My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. #include "Marlin.h"
  33. #if HAS_ABL
  34. #include "vector_3.h"
  35. #endif
  36. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  37. #include "qr_solve.h"
  38. #elif ENABLED(MESH_BED_LEVELING)
  39. #include "mesh_bed_leveling.h"
  40. #endif
  41. #if ENABLED(BEZIER_CURVE_SUPPORT)
  42. #include "planner_bezier.h"
  43. #endif
  44. #include "ultralcd.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "endstops.h"
  48. #include "temperature.h"
  49. #include "cardreader.h"
  50. #include "configuration_store.h"
  51. #include "language.h"
  52. #include "pins_arduino.h"
  53. #include "math.h"
  54. #include "nozzle.h"
  55. #include "duration_t.h"
  56. #include "types.h"
  57. #if ENABLED(USE_WATCHDOG)
  58. #include "watchdog.h"
  59. #endif
  60. #if ENABLED(BLINKM)
  61. #include "blinkm.h"
  62. #include "Wire.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_DIGIPOTSS
  68. #include <SPI.h>
  69. #endif
  70. #if ENABLED(DAC_STEPPER_CURRENT)
  71. #include "stepper_dac.h"
  72. #endif
  73. #if ENABLED(EXPERIMENTAL_I2CBUS)
  74. #include "twibus.h"
  75. #endif
  76. /**
  77. * Look here for descriptions of G-codes:
  78. * - http://linuxcnc.org/handbook/gcode/g-code.html
  79. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  80. *
  81. * Help us document these G-codes online:
  82. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  83. * - http://reprap.org/wiki/G-code
  84. *
  85. * -----------------
  86. * Implemented Codes
  87. * -----------------
  88. *
  89. * "G" Codes
  90. *
  91. * G0 -> G1
  92. * G1 - Coordinated Movement X Y Z E
  93. * G2 - CW ARC
  94. * G3 - CCW ARC
  95. * G4 - Dwell S<seconds> or P<milliseconds>
  96. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  97. * G10 - Retract filament according to settings of M207
  98. * G11 - Retract recover filament according to settings of M208
  99. * G12 - Clean tool
  100. * G20 - Set input units to inches
  101. * G21 - Set input units to millimeters
  102. * G28 - Home one or more axes
  103. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  104. * G30 - Single Z probe, probes bed at current XY location.
  105. * G31 - Dock sled (Z_PROBE_SLED only)
  106. * G32 - Undock sled (Z_PROBE_SLED only)
  107. * G90 - Use Absolute Coordinates
  108. * G91 - Use Relative Coordinates
  109. * G92 - Set current position to coordinates given
  110. *
  111. * "M" Codes
  112. *
  113. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  114. * M1 - Same as M0
  115. * M17 - Enable/Power all stepper motors
  116. * M18 - Disable all stepper motors; same as M84
  117. * M20 - List SD card. (Requires SDSUPPORT)
  118. * M21 - Init SD card. (Requires SDSUPPORT)
  119. * M22 - Release SD card. (Requires SDSUPPORT)
  120. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  121. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  122. * M25 - Pause SD print. (Requires SDSUPPORT)
  123. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  124. * M27 - Report SD print status. (Requires SDSUPPORT)
  125. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  126. * M29 - Stop SD write. (Requires SDSUPPORT)
  127. * M30 - Delete file from SD: "M30 /path/file.gco"
  128. * M31 - Report time since last M109 or SD card start to serial.
  129. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  130. * Use P to run other files as sub-programs: "M32 P !filename#"
  131. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  132. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  133. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  134. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  135. * M75 - Start the print job timer.
  136. * M76 - Pause the print job timer.
  137. * M77 - Stop the print job timer.
  138. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  139. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  140. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  141. * M82 - Set E codes absolute (default).
  142. * M83 - Set E codes relative while in Absolute (G90) mode.
  143. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  144. * duration after which steppers should turn off. S0 disables the timeout.
  145. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  146. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  147. * M104 - Set extruder target temp.
  148. * M105 - Report current temperatures.
  149. * M106 - Fan on.
  150. * M107 - Fan off.
  151. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  152. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  153. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  154. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  155. * M110 - Set the current line number. (Used by host printing)
  156. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  157. * M112 - Emergency stop.
  158. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  159. * M114 - Report current position.
  160. * M115 - Report capabilities.
  161. * M117 - Display a message on the controller screen. (Requires an LCD)
  162. * M119 - Report endstops status.
  163. * M120 - Enable endstops detection.
  164. * M121 - Disable endstops detection.
  165. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  166. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  167. * M128 - EtoP Open. (Requires BARICUDA)
  168. * M129 - EtoP Closed. (Requires BARICUDA)
  169. * M140 - Set bed target temp. S<temp>
  170. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  171. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  172. * M150 - Set BlinkM Color R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM)
  173. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  174. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  175. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  176. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  177. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  178. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  179. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  180. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  181. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  182. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  183. * M205 - Set advanced settings. Current units apply:
  184. S<print> T<travel> minimum speeds
  185. B<minimum segment time>
  186. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  187. * M206 - Set additional homing offset.
  188. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  189. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  190. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  191. Every normal extrude-only move will be classified as retract depending on the direction.
  192. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  193. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  194. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  195. * M221 - Set Flow Percentage: "M221 S<percent>"
  196. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  197. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  198. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  199. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  200. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  201. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  202. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  203. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  204. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  205. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  206. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  207. * M400 - Finish all moves.
  208. * M401 - Lower Z probe. (Requires a probe)
  209. * M402 - Raise Z probe. (Requires a probe)
  210. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  211. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  212. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  213. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  214. * M410 - Quickstop. Abort all planned moves.
  215. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING)
  216. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  217. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  218. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  219. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  220. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  221. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  222. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  223. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  224. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  225. * M666 - Set delta endstop adjustment. (Requires DELTA)
  226. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  227. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  228. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  229. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  230. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  231. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  232. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  233. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  234. *
  235. * ************ SCARA Specific - This can change to suit future G-code regulations
  236. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  237. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  238. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  239. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  240. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  241. * ************* SCARA End ***************
  242. *
  243. * ************ Custom codes - This can change to suit future G-code regulations
  244. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  245. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  246. * M999 - Restart after being stopped by error
  247. *
  248. * "T" Codes
  249. *
  250. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  251. *
  252. */
  253. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  254. void gcode_M100();
  255. #endif
  256. #if ENABLED(SDSUPPORT)
  257. CardReader card;
  258. #endif
  259. #if ENABLED(EXPERIMENTAL_I2CBUS)
  260. TWIBus i2c;
  261. #endif
  262. bool Running = true;
  263. uint8_t marlin_debug_flags = DEBUG_NONE;
  264. float current_position[NUM_AXIS] = { 0.0 };
  265. static float destination[NUM_AXIS] = { 0.0 };
  266. bool axis_known_position[XYZ] = { false };
  267. bool axis_homed[XYZ] = { false };
  268. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  269. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  270. static char* current_command, *current_command_args;
  271. static uint8_t cmd_queue_index_r = 0,
  272. cmd_queue_index_w = 0,
  273. commands_in_queue = 0;
  274. #if ENABLED(INCH_MODE_SUPPORT)
  275. float linear_unit_factor = 1.0;
  276. float volumetric_unit_factor = 1.0;
  277. #endif
  278. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  279. TempUnit input_temp_units = TEMPUNIT_C;
  280. #endif
  281. /**
  282. * Feed rates are often configured with mm/m
  283. * but the planner and stepper like mm/s units.
  284. */
  285. float constexpr homing_feedrate_mm_s[] = {
  286. #if ENABLED(DELTA)
  287. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  288. #else
  289. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  290. #endif
  291. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  292. };
  293. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  294. int feedrate_percentage = 100, saved_feedrate_percentage;
  295. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  296. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  297. bool volumetric_enabled = false;
  298. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  299. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  300. // The distance that XYZ has been offset by G92. Reset by G28.
  301. float position_shift[XYZ] = { 0 };
  302. // This offset is added to the configured home position.
  303. // Set by M206, M428, or menu item. Saved to EEPROM.
  304. float home_offset[XYZ] = { 0 };
  305. // Software Endstops are based on the configured limits.
  306. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  307. bool soft_endstops_enabled = true;
  308. #endif
  309. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  310. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  311. #if FAN_COUNT > 0
  312. int fanSpeeds[FAN_COUNT] = { 0 };
  313. #endif
  314. // The active extruder (tool). Set with T<extruder> command.
  315. uint8_t active_extruder = 0;
  316. // Relative Mode. Enable with G91, disable with G90.
  317. static bool relative_mode = false;
  318. volatile bool wait_for_heatup = true;
  319. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  320. volatile bool wait_for_user = false;
  321. #endif
  322. const char errormagic[] PROGMEM = "Error:";
  323. const char echomagic[] PROGMEM = "echo:";
  324. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  325. static int serial_count = 0;
  326. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  327. static char* seen_pointer;
  328. // Next Immediate GCode Command pointer. NULL if none.
  329. const char* queued_commands_P = NULL;
  330. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  331. // Inactivity shutdown
  332. millis_t previous_cmd_ms = 0;
  333. static millis_t max_inactive_time = 0;
  334. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  335. // Print Job Timer
  336. #if ENABLED(PRINTCOUNTER)
  337. PrintCounter print_job_timer = PrintCounter();
  338. #else
  339. Stopwatch print_job_timer = Stopwatch();
  340. #endif
  341. // Buzzer - I2C on the LCD or a BEEPER_PIN
  342. #if ENABLED(LCD_USE_I2C_BUZZER)
  343. #define BUZZ(d,f) lcd_buzz(d, f)
  344. #elif HAS_BUZZER
  345. Buzzer buzzer;
  346. #define BUZZ(d,f) buzzer.tone(d, f)
  347. #else
  348. #define BUZZ(d,f) NOOP
  349. #endif
  350. static uint8_t target_extruder;
  351. #if HAS_BED_PROBE
  352. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  353. #endif
  354. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  355. #if HAS_ABL
  356. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  357. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  358. #elif defined(XY_PROBE_SPEED)
  359. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  360. #else
  361. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  362. #endif
  363. #if ENABLED(Z_DUAL_ENDSTOPS)
  364. float z_endstop_adj = 0;
  365. #endif
  366. // Extruder offsets
  367. #if HOTENDS > 1
  368. float hotend_offset[][HOTENDS] = {
  369. HOTEND_OFFSET_X,
  370. HOTEND_OFFSET_Y
  371. #ifdef HOTEND_OFFSET_Z
  372. , HOTEND_OFFSET_Z
  373. #endif
  374. };
  375. #endif
  376. #if HAS_Z_SERVO_ENDSTOP
  377. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  378. #endif
  379. #if ENABLED(BARICUDA)
  380. int baricuda_valve_pressure = 0;
  381. int baricuda_e_to_p_pressure = 0;
  382. #endif
  383. #if ENABLED(FWRETRACT)
  384. bool autoretract_enabled = false;
  385. bool retracted[EXTRUDERS] = { false };
  386. bool retracted_swap[EXTRUDERS] = { false };
  387. float retract_length = RETRACT_LENGTH;
  388. float retract_length_swap = RETRACT_LENGTH_SWAP;
  389. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  390. float retract_zlift = RETRACT_ZLIFT;
  391. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  392. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  393. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  394. #endif // FWRETRACT
  395. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  396. bool powersupply =
  397. #if ENABLED(PS_DEFAULT_OFF)
  398. false
  399. #else
  400. true
  401. #endif
  402. ;
  403. #endif
  404. #if ENABLED(DELTA)
  405. #define SIN_60 0.8660254037844386
  406. #define COS_60 0.5
  407. float delta[ABC],
  408. endstop_adj[ABC] = { 0 };
  409. // these are the default values, can be overriden with M665
  410. float delta_radius = DELTA_RADIUS,
  411. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  412. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  413. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  414. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  415. delta_tower3_x = 0, // back middle tower
  416. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  417. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  418. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  419. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  420. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  421. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  422. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  423. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  424. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  425. delta_clip_start_height = Z_MAX_POS;
  426. float delta_safe_distance_from_top();
  427. #else
  428. static bool home_all_axis = true;
  429. #endif
  430. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  431. int bilinear_grid_spacing[2] = { 0 }, bilinear_start[2] = { 0 };
  432. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  433. #endif
  434. #if IS_SCARA
  435. // Float constants for SCARA calculations
  436. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  437. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  438. L2_2 = sq(float(L2));
  439. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  440. delta[ABC];
  441. #endif
  442. float cartes[XYZ] = { 0 };
  443. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  444. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  445. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  446. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  447. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  448. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  449. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  450. #endif
  451. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  452. static bool filament_ran_out = false;
  453. #endif
  454. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  455. FilamentChangeMenuResponse filament_change_menu_response;
  456. #endif
  457. #if ENABLED(MIXING_EXTRUDER)
  458. float mixing_factor[MIXING_STEPPERS];
  459. #if MIXING_VIRTUAL_TOOLS > 1
  460. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  461. #endif
  462. #endif
  463. static bool send_ok[BUFSIZE];
  464. #if HAS_SERVOS
  465. Servo servo[NUM_SERVOS];
  466. #define MOVE_SERVO(I, P) servo[I].move(P)
  467. #if HAS_Z_SERVO_ENDSTOP
  468. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  469. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  470. #endif
  471. #endif
  472. #ifdef CHDK
  473. millis_t chdkHigh = 0;
  474. boolean chdkActive = false;
  475. #endif
  476. #if ENABLED(PID_EXTRUSION_SCALING)
  477. int lpq_len = 20;
  478. #endif
  479. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  480. static MarlinBusyState busy_state = NOT_BUSY;
  481. static millis_t next_busy_signal_ms = 0;
  482. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  483. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  484. #else
  485. #define host_keepalive() ;
  486. #define KEEPALIVE_STATE(n) ;
  487. #endif // HOST_KEEPALIVE_FEATURE
  488. #define DEFINE_PGM_READ_ANY(type, reader) \
  489. static inline type pgm_read_any(const type *p) \
  490. { return pgm_read_##reader##_near(p); }
  491. DEFINE_PGM_READ_ANY(float, float);
  492. DEFINE_PGM_READ_ANY(signed char, byte);
  493. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  494. static const PROGMEM type array##_P[XYZ] = \
  495. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  496. static inline type array(int axis) \
  497. { return pgm_read_any(&array##_P[axis]); }
  498. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  499. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  500. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  501. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  502. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  503. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  504. /**
  505. * ***************************************************************************
  506. * ******************************** FUNCTIONS ********************************
  507. * ***************************************************************************
  508. */
  509. void stop();
  510. void get_available_commands();
  511. void process_next_command();
  512. void prepare_move_to_destination();
  513. void get_cartesian_from_steppers();
  514. void set_current_from_steppers_for_axis(const AxisEnum axis);
  515. #if ENABLED(ARC_SUPPORT)
  516. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  517. #endif
  518. #if ENABLED(BEZIER_CURVE_SUPPORT)
  519. void plan_cubic_move(const float offset[4]);
  520. #endif
  521. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  522. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  523. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  524. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  525. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  526. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  527. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  529. static void report_current_position();
  530. #if ENABLED(DEBUG_LEVELING_FEATURE)
  531. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  532. serialprintPGM(prefix);
  533. SERIAL_ECHOPAIR("(", x);
  534. SERIAL_ECHOPAIR(", ", y);
  535. SERIAL_ECHOPAIR(", ", z);
  536. SERIAL_ECHOPGM(")");
  537. if (suffix) serialprintPGM(suffix);
  538. else SERIAL_EOL;
  539. }
  540. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  541. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  542. }
  543. #if HAS_ABL
  544. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  545. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  546. }
  547. #endif
  548. #define DEBUG_POS(SUFFIX,VAR) do { \
  549. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  550. #endif
  551. /**
  552. * sync_plan_position
  553. *
  554. * Set the planner/stepper positions directly from current_position with
  555. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  556. */
  557. inline void sync_plan_position() {
  558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  559. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  560. #endif
  561. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  562. }
  563. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  564. #if IS_KINEMATIC
  565. inline void sync_plan_position_kinematic() {
  566. #if ENABLED(DEBUG_LEVELING_FEATURE)
  567. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  568. #endif
  569. inverse_kinematics(current_position);
  570. planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  571. }
  572. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  573. #else
  574. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  575. #endif
  576. #if ENABLED(SDSUPPORT)
  577. #include "SdFatUtil.h"
  578. int freeMemory() { return SdFatUtil::FreeRam(); }
  579. #else
  580. extern "C" {
  581. extern unsigned int __bss_end;
  582. extern unsigned int __heap_start;
  583. extern void* __brkval;
  584. int freeMemory() {
  585. int free_memory;
  586. if ((int)__brkval == 0)
  587. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  588. else
  589. free_memory = ((int)&free_memory) - ((int)__brkval);
  590. return free_memory;
  591. }
  592. }
  593. #endif //!SDSUPPORT
  594. #if ENABLED(DIGIPOT_I2C)
  595. extern void digipot_i2c_set_current(int channel, float current);
  596. extern void digipot_i2c_init();
  597. #endif
  598. /**
  599. * Inject the next "immediate" command, when possible.
  600. * Return true if any immediate commands remain to inject.
  601. */
  602. static bool drain_queued_commands_P() {
  603. if (queued_commands_P != NULL) {
  604. size_t i = 0;
  605. char c, cmd[30];
  606. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  607. cmd[sizeof(cmd) - 1] = '\0';
  608. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  609. cmd[i] = '\0';
  610. if (enqueue_and_echo_command(cmd)) { // success?
  611. if (c) // newline char?
  612. queued_commands_P += i + 1; // advance to the next command
  613. else
  614. queued_commands_P = NULL; // nul char? no more commands
  615. }
  616. }
  617. return (queued_commands_P != NULL); // return whether any more remain
  618. }
  619. /**
  620. * Record one or many commands to run from program memory.
  621. * Aborts the current queue, if any.
  622. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  623. */
  624. void enqueue_and_echo_commands_P(const char* pgcode) {
  625. queued_commands_P = pgcode;
  626. drain_queued_commands_P(); // first command executed asap (when possible)
  627. }
  628. void clear_command_queue() {
  629. cmd_queue_index_r = cmd_queue_index_w;
  630. commands_in_queue = 0;
  631. }
  632. /**
  633. * Once a new command is in the ring buffer, call this to commit it
  634. */
  635. inline void _commit_command(bool say_ok) {
  636. send_ok[cmd_queue_index_w] = say_ok;
  637. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  638. commands_in_queue++;
  639. }
  640. /**
  641. * Copy a command directly into the main command buffer, from RAM.
  642. * Returns true if successfully adds the command
  643. */
  644. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  645. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  646. strcpy(command_queue[cmd_queue_index_w], cmd);
  647. _commit_command(say_ok);
  648. return true;
  649. }
  650. void enqueue_and_echo_command_now(const char* cmd) {
  651. while (!enqueue_and_echo_command(cmd)) idle();
  652. }
  653. /**
  654. * Enqueue with Serial Echo
  655. */
  656. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  657. if (_enqueuecommand(cmd, say_ok)) {
  658. SERIAL_ECHO_START;
  659. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  660. SERIAL_ECHOLNPGM("\"");
  661. return true;
  662. }
  663. return false;
  664. }
  665. void setup_killpin() {
  666. #if HAS_KILL
  667. SET_INPUT(KILL_PIN);
  668. WRITE(KILL_PIN, HIGH);
  669. #endif
  670. }
  671. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  672. void setup_filrunoutpin() {
  673. SET_INPUT(FIL_RUNOUT_PIN);
  674. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  675. WRITE(FIL_RUNOUT_PIN, HIGH);
  676. #endif
  677. }
  678. #endif
  679. // Set home pin
  680. void setup_homepin(void) {
  681. #if HAS_HOME
  682. SET_INPUT(HOME_PIN);
  683. WRITE(HOME_PIN, HIGH);
  684. #endif
  685. }
  686. void setup_photpin() {
  687. #if HAS_PHOTOGRAPH
  688. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  689. #endif
  690. }
  691. void setup_powerhold() {
  692. #if HAS_SUICIDE
  693. OUT_WRITE(SUICIDE_PIN, HIGH);
  694. #endif
  695. #if HAS_POWER_SWITCH
  696. #if ENABLED(PS_DEFAULT_OFF)
  697. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  698. #else
  699. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  700. #endif
  701. #endif
  702. }
  703. void suicide() {
  704. #if HAS_SUICIDE
  705. OUT_WRITE(SUICIDE_PIN, LOW);
  706. #endif
  707. }
  708. void servo_init() {
  709. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  710. servo[0].attach(SERVO0_PIN);
  711. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  712. #endif
  713. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  714. servo[1].attach(SERVO1_PIN);
  715. servo[1].detach();
  716. #endif
  717. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  718. servo[2].attach(SERVO2_PIN);
  719. servo[2].detach();
  720. #endif
  721. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  722. servo[3].attach(SERVO3_PIN);
  723. servo[3].detach();
  724. #endif
  725. #if HAS_Z_SERVO_ENDSTOP
  726. /**
  727. * Set position of Z Servo Endstop
  728. *
  729. * The servo might be deployed and positioned too low to stow
  730. * when starting up the machine or rebooting the board.
  731. * There's no way to know where the nozzle is positioned until
  732. * homing has been done - no homing with z-probe without init!
  733. *
  734. */
  735. STOW_Z_SERVO();
  736. #endif
  737. }
  738. /**
  739. * Stepper Reset (RigidBoard, et.al.)
  740. */
  741. #if HAS_STEPPER_RESET
  742. void disableStepperDrivers() {
  743. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  744. }
  745. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  746. #endif
  747. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  748. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  749. i2c.receive(bytes);
  750. }
  751. void i2c_on_request() { // just send dummy data for now
  752. i2c.reply("Hello World!\n");
  753. }
  754. #endif
  755. void gcode_line_error(const char* err, bool doFlush = true) {
  756. SERIAL_ERROR_START;
  757. serialprintPGM(err);
  758. SERIAL_ERRORLN(gcode_LastN);
  759. //Serial.println(gcode_N);
  760. if (doFlush) FlushSerialRequestResend();
  761. serial_count = 0;
  762. }
  763. inline void get_serial_commands() {
  764. static char serial_line_buffer[MAX_CMD_SIZE];
  765. static boolean serial_comment_mode = false;
  766. // If the command buffer is empty for too long,
  767. // send "wait" to indicate Marlin is still waiting.
  768. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  769. static millis_t last_command_time = 0;
  770. millis_t ms = millis();
  771. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  772. SERIAL_ECHOLNPGM(MSG_WAIT);
  773. last_command_time = ms;
  774. }
  775. #endif
  776. /**
  777. * Loop while serial characters are incoming and the queue is not full
  778. */
  779. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  780. char serial_char = MYSERIAL.read();
  781. /**
  782. * If the character ends the line
  783. */
  784. if (serial_char == '\n' || serial_char == '\r') {
  785. serial_comment_mode = false; // end of line == end of comment
  786. if (!serial_count) continue; // skip empty lines
  787. serial_line_buffer[serial_count] = 0; // terminate string
  788. serial_count = 0; //reset buffer
  789. char* command = serial_line_buffer;
  790. while (*command == ' ') command++; // skip any leading spaces
  791. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  792. char* apos = strchr(command, '*');
  793. if (npos) {
  794. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  795. if (M110) {
  796. char* n2pos = strchr(command + 4, 'N');
  797. if (n2pos) npos = n2pos;
  798. }
  799. gcode_N = strtol(npos + 1, NULL, 10);
  800. if (gcode_N != gcode_LastN + 1 && !M110) {
  801. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  802. return;
  803. }
  804. if (apos) {
  805. byte checksum = 0, count = 0;
  806. while (command[count] != '*') checksum ^= command[count++];
  807. if (strtol(apos + 1, NULL, 10) != checksum) {
  808. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  809. return;
  810. }
  811. // if no errors, continue parsing
  812. }
  813. else {
  814. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  815. return;
  816. }
  817. gcode_LastN = gcode_N;
  818. // if no errors, continue parsing
  819. }
  820. else if (apos) { // No '*' without 'N'
  821. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  822. return;
  823. }
  824. // Movement commands alert when stopped
  825. if (IsStopped()) {
  826. char* gpos = strchr(command, 'G');
  827. if (gpos) {
  828. int codenum = strtol(gpos + 1, NULL, 10);
  829. switch (codenum) {
  830. case 0:
  831. case 1:
  832. case 2:
  833. case 3:
  834. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  835. LCD_MESSAGEPGM(MSG_STOPPED);
  836. break;
  837. }
  838. }
  839. }
  840. #if DISABLED(EMERGENCY_PARSER)
  841. // If command was e-stop process now
  842. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  843. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  844. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  845. #endif
  846. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  847. last_command_time = ms;
  848. #endif
  849. // Add the command to the queue
  850. _enqueuecommand(serial_line_buffer, true);
  851. }
  852. else if (serial_count >= MAX_CMD_SIZE - 1) {
  853. // Keep fetching, but ignore normal characters beyond the max length
  854. // The command will be injected when EOL is reached
  855. }
  856. else if (serial_char == '\\') { // Handle escapes
  857. if (MYSERIAL.available() > 0) {
  858. // if we have one more character, copy it over
  859. serial_char = MYSERIAL.read();
  860. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  861. }
  862. // otherwise do nothing
  863. }
  864. else { // it's not a newline, carriage return or escape char
  865. if (serial_char == ';') serial_comment_mode = true;
  866. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  867. }
  868. } // queue has space, serial has data
  869. }
  870. #if ENABLED(SDSUPPORT)
  871. inline void get_sdcard_commands() {
  872. static bool stop_buffering = false,
  873. sd_comment_mode = false;
  874. if (!card.sdprinting) return;
  875. /**
  876. * '#' stops reading from SD to the buffer prematurely, so procedural
  877. * macro calls are possible. If it occurs, stop_buffering is triggered
  878. * and the buffer is run dry; this character _can_ occur in serial com
  879. * due to checksums, however, no checksums are used in SD printing.
  880. */
  881. if (commands_in_queue == 0) stop_buffering = false;
  882. uint16_t sd_count = 0;
  883. bool card_eof = card.eof();
  884. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  885. int16_t n = card.get();
  886. char sd_char = (char)n;
  887. card_eof = card.eof();
  888. if (card_eof || n == -1
  889. || sd_char == '\n' || sd_char == '\r'
  890. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  891. ) {
  892. if (card_eof) {
  893. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  894. card.printingHasFinished();
  895. card.checkautostart(true);
  896. }
  897. else if (n == -1) {
  898. SERIAL_ERROR_START;
  899. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  900. }
  901. if (sd_char == '#') stop_buffering = true;
  902. sd_comment_mode = false; //for new command
  903. if (!sd_count) continue; //skip empty lines
  904. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  905. sd_count = 0; //clear buffer
  906. _commit_command(false);
  907. }
  908. else if (sd_count >= MAX_CMD_SIZE - 1) {
  909. /**
  910. * Keep fetching, but ignore normal characters beyond the max length
  911. * The command will be injected when EOL is reached
  912. */
  913. }
  914. else {
  915. if (sd_char == ';') sd_comment_mode = true;
  916. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  917. }
  918. }
  919. }
  920. #endif // SDSUPPORT
  921. /**
  922. * Add to the circular command queue the next command from:
  923. * - The command-injection queue (queued_commands_P)
  924. * - The active serial input (usually USB)
  925. * - The SD card file being actively printed
  926. */
  927. void get_available_commands() {
  928. // if any immediate commands remain, don't get other commands yet
  929. if (drain_queued_commands_P()) return;
  930. get_serial_commands();
  931. #if ENABLED(SDSUPPORT)
  932. get_sdcard_commands();
  933. #endif
  934. }
  935. inline bool code_has_value() {
  936. int i = 1;
  937. char c = seen_pointer[i];
  938. while (c == ' ') c = seen_pointer[++i];
  939. if (c == '-' || c == '+') c = seen_pointer[++i];
  940. if (c == '.') c = seen_pointer[++i];
  941. return NUMERIC(c);
  942. }
  943. inline float code_value_float() {
  944. float ret;
  945. char* e = strchr(seen_pointer, 'E');
  946. if (e) {
  947. *e = 0;
  948. ret = strtod(seen_pointer + 1, NULL);
  949. *e = 'E';
  950. }
  951. else
  952. ret = strtod(seen_pointer + 1, NULL);
  953. return ret;
  954. }
  955. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  956. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  957. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  958. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  959. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  960. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  961. #if ENABLED(INCH_MODE_SUPPORT)
  962. inline void set_input_linear_units(LinearUnit units) {
  963. switch (units) {
  964. case LINEARUNIT_INCH:
  965. linear_unit_factor = 25.4;
  966. break;
  967. case LINEARUNIT_MM:
  968. default:
  969. linear_unit_factor = 1.0;
  970. break;
  971. }
  972. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  973. }
  974. inline float axis_unit_factor(int axis) {
  975. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  976. }
  977. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  978. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  979. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  980. #else
  981. inline float code_value_linear_units() { return code_value_float(); }
  982. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  983. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  984. #endif
  985. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  986. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  987. float code_value_temp_abs() {
  988. switch (input_temp_units) {
  989. case TEMPUNIT_C:
  990. return code_value_float();
  991. case TEMPUNIT_F:
  992. return (code_value_float() - 32) * 0.5555555556;
  993. case TEMPUNIT_K:
  994. return code_value_float() - 272.15;
  995. default:
  996. return code_value_float();
  997. }
  998. }
  999. float code_value_temp_diff() {
  1000. switch (input_temp_units) {
  1001. case TEMPUNIT_C:
  1002. case TEMPUNIT_K:
  1003. return code_value_float();
  1004. case TEMPUNIT_F:
  1005. return code_value_float() * 0.5555555556;
  1006. default:
  1007. return code_value_float();
  1008. }
  1009. }
  1010. #else
  1011. float code_value_temp_abs() { return code_value_float(); }
  1012. float code_value_temp_diff() { return code_value_float(); }
  1013. #endif
  1014. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1015. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1016. bool code_seen(char code) {
  1017. seen_pointer = strchr(current_command_args, code);
  1018. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1019. }
  1020. /**
  1021. * Set target_extruder from the T parameter or the active_extruder
  1022. *
  1023. * Returns TRUE if the target is invalid
  1024. */
  1025. bool get_target_extruder_from_command(int code) {
  1026. if (code_seen('T')) {
  1027. if (code_value_byte() >= EXTRUDERS) {
  1028. SERIAL_ECHO_START;
  1029. SERIAL_CHAR('M');
  1030. SERIAL_ECHO(code);
  1031. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1032. return true;
  1033. }
  1034. target_extruder = code_value_byte();
  1035. }
  1036. else
  1037. target_extruder = active_extruder;
  1038. return false;
  1039. }
  1040. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1041. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1042. #endif
  1043. #if ENABLED(DUAL_X_CARRIAGE)
  1044. #define DXC_FULL_CONTROL_MODE 0
  1045. #define DXC_AUTO_PARK_MODE 1
  1046. #define DXC_DUPLICATION_MODE 2
  1047. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1048. static float x_home_pos(int extruder) {
  1049. if (extruder == 0)
  1050. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1051. else
  1052. /**
  1053. * In dual carriage mode the extruder offset provides an override of the
  1054. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1055. * This allow soft recalibration of the second extruder offset position
  1056. * without firmware reflash (through the M218 command).
  1057. */
  1058. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1059. }
  1060. static int x_home_dir(int extruder) {
  1061. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1062. }
  1063. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1064. static bool active_extruder_parked = false; // used in mode 1 & 2
  1065. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1066. static millis_t delayed_move_time = 0; // used in mode 1
  1067. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1068. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1069. #endif //DUAL_X_CARRIAGE
  1070. /**
  1071. * Software endstops can be used to monitor the open end of
  1072. * an axis that has a hardware endstop on the other end. Or
  1073. * they can prevent axes from moving past endstops and grinding.
  1074. *
  1075. * To keep doing their job as the coordinate system changes,
  1076. * the software endstop positions must be refreshed to remain
  1077. * at the same positions relative to the machine.
  1078. */
  1079. void update_software_endstops(AxisEnum axis) {
  1080. float offs = LOGICAL_POSITION(0, axis);
  1081. #if ENABLED(DUAL_X_CARRIAGE)
  1082. if (axis == X_AXIS) {
  1083. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1084. if (active_extruder != 0) {
  1085. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1086. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1087. return;
  1088. }
  1089. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1090. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1091. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1092. return;
  1093. }
  1094. }
  1095. else
  1096. #endif
  1097. {
  1098. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1099. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1100. }
  1101. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1102. if (DEBUGGING(LEVELING)) {
  1103. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1104. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1105. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1106. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1107. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1108. }
  1109. #endif
  1110. #if ENABLED(DELTA)
  1111. if (axis == Z_AXIS)
  1112. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1113. #endif
  1114. }
  1115. /**
  1116. * Change the home offset for an axis, update the current
  1117. * position and the software endstops to retain the same
  1118. * relative distance to the new home.
  1119. *
  1120. * Since this changes the current_position, code should
  1121. * call sync_plan_position soon after this.
  1122. */
  1123. static void set_home_offset(AxisEnum axis, float v) {
  1124. current_position[axis] += v - home_offset[axis];
  1125. home_offset[axis] = v;
  1126. update_software_endstops(axis);
  1127. }
  1128. /**
  1129. * Set an axis' current position to its home position (after homing).
  1130. *
  1131. * For Core and Cartesian robots this applies one-to-one when an
  1132. * individual axis has been homed.
  1133. *
  1134. * DELTA should wait until all homing is done before setting the XYZ
  1135. * current_position to home, because homing is a single operation.
  1136. * In the case where the axis positions are already known and previously
  1137. * homed, DELTA could home to X or Y individually by moving either one
  1138. * to the center. However, homing Z always homes XY and Z.
  1139. *
  1140. * SCARA should wait until all XY homing is done before setting the XY
  1141. * current_position to home, because neither X nor Y is at home until
  1142. * both are at home. Z can however be homed individually.
  1143. *
  1144. */
  1145. static void set_axis_is_at_home(AxisEnum axis) {
  1146. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1147. if (DEBUGGING(LEVELING)) {
  1148. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1149. SERIAL_ECHOLNPGM(")");
  1150. }
  1151. #endif
  1152. axis_known_position[axis] = axis_homed[axis] = true;
  1153. position_shift[axis] = 0;
  1154. update_software_endstops(axis);
  1155. #if ENABLED(DUAL_X_CARRIAGE)
  1156. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1157. if (active_extruder != 0)
  1158. current_position[X_AXIS] = x_home_pos(active_extruder);
  1159. else
  1160. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1161. update_software_endstops(X_AXIS);
  1162. return;
  1163. }
  1164. #endif
  1165. #if ENABLED(MORGAN_SCARA)
  1166. /**
  1167. * Morgan SCARA homes XY at the same time
  1168. */
  1169. if (axis == X_AXIS || axis == Y_AXIS) {
  1170. float homeposition[XYZ];
  1171. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1172. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1173. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1174. /**
  1175. * Get Home position SCARA arm angles using inverse kinematics,
  1176. * and calculate homing offset using forward kinematics
  1177. */
  1178. inverse_kinematics(homeposition);
  1179. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1180. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1181. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1182. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1183. /**
  1184. * SCARA home positions are based on configuration since the actual
  1185. * limits are determined by the inverse kinematic transform.
  1186. */
  1187. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1188. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1189. }
  1190. else
  1191. #endif
  1192. {
  1193. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1194. }
  1195. /**
  1196. * Z Probe Z Homing? Account for the probe's Z offset.
  1197. */
  1198. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1199. if (axis == Z_AXIS) {
  1200. #if HOMING_Z_WITH_PROBE
  1201. current_position[Z_AXIS] -= zprobe_zoffset;
  1202. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1203. if (DEBUGGING(LEVELING)) {
  1204. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1205. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1206. }
  1207. #endif
  1208. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1209. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1210. #endif
  1211. }
  1212. #endif
  1213. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1214. if (DEBUGGING(LEVELING)) {
  1215. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1216. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1217. DEBUG_POS("", current_position);
  1218. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1219. SERIAL_ECHOLNPGM(")");
  1220. }
  1221. #endif
  1222. }
  1223. /**
  1224. * Some planner shorthand inline functions
  1225. */
  1226. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1227. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1228. int hbd = homing_bump_divisor[axis];
  1229. if (hbd < 1) {
  1230. hbd = 10;
  1231. SERIAL_ECHO_START;
  1232. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1233. }
  1234. return homing_feedrate_mm_s[axis] / hbd;
  1235. }
  1236. //
  1237. // line_to_current_position
  1238. // Move the planner to the current position from wherever it last moved
  1239. // (or from wherever it has been told it is located).
  1240. //
  1241. inline void line_to_current_position() {
  1242. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1243. }
  1244. //
  1245. // line_to_destination
  1246. // Move the planner, not necessarily synced with current_position
  1247. //
  1248. inline void line_to_destination(float fr_mm_s) {
  1249. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1250. }
  1251. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1252. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1253. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1254. #if IS_KINEMATIC
  1255. /**
  1256. * Calculate delta, start a line, and set current_position to destination
  1257. */
  1258. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1260. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1261. #endif
  1262. if ( current_position[X_AXIS] == destination[X_AXIS]
  1263. && current_position[Y_AXIS] == destination[Y_AXIS]
  1264. && current_position[Z_AXIS] == destination[Z_AXIS]
  1265. && current_position[E_AXIS] == destination[E_AXIS]
  1266. ) return;
  1267. refresh_cmd_timeout();
  1268. inverse_kinematics(destination);
  1269. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1270. set_current_to_destination();
  1271. }
  1272. #endif // IS_KINEMATIC
  1273. /**
  1274. * Plan a move to (X, Y, Z) and set the current_position
  1275. * The final current_position may not be the one that was requested
  1276. */
  1277. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1278. float old_feedrate_mm_s = feedrate_mm_s;
  1279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1280. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1281. #endif
  1282. #if ENABLED(DELTA)
  1283. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1284. set_destination_to_current(); // sync destination at the start
  1285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1286. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1287. #endif
  1288. // when in the danger zone
  1289. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1290. if (z > delta_clip_start_height) { // staying in the danger zone
  1291. destination[X_AXIS] = x; // move directly (uninterpolated)
  1292. destination[Y_AXIS] = y;
  1293. destination[Z_AXIS] = z;
  1294. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1296. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1297. #endif
  1298. return;
  1299. }
  1300. else {
  1301. destination[Z_AXIS] = delta_clip_start_height;
  1302. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1305. #endif
  1306. }
  1307. }
  1308. if (z > current_position[Z_AXIS]) { // raising?
  1309. destination[Z_AXIS] = z;
  1310. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1312. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1313. #endif
  1314. }
  1315. destination[X_AXIS] = x;
  1316. destination[Y_AXIS] = y;
  1317. prepare_move_to_destination(); // set_current_to_destination
  1318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1319. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1320. #endif
  1321. if (z < current_position[Z_AXIS]) { // lowering?
  1322. destination[Z_AXIS] = z;
  1323. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1324. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1325. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1326. #endif
  1327. }
  1328. #elif IS_SCARA
  1329. set_destination_to_current();
  1330. // If Z needs to raise, do it before moving XY
  1331. if (destination[Z_AXIS] < z) {
  1332. destination[Z_AXIS] = z;
  1333. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1334. }
  1335. destination[X_AXIS] = x;
  1336. destination[Y_AXIS] = y;
  1337. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1338. // If Z needs to lower, do it after moving XY
  1339. if (destination[Z_AXIS] > z) {
  1340. destination[Z_AXIS] = z;
  1341. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1342. }
  1343. #else
  1344. // If Z needs to raise, do it before moving XY
  1345. if (current_position[Z_AXIS] < z) {
  1346. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1347. current_position[Z_AXIS] = z;
  1348. line_to_current_position();
  1349. }
  1350. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1351. current_position[X_AXIS] = x;
  1352. current_position[Y_AXIS] = y;
  1353. line_to_current_position();
  1354. // If Z needs to lower, do it after moving XY
  1355. if (current_position[Z_AXIS] > z) {
  1356. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1357. current_position[Z_AXIS] = z;
  1358. line_to_current_position();
  1359. }
  1360. #endif
  1361. stepper.synchronize();
  1362. feedrate_mm_s = old_feedrate_mm_s;
  1363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1364. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1365. #endif
  1366. }
  1367. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1368. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1369. }
  1370. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1371. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1372. }
  1373. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1374. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1375. }
  1376. //
  1377. // Prepare to do endstop or probe moves
  1378. // with custom feedrates.
  1379. //
  1380. // - Save current feedrates
  1381. // - Reset the rate multiplier
  1382. // - Reset the command timeout
  1383. // - Enable the endstops (for endstop moves)
  1384. //
  1385. static void setup_for_endstop_or_probe_move() {
  1386. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1387. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1388. #endif
  1389. saved_feedrate_mm_s = feedrate_mm_s;
  1390. saved_feedrate_percentage = feedrate_percentage;
  1391. feedrate_percentage = 100;
  1392. refresh_cmd_timeout();
  1393. }
  1394. static void clean_up_after_endstop_or_probe_move() {
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1397. #endif
  1398. feedrate_mm_s = saved_feedrate_mm_s;
  1399. feedrate_percentage = saved_feedrate_percentage;
  1400. refresh_cmd_timeout();
  1401. }
  1402. #if HAS_BED_PROBE
  1403. /**
  1404. * Raise Z to a minimum height to make room for a probe to move
  1405. */
  1406. inline void do_probe_raise(float z_raise) {
  1407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1408. if (DEBUGGING(LEVELING)) {
  1409. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1410. SERIAL_ECHOLNPGM(")");
  1411. }
  1412. #endif
  1413. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1414. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1415. if (z_dest > current_position[Z_AXIS])
  1416. do_blocking_move_to_z(z_dest);
  1417. }
  1418. #endif //HAS_BED_PROBE
  1419. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1420. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1421. const bool xx = x && !axis_homed[X_AXIS],
  1422. yy = y && !axis_homed[Y_AXIS],
  1423. zz = z && !axis_homed[Z_AXIS];
  1424. if (xx || yy || zz) {
  1425. SERIAL_ECHO_START;
  1426. SERIAL_ECHOPGM(MSG_HOME " ");
  1427. if (xx) SERIAL_ECHOPGM(MSG_X);
  1428. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1429. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1430. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1431. #if ENABLED(ULTRA_LCD)
  1432. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1433. strcat_P(message, PSTR(MSG_HOME " "));
  1434. if (xx) strcat_P(message, PSTR(MSG_X));
  1435. if (yy) strcat_P(message, PSTR(MSG_Y));
  1436. if (zz) strcat_P(message, PSTR(MSG_Z));
  1437. strcat_P(message, PSTR(" " MSG_FIRST));
  1438. lcd_setstatus(message);
  1439. #endif
  1440. return true;
  1441. }
  1442. return false;
  1443. }
  1444. #endif
  1445. #if ENABLED(Z_PROBE_SLED)
  1446. #ifndef SLED_DOCKING_OFFSET
  1447. #define SLED_DOCKING_OFFSET 0
  1448. #endif
  1449. /**
  1450. * Method to dock/undock a sled designed by Charles Bell.
  1451. *
  1452. * stow[in] If false, move to MAX_X and engage the solenoid
  1453. * If true, move to MAX_X and release the solenoid
  1454. */
  1455. static void dock_sled(bool stow) {
  1456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1457. if (DEBUGGING(LEVELING)) {
  1458. SERIAL_ECHOPAIR("dock_sled(", stow);
  1459. SERIAL_ECHOLNPGM(")");
  1460. }
  1461. #endif
  1462. // Dock sled a bit closer to ensure proper capturing
  1463. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1464. #if PIN_EXISTS(SLED)
  1465. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1466. #endif
  1467. }
  1468. #endif // Z_PROBE_SLED
  1469. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1470. void run_deploy_moves_script() {
  1471. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1472. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1473. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1474. #endif
  1475. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1476. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1477. #endif
  1478. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1479. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1480. #endif
  1481. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1482. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1483. #endif
  1484. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1485. #endif
  1486. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1487. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1488. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1489. #endif
  1490. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1491. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1492. #endif
  1493. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1494. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1495. #endif
  1496. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1497. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1498. #endif
  1499. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1500. #endif
  1501. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1502. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1503. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1504. #endif
  1505. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1506. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1507. #endif
  1508. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1509. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1510. #endif
  1511. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1512. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1513. #endif
  1514. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1515. #endif
  1516. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1517. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1518. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1519. #endif
  1520. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1521. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1522. #endif
  1523. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1524. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1525. #endif
  1526. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1527. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1528. #endif
  1529. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1530. #endif
  1531. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1532. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1533. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1534. #endif
  1535. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1536. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1537. #endif
  1538. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1539. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1540. #endif
  1541. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1542. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1543. #endif
  1544. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1545. #endif
  1546. }
  1547. void run_stow_moves_script() {
  1548. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1549. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1550. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1551. #endif
  1552. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1553. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1554. #endif
  1555. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1556. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1557. #endif
  1558. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1559. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1560. #endif
  1561. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1562. #endif
  1563. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1564. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1565. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1568. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1571. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1574. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1575. #endif
  1576. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1577. #endif
  1578. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1579. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1580. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1581. #endif
  1582. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1583. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1586. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1589. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1590. #endif
  1591. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1592. #endif
  1593. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1594. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1595. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1596. #endif
  1597. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1598. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1599. #endif
  1600. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1601. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1602. #endif
  1603. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1604. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1605. #endif
  1606. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1607. #endif
  1608. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1609. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1610. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1611. #endif
  1612. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1613. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1614. #endif
  1615. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1616. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1617. #endif
  1618. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1619. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1620. #endif
  1621. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1622. #endif
  1623. }
  1624. #endif
  1625. #if HAS_BED_PROBE
  1626. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1627. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1628. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1629. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1630. #else
  1631. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1632. #endif
  1633. #endif
  1634. #define DEPLOY_PROBE() set_probe_deployed(true)
  1635. #define STOW_PROBE() set_probe_deployed(false)
  1636. #if ENABLED(BLTOUCH)
  1637. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1638. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1639. }
  1640. #endif
  1641. // returns false for ok and true for failure
  1642. static bool set_probe_deployed(bool deploy) {
  1643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1644. if (DEBUGGING(LEVELING)) {
  1645. DEBUG_POS("set_probe_deployed", current_position);
  1646. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1647. }
  1648. #endif
  1649. if (endstops.z_probe_enabled == deploy) return false;
  1650. // Make room for probe
  1651. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1652. // When deploying make sure BLTOUCH is not already triggered
  1653. #if ENABLED(BLTOUCH)
  1654. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1655. #endif
  1656. #if ENABLED(Z_PROBE_SLED)
  1657. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1658. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1659. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1660. #endif
  1661. float oldXpos = current_position[X_AXIS],
  1662. oldYpos = current_position[Y_AXIS];
  1663. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1664. // If endstop is already false, the Z probe is deployed
  1665. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1666. // Would a goto be less ugly?
  1667. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1668. // for a triggered when stowed manual probe.
  1669. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1670. // otherwise an Allen-Key probe can't be stowed.
  1671. #endif
  1672. #if ENABLED(Z_PROBE_SLED)
  1673. dock_sled(!deploy);
  1674. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1675. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1676. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1677. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1678. #endif
  1679. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1680. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1681. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1682. if (IsRunning()) {
  1683. SERIAL_ERROR_START;
  1684. SERIAL_ERRORLNPGM("Z-Probe failed");
  1685. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1686. }
  1687. stop();
  1688. return true;
  1689. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1690. #endif
  1691. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1692. endstops.enable_z_probe(deploy);
  1693. return false;
  1694. }
  1695. static void do_probe_move(float z, float fr_mm_m) {
  1696. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1697. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1698. #endif
  1699. // Deploy BLTouch at the start of any probe
  1700. #if ENABLED(BLTOUCH)
  1701. set_bltouch_deployed(true);
  1702. #endif
  1703. // Move down until probe triggered
  1704. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1705. // Retract BLTouch immediately after a probe
  1706. #if ENABLED(BLTOUCH)
  1707. set_bltouch_deployed(false);
  1708. #endif
  1709. // Clear endstop flags
  1710. endstops.hit_on_purpose();
  1711. // Tell the planner where we actually are
  1712. planner.sync_from_steppers();
  1713. // Get Z where the steppers were interrupted
  1714. set_current_from_steppers_for_axis(Z_AXIS);
  1715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1716. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1717. #endif
  1718. }
  1719. // Do a single Z probe and return with current_position[Z_AXIS]
  1720. // at the height where the probe triggered.
  1721. static float run_z_probe() {
  1722. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1723. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1724. #endif
  1725. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1726. refresh_cmd_timeout();
  1727. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1728. // Do a first probe at the fast speed
  1729. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1730. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1731. float first_probe_z = current_position[Z_AXIS];
  1732. if (DEBUGGING(LEVELING))
  1733. SERIAL_ECHOPAIR("1st Probe Z:", first_probe_z);
  1734. #endif
  1735. // move up by the bump distance
  1736. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1737. #else
  1738. // If the nozzle is above the travel height then
  1739. // move down quickly before doing the slow probe
  1740. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1741. if (z < current_position[Z_AXIS])
  1742. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1743. #endif
  1744. // move down slowly to find bed
  1745. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1746. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1747. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1748. #endif
  1749. // Debug: compare probe heights
  1750. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1751. if (DEBUGGING(LEVELING)) {
  1752. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1753. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1754. }
  1755. #endif
  1756. return current_position[Z_AXIS];
  1757. }
  1758. //
  1759. // - Move to the given XY
  1760. // - Deploy the probe, if not already deployed
  1761. // - Probe the bed, get the Z position
  1762. // - Depending on the 'stow' flag
  1763. // - Stow the probe, or
  1764. // - Raise to the BETWEEN height
  1765. // - Return the probed Z position
  1766. //
  1767. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1768. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1769. if (DEBUGGING(LEVELING)) {
  1770. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1771. SERIAL_ECHOPAIR(", ", y);
  1772. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1773. SERIAL_ECHOLNPGM(")");
  1774. DEBUG_POS("", current_position);
  1775. }
  1776. #endif
  1777. float old_feedrate_mm_s = feedrate_mm_s;
  1778. // Ensure a minimum height before moving the probe
  1779. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1780. // Move to the XY where we shall probe
  1781. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1782. if (DEBUGGING(LEVELING)) {
  1783. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1784. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1785. SERIAL_ECHOLNPGM(")");
  1786. }
  1787. #endif
  1788. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1789. // Move the probe to the given XY
  1790. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1791. if (DEPLOY_PROBE()) return NAN;
  1792. float measured_z = run_z_probe();
  1793. if (!stow)
  1794. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1795. else
  1796. if (STOW_PROBE()) return NAN;
  1797. if (verbose_level > 2) {
  1798. SERIAL_PROTOCOLPGM("Bed X: ");
  1799. SERIAL_PROTOCOL_F(x, 3);
  1800. SERIAL_PROTOCOLPGM(" Y: ");
  1801. SERIAL_PROTOCOL_F(y, 3);
  1802. SERIAL_PROTOCOLPGM(" Z: ");
  1803. SERIAL_PROTOCOL_F(measured_z, 3);
  1804. SERIAL_EOL;
  1805. }
  1806. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1807. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1808. #endif
  1809. feedrate_mm_s = old_feedrate_mm_s;
  1810. return measured_z;
  1811. }
  1812. #endif // HAS_BED_PROBE
  1813. #if HAS_ABL
  1814. /**
  1815. * Reset calibration results to zero.
  1816. *
  1817. * TODO: Proper functions to disable / enable
  1818. * bed leveling via a flag, correcting the
  1819. * current position in each case.
  1820. */
  1821. void reset_bed_level() {
  1822. planner.abl_enabled = false;
  1823. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1824. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1825. #endif
  1826. #if ABL_PLANAR
  1827. planner.bed_level_matrix.set_to_identity();
  1828. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1829. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++)
  1830. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++)
  1831. bed_level_grid[x][y] = 1000.0;
  1832. #endif
  1833. }
  1834. #endif // HAS_ABL
  1835. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1836. /**
  1837. * Extrapolate a single point from its neighbors
  1838. */
  1839. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1840. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1841. if (DEBUGGING(LEVELING)) {
  1842. SERIAL_ECHOPGM("Extrapolate [");
  1843. if (x < 10) SERIAL_CHAR(' ');
  1844. SERIAL_ECHO((int)x);
  1845. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  1846. SERIAL_CHAR(' ');
  1847. if (y < 10) SERIAL_CHAR(' ');
  1848. SERIAL_ECHO((int)y);
  1849. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  1850. SERIAL_CHAR(']');
  1851. }
  1852. #endif
  1853. if (bed_level_grid[x][y] < 999.0) {
  1854. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1855. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  1856. #endif
  1857. return; // Don't overwrite good values.
  1858. }
  1859. // Get X neighbors, Y neighbors, and XY neighbors
  1860. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  1861. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  1862. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  1863. // Treat far unprobed points as zero, near as equal to far
  1864. if (a2 > 999.0) a2 = 0.0; if (a1 > 999.0) a1 = a2;
  1865. if (b2 > 999.0) b2 = 0.0; if (b1 > 999.0) b1 = b2;
  1866. if (c2 > 999.0) c2 = 0.0; if (c1 > 999.0) c1 = c2;
  1867. float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  1868. // Take the average intstead of the median
  1869. bed_level_grid[x][y] = (a + b + c) / 3.0;
  1870. // Median is robust (ignores outliers).
  1871. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1872. // : ((c < b) ? b : (a < c) ? a : c);
  1873. }
  1874. #define EXTRAPOLATE_FROM_EDGE
  1875. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  1876. #if ABL_GRID_POINTS_X < ABL_GRID_POINTS_Y
  1877. #define HALF_IN_X
  1878. #elif ABL_GRID_POINTS_Y < ABL_GRID_POINTS_X
  1879. #define HALF_IN_Y
  1880. #endif
  1881. #endif
  1882. /**
  1883. * Fill in the unprobed points (corners of circular print surface)
  1884. * using linear extrapolation, away from the center.
  1885. */
  1886. static void extrapolate_unprobed_bed_level() {
  1887. #ifdef HALF_IN_X
  1888. const uint8_t ctrx2 = 0, xlen = ABL_GRID_POINTS_X - 1;
  1889. #else
  1890. const uint8_t ctrx1 = (ABL_GRID_POINTS_X - 1) / 2, // left-of-center
  1891. ctrx2 = ABL_GRID_POINTS_X / 2, // right-of-center
  1892. xlen = ctrx1;
  1893. #endif
  1894. #ifdef HALF_IN_Y
  1895. const uint8_t ctry2 = 0, ylen = ABL_GRID_POINTS_Y - 1;
  1896. #else
  1897. const uint8_t ctry1 = (ABL_GRID_POINTS_Y - 1) / 2, // top-of-center
  1898. ctry2 = ABL_GRID_POINTS_Y / 2, // bottom-of-center
  1899. ylen = ctry1;
  1900. #endif
  1901. for (uint8_t xo = 0; xo <= xlen; xo++)
  1902. for (uint8_t yo = 0; yo <= ylen; yo++) {
  1903. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  1904. #ifndef HALF_IN_X
  1905. uint8_t x1 = ctrx1 - xo;
  1906. #endif
  1907. #ifndef HALF_IN_Y
  1908. uint8_t y1 = ctry1 - yo;
  1909. #ifndef HALF_IN_X
  1910. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  1911. #endif
  1912. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  1913. #endif
  1914. #ifndef HALF_IN_X
  1915. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  1916. #endif
  1917. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  1918. }
  1919. }
  1920. /**
  1921. * Print calibration results for plotting or manual frame adjustment.
  1922. */
  1923. static void print_bed_level() {
  1924. SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
  1925. for (uint8_t x = 1; x < ABL_GRID_POINTS_X + 1; x++) {
  1926. SERIAL_PROTOCOLPGM(" ");
  1927. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  1928. SERIAL_PROTOCOL((int)x);
  1929. }
  1930. SERIAL_EOL;
  1931. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  1932. if (y < 9) SERIAL_PROTOCOLCHAR(' ');
  1933. SERIAL_PROTOCOL(y + 1);
  1934. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  1935. SERIAL_PROTOCOLCHAR(' ');
  1936. float offset = bed_level_grid[x][y];
  1937. if (offset < 999.0) {
  1938. if (offset > 0) SERIAL_CHAR('+');
  1939. SERIAL_PROTOCOL_F(offset, 2);
  1940. }
  1941. else
  1942. SERIAL_PROTOCOLPGM(" ====");
  1943. }
  1944. SERIAL_EOL;
  1945. }
  1946. SERIAL_EOL;
  1947. }
  1948. #endif // AUTO_BED_LEVELING_BILINEAR
  1949. /**
  1950. * Home an individual linear axis
  1951. */
  1952. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  1953. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1954. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  1955. if (deploy_bltouch) set_bltouch_deployed(true);
  1956. #endif
  1957. // Tell the planner we're at Z=0
  1958. current_position[axis] = 0;
  1959. #if IS_SCARA
  1960. SYNC_PLAN_POSITION_KINEMATIC();
  1961. current_position[axis] = distance;
  1962. inverse_kinematics(current_position);
  1963. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1964. #else
  1965. sync_plan_position();
  1966. current_position[axis] = distance;
  1967. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1968. #endif
  1969. stepper.synchronize();
  1970. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1971. if (deploy_bltouch) set_bltouch_deployed(false);
  1972. #endif
  1973. endstops.hit_on_purpose();
  1974. }
  1975. /**
  1976. * Home an individual "raw axis" to its endstop.
  1977. * This applies to XYZ on Cartesian and Core robots, and
  1978. * to the individual ABC steppers on DELTA and SCARA.
  1979. *
  1980. * At the end of the procedure the axis is marked as
  1981. * homed and the current position of that axis is updated.
  1982. * Kinematic robots should wait till all axes are homed
  1983. * before updating the current position.
  1984. */
  1985. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1986. static void homeaxis(AxisEnum axis) {
  1987. #if IS_SCARA
  1988. // Only Z homing (with probe) is permitted
  1989. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  1990. #else
  1991. #define CAN_HOME(A) \
  1992. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1993. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1994. #endif
  1995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1996. if (DEBUGGING(LEVELING)) {
  1997. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1998. SERIAL_ECHOLNPGM(")");
  1999. }
  2000. #endif
  2001. int axis_home_dir =
  2002. #if ENABLED(DUAL_X_CARRIAGE)
  2003. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2004. #endif
  2005. home_dir(axis);
  2006. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2007. #if HOMING_Z_WITH_PROBE
  2008. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2009. #endif
  2010. // Set a flag for Z motor locking
  2011. #if ENABLED(Z_DUAL_ENDSTOPS)
  2012. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2013. #endif
  2014. // Fast move towards endstop until triggered
  2015. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2016. // When homing Z with probe respect probe clearance
  2017. const float bump = axis_home_dir * (
  2018. #if HOMING_Z_WITH_PROBE
  2019. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2020. #endif
  2021. home_bump_mm(axis)
  2022. );
  2023. // If a second homing move is configured...
  2024. if (bump) {
  2025. // Move away from the endstop by the axis HOME_BUMP_MM
  2026. do_homing_move(axis, -bump);
  2027. // Slow move towards endstop until triggered
  2028. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2029. }
  2030. #if ENABLED(Z_DUAL_ENDSTOPS)
  2031. if (axis == Z_AXIS) {
  2032. float adj = fabs(z_endstop_adj);
  2033. bool lockZ1;
  2034. if (axis_home_dir > 0) {
  2035. adj = -adj;
  2036. lockZ1 = (z_endstop_adj > 0);
  2037. }
  2038. else
  2039. lockZ1 = (z_endstop_adj < 0);
  2040. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2041. // Move to the adjusted endstop height
  2042. do_homing_move(axis, adj);
  2043. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2044. stepper.set_homing_flag(false);
  2045. } // Z_AXIS
  2046. #endif
  2047. #if IS_SCARA
  2048. set_axis_is_at_home(axis);
  2049. SYNC_PLAN_POSITION_KINEMATIC();
  2050. #elif ENABLED(DELTA)
  2051. // Delta has already moved all three towers up in G28
  2052. // so here it re-homes each tower in turn.
  2053. // Delta homing treats the axes as normal linear axes.
  2054. // retrace by the amount specified in endstop_adj
  2055. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2056. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2057. if (DEBUGGING(LEVELING)) {
  2058. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  2059. DEBUG_POS("", current_position);
  2060. }
  2061. #endif
  2062. do_homing_move(axis, endstop_adj[axis]);
  2063. }
  2064. #else
  2065. // For cartesian/core machines,
  2066. // set the axis to its home position
  2067. set_axis_is_at_home(axis);
  2068. sync_plan_position();
  2069. destination[axis] = current_position[axis];
  2070. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2071. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2072. #endif
  2073. #endif
  2074. // Put away the Z probe
  2075. #if HOMING_Z_WITH_PROBE
  2076. if (axis == Z_AXIS && STOW_PROBE()) return;
  2077. #endif
  2078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2079. if (DEBUGGING(LEVELING)) {
  2080. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2081. SERIAL_ECHOLNPGM(")");
  2082. }
  2083. #endif
  2084. } // homeaxis()
  2085. #if ENABLED(FWRETRACT)
  2086. void retract(bool retracting, bool swapping = false) {
  2087. if (retracting == retracted[active_extruder]) return;
  2088. float old_feedrate_mm_s = feedrate_mm_s;
  2089. set_destination_to_current();
  2090. if (retracting) {
  2091. feedrate_mm_s = retract_feedrate_mm_s;
  2092. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2093. sync_plan_position_e();
  2094. prepare_move_to_destination();
  2095. if (retract_zlift > 0.01) {
  2096. current_position[Z_AXIS] -= retract_zlift;
  2097. SYNC_PLAN_POSITION_KINEMATIC();
  2098. prepare_move_to_destination();
  2099. }
  2100. }
  2101. else {
  2102. if (retract_zlift > 0.01) {
  2103. current_position[Z_AXIS] += retract_zlift;
  2104. SYNC_PLAN_POSITION_KINEMATIC();
  2105. }
  2106. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2107. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2108. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2109. sync_plan_position_e();
  2110. prepare_move_to_destination();
  2111. }
  2112. feedrate_mm_s = old_feedrate_mm_s;
  2113. retracted[active_extruder] = retracting;
  2114. } // retract()
  2115. #endif // FWRETRACT
  2116. #if ENABLED(MIXING_EXTRUDER)
  2117. void normalize_mix() {
  2118. float mix_total = 0.0;
  2119. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2120. float v = mixing_factor[i];
  2121. if (v < 0) v = mixing_factor[i] = 0;
  2122. mix_total += v;
  2123. }
  2124. // Scale all values if they don't add up to ~1.0
  2125. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2126. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2127. float mix_scale = 1.0 / mix_total;
  2128. for (int i = 0; i < MIXING_STEPPERS; i++)
  2129. mixing_factor[i] *= mix_scale;
  2130. }
  2131. }
  2132. #if ENABLED(DIRECT_MIXING_IN_G1)
  2133. // Get mixing parameters from the GCode
  2134. // Factors that are left out are set to 0
  2135. // The total "must" be 1.0 (but it will be normalized)
  2136. void gcode_get_mix() {
  2137. const char* mixing_codes = "ABCDHI";
  2138. for (int i = 0; i < MIXING_STEPPERS; i++)
  2139. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2140. normalize_mix();
  2141. }
  2142. #endif
  2143. #endif
  2144. /**
  2145. * ***************************************************************************
  2146. * ***************************** G-CODE HANDLING *****************************
  2147. * ***************************************************************************
  2148. */
  2149. /**
  2150. * Set XYZE destination and feedrate from the current GCode command
  2151. *
  2152. * - Set destination from included axis codes
  2153. * - Set to current for missing axis codes
  2154. * - Set the feedrate, if included
  2155. */
  2156. void gcode_get_destination() {
  2157. LOOP_XYZE(i) {
  2158. if (code_seen(axis_codes[i]))
  2159. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2160. else
  2161. destination[i] = current_position[i];
  2162. }
  2163. if (code_seen('F') && code_value_linear_units() > 0.0)
  2164. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2165. #if ENABLED(PRINTCOUNTER)
  2166. if (!DEBUGGING(DRYRUN))
  2167. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2168. #endif
  2169. // Get ABCDHI mixing factors
  2170. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2171. gcode_get_mix();
  2172. #endif
  2173. }
  2174. void unknown_command_error() {
  2175. SERIAL_ECHO_START;
  2176. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2177. SERIAL_ECHOLNPGM("\"");
  2178. }
  2179. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2180. /**
  2181. * Output a "busy" message at regular intervals
  2182. * while the machine is not accepting commands.
  2183. */
  2184. void host_keepalive() {
  2185. millis_t ms = millis();
  2186. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2187. if (PENDING(ms, next_busy_signal_ms)) return;
  2188. switch (busy_state) {
  2189. case IN_HANDLER:
  2190. case IN_PROCESS:
  2191. SERIAL_ECHO_START;
  2192. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2193. break;
  2194. case PAUSED_FOR_USER:
  2195. SERIAL_ECHO_START;
  2196. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2197. break;
  2198. case PAUSED_FOR_INPUT:
  2199. SERIAL_ECHO_START;
  2200. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2201. break;
  2202. default:
  2203. break;
  2204. }
  2205. }
  2206. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2207. }
  2208. #endif //HOST_KEEPALIVE_FEATURE
  2209. bool position_is_reachable(float target[XYZ]
  2210. #if HAS_BED_PROBE
  2211. , bool by_probe=false
  2212. #endif
  2213. ) {
  2214. float dx = RAW_X_POSITION(target[X_AXIS]),
  2215. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2216. #if HAS_BED_PROBE
  2217. if (by_probe) {
  2218. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2219. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2220. }
  2221. #endif
  2222. #if IS_SCARA
  2223. #if MIDDLE_DEAD_ZONE_R > 0
  2224. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2225. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2226. #else
  2227. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2228. #endif
  2229. #elif ENABLED(DELTA)
  2230. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2231. #else
  2232. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2233. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2234. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2235. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2236. #endif
  2237. }
  2238. /**************************************************
  2239. ***************** GCode Handlers *****************
  2240. **************************************************/
  2241. /**
  2242. * G0, G1: Coordinated movement of X Y Z E axes
  2243. */
  2244. inline void gcode_G0_G1(
  2245. #if IS_SCARA
  2246. bool fast_move=false
  2247. #endif
  2248. ) {
  2249. if (IsRunning()) {
  2250. gcode_get_destination(); // For X Y Z E F
  2251. #if ENABLED(FWRETRACT)
  2252. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2253. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2254. // Is this move an attempt to retract or recover?
  2255. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2256. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2257. sync_plan_position_e(); // AND from the planner
  2258. retract(!retracted[active_extruder]);
  2259. return;
  2260. }
  2261. }
  2262. #endif //FWRETRACT
  2263. #if IS_SCARA
  2264. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2265. #else
  2266. prepare_move_to_destination();
  2267. #endif
  2268. }
  2269. }
  2270. /**
  2271. * G2: Clockwise Arc
  2272. * G3: Counterclockwise Arc
  2273. *
  2274. * This command has two forms: IJ-form and R-form.
  2275. *
  2276. * - I specifies an X offset. J specifies a Y offset.
  2277. * At least one of the IJ parameters is required.
  2278. * X and Y can be omitted to do a complete circle.
  2279. * The given XY is not error-checked. The arc ends
  2280. * based on the angle of the destination.
  2281. * Mixing I or J with R will throw an error.
  2282. *
  2283. * - R specifies the radius. X or Y is required.
  2284. * Omitting both X and Y will throw an error.
  2285. * X or Y must differ from the current XY.
  2286. * Mixing R with I or J will throw an error.
  2287. *
  2288. * Examples:
  2289. *
  2290. * G2 I10 ; CW circle centered at X+10
  2291. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2292. */
  2293. #if ENABLED(ARC_SUPPORT)
  2294. inline void gcode_G2_G3(bool clockwise) {
  2295. if (IsRunning()) {
  2296. #if ENABLED(SF_ARC_FIX)
  2297. bool relative_mode_backup = relative_mode;
  2298. relative_mode = true;
  2299. #endif
  2300. gcode_get_destination();
  2301. #if ENABLED(SF_ARC_FIX)
  2302. relative_mode = relative_mode_backup;
  2303. #endif
  2304. float arc_offset[2] = { 0.0, 0.0 };
  2305. if (code_seen('R')) {
  2306. const float r = code_value_axis_units(X_AXIS),
  2307. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2308. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2309. if (r && (x2 != x1 || y2 != y1)) {
  2310. const float e = clockwise ? -1 : 1, // clockwise -1, counterclockwise 1
  2311. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2312. d = HYPOT(dx, dy), // Linear distance between the points
  2313. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2314. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2315. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2316. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2317. arc_offset[X_AXIS] = cx - x1;
  2318. arc_offset[Y_AXIS] = cy - y1;
  2319. }
  2320. }
  2321. else {
  2322. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2323. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2324. }
  2325. if (arc_offset[0] || arc_offset[1]) {
  2326. // Send an arc to the planner
  2327. plan_arc(destination, arc_offset, clockwise);
  2328. refresh_cmd_timeout();
  2329. }
  2330. else {
  2331. // Bad arguments
  2332. SERIAL_ERROR_START;
  2333. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2334. }
  2335. }
  2336. }
  2337. #endif
  2338. /**
  2339. * G4: Dwell S<seconds> or P<milliseconds>
  2340. */
  2341. inline void gcode_G4() {
  2342. millis_t dwell_ms = 0;
  2343. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2344. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2345. stepper.synchronize();
  2346. refresh_cmd_timeout();
  2347. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2348. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2349. while (PENDING(millis(), dwell_ms)) idle();
  2350. }
  2351. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2352. /**
  2353. * Parameters interpreted according to:
  2354. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2355. * However I, J omission is not supported at this point; all
  2356. * parameters can be omitted and default to zero.
  2357. */
  2358. /**
  2359. * G5: Cubic B-spline
  2360. */
  2361. inline void gcode_G5() {
  2362. if (IsRunning()) {
  2363. gcode_get_destination();
  2364. float offset[] = {
  2365. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2366. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2367. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2368. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2369. };
  2370. plan_cubic_move(offset);
  2371. }
  2372. }
  2373. #endif // BEZIER_CURVE_SUPPORT
  2374. #if ENABLED(FWRETRACT)
  2375. /**
  2376. * G10 - Retract filament according to settings of M207
  2377. * G11 - Recover filament according to settings of M208
  2378. */
  2379. inline void gcode_G10_G11(bool doRetract=false) {
  2380. #if EXTRUDERS > 1
  2381. if (doRetract) {
  2382. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2383. }
  2384. #endif
  2385. retract(doRetract
  2386. #if EXTRUDERS > 1
  2387. , retracted_swap[active_extruder]
  2388. #endif
  2389. );
  2390. }
  2391. #endif //FWRETRACT
  2392. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2393. /**
  2394. * G12: Clean the nozzle
  2395. */
  2396. inline void gcode_G12() {
  2397. // Don't allow nozzle cleaning without homing first
  2398. if (axis_unhomed_error(true, true, true)) { return; }
  2399. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2400. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2401. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2402. Nozzle::clean(pattern, strokes, objects);
  2403. }
  2404. #endif
  2405. #if ENABLED(INCH_MODE_SUPPORT)
  2406. /**
  2407. * G20: Set input mode to inches
  2408. */
  2409. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2410. /**
  2411. * G21: Set input mode to millimeters
  2412. */
  2413. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2414. #endif
  2415. #if ENABLED(NOZZLE_PARK_FEATURE)
  2416. /**
  2417. * G27: Park the nozzle
  2418. */
  2419. inline void gcode_G27() {
  2420. // Don't allow nozzle parking without homing first
  2421. if (axis_unhomed_error(true, true, true)) { return; }
  2422. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2423. Nozzle::park(z_action);
  2424. }
  2425. #endif // NOZZLE_PARK_FEATURE
  2426. #if ENABLED(QUICK_HOME)
  2427. static void quick_home_xy() {
  2428. // Pretend the current position is 0,0
  2429. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2430. sync_plan_position();
  2431. int x_axis_home_dir =
  2432. #if ENABLED(DUAL_X_CARRIAGE)
  2433. x_home_dir(active_extruder)
  2434. #else
  2435. home_dir(X_AXIS)
  2436. #endif
  2437. ;
  2438. float mlx = max_length(X_AXIS),
  2439. mly = max_length(Y_AXIS),
  2440. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2441. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2442. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2443. endstops.hit_on_purpose(); // clear endstop hit flags
  2444. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2445. }
  2446. #endif // QUICK_HOME
  2447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2448. void log_machine_info() {
  2449. SERIAL_ECHOPGM("Machine Type: ");
  2450. #if ENABLED(DELTA)
  2451. SERIAL_ECHOLNPGM("Delta");
  2452. #elif IS_SCARA
  2453. SERIAL_ECHOLNPGM("SCARA");
  2454. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2455. SERIAL_ECHOLNPGM("Core");
  2456. #else
  2457. SERIAL_ECHOLNPGM("Cartesian");
  2458. #endif
  2459. SERIAL_ECHOPGM("Probe: ");
  2460. #if ENABLED(FIX_MOUNTED_PROBE)
  2461. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2462. #elif HAS_Z_SERVO_ENDSTOP
  2463. SERIAL_ECHOLNPGM("SERVO PROBE");
  2464. #elif ENABLED(BLTOUCH)
  2465. SERIAL_ECHOLNPGM("BLTOUCH");
  2466. #elif ENABLED(Z_PROBE_SLED)
  2467. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2468. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2469. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2470. #else
  2471. SERIAL_ECHOLNPGM("NONE");
  2472. #endif
  2473. #if HAS_BED_PROBE
  2474. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2475. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2476. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2477. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2478. SERIAL_ECHOPGM(" (Right");
  2479. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2480. SERIAL_ECHOPGM(" (Left");
  2481. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2482. SERIAL_ECHOPGM(" (Middle");
  2483. #else
  2484. SERIAL_ECHOPGM(" (Aligned With");
  2485. #endif
  2486. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2487. SERIAL_ECHOPGM("-Back");
  2488. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2489. SERIAL_ECHOPGM("-Front");
  2490. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2491. SERIAL_ECHOPGM("-Center");
  2492. #endif
  2493. if (zprobe_zoffset < 0)
  2494. SERIAL_ECHOPGM(" & Below");
  2495. else if (zprobe_zoffset > 0)
  2496. SERIAL_ECHOPGM(" & Above");
  2497. else
  2498. SERIAL_ECHOPGM(" & Same Z as");
  2499. SERIAL_ECHOLNPGM(" Nozzle)");
  2500. #endif
  2501. #if HAS_ABL
  2502. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2503. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2504. SERIAL_ECHOPGM("LINEAR");
  2505. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2506. SERIAL_ECHOPGM("BILINEAR");
  2507. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2508. SERIAL_ECHOPGM("3POINT");
  2509. #endif
  2510. if (planner.abl_enabled) {
  2511. SERIAL_ECHOLNPGM(" (enabled)");
  2512. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
  2513. float diff[XYZ] = {
  2514. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2515. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2516. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2517. };
  2518. SERIAL_ECHOPGM("ABL Adjustment X");
  2519. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2520. SERIAL_ECHO(diff[X_AXIS]);
  2521. SERIAL_ECHOPGM(" Y");
  2522. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2523. SERIAL_ECHO(diff[Y_AXIS]);
  2524. SERIAL_ECHOPGM(" Z");
  2525. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2526. SERIAL_ECHO(diff[Z_AXIS]);
  2527. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2528. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2529. #endif
  2530. }
  2531. SERIAL_EOL;
  2532. #elif ENABLED(MESH_BED_LEVELING)
  2533. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2534. if (mbl.active()) {
  2535. SERIAL_ECHOLNPGM(" (enabled)");
  2536. SERIAL_ECHOPAIR("MBL Adjustment Z", mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)));
  2537. }
  2538. SERIAL_EOL;
  2539. #endif
  2540. }
  2541. #endif // DEBUG_LEVELING_FEATURE
  2542. #if ENABLED(DELTA)
  2543. /**
  2544. * A delta can only safely home all axes at the same time
  2545. * This is like quick_home_xy() but for 3 towers.
  2546. */
  2547. inline void home_delta() {
  2548. // Init the current position of all carriages to 0,0,0
  2549. memset(current_position, 0, sizeof(current_position));
  2550. sync_plan_position();
  2551. // Move all carriages together linearly until an endstop is hit.
  2552. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2553. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2554. line_to_current_position();
  2555. stepper.synchronize();
  2556. endstops.hit_on_purpose(); // clear endstop hit flags
  2557. // Probably not needed. Double-check this line:
  2558. memset(current_position, 0, sizeof(current_position));
  2559. // At least one carriage has reached the top.
  2560. // Now back off and re-home each carriage separately.
  2561. HOMEAXIS(A);
  2562. HOMEAXIS(B);
  2563. HOMEAXIS(C);
  2564. // Set all carriages to their home positions
  2565. // Do this here all at once for Delta, because
  2566. // XYZ isn't ABC. Applying this per-tower would
  2567. // give the impression that they are the same.
  2568. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2569. SYNC_PLAN_POSITION_KINEMATIC();
  2570. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2571. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2572. #endif
  2573. }
  2574. #endif // DELTA
  2575. #if ENABLED(Z_SAFE_HOMING)
  2576. inline void home_z_safely() {
  2577. // Disallow Z homing if X or Y are unknown
  2578. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2579. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2580. SERIAL_ECHO_START;
  2581. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2582. return;
  2583. }
  2584. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2585. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2586. #endif
  2587. SYNC_PLAN_POSITION_KINEMATIC();
  2588. /**
  2589. * Move the Z probe (or just the nozzle) to the safe homing point
  2590. */
  2591. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2592. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2593. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2594. if (position_is_reachable(
  2595. destination
  2596. #if HOMING_Z_WITH_PROBE
  2597. , true
  2598. #endif
  2599. )
  2600. ) {
  2601. #if HOMING_Z_WITH_PROBE
  2602. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2603. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2604. #endif
  2605. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2606. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2607. #endif
  2608. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2609. HOMEAXIS(Z);
  2610. }
  2611. else {
  2612. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2613. SERIAL_ECHO_START;
  2614. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2615. }
  2616. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2617. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2618. #endif
  2619. }
  2620. #endif // Z_SAFE_HOMING
  2621. /**
  2622. * G28: Home all axes according to settings
  2623. *
  2624. * Parameters
  2625. *
  2626. * None Home to all axes with no parameters.
  2627. * With QUICK_HOME enabled XY will home together, then Z.
  2628. *
  2629. * Cartesian parameters
  2630. *
  2631. * X Home to the X endstop
  2632. * Y Home to the Y endstop
  2633. * Z Home to the Z endstop
  2634. *
  2635. */
  2636. inline void gcode_G28() {
  2637. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2638. if (DEBUGGING(LEVELING)) {
  2639. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2640. log_machine_info();
  2641. }
  2642. #endif
  2643. // Wait for planner moves to finish!
  2644. stepper.synchronize();
  2645. // For auto bed leveling, clear the level matrix
  2646. #if HAS_ABL
  2647. reset_bed_level();
  2648. #endif
  2649. // Always home with tool 0 active
  2650. #if HOTENDS > 1
  2651. uint8_t old_tool_index = active_extruder;
  2652. tool_change(0, 0, true);
  2653. #endif
  2654. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2655. extruder_duplication_enabled = false;
  2656. #endif
  2657. /**
  2658. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2659. * on again when homing all axis
  2660. */
  2661. #if ENABLED(MESH_BED_LEVELING)
  2662. float pre_home_z = MESH_HOME_SEARCH_Z;
  2663. if (mbl.active()) {
  2664. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2665. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2666. #endif
  2667. // Save known Z position if already homed
  2668. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2669. pre_home_z = current_position[Z_AXIS];
  2670. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2671. }
  2672. mbl.set_active(false);
  2673. current_position[Z_AXIS] = pre_home_z;
  2674. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2675. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2676. #endif
  2677. }
  2678. #endif
  2679. setup_for_endstop_or_probe_move();
  2680. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2681. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2682. #endif
  2683. endstops.enable(true); // Enable endstops for next homing move
  2684. #if ENABLED(DELTA)
  2685. home_delta();
  2686. #else // NOT DELTA
  2687. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2688. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2689. set_destination_to_current();
  2690. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2691. if (home_all_axis || homeZ) {
  2692. HOMEAXIS(Z);
  2693. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2694. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2695. #endif
  2696. }
  2697. #else
  2698. if (home_all_axis || homeX || homeY) {
  2699. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2700. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2701. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2702. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2703. if (DEBUGGING(LEVELING))
  2704. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2705. #endif
  2706. do_blocking_move_to_z(destination[Z_AXIS]);
  2707. }
  2708. }
  2709. #endif
  2710. #if ENABLED(QUICK_HOME)
  2711. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2712. #endif
  2713. #if ENABLED(HOME_Y_BEFORE_X)
  2714. // Home Y
  2715. if (home_all_axis || homeY) {
  2716. HOMEAXIS(Y);
  2717. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2718. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2719. #endif
  2720. }
  2721. #endif
  2722. // Home X
  2723. if (home_all_axis || homeX) {
  2724. #if ENABLED(DUAL_X_CARRIAGE)
  2725. int tmp_extruder = active_extruder;
  2726. active_extruder = !active_extruder;
  2727. HOMEAXIS(X);
  2728. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2729. active_extruder = tmp_extruder;
  2730. HOMEAXIS(X);
  2731. // reset state used by the different modes
  2732. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2733. delayed_move_time = 0;
  2734. active_extruder_parked = true;
  2735. #else
  2736. HOMEAXIS(X);
  2737. #endif
  2738. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2739. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2740. #endif
  2741. }
  2742. #if DISABLED(HOME_Y_BEFORE_X)
  2743. // Home Y
  2744. if (home_all_axis || homeY) {
  2745. HOMEAXIS(Y);
  2746. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2747. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2748. #endif
  2749. }
  2750. #endif
  2751. // Home Z last if homing towards the bed
  2752. #if Z_HOME_DIR < 0
  2753. if (home_all_axis || homeZ) {
  2754. #if ENABLED(Z_SAFE_HOMING)
  2755. home_z_safely();
  2756. #else
  2757. HOMEAXIS(Z);
  2758. #endif
  2759. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2760. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2761. #endif
  2762. } // home_all_axis || homeZ
  2763. #endif // Z_HOME_DIR < 0
  2764. SYNC_PLAN_POSITION_KINEMATIC();
  2765. #endif // !DELTA (gcode_G28)
  2766. endstops.not_homing();
  2767. // Enable mesh leveling again
  2768. #if ENABLED(MESH_BED_LEVELING)
  2769. if (mbl.has_mesh()) {
  2770. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2771. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2772. #endif
  2773. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2774. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2775. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2776. #endif
  2777. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2778. #if Z_HOME_DIR > 0
  2779. + Z_MAX_POS
  2780. #endif
  2781. ;
  2782. SYNC_PLAN_POSITION_KINEMATIC();
  2783. mbl.set_active(true);
  2784. #if ENABLED(MESH_G28_REST_ORIGIN)
  2785. current_position[Z_AXIS] = 0.0;
  2786. set_destination_to_current();
  2787. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  2788. stepper.synchronize();
  2789. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2790. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2791. #endif
  2792. #else
  2793. planner.unapply_leveling(current_position);
  2794. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2795. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2796. #endif
  2797. #endif
  2798. }
  2799. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2800. current_position[Z_AXIS] = pre_home_z;
  2801. SYNC_PLAN_POSITION_KINEMATIC();
  2802. mbl.set_active(true);
  2803. planner.unapply_leveling(current_position);
  2804. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2805. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2806. #endif
  2807. }
  2808. }
  2809. #endif
  2810. #if ENABLED(DELTA)
  2811. // move to a height where we can use the full xy-area
  2812. do_blocking_move_to_z(delta_clip_start_height);
  2813. #endif
  2814. clean_up_after_endstop_or_probe_move();
  2815. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2816. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2817. #endif
  2818. // Restore the active tool after homing
  2819. #if HOTENDS > 1
  2820. tool_change(old_tool_index, 0, true);
  2821. #endif
  2822. report_current_position();
  2823. }
  2824. #if HAS_PROBING_PROCEDURE
  2825. void out_of_range_error(const char* p_edge) {
  2826. SERIAL_PROTOCOLPGM("?Probe ");
  2827. serialprintPGM(p_edge);
  2828. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2829. }
  2830. #endif
  2831. #if ENABLED(MESH_BED_LEVELING)
  2832. inline void _mbl_goto_xy(float x, float y) {
  2833. float old_feedrate_mm_s = feedrate_mm_s;
  2834. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2835. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2836. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2837. + Z_CLEARANCE_BETWEEN_PROBES
  2838. #elif Z_HOMING_HEIGHT > 0
  2839. + Z_HOMING_HEIGHT
  2840. #endif
  2841. ;
  2842. line_to_current_position();
  2843. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2844. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2845. line_to_current_position();
  2846. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  2847. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2848. line_to_current_position();
  2849. #endif
  2850. feedrate_mm_s = old_feedrate_mm_s;
  2851. stepper.synchronize();
  2852. }
  2853. /**
  2854. * G29: Mesh-based Z probe, probes a grid and produces a
  2855. * mesh to compensate for variable bed height
  2856. *
  2857. * Parameters With MESH_BED_LEVELING:
  2858. *
  2859. * S0 Produce a mesh report
  2860. * S1 Start probing mesh points
  2861. * S2 Probe the next mesh point
  2862. * S3 Xn Yn Zn.nn Manually modify a single point
  2863. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2864. * S5 Reset and disable mesh
  2865. *
  2866. * The S0 report the points as below
  2867. *
  2868. * +----> X-axis 1-n
  2869. * |
  2870. * |
  2871. * v Y-axis 1-n
  2872. *
  2873. */
  2874. inline void gcode_G29() {
  2875. static int probe_point = -1;
  2876. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2877. if (state < 0 || state > 5) {
  2878. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2879. return;
  2880. }
  2881. int8_t px, py;
  2882. switch (state) {
  2883. case MeshReport:
  2884. if (mbl.has_mesh()) {
  2885. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2886. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2887. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2888. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2889. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2890. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2891. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2892. SERIAL_PROTOCOLPGM(" ");
  2893. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2894. }
  2895. SERIAL_EOL;
  2896. }
  2897. }
  2898. else
  2899. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2900. break;
  2901. case MeshStart:
  2902. mbl.reset();
  2903. probe_point = 0;
  2904. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2905. break;
  2906. case MeshNext:
  2907. if (probe_point < 0) {
  2908. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2909. return;
  2910. }
  2911. // For each G29 S2...
  2912. if (probe_point == 0) {
  2913. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2914. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2915. #if Z_HOME_DIR > 0
  2916. + Z_MAX_POS
  2917. #endif
  2918. ;
  2919. SYNC_PLAN_POSITION_KINEMATIC();
  2920. }
  2921. else {
  2922. // For G29 S2 after adjusting Z.
  2923. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2924. }
  2925. // If there's another point to sample, move there with optional lift.
  2926. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2927. mbl.zigzag(probe_point, px, py);
  2928. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2929. probe_point++;
  2930. }
  2931. else {
  2932. // One last "return to the bed" (as originally coded) at completion
  2933. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2934. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2935. + Z_CLEARANCE_BETWEEN_PROBES
  2936. #elif Z_HOMING_HEIGHT > 0
  2937. + Z_HOMING_HEIGHT
  2938. #endif
  2939. ;
  2940. line_to_current_position();
  2941. stepper.synchronize();
  2942. // After recording the last point, activate the mbl and home
  2943. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2944. probe_point = -1;
  2945. mbl.set_has_mesh(true);
  2946. enqueue_and_echo_commands_P(PSTR("G28"));
  2947. }
  2948. break;
  2949. case MeshSet:
  2950. if (code_seen('X')) {
  2951. px = code_value_int() - 1;
  2952. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2953. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2954. return;
  2955. }
  2956. }
  2957. else {
  2958. SERIAL_PROTOCOLLNPGM("X not entered.");
  2959. return;
  2960. }
  2961. if (code_seen('Y')) {
  2962. py = code_value_int() - 1;
  2963. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2964. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2965. return;
  2966. }
  2967. }
  2968. else {
  2969. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2970. return;
  2971. }
  2972. if (code_seen('Z')) {
  2973. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2974. }
  2975. else {
  2976. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2977. return;
  2978. }
  2979. break;
  2980. case MeshSetZOffset:
  2981. if (code_seen('Z')) {
  2982. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2983. }
  2984. else {
  2985. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2986. return;
  2987. }
  2988. break;
  2989. case MeshReset:
  2990. if (mbl.active()) {
  2991. current_position[Z_AXIS] +=
  2992. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2993. mbl.reset();
  2994. SYNC_PLAN_POSITION_KINEMATIC();
  2995. }
  2996. else
  2997. mbl.reset();
  2998. } // switch(state)
  2999. report_current_position();
  3000. }
  3001. #elif HAS_ABL
  3002. /**
  3003. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3004. * Will fail if the printer has not been homed with G28.
  3005. *
  3006. * Enhanced G29 Auto Bed Leveling Probe Routine
  3007. *
  3008. * Parameters With ABL_GRID:
  3009. *
  3010. * P Set the size of the grid that will be probed (P x P points).
  3011. * Not supported by non-linear delta printer bed leveling.
  3012. * Example: "G29 P4"
  3013. *
  3014. * S Set the XY travel speed between probe points (in units/min)
  3015. *
  3016. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3017. * or clean the rotation Matrix. Useful to check the topology
  3018. * after a first run of G29.
  3019. *
  3020. * V Set the verbose level (0-4). Example: "G29 V3"
  3021. *
  3022. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3023. * This is useful for manual bed leveling and finding flaws in the bed (to
  3024. * assist with part placement).
  3025. * Not supported by non-linear delta printer bed leveling.
  3026. *
  3027. * F Set the Front limit of the probing grid
  3028. * B Set the Back limit of the probing grid
  3029. * L Set the Left limit of the probing grid
  3030. * R Set the Right limit of the probing grid
  3031. *
  3032. * Global Parameters:
  3033. *
  3034. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3035. * Include "E" to engage/disengage the Z probe for each sample.
  3036. * There's no extra effect if you have a fixed Z probe.
  3037. * Usage: "G29 E" or "G29 e"
  3038. *
  3039. */
  3040. inline void gcode_G29() {
  3041. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3042. bool query = code_seen('Q');
  3043. uint8_t old_debug_flags = marlin_debug_flags;
  3044. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3045. if (DEBUGGING(LEVELING)) {
  3046. DEBUG_POS(">>> gcode_G29", current_position);
  3047. log_machine_info();
  3048. }
  3049. marlin_debug_flags = old_debug_flags;
  3050. if (query) return;
  3051. #endif
  3052. // Don't allow auto-leveling without homing first
  3053. if (axis_unhomed_error(true, true, true)) return;
  3054. int verbose_level = code_seen('V') ? code_value_int() : 1;
  3055. if (verbose_level < 0 || verbose_level > 4) {
  3056. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3057. return;
  3058. }
  3059. bool dryrun = code_seen('D'),
  3060. stow_probe_after_each = code_seen('E');
  3061. #if ABL_GRID
  3062. #if ABL_PLANAR
  3063. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3064. #endif
  3065. if (verbose_level > 0) {
  3066. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3067. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3068. }
  3069. int abl_grid_points_x = ABL_GRID_POINTS_X,
  3070. abl_grid_points_y = ABL_GRID_POINTS_Y;
  3071. #if ABL_PLANAR
  3072. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3073. if (abl_grid_points_x < 2) {
  3074. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  3075. return;
  3076. }
  3077. #endif
  3078. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3079. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3080. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3081. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3082. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3083. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3084. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3085. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3086. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3087. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3088. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3089. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3090. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3091. if (left_out || right_out || front_out || back_out) {
  3092. if (left_out) {
  3093. out_of_range_error(PSTR("(L)eft"));
  3094. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3095. }
  3096. if (right_out) {
  3097. out_of_range_error(PSTR("(R)ight"));
  3098. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3099. }
  3100. if (front_out) {
  3101. out_of_range_error(PSTR("(F)ront"));
  3102. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3103. }
  3104. if (back_out) {
  3105. out_of_range_error(PSTR("(B)ack"));
  3106. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3107. }
  3108. return;
  3109. }
  3110. #endif // ABL_GRID
  3111. stepper.synchronize();
  3112. // Disable auto bed leveling during G29
  3113. bool abl_should_enable = planner.abl_enabled;
  3114. planner.abl_enabled = false;
  3115. if (!dryrun) {
  3116. // Re-orient the current position without leveling
  3117. // based on where the steppers are positioned.
  3118. get_cartesian_from_steppers();
  3119. memcpy(current_position, cartes, sizeof(cartes));
  3120. // Inform the planner about the new coordinates
  3121. SYNC_PLAN_POSITION_KINEMATIC();
  3122. }
  3123. setup_for_endstop_or_probe_move();
  3124. // Deploy the probe. Probe will raise if needed.
  3125. if (DEPLOY_PROBE()) {
  3126. planner.abl_enabled = abl_should_enable;
  3127. return;
  3128. }
  3129. float xProbe = 0, yProbe = 0, measured_z = 0;
  3130. #if ABL_GRID
  3131. // probe at the points of a lattice grid
  3132. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3133. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3134. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3135. float zoffset = zprobe_zoffset;
  3136. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3137. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3138. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3139. || left_probe_bed_position != bilinear_start[X_AXIS]
  3140. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3141. ) {
  3142. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3143. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3144. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3145. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3146. // Can't re-enable (on error) until the new grid is written
  3147. abl_should_enable = false;
  3148. }
  3149. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3150. /**
  3151. * solve the plane equation ax + by + d = z
  3152. * A is the matrix with rows [x y 1] for all the probed points
  3153. * B is the vector of the Z positions
  3154. * the normal vector to the plane is formed by the coefficients of the
  3155. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3156. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3157. */
  3158. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3159. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3160. probePointCounter = -1;
  3161. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3162. eqnBVector[abl2], // "B" vector of Z points
  3163. mean = 0.0;
  3164. #endif // AUTO_BED_LEVELING_LINEAR
  3165. bool zig = abl_grid_points_y & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3166. for (uint8_t yCount = 0; yCount < abl_grid_points_y; yCount++) {
  3167. float yBase = front_probe_bed_position + yGridSpacing * yCount;
  3168. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3169. int8_t xStart, xStop, xInc;
  3170. if (zig) {
  3171. xStart = 0;
  3172. xStop = abl_grid_points_x;
  3173. xInc = 1;
  3174. }
  3175. else {
  3176. xStart = abl_grid_points_x - 1;
  3177. xStop = -1;
  3178. xInc = -1;
  3179. }
  3180. zig = !zig;
  3181. for (int8_t xCount = xStart; xCount != xStop; xCount += xInc) {
  3182. float xBase = left_probe_bed_position + xGridSpacing * xCount;
  3183. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3184. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3185. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3186. #endif
  3187. #if IS_KINEMATIC
  3188. // Avoid probing outside the round or hexagonal area
  3189. float pos[XYZ] = { xProbe, yProbe, 0 };
  3190. if (!position_is_reachable(pos, true)) continue;
  3191. #endif
  3192. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3193. if (measured_z == NAN) {
  3194. planner.abl_enabled = abl_should_enable;
  3195. return;
  3196. }
  3197. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3198. mean += measured_z;
  3199. eqnBVector[probePointCounter] = measured_z;
  3200. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3201. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3202. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3203. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3204. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3205. #endif
  3206. idle();
  3207. } //xProbe
  3208. } //yProbe
  3209. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3210. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3211. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3212. #endif
  3213. // Probe at 3 arbitrary points
  3214. vector_3 points[3] = {
  3215. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3216. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3217. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3218. };
  3219. for (uint8_t i = 0; i < 3; ++i) {
  3220. // Retain the last probe position
  3221. xProbe = LOGICAL_X_POSITION(points[i].x);
  3222. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3223. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3224. }
  3225. if (measured_z == NAN) {
  3226. planner.abl_enabled = abl_should_enable;
  3227. return;
  3228. }
  3229. if (!dryrun) {
  3230. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3231. if (planeNormal.z < 0) {
  3232. planeNormal.x *= -1;
  3233. planeNormal.y *= -1;
  3234. planeNormal.z *= -1;
  3235. }
  3236. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3237. // Can't re-enable (on error) until the new grid is written
  3238. abl_should_enable = false;
  3239. }
  3240. #endif // AUTO_BED_LEVELING_3POINT
  3241. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3242. if (STOW_PROBE()) {
  3243. planner.abl_enabled = abl_should_enable;
  3244. return;
  3245. }
  3246. //
  3247. // Unless this is a dry run, auto bed leveling will
  3248. // definitely be enabled after this point
  3249. //
  3250. // Restore state after probing
  3251. clean_up_after_endstop_or_probe_move();
  3252. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3253. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3254. #endif
  3255. // Calculate leveling, print reports, correct the position
  3256. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3257. if (!dryrun) extrapolate_unprobed_bed_level();
  3258. print_bed_level();
  3259. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3260. // For LINEAR leveling calculate matrix, print reports, correct the position
  3261. // solve lsq problem
  3262. float plane_equation_coefficients[3];
  3263. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3264. mean /= abl2;
  3265. if (verbose_level) {
  3266. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3267. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3268. SERIAL_PROTOCOLPGM(" b: ");
  3269. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3270. SERIAL_PROTOCOLPGM(" d: ");
  3271. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3272. SERIAL_EOL;
  3273. if (verbose_level > 2) {
  3274. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3275. SERIAL_PROTOCOL_F(mean, 8);
  3276. SERIAL_EOL;
  3277. }
  3278. }
  3279. // Create the matrix but don't correct the position yet
  3280. if (!dryrun) {
  3281. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3282. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3283. );
  3284. }
  3285. // Show the Topography map if enabled
  3286. if (do_topography_map) {
  3287. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3288. " +--- BACK --+\n"
  3289. " | |\n"
  3290. " L | (+) | R\n"
  3291. " E | | I\n"
  3292. " F | (-) N (+) | G\n"
  3293. " T | | H\n"
  3294. " | (-) | T\n"
  3295. " | |\n"
  3296. " O-- FRONT --+\n"
  3297. " (0,0)");
  3298. float min_diff = 999;
  3299. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3300. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3301. int ind = indexIntoAB[xx][yy];
  3302. float diff = eqnBVector[ind] - mean,
  3303. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3304. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3305. z_tmp = 0;
  3306. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3307. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3308. if (diff >= 0.0)
  3309. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3310. else
  3311. SERIAL_PROTOCOLCHAR(' ');
  3312. SERIAL_PROTOCOL_F(diff, 5);
  3313. } // xx
  3314. SERIAL_EOL;
  3315. } // yy
  3316. SERIAL_EOL;
  3317. if (verbose_level > 3) {
  3318. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3319. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3320. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3321. int ind = indexIntoAB[xx][yy];
  3322. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3323. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3324. z_tmp = 0;
  3325. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3326. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3327. if (diff >= 0.0)
  3328. SERIAL_PROTOCOLPGM(" +");
  3329. // Include + for column alignment
  3330. else
  3331. SERIAL_PROTOCOLCHAR(' ');
  3332. SERIAL_PROTOCOL_F(diff, 5);
  3333. } // xx
  3334. SERIAL_EOL;
  3335. } // yy
  3336. SERIAL_EOL;
  3337. }
  3338. } //do_topography_map
  3339. #endif // AUTO_BED_LEVELING_LINEAR
  3340. #if ABL_PLANAR
  3341. // For LINEAR and 3POINT leveling correct the current position
  3342. if (verbose_level > 0)
  3343. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3344. if (!dryrun) {
  3345. //
  3346. // Correct the current XYZ position based on the tilted plane.
  3347. //
  3348. // 1. Get the distance from the current position to the reference point.
  3349. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3350. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3351. z_real = current_position[Z_AXIS],
  3352. z_zero = 0;
  3353. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3354. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3355. #endif
  3356. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3357. // 2. Apply the inverse matrix to the distance
  3358. // from the reference point to X, Y, and zero.
  3359. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3360. // 3. Get the matrix-based corrected Z.
  3361. // (Even if not used, get it for comparison.)
  3362. float new_z = z_real + z_zero;
  3363. // 4. Use the last measured distance to the bed, if possible
  3364. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3365. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3366. ) {
  3367. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3368. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3369. if (DEBUGGING(LEVELING)) {
  3370. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3371. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3372. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3373. }
  3374. #endif
  3375. new_z = simple_z;
  3376. }
  3377. // 5. The rotated XY and corrected Z are now current_position
  3378. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3379. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3380. current_position[Z_AXIS] = new_z;
  3381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3382. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3383. #endif
  3384. SYNC_PLAN_POSITION_KINEMATIC();
  3385. abl_should_enable = true;
  3386. }
  3387. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3388. if (!dryrun) {
  3389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3390. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3391. #endif
  3392. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3394. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3395. #endif
  3396. SYNC_PLAN_POSITION_KINEMATIC();
  3397. abl_should_enable = true;
  3398. }
  3399. #endif // ABL_PLANAR
  3400. #ifdef Z_PROBE_END_SCRIPT
  3401. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3402. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3403. #endif
  3404. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3405. stepper.synchronize();
  3406. #endif
  3407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3408. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3409. #endif
  3410. report_current_position();
  3411. KEEPALIVE_STATE(IN_HANDLER);
  3412. // Auto Bed Leveling is complete! Enable if possible.
  3413. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3414. }
  3415. #endif // HAS_ABL
  3416. #if HAS_BED_PROBE
  3417. /**
  3418. * G30: Do a single Z probe at the current XY
  3419. */
  3420. inline void gcode_G30() {
  3421. #if HAS_ABL
  3422. reset_bed_level();
  3423. #endif
  3424. setup_for_endstop_or_probe_move();
  3425. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3426. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3427. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3428. true, 1);
  3429. SERIAL_PROTOCOLPGM("Bed X: ");
  3430. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3431. SERIAL_PROTOCOLPGM(" Y: ");
  3432. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3433. SERIAL_PROTOCOLPGM(" Z: ");
  3434. SERIAL_PROTOCOL(measured_z + 0.0001);
  3435. SERIAL_EOL;
  3436. clean_up_after_endstop_or_probe_move();
  3437. report_current_position();
  3438. }
  3439. #if ENABLED(Z_PROBE_SLED)
  3440. /**
  3441. * G31: Deploy the Z probe
  3442. */
  3443. inline void gcode_G31() { DEPLOY_PROBE(); }
  3444. /**
  3445. * G32: Stow the Z probe
  3446. */
  3447. inline void gcode_G32() { STOW_PROBE(); }
  3448. #endif // Z_PROBE_SLED
  3449. #endif // HAS_BED_PROBE
  3450. /**
  3451. * G92: Set current position to given X Y Z E
  3452. */
  3453. inline void gcode_G92() {
  3454. bool didXYZ = false,
  3455. didE = code_seen('E');
  3456. if (!didE) stepper.synchronize();
  3457. LOOP_XYZE(i) {
  3458. if (code_seen(axis_codes[i])) {
  3459. #if IS_SCARA
  3460. current_position[i] = code_value_axis_units(i);
  3461. if (i != E_AXIS) didXYZ = true;
  3462. #else
  3463. float p = current_position[i],
  3464. v = code_value_axis_units(i);
  3465. current_position[i] = v;
  3466. if (i != E_AXIS) {
  3467. didXYZ = true;
  3468. position_shift[i] += v - p; // Offset the coordinate space
  3469. update_software_endstops((AxisEnum)i);
  3470. }
  3471. #endif
  3472. }
  3473. }
  3474. if (didXYZ)
  3475. SYNC_PLAN_POSITION_KINEMATIC();
  3476. else if (didE)
  3477. sync_plan_position_e();
  3478. report_current_position();
  3479. }
  3480. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3481. /**
  3482. * M0: Unconditional stop - Wait for user button press on LCD
  3483. * M1: Conditional stop - Wait for user button press on LCD
  3484. */
  3485. inline void gcode_M0_M1() {
  3486. char* args = current_command_args;
  3487. millis_t codenum = 0;
  3488. bool hasP = false, hasS = false;
  3489. if (code_seen('P')) {
  3490. codenum = code_value_millis(); // milliseconds to wait
  3491. hasP = codenum > 0;
  3492. }
  3493. if (code_seen('S')) {
  3494. codenum = code_value_millis_from_seconds(); // seconds to wait
  3495. hasS = codenum > 0;
  3496. }
  3497. #if ENABLED(ULTIPANEL)
  3498. if (!hasP && !hasS && *args != '\0')
  3499. lcd_setstatus(args, true);
  3500. else {
  3501. LCD_MESSAGEPGM(MSG_USERWAIT);
  3502. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3503. dontExpireStatus();
  3504. #endif
  3505. }
  3506. lcd_ignore_click();
  3507. #else
  3508. if (!hasP && !hasS && *args != '\0') {
  3509. SERIAL_ECHO_START;
  3510. SERIAL_ECHOLN(args);
  3511. }
  3512. #endif
  3513. stepper.synchronize();
  3514. refresh_cmd_timeout();
  3515. #if ENABLED(ULTIPANEL)
  3516. if (codenum > 0) {
  3517. codenum += previous_cmd_ms; // wait until this time for a click
  3518. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3519. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3520. lcd_ignore_click(false);
  3521. }
  3522. else if (lcd_detected()) {
  3523. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3524. while (!lcd_clicked()) idle();
  3525. }
  3526. else return;
  3527. if (IS_SD_PRINTING)
  3528. LCD_MESSAGEPGM(MSG_RESUMING);
  3529. else
  3530. LCD_MESSAGEPGM(WELCOME_MSG);
  3531. #else
  3532. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3533. wait_for_user = true;
  3534. if (codenum > 0) {
  3535. codenum += previous_cmd_ms; // wait until this time for an M108
  3536. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3537. }
  3538. else while (wait_for_user) idle();
  3539. wait_for_user = false;
  3540. #endif
  3541. KEEPALIVE_STATE(IN_HANDLER);
  3542. }
  3543. #endif // ULTIPANEL || EMERGENCY_PARSER
  3544. /**
  3545. * M17: Enable power on all stepper motors
  3546. */
  3547. inline void gcode_M17() {
  3548. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3549. enable_all_steppers();
  3550. }
  3551. #if ENABLED(SDSUPPORT)
  3552. /**
  3553. * M20: List SD card to serial output
  3554. */
  3555. inline void gcode_M20() {
  3556. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3557. card.ls();
  3558. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3559. }
  3560. /**
  3561. * M21: Init SD Card
  3562. */
  3563. inline void gcode_M21() { card.initsd(); }
  3564. /**
  3565. * M22: Release SD Card
  3566. */
  3567. inline void gcode_M22() { card.release(); }
  3568. /**
  3569. * M23: Open a file
  3570. */
  3571. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3572. /**
  3573. * M24: Start SD Print
  3574. */
  3575. inline void gcode_M24() {
  3576. card.startFileprint();
  3577. print_job_timer.start();
  3578. }
  3579. /**
  3580. * M25: Pause SD Print
  3581. */
  3582. inline void gcode_M25() { card.pauseSDPrint(); }
  3583. /**
  3584. * M26: Set SD Card file index
  3585. */
  3586. inline void gcode_M26() {
  3587. if (card.cardOK && code_seen('S'))
  3588. card.setIndex(code_value_long());
  3589. }
  3590. /**
  3591. * M27: Get SD Card status
  3592. */
  3593. inline void gcode_M27() { card.getStatus(); }
  3594. /**
  3595. * M28: Start SD Write
  3596. */
  3597. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3598. /**
  3599. * M29: Stop SD Write
  3600. * Processed in write to file routine above
  3601. */
  3602. inline void gcode_M29() {
  3603. // card.saving = false;
  3604. }
  3605. /**
  3606. * M30 <filename>: Delete SD Card file
  3607. */
  3608. inline void gcode_M30() {
  3609. if (card.cardOK) {
  3610. card.closefile();
  3611. card.removeFile(current_command_args);
  3612. }
  3613. }
  3614. #endif // SDSUPPORT
  3615. /**
  3616. * M31: Get the time since the start of SD Print (or last M109)
  3617. */
  3618. inline void gcode_M31() {
  3619. char buffer[21];
  3620. duration_t elapsed = print_job_timer.duration();
  3621. elapsed.toString(buffer);
  3622. lcd_setstatus(buffer);
  3623. SERIAL_ECHO_START;
  3624. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3625. thermalManager.autotempShutdown();
  3626. }
  3627. #if ENABLED(SDSUPPORT)
  3628. /**
  3629. * M32: Select file and start SD Print
  3630. */
  3631. inline void gcode_M32() {
  3632. if (card.sdprinting)
  3633. stepper.synchronize();
  3634. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3635. if (!namestartpos)
  3636. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3637. else
  3638. namestartpos++; //to skip the '!'
  3639. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3640. if (card.cardOK) {
  3641. card.openFile(namestartpos, true, call_procedure);
  3642. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3643. card.setIndex(code_value_long());
  3644. card.startFileprint();
  3645. // Procedure calls count as normal print time.
  3646. if (!call_procedure) print_job_timer.start();
  3647. }
  3648. }
  3649. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3650. /**
  3651. * M33: Get the long full path of a file or folder
  3652. *
  3653. * Parameters:
  3654. * <dospath> Case-insensitive DOS-style path to a file or folder
  3655. *
  3656. * Example:
  3657. * M33 miscel~1/armchair/armcha~1.gco
  3658. *
  3659. * Output:
  3660. * /Miscellaneous/Armchair/Armchair.gcode
  3661. */
  3662. inline void gcode_M33() {
  3663. card.printLongPath(current_command_args);
  3664. }
  3665. #endif
  3666. /**
  3667. * M928: Start SD Write
  3668. */
  3669. inline void gcode_M928() {
  3670. card.openLogFile(current_command_args);
  3671. }
  3672. #endif // SDSUPPORT
  3673. /**
  3674. * M42: Change pin status via GCode
  3675. *
  3676. * P<pin> Pin number (LED if omitted)
  3677. * S<byte> Pin status from 0 - 255
  3678. */
  3679. inline void gcode_M42() {
  3680. if (!code_seen('S')) return;
  3681. int pin_status = code_value_int();
  3682. if (pin_status < 0 || pin_status > 255) return;
  3683. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3684. if (pin_number < 0) return;
  3685. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3686. if (pin_number == sensitive_pins[i]) {
  3687. SERIAL_ERROR_START;
  3688. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  3689. return;
  3690. }
  3691. pinMode(pin_number, OUTPUT);
  3692. digitalWrite(pin_number, pin_status);
  3693. analogWrite(pin_number, pin_status);
  3694. #if FAN_COUNT > 0
  3695. switch (pin_number) {
  3696. #if HAS_FAN0
  3697. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3698. #endif
  3699. #if HAS_FAN1
  3700. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3701. #endif
  3702. #if HAS_FAN2
  3703. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3704. #endif
  3705. }
  3706. #endif
  3707. }
  3708. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3709. /**
  3710. * M48: Z probe repeatability measurement function.
  3711. *
  3712. * Usage:
  3713. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3714. * P = Number of sampled points (4-50, default 10)
  3715. * X = Sample X position
  3716. * Y = Sample Y position
  3717. * V = Verbose level (0-4, default=1)
  3718. * E = Engage Z probe for each reading
  3719. * L = Number of legs of movement before probe
  3720. * S = Schizoid (Or Star if you prefer)
  3721. *
  3722. * This function assumes the bed has been homed. Specifically, that a G28 command
  3723. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3724. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3725. * regenerated.
  3726. */
  3727. inline void gcode_M48() {
  3728. if (axis_unhomed_error(true, true, true)) return;
  3729. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3730. if (verbose_level < 0 || verbose_level > 4) {
  3731. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3732. return;
  3733. }
  3734. if (verbose_level > 0)
  3735. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3736. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3737. if (n_samples < 4 || n_samples > 50) {
  3738. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3739. return;
  3740. }
  3741. float X_current = current_position[X_AXIS],
  3742. Y_current = current_position[Y_AXIS];
  3743. bool stow_probe_after_each = code_seen('E');
  3744. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3745. #if DISABLED(DELTA)
  3746. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3747. out_of_range_error(PSTR("X"));
  3748. return;
  3749. }
  3750. #endif
  3751. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3752. #if DISABLED(DELTA)
  3753. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3754. out_of_range_error(PSTR("Y"));
  3755. return;
  3756. }
  3757. #else
  3758. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  3759. if (!position_is_reachable(pos, true)) {
  3760. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3761. return;
  3762. }
  3763. #endif
  3764. bool seen_L = code_seen('L');
  3765. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3766. if (n_legs > 15) {
  3767. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3768. return;
  3769. }
  3770. if (n_legs == 1) n_legs = 2;
  3771. bool schizoid_flag = code_seen('S');
  3772. if (schizoid_flag && !seen_L) n_legs = 7;
  3773. /**
  3774. * Now get everything to the specified probe point So we can safely do a
  3775. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3776. * we don't want to use that as a starting point for each probe.
  3777. */
  3778. if (verbose_level > 2)
  3779. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3780. // Disable bed level correction in M48 because we want the raw data when we probe
  3781. #if HAS_ABL
  3782. reset_bed_level();
  3783. #endif
  3784. setup_for_endstop_or_probe_move();
  3785. // Move to the first point, deploy, and probe
  3786. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3787. randomSeed(millis());
  3788. double mean = 0, sigma = 0, sample_set[n_samples];
  3789. for (uint8_t n = 0; n < n_samples; n++) {
  3790. if (n_legs) {
  3791. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3792. float angle = random(0.0, 360.0),
  3793. radius = random(
  3794. #if ENABLED(DELTA)
  3795. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3796. #else
  3797. 5, X_MAX_LENGTH / 8
  3798. #endif
  3799. );
  3800. if (verbose_level > 3) {
  3801. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3802. SERIAL_ECHOPAIR(" angle: ", angle);
  3803. SERIAL_ECHOPGM(" Direction: ");
  3804. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3805. SERIAL_ECHOLNPGM("Clockwise");
  3806. }
  3807. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3808. double delta_angle;
  3809. if (schizoid_flag)
  3810. // The points of a 5 point star are 72 degrees apart. We need to
  3811. // skip a point and go to the next one on the star.
  3812. delta_angle = dir * 2.0 * 72.0;
  3813. else
  3814. // If we do this line, we are just trying to move further
  3815. // around the circle.
  3816. delta_angle = dir * (float) random(25, 45);
  3817. angle += delta_angle;
  3818. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3819. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3820. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3821. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3822. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3823. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3824. #if DISABLED(DELTA)
  3825. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3826. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3827. #else
  3828. // If we have gone out too far, we can do a simple fix and scale the numbers
  3829. // back in closer to the origin.
  3830. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3831. X_current /= 1.25;
  3832. Y_current /= 1.25;
  3833. if (verbose_level > 3) {
  3834. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3835. SERIAL_ECHOLNPAIR(", ", Y_current);
  3836. }
  3837. }
  3838. #endif
  3839. if (verbose_level > 3) {
  3840. SERIAL_PROTOCOLPGM("Going to:");
  3841. SERIAL_ECHOPAIR(" X", X_current);
  3842. SERIAL_ECHOPAIR(" Y", Y_current);
  3843. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3844. }
  3845. do_blocking_move_to_xy(X_current, Y_current);
  3846. } // n_legs loop
  3847. } // n_legs
  3848. // Probe a single point
  3849. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3850. /**
  3851. * Get the current mean for the data points we have so far
  3852. */
  3853. double sum = 0.0;
  3854. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3855. mean = sum / (n + 1);
  3856. /**
  3857. * Now, use that mean to calculate the standard deviation for the
  3858. * data points we have so far
  3859. */
  3860. sum = 0.0;
  3861. for (uint8_t j = 0; j <= n; j++)
  3862. sum += sq(sample_set[j] - mean);
  3863. sigma = sqrt(sum / (n + 1));
  3864. if (verbose_level > 0) {
  3865. if (verbose_level > 1) {
  3866. SERIAL_PROTOCOL(n + 1);
  3867. SERIAL_PROTOCOLPGM(" of ");
  3868. SERIAL_PROTOCOL((int)n_samples);
  3869. SERIAL_PROTOCOLPGM(" z: ");
  3870. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3871. if (verbose_level > 2) {
  3872. SERIAL_PROTOCOLPGM(" mean: ");
  3873. SERIAL_PROTOCOL_F(mean, 6);
  3874. SERIAL_PROTOCOLPGM(" sigma: ");
  3875. SERIAL_PROTOCOL_F(sigma, 6);
  3876. }
  3877. }
  3878. SERIAL_EOL;
  3879. }
  3880. } // End of probe loop
  3881. if (STOW_PROBE()) return;
  3882. if (verbose_level > 0) {
  3883. SERIAL_PROTOCOLPGM("Mean: ");
  3884. SERIAL_PROTOCOL_F(mean, 6);
  3885. SERIAL_EOL;
  3886. }
  3887. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3888. SERIAL_PROTOCOL_F(sigma, 6);
  3889. SERIAL_EOL; SERIAL_EOL;
  3890. clean_up_after_endstop_or_probe_move();
  3891. report_current_position();
  3892. }
  3893. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3894. /**
  3895. * M75: Start print timer
  3896. */
  3897. inline void gcode_M75() { print_job_timer.start(); }
  3898. /**
  3899. * M76: Pause print timer
  3900. */
  3901. inline void gcode_M76() { print_job_timer.pause(); }
  3902. /**
  3903. * M77: Stop print timer
  3904. */
  3905. inline void gcode_M77() { print_job_timer.stop(); }
  3906. #if ENABLED(PRINTCOUNTER)
  3907. /**
  3908. * M78: Show print statistics
  3909. */
  3910. inline void gcode_M78() {
  3911. // "M78 S78" will reset the statistics
  3912. if (code_seen('S') && code_value_int() == 78)
  3913. print_job_timer.initStats();
  3914. else
  3915. print_job_timer.showStats();
  3916. }
  3917. #endif
  3918. /**
  3919. * M104: Set hot end temperature
  3920. */
  3921. inline void gcode_M104() {
  3922. if (get_target_extruder_from_command(104)) return;
  3923. if (DEBUGGING(DRYRUN)) return;
  3924. #if ENABLED(SINGLENOZZLE)
  3925. if (target_extruder != active_extruder) return;
  3926. #endif
  3927. if (code_seen('S')) {
  3928. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3929. #if ENABLED(DUAL_X_CARRIAGE)
  3930. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3931. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3932. #endif
  3933. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3934. /**
  3935. * Stop the timer at the end of print, starting is managed by
  3936. * 'heat and wait' M109.
  3937. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3938. * stand by mode, for instance in a dual extruder setup, without affecting
  3939. * the running print timer.
  3940. */
  3941. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3942. print_job_timer.stop();
  3943. LCD_MESSAGEPGM(WELCOME_MSG);
  3944. }
  3945. #endif
  3946. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3947. }
  3948. }
  3949. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3950. void print_heaterstates() {
  3951. #if HAS_TEMP_HOTEND
  3952. SERIAL_PROTOCOLPGM(" T:");
  3953. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3954. SERIAL_PROTOCOLPGM(" /");
  3955. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3956. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3957. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3958. SERIAL_CHAR(')');
  3959. #endif
  3960. #endif
  3961. #if HAS_TEMP_BED
  3962. SERIAL_PROTOCOLPGM(" B:");
  3963. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3964. SERIAL_PROTOCOLPGM(" /");
  3965. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3966. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3967. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3968. SERIAL_CHAR(')');
  3969. #endif
  3970. #endif
  3971. #if HOTENDS > 1
  3972. HOTEND_LOOP() {
  3973. SERIAL_PROTOCOLPAIR(" T", e);
  3974. SERIAL_PROTOCOLCHAR(':');
  3975. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3976. SERIAL_PROTOCOLPGM(" /");
  3977. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3978. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3979. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3980. SERIAL_CHAR(')');
  3981. #endif
  3982. }
  3983. #endif
  3984. SERIAL_PROTOCOLPGM(" @:");
  3985. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3986. #if HAS_TEMP_BED
  3987. SERIAL_PROTOCOLPGM(" B@:");
  3988. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3989. #endif
  3990. #if HOTENDS > 1
  3991. HOTEND_LOOP() {
  3992. SERIAL_PROTOCOLPAIR(" @", e);
  3993. SERIAL_PROTOCOLCHAR(':');
  3994. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3995. }
  3996. #endif
  3997. }
  3998. #endif
  3999. /**
  4000. * M105: Read hot end and bed temperature
  4001. */
  4002. inline void gcode_M105() {
  4003. if (get_target_extruder_from_command(105)) return;
  4004. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4005. SERIAL_PROTOCOLPGM(MSG_OK);
  4006. print_heaterstates();
  4007. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4008. SERIAL_ERROR_START;
  4009. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4010. #endif
  4011. SERIAL_EOL;
  4012. }
  4013. #if FAN_COUNT > 0
  4014. /**
  4015. * M106: Set Fan Speed
  4016. *
  4017. * S<int> Speed between 0-255
  4018. * P<index> Fan index, if more than one fan
  4019. */
  4020. inline void gcode_M106() {
  4021. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4022. p = code_seen('P') ? code_value_ushort() : 0;
  4023. NOMORE(s, 255);
  4024. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4025. }
  4026. /**
  4027. * M107: Fan Off
  4028. */
  4029. inline void gcode_M107() {
  4030. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4031. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4032. }
  4033. #endif // FAN_COUNT > 0
  4034. #if DISABLED(EMERGENCY_PARSER)
  4035. /**
  4036. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4037. */
  4038. inline void gcode_M108() { wait_for_heatup = false; }
  4039. /**
  4040. * M112: Emergency Stop
  4041. */
  4042. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4043. /**
  4044. * M410: Quickstop - Abort all planned moves
  4045. *
  4046. * This will stop the carriages mid-move, so most likely they
  4047. * will be out of sync with the stepper position after this.
  4048. */
  4049. inline void gcode_M410() { quickstop_stepper(); }
  4050. #endif
  4051. #ifndef MIN_COOLING_SLOPE_DEG
  4052. #define MIN_COOLING_SLOPE_DEG 1.50
  4053. #endif
  4054. #ifndef MIN_COOLING_SLOPE_TIME
  4055. #define MIN_COOLING_SLOPE_TIME 60
  4056. #endif
  4057. /**
  4058. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4059. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4060. */
  4061. inline void gcode_M109() {
  4062. if (get_target_extruder_from_command(109)) return;
  4063. if (DEBUGGING(DRYRUN)) return;
  4064. #if ENABLED(SINGLENOZZLE)
  4065. if (target_extruder != active_extruder) return;
  4066. #endif
  4067. bool no_wait_for_cooling = code_seen('S');
  4068. if (no_wait_for_cooling || code_seen('R')) {
  4069. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4070. #if ENABLED(DUAL_X_CARRIAGE)
  4071. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4072. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4073. #endif
  4074. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4075. /**
  4076. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4077. * stand by mode, for instance in a dual extruder setup, without affecting
  4078. * the running print timer.
  4079. */
  4080. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4081. print_job_timer.stop();
  4082. LCD_MESSAGEPGM(WELCOME_MSG);
  4083. }
  4084. /**
  4085. * We do not check if the timer is already running because this check will
  4086. * be done for us inside the Stopwatch::start() method thus a running timer
  4087. * will not restart.
  4088. */
  4089. else print_job_timer.start();
  4090. #endif
  4091. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4092. }
  4093. #if ENABLED(AUTOTEMP)
  4094. planner.autotemp_M109();
  4095. #endif
  4096. #if TEMP_RESIDENCY_TIME > 0
  4097. millis_t residency_start_ms = 0;
  4098. // Loop until the temperature has stabilized
  4099. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4100. #else
  4101. // Loop until the temperature is very close target
  4102. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4103. #endif //TEMP_RESIDENCY_TIME > 0
  4104. float theTarget = -1.0, old_temp = 9999.0;
  4105. bool wants_to_cool = false;
  4106. wait_for_heatup = true;
  4107. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4108. KEEPALIVE_STATE(NOT_BUSY);
  4109. do {
  4110. // Target temperature might be changed during the loop
  4111. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4112. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4113. theTarget = thermalManager.degTargetHotend(target_extruder);
  4114. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4115. if (no_wait_for_cooling && wants_to_cool) break;
  4116. }
  4117. now = millis();
  4118. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4119. next_temp_ms = now + 1000UL;
  4120. print_heaterstates();
  4121. #if TEMP_RESIDENCY_TIME > 0
  4122. SERIAL_PROTOCOLPGM(" W:");
  4123. if (residency_start_ms) {
  4124. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4125. SERIAL_PROTOCOLLN(rem);
  4126. }
  4127. else {
  4128. SERIAL_PROTOCOLLNPGM("?");
  4129. }
  4130. #else
  4131. SERIAL_EOL;
  4132. #endif
  4133. }
  4134. idle();
  4135. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4136. float temp = thermalManager.degHotend(target_extruder);
  4137. #if TEMP_RESIDENCY_TIME > 0
  4138. float temp_diff = fabs(theTarget - temp);
  4139. if (!residency_start_ms) {
  4140. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4141. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4142. }
  4143. else if (temp_diff > TEMP_HYSTERESIS) {
  4144. // Restart the timer whenever the temperature falls outside the hysteresis.
  4145. residency_start_ms = now;
  4146. }
  4147. #endif //TEMP_RESIDENCY_TIME > 0
  4148. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4149. if (wants_to_cool) {
  4150. // break after MIN_COOLING_SLOPE_TIME seconds
  4151. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4152. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4153. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4154. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4155. old_temp = temp;
  4156. }
  4157. }
  4158. } while (wait_for_heatup && TEMP_CONDITIONS);
  4159. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4160. KEEPALIVE_STATE(IN_HANDLER);
  4161. }
  4162. #if HAS_TEMP_BED
  4163. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4164. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4165. #endif
  4166. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4167. #define MIN_COOLING_SLOPE_TIME_BED 60
  4168. #endif
  4169. /**
  4170. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4171. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4172. */
  4173. inline void gcode_M190() {
  4174. if (DEBUGGING(DRYRUN)) return;
  4175. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4176. bool no_wait_for_cooling = code_seen('S');
  4177. if (no_wait_for_cooling || code_seen('R')) {
  4178. thermalManager.setTargetBed(code_value_temp_abs());
  4179. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4180. if (code_value_temp_abs() > BED_MINTEMP) {
  4181. /**
  4182. * We start the timer when 'heating and waiting' command arrives, LCD
  4183. * functions never wait. Cooling down managed by extruders.
  4184. *
  4185. * We do not check if the timer is already running because this check will
  4186. * be done for us inside the Stopwatch::start() method thus a running timer
  4187. * will not restart.
  4188. */
  4189. print_job_timer.start();
  4190. }
  4191. #endif
  4192. }
  4193. #if TEMP_BED_RESIDENCY_TIME > 0
  4194. millis_t residency_start_ms = 0;
  4195. // Loop until the temperature has stabilized
  4196. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4197. #else
  4198. // Loop until the temperature is very close target
  4199. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4200. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4201. float theTarget = -1.0, old_temp = 9999.0;
  4202. bool wants_to_cool = false;
  4203. wait_for_heatup = true;
  4204. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4205. KEEPALIVE_STATE(NOT_BUSY);
  4206. target_extruder = active_extruder; // for print_heaterstates
  4207. do {
  4208. // Target temperature might be changed during the loop
  4209. if (theTarget != thermalManager.degTargetBed()) {
  4210. wants_to_cool = thermalManager.isCoolingBed();
  4211. theTarget = thermalManager.degTargetBed();
  4212. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4213. if (no_wait_for_cooling && wants_to_cool) break;
  4214. }
  4215. now = millis();
  4216. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4217. next_temp_ms = now + 1000UL;
  4218. print_heaterstates();
  4219. #if TEMP_BED_RESIDENCY_TIME > 0
  4220. SERIAL_PROTOCOLPGM(" W:");
  4221. if (residency_start_ms) {
  4222. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4223. SERIAL_PROTOCOLLN(rem);
  4224. }
  4225. else {
  4226. SERIAL_PROTOCOLLNPGM("?");
  4227. }
  4228. #else
  4229. SERIAL_EOL;
  4230. #endif
  4231. }
  4232. idle();
  4233. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4234. float temp = thermalManager.degBed();
  4235. #if TEMP_BED_RESIDENCY_TIME > 0
  4236. float temp_diff = fabs(theTarget - temp);
  4237. if (!residency_start_ms) {
  4238. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4239. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4240. }
  4241. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4242. // Restart the timer whenever the temperature falls outside the hysteresis.
  4243. residency_start_ms = now;
  4244. }
  4245. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4246. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4247. if (wants_to_cool) {
  4248. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4249. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4250. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4251. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4252. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4253. old_temp = temp;
  4254. }
  4255. }
  4256. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4257. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4258. KEEPALIVE_STATE(IN_HANDLER);
  4259. }
  4260. #endif // HAS_TEMP_BED
  4261. /**
  4262. * M110: Set Current Line Number
  4263. */
  4264. inline void gcode_M110() {
  4265. if (code_seen('N')) gcode_N = code_value_long();
  4266. }
  4267. /**
  4268. * M111: Set the debug level
  4269. */
  4270. inline void gcode_M111() {
  4271. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4272. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4273. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4274. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4275. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4276. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4277. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4278. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4279. #endif
  4280. const static char* const debug_strings[] PROGMEM = {
  4281. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4282. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4283. str_debug_32
  4284. #endif
  4285. };
  4286. SERIAL_ECHO_START;
  4287. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4288. if (marlin_debug_flags) {
  4289. uint8_t comma = 0;
  4290. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4291. if (TEST(marlin_debug_flags, i)) {
  4292. if (comma++) SERIAL_CHAR(',');
  4293. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4294. }
  4295. }
  4296. }
  4297. else {
  4298. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4299. }
  4300. SERIAL_EOL;
  4301. }
  4302. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4303. /**
  4304. * M113: Get or set Host Keepalive interval (0 to disable)
  4305. *
  4306. * S<seconds> Optional. Set the keepalive interval.
  4307. */
  4308. inline void gcode_M113() {
  4309. if (code_seen('S')) {
  4310. host_keepalive_interval = code_value_byte();
  4311. NOMORE(host_keepalive_interval, 60);
  4312. }
  4313. else {
  4314. SERIAL_ECHO_START;
  4315. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4316. }
  4317. }
  4318. #endif
  4319. #if ENABLED(BARICUDA)
  4320. #if HAS_HEATER_1
  4321. /**
  4322. * M126: Heater 1 valve open
  4323. */
  4324. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4325. /**
  4326. * M127: Heater 1 valve close
  4327. */
  4328. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4329. #endif
  4330. #if HAS_HEATER_2
  4331. /**
  4332. * M128: Heater 2 valve open
  4333. */
  4334. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4335. /**
  4336. * M129: Heater 2 valve close
  4337. */
  4338. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4339. #endif
  4340. #endif //BARICUDA
  4341. /**
  4342. * M140: Set bed temperature
  4343. */
  4344. inline void gcode_M140() {
  4345. if (DEBUGGING(DRYRUN)) return;
  4346. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4347. }
  4348. #if ENABLED(ULTIPANEL)
  4349. /**
  4350. * M145: Set the heatup state for a material in the LCD menu
  4351. * S<material> (0=PLA, 1=ABS)
  4352. * H<hotend temp>
  4353. * B<bed temp>
  4354. * F<fan speed>
  4355. */
  4356. inline void gcode_M145() {
  4357. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4358. if (material < 0 || material > 1) {
  4359. SERIAL_ERROR_START;
  4360. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4361. }
  4362. else {
  4363. int v;
  4364. switch (material) {
  4365. case 0:
  4366. if (code_seen('H')) {
  4367. v = code_value_int();
  4368. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4369. }
  4370. if (code_seen('F')) {
  4371. v = code_value_int();
  4372. preheatFanSpeed1 = constrain(v, 0, 255);
  4373. }
  4374. #if TEMP_SENSOR_BED != 0
  4375. if (code_seen('B')) {
  4376. v = code_value_int();
  4377. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4378. }
  4379. #endif
  4380. break;
  4381. case 1:
  4382. if (code_seen('H')) {
  4383. v = code_value_int();
  4384. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4385. }
  4386. if (code_seen('F')) {
  4387. v = code_value_int();
  4388. preheatFanSpeed2 = constrain(v, 0, 255);
  4389. }
  4390. #if TEMP_SENSOR_BED != 0
  4391. if (code_seen('B')) {
  4392. v = code_value_int();
  4393. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4394. }
  4395. #endif
  4396. break;
  4397. }
  4398. }
  4399. }
  4400. #endif // ULTIPANEL
  4401. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4402. /**
  4403. * M149: Set temperature units
  4404. */
  4405. inline void gcode_M149() {
  4406. if (code_seen('C')) {
  4407. set_input_temp_units(TEMPUNIT_C);
  4408. } else if (code_seen('K')) {
  4409. set_input_temp_units(TEMPUNIT_K);
  4410. } else if (code_seen('F')) {
  4411. set_input_temp_units(TEMPUNIT_F);
  4412. }
  4413. }
  4414. #endif
  4415. #if HAS_POWER_SWITCH
  4416. /**
  4417. * M80: Turn on Power Supply
  4418. */
  4419. inline void gcode_M80() {
  4420. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4421. /**
  4422. * If you have a switch on suicide pin, this is useful
  4423. * if you want to start another print with suicide feature after
  4424. * a print without suicide...
  4425. */
  4426. #if HAS_SUICIDE
  4427. OUT_WRITE(SUICIDE_PIN, HIGH);
  4428. #endif
  4429. #if ENABLED(ULTIPANEL)
  4430. powersupply = true;
  4431. LCD_MESSAGEPGM(WELCOME_MSG);
  4432. lcd_update();
  4433. #endif
  4434. }
  4435. #endif // HAS_POWER_SWITCH
  4436. /**
  4437. * M81: Turn off Power, including Power Supply, if there is one.
  4438. *
  4439. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4440. */
  4441. inline void gcode_M81() {
  4442. thermalManager.disable_all_heaters();
  4443. stepper.finish_and_disable();
  4444. #if FAN_COUNT > 0
  4445. #if FAN_COUNT > 1
  4446. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4447. #else
  4448. fanSpeeds[0] = 0;
  4449. #endif
  4450. #endif
  4451. delay(1000); // Wait 1 second before switching off
  4452. #if HAS_SUICIDE
  4453. stepper.synchronize();
  4454. suicide();
  4455. #elif HAS_POWER_SWITCH
  4456. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4457. #endif
  4458. #if ENABLED(ULTIPANEL)
  4459. #if HAS_POWER_SWITCH
  4460. powersupply = false;
  4461. #endif
  4462. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4463. lcd_update();
  4464. #endif
  4465. }
  4466. /**
  4467. * M82: Set E codes absolute (default)
  4468. */
  4469. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4470. /**
  4471. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4472. */
  4473. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4474. /**
  4475. * M18, M84: Disable all stepper motors
  4476. */
  4477. inline void gcode_M18_M84() {
  4478. if (code_seen('S')) {
  4479. stepper_inactive_time = code_value_millis_from_seconds();
  4480. }
  4481. else {
  4482. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4483. if (all_axis) {
  4484. stepper.finish_and_disable();
  4485. }
  4486. else {
  4487. stepper.synchronize();
  4488. if (code_seen('X')) disable_x();
  4489. if (code_seen('Y')) disable_y();
  4490. if (code_seen('Z')) disable_z();
  4491. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4492. if (code_seen('E')) {
  4493. disable_e0();
  4494. disable_e1();
  4495. disable_e2();
  4496. disable_e3();
  4497. }
  4498. #endif
  4499. }
  4500. }
  4501. }
  4502. /**
  4503. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4504. */
  4505. inline void gcode_M85() {
  4506. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4507. }
  4508. /**
  4509. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4510. * (Follows the same syntax as G92)
  4511. */
  4512. inline void gcode_M92() {
  4513. LOOP_XYZE(i) {
  4514. if (code_seen(axis_codes[i])) {
  4515. if (i == E_AXIS) {
  4516. float value = code_value_per_axis_unit(i);
  4517. if (value < 20.0) {
  4518. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4519. planner.max_e_jerk *= factor;
  4520. planner.max_feedrate_mm_s[i] *= factor;
  4521. planner.max_acceleration_steps_per_s2[i] *= factor;
  4522. }
  4523. planner.axis_steps_per_mm[i] = value;
  4524. }
  4525. else {
  4526. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4527. }
  4528. }
  4529. }
  4530. planner.refresh_positioning();
  4531. }
  4532. /**
  4533. * Output the current position to serial
  4534. */
  4535. static void report_current_position() {
  4536. SERIAL_PROTOCOLPGM("X:");
  4537. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4538. SERIAL_PROTOCOLPGM(" Y:");
  4539. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4540. SERIAL_PROTOCOLPGM(" Z:");
  4541. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4542. SERIAL_PROTOCOLPGM(" E:");
  4543. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4544. stepper.report_positions();
  4545. #if IS_SCARA
  4546. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  4547. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  4548. SERIAL_EOL;
  4549. #endif
  4550. }
  4551. /**
  4552. * M114: Output current position to serial port
  4553. */
  4554. inline void gcode_M114() { report_current_position(); }
  4555. /**
  4556. * M115: Capabilities string
  4557. */
  4558. inline void gcode_M115() {
  4559. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4560. }
  4561. /**
  4562. * M117: Set LCD Status Message
  4563. */
  4564. inline void gcode_M117() {
  4565. lcd_setstatus(current_command_args);
  4566. }
  4567. /**
  4568. * M119: Output endstop states to serial output
  4569. */
  4570. inline void gcode_M119() { endstops.M119(); }
  4571. /**
  4572. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4573. */
  4574. inline void gcode_M120() { endstops.enable_globally(true); }
  4575. /**
  4576. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4577. */
  4578. inline void gcode_M121() { endstops.enable_globally(false); }
  4579. #if ENABLED(BLINKM)
  4580. /**
  4581. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4582. */
  4583. inline void gcode_M150() {
  4584. SendColors(
  4585. code_seen('R') ? code_value_byte() : 0,
  4586. code_seen('U') ? code_value_byte() : 0,
  4587. code_seen('B') ? code_value_byte() : 0
  4588. );
  4589. }
  4590. #endif // BLINKM
  4591. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4592. /**
  4593. * M155: Send data to a I2C slave device
  4594. *
  4595. * This is a PoC, the formating and arguments for the GCODE will
  4596. * change to be more compatible, the current proposal is:
  4597. *
  4598. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4599. *
  4600. * M155 B<byte-1 value in base 10>
  4601. * M155 B<byte-2 value in base 10>
  4602. * M155 B<byte-3 value in base 10>
  4603. *
  4604. * M155 S1 ; Send the buffered data and reset the buffer
  4605. * M155 R1 ; Reset the buffer without sending data
  4606. *
  4607. */
  4608. inline void gcode_M155() {
  4609. // Set the target address
  4610. if (code_seen('A')) i2c.address(code_value_byte());
  4611. // Add a new byte to the buffer
  4612. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4613. // Flush the buffer to the bus
  4614. if (code_seen('S')) i2c.send();
  4615. // Reset and rewind the buffer
  4616. else if (code_seen('R')) i2c.reset();
  4617. }
  4618. /**
  4619. * M156: Request X bytes from I2C slave device
  4620. *
  4621. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4622. */
  4623. inline void gcode_M156() {
  4624. if (code_seen('A')) i2c.address(code_value_byte());
  4625. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4626. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4627. i2c.relay(bytes);
  4628. }
  4629. else {
  4630. SERIAL_ERROR_START;
  4631. SERIAL_ERRORLN("Bad i2c request");
  4632. }
  4633. }
  4634. #endif // EXPERIMENTAL_I2CBUS
  4635. /**
  4636. * M200: Set filament diameter and set E axis units to cubic units
  4637. *
  4638. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4639. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4640. */
  4641. inline void gcode_M200() {
  4642. if (get_target_extruder_from_command(200)) return;
  4643. if (code_seen('D')) {
  4644. // setting any extruder filament size disables volumetric on the assumption that
  4645. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4646. // for all extruders
  4647. volumetric_enabled = (code_value_linear_units() != 0.0);
  4648. if (volumetric_enabled) {
  4649. filament_size[target_extruder] = code_value_linear_units();
  4650. // make sure all extruders have some sane value for the filament size
  4651. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4652. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4653. }
  4654. }
  4655. else {
  4656. //reserved for setting filament diameter via UFID or filament measuring device
  4657. return;
  4658. }
  4659. calculate_volumetric_multipliers();
  4660. }
  4661. /**
  4662. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4663. */
  4664. inline void gcode_M201() {
  4665. LOOP_XYZE(i) {
  4666. if (code_seen(axis_codes[i])) {
  4667. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4668. }
  4669. }
  4670. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4671. planner.reset_acceleration_rates();
  4672. }
  4673. #if 0 // Not used for Sprinter/grbl gen6
  4674. inline void gcode_M202() {
  4675. LOOP_XYZE(i) {
  4676. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4677. }
  4678. }
  4679. #endif
  4680. /**
  4681. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4682. */
  4683. inline void gcode_M203() {
  4684. LOOP_XYZE(i)
  4685. if (code_seen(axis_codes[i]))
  4686. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4687. }
  4688. /**
  4689. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4690. *
  4691. * P = Printing moves
  4692. * R = Retract only (no X, Y, Z) moves
  4693. * T = Travel (non printing) moves
  4694. *
  4695. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4696. */
  4697. inline void gcode_M204() {
  4698. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4699. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4700. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4701. }
  4702. if (code_seen('P')) {
  4703. planner.acceleration = code_value_linear_units();
  4704. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4705. }
  4706. if (code_seen('R')) {
  4707. planner.retract_acceleration = code_value_linear_units();
  4708. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4709. }
  4710. if (code_seen('T')) {
  4711. planner.travel_acceleration = code_value_linear_units();
  4712. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4713. }
  4714. }
  4715. /**
  4716. * M205: Set Advanced Settings
  4717. *
  4718. * S = Min Feed Rate (units/s)
  4719. * T = Min Travel Feed Rate (units/s)
  4720. * B = Min Segment Time (µs)
  4721. * X = Max XY Jerk (units/sec^2)
  4722. * Z = Max Z Jerk (units/sec^2)
  4723. * E = Max E Jerk (units/sec^2)
  4724. */
  4725. inline void gcode_M205() {
  4726. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4727. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4728. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4729. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4730. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4731. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4732. }
  4733. /**
  4734. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4735. */
  4736. inline void gcode_M206() {
  4737. LOOP_XYZ(i)
  4738. if (code_seen(axis_codes[i]))
  4739. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4740. #if ENABLED(MORGAN_SCARA)
  4741. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  4742. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  4743. #endif
  4744. SYNC_PLAN_POSITION_KINEMATIC();
  4745. report_current_position();
  4746. }
  4747. #if ENABLED(DELTA)
  4748. /**
  4749. * M665: Set delta configurations
  4750. *
  4751. * L = diagonal rod
  4752. * R = delta radius
  4753. * S = segments per second
  4754. * A = Alpha (Tower 1) diagonal rod trim
  4755. * B = Beta (Tower 2) diagonal rod trim
  4756. * C = Gamma (Tower 3) diagonal rod trim
  4757. */
  4758. inline void gcode_M665() {
  4759. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4760. if (code_seen('R')) delta_radius = code_value_linear_units();
  4761. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4762. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4763. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4764. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4765. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4766. }
  4767. /**
  4768. * M666: Set delta endstop adjustment
  4769. */
  4770. inline void gcode_M666() {
  4771. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4772. if (DEBUGGING(LEVELING)) {
  4773. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4774. }
  4775. #endif
  4776. LOOP_XYZ(i) {
  4777. if (code_seen(axis_codes[i])) {
  4778. endstop_adj[i] = code_value_axis_units(i);
  4779. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4780. if (DEBUGGING(LEVELING)) {
  4781. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4782. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4783. }
  4784. #endif
  4785. }
  4786. }
  4787. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4788. if (DEBUGGING(LEVELING)) {
  4789. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4790. }
  4791. #endif
  4792. }
  4793. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4794. /**
  4795. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4796. */
  4797. inline void gcode_M666() {
  4798. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4799. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4800. }
  4801. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4802. #if ENABLED(FWRETRACT)
  4803. /**
  4804. * M207: Set firmware retraction values
  4805. *
  4806. * S[+units] retract_length
  4807. * W[+units] retract_length_swap (multi-extruder)
  4808. * F[units/min] retract_feedrate_mm_s
  4809. * Z[units] retract_zlift
  4810. */
  4811. inline void gcode_M207() {
  4812. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4813. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4814. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4815. #if EXTRUDERS > 1
  4816. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4817. #endif
  4818. }
  4819. /**
  4820. * M208: Set firmware un-retraction values
  4821. *
  4822. * S[+units] retract_recover_length (in addition to M207 S*)
  4823. * W[+units] retract_recover_length_swap (multi-extruder)
  4824. * F[units/min] retract_recover_feedrate_mm_s
  4825. */
  4826. inline void gcode_M208() {
  4827. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4828. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4829. #if EXTRUDERS > 1
  4830. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4831. #endif
  4832. }
  4833. /**
  4834. * M209: Enable automatic retract (M209 S1)
  4835. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4836. */
  4837. inline void gcode_M209() {
  4838. if (code_seen('S')) {
  4839. autoretract_enabled = code_value_bool();
  4840. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4841. }
  4842. }
  4843. #endif // FWRETRACT
  4844. /**
  4845. * M211: Enable, Disable, and/or Report software endstops
  4846. *
  4847. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4848. */
  4849. inline void gcode_M211() {
  4850. SERIAL_ECHO_START;
  4851. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4852. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4853. #endif
  4854. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4855. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4856. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4857. #else
  4858. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4859. SERIAL_ECHOPGM(MSG_OFF);
  4860. #endif
  4861. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  4862. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4863. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4864. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4865. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  4866. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4867. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4868. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4869. }
  4870. #if HOTENDS > 1
  4871. /**
  4872. * M218 - set hotend offset (in linear units)
  4873. *
  4874. * T<tool>
  4875. * X<xoffset>
  4876. * Y<yoffset>
  4877. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4878. */
  4879. inline void gcode_M218() {
  4880. if (get_target_extruder_from_command(218)) return;
  4881. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4882. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4883. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4884. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4885. #endif
  4886. SERIAL_ECHO_START;
  4887. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4888. HOTEND_LOOP() {
  4889. SERIAL_CHAR(' ');
  4890. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4891. SERIAL_CHAR(',');
  4892. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4893. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4894. SERIAL_CHAR(',');
  4895. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4896. #endif
  4897. }
  4898. SERIAL_EOL;
  4899. }
  4900. #endif // HOTENDS > 1
  4901. /**
  4902. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4903. */
  4904. inline void gcode_M220() {
  4905. if (code_seen('S')) feedrate_percentage = code_value_int();
  4906. }
  4907. /**
  4908. * M221: Set extrusion percentage (M221 T0 S95)
  4909. */
  4910. inline void gcode_M221() {
  4911. if (get_target_extruder_from_command(221)) return;
  4912. if (code_seen('S'))
  4913. flow_percentage[target_extruder] = code_value_int();
  4914. }
  4915. /**
  4916. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4917. */
  4918. inline void gcode_M226() {
  4919. if (code_seen('P')) {
  4920. int pin_number = code_value_int();
  4921. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4922. if (pin_state >= -1 && pin_state <= 1) {
  4923. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4924. if (sensitive_pins[i] == pin_number) {
  4925. pin_number = -1;
  4926. break;
  4927. }
  4928. }
  4929. if (pin_number > -1) {
  4930. int target = LOW;
  4931. stepper.synchronize();
  4932. pinMode(pin_number, INPUT);
  4933. switch (pin_state) {
  4934. case 1:
  4935. target = HIGH;
  4936. break;
  4937. case 0:
  4938. target = LOW;
  4939. break;
  4940. case -1:
  4941. target = !digitalRead(pin_number);
  4942. break;
  4943. }
  4944. while (digitalRead(pin_number) != target) idle();
  4945. } // pin_number > -1
  4946. } // pin_state -1 0 1
  4947. } // code_seen('P')
  4948. }
  4949. #if HAS_SERVOS
  4950. /**
  4951. * M280: Get or set servo position. P<index> [S<angle>]
  4952. */
  4953. inline void gcode_M280() {
  4954. if (!code_seen('P')) return;
  4955. int servo_index = code_value_int();
  4956. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4957. if (code_seen('S'))
  4958. MOVE_SERVO(servo_index, code_value_int());
  4959. else {
  4960. SERIAL_ECHO_START;
  4961. SERIAL_ECHOPAIR(" Servo ", servo_index);
  4962. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  4963. }
  4964. }
  4965. else {
  4966. SERIAL_ERROR_START;
  4967. SERIAL_ECHOPAIR("Servo ", servo_index);
  4968. SERIAL_ECHOLNPGM(" out of range");
  4969. }
  4970. }
  4971. #endif // HAS_SERVOS
  4972. #if HAS_BUZZER
  4973. /**
  4974. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4975. */
  4976. inline void gcode_M300() {
  4977. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4978. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4979. // Limits the tone duration to 0-5 seconds.
  4980. NOMORE(duration, 5000);
  4981. BUZZ(duration, frequency);
  4982. }
  4983. #endif // HAS_BUZZER
  4984. #if ENABLED(PIDTEMP)
  4985. /**
  4986. * M301: Set PID parameters P I D (and optionally C, L)
  4987. *
  4988. * P[float] Kp term
  4989. * I[float] Ki term (unscaled)
  4990. * D[float] Kd term (unscaled)
  4991. *
  4992. * With PID_EXTRUSION_SCALING:
  4993. *
  4994. * C[float] Kc term
  4995. * L[float] LPQ length
  4996. */
  4997. inline void gcode_M301() {
  4998. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4999. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5000. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5001. if (e < HOTENDS) { // catch bad input value
  5002. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5003. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5004. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5005. #if ENABLED(PID_EXTRUSION_SCALING)
  5006. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5007. if (code_seen('L')) lpq_len = code_value_float();
  5008. NOMORE(lpq_len, LPQ_MAX_LEN);
  5009. #endif
  5010. thermalManager.updatePID();
  5011. SERIAL_ECHO_START;
  5012. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5013. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5014. #endif // PID_PARAMS_PER_HOTEND
  5015. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5016. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5017. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5018. #if ENABLED(PID_EXTRUSION_SCALING)
  5019. //Kc does not have scaling applied above, or in resetting defaults
  5020. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5021. #endif
  5022. SERIAL_EOL;
  5023. }
  5024. else {
  5025. SERIAL_ERROR_START;
  5026. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5027. }
  5028. }
  5029. #endif // PIDTEMP
  5030. #if ENABLED(PIDTEMPBED)
  5031. inline void gcode_M304() {
  5032. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5033. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5034. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5035. thermalManager.updatePID();
  5036. SERIAL_ECHO_START;
  5037. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5038. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5039. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5040. }
  5041. #endif // PIDTEMPBED
  5042. #if defined(CHDK) || HAS_PHOTOGRAPH
  5043. /**
  5044. * M240: Trigger a camera by emulating a Canon RC-1
  5045. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5046. */
  5047. inline void gcode_M240() {
  5048. #ifdef CHDK
  5049. OUT_WRITE(CHDK, HIGH);
  5050. chdkHigh = millis();
  5051. chdkActive = true;
  5052. #elif HAS_PHOTOGRAPH
  5053. const uint8_t NUM_PULSES = 16;
  5054. const float PULSE_LENGTH = 0.01524;
  5055. for (int i = 0; i < NUM_PULSES; i++) {
  5056. WRITE(PHOTOGRAPH_PIN, HIGH);
  5057. _delay_ms(PULSE_LENGTH);
  5058. WRITE(PHOTOGRAPH_PIN, LOW);
  5059. _delay_ms(PULSE_LENGTH);
  5060. }
  5061. delay(7.33);
  5062. for (int i = 0; i < NUM_PULSES; i++) {
  5063. WRITE(PHOTOGRAPH_PIN, HIGH);
  5064. _delay_ms(PULSE_LENGTH);
  5065. WRITE(PHOTOGRAPH_PIN, LOW);
  5066. _delay_ms(PULSE_LENGTH);
  5067. }
  5068. #endif // !CHDK && HAS_PHOTOGRAPH
  5069. }
  5070. #endif // CHDK || PHOTOGRAPH_PIN
  5071. #if HAS_LCD_CONTRAST
  5072. /**
  5073. * M250: Read and optionally set the LCD contrast
  5074. */
  5075. inline void gcode_M250() {
  5076. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5077. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5078. SERIAL_PROTOCOL(lcd_contrast);
  5079. SERIAL_EOL;
  5080. }
  5081. #endif // HAS_LCD_CONTRAST
  5082. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5083. /**
  5084. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5085. *
  5086. * S<temperature> sets the minimum extrude temperature
  5087. * P<bool> enables (1) or disables (0) cold extrusion
  5088. *
  5089. * Examples:
  5090. *
  5091. * M302 ; report current cold extrusion state
  5092. * M302 P0 ; enable cold extrusion checking
  5093. * M302 P1 ; disables cold extrusion checking
  5094. * M302 S0 ; always allow extrusion (disables checking)
  5095. * M302 S170 ; only allow extrusion above 170
  5096. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5097. */
  5098. inline void gcode_M302() {
  5099. bool seen_S = code_seen('S');
  5100. if (seen_S) {
  5101. thermalManager.extrude_min_temp = code_value_temp_abs();
  5102. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5103. }
  5104. if (code_seen('P'))
  5105. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5106. else if (!seen_S) {
  5107. // Report current state
  5108. SERIAL_ECHO_START;
  5109. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5110. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5111. SERIAL_ECHOLNPGM("C)");
  5112. }
  5113. }
  5114. #endif // PREVENT_COLD_EXTRUSION
  5115. /**
  5116. * M303: PID relay autotune
  5117. *
  5118. * S<temperature> sets the target temperature. (default 150C)
  5119. * E<extruder> (-1 for the bed) (default 0)
  5120. * C<cycles>
  5121. * U<bool> with a non-zero value will apply the result to current settings
  5122. */
  5123. inline void gcode_M303() {
  5124. #if HAS_PID_HEATING
  5125. int e = code_seen('E') ? code_value_int() : 0;
  5126. int c = code_seen('C') ? code_value_int() : 5;
  5127. bool u = code_seen('U') && code_value_bool();
  5128. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5129. if (e >= 0 && e < HOTENDS)
  5130. target_extruder = e;
  5131. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5132. thermalManager.PID_autotune(temp, e, c, u);
  5133. KEEPALIVE_STATE(IN_HANDLER);
  5134. #else
  5135. SERIAL_ERROR_START;
  5136. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5137. #endif
  5138. }
  5139. #if ENABLED(MORGAN_SCARA)
  5140. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5141. if (IsRunning()) {
  5142. forward_kinematics_SCARA(delta_a, delta_b);
  5143. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5144. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5145. destination[Z_AXIS] = current_position[Z_AXIS];
  5146. prepare_move_to_destination();
  5147. return true;
  5148. }
  5149. return false;
  5150. }
  5151. /**
  5152. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5153. */
  5154. inline bool gcode_M360() {
  5155. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5156. return SCARA_move_to_cal(0, 120);
  5157. }
  5158. /**
  5159. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5160. */
  5161. inline bool gcode_M361() {
  5162. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5163. return SCARA_move_to_cal(90, 130);
  5164. }
  5165. /**
  5166. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5167. */
  5168. inline bool gcode_M362() {
  5169. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5170. return SCARA_move_to_cal(60, 180);
  5171. }
  5172. /**
  5173. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5174. */
  5175. inline bool gcode_M363() {
  5176. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5177. return SCARA_move_to_cal(50, 90);
  5178. }
  5179. /**
  5180. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5181. */
  5182. inline bool gcode_M364() {
  5183. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5184. return SCARA_move_to_cal(45, 135);
  5185. }
  5186. #endif // SCARA
  5187. #if ENABLED(EXT_SOLENOID)
  5188. void enable_solenoid(uint8_t num) {
  5189. switch (num) {
  5190. case 0:
  5191. OUT_WRITE(SOL0_PIN, HIGH);
  5192. break;
  5193. #if HAS_SOLENOID_1
  5194. case 1:
  5195. OUT_WRITE(SOL1_PIN, HIGH);
  5196. break;
  5197. #endif
  5198. #if HAS_SOLENOID_2
  5199. case 2:
  5200. OUT_WRITE(SOL2_PIN, HIGH);
  5201. break;
  5202. #endif
  5203. #if HAS_SOLENOID_3
  5204. case 3:
  5205. OUT_WRITE(SOL3_PIN, HIGH);
  5206. break;
  5207. #endif
  5208. default:
  5209. SERIAL_ECHO_START;
  5210. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5211. break;
  5212. }
  5213. }
  5214. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5215. void disable_all_solenoids() {
  5216. OUT_WRITE(SOL0_PIN, LOW);
  5217. OUT_WRITE(SOL1_PIN, LOW);
  5218. OUT_WRITE(SOL2_PIN, LOW);
  5219. OUT_WRITE(SOL3_PIN, LOW);
  5220. }
  5221. /**
  5222. * M380: Enable solenoid on the active extruder
  5223. */
  5224. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5225. /**
  5226. * M381: Disable all solenoids
  5227. */
  5228. inline void gcode_M381() { disable_all_solenoids(); }
  5229. #endif // EXT_SOLENOID
  5230. /**
  5231. * M400: Finish all moves
  5232. */
  5233. inline void gcode_M400() { stepper.synchronize(); }
  5234. #if HAS_BED_PROBE
  5235. /**
  5236. * M401: Engage Z Servo endstop if available
  5237. */
  5238. inline void gcode_M401() { DEPLOY_PROBE(); }
  5239. /**
  5240. * M402: Retract Z Servo endstop if enabled
  5241. */
  5242. inline void gcode_M402() { STOW_PROBE(); }
  5243. #endif // HAS_BED_PROBE
  5244. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5245. /**
  5246. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5247. */
  5248. inline void gcode_M404() {
  5249. if (code_seen('W')) {
  5250. filament_width_nominal = code_value_linear_units();
  5251. }
  5252. else {
  5253. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5254. SERIAL_PROTOCOLLN(filament_width_nominal);
  5255. }
  5256. }
  5257. /**
  5258. * M405: Turn on filament sensor for control
  5259. */
  5260. inline void gcode_M405() {
  5261. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5262. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5263. if (code_seen('D')) meas_delay_cm = code_value_int();
  5264. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5265. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5266. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5267. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5268. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5269. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5270. }
  5271. filament_sensor = true;
  5272. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5273. //SERIAL_PROTOCOL(filament_width_meas);
  5274. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5275. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5276. }
  5277. /**
  5278. * M406: Turn off filament sensor for control
  5279. */
  5280. inline void gcode_M406() { filament_sensor = false; }
  5281. /**
  5282. * M407: Get measured filament diameter on serial output
  5283. */
  5284. inline void gcode_M407() {
  5285. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5286. SERIAL_PROTOCOLLN(filament_width_meas);
  5287. }
  5288. #endif // FILAMENT_WIDTH_SENSOR
  5289. void quickstop_stepper() {
  5290. stepper.quick_stop();
  5291. stepper.synchronize();
  5292. set_current_from_steppers_for_axis(ALL_AXES);
  5293. SYNC_PLAN_POSITION_KINEMATIC();
  5294. }
  5295. #if ENABLED(MESH_BED_LEVELING)
  5296. /**
  5297. * M420: Enable/Disable Mesh Bed Leveling
  5298. */
  5299. inline void gcode_M420() { if (code_seen('S')) mbl.set_has_mesh(code_value_bool()); }
  5300. /**
  5301. * M421: Set a single Mesh Bed Leveling Z coordinate
  5302. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5303. */
  5304. inline void gcode_M421() {
  5305. int8_t px = 0, py = 0;
  5306. float z = 0;
  5307. bool hasX, hasY, hasZ, hasI, hasJ;
  5308. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5309. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5310. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5311. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5312. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5313. if (hasX && hasY && hasZ) {
  5314. if (px >= 0 && py >= 0)
  5315. mbl.set_z(px, py, z);
  5316. else {
  5317. SERIAL_ERROR_START;
  5318. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5319. }
  5320. }
  5321. else if (hasI && hasJ && hasZ) {
  5322. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5323. mbl.set_z(px, py, z);
  5324. else {
  5325. SERIAL_ERROR_START;
  5326. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5327. }
  5328. }
  5329. else {
  5330. SERIAL_ERROR_START;
  5331. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5332. }
  5333. }
  5334. #endif
  5335. /**
  5336. * M428: Set home_offset based on the distance between the
  5337. * current_position and the nearest "reference point."
  5338. * If an axis is past center its endstop position
  5339. * is the reference-point. Otherwise it uses 0. This allows
  5340. * the Z offset to be set near the bed when using a max endstop.
  5341. *
  5342. * M428 can't be used more than 2cm away from 0 or an endstop.
  5343. *
  5344. * Use M206 to set these values directly.
  5345. */
  5346. inline void gcode_M428() {
  5347. bool err = false;
  5348. LOOP_XYZ(i) {
  5349. if (axis_homed[i]) {
  5350. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5351. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5352. if (diff > -20 && diff < 20) {
  5353. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5354. }
  5355. else {
  5356. SERIAL_ERROR_START;
  5357. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5358. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5359. BUZZ(200, 40);
  5360. err = true;
  5361. break;
  5362. }
  5363. }
  5364. }
  5365. if (!err) {
  5366. SYNC_PLAN_POSITION_KINEMATIC();
  5367. report_current_position();
  5368. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5369. BUZZ(200, 659);
  5370. BUZZ(200, 698);
  5371. }
  5372. }
  5373. /**
  5374. * M500: Store settings in EEPROM
  5375. */
  5376. inline void gcode_M500() {
  5377. Config_StoreSettings();
  5378. }
  5379. /**
  5380. * M501: Read settings from EEPROM
  5381. */
  5382. inline void gcode_M501() {
  5383. Config_RetrieveSettings();
  5384. }
  5385. /**
  5386. * M502: Revert to default settings
  5387. */
  5388. inline void gcode_M502() {
  5389. Config_ResetDefault();
  5390. }
  5391. /**
  5392. * M503: print settings currently in memory
  5393. */
  5394. inline void gcode_M503() {
  5395. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5396. }
  5397. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5398. /**
  5399. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5400. */
  5401. inline void gcode_M540() {
  5402. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5403. }
  5404. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5405. #if HAS_BED_PROBE
  5406. inline void gcode_M851() {
  5407. SERIAL_ECHO_START;
  5408. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5409. SERIAL_CHAR(' ');
  5410. if (code_seen('Z')) {
  5411. float value = code_value_axis_units(Z_AXIS);
  5412. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5413. zprobe_zoffset = value;
  5414. SERIAL_ECHO(zprobe_zoffset);
  5415. }
  5416. else {
  5417. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5418. SERIAL_CHAR(' ');
  5419. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5420. }
  5421. }
  5422. else {
  5423. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5424. }
  5425. SERIAL_EOL;
  5426. }
  5427. #endif // HAS_BED_PROBE
  5428. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5429. /**
  5430. * M600: Pause for filament change
  5431. *
  5432. * E[distance] - Retract the filament this far (negative value)
  5433. * Z[distance] - Move the Z axis by this distance
  5434. * X[position] - Move to this X position, with Y
  5435. * Y[position] - Move to this Y position, with X
  5436. * L[distance] - Retract distance for removal (manual reload)
  5437. *
  5438. * Default values are used for omitted arguments.
  5439. *
  5440. */
  5441. inline void gcode_M600() {
  5442. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5443. SERIAL_ERROR_START;
  5444. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5445. return;
  5446. }
  5447. // Show initial message and wait for synchronize steppers
  5448. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5449. stepper.synchronize();
  5450. float lastpos[NUM_AXIS];
  5451. // Save current position of all axes
  5452. LOOP_XYZE(i)
  5453. lastpos[i] = destination[i] = current_position[i];
  5454. // Define runplan for move axes
  5455. #if IS_KINEMATIC
  5456. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5457. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5458. #else
  5459. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5460. #endif
  5461. KEEPALIVE_STATE(IN_HANDLER);
  5462. // Initial retract before move to filament change position
  5463. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5464. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5465. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5466. #endif
  5467. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5468. // Lift Z axis
  5469. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5470. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5471. FILAMENT_CHANGE_Z_ADD
  5472. #else
  5473. 0
  5474. #endif
  5475. ;
  5476. if (z_lift > 0) {
  5477. destination[Z_AXIS] += z_lift;
  5478. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5479. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5480. }
  5481. // Move XY axes to filament exchange position
  5482. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5483. #ifdef FILAMENT_CHANGE_X_POS
  5484. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5485. #endif
  5486. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5487. #ifdef FILAMENT_CHANGE_Y_POS
  5488. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5489. #endif
  5490. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5491. stepper.synchronize();
  5492. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5493. // Unload filament
  5494. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5495. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5496. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5497. #endif
  5498. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5499. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5500. stepper.synchronize();
  5501. disable_e0();
  5502. disable_e1();
  5503. disable_e2();
  5504. disable_e3();
  5505. delay(100);
  5506. #if HAS_BUZZER
  5507. millis_t next_tick = 0;
  5508. #endif
  5509. // Wait for filament insert by user and press button
  5510. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5511. while (!lcd_clicked()) {
  5512. #if HAS_BUZZER
  5513. millis_t ms = millis();
  5514. if (ms >= next_tick) {
  5515. BUZZ(300, 2000);
  5516. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5517. }
  5518. #endif
  5519. idle(true);
  5520. }
  5521. delay(100);
  5522. while (lcd_clicked()) idle(true);
  5523. delay(100);
  5524. // Show load message
  5525. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5526. // Load filament
  5527. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5528. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5529. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5530. #endif
  5531. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5532. stepper.synchronize();
  5533. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5534. do {
  5535. // Extrude filament to get into hotend
  5536. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5537. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5538. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5539. stepper.synchronize();
  5540. // Ask user if more filament should be extruded
  5541. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5542. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5543. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5544. KEEPALIVE_STATE(IN_HANDLER);
  5545. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5546. #endif
  5547. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5548. KEEPALIVE_STATE(IN_HANDLER);
  5549. // Set extruder to saved position
  5550. current_position[E_AXIS] = lastpos[E_AXIS];
  5551. destination[E_AXIS] = lastpos[E_AXIS];
  5552. planner.set_e_position_mm(current_position[E_AXIS]);
  5553. #if IS_KINEMATIC
  5554. // Move XYZ to starting position, then E
  5555. inverse_kinematics(lastpos);
  5556. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5557. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5558. #else
  5559. // Move XY to starting position, then Z, then E
  5560. destination[X_AXIS] = lastpos[X_AXIS];
  5561. destination[Y_AXIS] = lastpos[Y_AXIS];
  5562. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5563. destination[Z_AXIS] = lastpos[Z_AXIS];
  5564. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5565. #endif
  5566. stepper.synchronize();
  5567. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5568. filament_ran_out = false;
  5569. #endif
  5570. // Show status screen
  5571. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5572. }
  5573. #endif // FILAMENT_CHANGE_FEATURE
  5574. #if ENABLED(DUAL_X_CARRIAGE)
  5575. /**
  5576. * M605: Set dual x-carriage movement mode
  5577. *
  5578. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5579. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5580. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5581. * units x-offset and an optional differential hotend temperature of
  5582. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5583. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5584. *
  5585. * Note: the X axis should be homed after changing dual x-carriage mode.
  5586. */
  5587. inline void gcode_M605() {
  5588. stepper.synchronize();
  5589. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5590. switch (dual_x_carriage_mode) {
  5591. case DXC_DUPLICATION_MODE:
  5592. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5593. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5594. SERIAL_ECHO_START;
  5595. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5596. SERIAL_CHAR(' ');
  5597. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5598. SERIAL_CHAR(',');
  5599. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5600. SERIAL_CHAR(' ');
  5601. SERIAL_ECHO(duplicate_extruder_x_offset);
  5602. SERIAL_CHAR(',');
  5603. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5604. break;
  5605. case DXC_FULL_CONTROL_MODE:
  5606. case DXC_AUTO_PARK_MODE:
  5607. break;
  5608. default:
  5609. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5610. break;
  5611. }
  5612. active_extruder_parked = false;
  5613. extruder_duplication_enabled = false;
  5614. delayed_move_time = 0;
  5615. }
  5616. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5617. inline void gcode_M605() {
  5618. stepper.synchronize();
  5619. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5620. SERIAL_ECHO_START;
  5621. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5622. }
  5623. #endif // M605
  5624. #if ENABLED(LIN_ADVANCE)
  5625. /**
  5626. * M905: Set advance factor
  5627. */
  5628. inline void gcode_M905() {
  5629. stepper.synchronize();
  5630. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5631. }
  5632. #endif
  5633. /**
  5634. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5635. */
  5636. inline void gcode_M907() {
  5637. #if HAS_DIGIPOTSS
  5638. LOOP_XYZE(i)
  5639. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5640. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5641. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5642. #elif HAS_MOTOR_CURRENT_PWM
  5643. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5644. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5645. #endif
  5646. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5647. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5648. #endif
  5649. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5650. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5651. #endif
  5652. #endif
  5653. #if ENABLED(DIGIPOT_I2C)
  5654. // this one uses actual amps in floating point
  5655. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5656. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5657. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5658. #endif
  5659. #if ENABLED(DAC_STEPPER_CURRENT)
  5660. if (code_seen('S')) {
  5661. float dac_percent = code_value_float();
  5662. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5663. }
  5664. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5665. #endif
  5666. }
  5667. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5668. /**
  5669. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5670. */
  5671. inline void gcode_M908() {
  5672. #if HAS_DIGIPOTSS
  5673. stepper.digitalPotWrite(
  5674. code_seen('P') ? code_value_int() : 0,
  5675. code_seen('S') ? code_value_int() : 0
  5676. );
  5677. #endif
  5678. #ifdef DAC_STEPPER_CURRENT
  5679. dac_current_raw(
  5680. code_seen('P') ? code_value_byte() : -1,
  5681. code_seen('S') ? code_value_ushort() : 0
  5682. );
  5683. #endif
  5684. }
  5685. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5686. inline void gcode_M909() { dac_print_values(); }
  5687. inline void gcode_M910() { dac_commit_eeprom(); }
  5688. #endif
  5689. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5690. #if HAS_MICROSTEPS
  5691. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5692. inline void gcode_M350() {
  5693. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5694. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5695. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5696. stepper.microstep_readings();
  5697. }
  5698. /**
  5699. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5700. * S# determines MS1 or MS2, X# sets the pin high/low.
  5701. */
  5702. inline void gcode_M351() {
  5703. if (code_seen('S')) switch (code_value_byte()) {
  5704. case 1:
  5705. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5706. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5707. break;
  5708. case 2:
  5709. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5710. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5711. break;
  5712. }
  5713. stepper.microstep_readings();
  5714. }
  5715. #endif // HAS_MICROSTEPS
  5716. #if ENABLED(MIXING_EXTRUDER)
  5717. /**
  5718. * M163: Set a single mix factor for a mixing extruder
  5719. * This is called "weight" by some systems.
  5720. *
  5721. * S[index] The channel index to set
  5722. * P[float] The mix value
  5723. *
  5724. */
  5725. inline void gcode_M163() {
  5726. int mix_index = code_seen('S') ? code_value_int() : 0;
  5727. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5728. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5729. }
  5730. #if MIXING_VIRTUAL_TOOLS > 1
  5731. /**
  5732. * M164: Store the current mix factors as a virtual tool.
  5733. *
  5734. * S[index] The virtual tool to store
  5735. *
  5736. */
  5737. inline void gcode_M164() {
  5738. int tool_index = code_seen('S') ? code_value_int() : 0;
  5739. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5740. normalize_mix();
  5741. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5742. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5743. }
  5744. }
  5745. #endif
  5746. #if ENABLED(DIRECT_MIXING_IN_G1)
  5747. /**
  5748. * M165: Set multiple mix factors for a mixing extruder.
  5749. * Factors that are left out will be set to 0.
  5750. * All factors together must add up to 1.0.
  5751. *
  5752. * A[factor] Mix factor for extruder stepper 1
  5753. * B[factor] Mix factor for extruder stepper 2
  5754. * C[factor] Mix factor for extruder stepper 3
  5755. * D[factor] Mix factor for extruder stepper 4
  5756. * H[factor] Mix factor for extruder stepper 5
  5757. * I[factor] Mix factor for extruder stepper 6
  5758. *
  5759. */
  5760. inline void gcode_M165() { gcode_get_mix(); }
  5761. #endif
  5762. #endif // MIXING_EXTRUDER
  5763. /**
  5764. * M999: Restart after being stopped
  5765. *
  5766. * Default behaviour is to flush the serial buffer and request
  5767. * a resend to the host starting on the last N line received.
  5768. *
  5769. * Sending "M999 S1" will resume printing without flushing the
  5770. * existing command buffer.
  5771. *
  5772. */
  5773. inline void gcode_M999() {
  5774. Running = true;
  5775. lcd_reset_alert_level();
  5776. if (code_seen('S') && code_value_bool()) return;
  5777. // gcode_LastN = Stopped_gcode_LastN;
  5778. FlushSerialRequestResend();
  5779. }
  5780. #if ENABLED(SWITCHING_EXTRUDER)
  5781. inline void move_extruder_servo(uint8_t e) {
  5782. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5783. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5784. }
  5785. #endif
  5786. inline void invalid_extruder_error(const uint8_t &e) {
  5787. SERIAL_ECHO_START;
  5788. SERIAL_CHAR('T');
  5789. SERIAL_PROTOCOL_F(e, DEC);
  5790. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5791. }
  5792. /**
  5793. * Perform a tool-change, which may result in moving the
  5794. * previous tool out of the way and the new tool into place.
  5795. */
  5796. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5797. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5798. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5799. invalid_extruder_error(tmp_extruder);
  5800. return;
  5801. }
  5802. // T0-Tnnn: Switch virtual tool by changing the mix
  5803. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5804. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5805. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5806. #if HOTENDS > 1
  5807. if (tmp_extruder >= EXTRUDERS) {
  5808. invalid_extruder_error(tmp_extruder);
  5809. return;
  5810. }
  5811. float old_feedrate_mm_s = feedrate_mm_s;
  5812. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5813. if (tmp_extruder != active_extruder) {
  5814. if (!no_move && axis_unhomed_error(true, true, true)) {
  5815. SERIAL_ECHOLNPGM("No move on toolchange");
  5816. no_move = true;
  5817. }
  5818. // Save current position to destination, for use later
  5819. set_destination_to_current();
  5820. #if ENABLED(DUAL_X_CARRIAGE)
  5821. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5822. if (DEBUGGING(LEVELING)) {
  5823. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5824. switch (dual_x_carriage_mode) {
  5825. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5826. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5827. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5828. }
  5829. }
  5830. #endif
  5831. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5832. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5833. ) {
  5834. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5835. if (DEBUGGING(LEVELING)) {
  5836. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5837. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5838. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5839. }
  5840. #endif
  5841. // Park old head: 1) raise 2) move to park position 3) lower
  5842. for (uint8_t i = 0; i < 3; i++)
  5843. planner.buffer_line(
  5844. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5845. current_position[Y_AXIS],
  5846. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5847. current_position[E_AXIS],
  5848. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5849. active_extruder
  5850. );
  5851. stepper.synchronize();
  5852. }
  5853. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5854. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5855. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5856. active_extruder = tmp_extruder;
  5857. // This function resets the max/min values - the current position may be overwritten below.
  5858. set_axis_is_at_home(X_AXIS);
  5859. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5860. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5861. #endif
  5862. switch (dual_x_carriage_mode) {
  5863. case DXC_FULL_CONTROL_MODE:
  5864. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5865. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5866. break;
  5867. case DXC_DUPLICATION_MODE:
  5868. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5869. if (active_extruder_parked)
  5870. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5871. else
  5872. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5873. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5874. extruder_duplication_enabled = false;
  5875. break;
  5876. default:
  5877. // record raised toolhead position for use by unpark
  5878. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5879. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5880. active_extruder_parked = true;
  5881. delayed_move_time = 0;
  5882. break;
  5883. }
  5884. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5885. if (DEBUGGING(LEVELING)) {
  5886. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5887. DEBUG_POS("New extruder (parked)", current_position);
  5888. }
  5889. #endif
  5890. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5891. #else // !DUAL_X_CARRIAGE
  5892. #if ENABLED(SWITCHING_EXTRUDER)
  5893. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5894. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5895. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5896. // Always raise by some amount
  5897. planner.buffer_line(
  5898. current_position[X_AXIS],
  5899. current_position[Y_AXIS],
  5900. current_position[Z_AXIS] + z_raise,
  5901. current_position[E_AXIS],
  5902. planner.max_feedrate_mm_s[Z_AXIS],
  5903. active_extruder
  5904. );
  5905. stepper.synchronize();
  5906. move_extruder_servo(active_extruder);
  5907. delay(500);
  5908. // Move back down, if needed
  5909. if (z_raise != z_diff) {
  5910. planner.buffer_line(
  5911. current_position[X_AXIS],
  5912. current_position[Y_AXIS],
  5913. current_position[Z_AXIS] + z_diff,
  5914. current_position[E_AXIS],
  5915. planner.max_feedrate_mm_s[Z_AXIS],
  5916. active_extruder
  5917. );
  5918. stepper.synchronize();
  5919. }
  5920. #endif
  5921. /**
  5922. * Set current_position to the position of the new nozzle.
  5923. * Offsets are based on linear distance, so we need to get
  5924. * the resulting position in coordinate space.
  5925. *
  5926. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5927. * - With mesh leveling, update Z for the new position
  5928. * - Otherwise, just use the raw linear distance
  5929. *
  5930. * Software endstops are altered here too. Consider a case where:
  5931. * E0 at X=0 ... E1 at X=10
  5932. * When we switch to E1 now X=10, but E1 can't move left.
  5933. * To express this we apply the change in XY to the software endstops.
  5934. * E1 can move farther right than E0, so the right limit is extended.
  5935. *
  5936. * Note that we don't adjust the Z software endstops. Why not?
  5937. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5938. * because the bed is 1mm lower at the new position. As long as
  5939. * the first nozzle is out of the way, the carriage should be
  5940. * allowed to move 1mm lower. This technically "breaks" the
  5941. * Z software endstop. But this is technically correct (and
  5942. * there is no viable alternative).
  5943. */
  5944. #if ABL_PLANAR
  5945. // Offset extruder, make sure to apply the bed level rotation matrix
  5946. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5947. hotend_offset[Y_AXIS][tmp_extruder],
  5948. 0),
  5949. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5950. hotend_offset[Y_AXIS][active_extruder],
  5951. 0),
  5952. offset_vec = tmp_offset_vec - act_offset_vec;
  5953. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5954. if (DEBUGGING(LEVELING)) {
  5955. tmp_offset_vec.debug("tmp_offset_vec");
  5956. act_offset_vec.debug("act_offset_vec");
  5957. offset_vec.debug("offset_vec (BEFORE)");
  5958. }
  5959. #endif
  5960. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5961. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5962. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5963. #endif
  5964. // Adjustments to the current position
  5965. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5966. current_position[Z_AXIS] += offset_vec.z;
  5967. #else // !ABL_PLANAR
  5968. float xydiff[2] = {
  5969. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5970. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5971. };
  5972. #if ENABLED(MESH_BED_LEVELING)
  5973. if (mbl.active()) {
  5974. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5975. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5976. #endif
  5977. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5978. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5979. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5980. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5981. if (DEBUGGING(LEVELING))
  5982. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5983. #endif
  5984. }
  5985. #endif // MESH_BED_LEVELING
  5986. #endif // !HAS_ABL
  5987. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5988. if (DEBUGGING(LEVELING)) {
  5989. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5990. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5991. SERIAL_ECHOLNPGM(" }");
  5992. }
  5993. #endif
  5994. // The newly-selected extruder XY is actually at...
  5995. current_position[X_AXIS] += xydiff[X_AXIS];
  5996. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5997. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5998. position_shift[i] += xydiff[i];
  5999. update_software_endstops((AxisEnum)i);
  6000. }
  6001. // Set the new active extruder
  6002. active_extruder = tmp_extruder;
  6003. #endif // !DUAL_X_CARRIAGE
  6004. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6005. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  6006. #endif
  6007. // Tell the planner the new "current position"
  6008. SYNC_PLAN_POSITION_KINEMATIC();
  6009. // Move to the "old position" (move the extruder into place)
  6010. if (!no_move && IsRunning()) {
  6011. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6012. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  6013. #endif
  6014. prepare_move_to_destination();
  6015. }
  6016. } // (tmp_extruder != active_extruder)
  6017. stepper.synchronize();
  6018. #if ENABLED(EXT_SOLENOID)
  6019. disable_all_solenoids();
  6020. enable_solenoid_on_active_extruder();
  6021. #endif // EXT_SOLENOID
  6022. feedrate_mm_s = old_feedrate_mm_s;
  6023. #else // HOTENDS <= 1
  6024. // Set the new active extruder
  6025. active_extruder = tmp_extruder;
  6026. UNUSED(fr_mm_s);
  6027. UNUSED(no_move);
  6028. #endif // HOTENDS <= 1
  6029. SERIAL_ECHO_START;
  6030. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  6031. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6032. }
  6033. /**
  6034. * T0-T3: Switch tool, usually switching extruders
  6035. *
  6036. * F[units/min] Set the movement feedrate
  6037. * S1 Don't move the tool in XY after change
  6038. */
  6039. inline void gcode_T(uint8_t tmp_extruder) {
  6040. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6041. if (DEBUGGING(LEVELING)) {
  6042. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  6043. SERIAL_ECHOLNPGM(")");
  6044. DEBUG_POS("BEFORE", current_position);
  6045. }
  6046. #endif
  6047. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  6048. tool_change(tmp_extruder);
  6049. #elif HOTENDS > 1
  6050. tool_change(
  6051. tmp_extruder,
  6052. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  6053. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  6054. );
  6055. #endif
  6056. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6057. if (DEBUGGING(LEVELING)) {
  6058. DEBUG_POS("AFTER", current_position);
  6059. SERIAL_ECHOLNPGM("<<< gcode_T");
  6060. }
  6061. #endif
  6062. }
  6063. /**
  6064. * Process a single command and dispatch it to its handler
  6065. * This is called from the main loop()
  6066. */
  6067. void process_next_command() {
  6068. current_command = command_queue[cmd_queue_index_r];
  6069. if (DEBUGGING(ECHO)) {
  6070. SERIAL_ECHO_START;
  6071. SERIAL_ECHOLN(current_command);
  6072. }
  6073. // Sanitize the current command:
  6074. // - Skip leading spaces
  6075. // - Bypass N[-0-9][0-9]*[ ]*
  6076. // - Overwrite * with nul to mark the end
  6077. while (*current_command == ' ') ++current_command;
  6078. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  6079. current_command += 2; // skip N[-0-9]
  6080. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  6081. while (*current_command == ' ') ++current_command; // skip [ ]*
  6082. }
  6083. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  6084. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  6085. char *cmd_ptr = current_command;
  6086. // Get the command code, which must be G, M, or T
  6087. char command_code = *cmd_ptr++;
  6088. // Skip spaces to get the numeric part
  6089. while (*cmd_ptr == ' ') cmd_ptr++;
  6090. uint16_t codenum = 0; // define ahead of goto
  6091. // Bail early if there's no code
  6092. bool code_is_good = NUMERIC(*cmd_ptr);
  6093. if (!code_is_good) goto ExitUnknownCommand;
  6094. // Get and skip the code number
  6095. do {
  6096. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6097. cmd_ptr++;
  6098. } while (NUMERIC(*cmd_ptr));
  6099. // Skip all spaces to get to the first argument, or nul
  6100. while (*cmd_ptr == ' ') cmd_ptr++;
  6101. // The command's arguments (if any) start here, for sure!
  6102. current_command_args = cmd_ptr;
  6103. KEEPALIVE_STATE(IN_HANDLER);
  6104. // Handle a known G, M, or T
  6105. switch (command_code) {
  6106. case 'G': switch (codenum) {
  6107. // G0, G1
  6108. case 0:
  6109. case 1:
  6110. #if IS_SCARA
  6111. gcode_G0_G1(codenum == 0);
  6112. #else
  6113. gcode_G0_G1();
  6114. #endif
  6115. break;
  6116. // G2, G3
  6117. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6118. case 2: // G2 - CW ARC
  6119. case 3: // G3 - CCW ARC
  6120. gcode_G2_G3(codenum == 2);
  6121. break;
  6122. #endif
  6123. // G4 Dwell
  6124. case 4:
  6125. gcode_G4();
  6126. break;
  6127. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6128. // G5
  6129. case 5: // G5 - Cubic B_spline
  6130. gcode_G5();
  6131. break;
  6132. #endif // BEZIER_CURVE_SUPPORT
  6133. #if ENABLED(FWRETRACT)
  6134. case 10: // G10: retract
  6135. case 11: // G11: retract_recover
  6136. gcode_G10_G11(codenum == 10);
  6137. break;
  6138. #endif // FWRETRACT
  6139. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6140. case 12:
  6141. gcode_G12(); // G12: Nozzle Clean
  6142. break;
  6143. #endif // NOZZLE_CLEAN_FEATURE
  6144. #if ENABLED(INCH_MODE_SUPPORT)
  6145. case 20: //G20: Inch Mode
  6146. gcode_G20();
  6147. break;
  6148. case 21: //G21: MM Mode
  6149. gcode_G21();
  6150. break;
  6151. #endif // INCH_MODE_SUPPORT
  6152. #if ENABLED(NOZZLE_PARK_FEATURE)
  6153. case 27: // G27: Nozzle Park
  6154. gcode_G27();
  6155. break;
  6156. #endif // NOZZLE_PARK_FEATURE
  6157. case 28: // G28: Home all axes, one at a time
  6158. gcode_G28();
  6159. break;
  6160. #if HAS_ABL || ENABLED(MESH_BED_LEVELING)
  6161. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6162. gcode_G29();
  6163. break;
  6164. #endif // HAS_ABL
  6165. #if HAS_BED_PROBE
  6166. case 30: // G30 Single Z probe
  6167. gcode_G30();
  6168. break;
  6169. #if ENABLED(Z_PROBE_SLED)
  6170. case 31: // G31: dock the sled
  6171. gcode_G31();
  6172. break;
  6173. case 32: // G32: undock the sled
  6174. gcode_G32();
  6175. break;
  6176. #endif // Z_PROBE_SLED
  6177. #endif // HAS_BED_PROBE
  6178. case 90: // G90
  6179. relative_mode = false;
  6180. break;
  6181. case 91: // G91
  6182. relative_mode = true;
  6183. break;
  6184. case 92: // G92
  6185. gcode_G92();
  6186. break;
  6187. }
  6188. break;
  6189. case 'M': switch (codenum) {
  6190. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6191. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6192. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6193. gcode_M0_M1();
  6194. break;
  6195. #endif // ULTIPANEL
  6196. case 17:
  6197. gcode_M17();
  6198. break;
  6199. #if ENABLED(SDSUPPORT)
  6200. case 20: // M20 - list SD card
  6201. gcode_M20(); break;
  6202. case 21: // M21 - init SD card
  6203. gcode_M21(); break;
  6204. case 22: //M22 - release SD card
  6205. gcode_M22(); break;
  6206. case 23: //M23 - Select file
  6207. gcode_M23(); break;
  6208. case 24: //M24 - Start SD print
  6209. gcode_M24(); break;
  6210. case 25: //M25 - Pause SD print
  6211. gcode_M25(); break;
  6212. case 26: //M26 - Set SD index
  6213. gcode_M26(); break;
  6214. case 27: //M27 - Get SD status
  6215. gcode_M27(); break;
  6216. case 28: //M28 - Start SD write
  6217. gcode_M28(); break;
  6218. case 29: //M29 - Stop SD write
  6219. gcode_M29(); break;
  6220. case 30: //M30 <filename> Delete File
  6221. gcode_M30(); break;
  6222. case 32: //M32 - Select file and start SD print
  6223. gcode_M32(); break;
  6224. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6225. case 33: //M33 - Get the long full path to a file or folder
  6226. gcode_M33(); break;
  6227. #endif // LONG_FILENAME_HOST_SUPPORT
  6228. case 928: //M928 - Start SD write
  6229. gcode_M928(); break;
  6230. #endif //SDSUPPORT
  6231. case 31: //M31 take time since the start of the SD print or an M109 command
  6232. gcode_M31();
  6233. break;
  6234. case 42: //M42 -Change pin status via gcode
  6235. gcode_M42();
  6236. break;
  6237. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6238. case 48: // M48 Z probe repeatability
  6239. gcode_M48();
  6240. break;
  6241. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6242. case 75: // Start print timer
  6243. gcode_M75();
  6244. break;
  6245. case 76: // Pause print timer
  6246. gcode_M76();
  6247. break;
  6248. case 77: // Stop print timer
  6249. gcode_M77();
  6250. break;
  6251. #if ENABLED(PRINTCOUNTER)
  6252. case 78: // Show print statistics
  6253. gcode_M78();
  6254. break;
  6255. #endif
  6256. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6257. case 100:
  6258. gcode_M100();
  6259. break;
  6260. #endif
  6261. case 104: // M104
  6262. gcode_M104();
  6263. break;
  6264. case 110: // M110: Set Current Line Number
  6265. gcode_M110();
  6266. break;
  6267. case 111: // M111: Set debug level
  6268. gcode_M111();
  6269. break;
  6270. #if DISABLED(EMERGENCY_PARSER)
  6271. case 108: // M108: Cancel Waiting
  6272. gcode_M108();
  6273. break;
  6274. case 112: // M112: Emergency Stop
  6275. gcode_M112();
  6276. break;
  6277. case 410: // M410 quickstop - Abort all the planned moves.
  6278. gcode_M410();
  6279. break;
  6280. #endif
  6281. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6282. case 113: // M113: Set Host Keepalive interval
  6283. gcode_M113();
  6284. break;
  6285. #endif
  6286. case 140: // M140: Set bed temp
  6287. gcode_M140();
  6288. break;
  6289. case 105: // M105: Read current temperature
  6290. gcode_M105();
  6291. KEEPALIVE_STATE(NOT_BUSY);
  6292. return; // "ok" already printed
  6293. case 109: // M109: Wait for temperature
  6294. gcode_M109();
  6295. break;
  6296. #if HAS_TEMP_BED
  6297. case 190: // M190: Wait for bed heater to reach target
  6298. gcode_M190();
  6299. break;
  6300. #endif // HAS_TEMP_BED
  6301. #if FAN_COUNT > 0
  6302. case 106: // M106: Fan On
  6303. gcode_M106();
  6304. break;
  6305. case 107: // M107: Fan Off
  6306. gcode_M107();
  6307. break;
  6308. #endif // FAN_COUNT > 0
  6309. #if ENABLED(BARICUDA)
  6310. // PWM for HEATER_1_PIN
  6311. #if HAS_HEATER_1
  6312. case 126: // M126: valve open
  6313. gcode_M126();
  6314. break;
  6315. case 127: // M127: valve closed
  6316. gcode_M127();
  6317. break;
  6318. #endif // HAS_HEATER_1
  6319. // PWM for HEATER_2_PIN
  6320. #if HAS_HEATER_2
  6321. case 128: // M128: valve open
  6322. gcode_M128();
  6323. break;
  6324. case 129: // M129: valve closed
  6325. gcode_M129();
  6326. break;
  6327. #endif // HAS_HEATER_2
  6328. #endif // BARICUDA
  6329. #if HAS_POWER_SWITCH
  6330. case 80: // M80: Turn on Power Supply
  6331. gcode_M80();
  6332. break;
  6333. #endif // HAS_POWER_SWITCH
  6334. case 81: // M81: Turn off Power, including Power Supply, if possible
  6335. gcode_M81();
  6336. break;
  6337. case 82:
  6338. gcode_M82();
  6339. break;
  6340. case 83:
  6341. gcode_M83();
  6342. break;
  6343. case 18: // (for compatibility)
  6344. case 84: // M84
  6345. gcode_M18_M84();
  6346. break;
  6347. case 85: // M85
  6348. gcode_M85();
  6349. break;
  6350. case 92: // M92: Set the steps-per-unit for one or more axes
  6351. gcode_M92();
  6352. break;
  6353. case 115: // M115: Report capabilities
  6354. gcode_M115();
  6355. break;
  6356. case 117: // M117: Set LCD message text, if possible
  6357. gcode_M117();
  6358. break;
  6359. case 114: // M114: Report current position
  6360. gcode_M114();
  6361. break;
  6362. case 120: // M120: Enable endstops
  6363. gcode_M120();
  6364. break;
  6365. case 121: // M121: Disable endstops
  6366. gcode_M121();
  6367. break;
  6368. case 119: // M119: Report endstop states
  6369. gcode_M119();
  6370. break;
  6371. #if ENABLED(ULTIPANEL)
  6372. case 145: // M145: Set material heatup parameters
  6373. gcode_M145();
  6374. break;
  6375. #endif
  6376. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6377. case 149:
  6378. gcode_M149();
  6379. break;
  6380. #endif
  6381. #if ENABLED(BLINKM)
  6382. case 150: // M150
  6383. gcode_M150();
  6384. break;
  6385. #endif //BLINKM
  6386. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6387. case 155:
  6388. gcode_M155();
  6389. break;
  6390. case 156:
  6391. gcode_M156();
  6392. break;
  6393. #endif //EXPERIMENTAL_I2CBUS
  6394. #if ENABLED(MIXING_EXTRUDER)
  6395. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6396. gcode_M163();
  6397. break;
  6398. #if MIXING_VIRTUAL_TOOLS > 1
  6399. case 164: // M164 S<int> save current mix as a virtual extruder
  6400. gcode_M164();
  6401. break;
  6402. #endif
  6403. #if ENABLED(DIRECT_MIXING_IN_G1)
  6404. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6405. gcode_M165();
  6406. break;
  6407. #endif
  6408. #endif
  6409. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6410. gcode_M200();
  6411. break;
  6412. case 201: // M201
  6413. gcode_M201();
  6414. break;
  6415. #if 0 // Not used for Sprinter/grbl gen6
  6416. case 202: // M202
  6417. gcode_M202();
  6418. break;
  6419. #endif
  6420. case 203: // M203 max feedrate units/sec
  6421. gcode_M203();
  6422. break;
  6423. case 204: // M204 acclereration S normal moves T filmanent only moves
  6424. gcode_M204();
  6425. break;
  6426. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6427. gcode_M205();
  6428. break;
  6429. case 206: // M206 additional homing offset
  6430. gcode_M206();
  6431. break;
  6432. #if ENABLED(DELTA)
  6433. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6434. gcode_M665();
  6435. break;
  6436. #endif
  6437. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6438. case 666: // M666 set delta / dual endstop adjustment
  6439. gcode_M666();
  6440. break;
  6441. #endif
  6442. #if ENABLED(FWRETRACT)
  6443. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6444. gcode_M207();
  6445. break;
  6446. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6447. gcode_M208();
  6448. break;
  6449. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6450. gcode_M209();
  6451. break;
  6452. #endif // FWRETRACT
  6453. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6454. gcode_M211();
  6455. break;
  6456. #if HOTENDS > 1
  6457. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6458. gcode_M218();
  6459. break;
  6460. #endif
  6461. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6462. gcode_M220();
  6463. break;
  6464. case 221: // M221 - Set Flow Percentage: S<percent>
  6465. gcode_M221();
  6466. break;
  6467. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6468. gcode_M226();
  6469. break;
  6470. #if HAS_SERVOS
  6471. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6472. gcode_M280();
  6473. break;
  6474. #endif // HAS_SERVOS
  6475. #if HAS_BUZZER
  6476. case 300: // M300 - Play beep tone
  6477. gcode_M300();
  6478. break;
  6479. #endif // HAS_BUZZER
  6480. #if ENABLED(PIDTEMP)
  6481. case 301: // M301
  6482. gcode_M301();
  6483. break;
  6484. #endif // PIDTEMP
  6485. #if ENABLED(PIDTEMPBED)
  6486. case 304: // M304
  6487. gcode_M304();
  6488. break;
  6489. #endif // PIDTEMPBED
  6490. #if defined(CHDK) || HAS_PHOTOGRAPH
  6491. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6492. gcode_M240();
  6493. break;
  6494. #endif // CHDK || PHOTOGRAPH_PIN
  6495. #if HAS_LCD_CONTRAST
  6496. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6497. gcode_M250();
  6498. break;
  6499. #endif // HAS_LCD_CONTRAST
  6500. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6501. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6502. gcode_M302();
  6503. break;
  6504. #endif // PREVENT_COLD_EXTRUSION
  6505. case 303: // M303 PID autotune
  6506. gcode_M303();
  6507. break;
  6508. #if ENABLED(MORGAN_SCARA)
  6509. case 360: // M360 SCARA Theta pos1
  6510. if (gcode_M360()) return;
  6511. break;
  6512. case 361: // M361 SCARA Theta pos2
  6513. if (gcode_M361()) return;
  6514. break;
  6515. case 362: // M362 SCARA Psi pos1
  6516. if (gcode_M362()) return;
  6517. break;
  6518. case 363: // M363 SCARA Psi pos2
  6519. if (gcode_M363()) return;
  6520. break;
  6521. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6522. if (gcode_M364()) return;
  6523. break;
  6524. #endif // SCARA
  6525. case 400: // M400 finish all moves
  6526. gcode_M400();
  6527. break;
  6528. #if HAS_BED_PROBE
  6529. case 401:
  6530. gcode_M401();
  6531. break;
  6532. case 402:
  6533. gcode_M402();
  6534. break;
  6535. #endif // HAS_BED_PROBE
  6536. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6537. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6538. gcode_M404();
  6539. break;
  6540. case 405: //M405 Turn on filament sensor for control
  6541. gcode_M405();
  6542. break;
  6543. case 406: //M406 Turn off filament sensor for control
  6544. gcode_M406();
  6545. break;
  6546. case 407: //M407 Display measured filament diameter
  6547. gcode_M407();
  6548. break;
  6549. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6550. #if ENABLED(MESH_BED_LEVELING)
  6551. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6552. gcode_M420();
  6553. break;
  6554. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6555. gcode_M421();
  6556. break;
  6557. #endif
  6558. case 428: // M428 Apply current_position to home_offset
  6559. gcode_M428();
  6560. break;
  6561. case 500: // M500 Store settings in EEPROM
  6562. gcode_M500();
  6563. break;
  6564. case 501: // M501 Read settings from EEPROM
  6565. gcode_M501();
  6566. break;
  6567. case 502: // M502 Revert to default settings
  6568. gcode_M502();
  6569. break;
  6570. case 503: // M503 print settings currently in memory
  6571. gcode_M503();
  6572. break;
  6573. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6574. case 540:
  6575. gcode_M540();
  6576. break;
  6577. #endif
  6578. #if HAS_BED_PROBE
  6579. case 851: // Set Z Probe Z Offset
  6580. gcode_M851();
  6581. break;
  6582. #endif // HAS_BED_PROBE
  6583. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6584. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6585. gcode_M600();
  6586. break;
  6587. #endif // FILAMENT_CHANGE_FEATURE
  6588. #if ENABLED(DUAL_X_CARRIAGE)
  6589. case 605:
  6590. gcode_M605();
  6591. break;
  6592. #endif // DUAL_X_CARRIAGE
  6593. #if ENABLED(LIN_ADVANCE)
  6594. case 905: // M905 Set advance factor.
  6595. gcode_M905();
  6596. break;
  6597. #endif
  6598. case 907: // M907 Set digital trimpot motor current using axis codes.
  6599. gcode_M907();
  6600. break;
  6601. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6602. case 908: // M908 Control digital trimpot directly.
  6603. gcode_M908();
  6604. break;
  6605. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6606. case 909: // M909 Print digipot/DAC current value
  6607. gcode_M909();
  6608. break;
  6609. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6610. gcode_M910();
  6611. break;
  6612. #endif
  6613. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6614. #if HAS_MICROSTEPS
  6615. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6616. gcode_M350();
  6617. break;
  6618. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6619. gcode_M351();
  6620. break;
  6621. #endif // HAS_MICROSTEPS
  6622. case 999: // M999: Restart after being Stopped
  6623. gcode_M999();
  6624. break;
  6625. }
  6626. break;
  6627. case 'T':
  6628. gcode_T(codenum);
  6629. break;
  6630. default: code_is_good = false;
  6631. }
  6632. KEEPALIVE_STATE(NOT_BUSY);
  6633. ExitUnknownCommand:
  6634. // Still unknown command? Throw an error
  6635. if (!code_is_good) unknown_command_error();
  6636. ok_to_send();
  6637. }
  6638. /**
  6639. * Send a "Resend: nnn" message to the host to
  6640. * indicate that a command needs to be re-sent.
  6641. */
  6642. void FlushSerialRequestResend() {
  6643. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6644. MYSERIAL.flush();
  6645. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6646. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6647. ok_to_send();
  6648. }
  6649. /**
  6650. * Send an "ok" message to the host, indicating
  6651. * that a command was successfully processed.
  6652. *
  6653. * If ADVANCED_OK is enabled also include:
  6654. * N<int> Line number of the command, if any
  6655. * P<int> Planner space remaining
  6656. * B<int> Block queue space remaining
  6657. */
  6658. void ok_to_send() {
  6659. refresh_cmd_timeout();
  6660. if (!send_ok[cmd_queue_index_r]) return;
  6661. SERIAL_PROTOCOLPGM(MSG_OK);
  6662. #if ENABLED(ADVANCED_OK)
  6663. char* p = command_queue[cmd_queue_index_r];
  6664. if (*p == 'N') {
  6665. SERIAL_PROTOCOL(' ');
  6666. SERIAL_ECHO(*p++);
  6667. while (NUMERIC_SIGNED(*p))
  6668. SERIAL_ECHO(*p++);
  6669. }
  6670. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6671. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6672. #endif
  6673. SERIAL_EOL;
  6674. }
  6675. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6676. /**
  6677. * Constrain the given coordinates to the software endstops.
  6678. */
  6679. void clamp_to_software_endstops(float target[XYZ]) {
  6680. #if ENABLED(min_software_endstops)
  6681. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6682. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6683. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6684. #endif
  6685. #if ENABLED(max_software_endstops)
  6686. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6687. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6688. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6689. #endif
  6690. }
  6691. #endif
  6692. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6693. // Get the Z adjustment for non-linear bed leveling
  6694. float bilinear_z_offset(float cartesian[XYZ]) {
  6695. // XY relative to the probed area
  6696. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  6697. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  6698. // Convert to grid box units
  6699. float ratio_x = x / bilinear_grid_spacing[X_AXIS],
  6700. ratio_y = y / bilinear_grid_spacing[Y_AXIS];
  6701. // Whole unit is the grid box index
  6702. int gridx = constrain(int(ratio_x), 0, ABL_GRID_POINTS_X - 2),
  6703. gridy = constrain(int(ratio_y), 0, ABL_GRID_POINTS_Y - 2);
  6704. // Subtract whole to get the ratio within the grid box
  6705. ratio_x -= gridx, ratio_y -= gridy;
  6706. // Z at the box corners
  6707. const float z1 = bed_level_grid[gridx][gridy], // left-front
  6708. z2 = bed_level_grid[gridx][gridy + 1], // left-back
  6709. z3 = bed_level_grid[gridx + 1][gridy], // right-front
  6710. z4 = bed_level_grid[gridx + 1][gridy + 1], // right-back
  6711. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  6712. R = z3 + (z4 - z3) * ratio_y; // Linear interp. RF -> RB
  6713. /*
  6714. SERIAL_ECHOPAIR("gridx=", gridx);
  6715. SERIAL_ECHOPAIR(" gridy=", gridy);
  6716. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6717. SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
  6718. SERIAL_ECHOPAIR(" z1=", z1);
  6719. SERIAL_ECHOPAIR(" z2=", z2);
  6720. SERIAL_ECHOPAIR(" z3=", z3);
  6721. SERIAL_ECHOPAIR(" z4=", z4);
  6722. SERIAL_ECHOPAIR(" L=", L);
  6723. SERIAL_ECHOPAIR(" R=", R);
  6724. SERIAL_ECHOPAIR(" offset=", L + ratio_x * (R - L));
  6725. //*/
  6726. return L + ratio_x * (R - L);
  6727. }
  6728. #endif // AUTO_BED_LEVELING_BILINEAR
  6729. #if ENABLED(DELTA)
  6730. /**
  6731. * Recalculate factors used for delta kinematics whenever
  6732. * settings have been changed (e.g., by M665).
  6733. */
  6734. void recalc_delta_settings(float radius, float diagonal_rod) {
  6735. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6736. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6737. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6738. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6739. delta_tower3_x = 0.0; // back middle tower
  6740. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6741. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6742. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6743. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6744. }
  6745. #if ENABLED(DELTA_FAST_SQRT)
  6746. /**
  6747. * Fast inverse sqrt from Quake III Arena
  6748. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6749. */
  6750. float Q_rsqrt(float number) {
  6751. long i;
  6752. float x2, y;
  6753. const float threehalfs = 1.5f;
  6754. x2 = number * 0.5f;
  6755. y = number;
  6756. i = * ( long * ) &y; // evil floating point bit level hacking
  6757. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  6758. y = * ( float * ) &i;
  6759. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  6760. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  6761. return y;
  6762. }
  6763. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  6764. #else
  6765. #define _SQRT(n) sqrt(n)
  6766. #endif
  6767. /**
  6768. * Delta Inverse Kinematics
  6769. *
  6770. * Calculate the tower positions for a given logical
  6771. * position, storing the result in the delta[] array.
  6772. *
  6773. * This is an expensive calculation, requiring 3 square
  6774. * roots per segmented linear move, and strains the limits
  6775. * of a Mega2560 with a Graphical Display.
  6776. *
  6777. * Suggested optimizations include:
  6778. *
  6779. * - Disable the home_offset (M206) and/or position_shift (G92)
  6780. * features to remove up to 12 float additions.
  6781. *
  6782. * - Use a fast-inverse-sqrt function and add the reciprocal.
  6783. * (see above)
  6784. */
  6785. // Macro to obtain the Z position of an individual tower
  6786. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  6787. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  6788. delta_tower##T##_x - raw[X_AXIS], \
  6789. delta_tower##T##_y - raw[Y_AXIS] \
  6790. ) \
  6791. )
  6792. #define DELTA_RAW_IK() do { \
  6793. delta[A_AXIS] = DELTA_Z(1); \
  6794. delta[B_AXIS] = DELTA_Z(2); \
  6795. delta[C_AXIS] = DELTA_Z(3); \
  6796. } while(0)
  6797. #define DELTA_LOGICAL_IK() do { \
  6798. const float raw[XYZ] = { \
  6799. RAW_X_POSITION(logical[X_AXIS]), \
  6800. RAW_Y_POSITION(logical[Y_AXIS]), \
  6801. RAW_Z_POSITION(logical[Z_AXIS]) \
  6802. }; \
  6803. DELTA_RAW_IK(); \
  6804. } while(0)
  6805. #define DELTA_DEBUG() do { \
  6806. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  6807. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  6808. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  6809. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  6810. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  6811. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  6812. } while(0)
  6813. void inverse_kinematics(const float logical[XYZ]) {
  6814. DELTA_LOGICAL_IK();
  6815. // DELTA_DEBUG();
  6816. }
  6817. /**
  6818. * Calculate the highest Z position where the
  6819. * effector has the full range of XY motion.
  6820. */
  6821. float delta_safe_distance_from_top() {
  6822. float cartesian[XYZ] = {
  6823. LOGICAL_X_POSITION(0),
  6824. LOGICAL_Y_POSITION(0),
  6825. LOGICAL_Z_POSITION(0)
  6826. };
  6827. inverse_kinematics(cartesian);
  6828. float distance = delta[A_AXIS];
  6829. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6830. inverse_kinematics(cartesian);
  6831. return abs(distance - delta[A_AXIS]);
  6832. }
  6833. /**
  6834. * Delta Forward Kinematics
  6835. *
  6836. * See the Wikipedia article "Trilateration"
  6837. * https://en.wikipedia.org/wiki/Trilateration
  6838. *
  6839. * Establish a new coordinate system in the plane of the
  6840. * three carriage points. This system has its origin at
  6841. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  6842. * plane with a Z component of zero.
  6843. * We will define unit vectors in this coordinate system
  6844. * in our original coordinate system. Then when we calculate
  6845. * the Xnew, Ynew and Znew values, we can translate back into
  6846. * the original system by moving along those unit vectors
  6847. * by the corresponding values.
  6848. *
  6849. * Variable names matched to Marlin, c-version, and avoid the
  6850. * use of any vector library.
  6851. *
  6852. * by Andreas Hardtung 2016-06-07
  6853. * based on a Java function from "Delta Robot Kinematics V3"
  6854. * by Steve Graves
  6855. *
  6856. * The result is stored in the cartes[] array.
  6857. */
  6858. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6859. // Create a vector in old coordinates along x axis of new coordinate
  6860. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6861. // Get the Magnitude of vector.
  6862. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  6863. // Create unit vector by dividing by magnitude.
  6864. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  6865. // Get the vector from the origin of the new system to the third point.
  6866. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6867. // Use the dot product to find the component of this vector on the X axis.
  6868. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  6869. // Create a vector along the x axis that represents the x component of p13.
  6870. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  6871. // Subtract the X component from the original vector leaving only Y. We use the
  6872. // variable that will be the unit vector after we scale it.
  6873. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  6874. // The magnitude of Y component
  6875. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  6876. // Convert to a unit vector
  6877. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6878. // The cross product of the unit x and y is the unit z
  6879. // float[] ez = vectorCrossProd(ex, ey);
  6880. float ez[3] = {
  6881. ex[1] * ey[2] - ex[2] * ey[1],
  6882. ex[2] * ey[0] - ex[0] * ey[2],
  6883. ex[0] * ey[1] - ex[1] * ey[0]
  6884. };
  6885. // We now have the d, i and j values defined in Wikipedia.
  6886. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  6887. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  6888. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  6889. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  6890. // Start from the origin of the old coordinates and add vectors in the
  6891. // old coords that represent the Xnew, Ynew and Znew to find the point
  6892. // in the old system.
  6893. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  6894. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  6895. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  6896. };
  6897. void forward_kinematics_DELTA(float point[ABC]) {
  6898. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6899. }
  6900. #endif // DELTA
  6901. /**
  6902. * Get the stepper positions in the cartes[] array.
  6903. * Forward kinematics are applied for DELTA and SCARA.
  6904. *
  6905. * The result is in the current coordinate space with
  6906. * leveling applied. The coordinates need to be run through
  6907. * unapply_leveling to obtain the "ideal" coordinates
  6908. * suitable for current_position, etc.
  6909. */
  6910. void get_cartesian_from_steppers() {
  6911. #if ENABLED(DELTA)
  6912. forward_kinematics_DELTA(
  6913. stepper.get_axis_position_mm(A_AXIS),
  6914. stepper.get_axis_position_mm(B_AXIS),
  6915. stepper.get_axis_position_mm(C_AXIS)
  6916. );
  6917. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6918. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6919. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  6920. #elif IS_SCARA
  6921. forward_kinematics_SCARA(
  6922. stepper.get_axis_position_degrees(A_AXIS),
  6923. stepper.get_axis_position_degrees(B_AXIS)
  6924. );
  6925. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6926. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6927. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6928. #else
  6929. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  6930. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  6931. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6932. #endif
  6933. }
  6934. /**
  6935. * Set the current_position for an axis based on
  6936. * the stepper positions, removing any leveling that
  6937. * may have been applied.
  6938. */
  6939. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  6940. get_cartesian_from_steppers();
  6941. #if PLANNER_LEVELING
  6942. planner.unapply_leveling(cartes);
  6943. #endif
  6944. if (axis == ALL_AXES)
  6945. memcpy(current_position, cartes, sizeof(cartes));
  6946. else
  6947. current_position[axis] = cartes[axis];
  6948. }
  6949. #if ENABLED(MESH_BED_LEVELING)
  6950. /**
  6951. * Prepare a mesh-leveled linear move in a Cartesian setup,
  6952. * splitting the move where it crosses mesh borders.
  6953. */
  6954. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6955. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6956. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6957. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6958. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6959. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6960. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6961. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6962. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6963. if (cx1 == cx2 && cy1 == cy2) {
  6964. // Start and end on same mesh square
  6965. line_to_destination(fr_mm_s);
  6966. set_current_to_destination();
  6967. return;
  6968. }
  6969. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6970. float normalized_dist, end[NUM_AXIS];
  6971. // Split at the left/front border of the right/top square
  6972. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6973. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6974. memcpy(end, destination, sizeof(end));
  6975. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6976. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6977. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6978. CBI(x_splits, gcx);
  6979. }
  6980. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6981. memcpy(end, destination, sizeof(end));
  6982. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6983. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6984. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6985. CBI(y_splits, gcy);
  6986. }
  6987. else {
  6988. // Already split on a border
  6989. line_to_destination(fr_mm_s);
  6990. set_current_to_destination();
  6991. return;
  6992. }
  6993. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6994. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6995. // Do the split and look for more borders
  6996. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6997. // Restore destination from stack
  6998. memcpy(destination, end, sizeof(end));
  6999. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7000. }
  7001. #endif // MESH_BED_LEVELING
  7002. #if IS_KINEMATIC
  7003. /**
  7004. * Prepare a linear move in a DELTA or SCARA setup.
  7005. *
  7006. * This calls planner.buffer_line several times, adding
  7007. * small incremental moves for DELTA or SCARA.
  7008. */
  7009. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  7010. // Get the top feedrate of the move in the XY plane
  7011. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  7012. // If the move is only in Z/E don't split up the move
  7013. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  7014. inverse_kinematics(ltarget);
  7015. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  7016. return true;
  7017. }
  7018. // Get the cartesian distances moved in XYZE
  7019. float difference[NUM_AXIS];
  7020. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  7021. // Get the linear distance in XYZ
  7022. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  7023. // If the move is very short, check the E move distance
  7024. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  7025. // No E move either? Game over.
  7026. if (UNEAR_ZERO(cartesian_mm)) return false;
  7027. // Minimum number of seconds to move the given distance
  7028. float seconds = cartesian_mm / _feedrate_mm_s;
  7029. // The number of segments-per-second times the duration
  7030. // gives the number of segments
  7031. uint16_t segments = delta_segments_per_second * seconds;
  7032. // For SCARA minimum segment size is 0.5mm
  7033. #if IS_SCARA
  7034. NOMORE(segments, cartesian_mm * 2);
  7035. #endif
  7036. // At least one segment is required
  7037. NOLESS(segments, 1);
  7038. // The approximate length of each segment
  7039. float segment_distance[XYZE] = {
  7040. difference[X_AXIS] / segments,
  7041. difference[Y_AXIS] / segments,
  7042. difference[Z_AXIS] / segments,
  7043. difference[E_AXIS] / segments
  7044. };
  7045. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  7046. // SERIAL_ECHOPAIR(" seconds=", seconds);
  7047. // SERIAL_ECHOLNPAIR(" segments=", segments);
  7048. // Drop one segment so the last move is to the exact target.
  7049. // If there's only 1 segment, loops will be skipped entirely.
  7050. --segments;
  7051. // Using "raw" coordinates saves 6 float subtractions
  7052. // per segment, saving valuable CPU cycles
  7053. #if ENABLED(USE_RAW_KINEMATICS)
  7054. // Get the raw current position as starting point
  7055. float raw[XYZE] = {
  7056. RAW_CURRENT_POSITION(X_AXIS),
  7057. RAW_CURRENT_POSITION(Y_AXIS),
  7058. RAW_CURRENT_POSITION(Z_AXIS),
  7059. current_position[E_AXIS]
  7060. };
  7061. #define DELTA_VAR raw
  7062. // Delta can inline its kinematics
  7063. #if ENABLED(DELTA)
  7064. #define DELTA_IK() DELTA_RAW_IK()
  7065. #else
  7066. #define DELTA_IK() inverse_kinematics(raw)
  7067. #endif
  7068. #else
  7069. // Get the logical current position as starting point
  7070. float logical[XYZE];
  7071. memcpy(logical, current_position, sizeof(logical));
  7072. #define DELTA_VAR logical
  7073. // Delta can inline its kinematics
  7074. #if ENABLED(DELTA)
  7075. #define DELTA_IK() DELTA_LOGICAL_IK()
  7076. #else
  7077. #define DELTA_IK() inverse_kinematics(logical)
  7078. #endif
  7079. #endif
  7080. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  7081. // Only interpolate XYZ. Advance E normally.
  7082. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  7083. // Get the starting delta if interpolation is possible
  7084. if (segments >= 2) DELTA_IK();
  7085. // Loop using decrement
  7086. for (uint16_t s = segments + 1; --s;) {
  7087. // Are there at least 2 moves left?
  7088. if (s >= 2) {
  7089. // Save the previous delta for interpolation
  7090. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  7091. // Get the delta 2 segments ahead (rather than the next)
  7092. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  7093. // Advance E normally
  7094. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7095. // Get the exact delta for the move after this
  7096. DELTA_IK();
  7097. // Move to the interpolated delta position first
  7098. planner.buffer_line(
  7099. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  7100. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  7101. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  7102. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  7103. );
  7104. // Advance E once more for the next move
  7105. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7106. // Do an extra decrement of the loop
  7107. --s;
  7108. }
  7109. else {
  7110. // Get the last segment delta. (Used when segments is odd)
  7111. DELTA_NEXT(segment_distance[i]);
  7112. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7113. DELTA_IK();
  7114. }
  7115. // Move to the non-interpolated position
  7116. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7117. }
  7118. #else
  7119. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  7120. // For non-interpolated delta calculate every segment
  7121. for (uint16_t s = segments + 1; --s;) {
  7122. DELTA_NEXT(segment_distance[i]);
  7123. DELTA_IK();
  7124. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7125. }
  7126. #endif
  7127. // Since segment_distance is only approximate,
  7128. // the final move must be to the exact destination.
  7129. inverse_kinematics(ltarget);
  7130. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  7131. return true;
  7132. }
  7133. #else
  7134. /**
  7135. * Prepare a linear move in a Cartesian setup.
  7136. * If Mesh Bed Leveling is enabled, perform a mesh move.
  7137. */
  7138. inline bool prepare_move_to_destination_cartesian() {
  7139. // Do not use feedrate_percentage for E or Z only moves
  7140. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  7141. line_to_destination();
  7142. }
  7143. else {
  7144. #if ENABLED(MESH_BED_LEVELING)
  7145. if (mbl.active()) {
  7146. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7147. return false;
  7148. }
  7149. else
  7150. #endif
  7151. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7152. }
  7153. return true;
  7154. }
  7155. #endif // !IS_KINEMATIC
  7156. #if ENABLED(DUAL_X_CARRIAGE)
  7157. /**
  7158. * Prepare a linear move in a dual X axis setup
  7159. */
  7160. inline bool prepare_move_to_destination_dualx() {
  7161. if (active_extruder_parked) {
  7162. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  7163. // move duplicate extruder into correct duplication position.
  7164. planner.set_position_mm(
  7165. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  7166. current_position[Y_AXIS],
  7167. current_position[Z_AXIS],
  7168. current_position[E_AXIS]
  7169. );
  7170. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  7171. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  7172. SYNC_PLAN_POSITION_KINEMATIC();
  7173. stepper.synchronize();
  7174. extruder_duplication_enabled = true;
  7175. active_extruder_parked = false;
  7176. }
  7177. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  7178. if (current_position[E_AXIS] == destination[E_AXIS]) {
  7179. // This is a travel move (with no extrusion)
  7180. // Skip it, but keep track of the current position
  7181. // (so it can be used as the start of the next non-travel move)
  7182. if (delayed_move_time != 0xFFFFFFFFUL) {
  7183. set_current_to_destination();
  7184. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  7185. delayed_move_time = millis();
  7186. return false;
  7187. }
  7188. }
  7189. delayed_move_time = 0;
  7190. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  7191. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7192. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  7193. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7194. active_extruder_parked = false;
  7195. }
  7196. }
  7197. return true;
  7198. }
  7199. #endif // DUAL_X_CARRIAGE
  7200. /**
  7201. * Prepare a single move and get ready for the next one
  7202. *
  7203. * This may result in several calls to planner.buffer_line to
  7204. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7205. */
  7206. void prepare_move_to_destination() {
  7207. clamp_to_software_endstops(destination);
  7208. refresh_cmd_timeout();
  7209. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7210. if (!DEBUGGING(DRYRUN)) {
  7211. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7212. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7213. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7214. SERIAL_ECHO_START;
  7215. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7216. }
  7217. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7218. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7219. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7220. SERIAL_ECHO_START;
  7221. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7222. }
  7223. #endif
  7224. }
  7225. }
  7226. #endif
  7227. #if IS_KINEMATIC
  7228. if (!prepare_kinematic_move_to(destination)) return;
  7229. #else
  7230. #if ENABLED(DUAL_X_CARRIAGE)
  7231. if (!prepare_move_to_destination_dualx()) return;
  7232. #endif
  7233. if (!prepare_move_to_destination_cartesian()) return;
  7234. #endif
  7235. set_current_to_destination();
  7236. }
  7237. #if ENABLED(ARC_SUPPORT)
  7238. /**
  7239. * Plan an arc in 2 dimensions
  7240. *
  7241. * The arc is approximated by generating many small linear segments.
  7242. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7243. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7244. * larger segments will tend to be more efficient. Your slicer should have
  7245. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7246. */
  7247. void plan_arc(
  7248. float logical[NUM_AXIS], // Destination position
  7249. float* offset, // Center of rotation relative to current_position
  7250. uint8_t clockwise // Clockwise?
  7251. ) {
  7252. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7253. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7254. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7255. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7256. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7257. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7258. r_Y = -offset[Y_AXIS],
  7259. rt_X = logical[X_AXIS] - center_X,
  7260. rt_Y = logical[Y_AXIS] - center_Y;
  7261. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7262. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7263. if (angular_travel < 0) angular_travel += RADIANS(360);
  7264. if (clockwise) angular_travel -= RADIANS(360);
  7265. // Make a circle if the angular rotation is 0
  7266. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7267. angular_travel += RADIANS(360);
  7268. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7269. if (mm_of_travel < 0.001) return;
  7270. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7271. if (segments == 0) segments = 1;
  7272. float theta_per_segment = angular_travel / segments;
  7273. float linear_per_segment = linear_travel / segments;
  7274. float extruder_per_segment = extruder_travel / segments;
  7275. /**
  7276. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7277. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7278. * r_T = [cos(phi) -sin(phi);
  7279. * sin(phi) cos(phi] * r ;
  7280. *
  7281. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7282. * defined from the circle center to the initial position. Each line segment is formed by successive
  7283. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7284. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7285. * all double numbers are single precision on the Arduino. (True double precision will not have
  7286. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7287. * tool precision in some cases. Therefore, arc path correction is implemented.
  7288. *
  7289. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7290. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7291. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7292. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7293. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7294. * issue for CNC machines with the single precision Arduino calculations.
  7295. *
  7296. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7297. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7298. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7299. * This is important when there are successive arc motions.
  7300. */
  7301. // Vector rotation matrix values
  7302. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7303. float sin_T = theta_per_segment;
  7304. float arc_target[NUM_AXIS];
  7305. float sin_Ti, cos_Ti, r_new_Y;
  7306. uint16_t i;
  7307. int8_t count = 0;
  7308. // Initialize the linear axis
  7309. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7310. // Initialize the extruder axis
  7311. arc_target[E_AXIS] = current_position[E_AXIS];
  7312. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7313. millis_t next_idle_ms = millis() + 200UL;
  7314. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  7315. thermalManager.manage_heater();
  7316. millis_t now = millis();
  7317. if (ELAPSED(now, next_idle_ms)) {
  7318. next_idle_ms = now + 200UL;
  7319. idle();
  7320. }
  7321. if (++count < N_ARC_CORRECTION) {
  7322. // Apply vector rotation matrix to previous r_X / 1
  7323. r_new_Y = r_X * sin_T + r_Y * cos_T;
  7324. r_X = r_X * cos_T - r_Y * sin_T;
  7325. r_Y = r_new_Y;
  7326. }
  7327. else {
  7328. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7329. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7330. // To reduce stuttering, the sin and cos could be computed at different times.
  7331. // For now, compute both at the same time.
  7332. cos_Ti = cos(i * theta_per_segment);
  7333. sin_Ti = sin(i * theta_per_segment);
  7334. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7335. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7336. count = 0;
  7337. }
  7338. // Update arc_target location
  7339. arc_target[X_AXIS] = center_X + r_X;
  7340. arc_target[Y_AXIS] = center_Y + r_Y;
  7341. arc_target[Z_AXIS] += linear_per_segment;
  7342. arc_target[E_AXIS] += extruder_per_segment;
  7343. clamp_to_software_endstops(arc_target);
  7344. #if IS_KINEMATIC
  7345. inverse_kinematics(arc_target);
  7346. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7347. #else
  7348. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7349. #endif
  7350. }
  7351. // Ensure last segment arrives at target location.
  7352. #if IS_KINEMATIC
  7353. inverse_kinematics(logical);
  7354. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7355. #else
  7356. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7357. #endif
  7358. // As far as the parser is concerned, the position is now == target. In reality the
  7359. // motion control system might still be processing the action and the real tool position
  7360. // in any intermediate location.
  7361. set_current_to_destination();
  7362. }
  7363. #endif
  7364. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7365. void plan_cubic_move(const float offset[4]) {
  7366. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7367. // As far as the parser is concerned, the position is now == destination. In reality the
  7368. // motion control system might still be processing the action and the real tool position
  7369. // in any intermediate location.
  7370. set_current_to_destination();
  7371. }
  7372. #endif // BEZIER_CURVE_SUPPORT
  7373. #if HAS_CONTROLLERFAN
  7374. void controllerFan() {
  7375. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7376. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7377. millis_t ms = millis();
  7378. if (ELAPSED(ms, nextMotorCheck)) {
  7379. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7380. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7381. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7382. #if E_STEPPERS > 1
  7383. || E1_ENABLE_READ == E_ENABLE_ON
  7384. #if HAS_X2_ENABLE
  7385. || X2_ENABLE_READ == X_ENABLE_ON
  7386. #endif
  7387. #if E_STEPPERS > 2
  7388. || E2_ENABLE_READ == E_ENABLE_ON
  7389. #if E_STEPPERS > 3
  7390. || E3_ENABLE_READ == E_ENABLE_ON
  7391. #endif
  7392. #endif
  7393. #endif
  7394. ) {
  7395. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7396. }
  7397. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7398. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7399. // allows digital or PWM fan output to be used (see M42 handling)
  7400. digitalWrite(CONTROLLERFAN_PIN, speed);
  7401. analogWrite(CONTROLLERFAN_PIN, speed);
  7402. }
  7403. }
  7404. #endif // HAS_CONTROLLERFAN
  7405. #if ENABLED(MORGAN_SCARA)
  7406. /**
  7407. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7408. * Maths and first version by QHARLEY.
  7409. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7410. */
  7411. void forward_kinematics_SCARA(const float &a, const float &b) {
  7412. float a_sin = sin(RADIANS(a)) * L1,
  7413. a_cos = cos(RADIANS(a)) * L1,
  7414. b_sin = sin(RADIANS(b)) * L2,
  7415. b_cos = cos(RADIANS(b)) * L2;
  7416. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7417. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7418. /*
  7419. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  7420. SERIAL_ECHOPAIR(" b=", b);
  7421. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7422. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7423. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7424. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7425. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7426. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7427. //*/
  7428. }
  7429. /**
  7430. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7431. *
  7432. * See http://forums.reprap.org/read.php?185,283327
  7433. *
  7434. * Maths and first version by QHARLEY.
  7435. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7436. */
  7437. void inverse_kinematics(const float logical[XYZ]) {
  7438. static float C2, S2, SK1, SK2, THETA, PSI;
  7439. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7440. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7441. if (L1 == L2)
  7442. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7443. else
  7444. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7445. S2 = sqrt(sq(C2) - 1);
  7446. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7447. SK1 = L1 + L2 * C2;
  7448. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7449. SK2 = L2 * S2;
  7450. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7451. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7452. // Angle of Arm2
  7453. PSI = atan2(S2, C2);
  7454. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7455. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7456. delta[C_AXIS] = logical[Z_AXIS];
  7457. /*
  7458. DEBUG_POS("SCARA IK", logical);
  7459. DEBUG_POS("SCARA IK", delta);
  7460. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7461. SERIAL_ECHOPAIR(",", sy);
  7462. SERIAL_ECHOPAIR(" C2=", C2);
  7463. SERIAL_ECHOPAIR(" S2=", S2);
  7464. SERIAL_ECHOPAIR(" Theta=", THETA);
  7465. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7466. //*/
  7467. }
  7468. #endif // MORGAN_SCARA
  7469. #if ENABLED(TEMP_STAT_LEDS)
  7470. static bool red_led = false;
  7471. static millis_t next_status_led_update_ms = 0;
  7472. void handle_status_leds(void) {
  7473. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7474. next_status_led_update_ms += 500; // Update every 0.5s
  7475. float max_temp = 0.0;
  7476. #if HAS_TEMP_BED
  7477. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7478. #endif
  7479. HOTEND_LOOP() {
  7480. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7481. }
  7482. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7483. if (new_led != red_led) {
  7484. red_led = new_led;
  7485. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  7486. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  7487. }
  7488. }
  7489. }
  7490. #endif
  7491. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7492. void handle_filament_runout() {
  7493. if (!filament_ran_out) {
  7494. filament_ran_out = true;
  7495. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7496. stepper.synchronize();
  7497. }
  7498. }
  7499. #endif // FILAMENT_RUNOUT_SENSOR
  7500. #if ENABLED(FAST_PWM_FAN)
  7501. void setPwmFrequency(uint8_t pin, int val) {
  7502. val &= 0x07;
  7503. switch (digitalPinToTimer(pin)) {
  7504. #if defined(TCCR0A)
  7505. case TIMER0A:
  7506. case TIMER0B:
  7507. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7508. // TCCR0B |= val;
  7509. break;
  7510. #endif
  7511. #if defined(TCCR1A)
  7512. case TIMER1A:
  7513. case TIMER1B:
  7514. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7515. // TCCR1B |= val;
  7516. break;
  7517. #endif
  7518. #if defined(TCCR2)
  7519. case TIMER2:
  7520. case TIMER2:
  7521. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7522. TCCR2 |= val;
  7523. break;
  7524. #endif
  7525. #if defined(TCCR2A)
  7526. case TIMER2A:
  7527. case TIMER2B:
  7528. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7529. TCCR2B |= val;
  7530. break;
  7531. #endif
  7532. #if defined(TCCR3A)
  7533. case TIMER3A:
  7534. case TIMER3B:
  7535. case TIMER3C:
  7536. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7537. TCCR3B |= val;
  7538. break;
  7539. #endif
  7540. #if defined(TCCR4A)
  7541. case TIMER4A:
  7542. case TIMER4B:
  7543. case TIMER4C:
  7544. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7545. TCCR4B |= val;
  7546. break;
  7547. #endif
  7548. #if defined(TCCR5A)
  7549. case TIMER5A:
  7550. case TIMER5B:
  7551. case TIMER5C:
  7552. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7553. TCCR5B |= val;
  7554. break;
  7555. #endif
  7556. }
  7557. }
  7558. #endif // FAST_PWM_FAN
  7559. float calculate_volumetric_multiplier(float diameter) {
  7560. if (!volumetric_enabled || diameter == 0) return 1.0;
  7561. float d2 = diameter * 0.5;
  7562. return 1.0 / (M_PI * d2 * d2);
  7563. }
  7564. void calculate_volumetric_multipliers() {
  7565. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7566. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7567. }
  7568. void enable_all_steppers() {
  7569. enable_x();
  7570. enable_y();
  7571. enable_z();
  7572. enable_e0();
  7573. enable_e1();
  7574. enable_e2();
  7575. enable_e3();
  7576. }
  7577. void disable_all_steppers() {
  7578. disable_x();
  7579. disable_y();
  7580. disable_z();
  7581. disable_e0();
  7582. disable_e1();
  7583. disable_e2();
  7584. disable_e3();
  7585. }
  7586. /**
  7587. * Manage several activities:
  7588. * - Check for Filament Runout
  7589. * - Keep the command buffer full
  7590. * - Check for maximum inactive time between commands
  7591. * - Check for maximum inactive time between stepper commands
  7592. * - Check if pin CHDK needs to go LOW
  7593. * - Check for KILL button held down
  7594. * - Check for HOME button held down
  7595. * - Check if cooling fan needs to be switched on
  7596. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7597. */
  7598. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7599. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7600. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7601. handle_filament_runout();
  7602. #endif
  7603. if (commands_in_queue < BUFSIZE) get_available_commands();
  7604. millis_t ms = millis();
  7605. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7606. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7607. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7608. #if ENABLED(DISABLE_INACTIVE_X)
  7609. disable_x();
  7610. #endif
  7611. #if ENABLED(DISABLE_INACTIVE_Y)
  7612. disable_y();
  7613. #endif
  7614. #if ENABLED(DISABLE_INACTIVE_Z)
  7615. disable_z();
  7616. #endif
  7617. #if ENABLED(DISABLE_INACTIVE_E)
  7618. disable_e0();
  7619. disable_e1();
  7620. disable_e2();
  7621. disable_e3();
  7622. #endif
  7623. }
  7624. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7625. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7626. chdkActive = false;
  7627. WRITE(CHDK, LOW);
  7628. }
  7629. #endif
  7630. #if HAS_KILL
  7631. // Check if the kill button was pressed and wait just in case it was an accidental
  7632. // key kill key press
  7633. // -------------------------------------------------------------------------------
  7634. static int killCount = 0; // make the inactivity button a bit less responsive
  7635. const int KILL_DELAY = 750;
  7636. if (!READ(KILL_PIN))
  7637. killCount++;
  7638. else if (killCount > 0)
  7639. killCount--;
  7640. // Exceeded threshold and we can confirm that it was not accidental
  7641. // KILL the machine
  7642. // ----------------------------------------------------------------
  7643. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7644. #endif
  7645. #if HAS_HOME
  7646. // Check to see if we have to home, use poor man's debouncer
  7647. // ---------------------------------------------------------
  7648. static int homeDebounceCount = 0; // poor man's debouncing count
  7649. const int HOME_DEBOUNCE_DELAY = 2500;
  7650. if (!READ(HOME_PIN)) {
  7651. if (!homeDebounceCount) {
  7652. enqueue_and_echo_commands_P(PSTR("G28"));
  7653. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7654. }
  7655. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7656. homeDebounceCount++;
  7657. else
  7658. homeDebounceCount = 0;
  7659. }
  7660. #endif
  7661. #if HAS_CONTROLLERFAN
  7662. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7663. #endif
  7664. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7665. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7666. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7667. bool oldstatus;
  7668. #if ENABLED(SWITCHING_EXTRUDER)
  7669. oldstatus = E0_ENABLE_READ;
  7670. enable_e0();
  7671. #else // !SWITCHING_EXTRUDER
  7672. switch (active_extruder) {
  7673. case 0:
  7674. oldstatus = E0_ENABLE_READ;
  7675. enable_e0();
  7676. break;
  7677. #if E_STEPPERS > 1
  7678. case 1:
  7679. oldstatus = E1_ENABLE_READ;
  7680. enable_e1();
  7681. break;
  7682. #if E_STEPPERS > 2
  7683. case 2:
  7684. oldstatus = E2_ENABLE_READ;
  7685. enable_e2();
  7686. break;
  7687. #if E_STEPPERS > 3
  7688. case 3:
  7689. oldstatus = E3_ENABLE_READ;
  7690. enable_e3();
  7691. break;
  7692. #endif
  7693. #endif
  7694. #endif
  7695. }
  7696. #endif // !SWITCHING_EXTRUDER
  7697. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7698. planner.buffer_line(
  7699. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7700. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7701. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7702. );
  7703. stepper.synchronize();
  7704. planner.set_e_position_mm(current_position[E_AXIS]);
  7705. #if ENABLED(SWITCHING_EXTRUDER)
  7706. E0_ENABLE_WRITE(oldstatus);
  7707. #else
  7708. switch (active_extruder) {
  7709. case 0:
  7710. E0_ENABLE_WRITE(oldstatus);
  7711. break;
  7712. #if E_STEPPERS > 1
  7713. case 1:
  7714. E1_ENABLE_WRITE(oldstatus);
  7715. break;
  7716. #if E_STEPPERS > 2
  7717. case 2:
  7718. E2_ENABLE_WRITE(oldstatus);
  7719. break;
  7720. #if E_STEPPERS > 3
  7721. case 3:
  7722. E3_ENABLE_WRITE(oldstatus);
  7723. break;
  7724. #endif
  7725. #endif
  7726. #endif
  7727. }
  7728. #endif // !SWITCHING_EXTRUDER
  7729. }
  7730. #endif // EXTRUDER_RUNOUT_PREVENT
  7731. #if ENABLED(DUAL_X_CARRIAGE)
  7732. // handle delayed move timeout
  7733. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7734. // travel moves have been received so enact them
  7735. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7736. set_destination_to_current();
  7737. prepare_move_to_destination();
  7738. }
  7739. #endif
  7740. #if ENABLED(TEMP_STAT_LEDS)
  7741. handle_status_leds();
  7742. #endif
  7743. planner.check_axes_activity();
  7744. }
  7745. /**
  7746. * Standard idle routine keeps the machine alive
  7747. */
  7748. void idle(
  7749. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7750. bool no_stepper_sleep/*=false*/
  7751. #endif
  7752. ) {
  7753. lcd_update();
  7754. host_keepalive();
  7755. manage_inactivity(
  7756. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7757. no_stepper_sleep
  7758. #endif
  7759. );
  7760. thermalManager.manage_heater();
  7761. #if ENABLED(PRINTCOUNTER)
  7762. print_job_timer.tick();
  7763. #endif
  7764. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7765. buzzer.tick();
  7766. #endif
  7767. }
  7768. /**
  7769. * Kill all activity and lock the machine.
  7770. * After this the machine will need to be reset.
  7771. */
  7772. void kill(const char* lcd_msg) {
  7773. SERIAL_ERROR_START;
  7774. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7775. #if ENABLED(ULTRA_LCD)
  7776. kill_screen(lcd_msg);
  7777. #else
  7778. UNUSED(lcd_msg);
  7779. #endif
  7780. delay(500); // Wait a short time
  7781. cli(); // Stop interrupts
  7782. thermalManager.disable_all_heaters();
  7783. disable_all_steppers();
  7784. #if HAS_POWER_SWITCH
  7785. pinMode(PS_ON_PIN, INPUT);
  7786. #endif
  7787. suicide();
  7788. while (1) {
  7789. #if ENABLED(USE_WATCHDOG)
  7790. watchdog_reset();
  7791. #endif
  7792. } // Wait for reset
  7793. }
  7794. /**
  7795. * Turn off heaters and stop the print in progress
  7796. * After a stop the machine may be resumed with M999
  7797. */
  7798. void stop() {
  7799. thermalManager.disable_all_heaters();
  7800. if (IsRunning()) {
  7801. Running = false;
  7802. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7803. SERIAL_ERROR_START;
  7804. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7805. LCD_MESSAGEPGM(MSG_STOPPED);
  7806. }
  7807. }
  7808. /**
  7809. * Marlin entry-point: Set up before the program loop
  7810. * - Set up the kill pin, filament runout, power hold
  7811. * - Start the serial port
  7812. * - Print startup messages and diagnostics
  7813. * - Get EEPROM or default settings
  7814. * - Initialize managers for:
  7815. * • temperature
  7816. * • planner
  7817. * • watchdog
  7818. * • stepper
  7819. * • photo pin
  7820. * • servos
  7821. * • LCD controller
  7822. * • Digipot I2C
  7823. * • Z probe sled
  7824. * • status LEDs
  7825. */
  7826. void setup() {
  7827. #ifdef DISABLE_JTAG
  7828. // Disable JTAG on AT90USB chips to free up pins for IO
  7829. MCUCR = 0x80;
  7830. MCUCR = 0x80;
  7831. #endif
  7832. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7833. setup_filrunoutpin();
  7834. #endif
  7835. setup_killpin();
  7836. setup_powerhold();
  7837. #if HAS_STEPPER_RESET
  7838. disableStepperDrivers();
  7839. #endif
  7840. MYSERIAL.begin(BAUDRATE);
  7841. SERIAL_PROTOCOLLNPGM("start");
  7842. SERIAL_ECHO_START;
  7843. // Check startup - does nothing if bootloader sets MCUSR to 0
  7844. byte mcu = MCUSR;
  7845. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7846. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7847. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7848. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7849. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7850. MCUSR = 0;
  7851. SERIAL_ECHOPGM(MSG_MARLIN);
  7852. SERIAL_CHAR(' ');
  7853. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  7854. SERIAL_EOL;
  7855. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  7856. SERIAL_ECHO_START;
  7857. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7858. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7859. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  7860. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  7861. #endif
  7862. SERIAL_ECHO_START;
  7863. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  7864. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7865. // Send "ok" after commands by default
  7866. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7867. // Load data from EEPROM if available (or use defaults)
  7868. // This also updates variables in the planner, elsewhere
  7869. Config_RetrieveSettings();
  7870. // Initialize current position based on home_offset
  7871. memcpy(current_position, home_offset, sizeof(home_offset));
  7872. // Vital to init stepper/planner equivalent for current_position
  7873. SYNC_PLAN_POSITION_KINEMATIC();
  7874. thermalManager.init(); // Initialize temperature loop
  7875. #if ENABLED(USE_WATCHDOG)
  7876. watchdog_init();
  7877. #endif
  7878. stepper.init(); // Initialize stepper, this enables interrupts!
  7879. setup_photpin();
  7880. servo_init();
  7881. #if HAS_BED_PROBE
  7882. endstops.enable_z_probe(false);
  7883. #endif
  7884. #if HAS_CONTROLLERFAN
  7885. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7886. #endif
  7887. #if HAS_STEPPER_RESET
  7888. enableStepperDrivers();
  7889. #endif
  7890. #if ENABLED(DIGIPOT_I2C)
  7891. digipot_i2c_init();
  7892. #endif
  7893. #if ENABLED(DAC_STEPPER_CURRENT)
  7894. dac_init();
  7895. #endif
  7896. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7897. OUT_WRITE(SLED_PIN, LOW); // turn it off
  7898. #endif // Z_PROBE_SLED
  7899. setup_homepin();
  7900. #if PIN_EXISTS(STAT_LED_RED)
  7901. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  7902. #endif
  7903. #if PIN_EXISTS(STAT_LED_BLUE)
  7904. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  7905. #endif
  7906. lcd_init();
  7907. #if ENABLED(SHOW_BOOTSCREEN)
  7908. #if ENABLED(DOGLCD)
  7909. safe_delay(BOOTSCREEN_TIMEOUT);
  7910. #elif ENABLED(ULTRA_LCD)
  7911. bootscreen();
  7912. lcd_init();
  7913. #endif
  7914. #endif
  7915. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7916. // Initialize mixing to 100% color 1
  7917. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7918. mixing_factor[i] = (i == 0) ? 1 : 0;
  7919. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7920. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7921. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7922. #endif
  7923. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7924. i2c.onReceive(i2c_on_receive);
  7925. i2c.onRequest(i2c_on_request);
  7926. #endif
  7927. }
  7928. /**
  7929. * The main Marlin program loop
  7930. *
  7931. * - Save or log commands to SD
  7932. * - Process available commands (if not saving)
  7933. * - Call heater manager
  7934. * - Call inactivity manager
  7935. * - Call endstop manager
  7936. * - Call LCD update
  7937. */
  7938. void loop() {
  7939. if (commands_in_queue < BUFSIZE) get_available_commands();
  7940. #if ENABLED(SDSUPPORT)
  7941. card.checkautostart(false);
  7942. #endif
  7943. if (commands_in_queue) {
  7944. #if ENABLED(SDSUPPORT)
  7945. if (card.saving) {
  7946. char* command = command_queue[cmd_queue_index_r];
  7947. if (strstr_P(command, PSTR("M29"))) {
  7948. // M29 closes the file
  7949. card.closefile();
  7950. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7951. ok_to_send();
  7952. }
  7953. else {
  7954. // Write the string from the read buffer to SD
  7955. card.write_command(command);
  7956. if (card.logging)
  7957. process_next_command(); // The card is saving because it's logging
  7958. else
  7959. ok_to_send();
  7960. }
  7961. }
  7962. else
  7963. process_next_command();
  7964. #else
  7965. process_next_command();
  7966. #endif // SDSUPPORT
  7967. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7968. if (commands_in_queue) {
  7969. --commands_in_queue;
  7970. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7971. }
  7972. }
  7973. endstops.report_state();
  7974. idle();
  7975. }