My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 281KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #endif
  37. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  38. #include "qr_solve.h"
  39. #elif ENABLED(MESH_BED_LEVELING)
  40. #include "mesh_bed_leveling.h"
  41. #endif
  42. #if ENABLED(BEZIER_CURVE_SUPPORT)
  43. #include "planner_bezier.h"
  44. #endif
  45. #include "ultralcd.h"
  46. #include "planner.h"
  47. #include "stepper.h"
  48. #include "endstops.h"
  49. #include "temperature.h"
  50. #include "cardreader.h"
  51. #include "configuration_store.h"
  52. #include "language.h"
  53. #include "pins_arduino.h"
  54. #include "math.h"
  55. #include "nozzle.h"
  56. #include "duration_t.h"
  57. #include "types.h"
  58. #if ENABLED(USE_WATCHDOG)
  59. #include "watchdog.h"
  60. #endif
  61. #if ENABLED(BLINKM)
  62. #include "blinkm.h"
  63. #include "Wire.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_DIGIPOTSS
  69. #include <SPI.h>
  70. #endif
  71. #if ENABLED(DAC_STEPPER_CURRENT)
  72. #include "stepper_dac.h"
  73. #endif
  74. #if ENABLED(EXPERIMENTAL_I2CBUS)
  75. #include "twibus.h"
  76. #endif
  77. /**
  78. * Look here for descriptions of G-codes:
  79. * - http://linuxcnc.org/handbook/gcode/g-code.html
  80. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  81. *
  82. * Help us document these G-codes online:
  83. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  84. * - http://reprap.org/wiki/G-code
  85. *
  86. * -----------------
  87. * Implemented Codes
  88. * -----------------
  89. *
  90. * "G" Codes
  91. *
  92. * G0 -> G1
  93. * G1 - Coordinated Movement X Y Z E
  94. * G2 - CW ARC
  95. * G3 - CCW ARC
  96. * G4 - Dwell S<seconds> or P<milliseconds>
  97. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  98. * G10 - Retract filament according to settings of M207
  99. * G11 - Retract recover filament according to settings of M208
  100. * G12 - Clean tool
  101. * G20 - Set input units to inches
  102. * G21 - Set input units to millimeters
  103. * G28 - Home one or more axes
  104. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. * G30 - Single Z probe, probes bed at current XY location.
  106. * G31 - Dock sled (Z_PROBE_SLED only)
  107. * G32 - Undock sled (Z_PROBE_SLED only)
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card
  119. * M21 - Init SD card
  120. * M22 - Release SD card
  121. * M23 - Select SD file (M23 filename.g)
  122. * M24 - Start/resume SD print
  123. * M25 - Pause SD print
  124. * M26 - Set SD position in bytes (M26 S12345)
  125. * M27 - Report SD print status
  126. * M28 - Start SD write (M28 filename.g)
  127. * M29 - Stop SD write
  128. * M30 - Delete file from SD (M30 filename.g)
  129. * M31 - Output time since last M109 or SD card start to serial
  130. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. * M33 - Get the longname version of a path
  135. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  136. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  137. * M75 - Start the print job timer
  138. * M76 - Pause the print job timer
  139. * M77 - Stop the print job timer
  140. * M78 - Show statistical information about the print jobs
  141. * M80 - Turn on Power Supply
  142. * M81 - Turn off Power Supply
  143. * M82 - Set E codes absolute (default)
  144. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  145. * M84 - Disable steppers until next move,
  146. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  147. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  148. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  149. * M104 - Set extruder target temp
  150. * M105 - Read current temp
  151. * M106 - Fan on
  152. * M107 - Fan off
  153. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  154. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  155. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  156. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  157. * M110 - Set the current line number
  158. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  159. * M112 - Emergency stop
  160. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  161. * M114 - Output current position to serial port
  162. * M115 - Capabilities string
  163. * M117 - Display a message on the controller screen
  164. * M119 - Output Endstop status to serial port
  165. * M120 - Enable endstop detection
  166. * M121 - Disable endstop detection
  167. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  168. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  169. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M140 - Set bed target temp
  172. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  173. * M149 - Set temperature units
  174. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  175. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  176. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  177. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  178. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  179. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  180. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  181. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  182. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  183. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  184. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  185. * M205 - Set advanced settings. Current units apply:
  186. S<print> T<travel> minimum speeds
  187. B<minimum segment time>
  188. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  189. * M206 - Set additional homing offset
  190. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  191. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  192. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  193. Every normal extrude-only move will be classified as retract depending on the direction.
  194. * M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
  195. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  196. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  197. * M221 - Set Flow Percentage: S<percent>
  198. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  199. * M240 - Trigger a camera to take a photograph
  200. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  201. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  202. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  203. * M301 - Set PID parameters P I and D
  204. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  205. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  206. * M304 - Set bed PID parameters P I and D
  207. * M380 - Activate solenoid on active extruder
  208. * M381 - Disable all solenoids
  209. * M400 - Finish all moves
  210. * M401 - Lower Z probe if present
  211. * M402 - Raise Z probe if present
  212. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  213. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  214. * M406 - Disable Filament Sensor extrusion control
  215. * M407 - Display measured filament diameter in millimeters
  216. * M410 - Quickstop. Abort all the planned moves
  217. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  218. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  219. * M428 - Set the home_offset logically based on the current_position
  220. * M500 - Store parameters in EEPROM
  221. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  224. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  227. * M666 - Set delta endstop adjustment
  228. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  230. * M907 - Set digital trimpot motor current using axis codes.
  231. * M908 - Control digital trimpot directly.
  232. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  233. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  234. * M350 - Set microstepping mode.
  235. * M351 - Toggle MS1 MS2 pins directly.
  236. *
  237. * ************ SCARA Specific - This can change to suit future G-code regulations
  238. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  239. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  240. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  241. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  242. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  243. * ************* SCARA End ***************
  244. *
  245. * ************ Custom codes - This can change to suit future G-code regulations
  246. * M100 - Watch Free Memory (For Debugging Only)
  247. * M928 - Start SD logging (M928 filename.g) - ended by M29
  248. * M999 - Restart after being stopped by error
  249. *
  250. * "T" Codes
  251. *
  252. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  253. *
  254. */
  255. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  256. void gcode_M100();
  257. #endif
  258. #if ENABLED(SDSUPPORT)
  259. CardReader card;
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. TWIBus i2c;
  263. #endif
  264. bool Running = true;
  265. uint8_t marlin_debug_flags = DEBUG_NONE;
  266. float current_position[NUM_AXIS] = { 0.0 };
  267. static float destination[NUM_AXIS] = { 0.0 };
  268. bool axis_known_position[XYZ] = { false };
  269. bool axis_homed[XYZ] = { false };
  270. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  271. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  272. static char* current_command, *current_command_args;
  273. static uint8_t cmd_queue_index_r = 0,
  274. cmd_queue_index_w = 0,
  275. commands_in_queue = 0;
  276. #if ENABLED(INCH_MODE_SUPPORT)
  277. float linear_unit_factor = 1.0;
  278. float volumetric_unit_factor = 1.0;
  279. #endif
  280. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  281. TempUnit input_temp_units = TEMPUNIT_C;
  282. #endif
  283. /**
  284. * Feed rates are often configured with mm/m
  285. * but the planner and stepper like mm/s units.
  286. */
  287. const float homing_feedrate_mm_s[] = {
  288. #if ENABLED(DELTA)
  289. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  290. #else
  291. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  292. #endif
  293. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  294. };
  295. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  296. int feedrate_percentage = 100, saved_feedrate_percentage;
  297. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  298. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  299. bool volumetric_enabled = false;
  300. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  301. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  302. // The distance that XYZ has been offset by G92. Reset by G28.
  303. float position_shift[XYZ] = { 0 };
  304. // This offset is added to the configured home position.
  305. // Set by M206, M428, or menu item. Saved to EEPROM.
  306. float home_offset[XYZ] = { 0 };
  307. // Software Endstops are based on the configured limits.
  308. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  309. bool soft_endstops_enabled = true;
  310. #endif
  311. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  312. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  313. #if FAN_COUNT > 0
  314. int fanSpeeds[FAN_COUNT] = { 0 };
  315. #endif
  316. // The active extruder (tool). Set with T<extruder> command.
  317. uint8_t active_extruder = 0;
  318. // Relative Mode. Enable with G91, disable with G90.
  319. static bool relative_mode = false;
  320. volatile bool wait_for_heatup = true;
  321. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  322. volatile bool wait_for_user = false;
  323. #endif
  324. const char errormagic[] PROGMEM = "Error:";
  325. const char echomagic[] PROGMEM = "echo:";
  326. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  327. static int serial_count = 0;
  328. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  329. static char* seen_pointer;
  330. // Next Immediate GCode Command pointer. NULL if none.
  331. const char* queued_commands_P = NULL;
  332. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  333. // Inactivity shutdown
  334. millis_t previous_cmd_ms = 0;
  335. static millis_t max_inactive_time = 0;
  336. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  337. // Print Job Timer
  338. #if ENABLED(PRINTCOUNTER)
  339. PrintCounter print_job_timer = PrintCounter();
  340. #else
  341. Stopwatch print_job_timer = Stopwatch();
  342. #endif
  343. // Buzzer - I2C on the LCD or a BEEPER_PIN
  344. #if ENABLED(LCD_USE_I2C_BUZZER)
  345. #define BUZZ(d,f) lcd_buzz(d, f)
  346. #elif HAS_BUZZER
  347. Buzzer buzzer;
  348. #define BUZZ(d,f) buzzer.tone(d, f)
  349. #else
  350. #define BUZZ(d,f) NOOP
  351. #endif
  352. static uint8_t target_extruder;
  353. #if HAS_BED_PROBE
  354. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  355. #endif
  356. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  357. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  358. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  359. bool bed_leveling_in_progress = false;
  360. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  361. #elif defined(XY_PROBE_SPEED)
  362. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  363. #else
  364. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  365. #endif
  366. #if ENABLED(Z_DUAL_ENDSTOPS)
  367. float z_endstop_adj = 0;
  368. #endif
  369. // Extruder offsets
  370. #if HOTENDS > 1
  371. float hotend_offset[][HOTENDS] = {
  372. HOTEND_OFFSET_X,
  373. HOTEND_OFFSET_Y
  374. #ifdef HOTEND_OFFSET_Z
  375. , HOTEND_OFFSET_Z
  376. #endif
  377. };
  378. #endif
  379. #if HAS_Z_SERVO_ENDSTOP
  380. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  381. #endif
  382. #if ENABLED(BARICUDA)
  383. int baricuda_valve_pressure = 0;
  384. int baricuda_e_to_p_pressure = 0;
  385. #endif
  386. #if ENABLED(FWRETRACT)
  387. bool autoretract_enabled = false;
  388. bool retracted[EXTRUDERS] = { false };
  389. bool retracted_swap[EXTRUDERS] = { false };
  390. float retract_length = RETRACT_LENGTH;
  391. float retract_length_swap = RETRACT_LENGTH_SWAP;
  392. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  393. float retract_zlift = RETRACT_ZLIFT;
  394. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  395. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  396. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  397. #endif // FWRETRACT
  398. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  399. bool powersupply =
  400. #if ENABLED(PS_DEFAULT_OFF)
  401. false
  402. #else
  403. true
  404. #endif
  405. ;
  406. #endif
  407. #if ENABLED(DELTA)
  408. #define SIN_60 0.8660254037844386
  409. #define COS_60 0.5
  410. float delta[ABC],
  411. endstop_adj[ABC] = { 0 };
  412. // these are the default values, can be overriden with M665
  413. float delta_radius = DELTA_RADIUS,
  414. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  415. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  416. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  417. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  418. delta_tower3_x = 0, // back middle tower
  419. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  420. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  421. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  422. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  423. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  424. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  425. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  426. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  427. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  428. delta_clip_start_height = Z_MAX_POS;
  429. float delta_safe_distance_from_top();
  430. #else
  431. static bool home_all_axis = true;
  432. #endif
  433. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  434. int nonlinear_grid_spacing[2] = { 0 };
  435. float bed_level_grid[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  436. #endif
  437. #if IS_SCARA
  438. // Float constants for SCARA calculations
  439. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  440. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  441. L2_2 = sq(float(L2));
  442. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  443. delta[ABC];
  444. #endif
  445. float cartes[XYZ] = { 0 };
  446. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  447. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  448. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  449. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  450. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  451. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  452. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  453. #endif
  454. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  455. static bool filament_ran_out = false;
  456. #endif
  457. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  458. FilamentChangeMenuResponse filament_change_menu_response;
  459. #endif
  460. #if ENABLED(MIXING_EXTRUDER)
  461. float mixing_factor[MIXING_STEPPERS];
  462. #if MIXING_VIRTUAL_TOOLS > 1
  463. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  464. #endif
  465. #endif
  466. static bool send_ok[BUFSIZE];
  467. #if HAS_SERVOS
  468. Servo servo[NUM_SERVOS];
  469. #define MOVE_SERVO(I, P) servo[I].move(P)
  470. #if HAS_Z_SERVO_ENDSTOP
  471. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  472. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  473. #endif
  474. #endif
  475. #ifdef CHDK
  476. millis_t chdkHigh = 0;
  477. boolean chdkActive = false;
  478. #endif
  479. #if ENABLED(PID_EXTRUSION_SCALING)
  480. int lpq_len = 20;
  481. #endif
  482. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  483. static MarlinBusyState busy_state = NOT_BUSY;
  484. static millis_t next_busy_signal_ms = 0;
  485. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  486. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  487. #else
  488. #define host_keepalive() ;
  489. #define KEEPALIVE_STATE(n) ;
  490. #endif // HOST_KEEPALIVE_FEATURE
  491. #define DEFINE_PGM_READ_ANY(type, reader) \
  492. static inline type pgm_read_any(const type *p) \
  493. { return pgm_read_##reader##_near(p); }
  494. DEFINE_PGM_READ_ANY(float, float);
  495. DEFINE_PGM_READ_ANY(signed char, byte);
  496. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  497. static const PROGMEM type array##_P[XYZ] = \
  498. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  499. static inline type array(int axis) \
  500. { return pgm_read_any(&array##_P[axis]); }
  501. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  502. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  503. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  504. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  505. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  506. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  507. /**
  508. * ***************************************************************************
  509. * ******************************** FUNCTIONS ********************************
  510. * ***************************************************************************
  511. */
  512. void stop();
  513. void get_available_commands();
  514. void process_next_command();
  515. void prepare_move_to_destination();
  516. void get_cartesian_from_steppers();
  517. void set_current_from_steppers_for_axis(const AxisEnum axis);
  518. #if ENABLED(ARC_SUPPORT)
  519. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  520. #endif
  521. #if ENABLED(BEZIER_CURVE_SUPPORT)
  522. void plan_cubic_move(const float offset[4]);
  523. #endif
  524. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  525. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  526. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  527. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  529. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  530. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  531. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  532. static void report_current_position();
  533. #if ENABLED(DEBUG_LEVELING_FEATURE)
  534. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  535. serialprintPGM(prefix);
  536. SERIAL_ECHOPAIR("(", x);
  537. SERIAL_ECHOPAIR(", ", y);
  538. SERIAL_ECHOPAIR(", ", z);
  539. SERIAL_ECHOPGM(")");
  540. if (suffix) serialprintPGM(suffix);
  541. else SERIAL_EOL;
  542. }
  543. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  544. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  545. }
  546. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  547. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  548. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  549. }
  550. #endif
  551. #define DEBUG_POS(SUFFIX,VAR) do { \
  552. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  553. #endif
  554. /**
  555. * sync_plan_position
  556. *
  557. * Set the planner/stepper positions directly from current_position with
  558. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  559. */
  560. inline void sync_plan_position() {
  561. #if ENABLED(DEBUG_LEVELING_FEATURE)
  562. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  563. #endif
  564. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  565. }
  566. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  567. #if IS_KINEMATIC
  568. inline void sync_plan_position_kinematic() {
  569. #if ENABLED(DEBUG_LEVELING_FEATURE)
  570. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  571. #endif
  572. inverse_kinematics(current_position);
  573. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  574. }
  575. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  576. #else
  577. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  578. #endif
  579. #if ENABLED(SDSUPPORT)
  580. #include "SdFatUtil.h"
  581. int freeMemory() { return SdFatUtil::FreeRam(); }
  582. #else
  583. extern "C" {
  584. extern unsigned int __bss_end;
  585. extern unsigned int __heap_start;
  586. extern void* __brkval;
  587. int freeMemory() {
  588. int free_memory;
  589. if ((int)__brkval == 0)
  590. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  591. else
  592. free_memory = ((int)&free_memory) - ((int)__brkval);
  593. return free_memory;
  594. }
  595. }
  596. #endif //!SDSUPPORT
  597. #if ENABLED(DIGIPOT_I2C)
  598. extern void digipot_i2c_set_current(int channel, float current);
  599. extern void digipot_i2c_init();
  600. #endif
  601. /**
  602. * Inject the next "immediate" command, when possible.
  603. * Return true if any immediate commands remain to inject.
  604. */
  605. static bool drain_queued_commands_P() {
  606. if (queued_commands_P != NULL) {
  607. size_t i = 0;
  608. char c, cmd[30];
  609. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  610. cmd[sizeof(cmd) - 1] = '\0';
  611. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  612. cmd[i] = '\0';
  613. if (enqueue_and_echo_command(cmd)) { // success?
  614. if (c) // newline char?
  615. queued_commands_P += i + 1; // advance to the next command
  616. else
  617. queued_commands_P = NULL; // nul char? no more commands
  618. }
  619. }
  620. return (queued_commands_P != NULL); // return whether any more remain
  621. }
  622. /**
  623. * Record one or many commands to run from program memory.
  624. * Aborts the current queue, if any.
  625. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  626. */
  627. void enqueue_and_echo_commands_P(const char* pgcode) {
  628. queued_commands_P = pgcode;
  629. drain_queued_commands_P(); // first command executed asap (when possible)
  630. }
  631. void clear_command_queue() {
  632. cmd_queue_index_r = cmd_queue_index_w;
  633. commands_in_queue = 0;
  634. }
  635. /**
  636. * Once a new command is in the ring buffer, call this to commit it
  637. */
  638. inline void _commit_command(bool say_ok) {
  639. send_ok[cmd_queue_index_w] = say_ok;
  640. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  641. commands_in_queue++;
  642. }
  643. /**
  644. * Copy a command directly into the main command buffer, from RAM.
  645. * Returns true if successfully adds the command
  646. */
  647. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  648. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  649. strcpy(command_queue[cmd_queue_index_w], cmd);
  650. _commit_command(say_ok);
  651. return true;
  652. }
  653. void enqueue_and_echo_command_now(const char* cmd) {
  654. while (!enqueue_and_echo_command(cmd)) idle();
  655. }
  656. /**
  657. * Enqueue with Serial Echo
  658. */
  659. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  660. if (_enqueuecommand(cmd, say_ok)) {
  661. SERIAL_ECHO_START;
  662. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  663. SERIAL_ECHOLNPGM("\"");
  664. return true;
  665. }
  666. return false;
  667. }
  668. void setup_killpin() {
  669. #if HAS_KILL
  670. SET_INPUT(KILL_PIN);
  671. WRITE(KILL_PIN, HIGH);
  672. #endif
  673. }
  674. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  675. void setup_filrunoutpin() {
  676. pinMode(FIL_RUNOUT_PIN, INPUT);
  677. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  678. WRITE(FIL_RUNOUT_PIN, HIGH);
  679. #endif
  680. }
  681. #endif
  682. // Set home pin
  683. void setup_homepin(void) {
  684. #if HAS_HOME
  685. SET_INPUT(HOME_PIN);
  686. WRITE(HOME_PIN, HIGH);
  687. #endif
  688. }
  689. void setup_photpin() {
  690. #if HAS_PHOTOGRAPH
  691. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  692. #endif
  693. }
  694. void setup_powerhold() {
  695. #if HAS_SUICIDE
  696. OUT_WRITE(SUICIDE_PIN, HIGH);
  697. #endif
  698. #if HAS_POWER_SWITCH
  699. #if ENABLED(PS_DEFAULT_OFF)
  700. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  701. #else
  702. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  703. #endif
  704. #endif
  705. }
  706. void suicide() {
  707. #if HAS_SUICIDE
  708. OUT_WRITE(SUICIDE_PIN, LOW);
  709. #endif
  710. }
  711. void servo_init() {
  712. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  713. servo[0].attach(SERVO0_PIN);
  714. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  715. #endif
  716. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  717. servo[1].attach(SERVO1_PIN);
  718. servo[1].detach();
  719. #endif
  720. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  721. servo[2].attach(SERVO2_PIN);
  722. servo[2].detach();
  723. #endif
  724. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  725. servo[3].attach(SERVO3_PIN);
  726. servo[3].detach();
  727. #endif
  728. #if HAS_Z_SERVO_ENDSTOP
  729. /**
  730. * Set position of Z Servo Endstop
  731. *
  732. * The servo might be deployed and positioned too low to stow
  733. * when starting up the machine or rebooting the board.
  734. * There's no way to know where the nozzle is positioned until
  735. * homing has been done - no homing with z-probe without init!
  736. *
  737. */
  738. STOW_Z_SERVO();
  739. #endif
  740. }
  741. /**
  742. * Stepper Reset (RigidBoard, et.al.)
  743. */
  744. #if HAS_STEPPER_RESET
  745. void disableStepperDrivers() {
  746. pinMode(STEPPER_RESET_PIN, OUTPUT);
  747. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  748. }
  749. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  750. #endif
  751. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  752. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  753. i2c.receive(bytes);
  754. }
  755. void i2c_on_request() { // just send dummy data for now
  756. i2c.reply("Hello World!\n");
  757. }
  758. #endif
  759. void gcode_line_error(const char* err, bool doFlush = true) {
  760. SERIAL_ERROR_START;
  761. serialprintPGM(err);
  762. SERIAL_ERRORLN(gcode_LastN);
  763. //Serial.println(gcode_N);
  764. if (doFlush) FlushSerialRequestResend();
  765. serial_count = 0;
  766. }
  767. inline void get_serial_commands() {
  768. static char serial_line_buffer[MAX_CMD_SIZE];
  769. static boolean serial_comment_mode = false;
  770. // If the command buffer is empty for too long,
  771. // send "wait" to indicate Marlin is still waiting.
  772. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  773. static millis_t last_command_time = 0;
  774. millis_t ms = millis();
  775. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  776. SERIAL_ECHOLNPGM(MSG_WAIT);
  777. last_command_time = ms;
  778. }
  779. #endif
  780. /**
  781. * Loop while serial characters are incoming and the queue is not full
  782. */
  783. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  784. char serial_char = MYSERIAL.read();
  785. /**
  786. * If the character ends the line
  787. */
  788. if (serial_char == '\n' || serial_char == '\r') {
  789. serial_comment_mode = false; // end of line == end of comment
  790. if (!serial_count) continue; // skip empty lines
  791. serial_line_buffer[serial_count] = 0; // terminate string
  792. serial_count = 0; //reset buffer
  793. char* command = serial_line_buffer;
  794. while (*command == ' ') command++; // skip any leading spaces
  795. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  796. char* apos = strchr(command, '*');
  797. if (npos) {
  798. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  799. if (M110) {
  800. char* n2pos = strchr(command + 4, 'N');
  801. if (n2pos) npos = n2pos;
  802. }
  803. gcode_N = strtol(npos + 1, NULL, 10);
  804. if (gcode_N != gcode_LastN + 1 && !M110) {
  805. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  806. return;
  807. }
  808. if (apos) {
  809. byte checksum = 0, count = 0;
  810. while (command[count] != '*') checksum ^= command[count++];
  811. if (strtol(apos + 1, NULL, 10) != checksum) {
  812. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  813. return;
  814. }
  815. // if no errors, continue parsing
  816. }
  817. else {
  818. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  819. return;
  820. }
  821. gcode_LastN = gcode_N;
  822. // if no errors, continue parsing
  823. }
  824. else if (apos) { // No '*' without 'N'
  825. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  826. return;
  827. }
  828. // Movement commands alert when stopped
  829. if (IsStopped()) {
  830. char* gpos = strchr(command, 'G');
  831. if (gpos) {
  832. int codenum = strtol(gpos + 1, NULL, 10);
  833. switch (codenum) {
  834. case 0:
  835. case 1:
  836. case 2:
  837. case 3:
  838. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  839. LCD_MESSAGEPGM(MSG_STOPPED);
  840. break;
  841. }
  842. }
  843. }
  844. #if DISABLED(EMERGENCY_PARSER)
  845. // If command was e-stop process now
  846. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  847. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  848. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  849. #endif
  850. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  851. last_command_time = ms;
  852. #endif
  853. // Add the command to the queue
  854. _enqueuecommand(serial_line_buffer, true);
  855. }
  856. else if (serial_count >= MAX_CMD_SIZE - 1) {
  857. // Keep fetching, but ignore normal characters beyond the max length
  858. // The command will be injected when EOL is reached
  859. }
  860. else if (serial_char == '\\') { // Handle escapes
  861. if (MYSERIAL.available() > 0) {
  862. // if we have one more character, copy it over
  863. serial_char = MYSERIAL.read();
  864. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  865. }
  866. // otherwise do nothing
  867. }
  868. else { // it's not a newline, carriage return or escape char
  869. if (serial_char == ';') serial_comment_mode = true;
  870. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  871. }
  872. } // queue has space, serial has data
  873. }
  874. #if ENABLED(SDSUPPORT)
  875. inline void get_sdcard_commands() {
  876. static bool stop_buffering = false,
  877. sd_comment_mode = false;
  878. if (!card.sdprinting) return;
  879. /**
  880. * '#' stops reading from SD to the buffer prematurely, so procedural
  881. * macro calls are possible. If it occurs, stop_buffering is triggered
  882. * and the buffer is run dry; this character _can_ occur in serial com
  883. * due to checksums, however, no checksums are used in SD printing.
  884. */
  885. if (commands_in_queue == 0) stop_buffering = false;
  886. uint16_t sd_count = 0;
  887. bool card_eof = card.eof();
  888. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  889. int16_t n = card.get();
  890. char sd_char = (char)n;
  891. card_eof = card.eof();
  892. if (card_eof || n == -1
  893. || sd_char == '\n' || sd_char == '\r'
  894. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  895. ) {
  896. if (card_eof) {
  897. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  898. card.printingHasFinished();
  899. card.checkautostart(true);
  900. }
  901. else if (n == -1) {
  902. SERIAL_ERROR_START;
  903. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  904. }
  905. if (sd_char == '#') stop_buffering = true;
  906. sd_comment_mode = false; //for new command
  907. if (!sd_count) continue; //skip empty lines
  908. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  909. sd_count = 0; //clear buffer
  910. _commit_command(false);
  911. }
  912. else if (sd_count >= MAX_CMD_SIZE - 1) {
  913. /**
  914. * Keep fetching, but ignore normal characters beyond the max length
  915. * The command will be injected when EOL is reached
  916. */
  917. }
  918. else {
  919. if (sd_char == ';') sd_comment_mode = true;
  920. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  921. }
  922. }
  923. }
  924. #endif // SDSUPPORT
  925. /**
  926. * Add to the circular command queue the next command from:
  927. * - The command-injection queue (queued_commands_P)
  928. * - The active serial input (usually USB)
  929. * - The SD card file being actively printed
  930. */
  931. void get_available_commands() {
  932. // if any immediate commands remain, don't get other commands yet
  933. if (drain_queued_commands_P()) return;
  934. get_serial_commands();
  935. #if ENABLED(SDSUPPORT)
  936. get_sdcard_commands();
  937. #endif
  938. }
  939. inline bool code_has_value() {
  940. int i = 1;
  941. char c = seen_pointer[i];
  942. while (c == ' ') c = seen_pointer[++i];
  943. if (c == '-' || c == '+') c = seen_pointer[++i];
  944. if (c == '.') c = seen_pointer[++i];
  945. return NUMERIC(c);
  946. }
  947. inline float code_value_float() {
  948. float ret;
  949. char* e = strchr(seen_pointer, 'E');
  950. if (e) {
  951. *e = 0;
  952. ret = strtod(seen_pointer + 1, NULL);
  953. *e = 'E';
  954. }
  955. else
  956. ret = strtod(seen_pointer + 1, NULL);
  957. return ret;
  958. }
  959. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  960. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  961. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  962. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  963. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  964. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  965. #if ENABLED(INCH_MODE_SUPPORT)
  966. inline void set_input_linear_units(LinearUnit units) {
  967. switch (units) {
  968. case LINEARUNIT_INCH:
  969. linear_unit_factor = 25.4;
  970. break;
  971. case LINEARUNIT_MM:
  972. default:
  973. linear_unit_factor = 1.0;
  974. break;
  975. }
  976. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  977. }
  978. inline float axis_unit_factor(int axis) {
  979. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  980. }
  981. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  982. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  983. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  984. #else
  985. inline float code_value_linear_units() { return code_value_float(); }
  986. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  987. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  988. #endif
  989. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  990. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  991. float code_value_temp_abs() {
  992. switch (input_temp_units) {
  993. case TEMPUNIT_C:
  994. return code_value_float();
  995. case TEMPUNIT_F:
  996. return (code_value_float() - 32) * 0.5555555556;
  997. case TEMPUNIT_K:
  998. return code_value_float() - 272.15;
  999. default:
  1000. return code_value_float();
  1001. }
  1002. }
  1003. float code_value_temp_diff() {
  1004. switch (input_temp_units) {
  1005. case TEMPUNIT_C:
  1006. case TEMPUNIT_K:
  1007. return code_value_float();
  1008. case TEMPUNIT_F:
  1009. return code_value_float() * 0.5555555556;
  1010. default:
  1011. return code_value_float();
  1012. }
  1013. }
  1014. #else
  1015. float code_value_temp_abs() { return code_value_float(); }
  1016. float code_value_temp_diff() { return code_value_float(); }
  1017. #endif
  1018. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1019. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1020. bool code_seen(char code) {
  1021. seen_pointer = strchr(current_command_args, code);
  1022. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1023. }
  1024. /**
  1025. * Set target_extruder from the T parameter or the active_extruder
  1026. *
  1027. * Returns TRUE if the target is invalid
  1028. */
  1029. bool get_target_extruder_from_command(int code) {
  1030. if (code_seen('T')) {
  1031. if (code_value_byte() >= EXTRUDERS) {
  1032. SERIAL_ECHO_START;
  1033. SERIAL_CHAR('M');
  1034. SERIAL_ECHO(code);
  1035. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1036. return true;
  1037. }
  1038. target_extruder = code_value_byte();
  1039. }
  1040. else
  1041. target_extruder = active_extruder;
  1042. return false;
  1043. }
  1044. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1045. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1046. #endif
  1047. #if ENABLED(DUAL_X_CARRIAGE)
  1048. #define DXC_FULL_CONTROL_MODE 0
  1049. #define DXC_AUTO_PARK_MODE 1
  1050. #define DXC_DUPLICATION_MODE 2
  1051. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1052. static float x_home_pos(int extruder) {
  1053. if (extruder == 0)
  1054. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1055. else
  1056. /**
  1057. * In dual carriage mode the extruder offset provides an override of the
  1058. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1059. * This allow soft recalibration of the second extruder offset position
  1060. * without firmware reflash (through the M218 command).
  1061. */
  1062. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1063. }
  1064. static int x_home_dir(int extruder) {
  1065. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1066. }
  1067. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1068. static bool active_extruder_parked = false; // used in mode 1 & 2
  1069. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1070. static millis_t delayed_move_time = 0; // used in mode 1
  1071. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1072. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1073. #endif //DUAL_X_CARRIAGE
  1074. /**
  1075. * Software endstops can be used to monitor the open end of
  1076. * an axis that has a hardware endstop on the other end. Or
  1077. * they can prevent axes from moving past endstops and grinding.
  1078. *
  1079. * To keep doing their job as the coordinate system changes,
  1080. * the software endstop positions must be refreshed to remain
  1081. * at the same positions relative to the machine.
  1082. */
  1083. void update_software_endstops(AxisEnum axis) {
  1084. float offs = LOGICAL_POSITION(0, axis);
  1085. #if ENABLED(DUAL_X_CARRIAGE)
  1086. if (axis == X_AXIS) {
  1087. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1088. if (active_extruder != 0) {
  1089. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1090. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1091. return;
  1092. }
  1093. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1094. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1095. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1096. return;
  1097. }
  1098. }
  1099. else
  1100. #endif
  1101. {
  1102. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1103. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1104. }
  1105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1106. if (DEBUGGING(LEVELING)) {
  1107. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1108. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1109. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1110. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1111. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1112. }
  1113. #endif
  1114. #if ENABLED(DELTA)
  1115. if (axis == Z_AXIS)
  1116. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1117. #endif
  1118. }
  1119. /**
  1120. * Change the home offset for an axis, update the current
  1121. * position and the software endstops to retain the same
  1122. * relative distance to the new home.
  1123. *
  1124. * Since this changes the current_position, code should
  1125. * call sync_plan_position soon after this.
  1126. */
  1127. static void set_home_offset(AxisEnum axis, float v) {
  1128. current_position[axis] += v - home_offset[axis];
  1129. home_offset[axis] = v;
  1130. update_software_endstops(axis);
  1131. }
  1132. /**
  1133. * Set an axis' current position to its home position (after homing).
  1134. *
  1135. * For Core and Cartesian robots this applies one-to-one when an
  1136. * individual axis has been homed.
  1137. *
  1138. * DELTA should wait until all homing is done before setting the XYZ
  1139. * current_position to home, because homing is a single operation.
  1140. * In the case where the axis positions are already known and previously
  1141. * homed, DELTA could home to X or Y individually by moving either one
  1142. * to the center. However, homing Z always homes XY and Z.
  1143. *
  1144. * SCARA should wait until all XY homing is done before setting the XY
  1145. * current_position to home, because neither X nor Y is at home until
  1146. * both are at home. Z can however be homed individually.
  1147. *
  1148. */
  1149. static void set_axis_is_at_home(AxisEnum axis) {
  1150. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1151. if (DEBUGGING(LEVELING)) {
  1152. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1153. SERIAL_ECHOLNPGM(")");
  1154. }
  1155. #endif
  1156. position_shift[axis] = 0;
  1157. #if ENABLED(DUAL_X_CARRIAGE)
  1158. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1159. if (active_extruder != 0)
  1160. current_position[X_AXIS] = x_home_pos(active_extruder);
  1161. else
  1162. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1163. update_software_endstops(X_AXIS);
  1164. return;
  1165. }
  1166. #endif
  1167. #if ENABLED(MORGAN_SCARA)
  1168. if (axis == X_AXIS || axis == Y_AXIS) {
  1169. float homeposition[XYZ];
  1170. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1171. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1172. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1173. /**
  1174. * Get Home position SCARA arm angles using inverse kinematics,
  1175. * and calculate homing offset using forward kinematics
  1176. */
  1177. inverse_kinematics(homeposition);
  1178. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1179. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1180. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1181. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1182. /**
  1183. * SCARA home positions are based on configuration since the actual
  1184. * limits are determined by the inverse kinematic transform.
  1185. */
  1186. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1187. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1188. }
  1189. else
  1190. #endif
  1191. {
  1192. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1193. update_software_endstops(axis);
  1194. if (axis == Z_AXIS) {
  1195. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1196. #if HOMING_Z_WITH_PROBE
  1197. current_position[Z_AXIS] -= zprobe_zoffset;
  1198. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1199. if (DEBUGGING(LEVELING)) {
  1200. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1201. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1202. }
  1203. #endif
  1204. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1205. if (DEBUGGING(LEVELING))
  1206. SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1207. #endif
  1208. #endif
  1209. }
  1210. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1211. if (DEBUGGING(LEVELING)) {
  1212. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1213. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1214. DEBUG_POS("", current_position);
  1215. }
  1216. #endif
  1217. }
  1218. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1219. if (DEBUGGING(LEVELING)) {
  1220. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1221. SERIAL_ECHOLNPGM(")");
  1222. }
  1223. #endif
  1224. axis_known_position[axis] = axis_homed[axis] = true;
  1225. }
  1226. /**
  1227. * Some planner shorthand inline functions
  1228. */
  1229. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1230. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1231. int hbd = homing_bump_divisor[axis];
  1232. if (hbd < 1) {
  1233. hbd = 10;
  1234. SERIAL_ECHO_START;
  1235. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1236. }
  1237. return homing_feedrate_mm_s[axis] / hbd;
  1238. }
  1239. //
  1240. // line_to_current_position
  1241. // Move the planner to the current position from wherever it last moved
  1242. // (or from wherever it has been told it is located).
  1243. //
  1244. inline void line_to_current_position() {
  1245. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1246. }
  1247. inline void line_to_z(float zPosition) {
  1248. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1249. }
  1250. //
  1251. // line_to_destination
  1252. // Move the planner, not necessarily synced with current_position
  1253. //
  1254. inline void line_to_destination(float fr_mm_s) {
  1255. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1256. }
  1257. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1258. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1259. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1260. #if ENABLED(DELTA)
  1261. /**
  1262. * Calculate delta, start a line, and set current_position to destination
  1263. */
  1264. void prepare_move_to_destination_raw() {
  1265. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1266. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1267. #endif
  1268. refresh_cmd_timeout();
  1269. inverse_kinematics(destination);
  1270. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
  1271. set_current_to_destination();
  1272. }
  1273. #endif
  1274. /**
  1275. * Plan a move to (X, Y, Z) and set the current_position
  1276. * The final current_position may not be the one that was requested
  1277. */
  1278. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1279. float old_feedrate_mm_s = feedrate_mm_s;
  1280. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1281. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1282. #endif
  1283. #if ENABLED(DELTA)
  1284. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1285. set_destination_to_current(); // sync destination at the start
  1286. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1287. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1288. #endif
  1289. // when in the danger zone
  1290. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1291. if (z > delta_clip_start_height) { // staying in the danger zone
  1292. destination[X_AXIS] = x; // move directly (uninterpolated)
  1293. destination[Y_AXIS] = y;
  1294. destination[Z_AXIS] = z;
  1295. prepare_move_to_destination_raw(); // set_current_to_destination
  1296. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1297. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1298. #endif
  1299. return;
  1300. }
  1301. else {
  1302. destination[Z_AXIS] = delta_clip_start_height;
  1303. prepare_move_to_destination_raw(); // set_current_to_destination
  1304. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1305. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1306. #endif
  1307. }
  1308. }
  1309. if (z > current_position[Z_AXIS]) { // raising?
  1310. destination[Z_AXIS] = z;
  1311. prepare_move_to_destination_raw(); // set_current_to_destination
  1312. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1313. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1314. #endif
  1315. }
  1316. destination[X_AXIS] = x;
  1317. destination[Y_AXIS] = y;
  1318. prepare_move_to_destination(); // set_current_to_destination
  1319. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1320. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1321. #endif
  1322. if (z < current_position[Z_AXIS]) { // lowering?
  1323. destination[Z_AXIS] = z;
  1324. prepare_move_to_destination_raw(); // set_current_to_destination
  1325. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1326. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1327. #endif
  1328. }
  1329. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1330. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1331. #endif
  1332. #else
  1333. // If Z needs to raise, do it before moving XY
  1334. if (current_position[Z_AXIS] < z) {
  1335. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1336. current_position[Z_AXIS] = z;
  1337. line_to_current_position();
  1338. }
  1339. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1340. current_position[X_AXIS] = x;
  1341. current_position[Y_AXIS] = y;
  1342. line_to_current_position();
  1343. // If Z needs to lower, do it after moving XY
  1344. if (current_position[Z_AXIS] > z) {
  1345. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1346. current_position[Z_AXIS] = z;
  1347. line_to_current_position();
  1348. }
  1349. #endif
  1350. stepper.synchronize();
  1351. feedrate_mm_s = old_feedrate_mm_s;
  1352. }
  1353. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1354. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1355. }
  1356. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1357. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1358. }
  1359. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1360. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1361. }
  1362. //
  1363. // Prepare to do endstop or probe moves
  1364. // with custom feedrates.
  1365. //
  1366. // - Save current feedrates
  1367. // - Reset the rate multiplier
  1368. // - Reset the command timeout
  1369. // - Enable the endstops (for endstop moves)
  1370. //
  1371. static void setup_for_endstop_or_probe_move() {
  1372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1373. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1374. #endif
  1375. saved_feedrate_mm_s = feedrate_mm_s;
  1376. saved_feedrate_percentage = feedrate_percentage;
  1377. feedrate_percentage = 100;
  1378. refresh_cmd_timeout();
  1379. }
  1380. static void clean_up_after_endstop_or_probe_move() {
  1381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1382. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1383. #endif
  1384. feedrate_mm_s = saved_feedrate_mm_s;
  1385. feedrate_percentage = saved_feedrate_percentage;
  1386. refresh_cmd_timeout();
  1387. }
  1388. #if HAS_BED_PROBE
  1389. /**
  1390. * Raise Z to a minimum height to make room for a probe to move
  1391. */
  1392. inline void do_probe_raise(float z_raise) {
  1393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1394. if (DEBUGGING(LEVELING)) {
  1395. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1396. SERIAL_ECHOLNPGM(")");
  1397. }
  1398. #endif
  1399. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1400. if (z_dest > current_position[Z_AXIS])
  1401. do_blocking_move_to_z(z_dest);
  1402. }
  1403. #endif //HAS_BED_PROBE
  1404. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1405. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1406. const bool xx = x && !axis_homed[X_AXIS],
  1407. yy = y && !axis_homed[Y_AXIS],
  1408. zz = z && !axis_homed[Z_AXIS];
  1409. if (xx || yy || zz) {
  1410. SERIAL_ECHO_START;
  1411. SERIAL_ECHOPGM(MSG_HOME " ");
  1412. if (xx) SERIAL_ECHOPGM(MSG_X);
  1413. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1414. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1415. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1416. #if ENABLED(ULTRA_LCD)
  1417. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1418. strcat_P(message, PSTR(MSG_HOME " "));
  1419. if (xx) strcat_P(message, PSTR(MSG_X));
  1420. if (yy) strcat_P(message, PSTR(MSG_Y));
  1421. if (zz) strcat_P(message, PSTR(MSG_Z));
  1422. strcat_P(message, PSTR(" " MSG_FIRST));
  1423. lcd_setstatus(message);
  1424. #endif
  1425. return true;
  1426. }
  1427. return false;
  1428. }
  1429. #endif
  1430. #if ENABLED(Z_PROBE_SLED)
  1431. #ifndef SLED_DOCKING_OFFSET
  1432. #define SLED_DOCKING_OFFSET 0
  1433. #endif
  1434. /**
  1435. * Method to dock/undock a sled designed by Charles Bell.
  1436. *
  1437. * stow[in] If false, move to MAX_X and engage the solenoid
  1438. * If true, move to MAX_X and release the solenoid
  1439. */
  1440. static void dock_sled(bool stow) {
  1441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1442. if (DEBUGGING(LEVELING)) {
  1443. SERIAL_ECHOPAIR("dock_sled(", stow);
  1444. SERIAL_ECHOLNPGM(")");
  1445. }
  1446. #endif
  1447. // Dock sled a bit closer to ensure proper capturing
  1448. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1449. #if PIN_EXISTS(SLED)
  1450. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1451. #endif
  1452. }
  1453. #endif // Z_PROBE_SLED
  1454. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1455. void run_deploy_moves_script() {
  1456. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1457. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1458. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1459. #endif
  1460. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1461. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1462. #endif
  1463. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1464. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1465. #endif
  1466. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1467. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1468. #endif
  1469. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1470. #endif
  1471. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1472. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1473. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1474. #endif
  1475. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1476. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1477. #endif
  1478. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1479. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1480. #endif
  1481. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1482. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1483. #endif
  1484. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1485. #endif
  1486. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1487. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1488. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1489. #endif
  1490. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1491. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1492. #endif
  1493. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1494. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1495. #endif
  1496. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1497. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1498. #endif
  1499. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1500. #endif
  1501. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1502. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1503. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1504. #endif
  1505. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1506. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1507. #endif
  1508. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1509. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1510. #endif
  1511. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1512. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1513. #endif
  1514. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1515. #endif
  1516. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1517. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1518. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1519. #endif
  1520. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1521. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1522. #endif
  1523. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1524. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1525. #endif
  1526. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1527. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1528. #endif
  1529. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1530. #endif
  1531. }
  1532. void run_stow_moves_script() {
  1533. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1534. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1535. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1536. #endif
  1537. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1538. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1539. #endif
  1540. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1541. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1542. #endif
  1543. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1544. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1545. #endif
  1546. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1547. #endif
  1548. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1549. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1550. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1551. #endif
  1552. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1553. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1554. #endif
  1555. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1556. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1557. #endif
  1558. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1559. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1560. #endif
  1561. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1562. #endif
  1563. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1564. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1565. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1568. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1571. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1574. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1575. #endif
  1576. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1577. #endif
  1578. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1579. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1580. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1581. #endif
  1582. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1583. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1586. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1589. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1590. #endif
  1591. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1592. #endif
  1593. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1594. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1595. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1596. #endif
  1597. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1598. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1599. #endif
  1600. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1601. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1602. #endif
  1603. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1604. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1605. #endif
  1606. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1607. #endif
  1608. }
  1609. #endif
  1610. #if HAS_BED_PROBE
  1611. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1612. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1613. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1614. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1615. #else
  1616. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1617. #endif
  1618. #endif
  1619. #define DEPLOY_PROBE() set_probe_deployed(true)
  1620. #define STOW_PROBE() set_probe_deployed(false)
  1621. // returns false for ok and true for failure
  1622. static bool set_probe_deployed(bool deploy) {
  1623. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1624. if (DEBUGGING(LEVELING)) {
  1625. DEBUG_POS("set_probe_deployed", current_position);
  1626. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1627. }
  1628. #endif
  1629. if (endstops.z_probe_enabled == deploy) return false;
  1630. // Make room for probe
  1631. do_probe_raise(_Z_PROBE_DEPLOY_HEIGHT);
  1632. #if ENABLED(Z_PROBE_SLED)
  1633. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1634. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1635. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1636. #endif
  1637. float oldXpos = current_position[X_AXIS],
  1638. oldYpos = current_position[Y_AXIS];
  1639. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1640. // If endstop is already false, the Z probe is deployed
  1641. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1642. // Would a goto be less ugly?
  1643. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1644. // for a triggered when stowed manual probe.
  1645. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1646. // otherwise an Allen-Key probe can't be stowed.
  1647. #endif
  1648. #if ENABLED(Z_PROBE_SLED)
  1649. dock_sled(!deploy);
  1650. #elif HAS_Z_SERVO_ENDSTOP
  1651. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1652. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1653. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1654. #endif
  1655. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1656. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1657. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1658. if (IsRunning()) {
  1659. SERIAL_ERROR_START;
  1660. SERIAL_ERRORLNPGM("Z-Probe failed");
  1661. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1662. }
  1663. stop();
  1664. return true;
  1665. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1666. #endif
  1667. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1668. endstops.enable_z_probe(deploy);
  1669. return false;
  1670. }
  1671. static void do_probe_move(float z, float fr_mm_m) {
  1672. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1673. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1674. #endif
  1675. // Move down until probe triggered
  1676. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1677. // Clear endstop flags
  1678. endstops.hit_on_purpose();
  1679. // Get Z where the steppers were interrupted
  1680. set_current_from_steppers_for_axis(Z_AXIS);
  1681. // Tell the planner where we actually are
  1682. SYNC_PLAN_POSITION_KINEMATIC();
  1683. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1684. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1685. #endif
  1686. }
  1687. // Do a single Z probe and return with current_position[Z_AXIS]
  1688. // at the height where the probe triggered.
  1689. static float run_z_probe() {
  1690. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1691. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1692. #endif
  1693. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1694. refresh_cmd_timeout();
  1695. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1696. // Do a first probe at the fast speed
  1697. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1698. // move up by the bump distance
  1699. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1700. #else
  1701. // If the nozzle is above the travel height then
  1702. // move down quickly before doing the slow probe
  1703. float z = LOGICAL_Z_POSITION(Z_PROBE_TRAVEL_HEIGHT);
  1704. if (z < current_position[Z_AXIS])
  1705. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1706. #endif
  1707. // move down slowly to find bed
  1708. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1709. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1710. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1711. #endif
  1712. return current_position[Z_AXIS];
  1713. }
  1714. //
  1715. // - Move to the given XY
  1716. // - Deploy the probe, if not already deployed
  1717. // - Probe the bed, get the Z position
  1718. // - Depending on the 'stow' flag
  1719. // - Stow the probe, or
  1720. // - Raise to the BETWEEN height
  1721. // - Return the probed Z position
  1722. //
  1723. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1724. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1725. if (DEBUGGING(LEVELING)) {
  1726. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1727. SERIAL_ECHOPAIR(", ", y);
  1728. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1729. SERIAL_ECHOLNPGM(")");
  1730. DEBUG_POS("", current_position);
  1731. }
  1732. #endif
  1733. float old_feedrate_mm_s = feedrate_mm_s;
  1734. // Ensure a minimum height before moving the probe
  1735. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1736. // Move to the XY where we shall probe
  1737. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1738. if (DEBUGGING(LEVELING)) {
  1739. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1740. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1741. SERIAL_ECHOLNPGM(")");
  1742. }
  1743. #endif
  1744. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1745. // Move the probe to the given XY
  1746. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1747. if (DEPLOY_PROBE()) return NAN;
  1748. float measured_z = run_z_probe();
  1749. if (stow) {
  1750. if (STOW_PROBE()) return NAN;
  1751. }
  1752. else {
  1753. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1754. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1755. #endif
  1756. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1757. }
  1758. if (verbose_level > 2) {
  1759. SERIAL_PROTOCOLPGM("Bed X: ");
  1760. SERIAL_PROTOCOL_F(x, 3);
  1761. SERIAL_PROTOCOLPGM(" Y: ");
  1762. SERIAL_PROTOCOL_F(y, 3);
  1763. SERIAL_PROTOCOLPGM(" Z: ");
  1764. SERIAL_PROTOCOL_F(measured_z, 3);
  1765. SERIAL_EOL;
  1766. }
  1767. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1768. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1769. #endif
  1770. feedrate_mm_s = old_feedrate_mm_s;
  1771. return measured_z;
  1772. }
  1773. #endif // HAS_BED_PROBE
  1774. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1775. /**
  1776. * Reset calibration results to zero.
  1777. */
  1778. void reset_bed_level() {
  1779. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1780. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1781. #endif
  1782. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1783. planner.bed_level_matrix.set_to_identity();
  1784. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1785. memset(bed_level_grid, 0, sizeof(bed_level_grid));
  1786. nonlinear_grid_spacing[X_AXIS] = nonlinear_grid_spacing[Y_AXIS] = 0;
  1787. #endif
  1788. }
  1789. #endif // AUTO_BED_LEVELING_FEATURE
  1790. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1791. /**
  1792. * Get the stepper positions, apply the rotation matrix
  1793. * using the home XY and Z0 position as the fulcrum.
  1794. */
  1795. vector_3 untilted_stepper_position() {
  1796. get_cartesian_from_steppers();
  1797. vector_3 pos = vector_3(
  1798. cartes[X_AXIS] - X_TILT_FULCRUM,
  1799. cartes[Y_AXIS] - Y_TILT_FULCRUM,
  1800. cartes[Z_AXIS]
  1801. );
  1802. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  1803. //pos.debug("untilted_stepper_position offset");
  1804. //bed_level_matrix.debug("untilted_stepper_position");
  1805. //inverse.debug("in untilted_stepper_position");
  1806. pos.apply_rotation(inverse);
  1807. pos.x = LOGICAL_X_POSITION(pos.x + X_TILT_FULCRUM);
  1808. pos.y = LOGICAL_Y_POSITION(pos.y + Y_TILT_FULCRUM);
  1809. pos.z = LOGICAL_Z_POSITION(pos.z);
  1810. //pos.debug("after rotation and reorientation");
  1811. return pos;
  1812. }
  1813. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1814. /**
  1815. * Extrapolate a single point from its neighbors
  1816. */
  1817. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1818. if (bed_level_grid[x][y]) return; // Don't overwrite good values.
  1819. float a = 2 * bed_level_grid[x + xdir][y] - bed_level_grid[x + xdir * 2][y], // Left to right.
  1820. b = 2 * bed_level_grid[x][y + ydir] - bed_level_grid[x][y + ydir * 2], // Front to back.
  1821. c = 2 * bed_level_grid[x + xdir][y + ydir] - bed_level_grid[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1822. // Median is robust (ignores outliers).
  1823. bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1824. : ((c < b) ? b : (a < c) ? a : c);
  1825. }
  1826. /**
  1827. * Fill in the unprobed points (corners of circular print surface)
  1828. * using linear extrapolation, away from the center.
  1829. */
  1830. static void extrapolate_unprobed_bed_level() {
  1831. uint8_t half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1832. for (uint8_t y = 0; y <= half; y++) {
  1833. for (uint8_t x = 0; x <= half; x++) {
  1834. if (x + y < 3) continue;
  1835. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1836. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1837. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1838. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1839. }
  1840. }
  1841. }
  1842. /**
  1843. * Print calibration results for plotting or manual frame adjustment.
  1844. */
  1845. static void print_bed_level() {
  1846. for (uint8_t y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1847. for (uint8_t x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1848. SERIAL_PROTOCOL_F(bed_level_grid[x][y], 2);
  1849. SERIAL_PROTOCOLCHAR(' ');
  1850. }
  1851. SERIAL_EOL;
  1852. }
  1853. }
  1854. #endif // AUTO_BED_LEVELING_NONLINEAR
  1855. /**
  1856. * Home an individual linear axis
  1857. */
  1858. static void do_homing_move(AxisEnum axis, float where, float fr_mm_s = 0.0) {
  1859. current_position[axis] = 0;
  1860. sync_plan_position();
  1861. current_position[axis] = where;
  1862. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1863. stepper.synchronize();
  1864. endstops.hit_on_purpose();
  1865. }
  1866. /**
  1867. * Home an individual "raw axis" to its endstop.
  1868. * This applies to XYZ on Cartesian and Core robots, and
  1869. * to the individual ABC steppers on DELTA and SCARA.
  1870. *
  1871. * At the end of the procedure the axis is marked as
  1872. * homed and the current position of that axis is updated.
  1873. * Kinematic robots should wait till all axes are homed
  1874. * before updating the current position.
  1875. */
  1876. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1877. static void homeaxis(AxisEnum axis) {
  1878. #define CAN_HOME(A) \
  1879. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1880. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1881. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1882. if (DEBUGGING(LEVELING)) {
  1883. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1884. SERIAL_ECHOLNPGM(")");
  1885. }
  1886. #endif
  1887. int axis_home_dir =
  1888. #if ENABLED(DUAL_X_CARRIAGE)
  1889. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1890. #endif
  1891. home_dir(axis);
  1892. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1893. #if HOMING_Z_WITH_PROBE
  1894. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  1895. #endif
  1896. // Set a flag for Z motor locking
  1897. #if ENABLED(Z_DUAL_ENDSTOPS)
  1898. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1899. #endif
  1900. // Move towards the endstop until an endstop is triggered
  1901. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  1902. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1903. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 1st Home ", current_position[axis]);
  1904. #endif
  1905. // Move away from the endstop by the axis HOME_BUMP_MM
  1906. do_homing_move(axis, -home_bump_mm(axis) * axis_home_dir);
  1907. // Move slowly towards the endstop until triggered
  1908. do_homing_move(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  1909. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1910. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 2nd Home ", current_position[axis]);
  1911. #endif
  1912. #if ENABLED(Z_DUAL_ENDSTOPS)
  1913. if (axis == Z_AXIS) {
  1914. float adj = fabs(z_endstop_adj);
  1915. bool lockZ1;
  1916. if (axis_home_dir > 0) {
  1917. adj = -adj;
  1918. lockZ1 = (z_endstop_adj > 0);
  1919. }
  1920. else
  1921. lockZ1 = (z_endstop_adj < 0);
  1922. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1923. // Move to the adjusted endstop height
  1924. do_homing_move(axis, adj);
  1925. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1926. stepper.set_homing_flag(false);
  1927. } // Z_AXIS
  1928. #endif
  1929. // Delta has already moved all three towers up in G28
  1930. // so here it re-homes each tower in turn.
  1931. // Delta homing treats the axes as normal linear axes.
  1932. #if ENABLED(DELTA)
  1933. // retrace by the amount specified in endstop_adj
  1934. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  1935. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1936. if (DEBUGGING(LEVELING)) {
  1937. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  1938. DEBUG_POS("", current_position);
  1939. }
  1940. #endif
  1941. do_homing_move(axis, endstop_adj[axis]);
  1942. }
  1943. #else
  1944. // Set the axis position to its home position (plus home offsets)
  1945. set_axis_is_at_home(axis);
  1946. sync_plan_position();
  1947. destination[axis] = current_position[axis];
  1948. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1949. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1950. #endif
  1951. #endif
  1952. // Put away the Z probe
  1953. #if HOMING_Z_WITH_PROBE
  1954. if (axis == Z_AXIS && STOW_PROBE()) return;
  1955. #endif
  1956. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1957. if (DEBUGGING(LEVELING)) {
  1958. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  1959. SERIAL_ECHOLNPGM(")");
  1960. }
  1961. #endif
  1962. } // homeaxis()
  1963. #if ENABLED(FWRETRACT)
  1964. void retract(bool retracting, bool swapping = false) {
  1965. if (retracting == retracted[active_extruder]) return;
  1966. float old_feedrate_mm_s = feedrate_mm_s;
  1967. set_destination_to_current();
  1968. if (retracting) {
  1969. feedrate_mm_s = retract_feedrate_mm_s;
  1970. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1971. sync_plan_position_e();
  1972. prepare_move_to_destination();
  1973. if (retract_zlift > 0.01) {
  1974. current_position[Z_AXIS] -= retract_zlift;
  1975. SYNC_PLAN_POSITION_KINEMATIC();
  1976. prepare_move_to_destination();
  1977. }
  1978. }
  1979. else {
  1980. if (retract_zlift > 0.01) {
  1981. current_position[Z_AXIS] += retract_zlift;
  1982. SYNC_PLAN_POSITION_KINEMATIC();
  1983. }
  1984. feedrate_mm_s = retract_recover_feedrate_mm_s;
  1985. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1986. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1987. sync_plan_position_e();
  1988. prepare_move_to_destination();
  1989. }
  1990. feedrate_mm_s = old_feedrate_mm_s;
  1991. retracted[active_extruder] = retracting;
  1992. } // retract()
  1993. #endif // FWRETRACT
  1994. #if ENABLED(MIXING_EXTRUDER)
  1995. void normalize_mix() {
  1996. float mix_total = 0.0;
  1997. for (int i = 0; i < MIXING_STEPPERS; i++) {
  1998. float v = mixing_factor[i];
  1999. if (v < 0) v = mixing_factor[i] = 0;
  2000. mix_total += v;
  2001. }
  2002. // Scale all values if they don't add up to ~1.0
  2003. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2004. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2005. float mix_scale = 1.0 / mix_total;
  2006. for (int i = 0; i < MIXING_STEPPERS; i++)
  2007. mixing_factor[i] *= mix_scale;
  2008. }
  2009. }
  2010. #if ENABLED(DIRECT_MIXING_IN_G1)
  2011. // Get mixing parameters from the GCode
  2012. // Factors that are left out are set to 0
  2013. // The total "must" be 1.0 (but it will be normalized)
  2014. void gcode_get_mix() {
  2015. const char* mixing_codes = "ABCDHI";
  2016. for (int i = 0; i < MIXING_STEPPERS; i++)
  2017. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2018. normalize_mix();
  2019. }
  2020. #endif
  2021. #endif
  2022. /**
  2023. * ***************************************************************************
  2024. * ***************************** G-CODE HANDLING *****************************
  2025. * ***************************************************************************
  2026. */
  2027. /**
  2028. * Set XYZE destination and feedrate from the current GCode command
  2029. *
  2030. * - Set destination from included axis codes
  2031. * - Set to current for missing axis codes
  2032. * - Set the feedrate, if included
  2033. */
  2034. void gcode_get_destination() {
  2035. LOOP_XYZE(i) {
  2036. if (code_seen(axis_codes[i]))
  2037. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2038. else
  2039. destination[i] = current_position[i];
  2040. }
  2041. if (code_seen('F') && code_value_linear_units() > 0.0)
  2042. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2043. #if ENABLED(PRINTCOUNTER)
  2044. if (!DEBUGGING(DRYRUN))
  2045. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2046. #endif
  2047. // Get ABCDHI mixing factors
  2048. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2049. gcode_get_mix();
  2050. #endif
  2051. }
  2052. void unknown_command_error() {
  2053. SERIAL_ECHO_START;
  2054. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2055. SERIAL_ECHOLNPGM("\"");
  2056. }
  2057. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2058. /**
  2059. * Output a "busy" message at regular intervals
  2060. * while the machine is not accepting commands.
  2061. */
  2062. void host_keepalive() {
  2063. millis_t ms = millis();
  2064. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2065. if (PENDING(ms, next_busy_signal_ms)) return;
  2066. switch (busy_state) {
  2067. case IN_HANDLER:
  2068. case IN_PROCESS:
  2069. SERIAL_ECHO_START;
  2070. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2071. break;
  2072. case PAUSED_FOR_USER:
  2073. SERIAL_ECHO_START;
  2074. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2075. break;
  2076. case PAUSED_FOR_INPUT:
  2077. SERIAL_ECHO_START;
  2078. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2079. break;
  2080. default:
  2081. break;
  2082. }
  2083. }
  2084. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2085. }
  2086. #endif //HOST_KEEPALIVE_FEATURE
  2087. bool position_is_reachable(float target[XYZ]) {
  2088. float dx = RAW_X_POSITION(target[X_AXIS]),
  2089. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2090. #if ENABLED(DELTA)
  2091. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2092. #else
  2093. float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2094. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2095. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2096. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2097. #endif
  2098. }
  2099. /**************************************************
  2100. ***************** GCode Handlers *****************
  2101. **************************************************/
  2102. /**
  2103. * G0, G1: Coordinated movement of X Y Z E axes
  2104. */
  2105. inline void gcode_G0_G1() {
  2106. if (IsRunning()) {
  2107. gcode_get_destination(); // For X Y Z E F
  2108. #if ENABLED(FWRETRACT)
  2109. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2110. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2111. // Is this move an attempt to retract or recover?
  2112. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2113. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2114. sync_plan_position_e(); // AND from the planner
  2115. retract(!retracted[active_extruder]);
  2116. return;
  2117. }
  2118. }
  2119. #endif //FWRETRACT
  2120. prepare_move_to_destination();
  2121. }
  2122. }
  2123. /**
  2124. * G2: Clockwise Arc
  2125. * G3: Counterclockwise Arc
  2126. */
  2127. #if ENABLED(ARC_SUPPORT)
  2128. inline void gcode_G2_G3(bool clockwise) {
  2129. if (IsRunning()) {
  2130. #if ENABLED(SF_ARC_FIX)
  2131. bool relative_mode_backup = relative_mode;
  2132. relative_mode = true;
  2133. #endif
  2134. gcode_get_destination();
  2135. #if ENABLED(SF_ARC_FIX)
  2136. relative_mode = relative_mode_backup;
  2137. #endif
  2138. // Center of arc as offset from current_position
  2139. float arc_offset[2] = {
  2140. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2141. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2142. };
  2143. // Send an arc to the planner
  2144. plan_arc(destination, arc_offset, clockwise);
  2145. refresh_cmd_timeout();
  2146. }
  2147. }
  2148. #endif
  2149. /**
  2150. * G4: Dwell S<seconds> or P<milliseconds>
  2151. */
  2152. inline void gcode_G4() {
  2153. millis_t dwell_ms = 0;
  2154. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2155. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2156. stepper.synchronize();
  2157. refresh_cmd_timeout();
  2158. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2159. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2160. while (PENDING(millis(), dwell_ms)) idle();
  2161. }
  2162. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2163. /**
  2164. * Parameters interpreted according to:
  2165. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2166. * However I, J omission is not supported at this point; all
  2167. * parameters can be omitted and default to zero.
  2168. */
  2169. /**
  2170. * G5: Cubic B-spline
  2171. */
  2172. inline void gcode_G5() {
  2173. if (IsRunning()) {
  2174. gcode_get_destination();
  2175. float offset[] = {
  2176. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2177. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2178. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2179. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2180. };
  2181. plan_cubic_move(offset);
  2182. }
  2183. }
  2184. #endif // BEZIER_CURVE_SUPPORT
  2185. #if ENABLED(FWRETRACT)
  2186. /**
  2187. * G10 - Retract filament according to settings of M207
  2188. * G11 - Recover filament according to settings of M208
  2189. */
  2190. inline void gcode_G10_G11(bool doRetract=false) {
  2191. #if EXTRUDERS > 1
  2192. if (doRetract) {
  2193. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2194. }
  2195. #endif
  2196. retract(doRetract
  2197. #if EXTRUDERS > 1
  2198. , retracted_swap[active_extruder]
  2199. #endif
  2200. );
  2201. }
  2202. #endif //FWRETRACT
  2203. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2204. /**
  2205. * G12: Clean the nozzle
  2206. */
  2207. inline void gcode_G12() {
  2208. // Don't allow nozzle cleaning without homing first
  2209. if (axis_unhomed_error(true, true, true)) { return; }
  2210. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2211. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2212. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2213. Nozzle::clean(pattern, strokes, objects);
  2214. }
  2215. #endif
  2216. #if ENABLED(INCH_MODE_SUPPORT)
  2217. /**
  2218. * G20: Set input mode to inches
  2219. */
  2220. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2221. /**
  2222. * G21: Set input mode to millimeters
  2223. */
  2224. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2225. #endif
  2226. #if ENABLED(NOZZLE_PARK_FEATURE)
  2227. /**
  2228. * G27: Park the nozzle
  2229. */
  2230. inline void gcode_G27() {
  2231. // Don't allow nozzle parking without homing first
  2232. if (axis_unhomed_error(true, true, true)) { return; }
  2233. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2234. Nozzle::park(z_action);
  2235. }
  2236. #endif // NOZZLE_PARK_FEATURE
  2237. #if ENABLED(QUICK_HOME)
  2238. static void quick_home_xy() {
  2239. // Pretend the current position is 0,0
  2240. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2241. sync_plan_position();
  2242. int x_axis_home_dir =
  2243. #if ENABLED(DUAL_X_CARRIAGE)
  2244. x_home_dir(active_extruder)
  2245. #else
  2246. home_dir(X_AXIS)
  2247. #endif
  2248. ;
  2249. float mlx = max_length(X_AXIS),
  2250. mly = max_length(Y_AXIS),
  2251. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2252. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2253. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2254. endstops.hit_on_purpose(); // clear endstop hit flags
  2255. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2256. }
  2257. #endif // QUICK_HOME
  2258. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2259. void log_machine_info() {
  2260. SERIAL_ECHOPGM("Machine Type: ");
  2261. #if ENABLED(DELTA)
  2262. SERIAL_ECHOLNPGM("Delta");
  2263. #elif IS_SCARA
  2264. SERIAL_ECHOLNPGM("SCARA");
  2265. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2266. SERIAL_ECHOLNPGM("Core");
  2267. #else
  2268. SERIAL_ECHOLNPGM("Cartesian");
  2269. #endif
  2270. SERIAL_ECHOPGM("Probe: ");
  2271. #if ENABLED(FIX_MOUNTED_PROBE)
  2272. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2273. #elif HAS_Z_SERVO_ENDSTOP
  2274. SERIAL_ECHOLNPGM("SERVO PROBE");
  2275. #elif ENABLED(BLTOUCH)
  2276. SERIAL_ECHOLNPGM("BLTOUCH");
  2277. #elif ENABLED(Z_PROBE_SLED)
  2278. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2279. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2280. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2281. #else
  2282. SERIAL_ECHOLNPGM("NONE");
  2283. #endif
  2284. #if HAS_BED_PROBE
  2285. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2286. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2287. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2288. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2289. SERIAL_ECHOPGM(" (Right");
  2290. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2291. SERIAL_ECHOPGM(" (Left");
  2292. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2293. SERIAL_ECHOPGM(" (Middle");
  2294. #else
  2295. SERIAL_ECHOPGM(" (Aligned With");
  2296. #endif
  2297. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2298. SERIAL_ECHOPGM("-Back");
  2299. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2300. SERIAL_ECHOPGM("-Front");
  2301. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2302. SERIAL_ECHOPGM("-Center");
  2303. #endif
  2304. if (zprobe_zoffset < 0)
  2305. SERIAL_ECHOPGM(" & Below");
  2306. else if (zprobe_zoffset > 0)
  2307. SERIAL_ECHOPGM(" & Above");
  2308. else
  2309. SERIAL_ECHOPGM(" & Same Z as");
  2310. SERIAL_ECHOLNPGM(" Nozzle)");
  2311. #endif
  2312. }
  2313. #endif // DEBUG_LEVELING_FEATURE
  2314. #if ENABLED(DELTA)
  2315. /**
  2316. * A delta can only safely home all axes at the same time
  2317. * This is like quick_home_xy() but for 3 towers.
  2318. */
  2319. inline void home_delta() {
  2320. // Init the current position of all carriages to 0,0,0
  2321. memset(current_position, 0, sizeof(current_position));
  2322. sync_plan_position();
  2323. // Move all carriages together linearly until an endstop is hit.
  2324. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2325. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2326. line_to_current_position();
  2327. stepper.synchronize();
  2328. endstops.hit_on_purpose(); // clear endstop hit flags
  2329. // Probably not needed. Double-check this line:
  2330. memset(current_position, 0, sizeof(current_position));
  2331. // At least one carriage has reached the top.
  2332. // Now back off and re-home each carriage separately.
  2333. HOMEAXIS(A);
  2334. HOMEAXIS(B);
  2335. HOMEAXIS(C);
  2336. // Set all carriages to their home positions
  2337. // Do this here all at once for Delta, because
  2338. // XYZ isn't ABC. Applying this per-tower would
  2339. // give the impression that they are the same.
  2340. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2341. SYNC_PLAN_POSITION_KINEMATIC();
  2342. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2343. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2344. #endif
  2345. }
  2346. #endif // DELTA
  2347. #if ENABLED(Z_SAFE_HOMING)
  2348. inline void home_z_safely() {
  2349. // Disallow Z homing if X or Y are unknown
  2350. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2351. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2352. SERIAL_ECHO_START;
  2353. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2354. return;
  2355. }
  2356. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2357. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2358. #endif
  2359. SYNC_PLAN_POSITION_KINEMATIC();
  2360. /**
  2361. * Move the Z probe (or just the nozzle) to the safe homing point
  2362. */
  2363. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2364. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2365. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2366. #if HAS_BED_PROBE
  2367. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2368. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2369. #endif
  2370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2371. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2372. #endif
  2373. if (position_is_reachable(destination)) {
  2374. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2375. HOMEAXIS(Z);
  2376. }
  2377. else {
  2378. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2379. SERIAL_ECHO_START;
  2380. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2381. }
  2382. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2383. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2384. #endif
  2385. }
  2386. #endif // Z_SAFE_HOMING
  2387. /**
  2388. * G28: Home all axes according to settings
  2389. *
  2390. * Parameters
  2391. *
  2392. * None Home to all axes with no parameters.
  2393. * With QUICK_HOME enabled XY will home together, then Z.
  2394. *
  2395. * Cartesian parameters
  2396. *
  2397. * X Home to the X endstop
  2398. * Y Home to the Y endstop
  2399. * Z Home to the Z endstop
  2400. *
  2401. */
  2402. inline void gcode_G28() {
  2403. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2404. if (DEBUGGING(LEVELING)) {
  2405. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2406. log_machine_info();
  2407. }
  2408. #endif
  2409. // Wait for planner moves to finish!
  2410. stepper.synchronize();
  2411. // For auto bed leveling, clear the level matrix
  2412. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2413. reset_bed_level();
  2414. #endif
  2415. // Always home with tool 0 active
  2416. #if HOTENDS > 1
  2417. uint8_t old_tool_index = active_extruder;
  2418. tool_change(0, 0, true);
  2419. #endif
  2420. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2421. extruder_duplication_enabled = false;
  2422. #endif
  2423. /**
  2424. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2425. * on again when homing all axis
  2426. */
  2427. #if ENABLED(MESH_BED_LEVELING)
  2428. float pre_home_z = MESH_HOME_SEARCH_Z;
  2429. if (mbl.active()) {
  2430. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2431. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2432. #endif
  2433. // Save known Z position if already homed
  2434. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2435. pre_home_z = current_position[Z_AXIS];
  2436. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2437. }
  2438. mbl.set_active(false);
  2439. current_position[Z_AXIS] = pre_home_z;
  2440. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2441. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2442. #endif
  2443. }
  2444. #endif
  2445. setup_for_endstop_or_probe_move();
  2446. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2447. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2448. #endif
  2449. endstops.enable(true); // Enable endstops for next homing move
  2450. #if ENABLED(DELTA)
  2451. home_delta();
  2452. #else // NOT DELTA
  2453. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2454. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2455. set_destination_to_current();
  2456. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2457. if (home_all_axis || homeZ) {
  2458. HOMEAXIS(Z);
  2459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2460. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2461. #endif
  2462. }
  2463. #else
  2464. if (home_all_axis || homeX || homeY) {
  2465. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2466. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2467. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2468. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2469. if (DEBUGGING(LEVELING))
  2470. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2471. #endif
  2472. do_blocking_move_to_z(destination[Z_AXIS]);
  2473. }
  2474. }
  2475. #endif
  2476. #if ENABLED(QUICK_HOME)
  2477. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2478. #endif
  2479. #if ENABLED(HOME_Y_BEFORE_X)
  2480. // Home Y
  2481. if (home_all_axis || homeY) {
  2482. HOMEAXIS(Y);
  2483. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2484. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2485. #endif
  2486. }
  2487. #endif
  2488. // Home X
  2489. if (home_all_axis || homeX) {
  2490. #if ENABLED(DUAL_X_CARRIAGE)
  2491. int tmp_extruder = active_extruder;
  2492. active_extruder = !active_extruder;
  2493. HOMEAXIS(X);
  2494. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2495. active_extruder = tmp_extruder;
  2496. HOMEAXIS(X);
  2497. // reset state used by the different modes
  2498. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2499. delayed_move_time = 0;
  2500. active_extruder_parked = true;
  2501. #else
  2502. HOMEAXIS(X);
  2503. #endif
  2504. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2505. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2506. #endif
  2507. }
  2508. #if DISABLED(HOME_Y_BEFORE_X)
  2509. // Home Y
  2510. if (home_all_axis || homeY) {
  2511. HOMEAXIS(Y);
  2512. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2513. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2514. #endif
  2515. }
  2516. #endif
  2517. // Home Z last if homing towards the bed
  2518. #if Z_HOME_DIR < 0
  2519. if (home_all_axis || homeZ) {
  2520. #if ENABLED(Z_SAFE_HOMING)
  2521. home_z_safely();
  2522. #else
  2523. HOMEAXIS(Z);
  2524. #endif
  2525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2526. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2527. #endif
  2528. } // home_all_axis || homeZ
  2529. #endif // Z_HOME_DIR < 0
  2530. SYNC_PLAN_POSITION_KINEMATIC();
  2531. #endif // !DELTA (gcode_G28)
  2532. endstops.not_homing();
  2533. // Enable mesh leveling again
  2534. #if ENABLED(MESH_BED_LEVELING)
  2535. if (mbl.has_mesh()) {
  2536. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2537. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2538. #endif
  2539. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2541. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2542. #endif
  2543. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2544. #if Z_HOME_DIR > 0
  2545. + Z_MAX_POS
  2546. #endif
  2547. ;
  2548. SYNC_PLAN_POSITION_KINEMATIC();
  2549. mbl.set_active(true);
  2550. #if ENABLED(MESH_G28_REST_ORIGIN)
  2551. current_position[Z_AXIS] = 0.0;
  2552. set_destination_to_current();
  2553. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  2554. line_to_destination();
  2555. stepper.synchronize();
  2556. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2557. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2558. #endif
  2559. #else
  2560. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2561. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2562. #if Z_HOME_DIR > 0
  2563. + Z_MAX_POS
  2564. #endif
  2565. ;
  2566. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2567. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2568. #endif
  2569. #endif
  2570. }
  2571. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2572. current_position[Z_AXIS] = pre_home_z;
  2573. SYNC_PLAN_POSITION_KINEMATIC();
  2574. mbl.set_active(true);
  2575. current_position[Z_AXIS] = pre_home_z -
  2576. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2577. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2578. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2579. #endif
  2580. }
  2581. }
  2582. #endif
  2583. #if ENABLED(DELTA)
  2584. // move to a height where we can use the full xy-area
  2585. do_blocking_move_to_z(delta_clip_start_height);
  2586. #endif
  2587. clean_up_after_endstop_or_probe_move();
  2588. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2589. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2590. #endif
  2591. // Restore the active tool after homing
  2592. #if HOTENDS > 1
  2593. tool_change(old_tool_index, 0, true);
  2594. #endif
  2595. report_current_position();
  2596. }
  2597. #if HAS_PROBING_PROCEDURE
  2598. void out_of_range_error(const char* p_edge) {
  2599. SERIAL_PROTOCOLPGM("?Probe ");
  2600. serialprintPGM(p_edge);
  2601. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2602. }
  2603. #endif
  2604. #if ENABLED(MESH_BED_LEVELING)
  2605. inline void _mbl_goto_xy(float x, float y) {
  2606. float old_feedrate_mm_s = feedrate_mm_s;
  2607. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2608. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2609. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2610. + Z_PROBE_TRAVEL_HEIGHT
  2611. #elif Z_HOMING_HEIGHT > 0
  2612. + Z_HOMING_HEIGHT
  2613. #endif
  2614. ;
  2615. line_to_current_position();
  2616. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2617. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2618. line_to_current_position();
  2619. #if Z_PROBE_TRAVEL_HEIGHT > 0 || Z_HOMING_HEIGHT > 0
  2620. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2621. line_to_current_position();
  2622. #endif
  2623. feedrate_mm_s = old_feedrate_mm_s;
  2624. stepper.synchronize();
  2625. }
  2626. /**
  2627. * G29: Mesh-based Z probe, probes a grid and produces a
  2628. * mesh to compensate for variable bed height
  2629. *
  2630. * Parameters With MESH_BED_LEVELING:
  2631. *
  2632. * S0 Produce a mesh report
  2633. * S1 Start probing mesh points
  2634. * S2 Probe the next mesh point
  2635. * S3 Xn Yn Zn.nn Manually modify a single point
  2636. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2637. * S5 Reset and disable mesh
  2638. *
  2639. * The S0 report the points as below
  2640. *
  2641. * +----> X-axis 1-n
  2642. * |
  2643. * |
  2644. * v Y-axis 1-n
  2645. *
  2646. */
  2647. inline void gcode_G29() {
  2648. static int probe_point = -1;
  2649. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2650. if (state < 0 || state > 5) {
  2651. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2652. return;
  2653. }
  2654. int8_t px, py;
  2655. switch (state) {
  2656. case MeshReport:
  2657. if (mbl.has_mesh()) {
  2658. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2659. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2660. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2661. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2662. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2663. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2664. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2665. SERIAL_PROTOCOLPGM(" ");
  2666. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2667. }
  2668. SERIAL_EOL;
  2669. }
  2670. }
  2671. else
  2672. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2673. break;
  2674. case MeshStart:
  2675. mbl.reset();
  2676. probe_point = 0;
  2677. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2678. break;
  2679. case MeshNext:
  2680. if (probe_point < 0) {
  2681. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2682. return;
  2683. }
  2684. // For each G29 S2...
  2685. if (probe_point == 0) {
  2686. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2687. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2688. #if Z_HOME_DIR > 0
  2689. + Z_MAX_POS
  2690. #endif
  2691. ;
  2692. SYNC_PLAN_POSITION_KINEMATIC();
  2693. }
  2694. else {
  2695. // For G29 S2 after adjusting Z.
  2696. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2697. }
  2698. // If there's another point to sample, move there with optional lift.
  2699. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2700. mbl.zigzag(probe_point, px, py);
  2701. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2702. probe_point++;
  2703. }
  2704. else {
  2705. // One last "return to the bed" (as originally coded) at completion
  2706. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2707. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2708. + Z_PROBE_TRAVEL_HEIGHT
  2709. #elif Z_HOMING_HEIGHT > 0
  2710. + Z_HOMING_HEIGHT
  2711. #endif
  2712. ;
  2713. line_to_current_position();
  2714. stepper.synchronize();
  2715. // After recording the last point, activate the mbl and home
  2716. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2717. probe_point = -1;
  2718. mbl.set_has_mesh(true);
  2719. enqueue_and_echo_commands_P(PSTR("G28"));
  2720. }
  2721. break;
  2722. case MeshSet:
  2723. if (code_seen('X')) {
  2724. px = code_value_int() - 1;
  2725. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2726. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2727. return;
  2728. }
  2729. }
  2730. else {
  2731. SERIAL_PROTOCOLLNPGM("X not entered.");
  2732. return;
  2733. }
  2734. if (code_seen('Y')) {
  2735. py = code_value_int() - 1;
  2736. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2737. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2738. return;
  2739. }
  2740. }
  2741. else {
  2742. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2743. return;
  2744. }
  2745. if (code_seen('Z')) {
  2746. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2747. }
  2748. else {
  2749. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2750. return;
  2751. }
  2752. break;
  2753. case MeshSetZOffset:
  2754. if (code_seen('Z')) {
  2755. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2756. }
  2757. else {
  2758. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2759. return;
  2760. }
  2761. break;
  2762. case MeshReset:
  2763. if (mbl.active()) {
  2764. current_position[Z_AXIS] +=
  2765. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2766. mbl.reset();
  2767. SYNC_PLAN_POSITION_KINEMATIC();
  2768. }
  2769. else
  2770. mbl.reset();
  2771. } // switch(state)
  2772. report_current_position();
  2773. }
  2774. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2775. /**
  2776. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2777. * Will fail if the printer has not been homed with G28.
  2778. *
  2779. * Enhanced G29 Auto Bed Leveling Probe Routine
  2780. *
  2781. * Parameters With AUTO_BED_LEVELING_GRID:
  2782. *
  2783. * P Set the size of the grid that will be probed (P x P points).
  2784. * Not supported by non-linear delta printer bed leveling.
  2785. * Example: "G29 P4"
  2786. *
  2787. * S Set the XY travel speed between probe points (in units/min)
  2788. *
  2789. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2790. * or clean the rotation Matrix. Useful to check the topology
  2791. * after a first run of G29.
  2792. *
  2793. * V Set the verbose level (0-4). Example: "G29 V3"
  2794. *
  2795. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2796. * This is useful for manual bed leveling and finding flaws in the bed (to
  2797. * assist with part placement).
  2798. * Not supported by non-linear delta printer bed leveling.
  2799. *
  2800. * F Set the Front limit of the probing grid
  2801. * B Set the Back limit of the probing grid
  2802. * L Set the Left limit of the probing grid
  2803. * R Set the Right limit of the probing grid
  2804. *
  2805. * Global Parameters:
  2806. *
  2807. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2808. * Include "E" to engage/disengage the Z probe for each sample.
  2809. * There's no extra effect if you have a fixed Z probe.
  2810. * Usage: "G29 E" or "G29 e"
  2811. *
  2812. */
  2813. inline void gcode_G29() {
  2814. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2815. if (DEBUGGING(LEVELING)) {
  2816. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2817. DEBUG_POS("", current_position);
  2818. log_machine_info();
  2819. }
  2820. #endif
  2821. // Don't allow auto-leveling without homing first
  2822. if (axis_unhomed_error(true, true, true)) return;
  2823. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2824. if (verbose_level < 0 || verbose_level > 4) {
  2825. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2826. return;
  2827. }
  2828. bool dryrun = code_seen('D'),
  2829. stow_probe_after_each = code_seen('E');
  2830. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2831. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2832. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2833. #endif
  2834. if (verbose_level > 0) {
  2835. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2836. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2837. }
  2838. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2839. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2840. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2841. if (auto_bed_leveling_grid_points < 2) {
  2842. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2843. return;
  2844. }
  2845. #endif
  2846. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2847. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2848. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2849. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2850. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2851. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2852. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2853. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2854. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2855. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2856. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2857. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2858. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2859. if (left_out || right_out || front_out || back_out) {
  2860. if (left_out) {
  2861. out_of_range_error(PSTR("(L)eft"));
  2862. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2863. }
  2864. if (right_out) {
  2865. out_of_range_error(PSTR("(R)ight"));
  2866. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2867. }
  2868. if (front_out) {
  2869. out_of_range_error(PSTR("(F)ront"));
  2870. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  2871. }
  2872. if (back_out) {
  2873. out_of_range_error(PSTR("(B)ack"));
  2874. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  2875. }
  2876. return;
  2877. }
  2878. #endif // AUTO_BED_LEVELING_GRID
  2879. stepper.synchronize();
  2880. if (!dryrun) {
  2881. // Reset the bed_level_matrix because leveling
  2882. // needs to be done without leveling enabled.
  2883. reset_bed_level();
  2884. //
  2885. // Re-orient the current position without leveling
  2886. // based on where the steppers are positioned.
  2887. //
  2888. #if IS_KINEMATIC
  2889. // For DELTA/SCARA we need to apply forward kinematics.
  2890. // This returns raw positions and we remap to the space.
  2891. get_cartesian_from_steppers();
  2892. LOOP_XYZ(i) current_position[i] = LOGICAL_POSITION(cartes[i], i);
  2893. #else
  2894. // For cartesian/core the steppers are already mapped to
  2895. // the coordinate space by design.
  2896. LOOP_XYZ(i) current_position[i] = stepper.get_axis_position_mm((AxisEnum)i);
  2897. #endif // !DELTA
  2898. // Inform the planner about the new coordinates
  2899. SYNC_PLAN_POSITION_KINEMATIC();
  2900. }
  2901. setup_for_endstop_or_probe_move();
  2902. // Deploy the probe. Probe will raise if needed.
  2903. if (DEPLOY_PROBE()) return;
  2904. bed_leveling_in_progress = true;
  2905. float xProbe, yProbe, measured_z = 0;
  2906. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2907. // probe at the points of a lattice grid
  2908. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2909. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2910. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2911. nonlinear_grid_spacing[X_AXIS] = xGridSpacing;
  2912. nonlinear_grid_spacing[Y_AXIS] = yGridSpacing;
  2913. float zoffset = zprobe_zoffset;
  2914. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2915. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  2916. /**
  2917. * solve the plane equation ax + by + d = z
  2918. * A is the matrix with rows [x y 1] for all the probed points
  2919. * B is the vector of the Z positions
  2920. * the normal vector to the plane is formed by the coefficients of the
  2921. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2922. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2923. */
  2924. int abl2 = sq(auto_bed_leveling_grid_points);
  2925. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2926. eqnBVector[abl2], // "B" vector of Z points
  2927. mean = 0.0;
  2928. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2929. #endif // AUTO_BED_LEVELING_LINEAR
  2930. int probePointCounter = 0;
  2931. bool zig = auto_bed_leveling_grid_points & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2932. for (uint8_t yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2933. float yBase = front_probe_bed_position + yGridSpacing * yCount;
  2934. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  2935. int8_t xStart, xStop, xInc;
  2936. if (zig) {
  2937. xStart = 0;
  2938. xStop = auto_bed_leveling_grid_points;
  2939. xInc = 1;
  2940. }
  2941. else {
  2942. xStart = auto_bed_leveling_grid_points - 1;
  2943. xStop = -1;
  2944. xInc = -1;
  2945. }
  2946. zig = !zig;
  2947. for (int8_t xCount = xStart; xCount != xStop; xCount += xInc) {
  2948. float xBase = left_probe_bed_position + xGridSpacing * xCount;
  2949. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  2950. #if ENABLED(DELTA)
  2951. // Avoid probing outside the round or hexagonal area of a delta printer
  2952. if (HYPOT2(xProbe, yProbe) > sq(DELTA_PROBEABLE_RADIUS) + 0.1) continue;
  2953. #endif
  2954. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2955. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2956. mean += measured_z;
  2957. eqnBVector[probePointCounter] = measured_z;
  2958. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2959. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2960. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2961. indexIntoAB[xCount][yCount] = probePointCounter;
  2962. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2963. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  2964. #endif
  2965. probePointCounter++;
  2966. idle();
  2967. } //xProbe
  2968. } //yProbe
  2969. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2970. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2971. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  2972. #endif
  2973. // Probe at 3 arbitrary points
  2974. vector_3 points[3] = {
  2975. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  2976. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  2977. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  2978. };
  2979. for (uint8_t i = 0; i < 3; ++i) {
  2980. // Retain the last probe position
  2981. xProbe = LOGICAL_X_POSITION(points[i].x);
  2982. yProbe = LOGICAL_Y_POSITION(points[i].y);
  2983. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2984. }
  2985. if (!dryrun) {
  2986. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  2987. if (planeNormal.z < 0) {
  2988. planeNormal.x *= -1;
  2989. planeNormal.y *= -1;
  2990. planeNormal.z *= -1;
  2991. }
  2992. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  2993. }
  2994. #endif // AUTO_BED_LEVELING_3POINT
  2995. // Raise to _Z_PROBE_DEPLOY_HEIGHT. Stow the probe.
  2996. if (STOW_PROBE()) return;
  2997. // Restore state after probing
  2998. clean_up_after_endstop_or_probe_move();
  2999. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3000. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3001. #endif
  3002. // Calculate leveling, print reports, correct the position
  3003. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3004. if (!dryrun) extrapolate_unprobed_bed_level();
  3005. print_bed_level();
  3006. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3007. // solve lsq problem
  3008. double plane_equation_coefficients[3];
  3009. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3010. mean /= abl2;
  3011. if (verbose_level) {
  3012. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3013. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3014. SERIAL_PROTOCOLPGM(" b: ");
  3015. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3016. SERIAL_PROTOCOLPGM(" d: ");
  3017. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3018. SERIAL_EOL;
  3019. if (verbose_level > 2) {
  3020. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3021. SERIAL_PROTOCOL_F(mean, 8);
  3022. SERIAL_EOL;
  3023. }
  3024. }
  3025. // Create the matrix but don't correct the position yet
  3026. if (!dryrun) {
  3027. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3028. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3029. );
  3030. }
  3031. // Show the Topography map if enabled
  3032. if (do_topography_map) {
  3033. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3034. " +--- BACK --+\n"
  3035. " | |\n"
  3036. " L | (+) | R\n"
  3037. " E | | I\n"
  3038. " F | (-) N (+) | G\n"
  3039. " T | | H\n"
  3040. " | (-) | T\n"
  3041. " | |\n"
  3042. " O-- FRONT --+\n"
  3043. " (0,0)");
  3044. float min_diff = 999;
  3045. for (int8_t yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3046. for (uint8_t xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3047. int ind = indexIntoAB[xx][yy];
  3048. float diff = eqnBVector[ind] - mean,
  3049. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3050. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3051. z_tmp = 0;
  3052. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3053. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3054. if (diff >= 0.0)
  3055. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3056. else
  3057. SERIAL_PROTOCOLCHAR(' ');
  3058. SERIAL_PROTOCOL_F(diff, 5);
  3059. } // xx
  3060. SERIAL_EOL;
  3061. } // yy
  3062. SERIAL_EOL;
  3063. if (verbose_level > 3) {
  3064. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3065. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3066. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3067. int ind = indexIntoAB[xx][yy];
  3068. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3069. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3070. z_tmp = 0;
  3071. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3072. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3073. if (diff >= 0.0)
  3074. SERIAL_PROTOCOLPGM(" +");
  3075. // Include + for column alignment
  3076. else
  3077. SERIAL_PROTOCOLCHAR(' ');
  3078. SERIAL_PROTOCOL_F(diff, 5);
  3079. } // xx
  3080. SERIAL_EOL;
  3081. } // yy
  3082. SERIAL_EOL;
  3083. }
  3084. } //do_topography_map
  3085. if (verbose_level > 0)
  3086. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3087. if (!dryrun) {
  3088. //
  3089. // Correct the current XYZ position based on the tilted plane.
  3090. //
  3091. // 1. Get the distance from the current position to the reference point.
  3092. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3093. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3094. z_real = RAW_CURRENT_POSITION(Z_AXIS),
  3095. z_zero = 0;
  3096. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3097. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3098. #endif
  3099. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3100. // 2. Apply the inverse matrix to the distance
  3101. // from the reference point to X, Y, and zero.
  3102. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3103. // 3. Get the matrix-based corrected Z.
  3104. // (Even if not used, get it for comparison.)
  3105. float new_z = z_real + z_zero;
  3106. // 4. Use the last measured distance to the bed, if possible
  3107. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3108. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3109. ) {
  3110. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3111. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3112. if (DEBUGGING(LEVELING)) {
  3113. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3114. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3115. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3116. }
  3117. #endif
  3118. new_z = simple_z;
  3119. }
  3120. // 5. The rotated XY and corrected Z are now current_position
  3121. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3122. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3123. current_position[Z_AXIS] = LOGICAL_Z_POSITION(new_z);
  3124. SYNC_PLAN_POSITION_KINEMATIC();
  3125. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3126. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3127. #endif
  3128. }
  3129. #endif // AUTO_BED_LEVELING_LINEAR
  3130. #ifdef Z_PROBE_END_SCRIPT
  3131. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3132. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3133. #endif
  3134. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3135. stepper.synchronize();
  3136. #endif
  3137. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3138. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3139. #endif
  3140. bed_leveling_in_progress = false;
  3141. report_current_position();
  3142. KEEPALIVE_STATE(IN_HANDLER);
  3143. }
  3144. #endif // AUTO_BED_LEVELING_FEATURE
  3145. #if HAS_BED_PROBE
  3146. /**
  3147. * G30: Do a single Z probe at the current XY
  3148. */
  3149. inline void gcode_G30() {
  3150. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3151. reset_bed_level();
  3152. #endif
  3153. setup_for_endstop_or_probe_move();
  3154. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3155. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3156. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3157. true, 1);
  3158. SERIAL_PROTOCOLPGM("Bed X: ");
  3159. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3160. SERIAL_PROTOCOLPGM(" Y: ");
  3161. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3162. SERIAL_PROTOCOLPGM(" Z: ");
  3163. SERIAL_PROTOCOL(measured_z + 0.0001);
  3164. SERIAL_EOL;
  3165. clean_up_after_endstop_or_probe_move();
  3166. report_current_position();
  3167. }
  3168. #if ENABLED(Z_PROBE_SLED)
  3169. /**
  3170. * G31: Deploy the Z probe
  3171. */
  3172. inline void gcode_G31() { DEPLOY_PROBE(); }
  3173. /**
  3174. * G32: Stow the Z probe
  3175. */
  3176. inline void gcode_G32() { STOW_PROBE(); }
  3177. #endif // Z_PROBE_SLED
  3178. #endif // HAS_BED_PROBE
  3179. /**
  3180. * G92: Set current position to given X Y Z E
  3181. */
  3182. inline void gcode_G92() {
  3183. bool didXYZ = false,
  3184. didE = code_seen('E');
  3185. if (!didE) stepper.synchronize();
  3186. LOOP_XYZE(i) {
  3187. if (code_seen(axis_codes[i])) {
  3188. float p = current_position[i],
  3189. v = code_value_axis_units(i);
  3190. current_position[i] = v;
  3191. if (i != E_AXIS) {
  3192. position_shift[i] += v - p; // Offset the coordinate space
  3193. update_software_endstops((AxisEnum)i);
  3194. didXYZ = true;
  3195. }
  3196. }
  3197. }
  3198. if (didXYZ)
  3199. SYNC_PLAN_POSITION_KINEMATIC();
  3200. else if (didE)
  3201. sync_plan_position_e();
  3202. }
  3203. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3204. /**
  3205. * M0: Unconditional stop - Wait for user button press on LCD
  3206. * M1: Conditional stop - Wait for user button press on LCD
  3207. */
  3208. inline void gcode_M0_M1() {
  3209. char* args = current_command_args;
  3210. millis_t codenum = 0;
  3211. bool hasP = false, hasS = false;
  3212. if (code_seen('P')) {
  3213. codenum = code_value_millis(); // milliseconds to wait
  3214. hasP = codenum > 0;
  3215. }
  3216. if (code_seen('S')) {
  3217. codenum = code_value_millis_from_seconds(); // seconds to wait
  3218. hasS = codenum > 0;
  3219. }
  3220. #if ENABLED(ULTIPANEL)
  3221. if (!hasP && !hasS && *args != '\0')
  3222. lcd_setstatus(args, true);
  3223. else {
  3224. LCD_MESSAGEPGM(MSG_USERWAIT);
  3225. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3226. dontExpireStatus();
  3227. #endif
  3228. }
  3229. lcd_ignore_click();
  3230. #else
  3231. if (!hasP && !hasS && *args != '\0') {
  3232. SERIAL_ECHO_START;
  3233. SERIAL_ECHOLN(args);
  3234. }
  3235. #endif
  3236. stepper.synchronize();
  3237. refresh_cmd_timeout();
  3238. #if ENABLED(ULTIPANEL)
  3239. if (codenum > 0) {
  3240. codenum += previous_cmd_ms; // wait until this time for a click
  3241. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3242. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3243. lcd_ignore_click(false);
  3244. }
  3245. else if (lcd_detected()) {
  3246. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3247. while (!lcd_clicked()) idle();
  3248. }
  3249. else return;
  3250. if (IS_SD_PRINTING)
  3251. LCD_MESSAGEPGM(MSG_RESUMING);
  3252. else
  3253. LCD_MESSAGEPGM(WELCOME_MSG);
  3254. #else
  3255. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3256. wait_for_user = true;
  3257. if (codenum > 0) {
  3258. codenum += previous_cmd_ms; // wait until this time for an M108
  3259. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3260. }
  3261. else while (wait_for_user) idle();
  3262. wait_for_user = false;
  3263. #endif
  3264. KEEPALIVE_STATE(IN_HANDLER);
  3265. }
  3266. #endif // ULTIPANEL || EMERGENCY_PARSER
  3267. /**
  3268. * M17: Enable power on all stepper motors
  3269. */
  3270. inline void gcode_M17() {
  3271. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3272. enable_all_steppers();
  3273. }
  3274. #if ENABLED(SDSUPPORT)
  3275. /**
  3276. * M20: List SD card to serial output
  3277. */
  3278. inline void gcode_M20() {
  3279. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3280. card.ls();
  3281. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3282. }
  3283. /**
  3284. * M21: Init SD Card
  3285. */
  3286. inline void gcode_M21() { card.initsd(); }
  3287. /**
  3288. * M22: Release SD Card
  3289. */
  3290. inline void gcode_M22() { card.release(); }
  3291. /**
  3292. * M23: Open a file
  3293. */
  3294. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3295. /**
  3296. * M24: Start SD Print
  3297. */
  3298. inline void gcode_M24() {
  3299. card.startFileprint();
  3300. print_job_timer.start();
  3301. }
  3302. /**
  3303. * M25: Pause SD Print
  3304. */
  3305. inline void gcode_M25() { card.pauseSDPrint(); }
  3306. /**
  3307. * M26: Set SD Card file index
  3308. */
  3309. inline void gcode_M26() {
  3310. if (card.cardOK && code_seen('S'))
  3311. card.setIndex(code_value_long());
  3312. }
  3313. /**
  3314. * M27: Get SD Card status
  3315. */
  3316. inline void gcode_M27() { card.getStatus(); }
  3317. /**
  3318. * M28: Start SD Write
  3319. */
  3320. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3321. /**
  3322. * M29: Stop SD Write
  3323. * Processed in write to file routine above
  3324. */
  3325. inline void gcode_M29() {
  3326. // card.saving = false;
  3327. }
  3328. /**
  3329. * M30 <filename>: Delete SD Card file
  3330. */
  3331. inline void gcode_M30() {
  3332. if (card.cardOK) {
  3333. card.closefile();
  3334. card.removeFile(current_command_args);
  3335. }
  3336. }
  3337. #endif // SDSUPPORT
  3338. /**
  3339. * M31: Get the time since the start of SD Print (or last M109)
  3340. */
  3341. inline void gcode_M31() {
  3342. char buffer[21];
  3343. duration_t elapsed = print_job_timer.duration();
  3344. elapsed.toString(buffer);
  3345. lcd_setstatus(buffer);
  3346. SERIAL_ECHO_START;
  3347. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3348. thermalManager.autotempShutdown();
  3349. }
  3350. #if ENABLED(SDSUPPORT)
  3351. /**
  3352. * M32: Select file and start SD Print
  3353. */
  3354. inline void gcode_M32() {
  3355. if (card.sdprinting)
  3356. stepper.synchronize();
  3357. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3358. if (!namestartpos)
  3359. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3360. else
  3361. namestartpos++; //to skip the '!'
  3362. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3363. if (card.cardOK) {
  3364. card.openFile(namestartpos, true, call_procedure);
  3365. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3366. card.setIndex(code_value_long());
  3367. card.startFileprint();
  3368. // Procedure calls count as normal print time.
  3369. if (!call_procedure) print_job_timer.start();
  3370. }
  3371. }
  3372. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3373. /**
  3374. * M33: Get the long full path of a file or folder
  3375. *
  3376. * Parameters:
  3377. * <dospath> Case-insensitive DOS-style path to a file or folder
  3378. *
  3379. * Example:
  3380. * M33 miscel~1/armchair/armcha~1.gco
  3381. *
  3382. * Output:
  3383. * /Miscellaneous/Armchair/Armchair.gcode
  3384. */
  3385. inline void gcode_M33() {
  3386. card.printLongPath(current_command_args);
  3387. }
  3388. #endif
  3389. /**
  3390. * M928: Start SD Write
  3391. */
  3392. inline void gcode_M928() {
  3393. card.openLogFile(current_command_args);
  3394. }
  3395. #endif // SDSUPPORT
  3396. /**
  3397. * M42: Change pin status via GCode
  3398. *
  3399. * P<pin> Pin number (LED if omitted)
  3400. * S<byte> Pin status from 0 - 255
  3401. */
  3402. inline void gcode_M42() {
  3403. if (!code_seen('S')) return;
  3404. int pin_status = code_value_int();
  3405. if (pin_status < 0 || pin_status > 255) return;
  3406. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3407. if (pin_number < 0) return;
  3408. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3409. if (pin_number == sensitive_pins[i]) return;
  3410. pinMode(pin_number, OUTPUT);
  3411. digitalWrite(pin_number, pin_status);
  3412. analogWrite(pin_number, pin_status);
  3413. #if FAN_COUNT > 0
  3414. switch (pin_number) {
  3415. #if HAS_FAN0
  3416. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3417. #endif
  3418. #if HAS_FAN1
  3419. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3420. #endif
  3421. #if HAS_FAN2
  3422. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3423. #endif
  3424. }
  3425. #endif
  3426. }
  3427. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3428. /**
  3429. * M48: Z probe repeatability measurement function.
  3430. *
  3431. * Usage:
  3432. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3433. * P = Number of sampled points (4-50, default 10)
  3434. * X = Sample X position
  3435. * Y = Sample Y position
  3436. * V = Verbose level (0-4, default=1)
  3437. * E = Engage Z probe for each reading
  3438. * L = Number of legs of movement before probe
  3439. * S = Schizoid (Or Star if you prefer)
  3440. *
  3441. * This function assumes the bed has been homed. Specifically, that a G28 command
  3442. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3443. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3444. * regenerated.
  3445. */
  3446. inline void gcode_M48() {
  3447. if (axis_unhomed_error(true, true, true)) return;
  3448. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3449. if (verbose_level < 0 || verbose_level > 4) {
  3450. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3451. return;
  3452. }
  3453. if (verbose_level > 0)
  3454. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3455. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3456. if (n_samples < 4 || n_samples > 50) {
  3457. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3458. return;
  3459. }
  3460. float X_current = current_position[X_AXIS],
  3461. Y_current = current_position[Y_AXIS];
  3462. bool stow_probe_after_each = code_seen('E');
  3463. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3464. #if DISABLED(DELTA)
  3465. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3466. out_of_range_error(PSTR("X"));
  3467. return;
  3468. }
  3469. #endif
  3470. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3471. #if DISABLED(DELTA)
  3472. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3473. out_of_range_error(PSTR("Y"));
  3474. return;
  3475. }
  3476. #else
  3477. if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
  3478. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3479. return;
  3480. }
  3481. #endif
  3482. bool seen_L = code_seen('L');
  3483. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3484. if (n_legs > 15) {
  3485. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3486. return;
  3487. }
  3488. if (n_legs == 1) n_legs = 2;
  3489. bool schizoid_flag = code_seen('S');
  3490. if (schizoid_flag && !seen_L) n_legs = 7;
  3491. /**
  3492. * Now get everything to the specified probe point So we can safely do a
  3493. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3494. * we don't want to use that as a starting point for each probe.
  3495. */
  3496. if (verbose_level > 2)
  3497. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3498. // Disable bed level correction in M48 because we want the raw data when we probe
  3499. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3500. reset_bed_level();
  3501. #endif
  3502. setup_for_endstop_or_probe_move();
  3503. // Move to the first point, deploy, and probe
  3504. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3505. randomSeed(millis());
  3506. double mean = 0, sigma = 0, sample_set[n_samples];
  3507. for (uint8_t n = 0; n < n_samples; n++) {
  3508. if (n_legs) {
  3509. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3510. float angle = random(0.0, 360.0),
  3511. radius = random(
  3512. #if ENABLED(DELTA)
  3513. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3514. #else
  3515. 5, X_MAX_LENGTH / 8
  3516. #endif
  3517. );
  3518. if (verbose_level > 3) {
  3519. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3520. SERIAL_ECHOPAIR(" angle: ", angle);
  3521. SERIAL_ECHOPGM(" Direction: ");
  3522. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3523. SERIAL_ECHOLNPGM("Clockwise");
  3524. }
  3525. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3526. double delta_angle;
  3527. if (schizoid_flag)
  3528. // The points of a 5 point star are 72 degrees apart. We need to
  3529. // skip a point and go to the next one on the star.
  3530. delta_angle = dir * 2.0 * 72.0;
  3531. else
  3532. // If we do this line, we are just trying to move further
  3533. // around the circle.
  3534. delta_angle = dir * (float) random(25, 45);
  3535. angle += delta_angle;
  3536. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3537. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3538. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3539. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3540. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3541. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3542. #if DISABLED(DELTA)
  3543. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3544. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3545. #else
  3546. // If we have gone out too far, we can do a simple fix and scale the numbers
  3547. // back in closer to the origin.
  3548. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3549. X_current /= 1.25;
  3550. Y_current /= 1.25;
  3551. if (verbose_level > 3) {
  3552. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3553. SERIAL_ECHOLNPAIR(", ", Y_current);
  3554. }
  3555. }
  3556. #endif
  3557. if (verbose_level > 3) {
  3558. SERIAL_PROTOCOLPGM("Going to:");
  3559. SERIAL_ECHOPAIR(" X", X_current);
  3560. SERIAL_ECHOPAIR(" Y", Y_current);
  3561. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3562. }
  3563. do_blocking_move_to_xy(X_current, Y_current);
  3564. } // n_legs loop
  3565. } // n_legs
  3566. // Probe a single point
  3567. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3568. /**
  3569. * Get the current mean for the data points we have so far
  3570. */
  3571. double sum = 0.0;
  3572. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3573. mean = sum / (n + 1);
  3574. /**
  3575. * Now, use that mean to calculate the standard deviation for the
  3576. * data points we have so far
  3577. */
  3578. sum = 0.0;
  3579. for (uint8_t j = 0; j <= n; j++)
  3580. sum += sq(sample_set[j] - mean);
  3581. sigma = sqrt(sum / (n + 1));
  3582. if (verbose_level > 0) {
  3583. if (verbose_level > 1) {
  3584. SERIAL_PROTOCOL(n + 1);
  3585. SERIAL_PROTOCOLPGM(" of ");
  3586. SERIAL_PROTOCOL((int)n_samples);
  3587. SERIAL_PROTOCOLPGM(" z: ");
  3588. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3589. if (verbose_level > 2) {
  3590. SERIAL_PROTOCOLPGM(" mean: ");
  3591. SERIAL_PROTOCOL_F(mean, 6);
  3592. SERIAL_PROTOCOLPGM(" sigma: ");
  3593. SERIAL_PROTOCOL_F(sigma, 6);
  3594. }
  3595. }
  3596. SERIAL_EOL;
  3597. }
  3598. } // End of probe loop
  3599. if (STOW_PROBE()) return;
  3600. if (verbose_level > 0) {
  3601. SERIAL_PROTOCOLPGM("Mean: ");
  3602. SERIAL_PROTOCOL_F(mean, 6);
  3603. SERIAL_EOL;
  3604. }
  3605. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3606. SERIAL_PROTOCOL_F(sigma, 6);
  3607. SERIAL_EOL; SERIAL_EOL;
  3608. clean_up_after_endstop_or_probe_move();
  3609. report_current_position();
  3610. }
  3611. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3612. /**
  3613. * M75: Start print timer
  3614. */
  3615. inline void gcode_M75() { print_job_timer.start(); }
  3616. /**
  3617. * M76: Pause print timer
  3618. */
  3619. inline void gcode_M76() { print_job_timer.pause(); }
  3620. /**
  3621. * M77: Stop print timer
  3622. */
  3623. inline void gcode_M77() { print_job_timer.stop(); }
  3624. #if ENABLED(PRINTCOUNTER)
  3625. /**
  3626. * M78: Show print statistics
  3627. */
  3628. inline void gcode_M78() {
  3629. // "M78 S78" will reset the statistics
  3630. if (code_seen('S') && code_value_int() == 78)
  3631. print_job_timer.initStats();
  3632. else
  3633. print_job_timer.showStats();
  3634. }
  3635. #endif
  3636. /**
  3637. * M104: Set hot end temperature
  3638. */
  3639. inline void gcode_M104() {
  3640. if (get_target_extruder_from_command(104)) return;
  3641. if (DEBUGGING(DRYRUN)) return;
  3642. #if ENABLED(SINGLENOZZLE)
  3643. if (target_extruder != active_extruder) return;
  3644. #endif
  3645. if (code_seen('S')) {
  3646. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3647. #if ENABLED(DUAL_X_CARRIAGE)
  3648. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3649. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3650. #endif
  3651. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3652. /**
  3653. * Stop the timer at the end of print, starting is managed by
  3654. * 'heat and wait' M109.
  3655. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3656. * stand by mode, for instance in a dual extruder setup, without affecting
  3657. * the running print timer.
  3658. */
  3659. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3660. print_job_timer.stop();
  3661. LCD_MESSAGEPGM(WELCOME_MSG);
  3662. }
  3663. #endif
  3664. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3665. }
  3666. }
  3667. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3668. void print_heaterstates() {
  3669. #if HAS_TEMP_HOTEND
  3670. SERIAL_PROTOCOLPGM(" T:");
  3671. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3672. SERIAL_PROTOCOLPGM(" /");
  3673. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3674. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3675. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3676. SERIAL_CHAR(')');
  3677. #endif
  3678. #endif
  3679. #if HAS_TEMP_BED
  3680. SERIAL_PROTOCOLPGM(" B:");
  3681. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3682. SERIAL_PROTOCOLPGM(" /");
  3683. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3684. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3685. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3686. SERIAL_CHAR(')');
  3687. #endif
  3688. #endif
  3689. #if HOTENDS > 1
  3690. HOTEND_LOOP() {
  3691. SERIAL_PROTOCOLPAIR(" T", e);
  3692. SERIAL_PROTOCOLCHAR(':');
  3693. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3694. SERIAL_PROTOCOLPGM(" /");
  3695. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3696. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3697. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3698. SERIAL_CHAR(')');
  3699. #endif
  3700. }
  3701. #endif
  3702. SERIAL_PROTOCOLPGM(" @:");
  3703. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3704. #if HAS_TEMP_BED
  3705. SERIAL_PROTOCOLPGM(" B@:");
  3706. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3707. #endif
  3708. #if HOTENDS > 1
  3709. HOTEND_LOOP() {
  3710. SERIAL_PROTOCOLPAIR(" @", e);
  3711. SERIAL_PROTOCOLCHAR(':');
  3712. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3713. }
  3714. #endif
  3715. }
  3716. #endif
  3717. /**
  3718. * M105: Read hot end and bed temperature
  3719. */
  3720. inline void gcode_M105() {
  3721. if (get_target_extruder_from_command(105)) return;
  3722. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3723. SERIAL_PROTOCOLPGM(MSG_OK);
  3724. print_heaterstates();
  3725. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3726. SERIAL_ERROR_START;
  3727. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3728. #endif
  3729. SERIAL_EOL;
  3730. }
  3731. #if FAN_COUNT > 0
  3732. /**
  3733. * M106: Set Fan Speed
  3734. *
  3735. * S<int> Speed between 0-255
  3736. * P<index> Fan index, if more than one fan
  3737. */
  3738. inline void gcode_M106() {
  3739. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3740. p = code_seen('P') ? code_value_ushort() : 0;
  3741. NOMORE(s, 255);
  3742. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3743. }
  3744. /**
  3745. * M107: Fan Off
  3746. */
  3747. inline void gcode_M107() {
  3748. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3749. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3750. }
  3751. #endif // FAN_COUNT > 0
  3752. #if DISABLED(EMERGENCY_PARSER)
  3753. /**
  3754. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3755. */
  3756. inline void gcode_M108() { wait_for_heatup = false; }
  3757. /**
  3758. * M112: Emergency Stop
  3759. */
  3760. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3761. /**
  3762. * M410: Quickstop - Abort all planned moves
  3763. *
  3764. * This will stop the carriages mid-move, so most likely they
  3765. * will be out of sync with the stepper position after this.
  3766. */
  3767. inline void gcode_M410() { quickstop_stepper(); }
  3768. #endif
  3769. #ifndef MIN_COOLING_SLOPE_DEG
  3770. #define MIN_COOLING_SLOPE_DEG 1.50
  3771. #endif
  3772. #ifndef MIN_COOLING_SLOPE_TIME
  3773. #define MIN_COOLING_SLOPE_TIME 60
  3774. #endif
  3775. /**
  3776. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3777. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3778. */
  3779. inline void gcode_M109() {
  3780. if (get_target_extruder_from_command(109)) return;
  3781. if (DEBUGGING(DRYRUN)) return;
  3782. #if ENABLED(SINGLENOZZLE)
  3783. if (target_extruder != active_extruder) return;
  3784. #endif
  3785. bool no_wait_for_cooling = code_seen('S');
  3786. if (no_wait_for_cooling || code_seen('R')) {
  3787. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3788. #if ENABLED(DUAL_X_CARRIAGE)
  3789. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3790. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3791. #endif
  3792. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3793. /**
  3794. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3795. * stand by mode, for instance in a dual extruder setup, without affecting
  3796. * the running print timer.
  3797. */
  3798. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3799. print_job_timer.stop();
  3800. LCD_MESSAGEPGM(WELCOME_MSG);
  3801. }
  3802. /**
  3803. * We do not check if the timer is already running because this check will
  3804. * be done for us inside the Stopwatch::start() method thus a running timer
  3805. * will not restart.
  3806. */
  3807. else print_job_timer.start();
  3808. #endif
  3809. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3810. }
  3811. #if ENABLED(AUTOTEMP)
  3812. planner.autotemp_M109();
  3813. #endif
  3814. #if TEMP_RESIDENCY_TIME > 0
  3815. millis_t residency_start_ms = 0;
  3816. // Loop until the temperature has stabilized
  3817. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3818. #else
  3819. // Loop until the temperature is very close target
  3820. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3821. #endif //TEMP_RESIDENCY_TIME > 0
  3822. float theTarget = -1.0, old_temp = 9999.0;
  3823. bool wants_to_cool = false;
  3824. wait_for_heatup = true;
  3825. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3826. KEEPALIVE_STATE(NOT_BUSY);
  3827. do {
  3828. // Target temperature might be changed during the loop
  3829. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3830. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3831. theTarget = thermalManager.degTargetHotend(target_extruder);
  3832. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3833. if (no_wait_for_cooling && wants_to_cool) break;
  3834. }
  3835. now = millis();
  3836. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3837. next_temp_ms = now + 1000UL;
  3838. print_heaterstates();
  3839. #if TEMP_RESIDENCY_TIME > 0
  3840. SERIAL_PROTOCOLPGM(" W:");
  3841. if (residency_start_ms) {
  3842. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3843. SERIAL_PROTOCOLLN(rem);
  3844. }
  3845. else {
  3846. SERIAL_PROTOCOLLNPGM("?");
  3847. }
  3848. #else
  3849. SERIAL_EOL;
  3850. #endif
  3851. }
  3852. idle();
  3853. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3854. float temp = thermalManager.degHotend(target_extruder);
  3855. #if TEMP_RESIDENCY_TIME > 0
  3856. float temp_diff = fabs(theTarget - temp);
  3857. if (!residency_start_ms) {
  3858. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3859. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3860. }
  3861. else if (temp_diff > TEMP_HYSTERESIS) {
  3862. // Restart the timer whenever the temperature falls outside the hysteresis.
  3863. residency_start_ms = now;
  3864. }
  3865. #endif //TEMP_RESIDENCY_TIME > 0
  3866. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3867. if (wants_to_cool) {
  3868. // break after MIN_COOLING_SLOPE_TIME seconds
  3869. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3870. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3871. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3872. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3873. old_temp = temp;
  3874. }
  3875. }
  3876. } while (wait_for_heatup && TEMP_CONDITIONS);
  3877. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3878. KEEPALIVE_STATE(IN_HANDLER);
  3879. }
  3880. #if HAS_TEMP_BED
  3881. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3882. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3883. #endif
  3884. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3885. #define MIN_COOLING_SLOPE_TIME_BED 60
  3886. #endif
  3887. /**
  3888. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3889. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3890. */
  3891. inline void gcode_M190() {
  3892. if (DEBUGGING(DRYRUN)) return;
  3893. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3894. bool no_wait_for_cooling = code_seen('S');
  3895. if (no_wait_for_cooling || code_seen('R')) {
  3896. thermalManager.setTargetBed(code_value_temp_abs());
  3897. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3898. if (code_value_temp_abs() > BED_MINTEMP) {
  3899. /**
  3900. * We start the timer when 'heating and waiting' command arrives, LCD
  3901. * functions never wait. Cooling down managed by extruders.
  3902. *
  3903. * We do not check if the timer is already running because this check will
  3904. * be done for us inside the Stopwatch::start() method thus a running timer
  3905. * will not restart.
  3906. */
  3907. print_job_timer.start();
  3908. }
  3909. #endif
  3910. }
  3911. #if TEMP_BED_RESIDENCY_TIME > 0
  3912. millis_t residency_start_ms = 0;
  3913. // Loop until the temperature has stabilized
  3914. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3915. #else
  3916. // Loop until the temperature is very close target
  3917. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3918. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3919. float theTarget = -1.0, old_temp = 9999.0;
  3920. bool wants_to_cool = false;
  3921. wait_for_heatup = true;
  3922. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3923. KEEPALIVE_STATE(NOT_BUSY);
  3924. target_extruder = active_extruder; // for print_heaterstates
  3925. do {
  3926. // Target temperature might be changed during the loop
  3927. if (theTarget != thermalManager.degTargetBed()) {
  3928. wants_to_cool = thermalManager.isCoolingBed();
  3929. theTarget = thermalManager.degTargetBed();
  3930. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3931. if (no_wait_for_cooling && wants_to_cool) break;
  3932. }
  3933. now = millis();
  3934. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3935. next_temp_ms = now + 1000UL;
  3936. print_heaterstates();
  3937. #if TEMP_BED_RESIDENCY_TIME > 0
  3938. SERIAL_PROTOCOLPGM(" W:");
  3939. if (residency_start_ms) {
  3940. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3941. SERIAL_PROTOCOLLN(rem);
  3942. }
  3943. else {
  3944. SERIAL_PROTOCOLLNPGM("?");
  3945. }
  3946. #else
  3947. SERIAL_EOL;
  3948. #endif
  3949. }
  3950. idle();
  3951. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3952. float temp = thermalManager.degBed();
  3953. #if TEMP_BED_RESIDENCY_TIME > 0
  3954. float temp_diff = fabs(theTarget - temp);
  3955. if (!residency_start_ms) {
  3956. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3957. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3958. }
  3959. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3960. // Restart the timer whenever the temperature falls outside the hysteresis.
  3961. residency_start_ms = now;
  3962. }
  3963. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3964. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3965. if (wants_to_cool) {
  3966. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  3967. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  3968. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3969. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  3970. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  3971. old_temp = temp;
  3972. }
  3973. }
  3974. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  3975. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  3976. KEEPALIVE_STATE(IN_HANDLER);
  3977. }
  3978. #endif // HAS_TEMP_BED
  3979. /**
  3980. * M110: Set Current Line Number
  3981. */
  3982. inline void gcode_M110() {
  3983. if (code_seen('N')) gcode_N = code_value_long();
  3984. }
  3985. /**
  3986. * M111: Set the debug level
  3987. */
  3988. inline void gcode_M111() {
  3989. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  3990. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3991. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3992. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3993. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3994. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3996. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3997. #endif
  3998. const static char* const debug_strings[] PROGMEM = {
  3999. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4000. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4001. str_debug_32
  4002. #endif
  4003. };
  4004. SERIAL_ECHO_START;
  4005. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4006. if (marlin_debug_flags) {
  4007. uint8_t comma = 0;
  4008. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4009. if (TEST(marlin_debug_flags, i)) {
  4010. if (comma++) SERIAL_CHAR(',');
  4011. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4012. }
  4013. }
  4014. }
  4015. else {
  4016. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4017. }
  4018. SERIAL_EOL;
  4019. }
  4020. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4021. /**
  4022. * M113: Get or set Host Keepalive interval (0 to disable)
  4023. *
  4024. * S<seconds> Optional. Set the keepalive interval.
  4025. */
  4026. inline void gcode_M113() {
  4027. if (code_seen('S')) {
  4028. host_keepalive_interval = code_value_byte();
  4029. NOMORE(host_keepalive_interval, 60);
  4030. }
  4031. else {
  4032. SERIAL_ECHO_START;
  4033. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4034. }
  4035. }
  4036. #endif
  4037. #if ENABLED(BARICUDA)
  4038. #if HAS_HEATER_1
  4039. /**
  4040. * M126: Heater 1 valve open
  4041. */
  4042. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4043. /**
  4044. * M127: Heater 1 valve close
  4045. */
  4046. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4047. #endif
  4048. #if HAS_HEATER_2
  4049. /**
  4050. * M128: Heater 2 valve open
  4051. */
  4052. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4053. /**
  4054. * M129: Heater 2 valve close
  4055. */
  4056. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4057. #endif
  4058. #endif //BARICUDA
  4059. /**
  4060. * M140: Set bed temperature
  4061. */
  4062. inline void gcode_M140() {
  4063. if (DEBUGGING(DRYRUN)) return;
  4064. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4065. }
  4066. #if ENABLED(ULTIPANEL)
  4067. /**
  4068. * M145: Set the heatup state for a material in the LCD menu
  4069. * S<material> (0=PLA, 1=ABS)
  4070. * H<hotend temp>
  4071. * B<bed temp>
  4072. * F<fan speed>
  4073. */
  4074. inline void gcode_M145() {
  4075. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4076. if (material < 0 || material > 1) {
  4077. SERIAL_ERROR_START;
  4078. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4079. }
  4080. else {
  4081. int v;
  4082. switch (material) {
  4083. case 0:
  4084. if (code_seen('H')) {
  4085. v = code_value_int();
  4086. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4087. }
  4088. if (code_seen('F')) {
  4089. v = code_value_int();
  4090. preheatFanSpeed1 = constrain(v, 0, 255);
  4091. }
  4092. #if TEMP_SENSOR_BED != 0
  4093. if (code_seen('B')) {
  4094. v = code_value_int();
  4095. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4096. }
  4097. #endif
  4098. break;
  4099. case 1:
  4100. if (code_seen('H')) {
  4101. v = code_value_int();
  4102. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4103. }
  4104. if (code_seen('F')) {
  4105. v = code_value_int();
  4106. preheatFanSpeed2 = constrain(v, 0, 255);
  4107. }
  4108. #if TEMP_SENSOR_BED != 0
  4109. if (code_seen('B')) {
  4110. v = code_value_int();
  4111. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4112. }
  4113. #endif
  4114. break;
  4115. }
  4116. }
  4117. }
  4118. #endif // ULTIPANEL
  4119. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4120. /**
  4121. * M149: Set temperature units
  4122. */
  4123. inline void gcode_M149() {
  4124. if (code_seen('C')) {
  4125. set_input_temp_units(TEMPUNIT_C);
  4126. } else if (code_seen('K')) {
  4127. set_input_temp_units(TEMPUNIT_K);
  4128. } else if (code_seen('F')) {
  4129. set_input_temp_units(TEMPUNIT_F);
  4130. }
  4131. }
  4132. #endif
  4133. #if HAS_POWER_SWITCH
  4134. /**
  4135. * M80: Turn on Power Supply
  4136. */
  4137. inline void gcode_M80() {
  4138. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4139. /**
  4140. * If you have a switch on suicide pin, this is useful
  4141. * if you want to start another print with suicide feature after
  4142. * a print without suicide...
  4143. */
  4144. #if HAS_SUICIDE
  4145. OUT_WRITE(SUICIDE_PIN, HIGH);
  4146. #endif
  4147. #if ENABLED(ULTIPANEL)
  4148. powersupply = true;
  4149. LCD_MESSAGEPGM(WELCOME_MSG);
  4150. lcd_update();
  4151. #endif
  4152. }
  4153. #endif // HAS_POWER_SWITCH
  4154. /**
  4155. * M81: Turn off Power, including Power Supply, if there is one.
  4156. *
  4157. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4158. */
  4159. inline void gcode_M81() {
  4160. thermalManager.disable_all_heaters();
  4161. stepper.finish_and_disable();
  4162. #if FAN_COUNT > 0
  4163. #if FAN_COUNT > 1
  4164. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4165. #else
  4166. fanSpeeds[0] = 0;
  4167. #endif
  4168. #endif
  4169. delay(1000); // Wait 1 second before switching off
  4170. #if HAS_SUICIDE
  4171. stepper.synchronize();
  4172. suicide();
  4173. #elif HAS_POWER_SWITCH
  4174. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4175. #endif
  4176. #if ENABLED(ULTIPANEL)
  4177. #if HAS_POWER_SWITCH
  4178. powersupply = false;
  4179. #endif
  4180. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4181. lcd_update();
  4182. #endif
  4183. }
  4184. /**
  4185. * M82: Set E codes absolute (default)
  4186. */
  4187. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4188. /**
  4189. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4190. */
  4191. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4192. /**
  4193. * M18, M84: Disable all stepper motors
  4194. */
  4195. inline void gcode_M18_M84() {
  4196. if (code_seen('S')) {
  4197. stepper_inactive_time = code_value_millis_from_seconds();
  4198. }
  4199. else {
  4200. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4201. if (all_axis) {
  4202. stepper.finish_and_disable();
  4203. }
  4204. else {
  4205. stepper.synchronize();
  4206. if (code_seen('X')) disable_x();
  4207. if (code_seen('Y')) disable_y();
  4208. if (code_seen('Z')) disable_z();
  4209. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4210. if (code_seen('E')) {
  4211. disable_e0();
  4212. disable_e1();
  4213. disable_e2();
  4214. disable_e3();
  4215. }
  4216. #endif
  4217. }
  4218. }
  4219. }
  4220. /**
  4221. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4222. */
  4223. inline void gcode_M85() {
  4224. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4225. }
  4226. /**
  4227. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4228. * (Follows the same syntax as G92)
  4229. */
  4230. inline void gcode_M92() {
  4231. LOOP_XYZE(i) {
  4232. if (code_seen(axis_codes[i])) {
  4233. if (i == E_AXIS) {
  4234. float value = code_value_per_axis_unit(i);
  4235. if (value < 20.0) {
  4236. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4237. planner.max_e_jerk *= factor;
  4238. planner.max_feedrate_mm_s[i] *= factor;
  4239. planner.max_acceleration_steps_per_s2[i] *= factor;
  4240. }
  4241. planner.axis_steps_per_mm[i] = value;
  4242. }
  4243. else {
  4244. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4245. }
  4246. }
  4247. }
  4248. planner.refresh_positioning();
  4249. }
  4250. /**
  4251. * Output the current position to serial
  4252. */
  4253. static void report_current_position() {
  4254. SERIAL_PROTOCOLPGM("X:");
  4255. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4256. SERIAL_PROTOCOLPGM(" Y:");
  4257. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4258. SERIAL_PROTOCOLPGM(" Z:");
  4259. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4260. SERIAL_PROTOCOLPGM(" E:");
  4261. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4262. stepper.report_positions();
  4263. #if IS_SCARA
  4264. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4265. SERIAL_PROTOCOL(delta[X_AXIS]);
  4266. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4267. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4268. SERIAL_EOL;
  4269. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4270. SERIAL_PROTOCOL(delta[X_AXIS]);
  4271. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4272. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
  4273. SERIAL_EOL;
  4274. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4275. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4276. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4277. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4278. SERIAL_EOL; SERIAL_EOL;
  4279. #endif
  4280. }
  4281. /**
  4282. * M114: Output current position to serial port
  4283. */
  4284. inline void gcode_M114() { report_current_position(); }
  4285. /**
  4286. * M115: Capabilities string
  4287. */
  4288. inline void gcode_M115() {
  4289. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4290. }
  4291. /**
  4292. * M117: Set LCD Status Message
  4293. */
  4294. inline void gcode_M117() {
  4295. lcd_setstatus(current_command_args);
  4296. }
  4297. /**
  4298. * M119: Output endstop states to serial output
  4299. */
  4300. inline void gcode_M119() { endstops.M119(); }
  4301. /**
  4302. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4303. */
  4304. inline void gcode_M120() { endstops.enable_globally(true); }
  4305. /**
  4306. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4307. */
  4308. inline void gcode_M121() { endstops.enable_globally(false); }
  4309. #if ENABLED(BLINKM)
  4310. /**
  4311. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4312. */
  4313. inline void gcode_M150() {
  4314. SendColors(
  4315. code_seen('R') ? code_value_byte() : 0,
  4316. code_seen('U') ? code_value_byte() : 0,
  4317. code_seen('B') ? code_value_byte() : 0
  4318. );
  4319. }
  4320. #endif // BLINKM
  4321. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4322. /**
  4323. * M155: Send data to a I2C slave device
  4324. *
  4325. * This is a PoC, the formating and arguments for the GCODE will
  4326. * change to be more compatible, the current proposal is:
  4327. *
  4328. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4329. *
  4330. * M155 B<byte-1 value in base 10>
  4331. * M155 B<byte-2 value in base 10>
  4332. * M155 B<byte-3 value in base 10>
  4333. *
  4334. * M155 S1 ; Send the buffered data and reset the buffer
  4335. * M155 R1 ; Reset the buffer without sending data
  4336. *
  4337. */
  4338. inline void gcode_M155() {
  4339. // Set the target address
  4340. if (code_seen('A')) i2c.address(code_value_byte());
  4341. // Add a new byte to the buffer
  4342. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4343. // Flush the buffer to the bus
  4344. if (code_seen('S')) i2c.send();
  4345. // Reset and rewind the buffer
  4346. else if (code_seen('R')) i2c.reset();
  4347. }
  4348. /**
  4349. * M156: Request X bytes from I2C slave device
  4350. *
  4351. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4352. */
  4353. inline void gcode_M156() {
  4354. if (code_seen('A')) i2c.address(code_value_byte());
  4355. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4356. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4357. i2c.relay(bytes);
  4358. }
  4359. else {
  4360. SERIAL_ERROR_START;
  4361. SERIAL_ERRORLN("Bad i2c request");
  4362. }
  4363. }
  4364. #endif // EXPERIMENTAL_I2CBUS
  4365. /**
  4366. * M200: Set filament diameter and set E axis units to cubic units
  4367. *
  4368. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4369. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4370. */
  4371. inline void gcode_M200() {
  4372. if (get_target_extruder_from_command(200)) return;
  4373. if (code_seen('D')) {
  4374. // setting any extruder filament size disables volumetric on the assumption that
  4375. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4376. // for all extruders
  4377. volumetric_enabled = (code_value_linear_units() != 0.0);
  4378. if (volumetric_enabled) {
  4379. filament_size[target_extruder] = code_value_linear_units();
  4380. // make sure all extruders have some sane value for the filament size
  4381. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4382. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4383. }
  4384. }
  4385. else {
  4386. //reserved for setting filament diameter via UFID or filament measuring device
  4387. return;
  4388. }
  4389. calculate_volumetric_multipliers();
  4390. }
  4391. /**
  4392. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4393. */
  4394. inline void gcode_M201() {
  4395. LOOP_XYZE(i) {
  4396. if (code_seen(axis_codes[i])) {
  4397. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4398. }
  4399. }
  4400. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4401. planner.reset_acceleration_rates();
  4402. }
  4403. #if 0 // Not used for Sprinter/grbl gen6
  4404. inline void gcode_M202() {
  4405. LOOP_XYZE(i) {
  4406. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4407. }
  4408. }
  4409. #endif
  4410. /**
  4411. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4412. */
  4413. inline void gcode_M203() {
  4414. LOOP_XYZE(i)
  4415. if (code_seen(axis_codes[i]))
  4416. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4417. }
  4418. /**
  4419. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4420. *
  4421. * P = Printing moves
  4422. * R = Retract only (no X, Y, Z) moves
  4423. * T = Travel (non printing) moves
  4424. *
  4425. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4426. */
  4427. inline void gcode_M204() {
  4428. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4429. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4430. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4431. }
  4432. if (code_seen('P')) {
  4433. planner.acceleration = code_value_linear_units();
  4434. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4435. }
  4436. if (code_seen('R')) {
  4437. planner.retract_acceleration = code_value_linear_units();
  4438. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4439. }
  4440. if (code_seen('T')) {
  4441. planner.travel_acceleration = code_value_linear_units();
  4442. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4443. }
  4444. }
  4445. /**
  4446. * M205: Set Advanced Settings
  4447. *
  4448. * S = Min Feed Rate (units/s)
  4449. * T = Min Travel Feed Rate (units/s)
  4450. * B = Min Segment Time (µs)
  4451. * X = Max XY Jerk (units/sec^2)
  4452. * Z = Max Z Jerk (units/sec^2)
  4453. * E = Max E Jerk (units/sec^2)
  4454. */
  4455. inline void gcode_M205() {
  4456. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4457. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4458. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4459. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4460. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4461. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4462. }
  4463. /**
  4464. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4465. */
  4466. inline void gcode_M206() {
  4467. LOOP_XYZ(i)
  4468. if (code_seen(axis_codes[i]))
  4469. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4470. #if IS_SCARA
  4471. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4472. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4473. #endif
  4474. SYNC_PLAN_POSITION_KINEMATIC();
  4475. report_current_position();
  4476. }
  4477. #if ENABLED(DELTA)
  4478. /**
  4479. * M665: Set delta configurations
  4480. *
  4481. * L = diagonal rod
  4482. * R = delta radius
  4483. * S = segments per second
  4484. * A = Alpha (Tower 1) diagonal rod trim
  4485. * B = Beta (Tower 2) diagonal rod trim
  4486. * C = Gamma (Tower 3) diagonal rod trim
  4487. */
  4488. inline void gcode_M665() {
  4489. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4490. if (code_seen('R')) delta_radius = code_value_linear_units();
  4491. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4492. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4493. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4494. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4495. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4496. }
  4497. /**
  4498. * M666: Set delta endstop adjustment
  4499. */
  4500. inline void gcode_M666() {
  4501. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4502. if (DEBUGGING(LEVELING)) {
  4503. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4504. }
  4505. #endif
  4506. LOOP_XYZ(i) {
  4507. if (code_seen(axis_codes[i])) {
  4508. endstop_adj[i] = code_value_axis_units(i);
  4509. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4510. if (DEBUGGING(LEVELING)) {
  4511. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4512. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4513. }
  4514. #endif
  4515. }
  4516. }
  4517. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4518. if (DEBUGGING(LEVELING)) {
  4519. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4520. }
  4521. #endif
  4522. }
  4523. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4524. /**
  4525. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4526. */
  4527. inline void gcode_M666() {
  4528. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4529. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4530. }
  4531. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4532. #if ENABLED(FWRETRACT)
  4533. /**
  4534. * M207: Set firmware retraction values
  4535. *
  4536. * S[+units] retract_length
  4537. * W[+units] retract_length_swap (multi-extruder)
  4538. * F[units/min] retract_feedrate_mm_s
  4539. * Z[units] retract_zlift
  4540. */
  4541. inline void gcode_M207() {
  4542. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4543. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4544. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4545. #if EXTRUDERS > 1
  4546. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4547. #endif
  4548. }
  4549. /**
  4550. * M208: Set firmware un-retraction values
  4551. *
  4552. * S[+units] retract_recover_length (in addition to M207 S*)
  4553. * W[+units] retract_recover_length_swap (multi-extruder)
  4554. * F[units/min] retract_recover_feedrate_mm_s
  4555. */
  4556. inline void gcode_M208() {
  4557. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4558. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4559. #if EXTRUDERS > 1
  4560. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4561. #endif
  4562. }
  4563. /**
  4564. * M209: Enable automatic retract (M209 S1)
  4565. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4566. */
  4567. inline void gcode_M209() {
  4568. if (code_seen('S')) {
  4569. autoretract_enabled = code_value_bool();
  4570. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4571. }
  4572. }
  4573. #endif // FWRETRACT
  4574. /**
  4575. * M211: Enable, Disable, and/or Report software endstops
  4576. *
  4577. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4578. */
  4579. inline void gcode_M211() {
  4580. SERIAL_ECHO_START;
  4581. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4582. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4583. #endif
  4584. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4585. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4586. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4587. #else
  4588. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4589. SERIAL_ECHOPGM(MSG_OFF);
  4590. #endif
  4591. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  4592. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4593. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4594. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4595. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  4596. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4597. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4598. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4599. }
  4600. #if HOTENDS > 1
  4601. /**
  4602. * M218 - set hotend offset (in linear units)
  4603. *
  4604. * T<tool>
  4605. * X<xoffset>
  4606. * Y<yoffset>
  4607. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4608. */
  4609. inline void gcode_M218() {
  4610. if (get_target_extruder_from_command(218)) return;
  4611. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4612. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4613. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4614. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4615. #endif
  4616. SERIAL_ECHO_START;
  4617. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4618. HOTEND_LOOP() {
  4619. SERIAL_CHAR(' ');
  4620. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4621. SERIAL_CHAR(',');
  4622. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4623. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4624. SERIAL_CHAR(',');
  4625. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4626. #endif
  4627. }
  4628. SERIAL_EOL;
  4629. }
  4630. #endif // HOTENDS > 1
  4631. /**
  4632. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4633. */
  4634. inline void gcode_M220() {
  4635. if (code_seen('S')) feedrate_percentage = code_value_int();
  4636. }
  4637. /**
  4638. * M221: Set extrusion percentage (M221 T0 S95)
  4639. */
  4640. inline void gcode_M221() {
  4641. if (get_target_extruder_from_command(221)) return;
  4642. if (code_seen('S'))
  4643. flow_percentage[target_extruder] = code_value_int();
  4644. }
  4645. /**
  4646. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4647. */
  4648. inline void gcode_M226() {
  4649. if (code_seen('P')) {
  4650. int pin_number = code_value_int();
  4651. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4652. if (pin_state >= -1 && pin_state <= 1) {
  4653. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4654. if (sensitive_pins[i] == pin_number) {
  4655. pin_number = -1;
  4656. break;
  4657. }
  4658. }
  4659. if (pin_number > -1) {
  4660. int target = LOW;
  4661. stepper.synchronize();
  4662. pinMode(pin_number, INPUT);
  4663. switch (pin_state) {
  4664. case 1:
  4665. target = HIGH;
  4666. break;
  4667. case 0:
  4668. target = LOW;
  4669. break;
  4670. case -1:
  4671. target = !digitalRead(pin_number);
  4672. break;
  4673. }
  4674. while (digitalRead(pin_number) != target) idle();
  4675. } // pin_number > -1
  4676. } // pin_state -1 0 1
  4677. } // code_seen('P')
  4678. }
  4679. #if HAS_SERVOS
  4680. /**
  4681. * M280: Get or set servo position. P<index> [S<angle>]
  4682. */
  4683. inline void gcode_M280() {
  4684. if (!code_seen('P')) return;
  4685. int servo_index = code_value_int();
  4686. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4687. if (code_seen('S'))
  4688. MOVE_SERVO(servo_index, code_value_int());
  4689. else {
  4690. SERIAL_ECHO_START;
  4691. SERIAL_ECHOPAIR(" Servo ", servo_index);
  4692. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  4693. }
  4694. }
  4695. else {
  4696. SERIAL_ERROR_START;
  4697. SERIAL_ECHOPAIR("Servo ", servo_index);
  4698. SERIAL_ECHOLNPGM(" out of range");
  4699. }
  4700. }
  4701. #endif // HAS_SERVOS
  4702. #if HAS_BUZZER
  4703. /**
  4704. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4705. */
  4706. inline void gcode_M300() {
  4707. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4708. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4709. // Limits the tone duration to 0-5 seconds.
  4710. NOMORE(duration, 5000);
  4711. BUZZ(duration, frequency);
  4712. }
  4713. #endif // HAS_BUZZER
  4714. #if ENABLED(PIDTEMP)
  4715. /**
  4716. * M301: Set PID parameters P I D (and optionally C, L)
  4717. *
  4718. * P[float] Kp term
  4719. * I[float] Ki term (unscaled)
  4720. * D[float] Kd term (unscaled)
  4721. *
  4722. * With PID_EXTRUSION_SCALING:
  4723. *
  4724. * C[float] Kc term
  4725. * L[float] LPQ length
  4726. */
  4727. inline void gcode_M301() {
  4728. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4729. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4730. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4731. if (e < HOTENDS) { // catch bad input value
  4732. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4733. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4734. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4735. #if ENABLED(PID_EXTRUSION_SCALING)
  4736. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4737. if (code_seen('L')) lpq_len = code_value_float();
  4738. NOMORE(lpq_len, LPQ_MAX_LEN);
  4739. #endif
  4740. thermalManager.updatePID();
  4741. SERIAL_ECHO_START;
  4742. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4743. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  4744. #endif // PID_PARAMS_PER_HOTEND
  4745. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  4746. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  4747. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  4748. #if ENABLED(PID_EXTRUSION_SCALING)
  4749. //Kc does not have scaling applied above, or in resetting defaults
  4750. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  4751. #endif
  4752. SERIAL_EOL;
  4753. }
  4754. else {
  4755. SERIAL_ERROR_START;
  4756. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4757. }
  4758. }
  4759. #endif // PIDTEMP
  4760. #if ENABLED(PIDTEMPBED)
  4761. inline void gcode_M304() {
  4762. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4763. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4764. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4765. thermalManager.updatePID();
  4766. SERIAL_ECHO_START;
  4767. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  4768. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  4769. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  4770. }
  4771. #endif // PIDTEMPBED
  4772. #if defined(CHDK) || HAS_PHOTOGRAPH
  4773. /**
  4774. * M240: Trigger a camera by emulating a Canon RC-1
  4775. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4776. */
  4777. inline void gcode_M240() {
  4778. #ifdef CHDK
  4779. OUT_WRITE(CHDK, HIGH);
  4780. chdkHigh = millis();
  4781. chdkActive = true;
  4782. #elif HAS_PHOTOGRAPH
  4783. const uint8_t NUM_PULSES = 16;
  4784. const float PULSE_LENGTH = 0.01524;
  4785. for (int i = 0; i < NUM_PULSES; i++) {
  4786. WRITE(PHOTOGRAPH_PIN, HIGH);
  4787. _delay_ms(PULSE_LENGTH);
  4788. WRITE(PHOTOGRAPH_PIN, LOW);
  4789. _delay_ms(PULSE_LENGTH);
  4790. }
  4791. delay(7.33);
  4792. for (int i = 0; i < NUM_PULSES; i++) {
  4793. WRITE(PHOTOGRAPH_PIN, HIGH);
  4794. _delay_ms(PULSE_LENGTH);
  4795. WRITE(PHOTOGRAPH_PIN, LOW);
  4796. _delay_ms(PULSE_LENGTH);
  4797. }
  4798. #endif // !CHDK && HAS_PHOTOGRAPH
  4799. }
  4800. #endif // CHDK || PHOTOGRAPH_PIN
  4801. #if HAS_LCD_CONTRAST
  4802. /**
  4803. * M250: Read and optionally set the LCD contrast
  4804. */
  4805. inline void gcode_M250() {
  4806. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4807. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4808. SERIAL_PROTOCOL(lcd_contrast);
  4809. SERIAL_EOL;
  4810. }
  4811. #endif // HAS_LCD_CONTRAST
  4812. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4813. /**
  4814. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4815. *
  4816. * S<temperature> sets the minimum extrude temperature
  4817. * P<bool> enables (1) or disables (0) cold extrusion
  4818. *
  4819. * Examples:
  4820. *
  4821. * M302 ; report current cold extrusion state
  4822. * M302 P0 ; enable cold extrusion checking
  4823. * M302 P1 ; disables cold extrusion checking
  4824. * M302 S0 ; always allow extrusion (disables checking)
  4825. * M302 S170 ; only allow extrusion above 170
  4826. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4827. */
  4828. inline void gcode_M302() {
  4829. bool seen_S = code_seen('S');
  4830. if (seen_S) {
  4831. thermalManager.extrude_min_temp = code_value_temp_abs();
  4832. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4833. }
  4834. if (code_seen('P'))
  4835. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4836. else if (!seen_S) {
  4837. // Report current state
  4838. SERIAL_ECHO_START;
  4839. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4840. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4841. SERIAL_ECHOLNPGM("C)");
  4842. }
  4843. }
  4844. #endif // PREVENT_COLD_EXTRUSION
  4845. /**
  4846. * M303: PID relay autotune
  4847. *
  4848. * S<temperature> sets the target temperature. (default 150C)
  4849. * E<extruder> (-1 for the bed) (default 0)
  4850. * C<cycles>
  4851. * U<bool> with a non-zero value will apply the result to current settings
  4852. */
  4853. inline void gcode_M303() {
  4854. #if HAS_PID_HEATING
  4855. int e = code_seen('E') ? code_value_int() : 0;
  4856. int c = code_seen('C') ? code_value_int() : 5;
  4857. bool u = code_seen('U') && code_value_bool();
  4858. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4859. if (e >= 0 && e < HOTENDS)
  4860. target_extruder = e;
  4861. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4862. thermalManager.PID_autotune(temp, e, c, u);
  4863. KEEPALIVE_STATE(IN_HANDLER);
  4864. #else
  4865. SERIAL_ERROR_START;
  4866. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4867. #endif
  4868. }
  4869. #if ENABLED(MORGAN_SCARA)
  4870. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  4871. if (IsRunning()) {
  4872. //gcode_get_destination(); // For X Y Z E F
  4873. forward_kinematics_SCARA(delta_a, delta_b);
  4874. destination[X_AXIS] = cartes[X_AXIS];
  4875. destination[Y_AXIS] = cartes[Y_AXIS];
  4876. destination[Z_AXIS] = current_position[Z_AXIS];
  4877. prepare_move_to_destination();
  4878. return true;
  4879. }
  4880. return false;
  4881. }
  4882. /**
  4883. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4884. */
  4885. inline bool gcode_M360() {
  4886. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4887. return SCARA_move_to_cal(0, 120);
  4888. }
  4889. /**
  4890. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4891. */
  4892. inline bool gcode_M361() {
  4893. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4894. return SCARA_move_to_cal(90, 130);
  4895. }
  4896. /**
  4897. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4898. */
  4899. inline bool gcode_M362() {
  4900. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4901. return SCARA_move_to_cal(60, 180);
  4902. }
  4903. /**
  4904. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4905. */
  4906. inline bool gcode_M363() {
  4907. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4908. return SCARA_move_to_cal(50, 90);
  4909. }
  4910. /**
  4911. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4912. */
  4913. inline bool gcode_M364() {
  4914. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4915. return SCARA_move_to_cal(45, 135);
  4916. }
  4917. #endif // SCARA
  4918. #if ENABLED(EXT_SOLENOID)
  4919. void enable_solenoid(uint8_t num) {
  4920. switch (num) {
  4921. case 0:
  4922. OUT_WRITE(SOL0_PIN, HIGH);
  4923. break;
  4924. #if HAS_SOLENOID_1
  4925. case 1:
  4926. OUT_WRITE(SOL1_PIN, HIGH);
  4927. break;
  4928. #endif
  4929. #if HAS_SOLENOID_2
  4930. case 2:
  4931. OUT_WRITE(SOL2_PIN, HIGH);
  4932. break;
  4933. #endif
  4934. #if HAS_SOLENOID_3
  4935. case 3:
  4936. OUT_WRITE(SOL3_PIN, HIGH);
  4937. break;
  4938. #endif
  4939. default:
  4940. SERIAL_ECHO_START;
  4941. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4942. break;
  4943. }
  4944. }
  4945. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4946. void disable_all_solenoids() {
  4947. OUT_WRITE(SOL0_PIN, LOW);
  4948. OUT_WRITE(SOL1_PIN, LOW);
  4949. OUT_WRITE(SOL2_PIN, LOW);
  4950. OUT_WRITE(SOL3_PIN, LOW);
  4951. }
  4952. /**
  4953. * M380: Enable solenoid on the active extruder
  4954. */
  4955. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4956. /**
  4957. * M381: Disable all solenoids
  4958. */
  4959. inline void gcode_M381() { disable_all_solenoids(); }
  4960. #endif // EXT_SOLENOID
  4961. /**
  4962. * M400: Finish all moves
  4963. */
  4964. inline void gcode_M400() { stepper.synchronize(); }
  4965. #if HAS_BED_PROBE
  4966. /**
  4967. * M401: Engage Z Servo endstop if available
  4968. */
  4969. inline void gcode_M401() { DEPLOY_PROBE(); }
  4970. /**
  4971. * M402: Retract Z Servo endstop if enabled
  4972. */
  4973. inline void gcode_M402() { STOW_PROBE(); }
  4974. #endif // HAS_BED_PROBE
  4975. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4976. /**
  4977. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  4978. */
  4979. inline void gcode_M404() {
  4980. if (code_seen('W')) {
  4981. filament_width_nominal = code_value_linear_units();
  4982. }
  4983. else {
  4984. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4985. SERIAL_PROTOCOLLN(filament_width_nominal);
  4986. }
  4987. }
  4988. /**
  4989. * M405: Turn on filament sensor for control
  4990. */
  4991. inline void gcode_M405() {
  4992. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  4993. // everything else, it uses code_value_int() instead of code_value_linear_units().
  4994. if (code_seen('D')) meas_delay_cm = code_value_int();
  4995. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4996. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  4997. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  4998. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4999. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5000. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5001. }
  5002. filament_sensor = true;
  5003. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5004. //SERIAL_PROTOCOL(filament_width_meas);
  5005. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5006. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5007. }
  5008. /**
  5009. * M406: Turn off filament sensor for control
  5010. */
  5011. inline void gcode_M406() { filament_sensor = false; }
  5012. /**
  5013. * M407: Get measured filament diameter on serial output
  5014. */
  5015. inline void gcode_M407() {
  5016. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5017. SERIAL_PROTOCOLLN(filament_width_meas);
  5018. }
  5019. #endif // FILAMENT_WIDTH_SENSOR
  5020. void quickstop_stepper() {
  5021. stepper.quick_stop();
  5022. #if DISABLED(SCARA)
  5023. stepper.synchronize();
  5024. LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
  5025. SYNC_PLAN_POSITION_KINEMATIC();
  5026. #endif
  5027. }
  5028. #if ENABLED(MESH_BED_LEVELING)
  5029. /**
  5030. * M420: Enable/Disable Mesh Bed Leveling
  5031. */
  5032. inline void gcode_M420() { if (code_seen('S')) mbl.set_has_mesh(code_value_bool()); }
  5033. /**
  5034. * M421: Set a single Mesh Bed Leveling Z coordinate
  5035. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5036. */
  5037. inline void gcode_M421() {
  5038. int8_t px = 0, py = 0;
  5039. float z = 0;
  5040. bool hasX, hasY, hasZ, hasI, hasJ;
  5041. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5042. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5043. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5044. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5045. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5046. if (hasX && hasY && hasZ) {
  5047. if (px >= 0 && py >= 0)
  5048. mbl.set_z(px, py, z);
  5049. else {
  5050. SERIAL_ERROR_START;
  5051. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5052. }
  5053. }
  5054. else if (hasI && hasJ && hasZ) {
  5055. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5056. mbl.set_z(px, py, z);
  5057. else {
  5058. SERIAL_ERROR_START;
  5059. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5060. }
  5061. }
  5062. else {
  5063. SERIAL_ERROR_START;
  5064. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5065. }
  5066. }
  5067. #endif
  5068. /**
  5069. * M428: Set home_offset based on the distance between the
  5070. * current_position and the nearest "reference point."
  5071. * If an axis is past center its endstop position
  5072. * is the reference-point. Otherwise it uses 0. This allows
  5073. * the Z offset to be set near the bed when using a max endstop.
  5074. *
  5075. * M428 can't be used more than 2cm away from 0 or an endstop.
  5076. *
  5077. * Use M206 to set these values directly.
  5078. */
  5079. inline void gcode_M428() {
  5080. bool err = false;
  5081. LOOP_XYZ(i) {
  5082. if (axis_homed[i]) {
  5083. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5084. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5085. if (diff > -20 && diff < 20) {
  5086. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5087. }
  5088. else {
  5089. SERIAL_ERROR_START;
  5090. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5091. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5092. BUZZ(200, 40);
  5093. err = true;
  5094. break;
  5095. }
  5096. }
  5097. }
  5098. if (!err) {
  5099. SYNC_PLAN_POSITION_KINEMATIC();
  5100. report_current_position();
  5101. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5102. BUZZ(200, 659);
  5103. BUZZ(200, 698);
  5104. }
  5105. }
  5106. /**
  5107. * M500: Store settings in EEPROM
  5108. */
  5109. inline void gcode_M500() {
  5110. Config_StoreSettings();
  5111. }
  5112. /**
  5113. * M501: Read settings from EEPROM
  5114. */
  5115. inline void gcode_M501() {
  5116. Config_RetrieveSettings();
  5117. }
  5118. /**
  5119. * M502: Revert to default settings
  5120. */
  5121. inline void gcode_M502() {
  5122. Config_ResetDefault();
  5123. }
  5124. /**
  5125. * M503: print settings currently in memory
  5126. */
  5127. inline void gcode_M503() {
  5128. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5129. }
  5130. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5131. /**
  5132. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5133. */
  5134. inline void gcode_M540() {
  5135. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5136. }
  5137. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5138. #if HAS_BED_PROBE
  5139. inline void gcode_M851() {
  5140. SERIAL_ECHO_START;
  5141. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5142. SERIAL_CHAR(' ');
  5143. if (code_seen('Z')) {
  5144. float value = code_value_axis_units(Z_AXIS);
  5145. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5146. zprobe_zoffset = value;
  5147. SERIAL_ECHO(zprobe_zoffset);
  5148. }
  5149. else {
  5150. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5151. SERIAL_CHAR(' ');
  5152. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5153. }
  5154. }
  5155. else {
  5156. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5157. }
  5158. SERIAL_EOL;
  5159. }
  5160. #endif // HAS_BED_PROBE
  5161. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5162. /**
  5163. * M600: Pause for filament change
  5164. *
  5165. * E[distance] - Retract the filament this far (negative value)
  5166. * Z[distance] - Move the Z axis by this distance
  5167. * X[position] - Move to this X position, with Y
  5168. * Y[position] - Move to this Y position, with X
  5169. * L[distance] - Retract distance for removal (manual reload)
  5170. *
  5171. * Default values are used for omitted arguments.
  5172. *
  5173. */
  5174. inline void gcode_M600() {
  5175. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5176. SERIAL_ERROR_START;
  5177. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5178. return;
  5179. }
  5180. // Show initial message and wait for synchronize steppers
  5181. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5182. stepper.synchronize();
  5183. float lastpos[NUM_AXIS];
  5184. // Save current position of all axes
  5185. LOOP_XYZE(i)
  5186. lastpos[i] = destination[i] = current_position[i];
  5187. // Define runplan for move axes
  5188. #if IS_KINEMATIC
  5189. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5190. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5191. #else
  5192. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5193. #endif
  5194. KEEPALIVE_STATE(IN_HANDLER);
  5195. // Initial retract before move to filament change position
  5196. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5197. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5198. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5199. #endif
  5200. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5201. // Lift Z axis
  5202. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5203. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5204. FILAMENT_CHANGE_Z_ADD
  5205. #else
  5206. 0
  5207. #endif
  5208. ;
  5209. if (z_lift > 0) {
  5210. destination[Z_AXIS] += z_lift;
  5211. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5212. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5213. }
  5214. // Move XY axes to filament exchange position
  5215. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5216. #ifdef FILAMENT_CHANGE_X_POS
  5217. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5218. #endif
  5219. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5220. #ifdef FILAMENT_CHANGE_Y_POS
  5221. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5222. #endif
  5223. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5224. stepper.synchronize();
  5225. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5226. // Unload filament
  5227. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5228. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5229. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5230. #endif
  5231. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5232. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5233. stepper.synchronize();
  5234. disable_e0();
  5235. disable_e1();
  5236. disable_e2();
  5237. disable_e3();
  5238. delay(100);
  5239. #if HAS_BUZZER
  5240. millis_t next_tick = 0;
  5241. #endif
  5242. // Wait for filament insert by user and press button
  5243. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5244. while (!lcd_clicked()) {
  5245. #if HAS_BUZZER
  5246. millis_t ms = millis();
  5247. if (ms >= next_tick) {
  5248. BUZZ(300, 2000);
  5249. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5250. }
  5251. #endif
  5252. idle(true);
  5253. }
  5254. delay(100);
  5255. while (lcd_clicked()) idle(true);
  5256. delay(100);
  5257. // Show load message
  5258. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5259. // Load filament
  5260. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5261. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5262. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5263. #endif
  5264. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5265. stepper.synchronize();
  5266. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5267. do {
  5268. // Extrude filament to get into hotend
  5269. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5270. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5271. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5272. stepper.synchronize();
  5273. // Ask user if more filament should be extruded
  5274. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5275. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5276. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5277. KEEPALIVE_STATE(IN_HANDLER);
  5278. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5279. #endif
  5280. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5281. KEEPALIVE_STATE(IN_HANDLER);
  5282. // Set extruder to saved position
  5283. current_position[E_AXIS] = lastpos[E_AXIS];
  5284. destination[E_AXIS] = lastpos[E_AXIS];
  5285. planner.set_e_position_mm(current_position[E_AXIS]);
  5286. #if IS_KINEMATIC
  5287. // Move XYZ to starting position, then E
  5288. inverse_kinematics(lastpos);
  5289. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5290. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5291. #else
  5292. // Move XY to starting position, then Z, then E
  5293. destination[X_AXIS] = lastpos[X_AXIS];
  5294. destination[Y_AXIS] = lastpos[Y_AXIS];
  5295. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5296. destination[Z_AXIS] = lastpos[Z_AXIS];
  5297. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5298. #endif
  5299. stepper.synchronize();
  5300. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5301. filament_ran_out = false;
  5302. #endif
  5303. // Show status screen
  5304. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5305. }
  5306. #endif // FILAMENT_CHANGE_FEATURE
  5307. #if ENABLED(DUAL_X_CARRIAGE)
  5308. /**
  5309. * M605: Set dual x-carriage movement mode
  5310. *
  5311. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5312. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5313. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5314. * units x-offset and an optional differential hotend temperature of
  5315. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5316. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5317. *
  5318. * Note: the X axis should be homed after changing dual x-carriage mode.
  5319. */
  5320. inline void gcode_M605() {
  5321. stepper.synchronize();
  5322. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5323. switch (dual_x_carriage_mode) {
  5324. case DXC_DUPLICATION_MODE:
  5325. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5326. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5327. SERIAL_ECHO_START;
  5328. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5329. SERIAL_CHAR(' ');
  5330. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5331. SERIAL_CHAR(',');
  5332. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5333. SERIAL_CHAR(' ');
  5334. SERIAL_ECHO(duplicate_extruder_x_offset);
  5335. SERIAL_CHAR(',');
  5336. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5337. break;
  5338. case DXC_FULL_CONTROL_MODE:
  5339. case DXC_AUTO_PARK_MODE:
  5340. break;
  5341. default:
  5342. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5343. break;
  5344. }
  5345. active_extruder_parked = false;
  5346. extruder_duplication_enabled = false;
  5347. delayed_move_time = 0;
  5348. }
  5349. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5350. inline void gcode_M605() {
  5351. stepper.synchronize();
  5352. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5353. SERIAL_ECHO_START;
  5354. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5355. }
  5356. #endif // M605
  5357. #if ENABLED(LIN_ADVANCE)
  5358. /**
  5359. * M905: Set advance factor
  5360. */
  5361. inline void gcode_M905() {
  5362. stepper.synchronize();
  5363. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5364. }
  5365. #endif
  5366. /**
  5367. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5368. */
  5369. inline void gcode_M907() {
  5370. #if HAS_DIGIPOTSS
  5371. LOOP_XYZE(i)
  5372. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5373. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5374. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5375. #endif
  5376. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5377. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5378. #endif
  5379. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5380. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5381. #endif
  5382. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5383. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5384. #endif
  5385. #if ENABLED(DIGIPOT_I2C)
  5386. // this one uses actual amps in floating point
  5387. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5388. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5389. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5390. #endif
  5391. #if ENABLED(DAC_STEPPER_CURRENT)
  5392. if (code_seen('S')) {
  5393. float dac_percent = code_value_float();
  5394. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5395. }
  5396. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5397. #endif
  5398. }
  5399. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5400. /**
  5401. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5402. */
  5403. inline void gcode_M908() {
  5404. #if HAS_DIGIPOTSS
  5405. stepper.digitalPotWrite(
  5406. code_seen('P') ? code_value_int() : 0,
  5407. code_seen('S') ? code_value_int() : 0
  5408. );
  5409. #endif
  5410. #ifdef DAC_STEPPER_CURRENT
  5411. dac_current_raw(
  5412. code_seen('P') ? code_value_byte() : -1,
  5413. code_seen('S') ? code_value_ushort() : 0
  5414. );
  5415. #endif
  5416. }
  5417. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5418. inline void gcode_M909() { dac_print_values(); }
  5419. inline void gcode_M910() { dac_commit_eeprom(); }
  5420. #endif
  5421. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5422. #if HAS_MICROSTEPS
  5423. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5424. inline void gcode_M350() {
  5425. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5426. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5427. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5428. stepper.microstep_readings();
  5429. }
  5430. /**
  5431. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5432. * S# determines MS1 or MS2, X# sets the pin high/low.
  5433. */
  5434. inline void gcode_M351() {
  5435. if (code_seen('S')) switch (code_value_byte()) {
  5436. case 1:
  5437. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5438. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5439. break;
  5440. case 2:
  5441. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5442. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5443. break;
  5444. }
  5445. stepper.microstep_readings();
  5446. }
  5447. #endif // HAS_MICROSTEPS
  5448. #if ENABLED(MIXING_EXTRUDER)
  5449. /**
  5450. * M163: Set a single mix factor for a mixing extruder
  5451. * This is called "weight" by some systems.
  5452. *
  5453. * S[index] The channel index to set
  5454. * P[float] The mix value
  5455. *
  5456. */
  5457. inline void gcode_M163() {
  5458. int mix_index = code_seen('S') ? code_value_int() : 0;
  5459. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5460. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5461. }
  5462. #if MIXING_VIRTUAL_TOOLS > 1
  5463. /**
  5464. * M164: Store the current mix factors as a virtual tool.
  5465. *
  5466. * S[index] The virtual tool to store
  5467. *
  5468. */
  5469. inline void gcode_M164() {
  5470. int tool_index = code_seen('S') ? code_value_int() : 0;
  5471. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5472. normalize_mix();
  5473. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5474. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5475. }
  5476. }
  5477. #endif
  5478. #if ENABLED(DIRECT_MIXING_IN_G1)
  5479. /**
  5480. * M165: Set multiple mix factors for a mixing extruder.
  5481. * Factors that are left out will be set to 0.
  5482. * All factors together must add up to 1.0.
  5483. *
  5484. * A[factor] Mix factor for extruder stepper 1
  5485. * B[factor] Mix factor for extruder stepper 2
  5486. * C[factor] Mix factor for extruder stepper 3
  5487. * D[factor] Mix factor for extruder stepper 4
  5488. * H[factor] Mix factor for extruder stepper 5
  5489. * I[factor] Mix factor for extruder stepper 6
  5490. *
  5491. */
  5492. inline void gcode_M165() { gcode_get_mix(); }
  5493. #endif
  5494. #endif // MIXING_EXTRUDER
  5495. /**
  5496. * M999: Restart after being stopped
  5497. *
  5498. * Default behaviour is to flush the serial buffer and request
  5499. * a resend to the host starting on the last N line received.
  5500. *
  5501. * Sending "M999 S1" will resume printing without flushing the
  5502. * existing command buffer.
  5503. *
  5504. */
  5505. inline void gcode_M999() {
  5506. Running = true;
  5507. lcd_reset_alert_level();
  5508. if (code_seen('S') && code_value_bool()) return;
  5509. // gcode_LastN = Stopped_gcode_LastN;
  5510. FlushSerialRequestResend();
  5511. }
  5512. #if ENABLED(SWITCHING_EXTRUDER)
  5513. inline void move_extruder_servo(uint8_t e) {
  5514. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5515. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5516. }
  5517. #endif
  5518. inline void invalid_extruder_error(const uint8_t &e) {
  5519. SERIAL_ECHO_START;
  5520. SERIAL_CHAR('T');
  5521. SERIAL_PROTOCOL_F(e, DEC);
  5522. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5523. }
  5524. /**
  5525. * Perform a tool-change, which may result in moving the
  5526. * previous tool out of the way and the new tool into place.
  5527. */
  5528. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5529. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5530. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5531. invalid_extruder_error(tmp_extruder);
  5532. return;
  5533. }
  5534. // T0-Tnnn: Switch virtual tool by changing the mix
  5535. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5536. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5537. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5538. #if HOTENDS > 1
  5539. if (tmp_extruder >= EXTRUDERS) {
  5540. invalid_extruder_error(tmp_extruder);
  5541. return;
  5542. }
  5543. float old_feedrate_mm_s = feedrate_mm_s;
  5544. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5545. if (tmp_extruder != active_extruder) {
  5546. if (!no_move && axis_unhomed_error(true, true, true)) {
  5547. SERIAL_ECHOLNPGM("No move on toolchange");
  5548. no_move = true;
  5549. }
  5550. // Save current position to destination, for use later
  5551. set_destination_to_current();
  5552. #if ENABLED(DUAL_X_CARRIAGE)
  5553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5554. if (DEBUGGING(LEVELING)) {
  5555. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5556. switch (dual_x_carriage_mode) {
  5557. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5558. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5559. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5560. }
  5561. }
  5562. #endif
  5563. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5564. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5565. ) {
  5566. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5567. if (DEBUGGING(LEVELING)) {
  5568. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5569. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5570. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5571. }
  5572. #endif
  5573. // Park old head: 1) raise 2) move to park position 3) lower
  5574. for (uint8_t i = 0; i < 3; i++)
  5575. planner.buffer_line(
  5576. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5577. current_position[Y_AXIS],
  5578. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5579. current_position[E_AXIS],
  5580. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5581. active_extruder
  5582. );
  5583. stepper.synchronize();
  5584. }
  5585. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5586. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5587. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5588. active_extruder = tmp_extruder;
  5589. // This function resets the max/min values - the current position may be overwritten below.
  5590. set_axis_is_at_home(X_AXIS);
  5591. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5592. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5593. #endif
  5594. switch (dual_x_carriage_mode) {
  5595. case DXC_FULL_CONTROL_MODE:
  5596. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5597. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5598. break;
  5599. case DXC_DUPLICATION_MODE:
  5600. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5601. if (active_extruder_parked)
  5602. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5603. else
  5604. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5605. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5606. extruder_duplication_enabled = false;
  5607. break;
  5608. default:
  5609. // record raised toolhead position for use by unpark
  5610. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5611. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5612. active_extruder_parked = true;
  5613. delayed_move_time = 0;
  5614. break;
  5615. }
  5616. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5617. if (DEBUGGING(LEVELING)) {
  5618. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5619. DEBUG_POS("New extruder (parked)", current_position);
  5620. }
  5621. #endif
  5622. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5623. #else // !DUAL_X_CARRIAGE
  5624. #if ENABLED(SWITCHING_EXTRUDER)
  5625. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5626. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5627. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5628. // Always raise by some amount
  5629. planner.buffer_line(
  5630. current_position[X_AXIS],
  5631. current_position[Y_AXIS],
  5632. current_position[Z_AXIS] + z_raise,
  5633. current_position[E_AXIS],
  5634. planner.max_feedrate_mm_s[Z_AXIS],
  5635. active_extruder
  5636. );
  5637. stepper.synchronize();
  5638. move_extruder_servo(active_extruder);
  5639. delay(500);
  5640. // Move back down, if needed
  5641. if (z_raise != z_diff) {
  5642. planner.buffer_line(
  5643. current_position[X_AXIS],
  5644. current_position[Y_AXIS],
  5645. current_position[Z_AXIS] + z_diff,
  5646. current_position[E_AXIS],
  5647. planner.max_feedrate_mm_s[Z_AXIS],
  5648. active_extruder
  5649. );
  5650. stepper.synchronize();
  5651. }
  5652. #endif
  5653. /**
  5654. * Set current_position to the position of the new nozzle.
  5655. * Offsets are based on linear distance, so we need to get
  5656. * the resulting position in coordinate space.
  5657. *
  5658. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5659. * - With mesh leveling, update Z for the new position
  5660. * - Otherwise, just use the raw linear distance
  5661. *
  5662. * Software endstops are altered here too. Consider a case where:
  5663. * E0 at X=0 ... E1 at X=10
  5664. * When we switch to E1 now X=10, but E1 can't move left.
  5665. * To express this we apply the change in XY to the software endstops.
  5666. * E1 can move farther right than E0, so the right limit is extended.
  5667. *
  5668. * Note that we don't adjust the Z software endstops. Why not?
  5669. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5670. * because the bed is 1mm lower at the new position. As long as
  5671. * the first nozzle is out of the way, the carriage should be
  5672. * allowed to move 1mm lower. This technically "breaks" the
  5673. * Z software endstop. But this is technically correct (and
  5674. * there is no viable alternative).
  5675. */
  5676. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  5677. // Offset extruder, make sure to apply the bed level rotation matrix
  5678. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5679. hotend_offset[Y_AXIS][tmp_extruder],
  5680. 0),
  5681. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5682. hotend_offset[Y_AXIS][active_extruder],
  5683. 0),
  5684. offset_vec = tmp_offset_vec - act_offset_vec;
  5685. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5686. if (DEBUGGING(LEVELING)) {
  5687. tmp_offset_vec.debug("tmp_offset_vec");
  5688. act_offset_vec.debug("act_offset_vec");
  5689. offset_vec.debug("offset_vec (BEFORE)");
  5690. }
  5691. #endif
  5692. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5693. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5694. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5695. #endif
  5696. // Adjustments to the current position
  5697. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5698. current_position[Z_AXIS] += offset_vec.z;
  5699. #else // !AUTO_BED_LEVELING_FEATURE
  5700. float xydiff[2] = {
  5701. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5702. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5703. };
  5704. #if ENABLED(MESH_BED_LEVELING)
  5705. if (mbl.active()) {
  5706. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5707. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5708. #endif
  5709. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5710. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5711. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5712. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5713. if (DEBUGGING(LEVELING))
  5714. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5715. #endif
  5716. }
  5717. #endif // MESH_BED_LEVELING
  5718. #endif // !AUTO_BED_LEVELING_FEATURE
  5719. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5720. if (DEBUGGING(LEVELING)) {
  5721. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5722. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5723. SERIAL_ECHOLNPGM(" }");
  5724. }
  5725. #endif
  5726. // The newly-selected extruder XY is actually at...
  5727. current_position[X_AXIS] += xydiff[X_AXIS];
  5728. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5729. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5730. position_shift[i] += xydiff[i];
  5731. update_software_endstops((AxisEnum)i);
  5732. }
  5733. // Set the new active extruder
  5734. active_extruder = tmp_extruder;
  5735. #endif // !DUAL_X_CARRIAGE
  5736. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5737. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5738. #endif
  5739. // Tell the planner the new "current position"
  5740. SYNC_PLAN_POSITION_KINEMATIC();
  5741. // Move to the "old position" (move the extruder into place)
  5742. if (!no_move && IsRunning()) {
  5743. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5744. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5745. #endif
  5746. prepare_move_to_destination();
  5747. }
  5748. } // (tmp_extruder != active_extruder)
  5749. stepper.synchronize();
  5750. #if ENABLED(EXT_SOLENOID)
  5751. disable_all_solenoids();
  5752. enable_solenoid_on_active_extruder();
  5753. #endif // EXT_SOLENOID
  5754. feedrate_mm_s = old_feedrate_mm_s;
  5755. #else // HOTENDS <= 1
  5756. // Set the new active extruder
  5757. active_extruder = tmp_extruder;
  5758. UNUSED(fr_mm_s);
  5759. UNUSED(no_move);
  5760. #endif // HOTENDS <= 1
  5761. SERIAL_ECHO_START;
  5762. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  5763. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5764. }
  5765. /**
  5766. * T0-T3: Switch tool, usually switching extruders
  5767. *
  5768. * F[units/min] Set the movement feedrate
  5769. * S1 Don't move the tool in XY after change
  5770. */
  5771. inline void gcode_T(uint8_t tmp_extruder) {
  5772. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5773. if (DEBUGGING(LEVELING)) {
  5774. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5775. SERIAL_ECHOLNPGM(")");
  5776. DEBUG_POS("BEFORE", current_position);
  5777. }
  5778. #endif
  5779. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5780. tool_change(tmp_extruder);
  5781. #elif HOTENDS > 1
  5782. tool_change(
  5783. tmp_extruder,
  5784. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5785. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5786. );
  5787. #endif
  5788. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5789. if (DEBUGGING(LEVELING)) {
  5790. DEBUG_POS("AFTER", current_position);
  5791. SERIAL_ECHOLNPGM("<<< gcode_T");
  5792. }
  5793. #endif
  5794. }
  5795. /**
  5796. * Process a single command and dispatch it to its handler
  5797. * This is called from the main loop()
  5798. */
  5799. void process_next_command() {
  5800. current_command = command_queue[cmd_queue_index_r];
  5801. if (DEBUGGING(ECHO)) {
  5802. SERIAL_ECHO_START;
  5803. SERIAL_ECHOLN(current_command);
  5804. }
  5805. // Sanitize the current command:
  5806. // - Skip leading spaces
  5807. // - Bypass N[-0-9][0-9]*[ ]*
  5808. // - Overwrite * with nul to mark the end
  5809. while (*current_command == ' ') ++current_command;
  5810. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5811. current_command += 2; // skip N[-0-9]
  5812. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5813. while (*current_command == ' ') ++current_command; // skip [ ]*
  5814. }
  5815. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5816. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5817. char *cmd_ptr = current_command;
  5818. // Get the command code, which must be G, M, or T
  5819. char command_code = *cmd_ptr++;
  5820. // Skip spaces to get the numeric part
  5821. while (*cmd_ptr == ' ') cmd_ptr++;
  5822. uint16_t codenum = 0; // define ahead of goto
  5823. // Bail early if there's no code
  5824. bool code_is_good = NUMERIC(*cmd_ptr);
  5825. if (!code_is_good) goto ExitUnknownCommand;
  5826. // Get and skip the code number
  5827. do {
  5828. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5829. cmd_ptr++;
  5830. } while (NUMERIC(*cmd_ptr));
  5831. // Skip all spaces to get to the first argument, or nul
  5832. while (*cmd_ptr == ' ') cmd_ptr++;
  5833. // The command's arguments (if any) start here, for sure!
  5834. current_command_args = cmd_ptr;
  5835. KEEPALIVE_STATE(IN_HANDLER);
  5836. // Handle a known G, M, or T
  5837. switch (command_code) {
  5838. case 'G': switch (codenum) {
  5839. // G0, G1
  5840. case 0:
  5841. case 1:
  5842. gcode_G0_G1();
  5843. break;
  5844. // G2, G3
  5845. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5846. case 2: // G2 - CW ARC
  5847. case 3: // G3 - CCW ARC
  5848. gcode_G2_G3(codenum == 2);
  5849. break;
  5850. #endif
  5851. // G4 Dwell
  5852. case 4:
  5853. gcode_G4();
  5854. break;
  5855. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5856. // G5
  5857. case 5: // G5 - Cubic B_spline
  5858. gcode_G5();
  5859. break;
  5860. #endif // BEZIER_CURVE_SUPPORT
  5861. #if ENABLED(FWRETRACT)
  5862. case 10: // G10: retract
  5863. case 11: // G11: retract_recover
  5864. gcode_G10_G11(codenum == 10);
  5865. break;
  5866. #endif // FWRETRACT
  5867. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5868. case 12:
  5869. gcode_G12(); // G12: Nozzle Clean
  5870. break;
  5871. #endif // NOZZLE_CLEAN_FEATURE
  5872. #if ENABLED(INCH_MODE_SUPPORT)
  5873. case 20: //G20: Inch Mode
  5874. gcode_G20();
  5875. break;
  5876. case 21: //G21: MM Mode
  5877. gcode_G21();
  5878. break;
  5879. #endif // INCH_MODE_SUPPORT
  5880. #if ENABLED(NOZZLE_PARK_FEATURE)
  5881. case 27: // G27: Nozzle Park
  5882. gcode_G27();
  5883. break;
  5884. #endif // NOZZLE_PARK_FEATURE
  5885. case 28: // G28: Home all axes, one at a time
  5886. gcode_G28();
  5887. break;
  5888. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5889. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5890. gcode_G29();
  5891. break;
  5892. #endif // AUTO_BED_LEVELING_FEATURE
  5893. #if HAS_BED_PROBE
  5894. case 30: // G30 Single Z probe
  5895. gcode_G30();
  5896. break;
  5897. #if ENABLED(Z_PROBE_SLED)
  5898. case 31: // G31: dock the sled
  5899. gcode_G31();
  5900. break;
  5901. case 32: // G32: undock the sled
  5902. gcode_G32();
  5903. break;
  5904. #endif // Z_PROBE_SLED
  5905. #endif // HAS_BED_PROBE
  5906. case 90: // G90
  5907. relative_mode = false;
  5908. break;
  5909. case 91: // G91
  5910. relative_mode = true;
  5911. break;
  5912. case 92: // G92
  5913. gcode_G92();
  5914. break;
  5915. }
  5916. break;
  5917. case 'M': switch (codenum) {
  5918. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  5919. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5920. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5921. gcode_M0_M1();
  5922. break;
  5923. #endif // ULTIPANEL
  5924. case 17:
  5925. gcode_M17();
  5926. break;
  5927. #if ENABLED(SDSUPPORT)
  5928. case 20: // M20 - list SD card
  5929. gcode_M20(); break;
  5930. case 21: // M21 - init SD card
  5931. gcode_M21(); break;
  5932. case 22: //M22 - release SD card
  5933. gcode_M22(); break;
  5934. case 23: //M23 - Select file
  5935. gcode_M23(); break;
  5936. case 24: //M24 - Start SD print
  5937. gcode_M24(); break;
  5938. case 25: //M25 - Pause SD print
  5939. gcode_M25(); break;
  5940. case 26: //M26 - Set SD index
  5941. gcode_M26(); break;
  5942. case 27: //M27 - Get SD status
  5943. gcode_M27(); break;
  5944. case 28: //M28 - Start SD write
  5945. gcode_M28(); break;
  5946. case 29: //M29 - Stop SD write
  5947. gcode_M29(); break;
  5948. case 30: //M30 <filename> Delete File
  5949. gcode_M30(); break;
  5950. case 32: //M32 - Select file and start SD print
  5951. gcode_M32(); break;
  5952. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5953. case 33: //M33 - Get the long full path to a file or folder
  5954. gcode_M33(); break;
  5955. #endif // LONG_FILENAME_HOST_SUPPORT
  5956. case 928: //M928 - Start SD write
  5957. gcode_M928(); break;
  5958. #endif //SDSUPPORT
  5959. case 31: //M31 take time since the start of the SD print or an M109 command
  5960. gcode_M31();
  5961. break;
  5962. case 42: //M42 -Change pin status via gcode
  5963. gcode_M42();
  5964. break;
  5965. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5966. case 48: // M48 Z probe repeatability
  5967. gcode_M48();
  5968. break;
  5969. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5970. case 75: // Start print timer
  5971. gcode_M75();
  5972. break;
  5973. case 76: // Pause print timer
  5974. gcode_M76();
  5975. break;
  5976. case 77: // Stop print timer
  5977. gcode_M77();
  5978. break;
  5979. #if ENABLED(PRINTCOUNTER)
  5980. case 78: // Show print statistics
  5981. gcode_M78();
  5982. break;
  5983. #endif
  5984. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5985. case 100:
  5986. gcode_M100();
  5987. break;
  5988. #endif
  5989. case 104: // M104
  5990. gcode_M104();
  5991. break;
  5992. case 110: // M110: Set Current Line Number
  5993. gcode_M110();
  5994. break;
  5995. case 111: // M111: Set debug level
  5996. gcode_M111();
  5997. break;
  5998. #if DISABLED(EMERGENCY_PARSER)
  5999. case 108: // M108: Cancel Waiting
  6000. gcode_M108();
  6001. break;
  6002. case 112: // M112: Emergency Stop
  6003. gcode_M112();
  6004. break;
  6005. case 410: // M410 quickstop - Abort all the planned moves.
  6006. gcode_M410();
  6007. break;
  6008. #endif
  6009. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6010. case 113: // M113: Set Host Keepalive interval
  6011. gcode_M113();
  6012. break;
  6013. #endif
  6014. case 140: // M140: Set bed temp
  6015. gcode_M140();
  6016. break;
  6017. case 105: // M105: Read current temperature
  6018. gcode_M105();
  6019. KEEPALIVE_STATE(NOT_BUSY);
  6020. return; // "ok" already printed
  6021. case 109: // M109: Wait for temperature
  6022. gcode_M109();
  6023. break;
  6024. #if HAS_TEMP_BED
  6025. case 190: // M190: Wait for bed heater to reach target
  6026. gcode_M190();
  6027. break;
  6028. #endif // HAS_TEMP_BED
  6029. #if FAN_COUNT > 0
  6030. case 106: // M106: Fan On
  6031. gcode_M106();
  6032. break;
  6033. case 107: // M107: Fan Off
  6034. gcode_M107();
  6035. break;
  6036. #endif // FAN_COUNT > 0
  6037. #if ENABLED(BARICUDA)
  6038. // PWM for HEATER_1_PIN
  6039. #if HAS_HEATER_1
  6040. case 126: // M126: valve open
  6041. gcode_M126();
  6042. break;
  6043. case 127: // M127: valve closed
  6044. gcode_M127();
  6045. break;
  6046. #endif // HAS_HEATER_1
  6047. // PWM for HEATER_2_PIN
  6048. #if HAS_HEATER_2
  6049. case 128: // M128: valve open
  6050. gcode_M128();
  6051. break;
  6052. case 129: // M129: valve closed
  6053. gcode_M129();
  6054. break;
  6055. #endif // HAS_HEATER_2
  6056. #endif // BARICUDA
  6057. #if HAS_POWER_SWITCH
  6058. case 80: // M80: Turn on Power Supply
  6059. gcode_M80();
  6060. break;
  6061. #endif // HAS_POWER_SWITCH
  6062. case 81: // M81: Turn off Power, including Power Supply, if possible
  6063. gcode_M81();
  6064. break;
  6065. case 82:
  6066. gcode_M82();
  6067. break;
  6068. case 83:
  6069. gcode_M83();
  6070. break;
  6071. case 18: // (for compatibility)
  6072. case 84: // M84
  6073. gcode_M18_M84();
  6074. break;
  6075. case 85: // M85
  6076. gcode_M85();
  6077. break;
  6078. case 92: // M92: Set the steps-per-unit for one or more axes
  6079. gcode_M92();
  6080. break;
  6081. case 115: // M115: Report capabilities
  6082. gcode_M115();
  6083. break;
  6084. case 117: // M117: Set LCD message text, if possible
  6085. gcode_M117();
  6086. break;
  6087. case 114: // M114: Report current position
  6088. gcode_M114();
  6089. break;
  6090. case 120: // M120: Enable endstops
  6091. gcode_M120();
  6092. break;
  6093. case 121: // M121: Disable endstops
  6094. gcode_M121();
  6095. break;
  6096. case 119: // M119: Report endstop states
  6097. gcode_M119();
  6098. break;
  6099. #if ENABLED(ULTIPANEL)
  6100. case 145: // M145: Set material heatup parameters
  6101. gcode_M145();
  6102. break;
  6103. #endif
  6104. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6105. case 149:
  6106. gcode_M149();
  6107. break;
  6108. #endif
  6109. #if ENABLED(BLINKM)
  6110. case 150: // M150
  6111. gcode_M150();
  6112. break;
  6113. #endif //BLINKM
  6114. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6115. case 155:
  6116. gcode_M155();
  6117. break;
  6118. case 156:
  6119. gcode_M156();
  6120. break;
  6121. #endif //EXPERIMENTAL_I2CBUS
  6122. #if ENABLED(MIXING_EXTRUDER)
  6123. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6124. gcode_M163();
  6125. break;
  6126. #if MIXING_VIRTUAL_TOOLS > 1
  6127. case 164: // M164 S<int> save current mix as a virtual extruder
  6128. gcode_M164();
  6129. break;
  6130. #endif
  6131. #if ENABLED(DIRECT_MIXING_IN_G1)
  6132. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6133. gcode_M165();
  6134. break;
  6135. #endif
  6136. #endif
  6137. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6138. gcode_M200();
  6139. break;
  6140. case 201: // M201
  6141. gcode_M201();
  6142. break;
  6143. #if 0 // Not used for Sprinter/grbl gen6
  6144. case 202: // M202
  6145. gcode_M202();
  6146. break;
  6147. #endif
  6148. case 203: // M203 max feedrate units/sec
  6149. gcode_M203();
  6150. break;
  6151. case 204: // M204 acclereration S normal moves T filmanent only moves
  6152. gcode_M204();
  6153. break;
  6154. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6155. gcode_M205();
  6156. break;
  6157. case 206: // M206 additional homing offset
  6158. gcode_M206();
  6159. break;
  6160. #if ENABLED(DELTA)
  6161. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6162. gcode_M665();
  6163. break;
  6164. #endif
  6165. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6166. case 666: // M666 set delta / dual endstop adjustment
  6167. gcode_M666();
  6168. break;
  6169. #endif
  6170. #if ENABLED(FWRETRACT)
  6171. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6172. gcode_M207();
  6173. break;
  6174. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6175. gcode_M208();
  6176. break;
  6177. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6178. gcode_M209();
  6179. break;
  6180. #endif // FWRETRACT
  6181. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6182. gcode_M211();
  6183. break;
  6184. #if HOTENDS > 1
  6185. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6186. gcode_M218();
  6187. break;
  6188. #endif
  6189. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6190. gcode_M220();
  6191. break;
  6192. case 221: // M221 - Set Flow Percentage: S<percent>
  6193. gcode_M221();
  6194. break;
  6195. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6196. gcode_M226();
  6197. break;
  6198. #if HAS_SERVOS
  6199. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6200. gcode_M280();
  6201. break;
  6202. #endif // HAS_SERVOS
  6203. #if HAS_BUZZER
  6204. case 300: // M300 - Play beep tone
  6205. gcode_M300();
  6206. break;
  6207. #endif // HAS_BUZZER
  6208. #if ENABLED(PIDTEMP)
  6209. case 301: // M301
  6210. gcode_M301();
  6211. break;
  6212. #endif // PIDTEMP
  6213. #if ENABLED(PIDTEMPBED)
  6214. case 304: // M304
  6215. gcode_M304();
  6216. break;
  6217. #endif // PIDTEMPBED
  6218. #if defined(CHDK) || HAS_PHOTOGRAPH
  6219. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6220. gcode_M240();
  6221. break;
  6222. #endif // CHDK || PHOTOGRAPH_PIN
  6223. #if HAS_LCD_CONTRAST
  6224. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6225. gcode_M250();
  6226. break;
  6227. #endif // HAS_LCD_CONTRAST
  6228. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6229. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6230. gcode_M302();
  6231. break;
  6232. #endif // PREVENT_COLD_EXTRUSION
  6233. case 303: // M303 PID autotune
  6234. gcode_M303();
  6235. break;
  6236. #if ENABLED(MORGAN_SCARA)
  6237. case 360: // M360 SCARA Theta pos1
  6238. if (gcode_M360()) return;
  6239. break;
  6240. case 361: // M361 SCARA Theta pos2
  6241. if (gcode_M361()) return;
  6242. break;
  6243. case 362: // M362 SCARA Psi pos1
  6244. if (gcode_M362()) return;
  6245. break;
  6246. case 363: // M363 SCARA Psi pos2
  6247. if (gcode_M363()) return;
  6248. break;
  6249. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6250. if (gcode_M364()) return;
  6251. break;
  6252. #endif // SCARA
  6253. case 400: // M400 finish all moves
  6254. gcode_M400();
  6255. break;
  6256. #if HAS_BED_PROBE
  6257. case 401:
  6258. gcode_M401();
  6259. break;
  6260. case 402:
  6261. gcode_M402();
  6262. break;
  6263. #endif // HAS_BED_PROBE
  6264. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6265. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6266. gcode_M404();
  6267. break;
  6268. case 405: //M405 Turn on filament sensor for control
  6269. gcode_M405();
  6270. break;
  6271. case 406: //M406 Turn off filament sensor for control
  6272. gcode_M406();
  6273. break;
  6274. case 407: //M407 Display measured filament diameter
  6275. gcode_M407();
  6276. break;
  6277. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6278. #if ENABLED(MESH_BED_LEVELING)
  6279. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6280. gcode_M420();
  6281. break;
  6282. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6283. gcode_M421();
  6284. break;
  6285. #endif
  6286. case 428: // M428 Apply current_position to home_offset
  6287. gcode_M428();
  6288. break;
  6289. case 500: // M500 Store settings in EEPROM
  6290. gcode_M500();
  6291. break;
  6292. case 501: // M501 Read settings from EEPROM
  6293. gcode_M501();
  6294. break;
  6295. case 502: // M502 Revert to default settings
  6296. gcode_M502();
  6297. break;
  6298. case 503: // M503 print settings currently in memory
  6299. gcode_M503();
  6300. break;
  6301. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6302. case 540:
  6303. gcode_M540();
  6304. break;
  6305. #endif
  6306. #if HAS_BED_PROBE
  6307. case 851:
  6308. gcode_M851();
  6309. break;
  6310. #endif // HAS_BED_PROBE
  6311. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6312. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6313. gcode_M600();
  6314. break;
  6315. #endif // FILAMENT_CHANGE_FEATURE
  6316. #if ENABLED(DUAL_X_CARRIAGE)
  6317. case 605:
  6318. gcode_M605();
  6319. break;
  6320. #endif // DUAL_X_CARRIAGE
  6321. #if ENABLED(LIN_ADVANCE)
  6322. case 905: // M905 Set advance factor.
  6323. gcode_M905();
  6324. break;
  6325. #endif
  6326. case 907: // M907 Set digital trimpot motor current using axis codes.
  6327. gcode_M907();
  6328. break;
  6329. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6330. case 908: // M908 Control digital trimpot directly.
  6331. gcode_M908();
  6332. break;
  6333. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6334. case 909: // M909 Print digipot/DAC current value
  6335. gcode_M909();
  6336. break;
  6337. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6338. gcode_M910();
  6339. break;
  6340. #endif
  6341. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6342. #if HAS_MICROSTEPS
  6343. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6344. gcode_M350();
  6345. break;
  6346. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6347. gcode_M351();
  6348. break;
  6349. #endif // HAS_MICROSTEPS
  6350. case 999: // M999: Restart after being Stopped
  6351. gcode_M999();
  6352. break;
  6353. }
  6354. break;
  6355. case 'T':
  6356. gcode_T(codenum);
  6357. break;
  6358. default: code_is_good = false;
  6359. }
  6360. KEEPALIVE_STATE(NOT_BUSY);
  6361. ExitUnknownCommand:
  6362. // Still unknown command? Throw an error
  6363. if (!code_is_good) unknown_command_error();
  6364. ok_to_send();
  6365. }
  6366. /**
  6367. * Send a "Resend: nnn" message to the host to
  6368. * indicate that a command needs to be re-sent.
  6369. */
  6370. void FlushSerialRequestResend() {
  6371. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6372. MYSERIAL.flush();
  6373. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6374. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6375. ok_to_send();
  6376. }
  6377. /**
  6378. * Send an "ok" message to the host, indicating
  6379. * that a command was successfully processed.
  6380. *
  6381. * If ADVANCED_OK is enabled also include:
  6382. * N<int> Line number of the command, if any
  6383. * P<int> Planner space remaining
  6384. * B<int> Block queue space remaining
  6385. */
  6386. void ok_to_send() {
  6387. refresh_cmd_timeout();
  6388. if (!send_ok[cmd_queue_index_r]) return;
  6389. SERIAL_PROTOCOLPGM(MSG_OK);
  6390. #if ENABLED(ADVANCED_OK)
  6391. char* p = command_queue[cmd_queue_index_r];
  6392. if (*p == 'N') {
  6393. SERIAL_PROTOCOL(' ');
  6394. SERIAL_ECHO(*p++);
  6395. while (NUMERIC_SIGNED(*p))
  6396. SERIAL_ECHO(*p++);
  6397. }
  6398. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6399. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6400. #endif
  6401. SERIAL_EOL;
  6402. }
  6403. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6404. /**
  6405. * Constrain the given coordinates to the software endstops.
  6406. */
  6407. void clamp_to_software_endstops(float target[XYZ]) {
  6408. #if ENABLED(min_software_endstops)
  6409. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6410. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6411. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6412. #endif
  6413. #if ENABLED(max_software_endstops)
  6414. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6415. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6416. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6417. #endif
  6418. }
  6419. #endif
  6420. #if ENABLED(DELTA)
  6421. /**
  6422. * Recalculate factors used for delta kinematics whenever
  6423. * settings have been changed (e.g., by M665).
  6424. */
  6425. void recalc_delta_settings(float radius, float diagonal_rod) {
  6426. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6427. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6428. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6429. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6430. delta_tower3_x = 0.0; // back middle tower
  6431. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6432. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6433. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6434. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6435. }
  6436. #if ENABLED(DELTA_FAST_SQRT)
  6437. /**
  6438. * Fast inverse sqrt from Quake III Arena
  6439. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6440. */
  6441. float Q_rsqrt(float number) {
  6442. long i;
  6443. float x2, y;
  6444. const float threehalfs = 1.5f;
  6445. x2 = number * 0.5f;
  6446. y = number;
  6447. i = * ( long * ) &y; // evil floating point bit level hacking
  6448. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  6449. y = * ( float * ) &i;
  6450. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  6451. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  6452. return y;
  6453. }
  6454. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  6455. #else
  6456. #define _SQRT(n) sqrt(n)
  6457. #endif
  6458. /**
  6459. * Delta Inverse Kinematics
  6460. *
  6461. * Calculate the tower positions for a given logical
  6462. * position, storing the result in the delta[] array.
  6463. *
  6464. * This is an expensive calculation, requiring 3 square
  6465. * roots per segmented linear move, and strains the limits
  6466. * of a Mega2560 with a Graphical Display.
  6467. *
  6468. * Suggested optimizations include:
  6469. *
  6470. * - Disable the home_offset (M206) and/or position_shift (G92)
  6471. * features to remove up to 12 float additions.
  6472. *
  6473. * - Use a fast-inverse-sqrt function and add the reciprocal.
  6474. * (see above)
  6475. */
  6476. void inverse_kinematics(const float logical[XYZ]) {
  6477. const float cartesian[XYZ] = {
  6478. RAW_X_POSITION(logical[X_AXIS]),
  6479. RAW_Y_POSITION(logical[Y_AXIS]),
  6480. RAW_Z_POSITION(logical[Z_AXIS])
  6481. };
  6482. // Macro to obtain the Z position of an individual tower
  6483. #define DELTA_Z(T) cartesian[Z_AXIS] + _SQRT( \
  6484. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  6485. delta_tower##T##_x - cartesian[X_AXIS], \
  6486. delta_tower##T##_y - cartesian[Y_AXIS] \
  6487. ) \
  6488. )
  6489. delta[A_AXIS] = DELTA_Z(1);
  6490. delta[B_AXIS] = DELTA_Z(2);
  6491. delta[C_AXIS] = DELTA_Z(3);
  6492. /*
  6493. SERIAL_ECHOPAIR("cartesian X:", cartesian[X_AXIS]);
  6494. SERIAL_ECHOPAIR(" Y:", cartesian[Y_AXIS]);
  6495. SERIAL_ECHOLNPAIR(" Z:", cartesian[Z_AXIS]);
  6496. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]);
  6497. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]);
  6498. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]);
  6499. //*/
  6500. }
  6501. /**
  6502. * Calculate the highest Z position where the
  6503. * effector has the full range of XY motion.
  6504. */
  6505. float delta_safe_distance_from_top() {
  6506. float cartesian[XYZ] = {
  6507. LOGICAL_X_POSITION(0),
  6508. LOGICAL_Y_POSITION(0),
  6509. LOGICAL_Z_POSITION(0)
  6510. };
  6511. inverse_kinematics(cartesian);
  6512. float distance = delta[A_AXIS];
  6513. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6514. inverse_kinematics(cartesian);
  6515. return abs(distance - delta[A_AXIS]);
  6516. }
  6517. /**
  6518. * Delta Forward Kinematics
  6519. *
  6520. * See the Wikipedia article "Trilateration"
  6521. * https://en.wikipedia.org/wiki/Trilateration
  6522. *
  6523. * Establish a new coordinate system in the plane of the
  6524. * three carriage points. This system has its origin at
  6525. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  6526. * plane with a Z component of zero.
  6527. * We will define unit vectors in this coordinate system
  6528. * in our original coordinate system. Then when we calculate
  6529. * the Xnew, Ynew and Znew values, we can translate back into
  6530. * the original system by moving along those unit vectors
  6531. * by the corresponding values.
  6532. *
  6533. * Variable names matched to Marlin, c-version, and avoid the
  6534. * use of any vector library.
  6535. *
  6536. * by Andreas Hardtung 2016-06-07
  6537. * based on a Java function from "Delta Robot Kinematics V3"
  6538. * by Steve Graves
  6539. *
  6540. * The result is stored in the cartes[] array.
  6541. */
  6542. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6543. // Create a vector in old coordinates along x axis of new coordinate
  6544. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6545. // Get the Magnitude of vector.
  6546. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  6547. // Create unit vector by dividing by magnitude.
  6548. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  6549. // Get the vector from the origin of the new system to the third point.
  6550. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6551. // Use the dot product to find the component of this vector on the X axis.
  6552. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  6553. // Create a vector along the x axis that represents the x component of p13.
  6554. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  6555. // Subtract the X component from the original vector leaving only Y. We use the
  6556. // variable that will be the unit vector after we scale it.
  6557. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  6558. // The magnitude of Y component
  6559. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  6560. // Convert to a unit vector
  6561. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6562. // The cross product of the unit x and y is the unit z
  6563. // float[] ez = vectorCrossProd(ex, ey);
  6564. float ez[3] = {
  6565. ex[1] * ey[2] - ex[2] * ey[1],
  6566. ex[2] * ey[0] - ex[0] * ey[2],
  6567. ex[0] * ey[1] - ex[1] * ey[0]
  6568. };
  6569. // We now have the d, i and j values defined in Wikipedia.
  6570. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  6571. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  6572. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  6573. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  6574. // Start from the origin of the old coordinates and add vectors in the
  6575. // old coords that represent the Xnew, Ynew and Znew to find the point
  6576. // in the old system.
  6577. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  6578. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  6579. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  6580. };
  6581. void forward_kinematics_DELTA(float point[ABC]) {
  6582. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6583. }
  6584. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6585. // Adjust print surface height by linear interpolation over the bed_level array.
  6586. void adjust_delta(float cartesian[XYZ]) {
  6587. if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
  6588. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6589. float h1 = 0.001 - half, h2 = half - 0.001,
  6590. grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])),
  6591. grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS]));
  6592. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6593. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6594. z1 = bed_level_grid[floor_x + half][floor_y + half],
  6595. z2 = bed_level_grid[floor_x + half][floor_y + half + 1],
  6596. z3 = bed_level_grid[floor_x + half + 1][floor_y + half],
  6597. z4 = bed_level_grid[floor_x + half + 1][floor_y + half + 1],
  6598. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6599. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6600. offset = (1 - ratio_x) * left + ratio_x * right;
  6601. delta[X_AXIS] += offset;
  6602. delta[Y_AXIS] += offset;
  6603. delta[Z_AXIS] += offset;
  6604. /**
  6605. SERIAL_ECHOPAIR("grid_x=", grid_x);
  6606. SERIAL_ECHOPAIR(" grid_y=", grid_y);
  6607. SERIAL_ECHOPAIR(" floor_x=", floor_x);
  6608. SERIAL_ECHOPAIR(" floor_y=", floor_y);
  6609. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6610. SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
  6611. SERIAL_ECHOPAIR(" z1=", z1);
  6612. SERIAL_ECHOPAIR(" z2=", z2);
  6613. SERIAL_ECHOPAIR(" z3=", z3);
  6614. SERIAL_ECHOPAIR(" z4=", z4);
  6615. SERIAL_ECHOPAIR(" left=", left);
  6616. SERIAL_ECHOPAIR(" right=", right);
  6617. SERIAL_ECHOLNPAIR(" offset=", offset);
  6618. */
  6619. }
  6620. #endif // AUTO_BED_LEVELING_NONLINEAR
  6621. #endif // DELTA
  6622. /**
  6623. * Get the stepper positions in the cartes[] array.
  6624. * Forward kinematics are applied for DELTA and SCARA.
  6625. *
  6626. * The result is in the current coordinate space with
  6627. * leveling applied. The coordinates need to be run through
  6628. * unapply_leveling to obtain the "ideal" coordinates
  6629. * suitable for current_position, etc.
  6630. */
  6631. void get_cartesian_from_steppers() {
  6632. #if ENABLED(DELTA)
  6633. forward_kinematics_DELTA(
  6634. stepper.get_axis_position_mm(A_AXIS),
  6635. stepper.get_axis_position_mm(B_AXIS),
  6636. stepper.get_axis_position_mm(C_AXIS)
  6637. );
  6638. #elif IS_SCARA
  6639. forward_kinematics_SCARA(
  6640. stepper.get_axis_position_degrees(A_AXIS),
  6641. stepper.get_axis_position_degrees(B_AXIS)
  6642. );
  6643. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6644. #else
  6645. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  6646. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  6647. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6648. #endif
  6649. }
  6650. /**
  6651. * Set the current_position for an axis based on
  6652. * the stepper positions, removing any leveling that
  6653. * may have been applied.
  6654. *
  6655. * << INCOMPLETE! Still needs to unapply leveling! >>
  6656. */
  6657. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  6658. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  6659. vector_3 pos = untilted_stepper_position();
  6660. current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  6661. #elif IS_KINEMATIC
  6662. get_cartesian_from_steppers();
  6663. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  6664. #else
  6665. current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  6666. #endif
  6667. }
  6668. #if ENABLED(MESH_BED_LEVELING)
  6669. /**
  6670. * Prepare a mesh-leveled linear move in a Cartesian setup,
  6671. * splitting the move where it crosses mesh borders.
  6672. */
  6673. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6674. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6675. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6676. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6677. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6678. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6679. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6680. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6681. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6682. if (cx1 == cx2 && cy1 == cy2) {
  6683. // Start and end on same mesh square
  6684. line_to_destination(fr_mm_s);
  6685. set_current_to_destination();
  6686. return;
  6687. }
  6688. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6689. float normalized_dist, end[NUM_AXIS];
  6690. // Split at the left/front border of the right/top square
  6691. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6692. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6693. memcpy(end, destination, sizeof(end));
  6694. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6695. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6696. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6697. CBI(x_splits, gcx);
  6698. }
  6699. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6700. memcpy(end, destination, sizeof(end));
  6701. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6702. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6703. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6704. CBI(y_splits, gcy);
  6705. }
  6706. else {
  6707. // Already split on a border
  6708. line_to_destination(fr_mm_s);
  6709. set_current_to_destination();
  6710. return;
  6711. }
  6712. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6713. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6714. // Do the split and look for more borders
  6715. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6716. // Restore destination from stack
  6717. memcpy(destination, end, sizeof(end));
  6718. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6719. }
  6720. #endif // MESH_BED_LEVELING
  6721. #if IS_KINEMATIC
  6722. /**
  6723. * Prepare a linear move in a DELTA or SCARA setup.
  6724. *
  6725. * This calls planner.buffer_line several times, adding
  6726. * small incremental moves for DELTA or SCARA.
  6727. */
  6728. inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
  6729. float difference[NUM_AXIS];
  6730. LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
  6731. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6732. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  6733. if (UNEAR_ZERO(cartesian_mm)) return false;
  6734. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6735. float seconds = cartesian_mm / _feedrate_mm_s;
  6736. int steps = max(1, int(delta_segments_per_second * seconds));
  6737. float inv_steps = 1.0/steps;
  6738. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  6739. // SERIAL_ECHOPAIR(" seconds=", seconds);
  6740. // SERIAL_ECHOLNPAIR(" steps=", steps);
  6741. for (int s = 1; s <= steps; s++) {
  6742. float fraction = float(s) * inv_steps;
  6743. LOOP_XYZE(i)
  6744. target[i] = current_position[i] + difference[i] * fraction;
  6745. inverse_kinematics(target);
  6746. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6747. if (!bed_leveling_in_progress) adjust_delta(target);
  6748. #endif
  6749. //DEBUG_POS("prepare_kinematic_move_to", target);
  6750. //DEBUG_POS("prepare_kinematic_move_to", delta);
  6751. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
  6752. }
  6753. return true;
  6754. }
  6755. #else
  6756. /**
  6757. * Prepare a linear move in a Cartesian setup.
  6758. * If Mesh Bed Leveling is enabled, perform a mesh move.
  6759. */
  6760. inline bool prepare_move_to_destination_cartesian() {
  6761. // Do not use feedrate_percentage for E or Z only moves
  6762. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6763. line_to_destination();
  6764. }
  6765. else {
  6766. #if ENABLED(MESH_BED_LEVELING)
  6767. if (mbl.active()) {
  6768. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6769. return false;
  6770. }
  6771. else
  6772. #endif
  6773. line_to_destination(MMS_SCALED(feedrate_mm_s));
  6774. }
  6775. return true;
  6776. }
  6777. #endif // !IS_KINEMATIC
  6778. #if ENABLED(DUAL_X_CARRIAGE)
  6779. /**
  6780. * Prepare a linear move in a dual X axis setup
  6781. */
  6782. inline bool prepare_move_to_destination_dualx() {
  6783. if (active_extruder_parked) {
  6784. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6785. // move duplicate extruder into correct duplication position.
  6786. planner.set_position_mm(
  6787. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6788. current_position[Y_AXIS],
  6789. current_position[Z_AXIS],
  6790. current_position[E_AXIS]
  6791. );
  6792. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6793. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6794. SYNC_PLAN_POSITION_KINEMATIC();
  6795. stepper.synchronize();
  6796. extruder_duplication_enabled = true;
  6797. active_extruder_parked = false;
  6798. }
  6799. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6800. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6801. // This is a travel move (with no extrusion)
  6802. // Skip it, but keep track of the current position
  6803. // (so it can be used as the start of the next non-travel move)
  6804. if (delayed_move_time != 0xFFFFFFFFUL) {
  6805. set_current_to_destination();
  6806. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6807. delayed_move_time = millis();
  6808. return false;
  6809. }
  6810. }
  6811. delayed_move_time = 0;
  6812. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6813. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6814. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6815. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6816. active_extruder_parked = false;
  6817. }
  6818. }
  6819. return true;
  6820. }
  6821. #endif // DUAL_X_CARRIAGE
  6822. /**
  6823. * Prepare a single move and get ready for the next one
  6824. *
  6825. * This may result in several calls to planner.buffer_line to
  6826. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  6827. */
  6828. void prepare_move_to_destination() {
  6829. clamp_to_software_endstops(destination);
  6830. refresh_cmd_timeout();
  6831. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6832. if (!DEBUGGING(DRYRUN)) {
  6833. if (destination[E_AXIS] != current_position[E_AXIS]) {
  6834. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6835. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  6836. SERIAL_ECHO_START;
  6837. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6838. }
  6839. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6840. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  6841. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  6842. SERIAL_ECHO_START;
  6843. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6844. }
  6845. #endif
  6846. }
  6847. }
  6848. #endif
  6849. #if IS_KINEMATIC
  6850. if (!prepare_kinematic_move_to(destination)) return;
  6851. #else
  6852. #if ENABLED(DUAL_X_CARRIAGE)
  6853. if (!prepare_move_to_destination_dualx()) return;
  6854. #endif
  6855. if (!prepare_move_to_destination_cartesian()) return;
  6856. #endif
  6857. set_current_to_destination();
  6858. }
  6859. #if ENABLED(ARC_SUPPORT)
  6860. /**
  6861. * Plan an arc in 2 dimensions
  6862. *
  6863. * The arc is approximated by generating many small linear segments.
  6864. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6865. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6866. * larger segments will tend to be more efficient. Your slicer should have
  6867. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6868. */
  6869. void plan_arc(
  6870. float target[NUM_AXIS], // Destination position
  6871. float* offset, // Center of rotation relative to current_position
  6872. uint8_t clockwise // Clockwise?
  6873. ) {
  6874. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6875. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6876. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6877. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6878. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6879. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6880. r_Y = -offset[Y_AXIS],
  6881. rt_X = target[X_AXIS] - center_X,
  6882. rt_Y = target[Y_AXIS] - center_Y;
  6883. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6884. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6885. if (angular_travel < 0) angular_travel += RADIANS(360);
  6886. if (clockwise) angular_travel -= RADIANS(360);
  6887. // Make a circle if the angular rotation is 0
  6888. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6889. angular_travel += RADIANS(360);
  6890. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6891. if (mm_of_travel < 0.001) return;
  6892. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6893. if (segments == 0) segments = 1;
  6894. float theta_per_segment = angular_travel / segments;
  6895. float linear_per_segment = linear_travel / segments;
  6896. float extruder_per_segment = extruder_travel / segments;
  6897. /**
  6898. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6899. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6900. * r_T = [cos(phi) -sin(phi);
  6901. * sin(phi) cos(phi] * r ;
  6902. *
  6903. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6904. * defined from the circle center to the initial position. Each line segment is formed by successive
  6905. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6906. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6907. * all double numbers are single precision on the Arduino. (True double precision will not have
  6908. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6909. * tool precision in some cases. Therefore, arc path correction is implemented.
  6910. *
  6911. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6912. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6913. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6914. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6915. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6916. * issue for CNC machines with the single precision Arduino calculations.
  6917. *
  6918. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6919. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6920. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6921. * This is important when there are successive arc motions.
  6922. */
  6923. // Vector rotation matrix values
  6924. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6925. float sin_T = theta_per_segment;
  6926. float arc_target[NUM_AXIS];
  6927. float sin_Ti, cos_Ti, r_new_Y;
  6928. uint16_t i;
  6929. int8_t count = 0;
  6930. // Initialize the linear axis
  6931. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6932. // Initialize the extruder axis
  6933. arc_target[E_AXIS] = current_position[E_AXIS];
  6934. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  6935. millis_t next_idle_ms = millis() + 200UL;
  6936. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6937. thermalManager.manage_heater();
  6938. millis_t now = millis();
  6939. if (ELAPSED(now, next_idle_ms)) {
  6940. next_idle_ms = now + 200UL;
  6941. idle();
  6942. }
  6943. if (++count < N_ARC_CORRECTION) {
  6944. // Apply vector rotation matrix to previous r_X / 1
  6945. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6946. r_X = r_X * cos_T - r_Y * sin_T;
  6947. r_Y = r_new_Y;
  6948. }
  6949. else {
  6950. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6951. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6952. // To reduce stuttering, the sin and cos could be computed at different times.
  6953. // For now, compute both at the same time.
  6954. cos_Ti = cos(i * theta_per_segment);
  6955. sin_Ti = sin(i * theta_per_segment);
  6956. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6957. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6958. count = 0;
  6959. }
  6960. // Update arc_target location
  6961. arc_target[X_AXIS] = center_X + r_X;
  6962. arc_target[Y_AXIS] = center_Y + r_Y;
  6963. arc_target[Z_AXIS] += linear_per_segment;
  6964. arc_target[E_AXIS] += extruder_per_segment;
  6965. clamp_to_software_endstops(arc_target);
  6966. #if IS_KINEMATIC
  6967. inverse_kinematics(arc_target);
  6968. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6969. adjust_delta(arc_target);
  6970. #endif
  6971. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6972. #else
  6973. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6974. #endif
  6975. }
  6976. // Ensure last segment arrives at target location.
  6977. #if IS_KINEMATIC
  6978. inverse_kinematics(target);
  6979. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6980. adjust_delta(target);
  6981. #endif
  6982. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6983. #else
  6984. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6985. #endif
  6986. // As far as the parser is concerned, the position is now == target. In reality the
  6987. // motion control system might still be processing the action and the real tool position
  6988. // in any intermediate location.
  6989. set_current_to_destination();
  6990. }
  6991. #endif
  6992. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6993. void plan_cubic_move(const float offset[4]) {
  6994. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  6995. // As far as the parser is concerned, the position is now == target. In reality the
  6996. // motion control system might still be processing the action and the real tool position
  6997. // in any intermediate location.
  6998. set_current_to_destination();
  6999. }
  7000. #endif // BEZIER_CURVE_SUPPORT
  7001. #if HAS_CONTROLLERFAN
  7002. void controllerFan() {
  7003. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7004. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7005. millis_t ms = millis();
  7006. if (ELAPSED(ms, nextMotorCheck)) {
  7007. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7008. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7009. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7010. #if E_STEPPERS > 1
  7011. || E1_ENABLE_READ == E_ENABLE_ON
  7012. #if HAS_X2_ENABLE
  7013. || X2_ENABLE_READ == X_ENABLE_ON
  7014. #endif
  7015. #if E_STEPPERS > 2
  7016. || E2_ENABLE_READ == E_ENABLE_ON
  7017. #if E_STEPPERS > 3
  7018. || E3_ENABLE_READ == E_ENABLE_ON
  7019. #endif
  7020. #endif
  7021. #endif
  7022. ) {
  7023. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7024. }
  7025. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7026. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7027. // allows digital or PWM fan output to be used (see M42 handling)
  7028. digitalWrite(CONTROLLERFAN_PIN, speed);
  7029. analogWrite(CONTROLLERFAN_PIN, speed);
  7030. }
  7031. }
  7032. #endif // HAS_CONTROLLERFAN
  7033. #if IS_SCARA
  7034. void forward_kinematics_SCARA(const float &a, const float &b) {
  7035. // Perform forward kinematics, and place results in cartes[]
  7036. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  7037. float a_sin, a_cos, b_sin, b_cos;
  7038. a_sin = sin(RADIANS(a)) * L1;
  7039. a_cos = cos(RADIANS(a)) * L1;
  7040. b_sin = sin(RADIANS(b)) * L2;
  7041. b_cos = cos(RADIANS(b)) * L2;
  7042. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7043. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7044. /*
  7045. SERIAL_ECHOPAIR("f_delta x=", a);
  7046. SERIAL_ECHOPAIR(" y=", b);
  7047. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7048. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7049. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7050. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7051. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7052. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7053. //*/
  7054. }
  7055. void inverse_kinematics(const float cartesian[XYZ]) {
  7056. // Inverse kinematics.
  7057. // Perform SCARA IK and place results in delta[].
  7058. // The maths and first version were done by QHARLEY.
  7059. // Integrated, tweaked by Joachim Cerny in June 2014.
  7060. static float C2, S2, SK1, SK2, THETA, PSI;
  7061. float sx = RAW_X_POSITION(cartesian[X_AXIS]) - SCARA_OFFSET_X, //Translate SCARA to standard X Y
  7062. sy = RAW_Y_POSITION(cartesian[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7063. #if (L1 == L2)
  7064. C2 = HYPOT2(sx, sy) / (2 * L1_2) - 1;
  7065. #else
  7066. C2 = (HYPOT2(sx, sy) - L1_2 - L2_2) / 45000;
  7067. #endif
  7068. S2 = sqrt(1 - sq(C2));
  7069. SK1 = L1 + L2 * C2;
  7070. SK2 = L2 * S2;
  7071. THETA = (atan2(sx, sy) - atan2(SK1, SK2)) * -1;
  7072. PSI = atan2(S2, C2);
  7073. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7074. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7075. delta[Z_AXIS] = cartesian[Z_AXIS];
  7076. /**
  7077. DEBUG_POS("SCARA IK", cartesian);
  7078. DEBUG_POS("SCARA IK", delta);
  7079. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7080. SERIAL_ECHOPAIR(",", sy);
  7081. SERIAL_ECHOPAIR(" C2=", C2);
  7082. SERIAL_ECHOPAIR(" S2=", S2);
  7083. SERIAL_ECHOPAIR(" Theta=", THETA);
  7084. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7085. //*/
  7086. }
  7087. #endif // IS_SCARA
  7088. #if ENABLED(TEMP_STAT_LEDS)
  7089. static bool red_led = false;
  7090. static millis_t next_status_led_update_ms = 0;
  7091. void handle_status_leds(void) {
  7092. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7093. next_status_led_update_ms += 500; // Update every 0.5s
  7094. float max_temp = 0.0;
  7095. #if HAS_TEMP_BED
  7096. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7097. #endif
  7098. HOTEND_LOOP() {
  7099. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7100. }
  7101. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7102. if (new_led != red_led) {
  7103. red_led = new_led;
  7104. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7105. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7106. }
  7107. }
  7108. }
  7109. #endif
  7110. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7111. void handle_filament_runout() {
  7112. if (!filament_ran_out) {
  7113. filament_ran_out = true;
  7114. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7115. stepper.synchronize();
  7116. }
  7117. }
  7118. #endif // FILAMENT_RUNOUT_SENSOR
  7119. #if ENABLED(FAST_PWM_FAN)
  7120. void setPwmFrequency(uint8_t pin, int val) {
  7121. val &= 0x07;
  7122. switch (digitalPinToTimer(pin)) {
  7123. #if defined(TCCR0A)
  7124. case TIMER0A:
  7125. case TIMER0B:
  7126. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7127. // TCCR0B |= val;
  7128. break;
  7129. #endif
  7130. #if defined(TCCR1A)
  7131. case TIMER1A:
  7132. case TIMER1B:
  7133. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7134. // TCCR1B |= val;
  7135. break;
  7136. #endif
  7137. #if defined(TCCR2)
  7138. case TIMER2:
  7139. case TIMER2:
  7140. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7141. TCCR2 |= val;
  7142. break;
  7143. #endif
  7144. #if defined(TCCR2A)
  7145. case TIMER2A:
  7146. case TIMER2B:
  7147. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7148. TCCR2B |= val;
  7149. break;
  7150. #endif
  7151. #if defined(TCCR3A)
  7152. case TIMER3A:
  7153. case TIMER3B:
  7154. case TIMER3C:
  7155. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7156. TCCR3B |= val;
  7157. break;
  7158. #endif
  7159. #if defined(TCCR4A)
  7160. case TIMER4A:
  7161. case TIMER4B:
  7162. case TIMER4C:
  7163. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7164. TCCR4B |= val;
  7165. break;
  7166. #endif
  7167. #if defined(TCCR5A)
  7168. case TIMER5A:
  7169. case TIMER5B:
  7170. case TIMER5C:
  7171. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7172. TCCR5B |= val;
  7173. break;
  7174. #endif
  7175. }
  7176. }
  7177. #endif // FAST_PWM_FAN
  7178. float calculate_volumetric_multiplier(float diameter) {
  7179. if (!volumetric_enabled || diameter == 0) return 1.0;
  7180. float d2 = diameter * 0.5;
  7181. return 1.0 / (M_PI * d2 * d2);
  7182. }
  7183. void calculate_volumetric_multipliers() {
  7184. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7185. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7186. }
  7187. void enable_all_steppers() {
  7188. enable_x();
  7189. enable_y();
  7190. enable_z();
  7191. enable_e0();
  7192. enable_e1();
  7193. enable_e2();
  7194. enable_e3();
  7195. }
  7196. void disable_all_steppers() {
  7197. disable_x();
  7198. disable_y();
  7199. disable_z();
  7200. disable_e0();
  7201. disable_e1();
  7202. disable_e2();
  7203. disable_e3();
  7204. }
  7205. /**
  7206. * Manage several activities:
  7207. * - Check for Filament Runout
  7208. * - Keep the command buffer full
  7209. * - Check for maximum inactive time between commands
  7210. * - Check for maximum inactive time between stepper commands
  7211. * - Check if pin CHDK needs to go LOW
  7212. * - Check for KILL button held down
  7213. * - Check for HOME button held down
  7214. * - Check if cooling fan needs to be switched on
  7215. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7216. */
  7217. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7218. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7219. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7220. handle_filament_runout();
  7221. #endif
  7222. if (commands_in_queue < BUFSIZE) get_available_commands();
  7223. millis_t ms = millis();
  7224. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7225. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7226. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7227. #if ENABLED(DISABLE_INACTIVE_X)
  7228. disable_x();
  7229. #endif
  7230. #if ENABLED(DISABLE_INACTIVE_Y)
  7231. disable_y();
  7232. #endif
  7233. #if ENABLED(DISABLE_INACTIVE_Z)
  7234. disable_z();
  7235. #endif
  7236. #if ENABLED(DISABLE_INACTIVE_E)
  7237. disable_e0();
  7238. disable_e1();
  7239. disable_e2();
  7240. disable_e3();
  7241. #endif
  7242. }
  7243. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7244. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7245. chdkActive = false;
  7246. WRITE(CHDK, LOW);
  7247. }
  7248. #endif
  7249. #if HAS_KILL
  7250. // Check if the kill button was pressed and wait just in case it was an accidental
  7251. // key kill key press
  7252. // -------------------------------------------------------------------------------
  7253. static int killCount = 0; // make the inactivity button a bit less responsive
  7254. const int KILL_DELAY = 750;
  7255. if (!READ(KILL_PIN))
  7256. killCount++;
  7257. else if (killCount > 0)
  7258. killCount--;
  7259. // Exceeded threshold and we can confirm that it was not accidental
  7260. // KILL the machine
  7261. // ----------------------------------------------------------------
  7262. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7263. #endif
  7264. #if HAS_HOME
  7265. // Check to see if we have to home, use poor man's debouncer
  7266. // ---------------------------------------------------------
  7267. static int homeDebounceCount = 0; // poor man's debouncing count
  7268. const int HOME_DEBOUNCE_DELAY = 2500;
  7269. if (!READ(HOME_PIN)) {
  7270. if (!homeDebounceCount) {
  7271. enqueue_and_echo_commands_P(PSTR("G28"));
  7272. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7273. }
  7274. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7275. homeDebounceCount++;
  7276. else
  7277. homeDebounceCount = 0;
  7278. }
  7279. #endif
  7280. #if HAS_CONTROLLERFAN
  7281. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7282. #endif
  7283. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7284. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7285. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7286. bool oldstatus;
  7287. #if ENABLED(SWITCHING_EXTRUDER)
  7288. oldstatus = E0_ENABLE_READ;
  7289. enable_e0();
  7290. #else // !SWITCHING_EXTRUDER
  7291. switch (active_extruder) {
  7292. case 0:
  7293. oldstatus = E0_ENABLE_READ;
  7294. enable_e0();
  7295. break;
  7296. #if E_STEPPERS > 1
  7297. case 1:
  7298. oldstatus = E1_ENABLE_READ;
  7299. enable_e1();
  7300. break;
  7301. #if E_STEPPERS > 2
  7302. case 2:
  7303. oldstatus = E2_ENABLE_READ;
  7304. enable_e2();
  7305. break;
  7306. #if E_STEPPERS > 3
  7307. case 3:
  7308. oldstatus = E3_ENABLE_READ;
  7309. enable_e3();
  7310. break;
  7311. #endif
  7312. #endif
  7313. #endif
  7314. }
  7315. #endif // !SWITCHING_EXTRUDER
  7316. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7317. planner.buffer_line(
  7318. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7319. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7320. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7321. );
  7322. stepper.synchronize();
  7323. planner.set_e_position_mm(current_position[E_AXIS]);
  7324. #if ENABLED(SWITCHING_EXTRUDER)
  7325. E0_ENABLE_WRITE(oldstatus);
  7326. #else
  7327. switch (active_extruder) {
  7328. case 0:
  7329. E0_ENABLE_WRITE(oldstatus);
  7330. break;
  7331. #if E_STEPPERS > 1
  7332. case 1:
  7333. E1_ENABLE_WRITE(oldstatus);
  7334. break;
  7335. #if E_STEPPERS > 2
  7336. case 2:
  7337. E2_ENABLE_WRITE(oldstatus);
  7338. break;
  7339. #if E_STEPPERS > 3
  7340. case 3:
  7341. E3_ENABLE_WRITE(oldstatus);
  7342. break;
  7343. #endif
  7344. #endif
  7345. #endif
  7346. }
  7347. #endif // !SWITCHING_EXTRUDER
  7348. }
  7349. #endif // EXTRUDER_RUNOUT_PREVENT
  7350. #if ENABLED(DUAL_X_CARRIAGE)
  7351. // handle delayed move timeout
  7352. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7353. // travel moves have been received so enact them
  7354. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7355. set_destination_to_current();
  7356. prepare_move_to_destination();
  7357. }
  7358. #endif
  7359. #if ENABLED(TEMP_STAT_LEDS)
  7360. handle_status_leds();
  7361. #endif
  7362. planner.check_axes_activity();
  7363. }
  7364. /**
  7365. * Standard idle routine keeps the machine alive
  7366. */
  7367. void idle(
  7368. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7369. bool no_stepper_sleep/*=false*/
  7370. #endif
  7371. ) {
  7372. lcd_update();
  7373. host_keepalive();
  7374. manage_inactivity(
  7375. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7376. no_stepper_sleep
  7377. #endif
  7378. );
  7379. thermalManager.manage_heater();
  7380. #if ENABLED(PRINTCOUNTER)
  7381. print_job_timer.tick();
  7382. #endif
  7383. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7384. buzzer.tick();
  7385. #endif
  7386. }
  7387. /**
  7388. * Kill all activity and lock the machine.
  7389. * After this the machine will need to be reset.
  7390. */
  7391. void kill(const char* lcd_msg) {
  7392. SERIAL_ERROR_START;
  7393. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7394. #if ENABLED(ULTRA_LCD)
  7395. kill_screen(lcd_msg);
  7396. #else
  7397. UNUSED(lcd_msg);
  7398. #endif
  7399. delay(500); // Wait a short time
  7400. cli(); // Stop interrupts
  7401. thermalManager.disable_all_heaters();
  7402. disable_all_steppers();
  7403. #if HAS_POWER_SWITCH
  7404. pinMode(PS_ON_PIN, INPUT);
  7405. #endif
  7406. suicide();
  7407. while (1) {
  7408. #if ENABLED(USE_WATCHDOG)
  7409. watchdog_reset();
  7410. #endif
  7411. } // Wait for reset
  7412. }
  7413. /**
  7414. * Turn off heaters and stop the print in progress
  7415. * After a stop the machine may be resumed with M999
  7416. */
  7417. void stop() {
  7418. thermalManager.disable_all_heaters();
  7419. if (IsRunning()) {
  7420. Running = false;
  7421. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7422. SERIAL_ERROR_START;
  7423. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7424. LCD_MESSAGEPGM(MSG_STOPPED);
  7425. }
  7426. }
  7427. /**
  7428. * Marlin entry-point: Set up before the program loop
  7429. * - Set up the kill pin, filament runout, power hold
  7430. * - Start the serial port
  7431. * - Print startup messages and diagnostics
  7432. * - Get EEPROM or default settings
  7433. * - Initialize managers for:
  7434. * • temperature
  7435. * • planner
  7436. * • watchdog
  7437. * • stepper
  7438. * • photo pin
  7439. * • servos
  7440. * • LCD controller
  7441. * • Digipot I2C
  7442. * • Z probe sled
  7443. * • status LEDs
  7444. */
  7445. void setup() {
  7446. #ifdef DISABLE_JTAG
  7447. // Disable JTAG on AT90USB chips to free up pins for IO
  7448. MCUCR = 0x80;
  7449. MCUCR = 0x80;
  7450. #endif
  7451. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7452. setup_filrunoutpin();
  7453. #endif
  7454. setup_killpin();
  7455. setup_powerhold();
  7456. #if HAS_STEPPER_RESET
  7457. disableStepperDrivers();
  7458. #endif
  7459. MYSERIAL.begin(BAUDRATE);
  7460. SERIAL_PROTOCOLLNPGM("start");
  7461. SERIAL_ECHO_START;
  7462. // Check startup - does nothing if bootloader sets MCUSR to 0
  7463. byte mcu = MCUSR;
  7464. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7465. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7466. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7467. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7468. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7469. MCUSR = 0;
  7470. SERIAL_ECHOPGM(MSG_MARLIN);
  7471. SERIAL_CHAR(' ');
  7472. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  7473. SERIAL_EOL;
  7474. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  7475. SERIAL_ECHO_START;
  7476. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7477. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7478. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  7479. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  7480. #endif
  7481. SERIAL_ECHO_START;
  7482. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  7483. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7484. // Send "ok" after commands by default
  7485. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7486. // Load data from EEPROM if available (or use defaults)
  7487. // This also updates variables in the planner, elsewhere
  7488. Config_RetrieveSettings();
  7489. // Initialize current position based on home_offset
  7490. memcpy(current_position, home_offset, sizeof(home_offset));
  7491. // Vital to init stepper/planner equivalent for current_position
  7492. SYNC_PLAN_POSITION_KINEMATIC();
  7493. thermalManager.init(); // Initialize temperature loop
  7494. #if ENABLED(USE_WATCHDOG)
  7495. watchdog_init();
  7496. #endif
  7497. stepper.init(); // Initialize stepper, this enables interrupts!
  7498. setup_photpin();
  7499. servo_init();
  7500. #if HAS_BED_PROBE
  7501. endstops.enable_z_probe(false);
  7502. #endif
  7503. #if HAS_CONTROLLERFAN
  7504. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7505. #endif
  7506. #if HAS_STEPPER_RESET
  7507. enableStepperDrivers();
  7508. #endif
  7509. #if ENABLED(DIGIPOT_I2C)
  7510. digipot_i2c_init();
  7511. #endif
  7512. #if ENABLED(DAC_STEPPER_CURRENT)
  7513. dac_init();
  7514. #endif
  7515. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7516. pinMode(SLED_PIN, OUTPUT);
  7517. digitalWrite(SLED_PIN, LOW); // turn it off
  7518. #endif // Z_PROBE_SLED
  7519. setup_homepin();
  7520. #ifdef STAT_LED_RED
  7521. pinMode(STAT_LED_RED, OUTPUT);
  7522. digitalWrite(STAT_LED_RED, LOW); // turn it off
  7523. #endif
  7524. #ifdef STAT_LED_BLUE
  7525. pinMode(STAT_LED_BLUE, OUTPUT);
  7526. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  7527. #endif
  7528. lcd_init();
  7529. #if ENABLED(SHOW_BOOTSCREEN)
  7530. #if ENABLED(DOGLCD)
  7531. safe_delay(BOOTSCREEN_TIMEOUT);
  7532. #elif ENABLED(ULTRA_LCD)
  7533. bootscreen();
  7534. lcd_init();
  7535. #endif
  7536. #endif
  7537. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7538. // Initialize mixing to 100% color 1
  7539. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7540. mixing_factor[i] = (i == 0) ? 1 : 0;
  7541. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7542. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7543. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7544. #endif
  7545. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7546. i2c.onReceive(i2c_on_receive);
  7547. i2c.onRequest(i2c_on_request);
  7548. #endif
  7549. }
  7550. /**
  7551. * The main Marlin program loop
  7552. *
  7553. * - Save or log commands to SD
  7554. * - Process available commands (if not saving)
  7555. * - Call heater manager
  7556. * - Call inactivity manager
  7557. * - Call endstop manager
  7558. * - Call LCD update
  7559. */
  7560. void loop() {
  7561. if (commands_in_queue < BUFSIZE) get_available_commands();
  7562. #if ENABLED(SDSUPPORT)
  7563. card.checkautostart(false);
  7564. #endif
  7565. if (commands_in_queue) {
  7566. #if ENABLED(SDSUPPORT)
  7567. if (card.saving) {
  7568. char* command = command_queue[cmd_queue_index_r];
  7569. if (strstr_P(command, PSTR("M29"))) {
  7570. // M29 closes the file
  7571. card.closefile();
  7572. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7573. ok_to_send();
  7574. }
  7575. else {
  7576. // Write the string from the read buffer to SD
  7577. card.write_command(command);
  7578. if (card.logging)
  7579. process_next_command(); // The card is saving because it's logging
  7580. else
  7581. ok_to_send();
  7582. }
  7583. }
  7584. else
  7585. process_next_command();
  7586. #else
  7587. process_next_command();
  7588. #endif // SDSUPPORT
  7589. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7590. if (commands_in_queue) {
  7591. --commands_in_queue;
  7592. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7593. }
  7594. }
  7595. endstops.report_state();
  7596. idle();
  7597. }