {
  5136. SERIAL_ECHO_START;
  5137. switch(code){
  5138. case 104:
  5139. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5140. break;
  5141. case 105:
  5142. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5143. break;
  5144. case 109:
  5145. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5146. break;
  5147. case 218:
  5148. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5149. break;
  5150. case 221:
  5151. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5152. break;
  5153. }
  5154. SERIAL_ECHOLN(target_extruder);
  5155. return true;
  5156. }
  5157. }
  5158. return false;
  5159. }
  5160. float calculate_volumetric_multiplier(float diameter) {
  5161. if (!volumetric_enabled || diameter == 0) return 1.0;
  5162. float d2 = diameter * 0.5;
  5163. return 1.0 / (M_PI * d2 * d2);
  5164. }
  5165. void calculate_volumetric_multipliers() {
  5166. for (int i=0; i<EXTRUDERS; i++)
  5167. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5168. }