My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 135KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to coordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  106. // M112 - Emergency stop
  107. // M114 - Output current position to serial port
  108. // M115 - Capabilities string
  109. // M117 - display message
  110. // M119 - Output Endstop status to serial port
  111. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  112. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  113. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  114. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  115. // M140 - Set bed target temp
  116. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  117. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  118. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  119. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  120. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  121. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  122. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  123. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  124. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  125. // M206 - set additional homing offset
  126. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  127. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  128. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  129. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  130. // M220 S<factor in percent>- set speed factor override percentage
  131. // M221 S<factor in percent>- set extrude factor override percentage
  132. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  133. // M240 - Trigger a camera to take a photograph
  134. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  135. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  136. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  137. // M301 - Set PID parameters P I and D
  138. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  139. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  140. // M304 - Set bed PID parameters P I and D
  141. // M400 - Finish all moves
  142. // M401 - Lower z-probe if present
  143. // M402 - Raise z-probe if present
  144. // M500 - stores parameters in EEPROM
  145. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  146. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  147. // M503 - print the current settings (from memory not from EEPROM)
  148. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  149. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  150. // M665 - set delta configurations
  151. // M666 - set delta endstop adjustment
  152. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  153. // M907 - Set digital trimpot motor current using axis codes.
  154. // M908 - Control digital trimpot directly.
  155. // M350 - Set microstepping mode.
  156. // M351 - Toggle MS1 MS2 pins directly.
  157. // ************ SCARA Specific - This can change to suit future G-code regulations
  158. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  159. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  160. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  161. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  162. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  163. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  164. //************* SCARA End ***************
  165. // M928 - Start SD logging (M928 filename.g) - ended by M29
  166. // M999 - Restart after being stopped by error
  167. //Stepper Movement Variables
  168. //===========================================================================
  169. //=============================imported variables============================
  170. //===========================================================================
  171. //===========================================================================
  172. //=============================public variables=============================
  173. //===========================================================================
  174. #ifdef SDSUPPORT
  175. CardReader card;
  176. #endif
  177. float homing_feedrate[] = HOMING_FEEDRATE;
  178. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  179. int feedmultiply=100; //100->1 200->2
  180. int saved_feedmultiply;
  181. int extrudemultiply=100; //100->1 200->2
  182. int extruder_multiply[EXTRUDERS] = {100
  183. #if EXTRUDERS > 1
  184. , 100
  185. #if EXTRUDERS > 2
  186. , 100
  187. #endif
  188. #endif
  189. };
  190. float volumetric_multiplier[EXTRUDERS] = {1.0
  191. #if EXTRUDERS > 1
  192. , 1.0
  193. #if EXTRUDERS > 2
  194. , 1.0
  195. #endif
  196. #endif
  197. };
  198. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  199. float add_homeing[3]={0,0,0};
  200. #ifdef DELTA
  201. float endstop_adj[3]={0,0,0};
  202. #endif
  203. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  204. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  205. bool axis_known_position[3] = {false, false, false};
  206. float zprobe_zoffset;
  207. // Extruder offset
  208. #if EXTRUDERS > 1
  209. #ifndef DUAL_X_CARRIAGE
  210. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  211. #else
  212. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  213. #endif
  214. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  215. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  216. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  217. #endif
  218. };
  219. #endif
  220. uint8_t active_extruder = 0;
  221. int fanSpeed=0;
  222. #ifdef SERVO_ENDSTOPS
  223. int servo_endstops[] = SERVO_ENDSTOPS;
  224. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  225. #endif
  226. #ifdef BARICUDA
  227. int ValvePressure=0;
  228. int EtoPPressure=0;
  229. #endif
  230. #ifdef FWRETRACT
  231. bool autoretract_enabled=false;
  232. bool retracted[EXTRUDERS]={false
  233. #if EXTRUDERS > 1
  234. , false
  235. #if EXTRUDERS > 2
  236. , false
  237. #endif
  238. #endif
  239. };
  240. bool retracted_swap[EXTRUDERS]={false
  241. #if EXTRUDERS > 1
  242. , false
  243. #if EXTRUDERS > 2
  244. , false
  245. #endif
  246. #endif
  247. };
  248. float retract_length = RETRACT_LENGTH;
  249. float retract_length_swap = RETRACT_LENGTH_SWAP;
  250. float retract_feedrate = RETRACT_FEEDRATE;
  251. float retract_zlift = RETRACT_ZLIFT;
  252. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  253. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  254. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  255. #endif
  256. #ifdef ULTIPANEL
  257. #ifdef PS_DEFAULT_OFF
  258. bool powersupply = false;
  259. #else
  260. bool powersupply = true;
  261. #endif
  262. #endif
  263. #ifdef DELTA
  264. float delta[3] = {0.0, 0.0, 0.0};
  265. #define SIN_60 0.8660254037844386
  266. #define COS_60 0.5
  267. // these are the default values, can be overriden with M665
  268. float delta_radius= DELTA_RADIUS;
  269. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  270. float delta_tower1_y= -COS_60*delta_radius;
  271. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  272. float delta_tower2_y= -COS_60*delta_radius;
  273. float delta_tower3_x= 0.0; // back middle tower
  274. float delta_tower3_y= delta_radius;
  275. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  276. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  277. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  278. #endif
  279. #ifdef SCARA // Build size scaling
  280. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  281. #endif
  282. bool cancel_heatup = false ;
  283. //===========================================================================
  284. //=============================Private Variables=============================
  285. //===========================================================================
  286. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  287. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  288. static float delta[3] = {0.0, 0.0, 0.0};
  289. static float offset[3] = {0.0, 0.0, 0.0};
  290. static bool home_all_axis = true;
  291. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  292. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  293. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  294. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  295. static bool fromsd[BUFSIZE];
  296. static int bufindr = 0;
  297. static int bufindw = 0;
  298. static int buflen = 0;
  299. //static int i = 0;
  300. static char serial_char;
  301. static int serial_count = 0;
  302. static boolean comment_mode = false;
  303. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  304. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  305. //static float tt = 0;
  306. //static float bt = 0;
  307. //Inactivity shutdown variables
  308. static unsigned long previous_millis_cmd = 0;
  309. static unsigned long max_inactive_time = 0;
  310. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  311. unsigned long starttime=0;
  312. unsigned long stoptime=0;
  313. static uint8_t tmp_extruder;
  314. bool Stopped=false;
  315. #if NUM_SERVOS > 0
  316. Servo servos[NUM_SERVOS];
  317. #endif
  318. bool CooldownNoWait = true;
  319. bool target_direction;
  320. //Insert variables if CHDK is defined
  321. #ifdef CHDK
  322. unsigned long chdkHigh = 0;
  323. boolean chdkActive = false;
  324. #endif
  325. //===========================================================================
  326. //=============================Routines======================================
  327. //===========================================================================
  328. void get_arc_coordinates();
  329. bool setTargetedHotend(int code);
  330. void serial_echopair_P(const char *s_P, float v)
  331. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  332. void serial_echopair_P(const char *s_P, double v)
  333. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  334. void serial_echopair_P(const char *s_P, unsigned long v)
  335. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  336. extern "C"{
  337. extern unsigned int __bss_end;
  338. extern unsigned int __heap_start;
  339. extern void *__brkval;
  340. int freeMemory() {
  341. int free_memory;
  342. if((int)__brkval == 0)
  343. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  344. else
  345. free_memory = ((int)&free_memory) - ((int)__brkval);
  346. return free_memory;
  347. }
  348. }
  349. //adds an command to the main command buffer
  350. //thats really done in a non-safe way.
  351. //needs overworking someday
  352. void enquecommand(const char *cmd)
  353. {
  354. if(buflen < BUFSIZE)
  355. {
  356. //this is dangerous if a mixing of serial and this happens
  357. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  358. SERIAL_ECHO_START;
  359. SERIAL_ECHOPGM("enqueing \"");
  360. SERIAL_ECHO(cmdbuffer[bufindw]);
  361. SERIAL_ECHOLNPGM("\"");
  362. bufindw= (bufindw + 1)%BUFSIZE;
  363. buflen += 1;
  364. }
  365. }
  366. void enquecommand_P(const char *cmd)
  367. {
  368. if(buflen < BUFSIZE)
  369. {
  370. //this is dangerous if a mixing of serial and this happens
  371. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  372. SERIAL_ECHO_START;
  373. SERIAL_ECHOPGM("enqueing \"");
  374. SERIAL_ECHO(cmdbuffer[bufindw]);
  375. SERIAL_ECHOLNPGM("\"");
  376. bufindw= (bufindw + 1)%BUFSIZE;
  377. buflen += 1;
  378. }
  379. }
  380. void setup_killpin()
  381. {
  382. #if defined(KILL_PIN) && KILL_PIN > -1
  383. pinMode(KILL_PIN,INPUT);
  384. WRITE(KILL_PIN,HIGH);
  385. #endif
  386. }
  387. void setup_photpin()
  388. {
  389. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  390. SET_OUTPUT(PHOTOGRAPH_PIN);
  391. WRITE(PHOTOGRAPH_PIN, LOW);
  392. #endif
  393. }
  394. void setup_powerhold()
  395. {
  396. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  397. SET_OUTPUT(SUICIDE_PIN);
  398. WRITE(SUICIDE_PIN, HIGH);
  399. #endif
  400. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  401. SET_OUTPUT(PS_ON_PIN);
  402. #if defined(PS_DEFAULT_OFF)
  403. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  404. #else
  405. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  406. #endif
  407. #endif
  408. }
  409. void suicide()
  410. {
  411. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  412. SET_OUTPUT(SUICIDE_PIN);
  413. WRITE(SUICIDE_PIN, LOW);
  414. #endif
  415. }
  416. void servo_init()
  417. {
  418. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  419. servos[0].attach(SERVO0_PIN);
  420. #endif
  421. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  422. servos[1].attach(SERVO1_PIN);
  423. #endif
  424. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  425. servos[2].attach(SERVO2_PIN);
  426. #endif
  427. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  428. servos[3].attach(SERVO3_PIN);
  429. #endif
  430. #if (NUM_SERVOS >= 5)
  431. #error "TODO: enter initalisation code for more servos"
  432. #endif
  433. // Set position of Servo Endstops that are defined
  434. #ifdef SERVO_ENDSTOPS
  435. for(int8_t i = 0; i < 3; i++)
  436. {
  437. if(servo_endstops[i] > -1) {
  438. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  439. }
  440. }
  441. #endif
  442. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  443. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  444. servos[servo_endstops[Z_AXIS]].detach();
  445. #endif
  446. }
  447. void setup()
  448. {
  449. setup_killpin();
  450. setup_powerhold();
  451. MYSERIAL.begin(BAUDRATE);
  452. SERIAL_PROTOCOLLNPGM("start");
  453. SERIAL_ECHO_START;
  454. // Check startup - does nothing if bootloader sets MCUSR to 0
  455. byte mcu = MCUSR;
  456. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  457. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  458. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  459. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  460. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  461. MCUSR=0;
  462. SERIAL_ECHOPGM(MSG_MARLIN);
  463. SERIAL_ECHOLNPGM(VERSION_STRING);
  464. #ifdef STRING_VERSION_CONFIG_H
  465. #ifdef STRING_CONFIG_H_AUTHOR
  466. SERIAL_ECHO_START;
  467. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  468. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  469. SERIAL_ECHOPGM(MSG_AUTHOR);
  470. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  471. SERIAL_ECHOPGM("Compiled: ");
  472. SERIAL_ECHOLNPGM(__DATE__);
  473. #endif
  474. #endif
  475. SERIAL_ECHO_START;
  476. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  477. SERIAL_ECHO(freeMemory());
  478. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  479. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  480. for(int8_t i = 0; i < BUFSIZE; i++)
  481. {
  482. fromsd[i] = false;
  483. }
  484. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  485. Config_RetrieveSettings();
  486. tp_init(); // Initialize temperature loop
  487. plan_init(); // Initialize planner;
  488. watchdog_init();
  489. st_init(); // Initialize stepper, this enables interrupts!
  490. setup_photpin();
  491. servo_init();
  492. lcd_init();
  493. _delay_ms(1000); // wait 1sec to display the splash screen
  494. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  495. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  496. #endif
  497. #ifdef DIGIPOT_I2C
  498. digipot_i2c_init();
  499. #endif
  500. }
  501. void loop()
  502. {
  503. if(buflen < (BUFSIZE-1))
  504. get_command();
  505. #ifdef SDSUPPORT
  506. card.checkautostart(false);
  507. #endif
  508. if(buflen)
  509. {
  510. #ifdef SDSUPPORT
  511. if(card.saving)
  512. {
  513. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  514. {
  515. card.write_command(cmdbuffer[bufindr]);
  516. if(card.logging)
  517. {
  518. process_commands();
  519. }
  520. else
  521. {
  522. SERIAL_PROTOCOLLNPGM(MSG_OK);
  523. }
  524. }
  525. else
  526. {
  527. card.closefile();
  528. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  529. }
  530. }
  531. else
  532. {
  533. process_commands();
  534. }
  535. #else
  536. process_commands();
  537. #endif //SDSUPPORT
  538. buflen = (buflen-1);
  539. bufindr = (bufindr + 1)%BUFSIZE;
  540. }
  541. //check heater every n milliseconds
  542. manage_heater();
  543. manage_inactivity();
  544. checkHitEndstops();
  545. lcd_update();
  546. }
  547. void get_command()
  548. {
  549. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  550. serial_char = MYSERIAL.read();
  551. if(serial_char == '\n' ||
  552. serial_char == '\r' ||
  553. (serial_char == ':' && comment_mode == false) ||
  554. serial_count >= (MAX_CMD_SIZE - 1) )
  555. {
  556. if(!serial_count) { //if empty line
  557. comment_mode = false; //for new command
  558. return;
  559. }
  560. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  561. if(!comment_mode){
  562. comment_mode = false; //for new command
  563. fromsd[bufindw] = false;
  564. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  565. {
  566. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  567. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  568. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  569. SERIAL_ERROR_START;
  570. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  571. SERIAL_ERRORLN(gcode_LastN);
  572. //Serial.println(gcode_N);
  573. FlushSerialRequestResend();
  574. serial_count = 0;
  575. return;
  576. }
  577. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  578. {
  579. byte checksum = 0;
  580. byte count = 0;
  581. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  582. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  583. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  584. SERIAL_ERROR_START;
  585. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  586. SERIAL_ERRORLN(gcode_LastN);
  587. FlushSerialRequestResend();
  588. serial_count = 0;
  589. return;
  590. }
  591. //if no errors, continue parsing
  592. }
  593. else
  594. {
  595. SERIAL_ERROR_START;
  596. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  597. SERIAL_ERRORLN(gcode_LastN);
  598. FlushSerialRequestResend();
  599. serial_count = 0;
  600. return;
  601. }
  602. gcode_LastN = gcode_N;
  603. //if no errors, continue parsing
  604. }
  605. else // if we don't receive 'N' but still see '*'
  606. {
  607. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  608. {
  609. SERIAL_ERROR_START;
  610. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  611. SERIAL_ERRORLN(gcode_LastN);
  612. serial_count = 0;
  613. return;
  614. }
  615. }
  616. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  617. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  618. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  619. case 0:
  620. case 1:
  621. case 2:
  622. case 3:
  623. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  624. #ifdef SDSUPPORT
  625. if(card.saving)
  626. break;
  627. #endif //SDSUPPORT
  628. SERIAL_PROTOCOLLNPGM(MSG_OK);
  629. }
  630. else {
  631. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  632. LCD_MESSAGEPGM(MSG_STOPPED);
  633. }
  634. break;
  635. default:
  636. break;
  637. }
  638. }
  639. //If command was e-stop process now
  640. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  641. kill();
  642. bufindw = (bufindw + 1)%BUFSIZE;
  643. buflen += 1;
  644. }
  645. serial_count = 0; //clear buffer
  646. }
  647. else
  648. {
  649. if(serial_char == ';') comment_mode = true;
  650. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  651. }
  652. }
  653. #ifdef SDSUPPORT
  654. if(!card.sdprinting || serial_count!=0){
  655. return;
  656. }
  657. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  658. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  659. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  660. static bool stop_buffering=false;
  661. if(buflen==0) stop_buffering=false;
  662. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  663. int16_t n=card.get();
  664. serial_char = (char)n;
  665. if(serial_char == '\n' ||
  666. serial_char == '\r' ||
  667. (serial_char == '#' && comment_mode == false) ||
  668. (serial_char == ':' && comment_mode == false) ||
  669. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  670. {
  671. if(card.eof()){
  672. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  673. stoptime=millis();
  674. char time[30];
  675. unsigned long t=(stoptime-starttime)/1000;
  676. int hours, minutes;
  677. minutes=(t/60)%60;
  678. hours=t/60/60;
  679. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  680. SERIAL_ECHO_START;
  681. SERIAL_ECHOLN(time);
  682. lcd_setstatus(time);
  683. card.printingHasFinished();
  684. card.checkautostart(true);
  685. }
  686. if(serial_char=='#')
  687. stop_buffering=true;
  688. if(!serial_count)
  689. {
  690. comment_mode = false; //for new command
  691. return; //if empty line
  692. }
  693. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  694. // if(!comment_mode){
  695. fromsd[bufindw] = true;
  696. buflen += 1;
  697. bufindw = (bufindw + 1)%BUFSIZE;
  698. // }
  699. comment_mode = false; //for new command
  700. serial_count = 0; //clear buffer
  701. }
  702. else
  703. {
  704. if(serial_char == ';') comment_mode = true;
  705. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  706. }
  707. }
  708. #endif //SDSUPPORT
  709. }
  710. float code_value()
  711. {
  712. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  713. }
  714. long code_value_long()
  715. {
  716. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  717. }
  718. bool code_seen(char code)
  719. {
  720. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  721. return (strchr_pointer != NULL); //Return True if a character was found
  722. }
  723. #define DEFINE_PGM_READ_ANY(type, reader) \
  724. static inline type pgm_read_any(const type *p) \
  725. { return pgm_read_##reader##_near(p); }
  726. DEFINE_PGM_READ_ANY(float, float);
  727. DEFINE_PGM_READ_ANY(signed char, byte);
  728. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  729. static const PROGMEM type array##_P[3] = \
  730. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  731. static inline type array(int axis) \
  732. { return pgm_read_any(&array##_P[axis]); }
  733. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  734. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  735. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  736. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  737. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  738. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  739. #ifdef DUAL_X_CARRIAGE
  740. #if EXTRUDERS == 1 || defined(COREXY) \
  741. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  742. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  743. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  744. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  745. #endif
  746. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  747. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  748. #endif
  749. #define DXC_FULL_CONTROL_MODE 0
  750. #define DXC_AUTO_PARK_MODE 1
  751. #define DXC_DUPLICATION_MODE 2
  752. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  753. static float x_home_pos(int extruder) {
  754. if (extruder == 0)
  755. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  756. else
  757. // In dual carriage mode the extruder offset provides an override of the
  758. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  759. // This allow soft recalibration of the second extruder offset position without firmware reflash
  760. // (through the M218 command).
  761. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  762. }
  763. static int x_home_dir(int extruder) {
  764. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  765. }
  766. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  767. static bool active_extruder_parked = false; // used in mode 1 & 2
  768. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  769. static unsigned long delayed_move_time = 0; // used in mode 1
  770. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  771. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  772. bool extruder_duplication_enabled = false; // used in mode 2
  773. #endif //DUAL_X_CARRIAGE
  774. static void axis_is_at_home(int axis) {
  775. #ifdef DUAL_X_CARRIAGE
  776. if (axis == X_AXIS) {
  777. if (active_extruder != 0) {
  778. current_position[X_AXIS] = x_home_pos(active_extruder);
  779. min_pos[X_AXIS] = X2_MIN_POS;
  780. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  781. return;
  782. }
  783. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  784. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  785. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  786. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  787. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  788. return;
  789. }
  790. }
  791. #endif
  792. #ifdef SCARA
  793. float homeposition[3];
  794. char i;
  795. if (axis < 2)
  796. {
  797. for (i=0; i<3; i++)
  798. {
  799. homeposition[i] = base_home_pos(i);
  800. }
  801. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  802. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  803. // Works out real Homeposition angles using inverse kinematics,
  804. // and calculates homing offset using forward kinematics
  805. calculate_delta(homeposition);
  806. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  807. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  808. for (i=0; i<2; i++)
  809. {
  810. delta[i] -= add_homeing[i];
  811. }
  812. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homeing[X_AXIS]);
  813. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homeing[Y_AXIS]);
  814. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  815. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  816. calculate_SCARA_forward_Transform(delta);
  817. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  818. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  819. current_position[axis] = delta[axis];
  820. // SCARA home positions are based on configuration since the actual limits are determined by the
  821. // inverse kinematic transform.
  822. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  823. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  824. }
  825. else
  826. {
  827. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  828. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  829. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  830. }
  831. #else
  832. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  833. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  834. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  835. #endif
  836. }
  837. #ifdef ENABLE_AUTO_BED_LEVELING
  838. #ifdef AUTO_BED_LEVELING_GRID
  839. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  840. {
  841. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  842. planeNormal.debug("planeNormal");
  843. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  844. //bedLevel.debug("bedLevel");
  845. //plan_bed_level_matrix.debug("bed level before");
  846. //vector_3 uncorrected_position = plan_get_position_mm();
  847. //uncorrected_position.debug("position before");
  848. vector_3 corrected_position = plan_get_position();
  849. // corrected_position.debug("position after");
  850. current_position[X_AXIS] = corrected_position.x;
  851. current_position[Y_AXIS] = corrected_position.y;
  852. current_position[Z_AXIS] = corrected_position.z;
  853. // but the bed at 0 so we don't go below it.
  854. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  855. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  856. }
  857. #else // not AUTO_BED_LEVELING_GRID
  858. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  859. plan_bed_level_matrix.set_to_identity();
  860. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  861. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  862. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  863. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  864. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  865. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  866. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  867. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  868. vector_3 corrected_position = plan_get_position();
  869. current_position[X_AXIS] = corrected_position.x;
  870. current_position[Y_AXIS] = corrected_position.y;
  871. current_position[Z_AXIS] = corrected_position.z;
  872. // put the bed at 0 so we don't go below it.
  873. current_position[Z_AXIS] = zprobe_zoffset;
  874. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  875. }
  876. #endif // AUTO_BED_LEVELING_GRID
  877. static void run_z_probe() {
  878. plan_bed_level_matrix.set_to_identity();
  879. feedrate = homing_feedrate[Z_AXIS];
  880. // move down until you find the bed
  881. float zPosition = -10;
  882. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  883. st_synchronize();
  884. // we have to let the planner know where we are right now as it is not where we said to go.
  885. zPosition = st_get_position_mm(Z_AXIS);
  886. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  887. // move up the retract distance
  888. zPosition += home_retract_mm(Z_AXIS);
  889. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  890. st_synchronize();
  891. // move back down slowly to find bed
  892. feedrate = homing_feedrate[Z_AXIS]/4;
  893. zPosition -= home_retract_mm(Z_AXIS) * 2;
  894. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  895. st_synchronize();
  896. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  897. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  898. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  899. }
  900. static void do_blocking_move_to(float x, float y, float z) {
  901. float oldFeedRate = feedrate;
  902. feedrate = XY_TRAVEL_SPEED;
  903. current_position[X_AXIS] = x;
  904. current_position[Y_AXIS] = y;
  905. current_position[Z_AXIS] = z;
  906. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  907. st_synchronize();
  908. feedrate = oldFeedRate;
  909. }
  910. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  911. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  912. }
  913. static void setup_for_endstop_move() {
  914. saved_feedrate = feedrate;
  915. saved_feedmultiply = feedmultiply;
  916. feedmultiply = 100;
  917. previous_millis_cmd = millis();
  918. enable_endstops(true);
  919. }
  920. static void clean_up_after_endstop_move() {
  921. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  922. enable_endstops(false);
  923. #endif
  924. feedrate = saved_feedrate;
  925. feedmultiply = saved_feedmultiply;
  926. previous_millis_cmd = millis();
  927. }
  928. static void engage_z_probe() {
  929. // Engage Z Servo endstop if enabled
  930. #ifdef SERVO_ENDSTOPS
  931. if (servo_endstops[Z_AXIS] > -1) {
  932. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  933. servos[servo_endstops[Z_AXIS]].attach(0);
  934. #endif
  935. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  936. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  937. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  938. servos[servo_endstops[Z_AXIS]].detach();
  939. #endif
  940. }
  941. #endif
  942. }
  943. static void retract_z_probe() {
  944. // Retract Z Servo endstop if enabled
  945. #ifdef SERVO_ENDSTOPS
  946. if (servo_endstops[Z_AXIS] > -1) {
  947. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  948. servos[servo_endstops[Z_AXIS]].attach(0);
  949. #endif
  950. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  951. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  952. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  953. servos[servo_endstops[Z_AXIS]].detach();
  954. #endif
  955. }
  956. #endif
  957. }
  958. /// Probe bed height at position (x,y), returns the measured z value
  959. static float probe_pt(float x, float y, float z_before) {
  960. // move to right place
  961. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  962. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  963. engage_z_probe(); // Engage Z Servo endstop if available
  964. run_z_probe();
  965. float measured_z = current_position[Z_AXIS];
  966. retract_z_probe();
  967. SERIAL_PROTOCOLPGM(MSG_BED);
  968. SERIAL_PROTOCOLPGM(" x: ");
  969. SERIAL_PROTOCOL(x);
  970. SERIAL_PROTOCOLPGM(" y: ");
  971. SERIAL_PROTOCOL(y);
  972. SERIAL_PROTOCOLPGM(" z: ");
  973. SERIAL_PROTOCOL(measured_z);
  974. SERIAL_PROTOCOLPGM("\n");
  975. return measured_z;
  976. }
  977. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  978. static void homeaxis(int axis) {
  979. #define HOMEAXIS_DO(LETTER) \
  980. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  981. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  982. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  983. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  984. 0) {
  985. int axis_home_dir = home_dir(axis);
  986. #ifdef DUAL_X_CARRIAGE
  987. if (axis == X_AXIS)
  988. axis_home_dir = x_home_dir(active_extruder);
  989. #endif
  990. current_position[axis] = 0;
  991. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  992. // Engage Servo endstop if enabled
  993. #ifdef SERVO_ENDSTOPS
  994. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  995. if (axis==Z_AXIS) {
  996. engage_z_probe();
  997. }
  998. else
  999. #endif
  1000. if (servo_endstops[axis] > -1) {
  1001. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1002. }
  1003. #endif
  1004. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1005. feedrate = homing_feedrate[axis];
  1006. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1007. st_synchronize();
  1008. current_position[axis] = 0;
  1009. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1010. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1011. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1012. st_synchronize();
  1013. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1014. #ifdef DELTA
  1015. feedrate = homing_feedrate[axis]/10;
  1016. #else
  1017. feedrate = homing_feedrate[axis]/2 ;
  1018. #endif
  1019. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1020. st_synchronize();
  1021. #ifdef DELTA
  1022. // retrace by the amount specified in endstop_adj
  1023. if (endstop_adj[axis] * axis_home_dir < 0) {
  1024. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1025. destination[axis] = endstop_adj[axis];
  1026. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1027. st_synchronize();
  1028. }
  1029. #endif
  1030. axis_is_at_home(axis);
  1031. destination[axis] = current_position[axis];
  1032. feedrate = 0.0;
  1033. endstops_hit_on_purpose();
  1034. axis_known_position[axis] = true;
  1035. // Retract Servo endstop if enabled
  1036. #ifdef SERVO_ENDSTOPS
  1037. if (servo_endstops[axis] > -1) {
  1038. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1039. }
  1040. #endif
  1041. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1042. if (axis==Z_AXIS) retract_z_probe();
  1043. #endif
  1044. }
  1045. }
  1046. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1047. void refresh_cmd_timeout(void)
  1048. {
  1049. previous_millis_cmd = millis();
  1050. }
  1051. #ifdef FWRETRACT
  1052. void retract(bool retracting, bool swapretract = false) {
  1053. if(retracting && !retracted[active_extruder]) {
  1054. destination[X_AXIS]=current_position[X_AXIS];
  1055. destination[Y_AXIS]=current_position[Y_AXIS];
  1056. destination[Z_AXIS]=current_position[Z_AXIS];
  1057. destination[E_AXIS]=current_position[E_AXIS];
  1058. if (swapretract) {
  1059. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1060. } else {
  1061. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1062. }
  1063. plan_set_e_position(current_position[E_AXIS]);
  1064. float oldFeedrate = feedrate;
  1065. feedrate=retract_feedrate*60;
  1066. retracted[active_extruder]=true;
  1067. prepare_move();
  1068. current_position[Z_AXIS]-=retract_zlift;
  1069. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1070. prepare_move();
  1071. feedrate = oldFeedrate;
  1072. } else if(!retracting && retracted[active_extruder]) {
  1073. destination[X_AXIS]=current_position[X_AXIS];
  1074. destination[Y_AXIS]=current_position[Y_AXIS];
  1075. destination[Z_AXIS]=current_position[Z_AXIS];
  1076. destination[E_AXIS]=current_position[E_AXIS];
  1077. current_position[Z_AXIS]+=retract_zlift;
  1078. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1079. //prepare_move();
  1080. if (swapretract) {
  1081. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1082. } else {
  1083. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1084. }
  1085. plan_set_e_position(current_position[E_AXIS]);
  1086. float oldFeedrate = feedrate;
  1087. feedrate=retract_recover_feedrate*60;
  1088. retracted[active_extruder]=false;
  1089. prepare_move();
  1090. feedrate = oldFeedrate;
  1091. }
  1092. } //retract
  1093. #endif //FWRETRACT
  1094. void process_commands()
  1095. {
  1096. unsigned long codenum; //throw away variable
  1097. char *starpos = NULL;
  1098. #ifdef ENABLE_AUTO_BED_LEVELING
  1099. float x_tmp, y_tmp, z_tmp, real_z;
  1100. #endif
  1101. if(code_seen('G'))
  1102. {
  1103. switch((int)code_value())
  1104. {
  1105. case 0: // G0 -> G1
  1106. case 1: // G1
  1107. if(Stopped == false) {
  1108. get_coordinates(); // For X Y Z E F
  1109. #ifdef FWRETRACT
  1110. if(autoretract_enabled)
  1111. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1112. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1113. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1114. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1115. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1116. retract(!retracted);
  1117. return;
  1118. }
  1119. }
  1120. #endif //FWRETRACT
  1121. prepare_move();
  1122. //ClearToSend();
  1123. return;
  1124. }
  1125. break;
  1126. #ifndef SCARA //disable arc support
  1127. case 2: // G2 - CW ARC
  1128. if(Stopped == false) {
  1129. get_arc_coordinates();
  1130. prepare_arc_move(true);
  1131. return;
  1132. }
  1133. break;
  1134. case 3: // G3 - CCW ARC
  1135. if(Stopped == false) {
  1136. get_arc_coordinates();
  1137. prepare_arc_move(false);
  1138. return;
  1139. }
  1140. break;
  1141. #endif
  1142. case 4: // G4 dwell
  1143. LCD_MESSAGEPGM(MSG_DWELL);
  1144. codenum = 0;
  1145. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1146. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1147. st_synchronize();
  1148. codenum += millis(); // keep track of when we started waiting
  1149. previous_millis_cmd = millis();
  1150. while(millis() < codenum ){
  1151. manage_heater();
  1152. manage_inactivity();
  1153. lcd_update();
  1154. }
  1155. break;
  1156. #ifdef FWRETRACT
  1157. case 10: // G10 retract
  1158. #if EXTRUDERS > 1
  1159. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1160. retract(true,retracted_swap[active_extruder]);
  1161. #else
  1162. retract(true);
  1163. #endif
  1164. break;
  1165. case 11: // G11 retract_recover
  1166. #if EXTRUDERS > 1
  1167. retract(false,retracted_swap[active_extruder]);
  1168. #else
  1169. retract(false);
  1170. #endif
  1171. break;
  1172. #endif //FWRETRACT
  1173. case 28: //G28 Home all Axis one at a time
  1174. #ifdef ENABLE_AUTO_BED_LEVELING
  1175. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1176. #endif //ENABLE_AUTO_BED_LEVELING
  1177. saved_feedrate = feedrate;
  1178. saved_feedmultiply = feedmultiply;
  1179. feedmultiply = 100;
  1180. previous_millis_cmd = millis();
  1181. enable_endstops(true);
  1182. for(int8_t i=0; i < NUM_AXIS; i++) {
  1183. destination[i] = current_position[i];
  1184. }
  1185. feedrate = 0.0;
  1186. #ifdef DELTA
  1187. // A delta can only safely home all axis at the same time
  1188. // all axis have to home at the same time
  1189. // Move all carriages up together until the first endstop is hit.
  1190. current_position[X_AXIS] = 0;
  1191. current_position[Y_AXIS] = 0;
  1192. current_position[Z_AXIS] = 0;
  1193. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1194. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1195. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1196. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1197. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1198. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1199. st_synchronize();
  1200. endstops_hit_on_purpose();
  1201. current_position[X_AXIS] = destination[X_AXIS];
  1202. current_position[Y_AXIS] = destination[Y_AXIS];
  1203. current_position[Z_AXIS] = destination[Z_AXIS];
  1204. // take care of back off and rehome now we are all at the top
  1205. HOMEAXIS(X);
  1206. HOMEAXIS(Y);
  1207. HOMEAXIS(Z);
  1208. calculate_delta(current_position);
  1209. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1210. #else // NOT DELTA
  1211. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1212. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1213. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1214. HOMEAXIS(Z);
  1215. }
  1216. #endif
  1217. #ifdef QUICK_HOME
  1218. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1219. {
  1220. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1221. #ifndef DUAL_X_CARRIAGE
  1222. int x_axis_home_dir = home_dir(X_AXIS);
  1223. #else
  1224. int x_axis_home_dir = x_home_dir(active_extruder);
  1225. extruder_duplication_enabled = false;
  1226. #endif
  1227. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1228. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1229. feedrate = homing_feedrate[X_AXIS];
  1230. if(homing_feedrate[Y_AXIS]<feedrate)
  1231. feedrate = homing_feedrate[Y_AXIS];
  1232. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1233. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1234. } else {
  1235. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1236. }
  1237. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1238. st_synchronize();
  1239. axis_is_at_home(X_AXIS);
  1240. axis_is_at_home(Y_AXIS);
  1241. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1242. destination[X_AXIS] = current_position[X_AXIS];
  1243. destination[Y_AXIS] = current_position[Y_AXIS];
  1244. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1245. feedrate = 0.0;
  1246. st_synchronize();
  1247. endstops_hit_on_purpose();
  1248. current_position[X_AXIS] = destination[X_AXIS];
  1249. current_position[Y_AXIS] = destination[Y_AXIS];
  1250. #ifndef SCARA
  1251. current_position[Z_AXIS] = destination[Z_AXIS];
  1252. #endif
  1253. }
  1254. #endif
  1255. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1256. {
  1257. #ifdef DUAL_X_CARRIAGE
  1258. int tmp_extruder = active_extruder;
  1259. extruder_duplication_enabled = false;
  1260. active_extruder = !active_extruder;
  1261. HOMEAXIS(X);
  1262. inactive_extruder_x_pos = current_position[X_AXIS];
  1263. active_extruder = tmp_extruder;
  1264. HOMEAXIS(X);
  1265. // reset state used by the different modes
  1266. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1267. delayed_move_time = 0;
  1268. active_extruder_parked = true;
  1269. #else
  1270. HOMEAXIS(X);
  1271. #endif
  1272. }
  1273. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1274. HOMEAXIS(Y);
  1275. }
  1276. if(code_seen(axis_codes[X_AXIS]))
  1277. {
  1278. if(code_value_long() != 0) {
  1279. #ifdef SCARA
  1280. current_position[X_AXIS]=code_value();
  1281. #else
  1282. current_position[X_AXIS]=code_value()+add_homeing[0];
  1283. #endif
  1284. }
  1285. }
  1286. if(code_seen(axis_codes[Y_AXIS])) {
  1287. if(code_value_long() != 0) {
  1288. #ifdef SCARA
  1289. current_position[Y_AXIS]=code_value();
  1290. #else
  1291. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1292. #endif
  1293. }
  1294. }
  1295. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1296. #ifndef Z_SAFE_HOMING
  1297. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1298. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1299. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1300. feedrate = max_feedrate[Z_AXIS];
  1301. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1302. st_synchronize();
  1303. #endif
  1304. HOMEAXIS(Z);
  1305. }
  1306. #else // Z Safe mode activated.
  1307. if(home_all_axis) {
  1308. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1309. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1310. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1311. feedrate = XY_TRAVEL_SPEED;
  1312. current_position[Z_AXIS] = 0;
  1313. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1314. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1315. st_synchronize();
  1316. current_position[X_AXIS] = destination[X_AXIS];
  1317. current_position[Y_AXIS] = destination[Y_AXIS];
  1318. HOMEAXIS(Z);
  1319. }
  1320. // Let's see if X and Y are homed and probe is inside bed area.
  1321. if(code_seen(axis_codes[Z_AXIS])) {
  1322. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1323. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1324. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1325. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1326. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1327. current_position[Z_AXIS] = 0;
  1328. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1329. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1330. feedrate = max_feedrate[Z_AXIS];
  1331. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1332. st_synchronize();
  1333. HOMEAXIS(Z);
  1334. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1335. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1336. SERIAL_ECHO_START;
  1337. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1338. } else {
  1339. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1340. SERIAL_ECHO_START;
  1341. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1342. }
  1343. }
  1344. #endif
  1345. #endif
  1346. if(code_seen(axis_codes[Z_AXIS])) {
  1347. if(code_value_long() != 0) {
  1348. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1349. }
  1350. }
  1351. #ifdef ENABLE_AUTO_BED_LEVELING
  1352. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1353. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1354. }
  1355. #endif
  1356. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1357. #endif // else DELTA
  1358. #ifdef SCARA
  1359. calculate_delta(current_position);
  1360. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1361. #endif SCARA
  1362. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1363. enable_endstops(false);
  1364. #endif
  1365. feedrate = saved_feedrate;
  1366. feedmultiply = saved_feedmultiply;
  1367. previous_millis_cmd = millis();
  1368. endstops_hit_on_purpose();
  1369. break;
  1370. #ifdef ENABLE_AUTO_BED_LEVELING
  1371. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1372. {
  1373. #if Z_MIN_PIN == -1
  1374. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1375. #endif
  1376. // Prevent user from running a G29 without first homing in X and Y
  1377. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1378. {
  1379. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1380. SERIAL_ECHO_START;
  1381. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1382. break; // abort G29, since we don't know where we are
  1383. }
  1384. st_synchronize();
  1385. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1386. //vector_3 corrected_position = plan_get_position_mm();
  1387. //corrected_position.debug("position before G29");
  1388. plan_bed_level_matrix.set_to_identity();
  1389. vector_3 uncorrected_position = plan_get_position();
  1390. //uncorrected_position.debug("position durring G29");
  1391. current_position[X_AXIS] = uncorrected_position.x;
  1392. current_position[Y_AXIS] = uncorrected_position.y;
  1393. current_position[Z_AXIS] = uncorrected_position.z;
  1394. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1395. setup_for_endstop_move();
  1396. feedrate = homing_feedrate[Z_AXIS];
  1397. #ifdef AUTO_BED_LEVELING_GRID
  1398. // probe at the points of a lattice grid
  1399. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1400. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1401. // solve the plane equation ax + by + d = z
  1402. // A is the matrix with rows [x y 1] for all the probed points
  1403. // B is the vector of the Z positions
  1404. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1405. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1406. // "A" matrix of the linear system of equations
  1407. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1408. // "B" vector of Z points
  1409. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1410. int probePointCounter = 0;
  1411. bool zig = true;
  1412. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1413. {
  1414. int xProbe, xInc;
  1415. if (zig)
  1416. {
  1417. xProbe = LEFT_PROBE_BED_POSITION;
  1418. //xEnd = RIGHT_PROBE_BED_POSITION;
  1419. xInc = xGridSpacing;
  1420. zig = false;
  1421. } else // zag
  1422. {
  1423. xProbe = RIGHT_PROBE_BED_POSITION;
  1424. //xEnd = LEFT_PROBE_BED_POSITION;
  1425. xInc = -xGridSpacing;
  1426. zig = true;
  1427. }
  1428. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1429. {
  1430. float z_before;
  1431. if (probePointCounter == 0)
  1432. {
  1433. // raise before probing
  1434. z_before = Z_RAISE_BEFORE_PROBING;
  1435. } else
  1436. {
  1437. // raise extruder
  1438. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1439. }
  1440. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1441. eqnBVector[probePointCounter] = measured_z;
  1442. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1443. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1444. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1445. probePointCounter++;
  1446. xProbe += xInc;
  1447. }
  1448. }
  1449. clean_up_after_endstop_move();
  1450. // solve lsq problem
  1451. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1452. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1453. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1454. SERIAL_PROTOCOLPGM(" b: ");
  1455. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1456. SERIAL_PROTOCOLPGM(" d: ");
  1457. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1458. set_bed_level_equation_lsq(plane_equation_coefficients);
  1459. free(plane_equation_coefficients);
  1460. #else // AUTO_BED_LEVELING_GRID not defined
  1461. // Probe at 3 arbitrary points
  1462. // probe 1
  1463. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1464. // probe 2
  1465. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1466. // probe 3
  1467. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1468. clean_up_after_endstop_move();
  1469. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1470. #endif // AUTO_BED_LEVELING_GRID
  1471. st_synchronize();
  1472. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1473. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1474. // When the bed is uneven, this height must be corrected.
  1475. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1476. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1477. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1478. z_tmp = current_position[Z_AXIS];
  1479. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1480. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1481. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1482. }
  1483. break;
  1484. case 30: // G30 Single Z Probe
  1485. {
  1486. engage_z_probe(); // Engage Z Servo endstop if available
  1487. st_synchronize();
  1488. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1489. setup_for_endstop_move();
  1490. feedrate = homing_feedrate[Z_AXIS];
  1491. run_z_probe();
  1492. SERIAL_PROTOCOLPGM(MSG_BED);
  1493. SERIAL_PROTOCOLPGM(" X: ");
  1494. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1495. SERIAL_PROTOCOLPGM(" Y: ");
  1496. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1497. SERIAL_PROTOCOLPGM(" Z: ");
  1498. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1499. SERIAL_PROTOCOLPGM("\n");
  1500. clean_up_after_endstop_move();
  1501. retract_z_probe(); // Retract Z Servo endstop if available
  1502. }
  1503. break;
  1504. #endif // ENABLE_AUTO_BED_LEVELING
  1505. case 90: // G90
  1506. relative_mode = false;
  1507. break;
  1508. case 91: // G91
  1509. relative_mode = true;
  1510. break;
  1511. case 92: // G92
  1512. if(!code_seen(axis_codes[E_AXIS]))
  1513. st_synchronize();
  1514. for(int8_t i=0; i < NUM_AXIS; i++) {
  1515. if(code_seen(axis_codes[i])) {
  1516. if(i == E_AXIS) {
  1517. current_position[i] = code_value();
  1518. plan_set_e_position(current_position[E_AXIS]);
  1519. }
  1520. else {
  1521. #ifdef SCARA
  1522. if (i == X_AXIS || i == Y_AXIS) {
  1523. current_position[i] = code_value();
  1524. }
  1525. else {
  1526. current_position[i] = code_value()+add_homeing[i];
  1527. }
  1528. #else
  1529. current_position[i] = code_value()+add_homeing[i];
  1530. #endif
  1531. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1532. }
  1533. }
  1534. }
  1535. break;
  1536. }
  1537. }
  1538. else if(code_seen('M'))
  1539. {
  1540. switch( (int)code_value() )
  1541. {
  1542. #ifdef ULTIPANEL
  1543. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1544. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1545. {
  1546. LCD_MESSAGEPGM(MSG_USERWAIT);
  1547. codenum = 0;
  1548. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1549. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1550. st_synchronize();
  1551. previous_millis_cmd = millis();
  1552. if (codenum > 0){
  1553. codenum += millis(); // keep track of when we started waiting
  1554. while(millis() < codenum && !lcd_clicked()){
  1555. manage_heater();
  1556. manage_inactivity();
  1557. lcd_update();
  1558. }
  1559. }else{
  1560. while(!lcd_clicked()){
  1561. manage_heater();
  1562. manage_inactivity();
  1563. lcd_update();
  1564. }
  1565. }
  1566. LCD_MESSAGEPGM(MSG_RESUMING);
  1567. }
  1568. break;
  1569. #endif
  1570. case 17:
  1571. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1572. enable_x();
  1573. enable_y();
  1574. enable_z();
  1575. enable_e0();
  1576. enable_e1();
  1577. enable_e2();
  1578. break;
  1579. #ifdef SDSUPPORT
  1580. case 20: // M20 - list SD card
  1581. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1582. card.ls();
  1583. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1584. break;
  1585. case 21: // M21 - init SD card
  1586. card.initsd();
  1587. break;
  1588. case 22: //M22 - release SD card
  1589. card.release();
  1590. break;
  1591. case 23: //M23 - Select file
  1592. starpos = (strchr(strchr_pointer + 4,'*'));
  1593. if(starpos!=NULL)
  1594. *(starpos-1)='\0';
  1595. card.openFile(strchr_pointer + 4,true);
  1596. break;
  1597. case 24: //M24 - Start SD print
  1598. card.startFileprint();
  1599. starttime=millis();
  1600. break;
  1601. case 25: //M25 - Pause SD print
  1602. card.pauseSDPrint();
  1603. break;
  1604. case 26: //M26 - Set SD index
  1605. if(card.cardOK && code_seen('S')) {
  1606. card.setIndex(code_value_long());
  1607. }
  1608. break;
  1609. case 27: //M27 - Get SD status
  1610. card.getStatus();
  1611. break;
  1612. case 28: //M28 - Start SD write
  1613. starpos = (strchr(strchr_pointer + 4,'*'));
  1614. if(starpos != NULL){
  1615. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1616. strchr_pointer = strchr(npos,' ') + 1;
  1617. *(starpos-1) = '\0';
  1618. }
  1619. card.openFile(strchr_pointer+4,false);
  1620. break;
  1621. case 29: //M29 - Stop SD write
  1622. //processed in write to file routine above
  1623. //card,saving = false;
  1624. break;
  1625. case 30: //M30 <filename> Delete File
  1626. if (card.cardOK){
  1627. card.closefile();
  1628. starpos = (strchr(strchr_pointer + 4,'*'));
  1629. if(starpos != NULL){
  1630. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1631. strchr_pointer = strchr(npos,' ') + 1;
  1632. *(starpos-1) = '\0';
  1633. }
  1634. card.removeFile(strchr_pointer + 4);
  1635. }
  1636. break;
  1637. case 32: //M32 - Select file and start SD print
  1638. {
  1639. if(card.sdprinting) {
  1640. st_synchronize();
  1641. }
  1642. starpos = (strchr(strchr_pointer + 4,'*'));
  1643. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1644. if(namestartpos==NULL)
  1645. {
  1646. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1647. }
  1648. else
  1649. namestartpos++; //to skip the '!'
  1650. if(starpos!=NULL)
  1651. *(starpos-1)='\0';
  1652. bool call_procedure=(code_seen('P'));
  1653. if(strchr_pointer>namestartpos)
  1654. call_procedure=false; //false alert, 'P' found within filename
  1655. if( card.cardOK )
  1656. {
  1657. card.openFile(namestartpos,true,!call_procedure);
  1658. if(code_seen('S'))
  1659. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1660. card.setIndex(code_value_long());
  1661. card.startFileprint();
  1662. if(!call_procedure)
  1663. starttime=millis(); //procedure calls count as normal print time.
  1664. }
  1665. } break;
  1666. case 928: //M928 - Start SD write
  1667. starpos = (strchr(strchr_pointer + 5,'*'));
  1668. if(starpos != NULL){
  1669. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1670. strchr_pointer = strchr(npos,' ') + 1;
  1671. *(starpos-1) = '\0';
  1672. }
  1673. card.openLogFile(strchr_pointer+5);
  1674. break;
  1675. #endif //SDSUPPORT
  1676. case 31: //M31 take time since the start of the SD print or an M109 command
  1677. {
  1678. stoptime=millis();
  1679. char time[30];
  1680. unsigned long t=(stoptime-starttime)/1000;
  1681. int sec,min;
  1682. min=t/60;
  1683. sec=t%60;
  1684. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1685. SERIAL_ECHO_START;
  1686. SERIAL_ECHOLN(time);
  1687. lcd_setstatus(time);
  1688. autotempShutdown();
  1689. }
  1690. break;
  1691. case 42: //M42 -Change pin status via gcode
  1692. if (code_seen('S'))
  1693. {
  1694. int pin_status = code_value();
  1695. int pin_number = LED_PIN;
  1696. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1697. pin_number = code_value();
  1698. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1699. {
  1700. if (sensitive_pins[i] == pin_number)
  1701. {
  1702. pin_number = -1;
  1703. break;
  1704. }
  1705. }
  1706. #if defined(FAN_PIN) && FAN_PIN > -1
  1707. if (pin_number == FAN_PIN)
  1708. fanSpeed = pin_status;
  1709. #endif
  1710. if (pin_number > -1)
  1711. {
  1712. pinMode(pin_number, OUTPUT);
  1713. digitalWrite(pin_number, pin_status);
  1714. analogWrite(pin_number, pin_status);
  1715. }
  1716. }
  1717. break;
  1718. case 104: // M104
  1719. if(setTargetedHotend(104)){
  1720. break;
  1721. }
  1722. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1723. #ifdef DUAL_X_CARRIAGE
  1724. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1725. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1726. #endif
  1727. setWatch();
  1728. break;
  1729. case 112: // M112 -Emergency Stop
  1730. kill();
  1731. break;
  1732. case 140: // M140 set bed temp
  1733. if (code_seen('S')) setTargetBed(code_value());
  1734. break;
  1735. case 105 : // M105
  1736. if(setTargetedHotend(105)){
  1737. break;
  1738. }
  1739. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1740. SERIAL_PROTOCOLPGM("ok T:");
  1741. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1742. SERIAL_PROTOCOLPGM(" /");
  1743. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1744. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1745. SERIAL_PROTOCOLPGM(" B:");
  1746. SERIAL_PROTOCOL_F(degBed(),1);
  1747. SERIAL_PROTOCOLPGM(" /");
  1748. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1749. #endif //TEMP_BED_PIN
  1750. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1751. SERIAL_PROTOCOLPGM(" T");
  1752. SERIAL_PROTOCOL(cur_extruder);
  1753. SERIAL_PROTOCOLPGM(":");
  1754. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1755. SERIAL_PROTOCOLPGM(" /");
  1756. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1757. }
  1758. #else
  1759. SERIAL_ERROR_START;
  1760. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1761. #endif
  1762. SERIAL_PROTOCOLPGM(" @:");
  1763. #ifdef EXTRUDER_WATTS
  1764. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1765. SERIAL_PROTOCOLPGM("W");
  1766. #else
  1767. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1768. #endif
  1769. SERIAL_PROTOCOLPGM(" B@:");
  1770. #ifdef BED_WATTS
  1771. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1772. SERIAL_PROTOCOLPGM("W");
  1773. #else
  1774. SERIAL_PROTOCOL(getHeaterPower(-1));
  1775. #endif
  1776. #ifdef SHOW_TEMP_ADC_VALUES
  1777. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1778. SERIAL_PROTOCOLPGM(" ADC B:");
  1779. SERIAL_PROTOCOL_F(degBed(),1);
  1780. SERIAL_PROTOCOLPGM("C->");
  1781. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1782. #endif
  1783. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1784. SERIAL_PROTOCOLPGM(" T");
  1785. SERIAL_PROTOCOL(cur_extruder);
  1786. SERIAL_PROTOCOLPGM(":");
  1787. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1788. SERIAL_PROTOCOLPGM("C->");
  1789. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1790. }
  1791. #endif
  1792. SERIAL_PROTOCOLLN("");
  1793. return;
  1794. break;
  1795. case 109:
  1796. {// M109 - Wait for extruder heater to reach target.
  1797. if(setTargetedHotend(109)){
  1798. break;
  1799. }
  1800. LCD_MESSAGEPGM(MSG_HEATING);
  1801. #ifdef AUTOTEMP
  1802. autotemp_enabled=false;
  1803. #endif
  1804. if (code_seen('S')) {
  1805. setTargetHotend(code_value(), tmp_extruder);
  1806. #ifdef DUAL_X_CARRIAGE
  1807. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1808. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1809. #endif
  1810. CooldownNoWait = true;
  1811. } else if (code_seen('R')) {
  1812. setTargetHotend(code_value(), tmp_extruder);
  1813. #ifdef DUAL_X_CARRIAGE
  1814. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1815. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1816. #endif
  1817. CooldownNoWait = false;
  1818. }
  1819. #ifdef AUTOTEMP
  1820. if (code_seen('S')) autotemp_min=code_value();
  1821. if (code_seen('B')) autotemp_max=code_value();
  1822. if (code_seen('F'))
  1823. {
  1824. autotemp_factor=code_value();
  1825. autotemp_enabled=true;
  1826. }
  1827. #endif
  1828. setWatch();
  1829. codenum = millis();
  1830. /* See if we are heating up or cooling down */
  1831. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1832. cancel_heatup = false;
  1833. #ifdef TEMP_RESIDENCY_TIME
  1834. long residencyStart;
  1835. residencyStart = -1;
  1836. /* continue to loop until we have reached the target temp
  1837. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1838. while((!cancel_heatup)&&((residencyStart == -1) ||
  1839. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  1840. #else
  1841. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1842. #endif //TEMP_RESIDENCY_TIME
  1843. if( (millis() - codenum) > 1000UL )
  1844. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1845. SERIAL_PROTOCOLPGM("T:");
  1846. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1847. SERIAL_PROTOCOLPGM(" E:");
  1848. SERIAL_PROTOCOL((int)tmp_extruder);
  1849. #ifdef TEMP_RESIDENCY_TIME
  1850. SERIAL_PROTOCOLPGM(" W:");
  1851. if(residencyStart > -1)
  1852. {
  1853. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1854. SERIAL_PROTOCOLLN( codenum );
  1855. }
  1856. else
  1857. {
  1858. SERIAL_PROTOCOLLN( "?" );
  1859. }
  1860. #else
  1861. SERIAL_PROTOCOLLN("");
  1862. #endif
  1863. codenum = millis();
  1864. }
  1865. manage_heater();
  1866. manage_inactivity();
  1867. lcd_update();
  1868. #ifdef TEMP_RESIDENCY_TIME
  1869. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1870. or when current temp falls outside the hysteresis after target temp was reached */
  1871. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1872. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1873. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1874. {
  1875. residencyStart = millis();
  1876. }
  1877. #endif //TEMP_RESIDENCY_TIME
  1878. }
  1879. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1880. starttime=millis();
  1881. previous_millis_cmd = millis();
  1882. }
  1883. break;
  1884. case 190: // M190 - Wait for bed heater to reach target.
  1885. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1886. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1887. if (code_seen('S')) {
  1888. setTargetBed(code_value());
  1889. CooldownNoWait = true;
  1890. } else if (code_seen('R')) {
  1891. setTargetBed(code_value());
  1892. CooldownNoWait = false;
  1893. }
  1894. codenum = millis();
  1895. cancel_heatup = false;
  1896. target_direction = isHeatingBed(); // true if heating, false if cooling
  1897. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1898. {
  1899. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1900. {
  1901. float tt=degHotend(active_extruder);
  1902. SERIAL_PROTOCOLPGM("T:");
  1903. SERIAL_PROTOCOL(tt);
  1904. SERIAL_PROTOCOLPGM(" E:");
  1905. SERIAL_PROTOCOL((int)active_extruder);
  1906. SERIAL_PROTOCOLPGM(" B:");
  1907. SERIAL_PROTOCOL_F(degBed(),1);
  1908. SERIAL_PROTOCOLLN("");
  1909. codenum = millis();
  1910. }
  1911. manage_heater();
  1912. manage_inactivity();
  1913. lcd_update();
  1914. }
  1915. LCD_MESSAGEPGM(MSG_BED_DONE);
  1916. previous_millis_cmd = millis();
  1917. #endif
  1918. break;
  1919. #if defined(FAN_PIN) && FAN_PIN > -1
  1920. case 106: //M106 Fan On
  1921. if (code_seen('S')){
  1922. fanSpeed=constrain(code_value(),0,255);
  1923. }
  1924. else {
  1925. fanSpeed=255;
  1926. }
  1927. break;
  1928. case 107: //M107 Fan Off
  1929. fanSpeed = 0;
  1930. break;
  1931. #endif //FAN_PIN
  1932. #ifdef BARICUDA
  1933. // PWM for HEATER_1_PIN
  1934. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1935. case 126: //M126 valve open
  1936. if (code_seen('S')){
  1937. ValvePressure=constrain(code_value(),0,255);
  1938. }
  1939. else {
  1940. ValvePressure=255;
  1941. }
  1942. break;
  1943. case 127: //M127 valve closed
  1944. ValvePressure = 0;
  1945. break;
  1946. #endif //HEATER_1_PIN
  1947. // PWM for HEATER_2_PIN
  1948. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1949. case 128: //M128 valve open
  1950. if (code_seen('S')){
  1951. EtoPPressure=constrain(code_value(),0,255);
  1952. }
  1953. else {
  1954. EtoPPressure=255;
  1955. }
  1956. break;
  1957. case 129: //M129 valve closed
  1958. EtoPPressure = 0;
  1959. break;
  1960. #endif //HEATER_2_PIN
  1961. #endif
  1962. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1963. case 80: // M80 - Turn on Power Supply
  1964. SET_OUTPUT(PS_ON_PIN); //GND
  1965. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1966. // If you have a switch on suicide pin, this is useful
  1967. // if you want to start another print with suicide feature after
  1968. // a print without suicide...
  1969. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1970. SET_OUTPUT(SUICIDE_PIN);
  1971. WRITE(SUICIDE_PIN, HIGH);
  1972. #endif
  1973. #ifdef ULTIPANEL
  1974. powersupply = true;
  1975. LCD_MESSAGEPGM(WELCOME_MSG);
  1976. lcd_update();
  1977. #endif
  1978. break;
  1979. #endif
  1980. case 81: // M81 - Turn off Power Supply
  1981. disable_heater();
  1982. st_synchronize();
  1983. disable_e0();
  1984. disable_e1();
  1985. disable_e2();
  1986. finishAndDisableSteppers();
  1987. fanSpeed = 0;
  1988. delay(1000); // Wait a little before to switch off
  1989. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1990. st_synchronize();
  1991. suicide();
  1992. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1993. SET_OUTPUT(PS_ON_PIN);
  1994. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1995. #endif
  1996. #ifdef ULTIPANEL
  1997. powersupply = false;
  1998. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1999. lcd_update();
  2000. #endif
  2001. break;
  2002. case 82:
  2003. axis_relative_modes[3] = false;
  2004. break;
  2005. case 83:
  2006. axis_relative_modes[3] = true;
  2007. break;
  2008. case 18: //compatibility
  2009. case 84: // M84
  2010. if(code_seen('S')){
  2011. stepper_inactive_time = code_value() * 1000;
  2012. }
  2013. else
  2014. {
  2015. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2016. if(all_axis)
  2017. {
  2018. st_synchronize();
  2019. disable_e0();
  2020. disable_e1();
  2021. disable_e2();
  2022. finishAndDisableSteppers();
  2023. }
  2024. else
  2025. {
  2026. st_synchronize();
  2027. if(code_seen('X')) disable_x();
  2028. if(code_seen('Y')) disable_y();
  2029. if(code_seen('Z')) disable_z();
  2030. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2031. if(code_seen('E')) {
  2032. disable_e0();
  2033. disable_e1();
  2034. disable_e2();
  2035. }
  2036. #endif
  2037. }
  2038. }
  2039. break;
  2040. case 85: // M85
  2041. if(code_seen('S')) {
  2042. max_inactive_time = code_value() * 1000;
  2043. }
  2044. break;
  2045. case 92: // M92
  2046. for(int8_t i=0; i < NUM_AXIS; i++)
  2047. {
  2048. if(code_seen(axis_codes[i]))
  2049. {
  2050. if(i == 3) { // E
  2051. float value = code_value();
  2052. if(value < 20.0) {
  2053. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2054. max_e_jerk *= factor;
  2055. max_feedrate[i] *= factor;
  2056. axis_steps_per_sqr_second[i] *= factor;
  2057. }
  2058. axis_steps_per_unit[i] = value;
  2059. }
  2060. else {
  2061. axis_steps_per_unit[i] = code_value();
  2062. }
  2063. }
  2064. }
  2065. break;
  2066. case 115: // M115
  2067. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2068. break;
  2069. case 117: // M117 display message
  2070. starpos = (strchr(strchr_pointer + 5,'*'));
  2071. if(starpos!=NULL)
  2072. *(starpos-1)='\0';
  2073. lcd_setstatus(strchr_pointer + 5);
  2074. break;
  2075. case 114: // M114
  2076. SERIAL_PROTOCOLPGM("X:");
  2077. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2078. SERIAL_PROTOCOLPGM(" Y:");
  2079. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2080. SERIAL_PROTOCOLPGM(" Z:");
  2081. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2082. SERIAL_PROTOCOLPGM(" E:");
  2083. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2084. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2085. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2086. SERIAL_PROTOCOLPGM(" Y:");
  2087. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2088. SERIAL_PROTOCOLPGM(" Z:");
  2089. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2090. SERIAL_PROTOCOLLN("");
  2091. #ifdef SCARA
  2092. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2093. SERIAL_PROTOCOL(delta[X_AXIS]);
  2094. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2095. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2096. SERIAL_PROTOCOLLN("");
  2097. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2098. SERIAL_PROTOCOL(delta[X_AXIS]+add_homeing[0]);
  2099. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2100. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homeing[1]);
  2101. SERIAL_PROTOCOLLN("");
  2102. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2103. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2104. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2105. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2106. SERIAL_PROTOCOLLN("");
  2107. SERIAL_PROTOCOLLN("");
  2108. #endif
  2109. break;
  2110. case 120: // M120
  2111. enable_endstops(false) ;
  2112. break;
  2113. case 121: // M121
  2114. enable_endstops(true) ;
  2115. break;
  2116. case 119: // M119
  2117. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2118. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2119. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2120. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2121. #endif
  2122. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2123. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2124. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2125. #endif
  2126. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2127. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2128. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2129. #endif
  2130. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2131. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2132. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2133. #endif
  2134. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2135. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2136. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2137. #endif
  2138. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2139. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2140. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2141. #endif
  2142. break;
  2143. //TODO: update for all axis, use for loop
  2144. #ifdef BLINKM
  2145. case 150: // M150
  2146. {
  2147. byte red;
  2148. byte grn;
  2149. byte blu;
  2150. if(code_seen('R')) red = code_value();
  2151. if(code_seen('U')) grn = code_value();
  2152. if(code_seen('B')) blu = code_value();
  2153. SendColors(red,grn,blu);
  2154. }
  2155. break;
  2156. #endif //BLINKM
  2157. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2158. {
  2159. float area = .0;
  2160. float radius = .0;
  2161. if(code_seen('D')) {
  2162. radius = (float)code_value() * .5;
  2163. if(radius == 0) {
  2164. area = 1;
  2165. } else {
  2166. area = M_PI * pow(radius, 2);
  2167. }
  2168. } else {
  2169. //reserved for setting filament diameter via UFID or filament measuring device
  2170. break;
  2171. }
  2172. tmp_extruder = active_extruder;
  2173. if(code_seen('T')) {
  2174. tmp_extruder = code_value();
  2175. if(tmp_extruder >= EXTRUDERS) {
  2176. SERIAL_ECHO_START;
  2177. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2178. break;
  2179. }
  2180. }
  2181. volumetric_multiplier[tmp_extruder] = 1 / area;
  2182. }
  2183. break;
  2184. case 201: // M201
  2185. for(int8_t i=0; i < NUM_AXIS; i++)
  2186. {
  2187. if(code_seen(axis_codes[i]))
  2188. {
  2189. max_acceleration_units_per_sq_second[i] = code_value();
  2190. }
  2191. }
  2192. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2193. reset_acceleration_rates();
  2194. break;
  2195. #if 0 // Not used for Sprinter/grbl gen6
  2196. case 202: // M202
  2197. for(int8_t i=0; i < NUM_AXIS; i++) {
  2198. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2199. }
  2200. break;
  2201. #endif
  2202. case 203: // M203 max feedrate mm/sec
  2203. for(int8_t i=0; i < NUM_AXIS; i++) {
  2204. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2205. }
  2206. break;
  2207. case 204: // M204 acclereration S normal moves T filmanent only moves
  2208. {
  2209. if(code_seen('S')) acceleration = code_value() ;
  2210. if(code_seen('T')) retract_acceleration = code_value() ;
  2211. }
  2212. break;
  2213. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2214. {
  2215. if(code_seen('S')) minimumfeedrate = code_value();
  2216. if(code_seen('T')) mintravelfeedrate = code_value();
  2217. if(code_seen('B')) minsegmenttime = code_value() ;
  2218. if(code_seen('X')) max_xy_jerk = code_value() ;
  2219. if(code_seen('Z')) max_z_jerk = code_value() ;
  2220. if(code_seen('E')) max_e_jerk = code_value() ;
  2221. }
  2222. break;
  2223. case 206: // M206 additional homeing offset
  2224. for(int8_t i=0; i < 3; i++)
  2225. {
  2226. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2227. }
  2228. #ifdef SCARA
  2229. if(code_seen('T')) // Theta
  2230. {
  2231. add_homeing[0] = code_value() ;
  2232. }
  2233. if(code_seen('P')) // Psi
  2234. {
  2235. add_homeing[1] = code_value() ;
  2236. }
  2237. #endif
  2238. break;
  2239. #ifdef DELTA
  2240. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2241. if(code_seen('L')) {
  2242. delta_diagonal_rod= code_value();
  2243. }
  2244. if(code_seen('R')) {
  2245. delta_radius= code_value();
  2246. }
  2247. if(code_seen('S')) {
  2248. delta_segments_per_second= code_value();
  2249. }
  2250. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2251. break;
  2252. case 666: // M666 set delta endstop adjustemnt
  2253. for(int8_t i=0; i < 3; i++)
  2254. {
  2255. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2256. }
  2257. break;
  2258. #endif
  2259. #ifdef FWRETRACT
  2260. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2261. {
  2262. if(code_seen('S'))
  2263. {
  2264. retract_length = code_value() ;
  2265. }
  2266. if(code_seen('F'))
  2267. {
  2268. retract_feedrate = code_value()/60 ;
  2269. }
  2270. if(code_seen('Z'))
  2271. {
  2272. retract_zlift = code_value() ;
  2273. }
  2274. }break;
  2275. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2276. {
  2277. if(code_seen('S'))
  2278. {
  2279. retract_recover_length = code_value() ;
  2280. }
  2281. if(code_seen('F'))
  2282. {
  2283. retract_recover_feedrate = code_value()/60 ;
  2284. }
  2285. }break;
  2286. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2287. {
  2288. if(code_seen('S'))
  2289. {
  2290. int t= code_value() ;
  2291. switch(t)
  2292. {
  2293. case 0:
  2294. {
  2295. autoretract_enabled=false;
  2296. retracted[0]=false;
  2297. #if EXTRUDERS > 1
  2298. retracted[1]=false;
  2299. #endif
  2300. #if EXTRUDERS > 2
  2301. retracted[2]=false;
  2302. #endif
  2303. }break;
  2304. case 1:
  2305. {
  2306. autoretract_enabled=true;
  2307. retracted[0]=false;
  2308. #if EXTRUDERS > 1
  2309. retracted[1]=false;
  2310. #endif
  2311. #if EXTRUDERS > 2
  2312. retracted[2]=false;
  2313. #endif
  2314. }break;
  2315. default:
  2316. SERIAL_ECHO_START;
  2317. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2318. SERIAL_ECHO(cmdbuffer[bufindr]);
  2319. SERIAL_ECHOLNPGM("\"");
  2320. }
  2321. }
  2322. }break;
  2323. #endif // FWRETRACT
  2324. #if EXTRUDERS > 1
  2325. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2326. {
  2327. if(setTargetedHotend(218)){
  2328. break;
  2329. }
  2330. if(code_seen('X'))
  2331. {
  2332. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2333. }
  2334. if(code_seen('Y'))
  2335. {
  2336. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2337. }
  2338. #ifdef DUAL_X_CARRIAGE
  2339. if(code_seen('Z'))
  2340. {
  2341. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2342. }
  2343. #endif
  2344. SERIAL_ECHO_START;
  2345. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2346. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2347. {
  2348. SERIAL_ECHO(" ");
  2349. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2350. SERIAL_ECHO(",");
  2351. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2352. #ifdef DUAL_X_CARRIAGE
  2353. SERIAL_ECHO(",");
  2354. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2355. #endif
  2356. }
  2357. SERIAL_ECHOLN("");
  2358. }break;
  2359. #endif
  2360. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2361. {
  2362. if(code_seen('S'))
  2363. {
  2364. feedmultiply = code_value() ;
  2365. }
  2366. }
  2367. break;
  2368. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2369. {
  2370. if(code_seen('S'))
  2371. {
  2372. int tmp_code = code_value();
  2373. if (code_seen('T'))
  2374. {
  2375. if(setTargetedHotend(221)){
  2376. break;
  2377. }
  2378. extruder_multiply[tmp_extruder] = tmp_code;
  2379. }
  2380. else
  2381. {
  2382. extrudemultiply = tmp_code ;
  2383. }
  2384. }
  2385. }
  2386. break;
  2387. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2388. {
  2389. if(code_seen('P')){
  2390. int pin_number = code_value(); // pin number
  2391. int pin_state = -1; // required pin state - default is inverted
  2392. if(code_seen('S')) pin_state = code_value(); // required pin state
  2393. if(pin_state >= -1 && pin_state <= 1){
  2394. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2395. {
  2396. if (sensitive_pins[i] == pin_number)
  2397. {
  2398. pin_number = -1;
  2399. break;
  2400. }
  2401. }
  2402. if (pin_number > -1)
  2403. {
  2404. st_synchronize();
  2405. pinMode(pin_number, INPUT);
  2406. int target;
  2407. switch(pin_state){
  2408. case 1:
  2409. target = HIGH;
  2410. break;
  2411. case 0:
  2412. target = LOW;
  2413. break;
  2414. case -1:
  2415. target = !digitalRead(pin_number);
  2416. break;
  2417. }
  2418. while(digitalRead(pin_number) != target){
  2419. manage_heater();
  2420. manage_inactivity();
  2421. lcd_update();
  2422. }
  2423. }
  2424. }
  2425. }
  2426. }
  2427. break;
  2428. #if NUM_SERVOS > 0
  2429. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2430. {
  2431. int servo_index = -1;
  2432. int servo_position = 0;
  2433. if (code_seen('P'))
  2434. servo_index = code_value();
  2435. if (code_seen('S')) {
  2436. servo_position = code_value();
  2437. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2438. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2439. servos[servo_index].attach(0);
  2440. #endif
  2441. servos[servo_index].write(servo_position);
  2442. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2443. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2444. servos[servo_index].detach();
  2445. #endif
  2446. }
  2447. else {
  2448. SERIAL_ECHO_START;
  2449. SERIAL_ECHO("Servo ");
  2450. SERIAL_ECHO(servo_index);
  2451. SERIAL_ECHOLN(" out of range");
  2452. }
  2453. }
  2454. else if (servo_index >= 0) {
  2455. SERIAL_PROTOCOL(MSG_OK);
  2456. SERIAL_PROTOCOL(" Servo ");
  2457. SERIAL_PROTOCOL(servo_index);
  2458. SERIAL_PROTOCOL(": ");
  2459. SERIAL_PROTOCOL(servos[servo_index].read());
  2460. SERIAL_PROTOCOLLN("");
  2461. }
  2462. }
  2463. break;
  2464. #endif // NUM_SERVOS > 0
  2465. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2466. case 300: // M300
  2467. {
  2468. int beepS = code_seen('S') ? code_value() : 110;
  2469. int beepP = code_seen('P') ? code_value() : 1000;
  2470. if (beepS > 0)
  2471. {
  2472. #if BEEPER > 0
  2473. tone(BEEPER, beepS);
  2474. delay(beepP);
  2475. noTone(BEEPER);
  2476. #elif defined(ULTRALCD)
  2477. lcd_buzz(beepS, beepP);
  2478. #elif defined(LCD_USE_I2C_BUZZER)
  2479. lcd_buzz(beepP, beepS);
  2480. #endif
  2481. }
  2482. else
  2483. {
  2484. delay(beepP);
  2485. }
  2486. }
  2487. break;
  2488. #endif // M300
  2489. #ifdef PIDTEMP
  2490. case 301: // M301
  2491. {
  2492. if(code_seen('P')) Kp = code_value();
  2493. if(code_seen('I')) Ki = scalePID_i(code_value());
  2494. if(code_seen('D')) Kd = scalePID_d(code_value());
  2495. #ifdef PID_ADD_EXTRUSION_RATE
  2496. if(code_seen('C')) Kc = code_value();
  2497. #endif
  2498. updatePID();
  2499. SERIAL_PROTOCOL(MSG_OK);
  2500. SERIAL_PROTOCOL(" p:");
  2501. SERIAL_PROTOCOL(Kp);
  2502. SERIAL_PROTOCOL(" i:");
  2503. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2504. SERIAL_PROTOCOL(" d:");
  2505. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2506. #ifdef PID_ADD_EXTRUSION_RATE
  2507. SERIAL_PROTOCOL(" c:");
  2508. //Kc does not have scaling applied above, or in resetting defaults
  2509. SERIAL_PROTOCOL(Kc);
  2510. #endif
  2511. SERIAL_PROTOCOLLN("");
  2512. }
  2513. break;
  2514. #endif //PIDTEMP
  2515. #ifdef PIDTEMPBED
  2516. case 304: // M304
  2517. {
  2518. if(code_seen('P')) bedKp = code_value();
  2519. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2520. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2521. updatePID();
  2522. SERIAL_PROTOCOL(MSG_OK);
  2523. SERIAL_PROTOCOL(" p:");
  2524. SERIAL_PROTOCOL(bedKp);
  2525. SERIAL_PROTOCOL(" i:");
  2526. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2527. SERIAL_PROTOCOL(" d:");
  2528. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2529. SERIAL_PROTOCOLLN("");
  2530. }
  2531. break;
  2532. #endif //PIDTEMP
  2533. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2534. {
  2535. #ifdef CHDK
  2536. SET_OUTPUT(CHDK);
  2537. WRITE(CHDK, HIGH);
  2538. chdkHigh = millis();
  2539. chdkActive = true;
  2540. #else
  2541. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2542. const uint8_t NUM_PULSES=16;
  2543. const float PULSE_LENGTH=0.01524;
  2544. for(int i=0; i < NUM_PULSES; i++) {
  2545. WRITE(PHOTOGRAPH_PIN, HIGH);
  2546. _delay_ms(PULSE_LENGTH);
  2547. WRITE(PHOTOGRAPH_PIN, LOW);
  2548. _delay_ms(PULSE_LENGTH);
  2549. }
  2550. delay(7.33);
  2551. for(int i=0; i < NUM_PULSES; i++) {
  2552. WRITE(PHOTOGRAPH_PIN, HIGH);
  2553. _delay_ms(PULSE_LENGTH);
  2554. WRITE(PHOTOGRAPH_PIN, LOW);
  2555. _delay_ms(PULSE_LENGTH);
  2556. }
  2557. #endif
  2558. #endif //chdk end if
  2559. }
  2560. break;
  2561. #ifdef DOGLCD
  2562. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2563. {
  2564. if (code_seen('C')) {
  2565. lcd_setcontrast( ((int)code_value())&63 );
  2566. }
  2567. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2568. SERIAL_PROTOCOL(lcd_contrast);
  2569. SERIAL_PROTOCOLLN("");
  2570. }
  2571. break;
  2572. #endif
  2573. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2574. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2575. {
  2576. float temp = .0;
  2577. if (code_seen('S')) temp=code_value();
  2578. set_extrude_min_temp(temp);
  2579. }
  2580. break;
  2581. #endif
  2582. case 303: // M303 PID autotune
  2583. {
  2584. float temp = 150.0;
  2585. int e=0;
  2586. int c=5;
  2587. if (code_seen('E')) e=code_value();
  2588. if (e<0)
  2589. temp=70;
  2590. if (code_seen('S')) temp=code_value();
  2591. if (code_seen('C')) c=code_value();
  2592. PID_autotune(temp, e, c);
  2593. }
  2594. break;
  2595. #ifdef SCARA
  2596. case 360: // M360 SCARA Theta pos1
  2597. SERIAL_ECHOLN(" Cal: Theta 0 ");
  2598. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2599. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2600. if(Stopped == false) {
  2601. //get_coordinates(); // For X Y Z E F
  2602. delta[0] = 0;
  2603. delta[1] = 120;
  2604. calculate_SCARA_forward_Transform(delta);
  2605. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2606. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2607. prepare_move();
  2608. //ClearToSend();
  2609. return;
  2610. }
  2611. break;
  2612. case 361: // SCARA Theta pos2
  2613. SERIAL_ECHOLN(" Cal: Theta 90 ");
  2614. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2615. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2616. if(Stopped == false) {
  2617. //get_coordinates(); // For X Y Z E F
  2618. delta[0] = 90;
  2619. delta[1] = 130;
  2620. calculate_SCARA_forward_Transform(delta);
  2621. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2622. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2623. prepare_move();
  2624. //ClearToSend();
  2625. return;
  2626. }
  2627. break;
  2628. case 362: // SCARA Psi pos1
  2629. SERIAL_ECHOLN(" Cal: Psi 0 ");
  2630. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2631. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2632. if(Stopped == false) {
  2633. //get_coordinates(); // For X Y Z E F
  2634. delta[0] = 60;
  2635. delta[1] = 180;
  2636. calculate_SCARA_forward_Transform(delta);
  2637. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2638. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2639. prepare_move();
  2640. //ClearToSend();
  2641. return;
  2642. }
  2643. break;
  2644. case 363: // SCARA Psi pos2
  2645. SERIAL_ECHOLN(" Cal: Psi 90 ");
  2646. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2647. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2648. if(Stopped == false) {
  2649. //get_coordinates(); // For X Y Z E F
  2650. delta[0] = 50;
  2651. delta[1] = 90;
  2652. calculate_SCARA_forward_Transform(delta);
  2653. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2654. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2655. prepare_move();
  2656. //ClearToSend();
  2657. return;
  2658. }
  2659. break;
  2660. case 364: // SCARA Psi pos3 (90 deg to Theta)
  2661. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  2662. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2663. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2664. if(Stopped == false) {
  2665. //get_coordinates(); // For X Y Z E F
  2666. delta[0] = 45;
  2667. delta[1] = 135;
  2668. calculate_SCARA_forward_Transform(delta);
  2669. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2670. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2671. prepare_move();
  2672. //ClearToSend();
  2673. return;
  2674. }
  2675. break;
  2676. case 365: // M364 Set SCARA scaling for X Y Z
  2677. for(int8_t i=0; i < 3; i++)
  2678. {
  2679. if(code_seen(axis_codes[i]))
  2680. {
  2681. axis_scaling[i] = code_value();
  2682. }
  2683. }
  2684. break;
  2685. #endif
  2686. case 400: // M400 finish all moves
  2687. {
  2688. st_synchronize();
  2689. }
  2690. break;
  2691. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2692. case 401:
  2693. {
  2694. engage_z_probe(); // Engage Z Servo endstop if available
  2695. }
  2696. break;
  2697. case 402:
  2698. {
  2699. retract_z_probe(); // Retract Z Servo endstop if enabled
  2700. }
  2701. break;
  2702. #endif
  2703. case 500: // M500 Store settings in EEPROM
  2704. {
  2705. Config_StoreSettings();
  2706. }
  2707. break;
  2708. case 501: // M501 Read settings from EEPROM
  2709. {
  2710. Config_RetrieveSettings();
  2711. }
  2712. break;
  2713. case 502: // M502 Revert to default settings
  2714. {
  2715. Config_ResetDefault();
  2716. }
  2717. break;
  2718. case 503: // M503 print settings currently in memory
  2719. {
  2720. Config_PrintSettings();
  2721. }
  2722. break;
  2723. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2724. case 540:
  2725. {
  2726. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2727. }
  2728. break;
  2729. #endif
  2730. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2731. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  2732. {
  2733. float value;
  2734. if (code_seen('Z'))
  2735. {
  2736. value = code_value();
  2737. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  2738. {
  2739. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  2740. SERIAL_ECHO_START;
  2741. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  2742. SERIAL_PROTOCOLLN("");
  2743. }
  2744. else
  2745. {
  2746. SERIAL_ECHO_START;
  2747. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  2748. SERIAL_ECHOPGM(MSG_Z_MIN);
  2749. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  2750. SERIAL_ECHOPGM(MSG_Z_MAX);
  2751. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  2752. SERIAL_PROTOCOLLN("");
  2753. }
  2754. }
  2755. else
  2756. {
  2757. SERIAL_ECHO_START;
  2758. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  2759. SERIAL_ECHO(-zprobe_zoffset);
  2760. SERIAL_PROTOCOLLN("");
  2761. }
  2762. break;
  2763. }
  2764. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2765. #ifdef FILAMENTCHANGEENABLE
  2766. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2767. {
  2768. float target[4];
  2769. float lastpos[4];
  2770. target[X_AXIS]=current_position[X_AXIS];
  2771. target[Y_AXIS]=current_position[Y_AXIS];
  2772. target[Z_AXIS]=current_position[Z_AXIS];
  2773. target[E_AXIS]=current_position[E_AXIS];
  2774. lastpos[X_AXIS]=current_position[X_AXIS];
  2775. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2776. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2777. lastpos[E_AXIS]=current_position[E_AXIS];
  2778. //retract by E
  2779. if(code_seen('E'))
  2780. {
  2781. target[E_AXIS]+= code_value();
  2782. }
  2783. else
  2784. {
  2785. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2786. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2787. #endif
  2788. }
  2789. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2790. //lift Z
  2791. if(code_seen('Z'))
  2792. {
  2793. target[Z_AXIS]+= code_value();
  2794. }
  2795. else
  2796. {
  2797. #ifdef FILAMENTCHANGE_ZADD
  2798. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2799. #endif
  2800. }
  2801. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2802. //move xy
  2803. if(code_seen('X'))
  2804. {
  2805. target[X_AXIS]+= code_value();
  2806. }
  2807. else
  2808. {
  2809. #ifdef FILAMENTCHANGE_XPOS
  2810. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2811. #endif
  2812. }
  2813. if(code_seen('Y'))
  2814. {
  2815. target[Y_AXIS]= code_value();
  2816. }
  2817. else
  2818. {
  2819. #ifdef FILAMENTCHANGE_YPOS
  2820. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2821. #endif
  2822. }
  2823. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2824. if(code_seen('L'))
  2825. {
  2826. target[E_AXIS]+= code_value();
  2827. }
  2828. else
  2829. {
  2830. #ifdef FILAMENTCHANGE_FINALRETRACT
  2831. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2832. #endif
  2833. }
  2834. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2835. //finish moves
  2836. st_synchronize();
  2837. //disable extruder steppers so filament can be removed
  2838. disable_e0();
  2839. disable_e1();
  2840. disable_e2();
  2841. delay(100);
  2842. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2843. uint8_t cnt=0;
  2844. while(!lcd_clicked()){
  2845. cnt++;
  2846. manage_heater();
  2847. manage_inactivity();
  2848. lcd_update();
  2849. if(cnt==0)
  2850. {
  2851. #if BEEPER > 0
  2852. SET_OUTPUT(BEEPER);
  2853. WRITE(BEEPER,HIGH);
  2854. delay(3);
  2855. WRITE(BEEPER,LOW);
  2856. delay(3);
  2857. #else
  2858. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2859. lcd_buzz(1000/6,100);
  2860. #else
  2861. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2862. #endif
  2863. #endif
  2864. }
  2865. }
  2866. //return to normal
  2867. if(code_seen('L'))
  2868. {
  2869. target[E_AXIS]+= -code_value();
  2870. }
  2871. else
  2872. {
  2873. #ifdef FILAMENTCHANGE_FINALRETRACT
  2874. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2875. #endif
  2876. }
  2877. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2878. plan_set_e_position(current_position[E_AXIS]);
  2879. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2880. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2881. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2882. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2883. }
  2884. break;
  2885. #endif //FILAMENTCHANGEENABLE
  2886. #ifdef DUAL_X_CARRIAGE
  2887. case 605: // Set dual x-carriage movement mode:
  2888. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2889. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2890. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2891. // millimeters x-offset and an optional differential hotend temperature of
  2892. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2893. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2894. //
  2895. // Note: the X axis should be homed after changing dual x-carriage mode.
  2896. {
  2897. st_synchronize();
  2898. if (code_seen('S'))
  2899. dual_x_carriage_mode = code_value();
  2900. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2901. {
  2902. if (code_seen('X'))
  2903. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2904. if (code_seen('R'))
  2905. duplicate_extruder_temp_offset = code_value();
  2906. SERIAL_ECHO_START;
  2907. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2908. SERIAL_ECHO(" ");
  2909. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2910. SERIAL_ECHO(",");
  2911. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2912. SERIAL_ECHO(" ");
  2913. SERIAL_ECHO(duplicate_extruder_x_offset);
  2914. SERIAL_ECHO(",");
  2915. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2916. }
  2917. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2918. {
  2919. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2920. }
  2921. active_extruder_parked = false;
  2922. extruder_duplication_enabled = false;
  2923. delayed_move_time = 0;
  2924. }
  2925. break;
  2926. #endif //DUAL_X_CARRIAGE
  2927. case 907: // M907 Set digital trimpot motor current using axis codes.
  2928. {
  2929. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2930. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2931. if(code_seen('B')) digipot_current(4,code_value());
  2932. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2933. #endif
  2934. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2935. if(code_seen('X')) digipot_current(0, code_value());
  2936. #endif
  2937. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2938. if(code_seen('Z')) digipot_current(1, code_value());
  2939. #endif
  2940. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2941. if(code_seen('E')) digipot_current(2, code_value());
  2942. #endif
  2943. #ifdef DIGIPOT_I2C
  2944. // this one uses actual amps in floating point
  2945. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2946. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2947. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2948. #endif
  2949. }
  2950. break;
  2951. case 908: // M908 Control digital trimpot directly.
  2952. {
  2953. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2954. uint8_t channel,current;
  2955. if(code_seen('P')) channel=code_value();
  2956. if(code_seen('S')) current=code_value();
  2957. digitalPotWrite(channel, current);
  2958. #endif
  2959. }
  2960. break;
  2961. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2962. {
  2963. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2964. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2965. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2966. if(code_seen('B')) microstep_mode(4,code_value());
  2967. microstep_readings();
  2968. #endif
  2969. }
  2970. break;
  2971. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2972. {
  2973. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2974. if(code_seen('S')) switch((int)code_value())
  2975. {
  2976. case 1:
  2977. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2978. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2979. break;
  2980. case 2:
  2981. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2982. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2983. break;
  2984. }
  2985. microstep_readings();
  2986. #endif
  2987. }
  2988. break;
  2989. case 999: // M999: Restart after being stopped
  2990. Stopped = false;
  2991. lcd_reset_alert_level();
  2992. gcode_LastN = Stopped_gcode_LastN;
  2993. FlushSerialRequestResend();
  2994. break;
  2995. }
  2996. }
  2997. else if(code_seen('T'))
  2998. {
  2999. tmp_extruder = code_value();
  3000. if(tmp_extruder >= EXTRUDERS) {
  3001. SERIAL_ECHO_START;
  3002. SERIAL_ECHO("T");
  3003. SERIAL_ECHO(tmp_extruder);
  3004. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3005. }
  3006. else {
  3007. boolean make_move = false;
  3008. if(code_seen('F')) {
  3009. make_move = true;
  3010. next_feedrate = code_value();
  3011. if(next_feedrate > 0.0) {
  3012. feedrate = next_feedrate;
  3013. }
  3014. }
  3015. #if EXTRUDERS > 1
  3016. if(tmp_extruder != active_extruder) {
  3017. // Save current position to return to after applying extruder offset
  3018. memcpy(destination, current_position, sizeof(destination));
  3019. #ifdef DUAL_X_CARRIAGE
  3020. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3021. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3022. {
  3023. // Park old head: 1) raise 2) move to park position 3) lower
  3024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3025. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3026. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3027. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3028. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3029. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3030. st_synchronize();
  3031. }
  3032. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3033. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3034. extruder_offset[Y_AXIS][active_extruder] +
  3035. extruder_offset[Y_AXIS][tmp_extruder];
  3036. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3037. extruder_offset[Z_AXIS][active_extruder] +
  3038. extruder_offset[Z_AXIS][tmp_extruder];
  3039. active_extruder = tmp_extruder;
  3040. // This function resets the max/min values - the current position may be overwritten below.
  3041. axis_is_at_home(X_AXIS);
  3042. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3043. {
  3044. current_position[X_AXIS] = inactive_extruder_x_pos;
  3045. inactive_extruder_x_pos = destination[X_AXIS];
  3046. }
  3047. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3048. {
  3049. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3050. if (active_extruder == 0 || active_extruder_parked)
  3051. current_position[X_AXIS] = inactive_extruder_x_pos;
  3052. else
  3053. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3054. inactive_extruder_x_pos = destination[X_AXIS];
  3055. extruder_duplication_enabled = false;
  3056. }
  3057. else
  3058. {
  3059. // record raised toolhead position for use by unpark
  3060. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3061. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3062. active_extruder_parked = true;
  3063. delayed_move_time = 0;
  3064. }
  3065. #else
  3066. // Offset extruder (only by XY)
  3067. int i;
  3068. for(i = 0; i < 2; i++) {
  3069. current_position[i] = current_position[i] -
  3070. extruder_offset[i][active_extruder] +
  3071. extruder_offset[i][tmp_extruder];
  3072. }
  3073. // Set the new active extruder and position
  3074. active_extruder = tmp_extruder;
  3075. #endif //else DUAL_X_CARRIAGE
  3076. #ifdef DELTA
  3077. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3078. //sent position to plan_set_position();
  3079. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3080. #else
  3081. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3082. #endif
  3083. // Move to the old position if 'F' was in the parameters
  3084. if(make_move && Stopped == false) {
  3085. prepare_move();
  3086. }
  3087. }
  3088. #endif
  3089. SERIAL_ECHO_START;
  3090. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3091. SERIAL_PROTOCOLLN((int)active_extruder);
  3092. }
  3093. }
  3094. else
  3095. {
  3096. SERIAL_ECHO_START;
  3097. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3098. SERIAL_ECHO(cmdbuffer[bufindr]);
  3099. SERIAL_ECHOLNPGM("\"");
  3100. }
  3101. ClearToSend();
  3102. }
  3103. void FlushSerialRequestResend()
  3104. {
  3105. //char cmdbuffer[bufindr][100]="Resend:";
  3106. MYSERIAL.flush();
  3107. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3108. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3109. ClearToSend();
  3110. }
  3111. void ClearToSend()
  3112. {
  3113. previous_millis_cmd = millis();
  3114. #ifdef SDSUPPORT
  3115. if(fromsd[bufindr])
  3116. return;
  3117. #endif //SDSUPPORT
  3118. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3119. }
  3120. void get_coordinates()
  3121. {
  3122. bool seen[4]={false,false,false,false};
  3123. for(int8_t i=0; i < NUM_AXIS; i++) {
  3124. if(code_seen(axis_codes[i]))
  3125. {
  3126. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3127. seen[i]=true;
  3128. }
  3129. else destination[i] = current_position[i]; //Are these else lines really needed?
  3130. }
  3131. if(code_seen('F')) {
  3132. next_feedrate = code_value();
  3133. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3134. }
  3135. }
  3136. void get_arc_coordinates()
  3137. {
  3138. #ifdef SF_ARC_FIX
  3139. bool relative_mode_backup = relative_mode;
  3140. relative_mode = true;
  3141. #endif
  3142. get_coordinates();
  3143. #ifdef SF_ARC_FIX
  3144. relative_mode=relative_mode_backup;
  3145. #endif
  3146. if(code_seen('I')) {
  3147. offset[0] = code_value();
  3148. }
  3149. else {
  3150. offset[0] = 0.0;
  3151. }
  3152. if(code_seen('J')) {
  3153. offset[1] = code_value();
  3154. }
  3155. else {
  3156. offset[1] = 0.0;
  3157. }
  3158. }
  3159. void clamp_to_software_endstops(float target[3])
  3160. {
  3161. if (min_software_endstops) {
  3162. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3163. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3164. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  3165. }
  3166. if (max_software_endstops) {
  3167. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3168. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3169. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3170. }
  3171. }
  3172. #ifdef DELTA
  3173. void recalc_delta_settings(float radius, float diagonal_rod)
  3174. {
  3175. delta_tower1_x= -SIN_60*radius; // front left tower
  3176. delta_tower1_y= -COS_60*radius;
  3177. delta_tower2_x= SIN_60*radius; // front right tower
  3178. delta_tower2_y= -COS_60*radius;
  3179. delta_tower3_x= 0.0; // back middle tower
  3180. delta_tower3_y= radius;
  3181. delta_diagonal_rod_2= sq(diagonal_rod);
  3182. }
  3183. void calculate_delta(float cartesian[3])
  3184. {
  3185. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3186. - sq(delta_tower1_x-cartesian[X_AXIS])
  3187. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3188. ) + cartesian[Z_AXIS];
  3189. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3190. - sq(delta_tower2_x-cartesian[X_AXIS])
  3191. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3192. ) + cartesian[Z_AXIS];
  3193. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3194. - sq(delta_tower3_x-cartesian[X_AXIS])
  3195. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3196. ) + cartesian[Z_AXIS];
  3197. /*
  3198. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3199. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3200. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3201. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3202. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3203. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3204. */
  3205. }
  3206. #endif
  3207. void prepare_move()
  3208. {
  3209. clamp_to_software_endstops(destination);
  3210. previous_millis_cmd = millis();
  3211. #ifdef SCARA //for now same as delta-code
  3212. float difference[NUM_AXIS];
  3213. for (int8_t i=0; i < NUM_AXIS; i++) {
  3214. difference[i] = destination[i] - current_position[i];
  3215. }
  3216. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3217. sq(difference[Y_AXIS]) +
  3218. sq(difference[Z_AXIS]));
  3219. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3220. if (cartesian_mm < 0.000001) { return; }
  3221. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3222. int steps = max(1, int(scara_segments_per_second * seconds));
  3223. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3224. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3225. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3226. for (int s = 1; s <= steps; s++) {
  3227. float fraction = float(s) / float(steps);
  3228. for(int8_t i=0; i < NUM_AXIS; i++) {
  3229. destination[i] = current_position[i] + difference[i] * fraction;
  3230. }
  3231. calculate_delta(destination);
  3232. //SERIAL_ECHOPGM("destination[0]="); SERIAL_ECHOLN(destination[0]);
  3233. //SERIAL_ECHOPGM("destination[1]="); SERIAL_ECHOLN(destination[1]);
  3234. //SERIAL_ECHOPGM("destination[2]="); SERIAL_ECHOLN(destination[2]);
  3235. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3236. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3237. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3238. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3239. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3240. active_extruder);
  3241. }
  3242. #endif // SCARA
  3243. #ifdef DELTA
  3244. float difference[NUM_AXIS];
  3245. for (int8_t i=0; i < NUM_AXIS; i++) {
  3246. difference[i] = destination[i] - current_position[i];
  3247. }
  3248. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3249. sq(difference[Y_AXIS]) +
  3250. sq(difference[Z_AXIS]));
  3251. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3252. if (cartesian_mm < 0.000001) { return; }
  3253. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3254. int steps = max(1, int(delta_segments_per_second * seconds));
  3255. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3256. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3257. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3258. for (int s = 1; s <= steps; s++) {
  3259. float fraction = float(s) / float(steps);
  3260. for(int8_t i=0; i < NUM_AXIS; i++) {
  3261. destination[i] = current_position[i] + difference[i] * fraction;
  3262. }
  3263. calculate_delta(destination);
  3264. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3265. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3266. active_extruder);
  3267. }
  3268. #endif // DELTA
  3269. #ifdef DUAL_X_CARRIAGE
  3270. if (active_extruder_parked)
  3271. {
  3272. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3273. {
  3274. // move duplicate extruder into correct duplication position.
  3275. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3276. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3277. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3278. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3279. st_synchronize();
  3280. extruder_duplication_enabled = true;
  3281. active_extruder_parked = false;
  3282. }
  3283. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3284. {
  3285. if (current_position[E_AXIS] == destination[E_AXIS])
  3286. {
  3287. // this is a travel move - skit it but keep track of current position (so that it can later
  3288. // be used as start of first non-travel move)
  3289. if (delayed_move_time != 0xFFFFFFFFUL)
  3290. {
  3291. memcpy(current_position, destination, sizeof(current_position));
  3292. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3293. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3294. delayed_move_time = millis();
  3295. return;
  3296. }
  3297. }
  3298. delayed_move_time = 0;
  3299. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3300. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3301. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3302. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3303. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3304. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3305. active_extruder_parked = false;
  3306. }
  3307. }
  3308. #endif //DUAL_X_CARRIAGE
  3309. #if ! (defined DELTA || defined SCARA)
  3310. // Do not use feedmultiply for E or Z only moves
  3311. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3312. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3313. }
  3314. else {
  3315. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3316. }
  3317. #endif // !(DELTA || SCARA)
  3318. for(int8_t i=0; i < NUM_AXIS; i++) {
  3319. current_position[i] = destination[i];
  3320. }
  3321. }
  3322. void prepare_arc_move(char isclockwise) {
  3323. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3324. // Trace the arc
  3325. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3326. // As far as the parser is concerned, the position is now == target. In reality the
  3327. // motion control system might still be processing the action and the real tool position
  3328. // in any intermediate location.
  3329. for(int8_t i=0; i < NUM_AXIS; i++) {
  3330. current_position[i] = destination[i];
  3331. }
  3332. previous_millis_cmd = millis();
  3333. }
  3334. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3335. #if defined(FAN_PIN)
  3336. #if CONTROLLERFAN_PIN == FAN_PIN
  3337. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3338. #endif
  3339. #endif
  3340. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3341. unsigned long lastMotorCheck = 0;
  3342. void controllerFan()
  3343. {
  3344. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3345. {
  3346. lastMotorCheck = millis();
  3347. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3348. #if EXTRUDERS > 2
  3349. || !READ(E2_ENABLE_PIN)
  3350. #endif
  3351. #if EXTRUDER > 1
  3352. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3353. || !READ(X2_ENABLE_PIN)
  3354. #endif
  3355. || !READ(E1_ENABLE_PIN)
  3356. #endif
  3357. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3358. {
  3359. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3360. }
  3361. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3362. {
  3363. digitalWrite(CONTROLLERFAN_PIN, 0);
  3364. analogWrite(CONTROLLERFAN_PIN, 0);
  3365. }
  3366. else
  3367. {
  3368. // allows digital or PWM fan output to be used (see M42 handling)
  3369. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3370. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3371. }
  3372. }
  3373. }
  3374. #endif
  3375. #ifdef SCARA
  3376. void calculate_SCARA_forward_Transform(float f_scara[3])
  3377. {
  3378. // Perform forward kinematics, and place results in delta[3]
  3379. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3380. float x_sin, x_cos, y_sin, y_cos;
  3381. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3382. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3383. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3384. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3385. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3386. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3387. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3388. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3389. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3390. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3391. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3392. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3393. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3394. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3395. }
  3396. void calculate_delta(float cartesian[3]){
  3397. //reverse kinematics.
  3398. // Perform reversed kinematics, and place results in delta[3]
  3399. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3400. float SCARA_pos[2];
  3401. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3402. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3403. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3404. #if (Linkage_1 == Linkage_2)
  3405. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3406. #else
  3407. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3408. #endif
  3409. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3410. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3411. SCARA_K2 = Linkage_2 * SCARA_S2;
  3412. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3413. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3414. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3415. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3416. delta[Z_AXIS] = cartesian[Z_AXIS];
  3417. /*
  3418. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3419. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3420. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3421. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3422. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3423. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3424. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3425. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3426. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3427. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3428. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3429. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3430. SERIAL_ECHOLN(" ");*/
  3431. }
  3432. #endif
  3433. #ifdef TEMP_STAT_LEDS
  3434. static bool blue_led = false;
  3435. static bool red_led = false;
  3436. static uint32_t stat_update = 0;
  3437. void handle_status_leds(void) {
  3438. float max_temp = 0.0;
  3439. if(millis() > stat_update) {
  3440. stat_update += 500; // Update every 0.5s
  3441. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3442. max_temp = max(max_temp, degHotend(cur_extruder));
  3443. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3444. }
  3445. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3446. max_temp = max(max_temp, degTargetBed());
  3447. max_temp = max(max_temp, degBed());
  3448. #endif
  3449. if((max_temp > 55.0) && (red_led == false)) {
  3450. digitalWrite(STAT_LED_RED, 1);
  3451. digitalWrite(STAT_LED_BLUE, 0);
  3452. red_led = true;
  3453. blue_led = false;
  3454. }
  3455. if((max_temp < 54.0) && (blue_led == false)) {
  3456. digitalWrite(STAT_LED_RED, 0);
  3457. digitalWrite(STAT_LED_BLUE, 1);
  3458. red_led = false;
  3459. blue_led = true;
  3460. }
  3461. }
  3462. }
  3463. #endif
  3464. void manage_inactivity()
  3465. {
  3466. if(buflen < (BUFSIZE-1))
  3467. get_command();
  3468. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3469. if(max_inactive_time)
  3470. kill();
  3471. if(stepper_inactive_time) {
  3472. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3473. {
  3474. if(blocks_queued() == false) {
  3475. disable_x();
  3476. disable_y();
  3477. disable_z();
  3478. disable_e0();
  3479. disable_e1();
  3480. disable_e2();
  3481. }
  3482. }
  3483. }
  3484. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3485. if (chdkActive)
  3486. {
  3487. chdkActive = false;
  3488. if (millis()-chdkHigh < CHDK_DELAY) return;
  3489. WRITE(CHDK, LOW);
  3490. }
  3491. #endif
  3492. #if defined(KILL_PIN) && KILL_PIN > -1
  3493. if( 0 == READ(KILL_PIN) )
  3494. kill();
  3495. #endif
  3496. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3497. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3498. #endif
  3499. #ifdef EXTRUDER_RUNOUT_PREVENT
  3500. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3501. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3502. {
  3503. bool oldstatus=READ(E0_ENABLE_PIN);
  3504. enable_e0();
  3505. float oldepos=current_position[E_AXIS];
  3506. float oldedes=destination[E_AXIS];
  3507. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3508. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3509. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3510. current_position[E_AXIS]=oldepos;
  3511. destination[E_AXIS]=oldedes;
  3512. plan_set_e_position(oldepos);
  3513. previous_millis_cmd=millis();
  3514. st_synchronize();
  3515. WRITE(E0_ENABLE_PIN,oldstatus);
  3516. }
  3517. #endif
  3518. #if defined(DUAL_X_CARRIAGE)
  3519. // handle delayed move timeout
  3520. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3521. {
  3522. // travel moves have been received so enact them
  3523. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3524. memcpy(destination,current_position,sizeof(destination));
  3525. prepare_move();
  3526. }
  3527. #endif
  3528. #ifdef TEMP_STAT_LEDS
  3529. handle_status_leds();
  3530. #endif
  3531. check_axes_activity();
  3532. }
  3533. void kill()
  3534. {
  3535. cli(); // Stop interrupts
  3536. disable_heater();
  3537. disable_x();
  3538. disable_y();
  3539. disable_z();
  3540. disable_e0();
  3541. disable_e1();
  3542. disable_e2();
  3543. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3544. pinMode(PS_ON_PIN,INPUT);
  3545. #endif
  3546. SERIAL_ERROR_START;
  3547. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3548. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3549. suicide();
  3550. while(1) { /* Intentionally left empty */ } // Wait for reset
  3551. }
  3552. void Stop()
  3553. {
  3554. disable_heater();
  3555. if(Stopped == false) {
  3556. Stopped = true;
  3557. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3558. SERIAL_ERROR_START;
  3559. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3560. LCD_MESSAGEPGM(MSG_STOPPED);
  3561. }
  3562. }
  3563. bool IsStopped() { return Stopped; };
  3564. #ifdef FAST_PWM_FAN
  3565. void setPwmFrequency(uint8_t pin, int val)
  3566. {
  3567. val &= 0x07;
  3568. switch(digitalPinToTimer(pin))
  3569. {
  3570. #if defined(TCCR0A)
  3571. case TIMER0A:
  3572. case TIMER0B:
  3573. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3574. // TCCR0B |= val;
  3575. break;
  3576. #endif
  3577. #if defined(TCCR1A)
  3578. case TIMER1A:
  3579. case TIMER1B:
  3580. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3581. // TCCR1B |= val;
  3582. break;
  3583. #endif
  3584. #if defined(TCCR2)
  3585. case TIMER2:
  3586. case TIMER2:
  3587. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3588. TCCR2 |= val;
  3589. break;
  3590. #endif
  3591. #if defined(TCCR2A)
  3592. case TIMER2A:
  3593. case TIMER2B:
  3594. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3595. TCCR2B |= val;
  3596. break;
  3597. #endif
  3598. #if defined(TCCR3A)
  3599. case TIMER3A:
  3600. case TIMER3B:
  3601. case TIMER3C:
  3602. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3603. TCCR3B |= val;
  3604. break;
  3605. #endif
  3606. #if defined(TCCR4A)
  3607. case TIMER4A:
  3608. case TIMER4B:
  3609. case TIMER4C:
  3610. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3611. TCCR4B |= val;
  3612. break;
  3613. #endif
  3614. #if defined(TCCR5A)
  3615. case TIMER5A:
  3616. case TIMER5B:
  3617. case TIMER5C:
  3618. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3619. TCCR5B |= val;
  3620. break;
  3621. #endif
  3622. }
  3623. }
  3624. #endif //FAST_PWM_FAN
  3625. bool setTargetedHotend(int code){
  3626. tmp_extruder = active_extruder;
  3627. if(code_seen('T')) {
  3628. tmp_extruder = code_value();
  3629. if(tmp_extruder >= EXTRUDERS) {
  3630. SERIAL_ECHO_START;
  3631. switch(code){
  3632. case 104:
  3633. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3634. break;
  3635. case 105:
  3636. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3637. break;
  3638. case 109:
  3639. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3640. break;
  3641. case 218:
  3642. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3643. break;
  3644. case 221:
  3645. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3646. break;
  3647. }
  3648. SERIAL_ECHOLN(tmp_extruder);
  3649. return true;
  3650. }
  3651. }
  3652. return false;
  3653. }