My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

Marlin_main.cpp 119KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef ACCURATE_BED_LEVELING
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to cordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homeing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores paramters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from eeprom)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M666 - set delta endstop adjustemnt
  149. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  150. // M907 - Set digital trimpot motor current using axis codes.
  151. // M908 - Control digital trimpot directly.
  152. // M350 - Set microstepping mode.
  153. // M351 - Toggle MS1 MS2 pins directly.
  154. // M928 - Start SD logging (M928 filename.g) - ended by M29
  155. // M999 - Restart after being stopped by error
  156. //Stepper Movement Variables
  157. //===========================================================================
  158. //=============================imported variables============================
  159. //===========================================================================
  160. //===========================================================================
  161. //=============================public variables=============================
  162. //===========================================================================
  163. #ifdef SDSUPPORT
  164. CardReader card;
  165. #endif
  166. float homing_feedrate[] = HOMING_FEEDRATE;
  167. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  168. int feedmultiply=100; //100->1 200->2
  169. int saved_feedmultiply;
  170. int extrudemultiply=100; //100->1 200->2
  171. float volumetric_multiplier[EXTRUDERS] = {1.0
  172. #if EXTRUDERS > 1
  173. , 1.0
  174. #if EXTRUDERS > 2
  175. , 1.0
  176. #endif
  177. #endif
  178. };
  179. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  180. float add_homeing[3]={0,0,0};
  181. #ifdef DELTA
  182. float endstop_adj[3]={0,0,0};
  183. #endif
  184. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  185. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  186. bool axis_known_position[3] = {false, false, false};
  187. float zprobe_zoffset;
  188. // Extruder offset
  189. #if EXTRUDERS > 1
  190. #ifndef DUAL_X_CARRIAGE
  191. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  192. #else
  193. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  194. #endif
  195. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  196. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  197. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  198. #endif
  199. };
  200. #endif
  201. uint8_t active_extruder = 0;
  202. int fanSpeed=0;
  203. #ifdef SERVO_ENDSTOPS
  204. int servo_endstops[] = SERVO_ENDSTOPS;
  205. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  206. #endif
  207. #ifdef BARICUDA
  208. int ValvePressure=0;
  209. int EtoPPressure=0;
  210. #endif
  211. #ifdef FWRETRACT
  212. bool autoretract_enabled=false;
  213. bool retracted=false;
  214. float retract_length = RETRACT_LENGTH;
  215. float retract_feedrate = RETRACT_FEEDRATE;
  216. float retract_zlift = RETRACT_ZLIFT;
  217. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  218. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  219. #endif
  220. #ifdef ULTIPANEL
  221. #ifdef PS_DEFAULT_OFF
  222. bool powersupply = false;
  223. #else
  224. bool powersupply = true;
  225. #endif
  226. #endif
  227. #ifdef DELTA
  228. float delta[3] = {0.0, 0.0, 0.0};
  229. #endif
  230. //===========================================================================
  231. //=============================private variables=============================
  232. //===========================================================================
  233. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  234. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  235. static float offset[3] = {0.0, 0.0, 0.0};
  236. static bool home_all_axis = true;
  237. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  238. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  239. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  240. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  241. static bool fromsd[BUFSIZE];
  242. static int bufindr = 0;
  243. static int bufindw = 0;
  244. static int buflen = 0;
  245. //static int i = 0;
  246. static char serial_char;
  247. static int serial_count = 0;
  248. static boolean comment_mode = false;
  249. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  250. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  251. //static float tt = 0;
  252. //static float bt = 0;
  253. //Inactivity shutdown variables
  254. static unsigned long previous_millis_cmd = 0;
  255. static unsigned long max_inactive_time = 0;
  256. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  257. unsigned long starttime=0;
  258. unsigned long stoptime=0;
  259. static uint8_t tmp_extruder;
  260. bool Stopped=false;
  261. #if NUM_SERVOS > 0
  262. Servo servos[NUM_SERVOS];
  263. #endif
  264. bool CooldownNoWait = true;
  265. bool target_direction;
  266. //===========================================================================
  267. //=============================ROUTINES=============================
  268. //===========================================================================
  269. void get_arc_coordinates();
  270. bool setTargetedHotend(int code);
  271. void serial_echopair_P(const char *s_P, float v)
  272. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  273. void serial_echopair_P(const char *s_P, double v)
  274. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  275. void serial_echopair_P(const char *s_P, unsigned long v)
  276. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  277. extern "C"{
  278. extern unsigned int __bss_end;
  279. extern unsigned int __heap_start;
  280. extern void *__brkval;
  281. int freeMemory() {
  282. int free_memory;
  283. if((int)__brkval == 0)
  284. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  285. else
  286. free_memory = ((int)&free_memory) - ((int)__brkval);
  287. return free_memory;
  288. }
  289. }
  290. //adds an command to the main command buffer
  291. //thats really done in a non-safe way.
  292. //needs overworking someday
  293. void enquecommand(const char *cmd)
  294. {
  295. if(buflen < BUFSIZE)
  296. {
  297. //this is dangerous if a mixing of serial and this happsens
  298. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  299. SERIAL_ECHO_START;
  300. SERIAL_ECHOPGM("enqueing \"");
  301. SERIAL_ECHO(cmdbuffer[bufindw]);
  302. SERIAL_ECHOLNPGM("\"");
  303. bufindw= (bufindw + 1)%BUFSIZE;
  304. buflen += 1;
  305. }
  306. }
  307. void enquecommand_P(const char *cmd)
  308. {
  309. if(buflen < BUFSIZE)
  310. {
  311. //this is dangerous if a mixing of serial and this happsens
  312. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  313. SERIAL_ECHO_START;
  314. SERIAL_ECHOPGM("enqueing \"");
  315. SERIAL_ECHO(cmdbuffer[bufindw]);
  316. SERIAL_ECHOLNPGM("\"");
  317. bufindw= (bufindw + 1)%BUFSIZE;
  318. buflen += 1;
  319. }
  320. }
  321. void setup_killpin()
  322. {
  323. #if defined(KILL_PIN) && KILL_PIN > -1
  324. pinMode(KILL_PIN,INPUT);
  325. WRITE(KILL_PIN,HIGH);
  326. #endif
  327. }
  328. void setup_photpin()
  329. {
  330. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  331. SET_OUTPUT(PHOTOGRAPH_PIN);
  332. WRITE(PHOTOGRAPH_PIN, LOW);
  333. #endif
  334. }
  335. void setup_powerhold()
  336. {
  337. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  338. SET_OUTPUT(SUICIDE_PIN);
  339. WRITE(SUICIDE_PIN, HIGH);
  340. #endif
  341. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  342. SET_OUTPUT(PS_ON_PIN);
  343. #if defined(PS_DEFAULT_OFF)
  344. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  345. #else
  346. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  347. #endif
  348. #endif
  349. }
  350. void suicide()
  351. {
  352. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  353. SET_OUTPUT(SUICIDE_PIN);
  354. WRITE(SUICIDE_PIN, LOW);
  355. #endif
  356. }
  357. void servo_init()
  358. {
  359. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  360. servos[0].attach(SERVO0_PIN);
  361. #endif
  362. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  363. servos[1].attach(SERVO1_PIN);
  364. #endif
  365. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  366. servos[2].attach(SERVO2_PIN);
  367. #endif
  368. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  369. servos[3].attach(SERVO3_PIN);
  370. #endif
  371. #if (NUM_SERVOS >= 5)
  372. #error "TODO: enter initalisation code for more servos"
  373. #endif
  374. // Set position of Servo Endstops that are defined
  375. #ifdef SERVO_ENDSTOPS
  376. for(int8_t i = 0; i < 3; i++)
  377. {
  378. if(servo_endstops[i] > -1) {
  379. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  380. }
  381. }
  382. #endif
  383. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  384. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  385. servos[servo_endstops[Z_AXIS]].detach();
  386. #endif
  387. }
  388. void setup()
  389. {
  390. setup_killpin();
  391. setup_powerhold();
  392. MYSERIAL.begin(BAUDRATE);
  393. SERIAL_PROTOCOLLNPGM("start");
  394. SERIAL_ECHO_START;
  395. // Check startup - does nothing if bootloader sets MCUSR to 0
  396. byte mcu = MCUSR;
  397. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  398. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  399. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  400. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  401. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  402. MCUSR=0;
  403. SERIAL_ECHOPGM(MSG_MARLIN);
  404. SERIAL_ECHOLNPGM(VERSION_STRING);
  405. #ifdef STRING_VERSION_CONFIG_H
  406. #ifdef STRING_CONFIG_H_AUTHOR
  407. SERIAL_ECHO_START;
  408. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  409. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  410. SERIAL_ECHOPGM(MSG_AUTHOR);
  411. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  412. SERIAL_ECHOPGM("Compiled: ");
  413. SERIAL_ECHOLNPGM(__DATE__);
  414. #endif
  415. #endif
  416. SERIAL_ECHO_START;
  417. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  418. SERIAL_ECHO(freeMemory());
  419. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  420. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  421. for(int8_t i = 0; i < BUFSIZE; i++)
  422. {
  423. fromsd[i] = false;
  424. }
  425. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  426. Config_RetrieveSettings();
  427. tp_init(); // Initialize temperature loop
  428. plan_init(); // Initialize planner;
  429. watchdog_init();
  430. st_init(); // Initialize stepper, this enables interrupts!
  431. setup_photpin();
  432. servo_init();
  433. lcd_init();
  434. _delay_ms(1000); // wait 1sec to display the splash screen
  435. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  436. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  437. #endif
  438. #ifdef DIGIPOT_I2C
  439. digipot_i2c_init();
  440. #endif
  441. }
  442. void loop()
  443. {
  444. if(buflen < (BUFSIZE-1))
  445. get_command();
  446. #ifdef SDSUPPORT
  447. card.checkautostart(false);
  448. #endif
  449. if(buflen)
  450. {
  451. #ifdef SDSUPPORT
  452. if(card.saving)
  453. {
  454. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  455. {
  456. card.write_command(cmdbuffer[bufindr]);
  457. if(card.logging)
  458. {
  459. process_commands();
  460. }
  461. else
  462. {
  463. SERIAL_PROTOCOLLNPGM(MSG_OK);
  464. }
  465. }
  466. else
  467. {
  468. card.closefile();
  469. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  470. }
  471. }
  472. else
  473. {
  474. process_commands();
  475. }
  476. #else
  477. process_commands();
  478. #endif //SDSUPPORT
  479. buflen = (buflen-1);
  480. bufindr = (bufindr + 1)%BUFSIZE;
  481. }
  482. //check heater every n milliseconds
  483. manage_heater();
  484. manage_inactivity();
  485. checkHitEndstops();
  486. lcd_update();
  487. }
  488. void get_command()
  489. {
  490. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  491. serial_char = MYSERIAL.read();
  492. if(serial_char == '\n' ||
  493. serial_char == '\r' ||
  494. (serial_char == ':' && comment_mode == false) ||
  495. serial_count >= (MAX_CMD_SIZE - 1) )
  496. {
  497. if(!serial_count) { //if empty line
  498. comment_mode = false; //for new command
  499. return;
  500. }
  501. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  502. if(!comment_mode){
  503. comment_mode = false; //for new command
  504. fromsd[bufindw] = false;
  505. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  506. {
  507. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  508. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  509. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  510. SERIAL_ERROR_START;
  511. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  512. SERIAL_ERRORLN(gcode_LastN);
  513. //Serial.println(gcode_N);
  514. FlushSerialRequestResend();
  515. serial_count = 0;
  516. return;
  517. }
  518. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  519. {
  520. byte checksum = 0;
  521. byte count = 0;
  522. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  523. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  524. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  525. SERIAL_ERROR_START;
  526. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  527. SERIAL_ERRORLN(gcode_LastN);
  528. FlushSerialRequestResend();
  529. serial_count = 0;
  530. return;
  531. }
  532. //if no errors, continue parsing
  533. }
  534. else
  535. {
  536. SERIAL_ERROR_START;
  537. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  538. SERIAL_ERRORLN(gcode_LastN);
  539. FlushSerialRequestResend();
  540. serial_count = 0;
  541. return;
  542. }
  543. gcode_LastN = gcode_N;
  544. //if no errors, continue parsing
  545. }
  546. else // if we don't receive 'N' but still see '*'
  547. {
  548. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  549. {
  550. SERIAL_ERROR_START;
  551. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  552. SERIAL_ERRORLN(gcode_LastN);
  553. serial_count = 0;
  554. return;
  555. }
  556. }
  557. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  558. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  559. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  560. case 0:
  561. case 1:
  562. case 2:
  563. case 3:
  564. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  565. #ifdef SDSUPPORT
  566. if(card.saving)
  567. break;
  568. #endif //SDSUPPORT
  569. SERIAL_PROTOCOLLNPGM(MSG_OK);
  570. }
  571. else {
  572. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  573. LCD_MESSAGEPGM(MSG_STOPPED);
  574. }
  575. break;
  576. default:
  577. break;
  578. }
  579. }
  580. bufindw = (bufindw + 1)%BUFSIZE;
  581. buflen += 1;
  582. }
  583. serial_count = 0; //clear buffer
  584. }
  585. else
  586. {
  587. if(serial_char == ';') comment_mode = true;
  588. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  589. }
  590. }
  591. #ifdef SDSUPPORT
  592. if(!card.sdprinting || serial_count!=0){
  593. return;
  594. }
  595. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  596. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  597. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  598. static bool stop_buffering=false;
  599. if(buflen==0) stop_buffering=false;
  600. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  601. int16_t n=card.get();
  602. serial_char = (char)n;
  603. if(serial_char == '\n' ||
  604. serial_char == '\r' ||
  605. (serial_char == '#' && comment_mode == false) ||
  606. (serial_char == ':' && comment_mode == false) ||
  607. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  608. {
  609. if(card.eof()){
  610. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  611. stoptime=millis();
  612. char time[30];
  613. unsigned long t=(stoptime-starttime)/1000;
  614. int hours, minutes;
  615. minutes=(t/60)%60;
  616. hours=t/60/60;
  617. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  618. SERIAL_ECHO_START;
  619. SERIAL_ECHOLN(time);
  620. lcd_setstatus(time);
  621. card.printingHasFinished();
  622. card.checkautostart(true);
  623. }
  624. if(serial_char=='#')
  625. stop_buffering=true;
  626. if(!serial_count)
  627. {
  628. comment_mode = false; //for new command
  629. return; //if empty line
  630. }
  631. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  632. // if(!comment_mode){
  633. fromsd[bufindw] = true;
  634. buflen += 1;
  635. bufindw = (bufindw + 1)%BUFSIZE;
  636. // }
  637. comment_mode = false; //for new command
  638. serial_count = 0; //clear buffer
  639. }
  640. else
  641. {
  642. if(serial_char == ';') comment_mode = true;
  643. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  644. }
  645. }
  646. #endif //SDSUPPORT
  647. }
  648. float code_value()
  649. {
  650. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  651. }
  652. long code_value_long()
  653. {
  654. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  655. }
  656. bool code_seen(char code)
  657. {
  658. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  659. return (strchr_pointer != NULL); //Return True if a character was found
  660. }
  661. #define DEFINE_PGM_READ_ANY(type, reader) \
  662. static inline type pgm_read_any(const type *p) \
  663. { return pgm_read_##reader##_near(p); }
  664. DEFINE_PGM_READ_ANY(float, float);
  665. DEFINE_PGM_READ_ANY(signed char, byte);
  666. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  667. static const PROGMEM type array##_P[3] = \
  668. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  669. static inline type array(int axis) \
  670. { return pgm_read_any(&array##_P[axis]); }
  671. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  672. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  673. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  674. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  675. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  676. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  677. #ifdef DUAL_X_CARRIAGE
  678. #if EXTRUDERS == 1 || defined(COREXY) \
  679. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  680. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  681. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  682. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  683. #endif
  684. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  685. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  686. #endif
  687. #define DXC_FULL_CONTROL_MODE 0
  688. #define DXC_AUTO_PARK_MODE 1
  689. #define DXC_DUPLICATION_MODE 2
  690. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  691. static float x_home_pos(int extruder) {
  692. if (extruder == 0)
  693. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  694. else
  695. // In dual carriage mode the extruder offset provides an override of the
  696. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  697. // This allow soft recalibration of the second extruder offset position without firmware reflash
  698. // (through the M218 command).
  699. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  700. }
  701. static int x_home_dir(int extruder) {
  702. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  703. }
  704. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  705. static bool active_extruder_parked = false; // used in mode 1 & 2
  706. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  707. static unsigned long delayed_move_time = 0; // used in mode 1
  708. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  709. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  710. bool extruder_duplication_enabled = false; // used in mode 2
  711. #endif //DUAL_X_CARRIAGE
  712. static void axis_is_at_home(int axis) {
  713. #ifdef DUAL_X_CARRIAGE
  714. if (axis == X_AXIS) {
  715. if (active_extruder != 0) {
  716. current_position[X_AXIS] = x_home_pos(active_extruder);
  717. min_pos[X_AXIS] = X2_MIN_POS;
  718. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  719. return;
  720. }
  721. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  722. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  723. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  724. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  725. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  726. return;
  727. }
  728. }
  729. #endif
  730. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  731. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  732. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  733. }
  734. #ifdef ENABLE_AUTO_BED_LEVELING
  735. #ifdef ACCURATE_BED_LEVELING
  736. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  737. {
  738. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  739. planeNormal.debug("planeNormal");
  740. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  741. //bedLevel.debug("bedLevel");
  742. //plan_bed_level_matrix.debug("bed level before");
  743. //vector_3 uncorrected_position = plan_get_position_mm();
  744. //uncorrected_position.debug("position before");
  745. vector_3 corrected_position = plan_get_position();
  746. // corrected_position.debug("position after");
  747. current_position[X_AXIS] = corrected_position.x;
  748. current_position[Y_AXIS] = corrected_position.y;
  749. current_position[Z_AXIS] = corrected_position.z;
  750. // but the bed at 0 so we don't go below it.
  751. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  752. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  753. }
  754. #else // not ACCURATE_BED_LEVELING
  755. #ifdef AUTO_BED_LEVELING_ANY_POINTS
  756. static void set_bed_level_equation_any_pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  757. plan_bed_level_matrix.set_to_identity();
  758. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  759. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  760. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  761. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  762. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  763. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  764. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  765. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  766. vector_3 corrected_position = plan_get_position();
  767. current_position[X_AXIS] = corrected_position.x;
  768. current_position[Y_AXIS] = corrected_position.y;
  769. current_position[Z_AXIS] = corrected_position.z;
  770. // but the bed at 0 so we don't go below it.
  771. current_position[Z_AXIS] = zprobe_zoffset;
  772. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  773. }
  774. #else // not AUTO_BED_LEVELING_ANY_POINTS
  775. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  776. plan_bed_level_matrix.set_to_identity();
  777. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  778. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  779. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  780. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  781. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  782. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  783. //planeNormal.debug("planeNormal");
  784. //yPositive.debug("yPositive");
  785. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  786. //bedLevel.debug("bedLevel");
  787. //plan_bed_level_matrix.debug("bed level before");
  788. //vector_3 uncorrected_position = plan_get_position_mm();
  789. //uncorrected_position.debug("position before");
  790. // and set our bed level equation to do the right thing
  791. //plan_bed_level_matrix.debug("bed level after");
  792. vector_3 corrected_position = plan_get_position();
  793. //corrected_position.debug("position after");
  794. current_position[X_AXIS] = corrected_position.x;
  795. current_position[Y_AXIS] = corrected_position.y;
  796. current_position[Z_AXIS] = corrected_position.z;
  797. // but the bed at 0 so we don't go below it.
  798. current_position[Z_AXIS] = zprobe_zoffset;
  799. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  800. }
  801. #endif // AUTO_BED_LEVELING_ANY_POINTS
  802. #endif // ACCURATE_BED_LEVELING
  803. static void run_z_probe() {
  804. plan_bed_level_matrix.set_to_identity();
  805. feedrate = homing_feedrate[Z_AXIS];
  806. // move down until you find the bed
  807. float zPosition = -10;
  808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  809. st_synchronize();
  810. // we have to let the planner know where we are right now as it is not where we said to go.
  811. zPosition = st_get_position_mm(Z_AXIS);
  812. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  813. // move up the retract distance
  814. zPosition += home_retract_mm(Z_AXIS);
  815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  816. st_synchronize();
  817. // move back down slowly to find bed
  818. feedrate = homing_feedrate[Z_AXIS]/4;
  819. zPosition -= home_retract_mm(Z_AXIS) * 2;
  820. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  821. st_synchronize();
  822. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  823. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  824. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  825. }
  826. static void do_blocking_move_to(float x, float y, float z) {
  827. float oldFeedRate = feedrate;
  828. feedrate = XY_TRAVEL_SPEED;
  829. current_position[X_AXIS] = x;
  830. current_position[Y_AXIS] = y;
  831. current_position[Z_AXIS] = z;
  832. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  833. st_synchronize();
  834. feedrate = oldFeedRate;
  835. }
  836. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  837. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  838. }
  839. static void setup_for_endstop_move() {
  840. saved_feedrate = feedrate;
  841. saved_feedmultiply = feedmultiply;
  842. feedmultiply = 100;
  843. previous_millis_cmd = millis();
  844. enable_endstops(true);
  845. }
  846. static void clean_up_after_endstop_move() {
  847. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  848. enable_endstops(false);
  849. #endif
  850. feedrate = saved_feedrate;
  851. feedmultiply = saved_feedmultiply;
  852. previous_millis_cmd = millis();
  853. }
  854. static void engage_z_probe() {
  855. // Engage Z Servo endstop if enabled
  856. #ifdef SERVO_ENDSTOPS
  857. if (servo_endstops[Z_AXIS] > -1) {
  858. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  859. servos[servo_endstops[Z_AXIS]].attach(0);
  860. #endif
  861. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  862. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  863. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  864. servos[servo_endstops[Z_AXIS]].detach();
  865. #endif
  866. }
  867. #endif
  868. }
  869. static void retract_z_probe() {
  870. // Retract Z Servo endstop if enabled
  871. #ifdef SERVO_ENDSTOPS
  872. if (servo_endstops[Z_AXIS] > -1) {
  873. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  874. servos[servo_endstops[Z_AXIS]].attach(0);
  875. #endif
  876. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  877. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  878. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  879. servos[servo_endstops[Z_AXIS]].detach();
  880. #endif
  881. }
  882. #endif
  883. }
  884. /// Probe bed height at position (x,y), returns the measured z value
  885. static float probe_pt(float x, float y, float z_before) {
  886. // move to right place
  887. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  888. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  889. engage_z_probe(); // Engage Z Servo endstop if available
  890. run_z_probe();
  891. float measured_z = current_position[Z_AXIS];
  892. retract_z_probe();
  893. SERIAL_PROTOCOLPGM(MSG_BED);
  894. SERIAL_PROTOCOLPGM(" x: ");
  895. SERIAL_PROTOCOL(x);
  896. SERIAL_PROTOCOLPGM(" y: ");
  897. SERIAL_PROTOCOL(y);
  898. SERIAL_PROTOCOLPGM(" z: ");
  899. SERIAL_PROTOCOL(measured_z);
  900. SERIAL_PROTOCOLPGM("\n");
  901. return measured_z;
  902. }
  903. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  904. static void homeaxis(int axis) {
  905. #define HOMEAXIS_DO(LETTER) \
  906. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  907. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  908. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  909. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  910. 0) {
  911. int axis_home_dir = home_dir(axis);
  912. #ifdef DUAL_X_CARRIAGE
  913. if (axis == X_AXIS)
  914. axis_home_dir = x_home_dir(active_extruder);
  915. #endif
  916. current_position[axis] = 0;
  917. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  918. // Engage Servo endstop if enabled
  919. #ifdef SERVO_ENDSTOPS
  920. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  921. if (axis==Z_AXIS) {
  922. engage_z_probe();
  923. }
  924. else
  925. #endif
  926. if (servo_endstops[axis] > -1) {
  927. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  928. }
  929. #endif
  930. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  931. feedrate = homing_feedrate[axis];
  932. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  933. st_synchronize();
  934. current_position[axis] = 0;
  935. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  936. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  937. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  938. st_synchronize();
  939. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  940. #ifdef DELTA
  941. feedrate = homing_feedrate[axis]/10;
  942. #else
  943. feedrate = homing_feedrate[axis]/2 ;
  944. #endif
  945. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  946. st_synchronize();
  947. #ifdef DELTA
  948. // retrace by the amount specified in endstop_adj
  949. if (endstop_adj[axis] * axis_home_dir < 0) {
  950. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  951. destination[axis] = endstop_adj[axis];
  952. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  953. st_synchronize();
  954. }
  955. #endif
  956. axis_is_at_home(axis);
  957. destination[axis] = current_position[axis];
  958. feedrate = 0.0;
  959. endstops_hit_on_purpose();
  960. axis_known_position[axis] = true;
  961. // Retract Servo endstop if enabled
  962. #ifdef SERVO_ENDSTOPS
  963. if (servo_endstops[axis] > -1) {
  964. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  965. }
  966. #endif
  967. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  968. if (axis==Z_AXIS) retract_z_probe();
  969. #endif
  970. }
  971. }
  972. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  973. void refresh_cmd_timeout(void)
  974. {
  975. previous_millis_cmd = millis();
  976. }
  977. #ifdef FWRETRACT
  978. void retract(bool retracting) {
  979. if(retracting && !retracted) {
  980. destination[X_AXIS]=current_position[X_AXIS];
  981. destination[Y_AXIS]=current_position[Y_AXIS];
  982. destination[Z_AXIS]=current_position[Z_AXIS];
  983. destination[E_AXIS]=current_position[E_AXIS];
  984. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  985. plan_set_e_position(current_position[E_AXIS]);
  986. float oldFeedrate = feedrate;
  987. feedrate=retract_feedrate;
  988. retracted=true;
  989. prepare_move();
  990. current_position[Z_AXIS]-=retract_zlift;
  991. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  992. prepare_move();
  993. feedrate = oldFeedrate;
  994. } else if(!retracting && retracted) {
  995. destination[X_AXIS]=current_position[X_AXIS];
  996. destination[Y_AXIS]=current_position[Y_AXIS];
  997. destination[Z_AXIS]=current_position[Z_AXIS];
  998. destination[E_AXIS]=current_position[E_AXIS];
  999. current_position[Z_AXIS]+=retract_zlift;
  1000. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1001. //prepare_move();
  1002. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1003. plan_set_e_position(current_position[E_AXIS]);
  1004. float oldFeedrate = feedrate;
  1005. feedrate=retract_recover_feedrate;
  1006. retracted=false;
  1007. prepare_move();
  1008. feedrate = oldFeedrate;
  1009. }
  1010. } //retract
  1011. #endif //FWRETRACT
  1012. void process_commands()
  1013. {
  1014. unsigned long codenum; //throw away variable
  1015. char *starpos = NULL;
  1016. #ifdef ENABLE_AUTO_BED_LEVELING
  1017. float x_tmp, y_tmp, z_tmp, real_z;
  1018. #endif
  1019. if(code_seen('G'))
  1020. {
  1021. switch((int)code_value())
  1022. {
  1023. case 0: // G0 -> G1
  1024. case 1: // G1
  1025. if(Stopped == false) {
  1026. get_coordinates(); // For X Y Z E F
  1027. #ifdef FWRETRACT
  1028. if(autoretract_enabled)
  1029. if( !(code_seen(X_AXIS) || code_seen(Y_AXIS) || code_seen(Z_AXIS)) && code_seen(E_AXIS)) {
  1030. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1031. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to attract or recover
  1032. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1033. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1034. retract(!retracted);
  1035. return;
  1036. }
  1037. }
  1038. #endif //FWRETRACT
  1039. prepare_move();
  1040. //ClearToSend();
  1041. return;
  1042. }
  1043. //break;
  1044. case 2: // G2 - CW ARC
  1045. if(Stopped == false) {
  1046. get_arc_coordinates();
  1047. prepare_arc_move(true);
  1048. return;
  1049. }
  1050. case 3: // G3 - CCW ARC
  1051. if(Stopped == false) {
  1052. get_arc_coordinates();
  1053. prepare_arc_move(false);
  1054. return;
  1055. }
  1056. case 4: // G4 dwell
  1057. LCD_MESSAGEPGM(MSG_DWELL);
  1058. codenum = 0;
  1059. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1060. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1061. st_synchronize();
  1062. codenum += millis(); // keep track of when we started waiting
  1063. previous_millis_cmd = millis();
  1064. while(millis() < codenum ){
  1065. manage_heater();
  1066. manage_inactivity();
  1067. lcd_update();
  1068. }
  1069. break;
  1070. #ifdef FWRETRACT
  1071. case 10: // G10 retract
  1072. retract(true);
  1073. break;
  1074. case 11: // G11 retract_recover
  1075. retract(false);
  1076. break;
  1077. #endif //FWRETRACT
  1078. case 28: //G28 Home all Axis one at a time
  1079. #ifdef ENABLE_AUTO_BED_LEVELING
  1080. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1081. #endif //ENABLE_AUTO_BED_LEVELING
  1082. saved_feedrate = feedrate;
  1083. saved_feedmultiply = feedmultiply;
  1084. feedmultiply = 100;
  1085. previous_millis_cmd = millis();
  1086. enable_endstops(true);
  1087. for(int8_t i=0; i < NUM_AXIS; i++) {
  1088. destination[i] = current_position[i];
  1089. }
  1090. feedrate = 0.0;
  1091. #ifdef DELTA
  1092. // A delta can only safely home all axis at the same time
  1093. // all axis have to home at the same time
  1094. // Move all carriages up together until the first endstop is hit.
  1095. current_position[X_AXIS] = 0;
  1096. current_position[Y_AXIS] = 0;
  1097. current_position[Z_AXIS] = 0;
  1098. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1099. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1100. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1101. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1102. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1103. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1104. st_synchronize();
  1105. endstops_hit_on_purpose();
  1106. current_position[X_AXIS] = destination[X_AXIS];
  1107. current_position[Y_AXIS] = destination[Y_AXIS];
  1108. current_position[Z_AXIS] = destination[Z_AXIS];
  1109. // take care of back off and rehome now we are all at the top
  1110. HOMEAXIS(X);
  1111. HOMEAXIS(Y);
  1112. HOMEAXIS(Z);
  1113. calculate_delta(current_position);
  1114. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1115. #else // NOT DELTA
  1116. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1117. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1118. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1119. HOMEAXIS(Z);
  1120. }
  1121. #endif
  1122. #ifdef QUICK_HOME
  1123. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1124. {
  1125. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1126. #ifndef DUAL_X_CARRIAGE
  1127. int x_axis_home_dir = home_dir(X_AXIS);
  1128. #else
  1129. int x_axis_home_dir = x_home_dir(active_extruder);
  1130. extruder_duplication_enabled = false;
  1131. #endif
  1132. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1133. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1134. feedrate = homing_feedrate[X_AXIS];
  1135. if(homing_feedrate[Y_AXIS]<feedrate)
  1136. feedrate =homing_feedrate[Y_AXIS];
  1137. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1138. st_synchronize();
  1139. axis_is_at_home(X_AXIS);
  1140. axis_is_at_home(Y_AXIS);
  1141. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1142. destination[X_AXIS] = current_position[X_AXIS];
  1143. destination[Y_AXIS] = current_position[Y_AXIS];
  1144. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1145. feedrate = 0.0;
  1146. st_synchronize();
  1147. endstops_hit_on_purpose();
  1148. current_position[X_AXIS] = destination[X_AXIS];
  1149. current_position[Y_AXIS] = destination[Y_AXIS];
  1150. current_position[Z_AXIS] = destination[Z_AXIS];
  1151. }
  1152. #endif
  1153. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1154. {
  1155. #ifdef DUAL_X_CARRIAGE
  1156. int tmp_extruder = active_extruder;
  1157. extruder_duplication_enabled = false;
  1158. active_extruder = !active_extruder;
  1159. HOMEAXIS(X);
  1160. inactive_extruder_x_pos = current_position[X_AXIS];
  1161. active_extruder = tmp_extruder;
  1162. HOMEAXIS(X);
  1163. // reset state used by the different modes
  1164. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1165. delayed_move_time = 0;
  1166. active_extruder_parked = true;
  1167. #else
  1168. HOMEAXIS(X);
  1169. #endif
  1170. }
  1171. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1172. HOMEAXIS(Y);
  1173. }
  1174. if(code_seen(axis_codes[X_AXIS]))
  1175. {
  1176. if(code_value_long() != 0) {
  1177. current_position[X_AXIS]=code_value()+add_homeing[0];
  1178. }
  1179. }
  1180. if(code_seen(axis_codes[Y_AXIS])) {
  1181. if(code_value_long() != 0) {
  1182. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1183. }
  1184. }
  1185. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1186. #ifndef Z_SAFE_HOMING
  1187. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1188. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1189. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1190. feedrate = max_feedrate[Z_AXIS];
  1191. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1192. st_synchronize();
  1193. #endif
  1194. HOMEAXIS(Z);
  1195. }
  1196. #else // Z Safe mode activated.
  1197. if(home_all_axis) {
  1198. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1199. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1200. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1201. feedrate = XY_TRAVEL_SPEED;
  1202. current_position[Z_AXIS] = 0;
  1203. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1204. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1205. st_synchronize();
  1206. current_position[X_AXIS] = destination[X_AXIS];
  1207. current_position[Y_AXIS] = destination[Y_AXIS];
  1208. HOMEAXIS(Z);
  1209. }
  1210. // Let's see if X and Y are homed and probe is inside bed area.
  1211. if(code_seen(axis_codes[Z_AXIS])) {
  1212. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1213. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1214. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1215. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1216. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1217. current_position[Z_AXIS] = 0;
  1218. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1219. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1220. feedrate = max_feedrate[Z_AXIS];
  1221. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1222. st_synchronize();
  1223. HOMEAXIS(Z);
  1224. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1225. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1226. SERIAL_ECHO_START;
  1227. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1228. } else {
  1229. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1230. SERIAL_ECHO_START;
  1231. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1232. }
  1233. }
  1234. #endif
  1235. #endif
  1236. if(code_seen(axis_codes[Z_AXIS])) {
  1237. if(code_value_long() != 0) {
  1238. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1239. }
  1240. }
  1241. #ifdef ENABLE_AUTO_BED_LEVELING
  1242. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1243. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1244. }
  1245. #endif
  1246. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1247. #endif // else DELTA
  1248. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1249. enable_endstops(false);
  1250. #endif
  1251. feedrate = saved_feedrate;
  1252. feedmultiply = saved_feedmultiply;
  1253. previous_millis_cmd = millis();
  1254. endstops_hit_on_purpose();
  1255. break;
  1256. #ifdef ENABLE_AUTO_BED_LEVELING
  1257. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1258. {
  1259. #if Z_MIN_PIN == -1
  1260. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1261. #endif
  1262. // Prevent user from running a G29 without first homing in X and Y
  1263. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1264. {
  1265. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1266. SERIAL_ECHO_START;
  1267. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1268. break; // abort G29, since we don't know where we are
  1269. }
  1270. st_synchronize();
  1271. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1272. //vector_3 corrected_position = plan_get_position_mm();
  1273. //corrected_position.debug("position before G29");
  1274. plan_bed_level_matrix.set_to_identity();
  1275. vector_3 uncorrected_position = plan_get_position();
  1276. //uncorrected_position.debug("position durring G29");
  1277. current_position[X_AXIS] = uncorrected_position.x;
  1278. current_position[Y_AXIS] = uncorrected_position.y;
  1279. current_position[Z_AXIS] = uncorrected_position.z;
  1280. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1281. setup_for_endstop_move();
  1282. feedrate = homing_feedrate[Z_AXIS];
  1283. #ifdef ACCURATE_BED_LEVELING
  1284. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1285. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1286. // solve the plane equation ax + by + d = z
  1287. // A is the matrix with rows [x y 1] for all the probed points
  1288. // B is the vector of the Z positions
  1289. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1290. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1291. // "A" matrix of the linear system of equations
  1292. double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
  1293. // "B" vector of Z points
  1294. double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
  1295. int probePointCounter = 0;
  1296. bool zig = true;
  1297. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1298. {
  1299. int xProbe, xInc;
  1300. if (zig)
  1301. {
  1302. xProbe = LEFT_PROBE_BED_POSITION;
  1303. //xEnd = RIGHT_PROBE_BED_POSITION;
  1304. xInc = xGridSpacing;
  1305. zig = false;
  1306. } else // zag
  1307. {
  1308. xProbe = RIGHT_PROBE_BED_POSITION;
  1309. //xEnd = LEFT_PROBE_BED_POSITION;
  1310. xInc = -xGridSpacing;
  1311. zig = true;
  1312. }
  1313. for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++)
  1314. {
  1315. float z_before;
  1316. if (probePointCounter == 0)
  1317. {
  1318. // raise before probing
  1319. z_before = Z_RAISE_BEFORE_PROBING;
  1320. } else
  1321. {
  1322. // raise extruder
  1323. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1324. }
  1325. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1326. eqnBVector[probePointCounter] = measured_z;
  1327. eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
  1328. eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
  1329. eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
  1330. probePointCounter++;
  1331. xProbe += xInc;
  1332. }
  1333. }
  1334. clean_up_after_endstop_move();
  1335. // solve lsq problem
  1336. double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
  1337. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1338. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1339. SERIAL_PROTOCOLPGM(" b: ");
  1340. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1341. SERIAL_PROTOCOLPGM(" d: ");
  1342. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1343. set_bed_level_equation_lsq(plane_equation_coefficients);
  1344. free(plane_equation_coefficients);
  1345. #else // ACCURATE_BED_LEVELING not defined
  1346. #ifdef AUTO_BED_LEVELING_ANY_POINTS
  1347. // probe 1
  1348. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1349. // probe 2
  1350. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1351. // probe 3
  1352. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1353. clean_up_after_endstop_move();
  1354. set_bed_level_equation_any_pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1355. #else // not AUTO_BED_LEVELING_ANY_POINTS
  1356. // prob 1
  1357. float z_at_xLeft_yBack = probe_pt(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, Z_RAISE_BEFORE_PROBING);
  1358. // prob 2
  1359. float z_at_xLeft_yFront = probe_pt(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1360. // prob 3
  1361. float z_at_xRight_yFront = probe_pt(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1362. clean_up_after_endstop_move();
  1363. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1364. #endif
  1365. #endif // ACCURATE_BED_LEVELING
  1366. st_synchronize();
  1367. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1368. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1369. // When the bed is uneven, this height must be corrected.
  1370. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1371. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1372. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1373. z_tmp = current_position[Z_AXIS];
  1374. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1375. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1376. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1377. }
  1378. break;
  1379. case 30: // G30 Single Z Probe
  1380. {
  1381. engage_z_probe(); // Engage Z Servo endstop if available
  1382. st_synchronize();
  1383. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1384. setup_for_endstop_move();
  1385. feedrate = homing_feedrate[Z_AXIS];
  1386. run_z_probe();
  1387. SERIAL_PROTOCOLPGM(MSG_BED);
  1388. SERIAL_PROTOCOLPGM(" X: ");
  1389. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1390. SERIAL_PROTOCOLPGM(" Y: ");
  1391. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1392. SERIAL_PROTOCOLPGM(" Z: ");
  1393. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1394. SERIAL_PROTOCOLPGM("\n");
  1395. clean_up_after_endstop_move();
  1396. retract_z_probe(); // Retract Z Servo endstop if available
  1397. }
  1398. break;
  1399. #endif // ENABLE_AUTO_BED_LEVELING
  1400. case 90: // G90
  1401. relative_mode = false;
  1402. break;
  1403. case 91: // G91
  1404. relative_mode = true;
  1405. break;
  1406. case 92: // G92
  1407. if(!code_seen(axis_codes[E_AXIS]))
  1408. st_synchronize();
  1409. for(int8_t i=0; i < NUM_AXIS; i++) {
  1410. if(code_seen(axis_codes[i])) {
  1411. if(i == E_AXIS) {
  1412. current_position[i] = code_value();
  1413. plan_set_e_position(current_position[E_AXIS]);
  1414. }
  1415. else {
  1416. current_position[i] = code_value()+add_homeing[i];
  1417. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1418. }
  1419. }
  1420. }
  1421. break;
  1422. }
  1423. }
  1424. else if(code_seen('M'))
  1425. {
  1426. switch( (int)code_value() )
  1427. {
  1428. #ifdef ULTIPANEL
  1429. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1430. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1431. {
  1432. LCD_MESSAGEPGM(MSG_USERWAIT);
  1433. codenum = 0;
  1434. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1435. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1436. st_synchronize();
  1437. previous_millis_cmd = millis();
  1438. if (codenum > 0){
  1439. codenum += millis(); // keep track of when we started waiting
  1440. while(millis() < codenum && !lcd_clicked()){
  1441. manage_heater();
  1442. manage_inactivity();
  1443. lcd_update();
  1444. }
  1445. }else{
  1446. while(!lcd_clicked()){
  1447. manage_heater();
  1448. manage_inactivity();
  1449. lcd_update();
  1450. }
  1451. }
  1452. LCD_MESSAGEPGM(MSG_RESUMING);
  1453. }
  1454. break;
  1455. #endif
  1456. case 17:
  1457. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1458. enable_x();
  1459. enable_y();
  1460. enable_z();
  1461. enable_e0();
  1462. enable_e1();
  1463. enable_e2();
  1464. break;
  1465. #ifdef SDSUPPORT
  1466. case 20: // M20 - list SD card
  1467. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1468. card.ls();
  1469. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1470. break;
  1471. case 21: // M21 - init SD card
  1472. card.initsd();
  1473. break;
  1474. case 22: //M22 - release SD card
  1475. card.release();
  1476. break;
  1477. case 23: //M23 - Select file
  1478. starpos = (strchr(strchr_pointer + 4,'*'));
  1479. if(starpos!=NULL)
  1480. *(starpos-1)='\0';
  1481. card.openFile(strchr_pointer + 4,true);
  1482. break;
  1483. case 24: //M24 - Start SD print
  1484. card.startFileprint();
  1485. starttime=millis();
  1486. break;
  1487. case 25: //M25 - Pause SD print
  1488. card.pauseSDPrint();
  1489. break;
  1490. case 26: //M26 - Set SD index
  1491. if(card.cardOK && code_seen('S')) {
  1492. card.setIndex(code_value_long());
  1493. }
  1494. break;
  1495. case 27: //M27 - Get SD status
  1496. card.getStatus();
  1497. break;
  1498. case 28: //M28 - Start SD write
  1499. starpos = (strchr(strchr_pointer + 4,'*'));
  1500. if(starpos != NULL){
  1501. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1502. strchr_pointer = strchr(npos,' ') + 1;
  1503. *(starpos-1) = '\0';
  1504. }
  1505. card.openFile(strchr_pointer+4,false);
  1506. break;
  1507. case 29: //M29 - Stop SD write
  1508. //processed in write to file routine above
  1509. //card,saving = false;
  1510. break;
  1511. case 30: //M30 <filename> Delete File
  1512. if (card.cardOK){
  1513. card.closefile();
  1514. starpos = (strchr(strchr_pointer + 4,'*'));
  1515. if(starpos != NULL){
  1516. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1517. strchr_pointer = strchr(npos,' ') + 1;
  1518. *(starpos-1) = '\0';
  1519. }
  1520. card.removeFile(strchr_pointer + 4);
  1521. }
  1522. break;
  1523. case 32: //M32 - Select file and start SD print
  1524. {
  1525. if(card.sdprinting) {
  1526. st_synchronize();
  1527. }
  1528. starpos = (strchr(strchr_pointer + 4,'*'));
  1529. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1530. if(namestartpos==NULL)
  1531. {
  1532. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1533. }
  1534. else
  1535. namestartpos++; //to skip the '!'
  1536. if(starpos!=NULL)
  1537. *(starpos-1)='\0';
  1538. bool call_procedure=(code_seen('P'));
  1539. if(strchr_pointer>namestartpos)
  1540. call_procedure=false; //false alert, 'P' found within filename
  1541. if( card.cardOK )
  1542. {
  1543. card.openFile(namestartpos,true,!call_procedure);
  1544. if(code_seen('S'))
  1545. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1546. card.setIndex(code_value_long());
  1547. card.startFileprint();
  1548. if(!call_procedure)
  1549. starttime=millis(); //procedure calls count as normal print time.
  1550. }
  1551. } break;
  1552. case 928: //M928 - Start SD write
  1553. starpos = (strchr(strchr_pointer + 5,'*'));
  1554. if(starpos != NULL){
  1555. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1556. strchr_pointer = strchr(npos,' ') + 1;
  1557. *(starpos-1) = '\0';
  1558. }
  1559. card.openLogFile(strchr_pointer+5);
  1560. break;
  1561. #endif //SDSUPPORT
  1562. case 31: //M31 take time since the start of the SD print or an M109 command
  1563. {
  1564. stoptime=millis();
  1565. char time[30];
  1566. unsigned long t=(stoptime-starttime)/1000;
  1567. int sec,min;
  1568. min=t/60;
  1569. sec=t%60;
  1570. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1571. SERIAL_ECHO_START;
  1572. SERIAL_ECHOLN(time);
  1573. lcd_setstatus(time);
  1574. autotempShutdown();
  1575. }
  1576. break;
  1577. case 42: //M42 -Change pin status via gcode
  1578. if (code_seen('S'))
  1579. {
  1580. int pin_status = code_value();
  1581. int pin_number = LED_PIN;
  1582. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1583. pin_number = code_value();
  1584. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1585. {
  1586. if (sensitive_pins[i] == pin_number)
  1587. {
  1588. pin_number = -1;
  1589. break;
  1590. }
  1591. }
  1592. #if defined(FAN_PIN) && FAN_PIN > -1
  1593. if (pin_number == FAN_PIN)
  1594. fanSpeed = pin_status;
  1595. #endif
  1596. if (pin_number > -1)
  1597. {
  1598. pinMode(pin_number, OUTPUT);
  1599. digitalWrite(pin_number, pin_status);
  1600. analogWrite(pin_number, pin_status);
  1601. }
  1602. }
  1603. break;
  1604. case 104: // M104
  1605. if(setTargetedHotend(104)){
  1606. break;
  1607. }
  1608. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1609. #ifdef DUAL_X_CARRIAGE
  1610. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1611. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1612. #endif
  1613. setWatch();
  1614. break;
  1615. case 140: // M140 set bed temp
  1616. if (code_seen('S')) setTargetBed(code_value());
  1617. break;
  1618. case 105 : // M105
  1619. if(setTargetedHotend(105)){
  1620. break;
  1621. }
  1622. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1623. SERIAL_PROTOCOLPGM("ok T:");
  1624. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1625. SERIAL_PROTOCOLPGM(" /");
  1626. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1627. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1628. SERIAL_PROTOCOLPGM(" B:");
  1629. SERIAL_PROTOCOL_F(degBed(),1);
  1630. SERIAL_PROTOCOLPGM(" /");
  1631. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1632. #endif //TEMP_BED_PIN
  1633. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1634. SERIAL_PROTOCOLPGM(" T");
  1635. SERIAL_PROTOCOL(cur_extruder);
  1636. SERIAL_PROTOCOLPGM(":");
  1637. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1638. SERIAL_PROTOCOLPGM(" /");
  1639. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1640. }
  1641. #else
  1642. SERIAL_ERROR_START;
  1643. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1644. #endif
  1645. SERIAL_PROTOCOLPGM(" @:");
  1646. #ifdef EXTRUDER_WATTS
  1647. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1648. SERIAL_PROTOCOLPGM("W");
  1649. #else
  1650. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1651. #endif
  1652. SERIAL_PROTOCOLPGM(" B@:");
  1653. #ifdef BED_WATTS
  1654. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1655. SERIAL_PROTOCOLPGM("W");
  1656. #else
  1657. SERIAL_PROTOCOL(getHeaterPower(-1));
  1658. #endif
  1659. #ifdef SHOW_TEMP_ADC_VALUES
  1660. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1661. SERIAL_PROTOCOLPGM(" ADC B:");
  1662. SERIAL_PROTOCOL_F(degBed(),1);
  1663. SERIAL_PROTOCOLPGM("C->");
  1664. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1665. #endif
  1666. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1667. SERIAL_PROTOCOLPGM(" T");
  1668. SERIAL_PROTOCOL(cur_extruder);
  1669. SERIAL_PROTOCOLPGM(":");
  1670. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1671. SERIAL_PROTOCOLPGM("C->");
  1672. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1673. }
  1674. #endif
  1675. SERIAL_PROTOCOLLN("");
  1676. return;
  1677. break;
  1678. case 109:
  1679. {// M109 - Wait for extruder heater to reach target.
  1680. if(setTargetedHotend(109)){
  1681. break;
  1682. }
  1683. LCD_MESSAGEPGM(MSG_HEATING);
  1684. #ifdef AUTOTEMP
  1685. autotemp_enabled=false;
  1686. #endif
  1687. if (code_seen('S')) {
  1688. setTargetHotend(code_value(), tmp_extruder);
  1689. #ifdef DUAL_X_CARRIAGE
  1690. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1691. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1692. #endif
  1693. CooldownNoWait = true;
  1694. } else if (code_seen('R')) {
  1695. setTargetHotend(code_value(), tmp_extruder);
  1696. #ifdef DUAL_X_CARRIAGE
  1697. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1698. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1699. #endif
  1700. CooldownNoWait = false;
  1701. }
  1702. #ifdef AUTOTEMP
  1703. if (code_seen('S')) autotemp_min=code_value();
  1704. if (code_seen('B')) autotemp_max=code_value();
  1705. if (code_seen('F'))
  1706. {
  1707. autotemp_factor=code_value();
  1708. autotemp_enabled=true;
  1709. }
  1710. #endif
  1711. setWatch();
  1712. codenum = millis();
  1713. /* See if we are heating up or cooling down */
  1714. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1715. #ifdef TEMP_RESIDENCY_TIME
  1716. long residencyStart;
  1717. residencyStart = -1;
  1718. /* continue to loop until we have reached the target temp
  1719. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1720. while((residencyStart == -1) ||
  1721. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1722. #else
  1723. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1724. #endif //TEMP_RESIDENCY_TIME
  1725. if( (millis() - codenum) > 1000UL )
  1726. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1727. SERIAL_PROTOCOLPGM("T:");
  1728. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1729. SERIAL_PROTOCOLPGM(" E:");
  1730. SERIAL_PROTOCOL((int)tmp_extruder);
  1731. #ifdef TEMP_RESIDENCY_TIME
  1732. SERIAL_PROTOCOLPGM(" W:");
  1733. if(residencyStart > -1)
  1734. {
  1735. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1736. SERIAL_PROTOCOLLN( codenum );
  1737. }
  1738. else
  1739. {
  1740. SERIAL_PROTOCOLLN( "?" );
  1741. }
  1742. #else
  1743. SERIAL_PROTOCOLLN("");
  1744. #endif
  1745. codenum = millis();
  1746. }
  1747. manage_heater();
  1748. manage_inactivity();
  1749. lcd_update();
  1750. #ifdef TEMP_RESIDENCY_TIME
  1751. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1752. or when current temp falls outside the hysteresis after target temp was reached */
  1753. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1754. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1755. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1756. {
  1757. residencyStart = millis();
  1758. }
  1759. #endif //TEMP_RESIDENCY_TIME
  1760. }
  1761. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1762. starttime=millis();
  1763. previous_millis_cmd = millis();
  1764. }
  1765. break;
  1766. case 190: // M190 - Wait for bed heater to reach target.
  1767. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1768. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1769. if (code_seen('S')) {
  1770. setTargetBed(code_value());
  1771. CooldownNoWait = true;
  1772. } else if (code_seen('R')) {
  1773. setTargetBed(code_value());
  1774. CooldownNoWait = false;
  1775. }
  1776. codenum = millis();
  1777. target_direction = isHeatingBed(); // true if heating, false if cooling
  1778. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1779. {
  1780. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1781. {
  1782. float tt=degHotend(active_extruder);
  1783. SERIAL_PROTOCOLPGM("T:");
  1784. SERIAL_PROTOCOL(tt);
  1785. SERIAL_PROTOCOLPGM(" E:");
  1786. SERIAL_PROTOCOL((int)active_extruder);
  1787. SERIAL_PROTOCOLPGM(" B:");
  1788. SERIAL_PROTOCOL_F(degBed(),1);
  1789. SERIAL_PROTOCOLLN("");
  1790. codenum = millis();
  1791. }
  1792. manage_heater();
  1793. manage_inactivity();
  1794. lcd_update();
  1795. }
  1796. LCD_MESSAGEPGM(MSG_BED_DONE);
  1797. previous_millis_cmd = millis();
  1798. #endif
  1799. break;
  1800. #if defined(FAN_PIN) && FAN_PIN > -1
  1801. case 106: //M106 Fan On
  1802. if (code_seen('S')){
  1803. fanSpeed=constrain(code_value(),0,255);
  1804. }
  1805. else {
  1806. fanSpeed=255;
  1807. }
  1808. break;
  1809. case 107: //M107 Fan Off
  1810. fanSpeed = 0;
  1811. break;
  1812. #endif //FAN_PIN
  1813. #ifdef BARICUDA
  1814. // PWM for HEATER_1_PIN
  1815. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1816. case 126: //M126 valve open
  1817. if (code_seen('S')){
  1818. ValvePressure=constrain(code_value(),0,255);
  1819. }
  1820. else {
  1821. ValvePressure=255;
  1822. }
  1823. break;
  1824. case 127: //M127 valve closed
  1825. ValvePressure = 0;
  1826. break;
  1827. #endif //HEATER_1_PIN
  1828. // PWM for HEATER_2_PIN
  1829. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1830. case 128: //M128 valve open
  1831. if (code_seen('S')){
  1832. EtoPPressure=constrain(code_value(),0,255);
  1833. }
  1834. else {
  1835. EtoPPressure=255;
  1836. }
  1837. break;
  1838. case 129: //M129 valve closed
  1839. EtoPPressure = 0;
  1840. break;
  1841. #endif //HEATER_2_PIN
  1842. #endif
  1843. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1844. case 80: // M80 - Turn on Power Supply
  1845. SET_OUTPUT(PS_ON_PIN); //GND
  1846. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1847. // If you have a switch on suicide pin, this is useful
  1848. // if you want to start another print with suicide feature after
  1849. // a print without suicide...
  1850. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1851. SET_OUTPUT(SUICIDE_PIN);
  1852. WRITE(SUICIDE_PIN, HIGH);
  1853. #endif
  1854. #ifdef ULTIPANEL
  1855. powersupply = true;
  1856. LCD_MESSAGEPGM(WELCOME_MSG);
  1857. lcd_update();
  1858. #endif
  1859. break;
  1860. #endif
  1861. case 81: // M81 - Turn off Power Supply
  1862. disable_heater();
  1863. st_synchronize();
  1864. disable_e0();
  1865. disable_e1();
  1866. disable_e2();
  1867. finishAndDisableSteppers();
  1868. fanSpeed = 0;
  1869. delay(1000); // Wait a little before to switch off
  1870. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1871. st_synchronize();
  1872. suicide();
  1873. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1874. SET_OUTPUT(PS_ON_PIN);
  1875. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1876. #endif
  1877. #ifdef ULTIPANEL
  1878. powersupply = false;
  1879. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1880. lcd_update();
  1881. #endif
  1882. break;
  1883. case 82:
  1884. axis_relative_modes[3] = false;
  1885. break;
  1886. case 83:
  1887. axis_relative_modes[3] = true;
  1888. break;
  1889. case 18: //compatibility
  1890. case 84: // M84
  1891. if(code_seen('S')){
  1892. stepper_inactive_time = code_value() * 1000;
  1893. }
  1894. else
  1895. {
  1896. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  1897. if(all_axis)
  1898. {
  1899. st_synchronize();
  1900. disable_e0();
  1901. disable_e1();
  1902. disable_e2();
  1903. finishAndDisableSteppers();
  1904. }
  1905. else
  1906. {
  1907. st_synchronize();
  1908. if(code_seen('X')) disable_x();
  1909. if(code_seen('Y')) disable_y();
  1910. if(code_seen('Z')) disable_z();
  1911. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1912. if(code_seen('E')) {
  1913. disable_e0();
  1914. disable_e1();
  1915. disable_e2();
  1916. }
  1917. #endif
  1918. }
  1919. }
  1920. break;
  1921. case 85: // M85
  1922. code_seen('S');
  1923. max_inactive_time = code_value() * 1000;
  1924. break;
  1925. case 92: // M92
  1926. for(int8_t i=0; i < NUM_AXIS; i++)
  1927. {
  1928. if(code_seen(axis_codes[i]))
  1929. {
  1930. if(i == 3) { // E
  1931. float value = code_value();
  1932. if(value < 20.0) {
  1933. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1934. max_e_jerk *= factor;
  1935. max_feedrate[i] *= factor;
  1936. axis_steps_per_sqr_second[i] *= factor;
  1937. }
  1938. axis_steps_per_unit[i] = value;
  1939. }
  1940. else {
  1941. axis_steps_per_unit[i] = code_value();
  1942. }
  1943. }
  1944. }
  1945. break;
  1946. case 115: // M115
  1947. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1948. break;
  1949. case 117: // M117 display message
  1950. starpos = (strchr(strchr_pointer + 5,'*'));
  1951. if(starpos!=NULL)
  1952. *(starpos-1)='\0';
  1953. lcd_setstatus(strchr_pointer + 5);
  1954. break;
  1955. case 114: // M114
  1956. SERIAL_PROTOCOLPGM("X:");
  1957. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1958. SERIAL_PROTOCOLPGM(" Y:");
  1959. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1960. SERIAL_PROTOCOLPGM(" Z:");
  1961. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1962. SERIAL_PROTOCOLPGM(" E:");
  1963. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1964. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1965. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1966. SERIAL_PROTOCOLPGM(" Y:");
  1967. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1968. SERIAL_PROTOCOLPGM(" Z:");
  1969. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1970. SERIAL_PROTOCOLLN("");
  1971. break;
  1972. case 120: // M120
  1973. enable_endstops(false) ;
  1974. break;
  1975. case 121: // M121
  1976. enable_endstops(true) ;
  1977. break;
  1978. case 119: // M119
  1979. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1980. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1981. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1982. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1983. #endif
  1984. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1985. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1986. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1987. #endif
  1988. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1989. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1990. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1991. #endif
  1992. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1993. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1994. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1995. #endif
  1996. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1997. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1998. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1999. #endif
  2000. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2001. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2002. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2003. #endif
  2004. break;
  2005. //TODO: update for all axis, use for loop
  2006. #ifdef BLINKM
  2007. case 150: // M150
  2008. {
  2009. byte red;
  2010. byte grn;
  2011. byte blu;
  2012. if(code_seen('R')) red = code_value();
  2013. if(code_seen('U')) grn = code_value();
  2014. if(code_seen('B')) blu = code_value();
  2015. SendColors(red,grn,blu);
  2016. }
  2017. break;
  2018. #endif //BLINKM
  2019. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2020. {
  2021. float area = .0;
  2022. float radius = .0;
  2023. if(code_seen('D')) {
  2024. radius = (float)code_value() * .5;
  2025. if(radius == 0) {
  2026. area = 1;
  2027. } else {
  2028. area = M_PI * pow(radius, 2);
  2029. }
  2030. } else {
  2031. //reserved for setting filament diameter via UFID or filament measuring device
  2032. break;
  2033. }
  2034. tmp_extruder = active_extruder;
  2035. if(code_seen('T')) {
  2036. tmp_extruder = code_value();
  2037. if(tmp_extruder >= EXTRUDERS) {
  2038. SERIAL_ECHO_START;
  2039. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2040. }
  2041. SERIAL_ECHOLN(tmp_extruder);
  2042. break;
  2043. }
  2044. volumetric_multiplier[tmp_extruder] = 1 / area;
  2045. }
  2046. break;
  2047. case 201: // M201
  2048. for(int8_t i=0; i < NUM_AXIS; i++)
  2049. {
  2050. if(code_seen(axis_codes[i]))
  2051. {
  2052. max_acceleration_units_per_sq_second[i] = code_value();
  2053. }
  2054. }
  2055. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2056. reset_acceleration_rates();
  2057. break;
  2058. #if 0 // Not used for Sprinter/grbl gen6
  2059. case 202: // M202
  2060. for(int8_t i=0; i < NUM_AXIS; i++) {
  2061. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2062. }
  2063. break;
  2064. #endif
  2065. case 203: // M203 max feedrate mm/sec
  2066. for(int8_t i=0; i < NUM_AXIS; i++) {
  2067. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2068. }
  2069. break;
  2070. case 204: // M204 acclereration S normal moves T filmanent only moves
  2071. {
  2072. if(code_seen('S')) acceleration = code_value() ;
  2073. if(code_seen('T')) retract_acceleration = code_value() ;
  2074. }
  2075. break;
  2076. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2077. {
  2078. if(code_seen('S')) minimumfeedrate = code_value();
  2079. if(code_seen('T')) mintravelfeedrate = code_value();
  2080. if(code_seen('B')) minsegmenttime = code_value() ;
  2081. if(code_seen('X')) max_xy_jerk = code_value() ;
  2082. if(code_seen('Z')) max_z_jerk = code_value() ;
  2083. if(code_seen('E')) max_e_jerk = code_value() ;
  2084. }
  2085. break;
  2086. case 206: // M206 additional homeing offset
  2087. for(int8_t i=0; i < 3; i++)
  2088. {
  2089. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2090. }
  2091. break;
  2092. #ifdef DELTA
  2093. case 666: // M666 set delta endstop adjustemnt
  2094. for(int8_t i=0; i < 3; i++)
  2095. {
  2096. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2097. }
  2098. break;
  2099. #endif
  2100. #ifdef FWRETRACT
  2101. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2102. {
  2103. if(code_seen('S'))
  2104. {
  2105. retract_length = code_value() ;
  2106. }
  2107. if(code_seen('F'))
  2108. {
  2109. retract_feedrate = code_value() ;
  2110. }
  2111. if(code_seen('Z'))
  2112. {
  2113. retract_zlift = code_value() ;
  2114. }
  2115. }break;
  2116. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2117. {
  2118. if(code_seen('S'))
  2119. {
  2120. retract_recover_length = code_value() ;
  2121. }
  2122. if(code_seen('F'))
  2123. {
  2124. retract_recover_feedrate = code_value() ;
  2125. }
  2126. }break;
  2127. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2128. {
  2129. if(code_seen('S'))
  2130. {
  2131. int t= code_value() ;
  2132. switch(t)
  2133. {
  2134. case 0: autoretract_enabled=false;retracted=false;break;
  2135. case 1: autoretract_enabled=true;retracted=false;break;
  2136. default:
  2137. SERIAL_ECHO_START;
  2138. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2139. SERIAL_ECHO(cmdbuffer[bufindr]);
  2140. SERIAL_ECHOLNPGM("\"");
  2141. }
  2142. }
  2143. }break;
  2144. #endif // FWRETRACT
  2145. #if EXTRUDERS > 1
  2146. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2147. {
  2148. if(setTargetedHotend(218)){
  2149. break;
  2150. }
  2151. if(code_seen('X'))
  2152. {
  2153. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2154. }
  2155. if(code_seen('Y'))
  2156. {
  2157. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2158. }
  2159. #ifdef DUAL_X_CARRIAGE
  2160. if(code_seen('Z'))
  2161. {
  2162. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2163. }
  2164. #endif
  2165. SERIAL_ECHO_START;
  2166. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2167. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2168. {
  2169. SERIAL_ECHO(" ");
  2170. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2171. SERIAL_ECHO(",");
  2172. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2173. #ifdef DUAL_X_CARRIAGE
  2174. SERIAL_ECHO(",");
  2175. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2176. #endif
  2177. }
  2178. SERIAL_ECHOLN("");
  2179. }break;
  2180. #endif
  2181. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2182. {
  2183. if(code_seen('S'))
  2184. {
  2185. feedmultiply = code_value() ;
  2186. }
  2187. }
  2188. break;
  2189. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2190. {
  2191. if(code_seen('S'))
  2192. {
  2193. extrudemultiply = code_value() ;
  2194. }
  2195. }
  2196. break;
  2197. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2198. {
  2199. if(code_seen('P')){
  2200. int pin_number = code_value(); // pin number
  2201. int pin_state = -1; // required pin state - default is inverted
  2202. if(code_seen('S')) pin_state = code_value(); // required pin state
  2203. if(pin_state >= -1 && pin_state <= 1){
  2204. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2205. {
  2206. if (sensitive_pins[i] == pin_number)
  2207. {
  2208. pin_number = -1;
  2209. break;
  2210. }
  2211. }
  2212. if (pin_number > -1)
  2213. {
  2214. st_synchronize();
  2215. pinMode(pin_number, INPUT);
  2216. int target;
  2217. switch(pin_state){
  2218. case 1:
  2219. target = HIGH;
  2220. break;
  2221. case 0:
  2222. target = LOW;
  2223. break;
  2224. case -1:
  2225. target = !digitalRead(pin_number);
  2226. break;
  2227. }
  2228. while(digitalRead(pin_number) != target){
  2229. manage_heater();
  2230. manage_inactivity();
  2231. lcd_update();
  2232. }
  2233. }
  2234. }
  2235. }
  2236. }
  2237. break;
  2238. #if NUM_SERVOS > 0
  2239. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2240. {
  2241. int servo_index = -1;
  2242. int servo_position = 0;
  2243. if (code_seen('P'))
  2244. servo_index = code_value();
  2245. if (code_seen('S')) {
  2246. servo_position = code_value();
  2247. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2248. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2249. servos[servo_index].attach(0);
  2250. #endif
  2251. servos[servo_index].write(servo_position);
  2252. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2253. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2254. servos[servo_index].detach();
  2255. #endif
  2256. }
  2257. else {
  2258. SERIAL_ECHO_START;
  2259. SERIAL_ECHO("Servo ");
  2260. SERIAL_ECHO(servo_index);
  2261. SERIAL_ECHOLN(" out of range");
  2262. }
  2263. }
  2264. else if (servo_index >= 0) {
  2265. SERIAL_PROTOCOL(MSG_OK);
  2266. SERIAL_PROTOCOL(" Servo ");
  2267. SERIAL_PROTOCOL(servo_index);
  2268. SERIAL_PROTOCOL(": ");
  2269. SERIAL_PROTOCOL(servos[servo_index].read());
  2270. SERIAL_PROTOCOLLN("");
  2271. }
  2272. }
  2273. break;
  2274. #endif // NUM_SERVOS > 0
  2275. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2276. case 300: // M300
  2277. {
  2278. int beepS = code_seen('S') ? code_value() : 110;
  2279. int beepP = code_seen('P') ? code_value() : 1000;
  2280. if (beepS > 0)
  2281. {
  2282. #if BEEPER > 0
  2283. tone(BEEPER, beepS);
  2284. delay(beepP);
  2285. noTone(BEEPER);
  2286. #elif defined(ULTRALCD)
  2287. lcd_buzz(beepS, beepP);
  2288. #elif defined(LCD_USE_I2C_BUZZER)
  2289. lcd_buzz(beepP, beepS);
  2290. #endif
  2291. }
  2292. else
  2293. {
  2294. delay(beepP);
  2295. }
  2296. }
  2297. break;
  2298. #endif // M300
  2299. #ifdef PIDTEMP
  2300. case 301: // M301
  2301. {
  2302. if(code_seen('P')) Kp = code_value();
  2303. if(code_seen('I')) Ki = scalePID_i(code_value());
  2304. if(code_seen('D')) Kd = scalePID_d(code_value());
  2305. #ifdef PID_ADD_EXTRUSION_RATE
  2306. if(code_seen('C')) Kc = code_value();
  2307. #endif
  2308. updatePID();
  2309. SERIAL_PROTOCOL(MSG_OK);
  2310. SERIAL_PROTOCOL(" p:");
  2311. SERIAL_PROTOCOL(Kp);
  2312. SERIAL_PROTOCOL(" i:");
  2313. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2314. SERIAL_PROTOCOL(" d:");
  2315. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2316. #ifdef PID_ADD_EXTRUSION_RATE
  2317. SERIAL_PROTOCOL(" c:");
  2318. //Kc does not have scaling applied above, or in resetting defaults
  2319. SERIAL_PROTOCOL(Kc);
  2320. #endif
  2321. SERIAL_PROTOCOLLN("");
  2322. }
  2323. break;
  2324. #endif //PIDTEMP
  2325. #ifdef PIDTEMPBED
  2326. case 304: // M304
  2327. {
  2328. if(code_seen('P')) bedKp = code_value();
  2329. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2330. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2331. updatePID();
  2332. SERIAL_PROTOCOL(MSG_OK);
  2333. SERIAL_PROTOCOL(" p:");
  2334. SERIAL_PROTOCOL(bedKp);
  2335. SERIAL_PROTOCOL(" i:");
  2336. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2337. SERIAL_PROTOCOL(" d:");
  2338. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2339. SERIAL_PROTOCOLLN("");
  2340. }
  2341. break;
  2342. #endif //PIDTEMP
  2343. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2344. {
  2345. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2346. const uint8_t NUM_PULSES=16;
  2347. const float PULSE_LENGTH=0.01524;
  2348. for(int i=0; i < NUM_PULSES; i++) {
  2349. WRITE(PHOTOGRAPH_PIN, HIGH);
  2350. _delay_ms(PULSE_LENGTH);
  2351. WRITE(PHOTOGRAPH_PIN, LOW);
  2352. _delay_ms(PULSE_LENGTH);
  2353. }
  2354. delay(7.33);
  2355. for(int i=0; i < NUM_PULSES; i++) {
  2356. WRITE(PHOTOGRAPH_PIN, HIGH);
  2357. _delay_ms(PULSE_LENGTH);
  2358. WRITE(PHOTOGRAPH_PIN, LOW);
  2359. _delay_ms(PULSE_LENGTH);
  2360. }
  2361. #endif
  2362. }
  2363. break;
  2364. #ifdef DOGLCD
  2365. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2366. {
  2367. if (code_seen('C')) {
  2368. lcd_setcontrast( ((int)code_value())&63 );
  2369. }
  2370. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2371. SERIAL_PROTOCOL(lcd_contrast);
  2372. SERIAL_PROTOCOLLN("");
  2373. }
  2374. break;
  2375. #endif
  2376. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2377. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2378. {
  2379. float temp = .0;
  2380. if (code_seen('S')) temp=code_value();
  2381. set_extrude_min_temp(temp);
  2382. }
  2383. break;
  2384. #endif
  2385. case 303: // M303 PID autotune
  2386. {
  2387. float temp = 150.0;
  2388. int e=0;
  2389. int c=5;
  2390. if (code_seen('E')) e=code_value();
  2391. if (e<0)
  2392. temp=70;
  2393. if (code_seen('S')) temp=code_value();
  2394. if (code_seen('C')) c=code_value();
  2395. PID_autotune(temp, e, c);
  2396. }
  2397. break;
  2398. case 400: // M400 finish all moves
  2399. {
  2400. st_synchronize();
  2401. }
  2402. break;
  2403. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2404. case 401:
  2405. {
  2406. engage_z_probe(); // Engage Z Servo endstop if available
  2407. }
  2408. break;
  2409. case 402:
  2410. {
  2411. retract_z_probe(); // Retract Z Servo endstop if enabled
  2412. }
  2413. break;
  2414. #endif
  2415. case 500: // M500 Store settings in EEPROM
  2416. {
  2417. Config_StoreSettings();
  2418. }
  2419. break;
  2420. case 501: // M501 Read settings from EEPROM
  2421. {
  2422. Config_RetrieveSettings();
  2423. }
  2424. break;
  2425. case 502: // M502 Revert to default settings
  2426. {
  2427. Config_ResetDefault();
  2428. }
  2429. break;
  2430. case 503: // M503 print settings currently in memory
  2431. {
  2432. Config_PrintSettings();
  2433. }
  2434. break;
  2435. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2436. case 540:
  2437. {
  2438. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2439. }
  2440. break;
  2441. #endif
  2442. #ifdef FILAMENTCHANGEENABLE
  2443. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2444. {
  2445. float target[4];
  2446. float lastpos[4];
  2447. target[X_AXIS]=current_position[X_AXIS];
  2448. target[Y_AXIS]=current_position[Y_AXIS];
  2449. target[Z_AXIS]=current_position[Z_AXIS];
  2450. target[E_AXIS]=current_position[E_AXIS];
  2451. lastpos[X_AXIS]=current_position[X_AXIS];
  2452. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2453. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2454. lastpos[E_AXIS]=current_position[E_AXIS];
  2455. //retract by E
  2456. if(code_seen('E'))
  2457. {
  2458. target[E_AXIS]+= code_value();
  2459. }
  2460. else
  2461. {
  2462. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2463. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2464. #endif
  2465. }
  2466. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2467. //lift Z
  2468. if(code_seen('Z'))
  2469. {
  2470. target[Z_AXIS]+= code_value();
  2471. }
  2472. else
  2473. {
  2474. #ifdef FILAMENTCHANGE_ZADD
  2475. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2476. #endif
  2477. }
  2478. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2479. //move xy
  2480. if(code_seen('X'))
  2481. {
  2482. target[X_AXIS]+= code_value();
  2483. }
  2484. else
  2485. {
  2486. #ifdef FILAMENTCHANGE_XPOS
  2487. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2488. #endif
  2489. }
  2490. if(code_seen('Y'))
  2491. {
  2492. target[Y_AXIS]= code_value();
  2493. }
  2494. else
  2495. {
  2496. #ifdef FILAMENTCHANGE_YPOS
  2497. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2498. #endif
  2499. }
  2500. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2501. if(code_seen('L'))
  2502. {
  2503. target[E_AXIS]+= code_value();
  2504. }
  2505. else
  2506. {
  2507. #ifdef FILAMENTCHANGE_FINALRETRACT
  2508. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2509. #endif
  2510. }
  2511. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2512. //finish moves
  2513. st_synchronize();
  2514. //disable extruder steppers so filament can be removed
  2515. disable_e0();
  2516. disable_e1();
  2517. disable_e2();
  2518. delay(100);
  2519. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2520. uint8_t cnt=0;
  2521. while(!lcd_clicked()){
  2522. cnt++;
  2523. manage_heater();
  2524. manage_inactivity();
  2525. lcd_update();
  2526. if(cnt==0)
  2527. {
  2528. #if BEEPER > 0
  2529. SET_OUTPUT(BEEPER);
  2530. WRITE(BEEPER,HIGH);
  2531. delay(3);
  2532. WRITE(BEEPER,LOW);
  2533. delay(3);
  2534. #else
  2535. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2536. lcd_buzz(1000/6,100);
  2537. #else
  2538. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2539. #endif
  2540. #endif
  2541. }
  2542. }
  2543. //return to normal
  2544. if(code_seen('L'))
  2545. {
  2546. target[E_AXIS]+= -code_value();
  2547. }
  2548. else
  2549. {
  2550. #ifdef FILAMENTCHANGE_FINALRETRACT
  2551. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2552. #endif
  2553. }
  2554. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2555. plan_set_e_position(current_position[E_AXIS]);
  2556. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2557. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2558. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2559. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2560. }
  2561. break;
  2562. #endif //FILAMENTCHANGEENABLE
  2563. #ifdef DUAL_X_CARRIAGE
  2564. case 605: // Set dual x-carriage movement mode:
  2565. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2566. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2567. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2568. // millimeters x-offset and an optional differential hotend temperature of
  2569. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2570. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2571. //
  2572. // Note: the X axis should be homed after changing dual x-carriage mode.
  2573. {
  2574. st_synchronize();
  2575. if (code_seen('S'))
  2576. dual_x_carriage_mode = code_value();
  2577. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2578. {
  2579. if (code_seen('X'))
  2580. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2581. if (code_seen('R'))
  2582. duplicate_extruder_temp_offset = code_value();
  2583. SERIAL_ECHO_START;
  2584. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2585. SERIAL_ECHO(" ");
  2586. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2587. SERIAL_ECHO(",");
  2588. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2589. SERIAL_ECHO(" ");
  2590. SERIAL_ECHO(duplicate_extruder_x_offset);
  2591. SERIAL_ECHO(",");
  2592. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2593. }
  2594. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2595. {
  2596. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2597. }
  2598. active_extruder_parked = false;
  2599. extruder_duplication_enabled = false;
  2600. delayed_move_time = 0;
  2601. }
  2602. break;
  2603. #endif //DUAL_X_CARRIAGE
  2604. case 907: // M907 Set digital trimpot motor current using axis codes.
  2605. {
  2606. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2607. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2608. if(code_seen('B')) digipot_current(4,code_value());
  2609. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2610. #endif
  2611. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2612. if(code_seen('X')) digipot_current(0, code_value());
  2613. #endif
  2614. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2615. if(code_seen('Z')) digipot_current(1, code_value());
  2616. #endif
  2617. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2618. if(code_seen('E')) digipot_current(2, code_value());
  2619. #endif
  2620. #ifdef DIGIPOT_I2C
  2621. // this one uses actual amps in floating point
  2622. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2623. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2624. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2625. #endif
  2626. }
  2627. break;
  2628. case 908: // M908 Control digital trimpot directly.
  2629. {
  2630. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2631. uint8_t channel,current;
  2632. if(code_seen('P')) channel=code_value();
  2633. if(code_seen('S')) current=code_value();
  2634. digitalPotWrite(channel, current);
  2635. #endif
  2636. }
  2637. break;
  2638. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2639. {
  2640. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2641. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2642. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2643. if(code_seen('B')) microstep_mode(4,code_value());
  2644. microstep_readings();
  2645. #endif
  2646. }
  2647. break;
  2648. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2649. {
  2650. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2651. if(code_seen('S')) switch((int)code_value())
  2652. {
  2653. case 1:
  2654. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2655. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2656. break;
  2657. case 2:
  2658. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2659. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2660. break;
  2661. }
  2662. microstep_readings();
  2663. #endif
  2664. }
  2665. break;
  2666. case 999: // M999: Restart after being stopped
  2667. Stopped = false;
  2668. lcd_reset_alert_level();
  2669. gcode_LastN = Stopped_gcode_LastN;
  2670. FlushSerialRequestResend();
  2671. break;
  2672. }
  2673. }
  2674. else if(code_seen('T'))
  2675. {
  2676. tmp_extruder = code_value();
  2677. if(tmp_extruder >= EXTRUDERS) {
  2678. SERIAL_ECHO_START;
  2679. SERIAL_ECHO("T");
  2680. SERIAL_ECHO(tmp_extruder);
  2681. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2682. }
  2683. else {
  2684. boolean make_move = false;
  2685. if(code_seen('F')) {
  2686. make_move = true;
  2687. next_feedrate = code_value();
  2688. if(next_feedrate > 0.0) {
  2689. feedrate = next_feedrate;
  2690. }
  2691. }
  2692. #if EXTRUDERS > 1
  2693. if(tmp_extruder != active_extruder) {
  2694. // Save current position to return to after applying extruder offset
  2695. memcpy(destination, current_position, sizeof(destination));
  2696. #ifdef DUAL_X_CARRIAGE
  2697. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2698. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2699. {
  2700. // Park old head: 1) raise 2) move to park position 3) lower
  2701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2702. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2703. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2704. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2705. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2706. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2707. st_synchronize();
  2708. }
  2709. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2710. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2711. extruder_offset[Y_AXIS][active_extruder] +
  2712. extruder_offset[Y_AXIS][tmp_extruder];
  2713. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2714. extruder_offset[Z_AXIS][active_extruder] +
  2715. extruder_offset[Z_AXIS][tmp_extruder];
  2716. active_extruder = tmp_extruder;
  2717. // This function resets the max/min values - the current position may be overwritten below.
  2718. axis_is_at_home(X_AXIS);
  2719. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2720. {
  2721. current_position[X_AXIS] = inactive_extruder_x_pos;
  2722. inactive_extruder_x_pos = destination[X_AXIS];
  2723. }
  2724. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2725. {
  2726. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2727. if (active_extruder == 0 || active_extruder_parked)
  2728. current_position[X_AXIS] = inactive_extruder_x_pos;
  2729. else
  2730. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2731. inactive_extruder_x_pos = destination[X_AXIS];
  2732. extruder_duplication_enabled = false;
  2733. }
  2734. else
  2735. {
  2736. // record raised toolhead position for use by unpark
  2737. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2738. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2739. active_extruder_parked = true;
  2740. delayed_move_time = 0;
  2741. }
  2742. #else
  2743. // Offset extruder (only by XY)
  2744. int i;
  2745. for(i = 0; i < 2; i++) {
  2746. current_position[i] = current_position[i] -
  2747. extruder_offset[i][active_extruder] +
  2748. extruder_offset[i][tmp_extruder];
  2749. }
  2750. // Set the new active extruder and position
  2751. active_extruder = tmp_extruder;
  2752. #endif //else DUAL_X_CARRIAGE
  2753. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2754. // Move to the old position if 'F' was in the parameters
  2755. if(make_move && Stopped == false) {
  2756. prepare_move();
  2757. }
  2758. }
  2759. #endif
  2760. SERIAL_ECHO_START;
  2761. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2762. SERIAL_PROTOCOLLN((int)active_extruder);
  2763. }
  2764. }
  2765. else
  2766. {
  2767. SERIAL_ECHO_START;
  2768. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2769. SERIAL_ECHO(cmdbuffer[bufindr]);
  2770. SERIAL_ECHOLNPGM("\"");
  2771. }
  2772. ClearToSend();
  2773. }
  2774. void FlushSerialRequestResend()
  2775. {
  2776. //char cmdbuffer[bufindr][100]="Resend:";
  2777. MYSERIAL.flush();
  2778. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2779. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2780. ClearToSend();
  2781. }
  2782. void ClearToSend()
  2783. {
  2784. previous_millis_cmd = millis();
  2785. #ifdef SDSUPPORT
  2786. if(fromsd[bufindr])
  2787. return;
  2788. #endif //SDSUPPORT
  2789. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2790. }
  2791. void get_coordinates()
  2792. {
  2793. bool seen[4]={false,false,false,false};
  2794. for(int8_t i=0; i < NUM_AXIS; i++) {
  2795. if(code_seen(axis_codes[i]))
  2796. {
  2797. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2798. seen[i]=true;
  2799. }
  2800. else destination[i] = current_position[i]; //Are these else lines really needed?
  2801. }
  2802. if(code_seen('F')) {
  2803. next_feedrate = code_value();
  2804. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2805. }
  2806. }
  2807. void get_arc_coordinates()
  2808. {
  2809. #ifdef SF_ARC_FIX
  2810. bool relative_mode_backup = relative_mode;
  2811. relative_mode = true;
  2812. #endif
  2813. get_coordinates();
  2814. #ifdef SF_ARC_FIX
  2815. relative_mode=relative_mode_backup;
  2816. #endif
  2817. if(code_seen('I')) {
  2818. offset[0] = code_value();
  2819. }
  2820. else {
  2821. offset[0] = 0.0;
  2822. }
  2823. if(code_seen('J')) {
  2824. offset[1] = code_value();
  2825. }
  2826. else {
  2827. offset[1] = 0.0;
  2828. }
  2829. }
  2830. void clamp_to_software_endstops(float target[3])
  2831. {
  2832. if (min_software_endstops) {
  2833. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2834. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2835. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2836. }
  2837. if (max_software_endstops) {
  2838. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2839. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2840. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2841. }
  2842. }
  2843. #ifdef DELTA
  2844. void calculate_delta(float cartesian[3])
  2845. {
  2846. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2847. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2848. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2849. ) + cartesian[Z_AXIS];
  2850. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2851. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2852. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2853. ) + cartesian[Z_AXIS];
  2854. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2855. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2856. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2857. ) + cartesian[Z_AXIS];
  2858. /*
  2859. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2860. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2861. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2862. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2863. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2864. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2865. */
  2866. }
  2867. #endif
  2868. void prepare_move()
  2869. {
  2870. clamp_to_software_endstops(destination);
  2871. previous_millis_cmd = millis();
  2872. #ifdef DELTA
  2873. float difference[NUM_AXIS];
  2874. for (int8_t i=0; i < NUM_AXIS; i++) {
  2875. difference[i] = destination[i] - current_position[i];
  2876. }
  2877. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2878. sq(difference[Y_AXIS]) +
  2879. sq(difference[Z_AXIS]));
  2880. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2881. if (cartesian_mm < 0.000001) { return; }
  2882. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2883. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2884. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2885. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2886. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2887. for (int s = 1; s <= steps; s++) {
  2888. float fraction = float(s) / float(steps);
  2889. for(int8_t i=0; i < NUM_AXIS; i++) {
  2890. destination[i] = current_position[i] + difference[i] * fraction;
  2891. }
  2892. calculate_delta(destination);
  2893. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2894. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2895. active_extruder);
  2896. }
  2897. #else
  2898. #ifdef DUAL_X_CARRIAGE
  2899. if (active_extruder_parked)
  2900. {
  2901. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2902. {
  2903. // move duplicate extruder into correct duplication position.
  2904. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2905. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2906. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2907. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2908. st_synchronize();
  2909. extruder_duplication_enabled = true;
  2910. active_extruder_parked = false;
  2911. }
  2912. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2913. {
  2914. if (current_position[E_AXIS] == destination[E_AXIS])
  2915. {
  2916. // this is a travel move - skit it but keep track of current position (so that it can later
  2917. // be used as start of first non-travel move)
  2918. if (delayed_move_time != 0xFFFFFFFFUL)
  2919. {
  2920. memcpy(current_position, destination, sizeof(current_position));
  2921. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2922. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2923. delayed_move_time = millis();
  2924. return;
  2925. }
  2926. }
  2927. delayed_move_time = 0;
  2928. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2929. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2931. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2933. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2934. active_extruder_parked = false;
  2935. }
  2936. }
  2937. #endif //DUAL_X_CARRIAGE
  2938. // Do not use feedmultiply for E or Z only moves
  2939. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2940. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2941. }
  2942. else {
  2943. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2944. }
  2945. #endif //else DELTA
  2946. for(int8_t i=0; i < NUM_AXIS; i++) {
  2947. current_position[i] = destination[i];
  2948. }
  2949. }
  2950. void prepare_arc_move(char isclockwise) {
  2951. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2952. // Trace the arc
  2953. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2954. // As far as the parser is concerned, the position is now == target. In reality the
  2955. // motion control system might still be processing the action and the real tool position
  2956. // in any intermediate location.
  2957. for(int8_t i=0; i < NUM_AXIS; i++) {
  2958. current_position[i] = destination[i];
  2959. }
  2960. previous_millis_cmd = millis();
  2961. }
  2962. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2963. #if defined(FAN_PIN)
  2964. #if CONTROLLERFAN_PIN == FAN_PIN
  2965. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2966. #endif
  2967. #endif
  2968. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2969. unsigned long lastMotorCheck = 0;
  2970. void controllerFan()
  2971. {
  2972. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2973. {
  2974. lastMotorCheck = millis();
  2975. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2976. #if EXTRUDERS > 2
  2977. || !READ(E2_ENABLE_PIN)
  2978. #endif
  2979. #if EXTRUDER > 1
  2980. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2981. || !READ(X2_ENABLE_PIN)
  2982. #endif
  2983. || !READ(E1_ENABLE_PIN)
  2984. #endif
  2985. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2986. {
  2987. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2988. }
  2989. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2990. {
  2991. digitalWrite(CONTROLLERFAN_PIN, 0);
  2992. analogWrite(CONTROLLERFAN_PIN, 0);
  2993. }
  2994. else
  2995. {
  2996. // allows digital or PWM fan output to be used (see M42 handling)
  2997. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2998. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2999. }
  3000. }
  3001. }
  3002. #endif
  3003. #ifdef TEMP_STAT_LEDS
  3004. static bool blue_led = false;
  3005. static bool red_led = false;
  3006. static uint32_t stat_update = 0;
  3007. void handle_status_leds(void) {
  3008. float max_temp = 0.0;
  3009. if(millis() > stat_update) {
  3010. stat_update += 500; // Update every 0.5s
  3011. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3012. max_temp = max(max_temp, degHotend(cur_extruder));
  3013. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3014. }
  3015. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3016. max_temp = max(max_temp, degTargetBed());
  3017. max_temp = max(max_temp, degBed());
  3018. #endif
  3019. if((max_temp > 55.0) && (red_led == false)) {
  3020. digitalWrite(STAT_LED_RED, 1);
  3021. digitalWrite(STAT_LED_BLUE, 0);
  3022. red_led = true;
  3023. blue_led = false;
  3024. }
  3025. if((max_temp < 54.0) && (blue_led == false)) {
  3026. digitalWrite(STAT_LED_RED, 0);
  3027. digitalWrite(STAT_LED_BLUE, 1);
  3028. red_led = false;
  3029. blue_led = true;
  3030. }
  3031. }
  3032. }
  3033. #endif
  3034. void manage_inactivity()
  3035. {
  3036. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3037. if(max_inactive_time)
  3038. kill();
  3039. if(stepper_inactive_time) {
  3040. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3041. {
  3042. if(blocks_queued() == false) {
  3043. disable_x();
  3044. disable_y();
  3045. disable_z();
  3046. disable_e0();
  3047. disable_e1();
  3048. disable_e2();
  3049. }
  3050. }
  3051. }
  3052. #if defined(KILL_PIN) && KILL_PIN > -1
  3053. if( 0 == READ(KILL_PIN) )
  3054. kill();
  3055. #endif
  3056. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3057. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3058. #endif
  3059. #ifdef EXTRUDER_RUNOUT_PREVENT
  3060. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3061. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3062. {
  3063. bool oldstatus=READ(E0_ENABLE_PIN);
  3064. enable_e0();
  3065. float oldepos=current_position[E_AXIS];
  3066. float oldedes=destination[E_AXIS];
  3067. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3068. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3069. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3070. current_position[E_AXIS]=oldepos;
  3071. destination[E_AXIS]=oldedes;
  3072. plan_set_e_position(oldepos);
  3073. previous_millis_cmd=millis();
  3074. st_synchronize();
  3075. WRITE(E0_ENABLE_PIN,oldstatus);
  3076. }
  3077. #endif
  3078. #if defined(DUAL_X_CARRIAGE)
  3079. // handle delayed move timeout
  3080. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3081. {
  3082. // travel moves have been received so enact them
  3083. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3084. memcpy(destination,current_position,sizeof(destination));
  3085. prepare_move();
  3086. }
  3087. #endif
  3088. #ifdef TEMP_STAT_LEDS
  3089. handle_status_leds();
  3090. #endif
  3091. check_axes_activity();
  3092. }
  3093. void kill()
  3094. {
  3095. cli(); // Stop interrupts
  3096. disable_heater();
  3097. disable_x();
  3098. disable_y();
  3099. disable_z();
  3100. disable_e0();
  3101. disable_e1();
  3102. disable_e2();
  3103. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3104. pinMode(PS_ON_PIN,INPUT);
  3105. #endif
  3106. SERIAL_ERROR_START;
  3107. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3108. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3109. suicide();
  3110. while(1) { /* Intentionally left empty */ } // Wait for reset
  3111. }
  3112. void Stop()
  3113. {
  3114. disable_heater();
  3115. if(Stopped == false) {
  3116. Stopped = true;
  3117. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3118. SERIAL_ERROR_START;
  3119. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3120. LCD_MESSAGEPGM(MSG_STOPPED);
  3121. }
  3122. }
  3123. bool IsStopped() { return Stopped; };
  3124. #ifdef FAST_PWM_FAN
  3125. void setPwmFrequency(uint8_t pin, int val)
  3126. {
  3127. val &= 0x07;
  3128. switch(digitalPinToTimer(pin))
  3129. {
  3130. #if defined(TCCR0A)
  3131. case TIMER0A:
  3132. case TIMER0B:
  3133. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3134. // TCCR0B |= val;
  3135. break;
  3136. #endif
  3137. #if defined(TCCR1A)
  3138. case TIMER1A:
  3139. case TIMER1B:
  3140. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3141. // TCCR1B |= val;
  3142. break;
  3143. #endif
  3144. #if defined(TCCR2)
  3145. case TIMER2:
  3146. case TIMER2:
  3147. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3148. TCCR2 |= val;
  3149. break;
  3150. #endif
  3151. #if defined(TCCR2A)
  3152. case TIMER2A:
  3153. case TIMER2B:
  3154. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3155. TCCR2B |= val;
  3156. break;
  3157. #endif
  3158. #if defined(TCCR3A)
  3159. case TIMER3A:
  3160. case TIMER3B:
  3161. case TIMER3C:
  3162. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3163. TCCR3B |= val;
  3164. break;
  3165. #endif
  3166. #if defined(TCCR4A)
  3167. case TIMER4A:
  3168. case TIMER4B:
  3169. case TIMER4C:
  3170. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3171. TCCR4B |= val;
  3172. break;
  3173. #endif
  3174. #if defined(TCCR5A)
  3175. case TIMER5A:
  3176. case TIMER5B:
  3177. case TIMER5C:
  3178. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3179. TCCR5B |= val;
  3180. break;
  3181. #endif
  3182. }
  3183. }
  3184. #endif //FAST_PWM_FAN
  3185. bool setTargetedHotend(int code){
  3186. tmp_extruder = active_extruder;
  3187. if(code_seen('T')) {
  3188. tmp_extruder = code_value();
  3189. if(tmp_extruder >= EXTRUDERS) {
  3190. SERIAL_ECHO_START;
  3191. switch(code){
  3192. case 104:
  3193. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3194. break;
  3195. case 105:
  3196. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3197. break;
  3198. case 109:
  3199. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3200. break;
  3201. case 218:
  3202. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3203. break;
  3204. }
  3205. SERIAL_ECHOLN(tmp_extruder);
  3206. return true;
  3207. }
  3208. }
  3209. return false;
  3210. }