My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 436KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
  53. * G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
  54. * G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
  55. * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
  56. * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
  57. * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
  58. * G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
  59. * G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
  60. * G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION)
  61. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  62. * G28 - Home one or more axes
  63. * G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
  64. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  65. * G31 - Dock sled (Z_PROBE_SLED only)
  66. * G32 - Undock sled (Z_PROBE_SLED only)
  67. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  68. * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
  69. * G42 - Coordinated move to a mesh point (Requires AUTO_BED_LEVELING_UBL)
  70. * G90 - Use Absolute Coordinates
  71. * G91 - Use Relative Coordinates
  72. * G92 - Set current position to coordinates given
  73. *
  74. * "M" Codes
  75. *
  76. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  77. * M1 -> M0
  78. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  79. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  80. * M5 - Turn laser/spindle off
  81. * M17 - Enable/Power all stepper motors
  82. * M18 - Disable all stepper motors; same as M84
  83. * M20 - List SD card. (Requires SDSUPPORT)
  84. * M21 - Init SD card. (Requires SDSUPPORT)
  85. * M22 - Release SD card. (Requires SDSUPPORT)
  86. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  87. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  88. * M25 - Pause SD print. (Requires SDSUPPORT)
  89. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  90. * M27 - Report SD print status. (Requires SDSUPPORT)
  91. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  92. * M29 - Stop SD write. (Requires SDSUPPORT)
  93. * M30 - Delete file from SD: "M30 /path/file.gco"
  94. * M31 - Report time since last M109 or SD card start to serial.
  95. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  96. * Use P to run other files as sub-programs: "M32 P !filename#"
  97. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  99. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  100. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  101. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  102. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  103. * M75 - Start the print job timer.
  104. * M76 - Pause the print job timer.
  105. * M77 - Stop the print job timer.
  106. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  107. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  108. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  109. * M82 - Set E codes absolute (default).
  110. * M83 - Set E codes relative while in Absolute (G90) mode.
  111. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  112. * duration after which steppers should turn off. S0 disables the timeout.
  113. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  114. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  115. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  116. * M104 - Set extruder target temp.
  117. * M105 - Report current temperatures.
  118. * M106 - Fan on.
  119. * M107 - Fan off.
  120. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  121. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  122. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  123. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  124. * M110 - Set the current line number. (Used by host printing)
  125. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  126. * M112 - Emergency stop.
  127. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  128. * M114 - Report current position.
  129. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  130. * M117 - Display a message on the controller screen. (Requires an LCD)
  131. * M118 - Display a message in the host console.
  132. * M119 - Report endstops status.
  133. * M120 - Enable endstops detection.
  134. * M121 - Disable endstops detection.
  135. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  136. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  137. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  138. * M128 - EtoP Open. (Requires BARICUDA)
  139. * M129 - EtoP Closed. (Requires BARICUDA)
  140. * M140 - Set bed target temp. S<temp>
  141. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  142. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  143. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, or PCA9632)
  144. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  145. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  146. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  147. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  148. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  149. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  150. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  151. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  152. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  153. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  154. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  155. * M205 - Set advanced settings. Current units apply:
  156. S<print> T<travel> minimum speeds
  157. B<minimum segment time>
  158. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  159. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  160. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  161. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  162. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  163. Every normal extrude-only move will be classified as retract depending on the direction.
  164. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  165. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  166. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  167. * M221 - Set Flow Percentage: "M221 S<percent>"
  168. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  169. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  170. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  171. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  172. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  173. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  174. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  175. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  176. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  177. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  178. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  179. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  180. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  181. * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
  182. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  183. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  184. * M400 - Finish all moves.
  185. * M401 - Lower Z probe. (Requires a probe)
  186. * M402 - Raise Z probe. (Requires a probe)
  187. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  188. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  189. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  190. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  191. * M410 - Quickstop. Abort all planned moves.
  192. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  193. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  194. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  195. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  196. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  197. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  198. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  199. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  200. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
  201. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  202. * M666 - Set delta endstop adjustment. (Requires DELTA)
  203. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  204. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  205. * M860 - Report the position of position encoder modules.
  206. * M861 - Report the status of position encoder modules.
  207. * M862 - Perform an axis continuity test for position encoder modules.
  208. * M863 - Perform steps-per-mm calibration for position encoder modules.
  209. * M864 - Change position encoder module I2C address.
  210. * M865 - Check position encoder module firmware version.
  211. * M866 - Report or reset position encoder module error count.
  212. * M867 - Enable/disable or toggle error correction for position encoder modules.
  213. * M868 - Report or set position encoder module error correction threshold.
  214. * M869 - Report position encoder module error.
  215. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  216. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  217. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  218. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  219. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  220. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  221. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  222. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  223. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  224. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  225. *
  226. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  227. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  228. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  229. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  230. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  231. *
  232. * ************ Custom codes - This can change to suit future G-code regulations
  233. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  234. * M999 - Restart after being stopped by error
  235. *
  236. * "T" Codes
  237. *
  238. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  239. *
  240. */
  241. #include "Marlin.h"
  242. #include "ultralcd.h"
  243. #include "planner.h"
  244. #include "stepper.h"
  245. #include "endstops.h"
  246. #include "temperature.h"
  247. #include "cardreader.h"
  248. #include "configuration_store.h"
  249. #include "language.h"
  250. #include "pins_arduino.h"
  251. #include "math.h"
  252. #include "nozzle.h"
  253. #include "duration_t.h"
  254. #include "types.h"
  255. #include "gcode.h"
  256. #if HAS_ABL
  257. #include "vector_3.h"
  258. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  259. #include "least_squares_fit.h"
  260. #endif
  261. #elif ENABLED(MESH_BED_LEVELING)
  262. #include "mesh_bed_leveling.h"
  263. #endif
  264. #if ENABLED(BEZIER_CURVE_SUPPORT)
  265. #include "planner_bezier.h"
  266. #endif
  267. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  268. #include "buzzer.h"
  269. #endif
  270. #if ENABLED(USE_WATCHDOG)
  271. #include "watchdog.h"
  272. #endif
  273. #if ENABLED(MAX7219_DEBUG)
  274. #include "Max7219_Debug_LEDs.h"
  275. #endif
  276. #if ENABLED(NEOPIXEL_RGBW_LED)
  277. #include <Adafruit_NeoPixel.h>
  278. #endif
  279. #if ENABLED(BLINKM)
  280. #include "blinkm.h"
  281. #include "Wire.h"
  282. #endif
  283. #if ENABLED(PCA9632)
  284. #include "pca9632.h"
  285. #endif
  286. #if HAS_SERVOS
  287. #include "servo.h"
  288. #endif
  289. #if HAS_DIGIPOTSS
  290. #include <SPI.h>
  291. #endif
  292. #if ENABLED(DAC_STEPPER_CURRENT)
  293. #include "stepper_dac.h"
  294. #endif
  295. #if ENABLED(EXPERIMENTAL_I2CBUS)
  296. #include "twibus.h"
  297. #endif
  298. #if ENABLED(I2C_POSITION_ENCODERS)
  299. #include "I2CPositionEncoder.h"
  300. #endif
  301. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  302. #include "endstop_interrupts.h"
  303. #endif
  304. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  305. void gcode_M100();
  306. void M100_dump_routine(const char * const title, const char *start, const char *end);
  307. #endif
  308. #if ENABLED(SDSUPPORT)
  309. CardReader card;
  310. #endif
  311. #if ENABLED(EXPERIMENTAL_I2CBUS)
  312. TWIBus i2c;
  313. #endif
  314. #if ENABLED(G38_PROBE_TARGET)
  315. bool G38_move = false,
  316. G38_endstop_hit = false;
  317. #endif
  318. #if ENABLED(AUTO_BED_LEVELING_UBL)
  319. #include "ubl.h"
  320. extern bool defer_return_to_status;
  321. unified_bed_leveling ubl;
  322. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  323. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  324. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  325. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  326. || isnan(ubl.z_values[0][0]))
  327. #endif
  328. bool Running = true;
  329. uint8_t marlin_debug_flags = DEBUG_NONE;
  330. /**
  331. * Cartesian Current Position
  332. * Used to track the logical position as moves are queued.
  333. * Used by 'line_to_current_position' to do a move after changing it.
  334. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  335. */
  336. float current_position[XYZE] = { 0.0 };
  337. /**
  338. * Cartesian Destination
  339. * A temporary position, usually applied to 'current_position'.
  340. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  341. * 'line_to_destination' sets 'current_position' to 'destination'.
  342. */
  343. float destination[XYZE] = { 0.0 };
  344. /**
  345. * axis_homed
  346. * Flags that each linear axis was homed.
  347. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  348. *
  349. * axis_known_position
  350. * Flags that the position is known in each linear axis. Set when homed.
  351. * Cleared whenever a stepper powers off, potentially losing its position.
  352. */
  353. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  354. /**
  355. * GCode line number handling. Hosts may opt to include line numbers when
  356. * sending commands to Marlin, and lines will be checked for sequentiality.
  357. * M110 N<int> sets the current line number.
  358. */
  359. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  360. /**
  361. * GCode Command Queue
  362. * A simple ring buffer of BUFSIZE command strings.
  363. *
  364. * Commands are copied into this buffer by the command injectors
  365. * (immediate, serial, sd card) and they are processed sequentially by
  366. * the main loop. The process_next_command function parses the next
  367. * command and hands off execution to individual handler functions.
  368. */
  369. uint8_t commands_in_queue = 0; // Count of commands in the queue
  370. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  371. cmd_queue_index_w = 0; // Ring buffer write position
  372. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  373. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  374. #else // This can be collapsed back to the way it was soon.
  375. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  376. #endif
  377. /**
  378. * Next Injected Command pointer. NULL if no commands are being injected.
  379. * Used by Marlin internally to ensure that commands initiated from within
  380. * are enqueued ahead of any pending serial or sd card commands.
  381. */
  382. static const char *injected_commands_P = NULL;
  383. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  384. TempUnit input_temp_units = TEMPUNIT_C;
  385. #endif
  386. /**
  387. * Feed rates are often configured with mm/m
  388. * but the planner and stepper like mm/s units.
  389. */
  390. static const float homing_feedrate_mm_s[] PROGMEM = {
  391. #if ENABLED(DELTA)
  392. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  393. #else
  394. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  395. #endif
  396. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  397. };
  398. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  399. float feedrate_mm_s = MMM_TO_MMS(1500.0);
  400. static float saved_feedrate_mm_s;
  401. int16_t feedrate_percentage = 100, saved_feedrate_percentage,
  402. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  403. // Initialized by settings.load()
  404. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  405. volumetric_enabled;
  406. float filament_size[EXTRUDERS], volumetric_multiplier[EXTRUDERS];
  407. #if HAS_WORKSPACE_OFFSET
  408. #if HAS_POSITION_SHIFT
  409. // The distance that XYZ has been offset by G92. Reset by G28.
  410. float position_shift[XYZ] = { 0 };
  411. #endif
  412. #if HAS_HOME_OFFSET
  413. // This offset is added to the configured home position.
  414. // Set by M206, M428, or menu item. Saved to EEPROM.
  415. float home_offset[XYZ] = { 0 };
  416. #endif
  417. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  418. // The above two are combined to save on computes
  419. float workspace_offset[XYZ] = { 0 };
  420. #endif
  421. #endif
  422. // Software Endstops are based on the configured limits.
  423. #if HAS_SOFTWARE_ENDSTOPS
  424. bool soft_endstops_enabled = true;
  425. #endif
  426. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
  427. soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
  428. #if FAN_COUNT > 0
  429. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  430. #if ENABLED(PROBING_FANS_OFF)
  431. bool fans_paused = false;
  432. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  433. #endif
  434. #endif
  435. // The active extruder (tool). Set with T<extruder> command.
  436. uint8_t active_extruder = 0;
  437. // Relative Mode. Enable with G91, disable with G90.
  438. static bool relative_mode = false;
  439. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  440. volatile bool wait_for_heatup = true;
  441. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  442. #if HAS_RESUME_CONTINUE
  443. volatile bool wait_for_user = false;
  444. #endif
  445. const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
  446. // Number of characters read in the current line of serial input
  447. static int serial_count = 0;
  448. // Inactivity shutdown
  449. millis_t previous_cmd_ms = 0;
  450. static millis_t max_inactive_time = 0;
  451. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  452. // Print Job Timer
  453. #if ENABLED(PRINTCOUNTER)
  454. PrintCounter print_job_timer = PrintCounter();
  455. #else
  456. Stopwatch print_job_timer = Stopwatch();
  457. #endif
  458. // Buzzer - I2C on the LCD or a BEEPER_PIN
  459. #if ENABLED(LCD_USE_I2C_BUZZER)
  460. #define BUZZ(d,f) lcd_buzz(d, f)
  461. #elif PIN_EXISTS(BEEPER)
  462. Buzzer buzzer;
  463. #define BUZZ(d,f) buzzer.tone(d, f)
  464. #else
  465. #define BUZZ(d,f) NOOP
  466. #endif
  467. static uint8_t target_extruder;
  468. #if HAS_BED_PROBE
  469. float zprobe_zoffset; // Initialized by settings.load()
  470. #endif
  471. #if HAS_ABL
  472. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  473. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  474. #elif defined(XY_PROBE_SPEED)
  475. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  476. #else
  477. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  478. #endif
  479. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  480. #if ENABLED(DELTA)
  481. #define ADJUST_DELTA(V) \
  482. if (planner.abl_enabled) { \
  483. const float zadj = bilinear_z_offset(V); \
  484. delta[A_AXIS] += zadj; \
  485. delta[B_AXIS] += zadj; \
  486. delta[C_AXIS] += zadj; \
  487. }
  488. #else
  489. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  490. #endif
  491. #elif IS_KINEMATIC
  492. #define ADJUST_DELTA(V) NOOP
  493. #endif
  494. #if ENABLED(Z_DUAL_ENDSTOPS)
  495. float z_endstop_adj;
  496. #endif
  497. // Extruder offsets
  498. #if HOTENDS > 1
  499. float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
  500. #endif
  501. #if HAS_Z_SERVO_ENDSTOP
  502. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  503. #endif
  504. #if ENABLED(BARICUDA)
  505. uint8_t baricuda_valve_pressure = 0,
  506. baricuda_e_to_p_pressure = 0;
  507. #endif
  508. #if ENABLED(FWRETRACT) // Initialized by settings.load()...
  509. bool autoretract_enabled, // M209 S - Autoretract switch
  510. retracted[EXTRUDERS] = { false }; // Which extruders are currently retracted
  511. float retract_length, // M207 S - G10 Retract length
  512. retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
  513. retract_zlift, // M207 Z - G10 Retract hop size
  514. retract_recover_length, // M208 S - G11 Recover length
  515. retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
  516. swap_retract_length, // M207 W - G10 Swap Retract length
  517. swap_retract_recover_length, // M208 W - G11 Swap Recover length
  518. swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
  519. #if EXTRUDERS > 1
  520. bool retracted_swap[EXTRUDERS] = { false }; // Which extruders are swap-retracted
  521. #else
  522. constexpr bool retracted_swap[1] = { false };
  523. #endif
  524. #endif // FWRETRACT
  525. #if HAS_POWER_SWITCH
  526. bool powersupply_on =
  527. #if ENABLED(PS_DEFAULT_OFF)
  528. false
  529. #else
  530. true
  531. #endif
  532. ;
  533. #endif
  534. #if ENABLED(DELTA)
  535. float delta[ABC],
  536. endstop_adj[ABC] = { 0 };
  537. // Initialized by settings.load()
  538. float delta_radius,
  539. delta_tower_angle_trim[ABC],
  540. delta_tower[ABC][2],
  541. delta_diagonal_rod,
  542. delta_calibration_radius,
  543. delta_diagonal_rod_2_tower[ABC],
  544. delta_segments_per_second,
  545. delta_clip_start_height = Z_MAX_POS;
  546. float delta_safe_distance_from_top();
  547. #endif
  548. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  549. int bilinear_grid_spacing[2], bilinear_start[2];
  550. float bilinear_grid_factor[2],
  551. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  552. #endif
  553. #if IS_SCARA
  554. // Float constants for SCARA calculations
  555. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  556. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  557. L2_2 = sq(float(L2));
  558. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  559. delta[ABC];
  560. #endif
  561. float cartes[XYZ] = { 0 };
  562. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  563. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  564. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  565. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  566. uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
  567. measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  568. int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  569. #endif
  570. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  571. static bool filament_ran_out = false;
  572. #endif
  573. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  574. AdvancedPauseMenuResponse advanced_pause_menu_response;
  575. #endif
  576. #if ENABLED(MIXING_EXTRUDER)
  577. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  578. #if MIXING_VIRTUAL_TOOLS > 1
  579. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  580. #endif
  581. #endif
  582. static bool send_ok[BUFSIZE];
  583. #if HAS_SERVOS
  584. Servo servo[NUM_SERVOS];
  585. #define MOVE_SERVO(I, P) servo[I].move(P)
  586. #if HAS_Z_SERVO_ENDSTOP
  587. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  588. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  589. #endif
  590. #endif
  591. #ifdef CHDK
  592. millis_t chdkHigh = 0;
  593. bool chdkActive = false;
  594. #endif
  595. #ifdef AUTOMATIC_CURRENT_CONTROL
  596. bool auto_current_control = 0;
  597. #endif
  598. #if ENABLED(PID_EXTRUSION_SCALING)
  599. int lpq_len = 20;
  600. #endif
  601. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  602. MarlinBusyState busy_state = NOT_BUSY;
  603. static millis_t next_busy_signal_ms = 0;
  604. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  605. #else
  606. #define host_keepalive() NOOP
  607. #endif
  608. #if ENABLED(I2C_POSITION_ENCODERS)
  609. I2CPositionEncodersMgr I2CPEM;
  610. uint8_t blockBufferIndexRef = 0;
  611. millis_t lastUpdateMillis;
  612. #endif
  613. #if ENABLED(CNC_WORKSPACE_PLANES)
  614. static WorkspacePlane workspace_plane = PLANE_XY;
  615. #endif
  616. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  617. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  618. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  619. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  620. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  621. typedef void __void_##CONFIG##__
  622. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  623. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  624. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  625. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  626. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  627. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  628. /**
  629. * ***************************************************************************
  630. * ******************************** FUNCTIONS ********************************
  631. * ***************************************************************************
  632. */
  633. void stop();
  634. void get_available_commands();
  635. void process_next_command();
  636. void prepare_move_to_destination();
  637. void get_cartesian_from_steppers();
  638. void set_current_from_steppers_for_axis(const AxisEnum axis);
  639. #if ENABLED(ARC_SUPPORT)
  640. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  641. #endif
  642. #if ENABLED(BEZIER_CURVE_SUPPORT)
  643. void plan_cubic_move(const float offset[4]);
  644. #endif
  645. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  646. void report_current_position();
  647. void report_current_position_detail();
  648. #if ENABLED(DEBUG_LEVELING_FEATURE)
  649. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  650. serialprintPGM(prefix);
  651. SERIAL_CHAR('(');
  652. SERIAL_ECHO(x);
  653. SERIAL_ECHOPAIR(", ", y);
  654. SERIAL_ECHOPAIR(", ", z);
  655. SERIAL_CHAR(')');
  656. if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
  657. }
  658. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  659. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  660. }
  661. #if HAS_ABL
  662. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  663. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  664. }
  665. #endif
  666. #define DEBUG_POS(SUFFIX,VAR) do { \
  667. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  668. #endif
  669. /**
  670. * sync_plan_position
  671. *
  672. * Set the planner/stepper positions directly from current_position with
  673. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  674. */
  675. void sync_plan_position() {
  676. #if ENABLED(DEBUG_LEVELING_FEATURE)
  677. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  678. #endif
  679. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  680. }
  681. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  682. #if IS_KINEMATIC
  683. inline void sync_plan_position_kinematic() {
  684. #if ENABLED(DEBUG_LEVELING_FEATURE)
  685. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  686. #endif
  687. planner.set_position_mm_kinematic(current_position);
  688. }
  689. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  690. #else
  691. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  692. #endif
  693. #if ENABLED(SDSUPPORT)
  694. #include "SdFatUtil.h"
  695. int freeMemory() { return SdFatUtil::FreeRam(); }
  696. #else
  697. extern "C" {
  698. extern char __bss_end;
  699. extern char __heap_start;
  700. extern void* __brkval;
  701. int freeMemory() {
  702. int free_memory;
  703. if ((int)__brkval == 0)
  704. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  705. else
  706. free_memory = ((int)&free_memory) - ((int)__brkval);
  707. return free_memory;
  708. }
  709. }
  710. #endif // !SDSUPPORT
  711. #if ENABLED(DIGIPOT_I2C)
  712. extern void digipot_i2c_set_current(uint8_t channel, float current);
  713. extern void digipot_i2c_init();
  714. #endif
  715. /**
  716. * Inject the next "immediate" command, when possible, onto the front of the queue.
  717. * Return true if any immediate commands remain to inject.
  718. */
  719. static bool drain_injected_commands_P() {
  720. if (injected_commands_P != NULL) {
  721. size_t i = 0;
  722. char c, cmd[30];
  723. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  724. cmd[sizeof(cmd) - 1] = '\0';
  725. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  726. cmd[i] = '\0';
  727. if (enqueue_and_echo_command(cmd)) // success?
  728. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  729. }
  730. return (injected_commands_P != NULL); // return whether any more remain
  731. }
  732. /**
  733. * Record one or many commands to run from program memory.
  734. * Aborts the current queue, if any.
  735. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  736. */
  737. void enqueue_and_echo_commands_P(const char * const pgcode) {
  738. injected_commands_P = pgcode;
  739. drain_injected_commands_P(); // first command executed asap (when possible)
  740. }
  741. /**
  742. * Clear the Marlin command queue
  743. */
  744. void clear_command_queue() {
  745. cmd_queue_index_r = cmd_queue_index_w;
  746. commands_in_queue = 0;
  747. }
  748. /**
  749. * Once a new command is in the ring buffer, call this to commit it
  750. */
  751. inline void _commit_command(bool say_ok) {
  752. send_ok[cmd_queue_index_w] = say_ok;
  753. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  754. commands_in_queue++;
  755. }
  756. /**
  757. * Copy a command from RAM into the main command buffer.
  758. * Return true if the command was successfully added.
  759. * Return false for a full buffer, or if the 'command' is a comment.
  760. */
  761. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  762. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  763. strcpy(command_queue[cmd_queue_index_w], cmd);
  764. _commit_command(say_ok);
  765. return true;
  766. }
  767. /**
  768. * Enqueue with Serial Echo
  769. */
  770. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  771. if (_enqueuecommand(cmd, say_ok)) {
  772. SERIAL_ECHO_START();
  773. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  774. SERIAL_CHAR('"');
  775. SERIAL_EOL();
  776. return true;
  777. }
  778. return false;
  779. }
  780. void setup_killpin() {
  781. #if HAS_KILL
  782. SET_INPUT_PULLUP(KILL_PIN);
  783. #endif
  784. }
  785. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  786. void setup_filrunoutpin() {
  787. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  788. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  789. #else
  790. SET_INPUT(FIL_RUNOUT_PIN);
  791. #endif
  792. }
  793. #endif
  794. void setup_powerhold() {
  795. #if HAS_SUICIDE
  796. OUT_WRITE(SUICIDE_PIN, HIGH);
  797. #endif
  798. #if HAS_POWER_SWITCH
  799. #if ENABLED(PS_DEFAULT_OFF)
  800. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  801. #else
  802. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  803. #endif
  804. #endif
  805. }
  806. void suicide() {
  807. #if HAS_SUICIDE
  808. OUT_WRITE(SUICIDE_PIN, LOW);
  809. #endif
  810. }
  811. void servo_init() {
  812. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  813. servo[0].attach(SERVO0_PIN);
  814. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  815. #endif
  816. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  817. servo[1].attach(SERVO1_PIN);
  818. servo[1].detach();
  819. #endif
  820. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  821. servo[2].attach(SERVO2_PIN);
  822. servo[2].detach();
  823. #endif
  824. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  825. servo[3].attach(SERVO3_PIN);
  826. servo[3].detach();
  827. #endif
  828. #if HAS_Z_SERVO_ENDSTOP
  829. /**
  830. * Set position of Z Servo Endstop
  831. *
  832. * The servo might be deployed and positioned too low to stow
  833. * when starting up the machine or rebooting the board.
  834. * There's no way to know where the nozzle is positioned until
  835. * homing has been done - no homing with z-probe without init!
  836. *
  837. */
  838. STOW_Z_SERVO();
  839. #endif
  840. }
  841. /**
  842. * Stepper Reset (RigidBoard, et.al.)
  843. */
  844. #if HAS_STEPPER_RESET
  845. void disableStepperDrivers() {
  846. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  847. }
  848. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  849. #endif
  850. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  851. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  852. i2c.receive(bytes);
  853. }
  854. void i2c_on_request() { // just send dummy data for now
  855. i2c.reply("Hello World!\n");
  856. }
  857. #endif
  858. #if HAS_COLOR_LEDS
  859. #if ENABLED(NEOPIXEL_RGBW_LED)
  860. Adafruit_NeoPixel pixels(NEOPIXEL_PIXELS, NEOPIXEL_PIN, NEO_GRBW + NEO_KHZ800);
  861. void set_neopixel_color(const uint32_t color) {
  862. for (uint16_t i = 0; i < pixels.numPixels(); ++i)
  863. pixels.setPixelColor(i, color);
  864. pixels.show();
  865. }
  866. void setup_neopixel() {
  867. pixels.setBrightness(255); // 0 - 255 range
  868. pixels.begin();
  869. pixels.show(); // initialize to all off
  870. #if ENABLED(NEOPIXEL_STARTUP_TEST)
  871. delay(2000);
  872. set_neopixel_color(pixels.Color(255, 0, 0, 0)); // red
  873. delay(2000);
  874. set_neopixel_color(pixels.Color(0, 255, 0, 0)); // green
  875. delay(2000);
  876. set_neopixel_color(pixels.Color(0, 0, 255, 0)); // blue
  877. delay(2000);
  878. #endif
  879. set_neopixel_color(pixels.Color(0, 0, 0, 255)); // white
  880. }
  881. #endif // NEOPIXEL_RGBW_LED
  882. void set_led_color(
  883. const uint8_t r, const uint8_t g, const uint8_t b
  884. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
  885. , const uint8_t w = 0
  886. #if ENABLED(NEOPIXEL_RGBW_LED)
  887. , bool isSequence = false
  888. #endif
  889. #endif
  890. ) {
  891. #if ENABLED(NEOPIXEL_RGBW_LED)
  892. const uint32_t color = pixels.Color(r, g, b, w);
  893. static uint16_t nextLed = 0;
  894. if (!isSequence)
  895. set_neopixel_color(color);
  896. else {
  897. pixels.setPixelColor(nextLed, color);
  898. pixels.show();
  899. if (++nextLed >= pixels.numPixels()) nextLed = 0;
  900. return;
  901. }
  902. #endif
  903. #if ENABLED(BLINKM)
  904. // This variant uses i2c to send the RGB components to the device.
  905. SendColors(r, g, b);
  906. #endif
  907. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  908. // This variant uses 3 separate pins for the RGB components.
  909. // If the pins can do PWM then their intensity will be set.
  910. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  911. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  912. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  913. analogWrite(RGB_LED_R_PIN, r);
  914. analogWrite(RGB_LED_G_PIN, g);
  915. analogWrite(RGB_LED_B_PIN, b);
  916. #if ENABLED(RGBW_LED)
  917. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  918. analogWrite(RGB_LED_W_PIN, w);
  919. #endif
  920. #endif
  921. #if ENABLED(PCA9632)
  922. // Update I2C LED driver
  923. PCA9632_SetColor(r, g, b);
  924. #endif
  925. }
  926. #endif // HAS_COLOR_LEDS
  927. void gcode_line_error(const char* err, bool doFlush = true) {
  928. SERIAL_ERROR_START();
  929. serialprintPGM(err);
  930. SERIAL_ERRORLN(gcode_LastN);
  931. //Serial.println(gcode_N);
  932. if (doFlush) FlushSerialRequestResend();
  933. serial_count = 0;
  934. }
  935. /**
  936. * Get all commands waiting on the serial port and queue them.
  937. * Exit when the buffer is full or when no more characters are
  938. * left on the serial port.
  939. */
  940. inline void get_serial_commands() {
  941. static char serial_line_buffer[MAX_CMD_SIZE];
  942. static bool serial_comment_mode = false;
  943. // If the command buffer is empty for too long,
  944. // send "wait" to indicate Marlin is still waiting.
  945. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  946. static millis_t last_command_time = 0;
  947. const millis_t ms = millis();
  948. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  949. SERIAL_ECHOLNPGM(MSG_WAIT);
  950. last_command_time = ms;
  951. }
  952. #endif
  953. /**
  954. * Loop while serial characters are incoming and the queue is not full
  955. */
  956. int c;
  957. while (commands_in_queue < BUFSIZE && (c = MYSERIAL.read()) >= 0) {
  958. char serial_char = c;
  959. /**
  960. * If the character ends the line
  961. */
  962. if (serial_char == '\n' || serial_char == '\r') {
  963. serial_comment_mode = false; // end of line == end of comment
  964. if (!serial_count) continue; // skip empty lines
  965. serial_line_buffer[serial_count] = 0; // terminate string
  966. serial_count = 0; //reset buffer
  967. char* command = serial_line_buffer;
  968. while (*command == ' ') command++; // skip any leading spaces
  969. char *npos = (*command == 'N') ? command : NULL, // Require the N parameter to start the line
  970. *apos = strchr(command, '*');
  971. if (npos) {
  972. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  973. if (M110) {
  974. char* n2pos = strchr(command + 4, 'N');
  975. if (n2pos) npos = n2pos;
  976. }
  977. gcode_N = strtol(npos + 1, NULL, 10);
  978. if (gcode_N != gcode_LastN + 1 && !M110) {
  979. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  980. return;
  981. }
  982. if (apos) {
  983. byte checksum = 0, count = 0;
  984. while (command[count] != '*') checksum ^= command[count++];
  985. if (strtol(apos + 1, NULL, 10) != checksum) {
  986. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  987. return;
  988. }
  989. // if no errors, continue parsing
  990. }
  991. else {
  992. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  993. return;
  994. }
  995. gcode_LastN = gcode_N;
  996. // if no errors, continue parsing
  997. }
  998. else if (apos) { // No '*' without 'N'
  999. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  1000. return;
  1001. }
  1002. // Movement commands alert when stopped
  1003. if (IsStopped()) {
  1004. char* gpos = strchr(command, 'G');
  1005. if (gpos) {
  1006. const int codenum = strtol(gpos + 1, NULL, 10);
  1007. switch (codenum) {
  1008. case 0:
  1009. case 1:
  1010. case 2:
  1011. case 3:
  1012. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1013. LCD_MESSAGEPGM(MSG_STOPPED);
  1014. break;
  1015. }
  1016. }
  1017. }
  1018. #if DISABLED(EMERGENCY_PARSER)
  1019. // If command was e-stop process now
  1020. if (strcmp(command, "M108") == 0) {
  1021. wait_for_heatup = false;
  1022. #if ENABLED(ULTIPANEL)
  1023. wait_for_user = false;
  1024. #endif
  1025. }
  1026. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  1027. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  1028. #endif
  1029. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  1030. last_command_time = ms;
  1031. #endif
  1032. // Add the command to the queue
  1033. _enqueuecommand(serial_line_buffer, true);
  1034. }
  1035. else if (serial_count >= MAX_CMD_SIZE - 1) {
  1036. // Keep fetching, but ignore normal characters beyond the max length
  1037. // The command will be injected when EOL is reached
  1038. }
  1039. else if (serial_char == '\\') { // Handle escapes
  1040. if ((c = MYSERIAL.read()) >= 0) {
  1041. // if we have one more character, copy it over
  1042. serial_char = c;
  1043. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1044. }
  1045. // otherwise do nothing
  1046. }
  1047. else { // it's not a newline, carriage return or escape char
  1048. if (serial_char == ';') serial_comment_mode = true;
  1049. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1050. }
  1051. } // queue has space, serial has data
  1052. }
  1053. #if ENABLED(SDSUPPORT)
  1054. /**
  1055. * Get commands from the SD Card until the command buffer is full
  1056. * or until the end of the file is reached. The special character '#'
  1057. * can also interrupt buffering.
  1058. */
  1059. inline void get_sdcard_commands() {
  1060. static bool stop_buffering = false,
  1061. sd_comment_mode = false;
  1062. if (!card.sdprinting) return;
  1063. /**
  1064. * '#' stops reading from SD to the buffer prematurely, so procedural
  1065. * macro calls are possible. If it occurs, stop_buffering is triggered
  1066. * and the buffer is run dry; this character _can_ occur in serial com
  1067. * due to checksums, however, no checksums are used in SD printing.
  1068. */
  1069. if (commands_in_queue == 0) stop_buffering = false;
  1070. uint16_t sd_count = 0;
  1071. bool card_eof = card.eof();
  1072. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1073. const int16_t n = card.get();
  1074. char sd_char = (char)n;
  1075. card_eof = card.eof();
  1076. if (card_eof || n == -1
  1077. || sd_char == '\n' || sd_char == '\r'
  1078. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1079. ) {
  1080. if (card_eof) {
  1081. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1082. card.printingHasFinished();
  1083. #if ENABLED(PRINTER_EVENT_LEDS)
  1084. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1085. set_led_color(0, 255, 0); // Green
  1086. #if HAS_RESUME_CONTINUE
  1087. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1088. #else
  1089. safe_delay(1000);
  1090. #endif
  1091. set_led_color(0, 0, 0); // OFF
  1092. #endif
  1093. card.checkautostart(true);
  1094. }
  1095. else if (n == -1) {
  1096. SERIAL_ERROR_START();
  1097. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1098. }
  1099. if (sd_char == '#') stop_buffering = true;
  1100. sd_comment_mode = false; // for new command
  1101. if (!sd_count) continue; // skip empty lines (and comment lines)
  1102. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1103. sd_count = 0; // clear sd line buffer
  1104. _commit_command(false);
  1105. }
  1106. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1107. /**
  1108. * Keep fetching, but ignore normal characters beyond the max length
  1109. * The command will be injected when EOL is reached
  1110. */
  1111. }
  1112. else {
  1113. if (sd_char == ';') sd_comment_mode = true;
  1114. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1115. }
  1116. }
  1117. }
  1118. #endif // SDSUPPORT
  1119. /**
  1120. * Add to the circular command queue the next command from:
  1121. * - The command-injection queue (injected_commands_P)
  1122. * - The active serial input (usually USB)
  1123. * - The SD card file being actively printed
  1124. */
  1125. void get_available_commands() {
  1126. // if any immediate commands remain, don't get other commands yet
  1127. if (drain_injected_commands_P()) return;
  1128. get_serial_commands();
  1129. #if ENABLED(SDSUPPORT)
  1130. get_sdcard_commands();
  1131. #endif
  1132. }
  1133. /**
  1134. * Set target_extruder from the T parameter or the active_extruder
  1135. *
  1136. * Returns TRUE if the target is invalid
  1137. */
  1138. bool get_target_extruder_from_command(const uint16_t code) {
  1139. if (parser.seenval('T')) {
  1140. const int8_t e = parser.value_byte();
  1141. if (e >= EXTRUDERS) {
  1142. SERIAL_ECHO_START();
  1143. SERIAL_CHAR('M');
  1144. SERIAL_ECHO(code);
  1145. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
  1146. return true;
  1147. }
  1148. target_extruder = e;
  1149. }
  1150. else
  1151. target_extruder = active_extruder;
  1152. return false;
  1153. }
  1154. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1155. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1156. #endif
  1157. #if ENABLED(DUAL_X_CARRIAGE)
  1158. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1159. static float x_home_pos(const int extruder) {
  1160. if (extruder == 0)
  1161. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1162. else
  1163. /**
  1164. * In dual carriage mode the extruder offset provides an override of the
  1165. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1166. * This allows soft recalibration of the second extruder home position
  1167. * without firmware reflash (through the M218 command).
  1168. */
  1169. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1170. }
  1171. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1172. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1173. static bool active_extruder_parked = false; // used in mode 1 & 2
  1174. static float raised_parked_position[XYZE]; // used in mode 1
  1175. static millis_t delayed_move_time = 0; // used in mode 1
  1176. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1177. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1178. #endif // DUAL_X_CARRIAGE
  1179. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1180. /**
  1181. * Software endstops can be used to monitor the open end of
  1182. * an axis that has a hardware endstop on the other end. Or
  1183. * they can prevent axes from moving past endstops and grinding.
  1184. *
  1185. * To keep doing their job as the coordinate system changes,
  1186. * the software endstop positions must be refreshed to remain
  1187. * at the same positions relative to the machine.
  1188. */
  1189. void update_software_endstops(const AxisEnum axis) {
  1190. const float offs = 0.0
  1191. #if HAS_HOME_OFFSET
  1192. + home_offset[axis]
  1193. #endif
  1194. #if HAS_POSITION_SHIFT
  1195. + position_shift[axis]
  1196. #endif
  1197. ;
  1198. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1199. workspace_offset[axis] = offs;
  1200. #endif
  1201. #if ENABLED(DUAL_X_CARRIAGE)
  1202. if (axis == X_AXIS) {
  1203. // In Dual X mode hotend_offset[X] is T1's home position
  1204. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1205. if (active_extruder != 0) {
  1206. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1207. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1208. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1209. }
  1210. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1211. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1212. // but not so far to the right that T1 would move past the end
  1213. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1214. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1215. }
  1216. else {
  1217. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1218. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1219. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1220. }
  1221. }
  1222. #elif ENABLED(DELTA)
  1223. soft_endstop_min[axis] = base_min_pos(axis) + (axis == Z_AXIS ? 0 : offs);
  1224. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1225. #else
  1226. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1227. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1228. #endif
  1229. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1230. if (DEBUGGING(LEVELING)) {
  1231. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1232. #if HAS_HOME_OFFSET
  1233. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1234. #endif
  1235. #if HAS_POSITION_SHIFT
  1236. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1237. #endif
  1238. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1239. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1240. }
  1241. #endif
  1242. #if ENABLED(DELTA)
  1243. if (axis == Z_AXIS)
  1244. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1245. #endif
  1246. }
  1247. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1248. #if HAS_M206_COMMAND
  1249. /**
  1250. * Change the home offset for an axis, update the current
  1251. * position and the software endstops to retain the same
  1252. * relative distance to the new home.
  1253. *
  1254. * Since this changes the current_position, code should
  1255. * call sync_plan_position soon after this.
  1256. */
  1257. static void set_home_offset(const AxisEnum axis, const float v) {
  1258. current_position[axis] += v - home_offset[axis];
  1259. home_offset[axis] = v;
  1260. update_software_endstops(axis);
  1261. }
  1262. #endif // HAS_M206_COMMAND
  1263. /**
  1264. * Set an axis' current position to its home position (after homing).
  1265. *
  1266. * For Core and Cartesian robots this applies one-to-one when an
  1267. * individual axis has been homed.
  1268. *
  1269. * DELTA should wait until all homing is done before setting the XYZ
  1270. * current_position to home, because homing is a single operation.
  1271. * In the case where the axis positions are already known and previously
  1272. * homed, DELTA could home to X or Y individually by moving either one
  1273. * to the center. However, homing Z always homes XY and Z.
  1274. *
  1275. * SCARA should wait until all XY homing is done before setting the XY
  1276. * current_position to home, because neither X nor Y is at home until
  1277. * both are at home. Z can however be homed individually.
  1278. *
  1279. * Callers must sync the planner position after calling this!
  1280. */
  1281. static void set_axis_is_at_home(const AxisEnum axis) {
  1282. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1283. if (DEBUGGING(LEVELING)) {
  1284. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1285. SERIAL_CHAR(')');
  1286. SERIAL_EOL();
  1287. }
  1288. #endif
  1289. axis_known_position[axis] = axis_homed[axis] = true;
  1290. #if HAS_POSITION_SHIFT
  1291. position_shift[axis] = 0;
  1292. update_software_endstops(axis);
  1293. #endif
  1294. #if ENABLED(DUAL_X_CARRIAGE)
  1295. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1296. current_position[X_AXIS] = x_home_pos(active_extruder);
  1297. return;
  1298. }
  1299. #endif
  1300. #if ENABLED(MORGAN_SCARA)
  1301. /**
  1302. * Morgan SCARA homes XY at the same time
  1303. */
  1304. if (axis == X_AXIS || axis == Y_AXIS) {
  1305. float homeposition[XYZ];
  1306. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1307. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1308. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1309. /**
  1310. * Get Home position SCARA arm angles using inverse kinematics,
  1311. * and calculate homing offset using forward kinematics
  1312. */
  1313. inverse_kinematics(homeposition);
  1314. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1315. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1316. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1317. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1318. /**
  1319. * SCARA home positions are based on configuration since the actual
  1320. * limits are determined by the inverse kinematic transform.
  1321. */
  1322. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1323. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1324. }
  1325. else
  1326. #endif
  1327. {
  1328. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1329. }
  1330. /**
  1331. * Z Probe Z Homing? Account for the probe's Z offset.
  1332. */
  1333. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1334. if (axis == Z_AXIS) {
  1335. #if HOMING_Z_WITH_PROBE
  1336. current_position[Z_AXIS] -= zprobe_zoffset;
  1337. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1338. if (DEBUGGING(LEVELING)) {
  1339. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1340. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1341. }
  1342. #endif
  1343. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1344. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1345. #endif
  1346. }
  1347. #endif
  1348. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1349. if (DEBUGGING(LEVELING)) {
  1350. #if HAS_HOME_OFFSET
  1351. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1352. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1353. #endif
  1354. DEBUG_POS("", current_position);
  1355. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1356. SERIAL_CHAR(')');
  1357. SERIAL_EOL();
  1358. }
  1359. #endif
  1360. #if ENABLED(I2C_POSITION_ENCODERS)
  1361. I2CPEM.homed(axis);
  1362. #endif
  1363. }
  1364. /**
  1365. * Some planner shorthand inline functions
  1366. */
  1367. inline float get_homing_bump_feedrate(const AxisEnum axis) {
  1368. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  1369. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  1370. if (hbd < 1) {
  1371. hbd = 10;
  1372. SERIAL_ECHO_START();
  1373. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1374. }
  1375. return homing_feedrate(axis) / hbd;
  1376. }
  1377. /**
  1378. * Move the planner to the current position from wherever it last moved
  1379. * (or from wherever it has been told it is located).
  1380. */
  1381. inline void line_to_current_position() {
  1382. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1383. }
  1384. /**
  1385. * Move the planner to the position stored in the destination array, which is
  1386. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  1387. */
  1388. inline void line_to_destination(const float fr_mm_s) {
  1389. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1390. }
  1391. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1392. inline void set_current_to_destination() { COPY(current_position, destination); }
  1393. inline void set_destination_to_current() { COPY(destination, current_position); }
  1394. #if IS_KINEMATIC
  1395. /**
  1396. * Calculate delta, start a line, and set current_position to destination
  1397. */
  1398. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1399. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1400. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1401. #endif
  1402. refresh_cmd_timeout();
  1403. #if UBL_DELTA
  1404. // ubl segmented line will do z-only moves in single segment
  1405. ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
  1406. #else
  1407. if ( current_position[X_AXIS] == destination[X_AXIS]
  1408. && current_position[Y_AXIS] == destination[Y_AXIS]
  1409. && current_position[Z_AXIS] == destination[Z_AXIS]
  1410. && current_position[E_AXIS] == destination[E_AXIS]
  1411. ) return;
  1412. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1413. #endif
  1414. set_current_to_destination();
  1415. }
  1416. #endif // IS_KINEMATIC
  1417. /**
  1418. * Plan a move to (X, Y, Z) and set the current_position
  1419. * The final current_position may not be the one that was requested
  1420. */
  1421. void do_blocking_move_to(const float &lx, const float &ly, const float &lz, const float &fr_mm_s/*=0.0*/) {
  1422. const float old_feedrate_mm_s = feedrate_mm_s;
  1423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1424. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, lx, ly, lz);
  1425. #endif
  1426. #if ENABLED(DELTA)
  1427. if (!position_is_reachable_xy(lx, ly)) return;
  1428. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1429. set_destination_to_current(); // sync destination at the start
  1430. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1431. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1432. #endif
  1433. // when in the danger zone
  1434. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1435. if (lz > delta_clip_start_height) { // staying in the danger zone
  1436. destination[X_AXIS] = lx; // move directly (uninterpolated)
  1437. destination[Y_AXIS] = ly;
  1438. destination[Z_AXIS] = lz;
  1439. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1440. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1441. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1442. #endif
  1443. return;
  1444. }
  1445. else {
  1446. destination[Z_AXIS] = delta_clip_start_height;
  1447. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1448. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1449. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1450. #endif
  1451. }
  1452. }
  1453. if (lz > current_position[Z_AXIS]) { // raising?
  1454. destination[Z_AXIS] = lz;
  1455. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1457. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1458. #endif
  1459. }
  1460. destination[X_AXIS] = lx;
  1461. destination[Y_AXIS] = ly;
  1462. prepare_move_to_destination(); // set_current_to_destination
  1463. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1464. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1465. #endif
  1466. if (lz < current_position[Z_AXIS]) { // lowering?
  1467. destination[Z_AXIS] = lz;
  1468. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1470. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1471. #endif
  1472. }
  1473. #elif IS_SCARA
  1474. if (!position_is_reachable_xy(lx, ly)) return;
  1475. set_destination_to_current();
  1476. // If Z needs to raise, do it before moving XY
  1477. if (destination[Z_AXIS] < lz) {
  1478. destination[Z_AXIS] = lz;
  1479. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1480. }
  1481. destination[X_AXIS] = lx;
  1482. destination[Y_AXIS] = ly;
  1483. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1484. // If Z needs to lower, do it after moving XY
  1485. if (destination[Z_AXIS] > lz) {
  1486. destination[Z_AXIS] = lz;
  1487. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1488. }
  1489. #else
  1490. // If Z needs to raise, do it before moving XY
  1491. if (current_position[Z_AXIS] < lz) {
  1492. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1493. current_position[Z_AXIS] = lz;
  1494. line_to_current_position();
  1495. }
  1496. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1497. current_position[X_AXIS] = lx;
  1498. current_position[Y_AXIS] = ly;
  1499. line_to_current_position();
  1500. // If Z needs to lower, do it after moving XY
  1501. if (current_position[Z_AXIS] > lz) {
  1502. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1503. current_position[Z_AXIS] = lz;
  1504. line_to_current_position();
  1505. }
  1506. #endif
  1507. stepper.synchronize();
  1508. feedrate_mm_s = old_feedrate_mm_s;
  1509. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1510. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1511. #endif
  1512. }
  1513. void do_blocking_move_to_x(const float &lx, const float &fr_mm_s/*=0.0*/) {
  1514. do_blocking_move_to(lx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1515. }
  1516. void do_blocking_move_to_z(const float &lz, const float &fr_mm_s/*=0.0*/) {
  1517. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], lz, fr_mm_s);
  1518. }
  1519. void do_blocking_move_to_xy(const float &lx, const float &ly, const float &fr_mm_s/*=0.0*/) {
  1520. do_blocking_move_to(lx, ly, current_position[Z_AXIS], fr_mm_s);
  1521. }
  1522. //
  1523. // Prepare to do endstop or probe moves
  1524. // with custom feedrates.
  1525. //
  1526. // - Save current feedrates
  1527. // - Reset the rate multiplier
  1528. // - Reset the command timeout
  1529. // - Enable the endstops (for endstop moves)
  1530. //
  1531. static void setup_for_endstop_or_probe_move() {
  1532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1533. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1534. #endif
  1535. saved_feedrate_mm_s = feedrate_mm_s;
  1536. saved_feedrate_percentage = feedrate_percentage;
  1537. feedrate_percentage = 100;
  1538. refresh_cmd_timeout();
  1539. }
  1540. static void clean_up_after_endstop_or_probe_move() {
  1541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1542. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1543. #endif
  1544. feedrate_mm_s = saved_feedrate_mm_s;
  1545. feedrate_percentage = saved_feedrate_percentage;
  1546. refresh_cmd_timeout();
  1547. }
  1548. #if HAS_BED_PROBE
  1549. /**
  1550. * Raise Z to a minimum height to make room for a probe to move
  1551. */
  1552. inline void do_probe_raise(const float z_raise) {
  1553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1554. if (DEBUGGING(LEVELING)) {
  1555. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1556. SERIAL_CHAR(')');
  1557. SERIAL_EOL();
  1558. }
  1559. #endif
  1560. float z_dest = z_raise;
  1561. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1562. if (z_dest > current_position[Z_AXIS])
  1563. do_blocking_move_to_z(z_dest);
  1564. }
  1565. #endif // HAS_BED_PROBE
  1566. #if HAS_AXIS_UNHOMED_ERR
  1567. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1568. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1569. const bool xx = x && !axis_known_position[X_AXIS],
  1570. yy = y && !axis_known_position[Y_AXIS],
  1571. zz = z && !axis_known_position[Z_AXIS];
  1572. #else
  1573. const bool xx = x && !axis_homed[X_AXIS],
  1574. yy = y && !axis_homed[Y_AXIS],
  1575. zz = z && !axis_homed[Z_AXIS];
  1576. #endif
  1577. if (xx || yy || zz) {
  1578. SERIAL_ECHO_START();
  1579. SERIAL_ECHOPGM(MSG_HOME " ");
  1580. if (xx) SERIAL_ECHOPGM(MSG_X);
  1581. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1582. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1583. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1584. #if ENABLED(ULTRA_LCD)
  1585. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1586. #endif
  1587. return true;
  1588. }
  1589. return false;
  1590. }
  1591. #endif // HAS_AXIS_UNHOMED_ERR
  1592. #if ENABLED(Z_PROBE_SLED)
  1593. #ifndef SLED_DOCKING_OFFSET
  1594. #define SLED_DOCKING_OFFSET 0
  1595. #endif
  1596. /**
  1597. * Method to dock/undock a sled designed by Charles Bell.
  1598. *
  1599. * stow[in] If false, move to MAX_X and engage the solenoid
  1600. * If true, move to MAX_X and release the solenoid
  1601. */
  1602. static void dock_sled(bool stow) {
  1603. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1604. if (DEBUGGING(LEVELING)) {
  1605. SERIAL_ECHOPAIR("dock_sled(", stow);
  1606. SERIAL_CHAR(')');
  1607. SERIAL_EOL();
  1608. }
  1609. #endif
  1610. // Dock sled a bit closer to ensure proper capturing
  1611. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1612. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1613. WRITE(SOL1_PIN, !stow); // switch solenoid
  1614. #endif
  1615. }
  1616. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1617. FORCE_INLINE void do_blocking_move_to(const float logical[XYZ], const float &fr_mm_s) {
  1618. do_blocking_move_to(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], fr_mm_s);
  1619. }
  1620. void run_deploy_moves_script() {
  1621. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1622. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1623. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1624. #endif
  1625. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1626. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1627. #endif
  1628. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1629. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1630. #endif
  1631. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1632. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1633. #endif
  1634. const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
  1635. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1636. #endif
  1637. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1638. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1639. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1640. #endif
  1641. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1642. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1643. #endif
  1644. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1645. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1646. #endif
  1647. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1648. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1649. #endif
  1650. const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
  1651. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1652. #endif
  1653. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1654. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1655. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1656. #endif
  1657. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1658. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1659. #endif
  1660. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1661. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1662. #endif
  1663. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1664. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1665. #endif
  1666. const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
  1667. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1668. #endif
  1669. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1670. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1671. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1672. #endif
  1673. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1674. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1675. #endif
  1676. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1677. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1678. #endif
  1679. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1680. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1681. #endif
  1682. const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
  1683. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1684. #endif
  1685. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1686. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1687. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1688. #endif
  1689. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1690. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1691. #endif
  1692. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1693. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1694. #endif
  1695. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1696. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1697. #endif
  1698. const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
  1699. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1700. #endif
  1701. }
  1702. void run_stow_moves_script() {
  1703. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1704. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1705. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1706. #endif
  1707. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1708. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1709. #endif
  1710. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1711. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1712. #endif
  1713. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1714. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1715. #endif
  1716. const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
  1717. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1718. #endif
  1719. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1720. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1721. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1722. #endif
  1723. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1724. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1725. #endif
  1726. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1727. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1728. #endif
  1729. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1730. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1731. #endif
  1732. const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
  1733. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1734. #endif
  1735. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1736. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1737. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1738. #endif
  1739. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1740. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1741. #endif
  1742. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1743. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1744. #endif
  1745. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1746. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1747. #endif
  1748. const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
  1749. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1750. #endif
  1751. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1752. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1753. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1754. #endif
  1755. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1756. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1757. #endif
  1758. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1759. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1760. #endif
  1761. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1762. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1763. #endif
  1764. const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
  1765. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1766. #endif
  1767. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1768. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1769. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1770. #endif
  1771. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1772. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1773. #endif
  1774. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1775. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1776. #endif
  1777. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1778. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1779. #endif
  1780. const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
  1781. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1782. #endif
  1783. }
  1784. #endif // Z_PROBE_ALLEN_KEY
  1785. #if ENABLED(PROBING_FANS_OFF)
  1786. void fans_pause(const bool p) {
  1787. if (p != fans_paused) {
  1788. fans_paused = p;
  1789. if (p)
  1790. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1791. paused_fanSpeeds[x] = fanSpeeds[x];
  1792. fanSpeeds[x] = 0;
  1793. }
  1794. else
  1795. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1796. fanSpeeds[x] = paused_fanSpeeds[x];
  1797. }
  1798. }
  1799. #endif // PROBING_FANS_OFF
  1800. #if HAS_BED_PROBE
  1801. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1802. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1803. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1804. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1805. #else
  1806. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1807. #endif
  1808. #endif
  1809. #if QUIET_PROBING
  1810. void probing_pause(const bool p) {
  1811. #if ENABLED(PROBING_HEATERS_OFF)
  1812. thermalManager.pause(p);
  1813. #endif
  1814. #if ENABLED(PROBING_FANS_OFF)
  1815. fans_pause(p);
  1816. #endif
  1817. if (p) safe_delay(
  1818. #if DELAY_BEFORE_PROBING > 25
  1819. DELAY_BEFORE_PROBING
  1820. #else
  1821. 25
  1822. #endif
  1823. );
  1824. }
  1825. #endif // QUIET_PROBING
  1826. #if ENABLED(BLTOUCH)
  1827. void bltouch_command(int angle) {
  1828. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait
  1829. safe_delay(BLTOUCH_DELAY);
  1830. }
  1831. bool set_bltouch_deployed(const bool deploy) {
  1832. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1833. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1834. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1835. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1836. safe_delay(1500); // Wait for internal self-test to complete.
  1837. // (Measured completion time was 0.65 seconds
  1838. // after reset, deploy, and stow sequence)
  1839. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1840. SERIAL_ERROR_START();
  1841. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1842. stop(); // punt!
  1843. return true;
  1844. }
  1845. }
  1846. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1847. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1848. if (DEBUGGING(LEVELING)) {
  1849. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1850. SERIAL_CHAR(')');
  1851. SERIAL_EOL();
  1852. }
  1853. #endif
  1854. return false;
  1855. }
  1856. #endif // BLTOUCH
  1857. // returns false for ok and true for failure
  1858. bool set_probe_deployed(bool deploy) {
  1859. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1860. if (DEBUGGING(LEVELING)) {
  1861. DEBUG_POS("set_probe_deployed", current_position);
  1862. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1863. }
  1864. #endif
  1865. if (endstops.z_probe_enabled == deploy) return false;
  1866. // Make room for probe
  1867. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1868. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1869. #if ENABLED(Z_PROBE_SLED)
  1870. #define _AUE_ARGS true, false, false
  1871. #else
  1872. #define _AUE_ARGS
  1873. #endif
  1874. if (axis_unhomed_error(_AUE_ARGS)) {
  1875. SERIAL_ERROR_START();
  1876. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1877. stop();
  1878. return true;
  1879. }
  1880. #endif
  1881. const float oldXpos = current_position[X_AXIS],
  1882. oldYpos = current_position[Y_AXIS];
  1883. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1884. // If endstop is already false, the Z probe is deployed
  1885. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1886. // Would a goto be less ugly?
  1887. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1888. // for a triggered when stowed manual probe.
  1889. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1890. // otherwise an Allen-Key probe can't be stowed.
  1891. #endif
  1892. #if ENABLED(SOLENOID_PROBE)
  1893. #if HAS_SOLENOID_1
  1894. WRITE(SOL1_PIN, deploy);
  1895. #endif
  1896. #elif ENABLED(Z_PROBE_SLED)
  1897. dock_sled(!deploy);
  1898. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1899. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
  1900. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1901. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1902. #endif
  1903. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1904. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1905. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1906. if (IsRunning()) {
  1907. SERIAL_ERROR_START();
  1908. SERIAL_ERRORLNPGM("Z-Probe failed");
  1909. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1910. }
  1911. stop();
  1912. return true;
  1913. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1914. #endif
  1915. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1916. endstops.enable_z_probe(deploy);
  1917. return false;
  1918. }
  1919. /**
  1920. * @brief Used by run_z_probe to do a single Z probe move.
  1921. *
  1922. * @param z Z destination
  1923. * @param fr_mm_s Feedrate in mm/s
  1924. * @return true to indicate an error
  1925. */
  1926. static bool do_probe_move(const float z, const float fr_mm_m) {
  1927. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1928. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1929. #endif
  1930. // Deploy BLTouch at the start of any probe
  1931. #if ENABLED(BLTOUCH)
  1932. if (set_bltouch_deployed(true)) return true;
  1933. #endif
  1934. #if QUIET_PROBING
  1935. probing_pause(true);
  1936. #endif
  1937. // Move down until probe triggered
  1938. do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m));
  1939. // Check to see if the probe was triggered
  1940. const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
  1941. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  1942. Z_MIN
  1943. #else
  1944. Z_MIN_PROBE
  1945. #endif
  1946. );
  1947. #if QUIET_PROBING
  1948. probing_pause(false);
  1949. #endif
  1950. // Retract BLTouch immediately after a probe if it was triggered
  1951. #if ENABLED(BLTOUCH)
  1952. if (probe_triggered && set_bltouch_deployed(false)) return true;
  1953. #endif
  1954. // Clear endstop flags
  1955. endstops.hit_on_purpose();
  1956. // Get Z where the steppers were interrupted
  1957. set_current_from_steppers_for_axis(Z_AXIS);
  1958. // Tell the planner where we actually are
  1959. SYNC_PLAN_POSITION_KINEMATIC();
  1960. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1961. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1962. #endif
  1963. return !probe_triggered;
  1964. }
  1965. /**
  1966. * @details Used by probe_pt to do a single Z probe.
  1967. * Leaves current_position[Z_AXIS] at the height where the probe triggered.
  1968. *
  1969. * @param short_move Flag for a shorter probe move towards the bed
  1970. * @return The raw Z position where the probe was triggered
  1971. */
  1972. static float run_z_probe(const bool short_move=true) {
  1973. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1974. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1975. #endif
  1976. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1977. refresh_cmd_timeout();
  1978. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1979. // Do a first probe at the fast speed
  1980. if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN;
  1981. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1982. float first_probe_z = current_position[Z_AXIS];
  1983. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1984. #endif
  1985. // move up to make clearance for the probe
  1986. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1987. #else
  1988. // If the nozzle is above the travel height then
  1989. // move down quickly before doing the slow probe
  1990. float z = Z_CLEARANCE_DEPLOY_PROBE;
  1991. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1992. if (z < current_position[Z_AXIS]) {
  1993. // If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
  1994. if (!do_probe_move(z, Z_PROBE_SPEED_FAST))
  1995. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1996. }
  1997. #endif
  1998. // move down slowly to find bed
  1999. if (do_probe_move(-10 + (short_move ? 0 : -(Z_MAX_LENGTH)), Z_PROBE_SPEED_SLOW)) return NAN;
  2000. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2001. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  2002. #endif
  2003. // Debug: compare probe heights
  2004. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  2005. if (DEBUGGING(LEVELING)) {
  2006. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  2007. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  2008. }
  2009. #endif
  2010. return RAW_CURRENT_POSITION(Z) + zprobe_zoffset
  2011. #if ENABLED(DELTA)
  2012. + home_offset[Z_AXIS] // Account for delta height adjustment
  2013. #endif
  2014. ;
  2015. }
  2016. /**
  2017. * - Move to the given XY
  2018. * - Deploy the probe, if not already deployed
  2019. * - Probe the bed, get the Z position
  2020. * - Depending on the 'stow' flag
  2021. * - Stow the probe, or
  2022. * - Raise to the BETWEEN height
  2023. * - Return the probed Z position
  2024. */
  2025. float probe_pt(const float &lx, const float &ly, const bool stow, const uint8_t verbose_level, const bool printable=true) {
  2026. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2027. if (DEBUGGING(LEVELING)) {
  2028. SERIAL_ECHOPAIR(">>> probe_pt(", lx);
  2029. SERIAL_ECHOPAIR(", ", ly);
  2030. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2031. SERIAL_ECHOLNPGM("stow)");
  2032. DEBUG_POS("", current_position);
  2033. }
  2034. #endif
  2035. const float nx = lx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ly - (Y_PROBE_OFFSET_FROM_EXTRUDER);
  2036. if (printable
  2037. ? !position_is_reachable_xy(nx, ny)
  2038. : !position_is_reachable_by_probe_xy(lx, ly)
  2039. ) return NAN;
  2040. const float old_feedrate_mm_s = feedrate_mm_s;
  2041. #if ENABLED(DELTA)
  2042. if (current_position[Z_AXIS] > delta_clip_start_height)
  2043. do_blocking_move_to_z(delta_clip_start_height);
  2044. #endif
  2045. #if HAS_SOFTWARE_ENDSTOPS
  2046. // Store the status of the soft endstops and disable if we're probing a non-printable location
  2047. static bool enable_soft_endstops = soft_endstops_enabled;
  2048. if (!printable) soft_endstops_enabled = false;
  2049. #endif
  2050. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2051. // Move the probe to the given XY
  2052. do_blocking_move_to_xy(nx, ny);
  2053. float measured_z = NAN;
  2054. if (!DEPLOY_PROBE()) {
  2055. measured_z = run_z_probe(printable);
  2056. if (!stow)
  2057. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2058. else
  2059. if (STOW_PROBE()) measured_z = NAN;
  2060. }
  2061. #if HAS_SOFTWARE_ENDSTOPS
  2062. // Restore the soft endstop status
  2063. soft_endstops_enabled = enable_soft_endstops;
  2064. #endif
  2065. if (verbose_level > 2) {
  2066. SERIAL_PROTOCOLPGM("Bed X: ");
  2067. SERIAL_PROTOCOL_F(lx, 3);
  2068. SERIAL_PROTOCOLPGM(" Y: ");
  2069. SERIAL_PROTOCOL_F(ly, 3);
  2070. SERIAL_PROTOCOLPGM(" Z: ");
  2071. SERIAL_PROTOCOL_F(measured_z, 3);
  2072. SERIAL_EOL();
  2073. }
  2074. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2075. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2076. #endif
  2077. feedrate_mm_s = old_feedrate_mm_s;
  2078. if (isnan(measured_z)) {
  2079. LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
  2080. SERIAL_ERROR_START();
  2081. SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
  2082. }
  2083. return measured_z;
  2084. }
  2085. #endif // HAS_BED_PROBE
  2086. #if HAS_LEVELING
  2087. bool leveling_is_valid() {
  2088. return
  2089. #if ENABLED(MESH_BED_LEVELING)
  2090. mbl.has_mesh()
  2091. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2092. !!bilinear_grid_spacing[X_AXIS]
  2093. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2094. true
  2095. #else // 3POINT, LINEAR
  2096. true
  2097. #endif
  2098. ;
  2099. }
  2100. bool leveling_is_active() {
  2101. return
  2102. #if ENABLED(MESH_BED_LEVELING)
  2103. mbl.active()
  2104. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2105. ubl.state.active
  2106. #else
  2107. planner.abl_enabled
  2108. #endif
  2109. ;
  2110. }
  2111. /**
  2112. * Turn bed leveling on or off, fixing the current
  2113. * position as-needed.
  2114. *
  2115. * Disable: Current position = physical position
  2116. * Enable: Current position = "unleveled" physical position
  2117. */
  2118. void set_bed_leveling_enabled(const bool enable/*=true*/) {
  2119. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2120. const bool can_change = (!enable || leveling_is_valid());
  2121. #else
  2122. constexpr bool can_change = true;
  2123. #endif
  2124. if (can_change && enable != leveling_is_active()) {
  2125. #if ENABLED(MESH_BED_LEVELING)
  2126. if (!enable)
  2127. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2128. const bool enabling = enable && leveling_is_valid();
  2129. mbl.set_active(enabling);
  2130. if (enabling) planner.unapply_leveling(current_position);
  2131. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2132. #if PLANNER_LEVELING
  2133. if (ubl.state.active) { // leveling from on to off
  2134. // change unleveled current_position to physical current_position without moving steppers.
  2135. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2136. ubl.state.active = false; // disable only AFTER calling apply_leveling
  2137. }
  2138. else { // leveling from off to on
  2139. ubl.state.active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
  2140. // change physical current_position to unleveled current_position without moving steppers.
  2141. planner.unapply_leveling(current_position);
  2142. }
  2143. #else
  2144. ubl.state.active = enable; // just flip the bit, current_position will be wrong until next move.
  2145. #endif
  2146. #else // ABL
  2147. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2148. // Force bilinear_z_offset to re-calculate next time
  2149. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2150. (void)bilinear_z_offset(reset);
  2151. #endif
  2152. // Enable or disable leveling compensation in the planner
  2153. planner.abl_enabled = enable;
  2154. if (!enable)
  2155. // When disabling just get the current position from the steppers.
  2156. // This will yield the smallest error when first converted back to steps.
  2157. set_current_from_steppers_for_axis(
  2158. #if ABL_PLANAR
  2159. ALL_AXES
  2160. #else
  2161. Z_AXIS
  2162. #endif
  2163. );
  2164. else
  2165. // When enabling, remove compensation from the current position,
  2166. // so compensation will give the right stepper counts.
  2167. planner.unapply_leveling(current_position);
  2168. #endif // ABL
  2169. }
  2170. }
  2171. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2172. void set_z_fade_height(const float zfh) {
  2173. const bool level_active = leveling_is_active();
  2174. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2175. if (level_active)
  2176. set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
  2177. planner.z_fade_height = zfh;
  2178. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2179. if (level_active)
  2180. set_bed_leveling_enabled(true); // turn back on after changing fade height
  2181. #else
  2182. planner.z_fade_height = zfh;
  2183. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2184. if (level_active) {
  2185. set_current_from_steppers_for_axis(
  2186. #if ABL_PLANAR
  2187. ALL_AXES
  2188. #else
  2189. Z_AXIS
  2190. #endif
  2191. );
  2192. }
  2193. #endif
  2194. }
  2195. #endif // LEVELING_FADE_HEIGHT
  2196. /**
  2197. * Reset calibration results to zero.
  2198. */
  2199. void reset_bed_level() {
  2200. set_bed_leveling_enabled(false);
  2201. #if ENABLED(MESH_BED_LEVELING)
  2202. if (leveling_is_valid()) {
  2203. mbl.reset();
  2204. mbl.set_has_mesh(false);
  2205. }
  2206. #else
  2207. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2208. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2209. #endif
  2210. #if ABL_PLANAR
  2211. planner.bed_level_matrix.set_to_identity();
  2212. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2213. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2214. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2215. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2216. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2217. z_values[x][y] = NAN;
  2218. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2219. ubl.reset();
  2220. #endif
  2221. #endif
  2222. }
  2223. #endif // HAS_LEVELING
  2224. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2225. /**
  2226. * Enable to produce output in JSON format suitable
  2227. * for SCAD or JavaScript mesh visualizers.
  2228. *
  2229. * Visualize meshes in OpenSCAD using the included script.
  2230. *
  2231. * buildroot/shared/scripts/MarlinMesh.scad
  2232. */
  2233. //#define SCAD_MESH_OUTPUT
  2234. /**
  2235. * Print calibration results for plotting or manual frame adjustment.
  2236. */
  2237. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2238. #ifndef SCAD_MESH_OUTPUT
  2239. for (uint8_t x = 0; x < sx; x++) {
  2240. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2241. SERIAL_PROTOCOLCHAR(' ');
  2242. SERIAL_PROTOCOL((int)x);
  2243. }
  2244. SERIAL_EOL();
  2245. #endif
  2246. #ifdef SCAD_MESH_OUTPUT
  2247. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2248. #endif
  2249. for (uint8_t y = 0; y < sy; y++) {
  2250. #ifdef SCAD_MESH_OUTPUT
  2251. SERIAL_PROTOCOLPGM(" ["); // open sub-array
  2252. #else
  2253. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2254. SERIAL_PROTOCOL((int)y);
  2255. #endif
  2256. for (uint8_t x = 0; x < sx; x++) {
  2257. SERIAL_PROTOCOLCHAR(' ');
  2258. const float offset = fn(x, y);
  2259. if (!isnan(offset)) {
  2260. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2261. SERIAL_PROTOCOL_F(offset, precision);
  2262. }
  2263. else {
  2264. #ifdef SCAD_MESH_OUTPUT
  2265. for (uint8_t i = 3; i < precision + 3; i++)
  2266. SERIAL_PROTOCOLCHAR(' ');
  2267. SERIAL_PROTOCOLPGM("NAN");
  2268. #else
  2269. for (uint8_t i = 0; i < precision + 3; i++)
  2270. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2271. #endif
  2272. }
  2273. #ifdef SCAD_MESH_OUTPUT
  2274. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2275. #endif
  2276. }
  2277. #ifdef SCAD_MESH_OUTPUT
  2278. SERIAL_PROTOCOLCHAR(' ');
  2279. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2280. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2281. #endif
  2282. SERIAL_EOL();
  2283. }
  2284. #ifdef SCAD_MESH_OUTPUT
  2285. SERIAL_PROTOCOLPGM("];"); // close 2D array
  2286. #endif
  2287. SERIAL_EOL();
  2288. }
  2289. #endif
  2290. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2291. /**
  2292. * Extrapolate a single point from its neighbors
  2293. */
  2294. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2296. if (DEBUGGING(LEVELING)) {
  2297. SERIAL_ECHOPGM("Extrapolate [");
  2298. if (x < 10) SERIAL_CHAR(' ');
  2299. SERIAL_ECHO((int)x);
  2300. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2301. SERIAL_CHAR(' ');
  2302. if (y < 10) SERIAL_CHAR(' ');
  2303. SERIAL_ECHO((int)y);
  2304. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2305. SERIAL_CHAR(']');
  2306. }
  2307. #endif
  2308. if (!isnan(z_values[x][y])) {
  2309. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2310. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2311. #endif
  2312. return; // Don't overwrite good values.
  2313. }
  2314. SERIAL_EOL();
  2315. // Get X neighbors, Y neighbors, and XY neighbors
  2316. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2317. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2318. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2319. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2320. // Treat far unprobed points as zero, near as equal to far
  2321. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2322. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2323. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2324. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2325. // Take the average instead of the median
  2326. z_values[x][y] = (a + b + c) / 3.0;
  2327. // Median is robust (ignores outliers).
  2328. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2329. // : ((c < b) ? b : (a < c) ? a : c);
  2330. }
  2331. //Enable this if your SCARA uses 180° of total area
  2332. //#define EXTRAPOLATE_FROM_EDGE
  2333. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2334. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2335. #define HALF_IN_X
  2336. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2337. #define HALF_IN_Y
  2338. #endif
  2339. #endif
  2340. /**
  2341. * Fill in the unprobed points (corners of circular print surface)
  2342. * using linear extrapolation, away from the center.
  2343. */
  2344. static void extrapolate_unprobed_bed_level() {
  2345. #ifdef HALF_IN_X
  2346. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2347. #else
  2348. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2349. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2350. xlen = ctrx1;
  2351. #endif
  2352. #ifdef HALF_IN_Y
  2353. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2354. #else
  2355. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2356. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2357. ylen = ctry1;
  2358. #endif
  2359. for (uint8_t xo = 0; xo <= xlen; xo++)
  2360. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2361. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2362. #ifndef HALF_IN_X
  2363. const uint8_t x1 = ctrx1 - xo;
  2364. #endif
  2365. #ifndef HALF_IN_Y
  2366. const uint8_t y1 = ctry1 - yo;
  2367. #ifndef HALF_IN_X
  2368. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2369. #endif
  2370. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2371. #endif
  2372. #ifndef HALF_IN_X
  2373. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2374. #endif
  2375. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2376. }
  2377. }
  2378. static void print_bilinear_leveling_grid() {
  2379. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2380. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2381. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2382. );
  2383. }
  2384. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2385. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2386. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2387. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2388. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2389. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2390. int bilinear_grid_spacing_virt[2] = { 0 };
  2391. float bilinear_grid_factor_virt[2] = { 0 };
  2392. static void print_bilinear_leveling_grid_virt() {
  2393. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2394. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2395. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2396. );
  2397. }
  2398. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2399. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2400. uint8_t ep = 0, ip = 1;
  2401. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2402. if (x) {
  2403. ep = GRID_MAX_POINTS_X - 1;
  2404. ip = GRID_MAX_POINTS_X - 2;
  2405. }
  2406. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2407. return LINEAR_EXTRAPOLATION(
  2408. z_values[ep][y - 1],
  2409. z_values[ip][y - 1]
  2410. );
  2411. else
  2412. return LINEAR_EXTRAPOLATION(
  2413. bed_level_virt_coord(ep + 1, y),
  2414. bed_level_virt_coord(ip + 1, y)
  2415. );
  2416. }
  2417. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2418. if (y) {
  2419. ep = GRID_MAX_POINTS_Y - 1;
  2420. ip = GRID_MAX_POINTS_Y - 2;
  2421. }
  2422. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2423. return LINEAR_EXTRAPOLATION(
  2424. z_values[x - 1][ep],
  2425. z_values[x - 1][ip]
  2426. );
  2427. else
  2428. return LINEAR_EXTRAPOLATION(
  2429. bed_level_virt_coord(x, ep + 1),
  2430. bed_level_virt_coord(x, ip + 1)
  2431. );
  2432. }
  2433. return z_values[x - 1][y - 1];
  2434. }
  2435. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2436. return (
  2437. p[i-1] * -t * sq(1 - t)
  2438. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2439. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2440. - p[i+2] * sq(t) * (1 - t)
  2441. ) * 0.5;
  2442. }
  2443. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2444. float row[4], column[4];
  2445. for (uint8_t i = 0; i < 4; i++) {
  2446. for (uint8_t j = 0; j < 4; j++) {
  2447. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2448. }
  2449. row[i] = bed_level_virt_cmr(column, 1, ty);
  2450. }
  2451. return bed_level_virt_cmr(row, 1, tx);
  2452. }
  2453. void bed_level_virt_interpolate() {
  2454. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2455. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2456. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2457. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2458. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2459. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2460. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2461. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2462. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2463. continue;
  2464. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2465. bed_level_virt_2cmr(
  2466. x + 1,
  2467. y + 1,
  2468. (float)tx / (BILINEAR_SUBDIVISIONS),
  2469. (float)ty / (BILINEAR_SUBDIVISIONS)
  2470. );
  2471. }
  2472. }
  2473. #endif // ABL_BILINEAR_SUBDIVISION
  2474. // Refresh after other values have been updated
  2475. void refresh_bed_level() {
  2476. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2477. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2478. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2479. bed_level_virt_interpolate();
  2480. #endif
  2481. }
  2482. #endif // AUTO_BED_LEVELING_BILINEAR
  2483. /**
  2484. * Home an individual linear axis
  2485. */
  2486. static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
  2487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2488. if (DEBUGGING(LEVELING)) {
  2489. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2490. SERIAL_ECHOPAIR(", ", distance);
  2491. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2492. SERIAL_CHAR(')');
  2493. SERIAL_EOL();
  2494. }
  2495. #endif
  2496. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2497. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2498. if (deploy_bltouch) set_bltouch_deployed(true);
  2499. #endif
  2500. #if QUIET_PROBING
  2501. if (axis == Z_AXIS) probing_pause(true);
  2502. #endif
  2503. // Tell the planner we're at Z=0
  2504. current_position[axis] = 0;
  2505. #if IS_SCARA
  2506. SYNC_PLAN_POSITION_KINEMATIC();
  2507. current_position[axis] = distance;
  2508. inverse_kinematics(current_position);
  2509. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2510. #else
  2511. sync_plan_position();
  2512. current_position[axis] = distance;
  2513. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2514. #endif
  2515. stepper.synchronize();
  2516. #if QUIET_PROBING
  2517. if (axis == Z_AXIS) probing_pause(false);
  2518. #endif
  2519. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2520. if (deploy_bltouch) set_bltouch_deployed(false);
  2521. #endif
  2522. endstops.hit_on_purpose();
  2523. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2524. if (DEBUGGING(LEVELING)) {
  2525. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2526. SERIAL_CHAR(')');
  2527. SERIAL_EOL();
  2528. }
  2529. #endif
  2530. }
  2531. /**
  2532. * TMC2130 specific sensorless homing using stallGuard2.
  2533. * stallGuard2 only works when in spreadCycle mode.
  2534. * spreadCycle and stealthChop are mutually exclusive.
  2535. */
  2536. #if ENABLED(SENSORLESS_HOMING)
  2537. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2538. #if ENABLED(STEALTHCHOP)
  2539. if (enable) {
  2540. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2541. st.stealthChop(0);
  2542. }
  2543. else {
  2544. st.coolstep_min_speed(0);
  2545. st.stealthChop(1);
  2546. }
  2547. #endif
  2548. st.diag1_stall(enable ? 1 : 0);
  2549. }
  2550. #endif
  2551. /**
  2552. * Home an individual "raw axis" to its endstop.
  2553. * This applies to XYZ on Cartesian and Core robots, and
  2554. * to the individual ABC steppers on DELTA and SCARA.
  2555. *
  2556. * At the end of the procedure the axis is marked as
  2557. * homed and the current position of that axis is updated.
  2558. * Kinematic robots should wait till all axes are homed
  2559. * before updating the current position.
  2560. */
  2561. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2562. static void homeaxis(const AxisEnum axis) {
  2563. #if IS_SCARA
  2564. // Only Z homing (with probe) is permitted
  2565. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2566. #else
  2567. #define CAN_HOME(A) \
  2568. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2569. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2570. #endif
  2571. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2572. if (DEBUGGING(LEVELING)) {
  2573. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2574. SERIAL_CHAR(')');
  2575. SERIAL_EOL();
  2576. }
  2577. #endif
  2578. const int axis_home_dir =
  2579. #if ENABLED(DUAL_X_CARRIAGE)
  2580. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2581. #endif
  2582. home_dir(axis);
  2583. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2584. #if HOMING_Z_WITH_PROBE
  2585. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2586. #endif
  2587. // Set a flag for Z motor locking
  2588. #if ENABLED(Z_DUAL_ENDSTOPS)
  2589. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2590. #endif
  2591. // Disable stealthChop if used. Enable diag1 pin on driver.
  2592. #if ENABLED(SENSORLESS_HOMING)
  2593. #if ENABLED(X_IS_TMC2130)
  2594. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2595. #endif
  2596. #if ENABLED(Y_IS_TMC2130)
  2597. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2598. #endif
  2599. #endif
  2600. // Fast move towards endstop until triggered
  2601. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2602. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2603. #endif
  2604. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2605. // When homing Z with probe respect probe clearance
  2606. const float bump = axis_home_dir * (
  2607. #if HOMING_Z_WITH_PROBE
  2608. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2609. #endif
  2610. home_bump_mm(axis)
  2611. );
  2612. // If a second homing move is configured...
  2613. if (bump) {
  2614. // Move away from the endstop by the axis HOME_BUMP_MM
  2615. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2616. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2617. #endif
  2618. do_homing_move(axis, -bump);
  2619. // Slow move towards endstop until triggered
  2620. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2621. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2622. #endif
  2623. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2624. }
  2625. #if ENABLED(Z_DUAL_ENDSTOPS)
  2626. if (axis == Z_AXIS) {
  2627. float adj = FABS(z_endstop_adj);
  2628. bool lockZ1;
  2629. if (axis_home_dir > 0) {
  2630. adj = -adj;
  2631. lockZ1 = (z_endstop_adj > 0);
  2632. }
  2633. else
  2634. lockZ1 = (z_endstop_adj < 0);
  2635. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2636. // Move to the adjusted endstop height
  2637. do_homing_move(axis, adj);
  2638. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2639. stepper.set_homing_flag(false);
  2640. } // Z_AXIS
  2641. #endif
  2642. #if IS_SCARA
  2643. set_axis_is_at_home(axis);
  2644. SYNC_PLAN_POSITION_KINEMATIC();
  2645. #elif ENABLED(DELTA)
  2646. // Delta has already moved all three towers up in G28
  2647. // so here it re-homes each tower in turn.
  2648. // Delta homing treats the axes as normal linear axes.
  2649. // retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
  2650. if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2651. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2652. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2653. #endif
  2654. do_homing_move(axis, endstop_adj[axis] - 0.1 * Z_HOME_DIR);
  2655. }
  2656. #else
  2657. // For cartesian/core machines,
  2658. // set the axis to its home position
  2659. set_axis_is_at_home(axis);
  2660. sync_plan_position();
  2661. destination[axis] = current_position[axis];
  2662. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2663. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2664. #endif
  2665. #endif
  2666. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2667. #if ENABLED(SENSORLESS_HOMING)
  2668. #if ENABLED(X_IS_TMC2130)
  2669. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2670. #endif
  2671. #if ENABLED(Y_IS_TMC2130)
  2672. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2673. #endif
  2674. #endif
  2675. // Put away the Z probe
  2676. #if HOMING_Z_WITH_PROBE
  2677. if (axis == Z_AXIS && STOW_PROBE()) return;
  2678. #endif
  2679. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2680. if (DEBUGGING(LEVELING)) {
  2681. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2682. SERIAL_CHAR(')');
  2683. SERIAL_EOL();
  2684. }
  2685. #endif
  2686. } // homeaxis()
  2687. #if ENABLED(FWRETRACT)
  2688. /**
  2689. * Retract or recover according to firmware settings
  2690. *
  2691. * This function handles retract/recover moves for G10 and G11,
  2692. * plus auto-retract moves sent from G0/G1 when E-only moves are done.
  2693. *
  2694. * To simplify the logic, doubled retract/recover moves are ignored.
  2695. *
  2696. * Note: Z lift is done transparently to the planner. Aborting
  2697. * a print between G10 and G11 may corrupt the Z position.
  2698. *
  2699. * Note: Auto-retract will apply the set Z hop in addition to any Z hop
  2700. * included in the G-code. Use M207 Z0 to to prevent double hop.
  2701. */
  2702. void retract(const bool retracting
  2703. #if EXTRUDERS > 1
  2704. , bool swapping = false
  2705. #endif
  2706. ) {
  2707. static float hop_height, // Remember where the Z height started
  2708. hop_amount = 0.0; // Total amount lifted, for use in recover
  2709. // Simply never allow two retracts or recovers in a row
  2710. if (retracted[active_extruder] == retracting) return;
  2711. #if EXTRUDERS < 2
  2712. bool swapping = false;
  2713. #endif
  2714. if (!retracting) swapping = retracted_swap[active_extruder];
  2715. /* // debugging
  2716. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2717. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2718. SERIAL_ECHOLNPAIR("active extruder ", active_extruder);
  2719. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2720. SERIAL_ECHOPAIR("retracted[", i);
  2721. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2722. SERIAL_ECHOPAIR("retracted_swap[", i);
  2723. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2724. }
  2725. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2726. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2727. //*/
  2728. const bool has_zhop = retract_zlift > 0.01; // Is there a hop set?
  2729. const float old_feedrate_mm_s = feedrate_mm_s;
  2730. const int16_t old_flow = flow_percentage[active_extruder];
  2731. // Don't apply flow multiplication to retract/recover
  2732. flow_percentage[active_extruder] = 100;
  2733. // The current position will be the destination for E and Z moves
  2734. set_destination_to_current();
  2735. stepper.synchronize(); // Wait for all moves to finish
  2736. if (retracting) {
  2737. // Remember the Z height since G-code may include its own Z-hop
  2738. // For best results turn off Z hop if G-code already includes it
  2739. hop_height = destination[Z_AXIS];
  2740. // Retract by moving from a faux E position back to the current E position
  2741. feedrate_mm_s = retract_feedrate_mm_s;
  2742. current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) / volumetric_multiplier[active_extruder];
  2743. sync_plan_position_e();
  2744. prepare_move_to_destination();
  2745. // Is a Z hop set, and has the hop not yet been done?
  2746. if (has_zhop) {
  2747. hop_amount += retract_zlift; // Carriage is raised for retraction hop
  2748. current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2749. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2750. prepare_move_to_destination(); // Raise up to the old current pos
  2751. }
  2752. }
  2753. else {
  2754. // If a hop was done and Z hasn't changed, undo the Z hop
  2755. if (hop_amount && NEAR(hop_height, destination[Z_AXIS])) {
  2756. current_position[Z_AXIS] += hop_amount; // Pretend current pos is higher. Next move lowers Z.
  2757. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2758. prepare_move_to_destination(); // Lower to the old current pos
  2759. hop_amount = 0.0;
  2760. }
  2761. // A retract multiplier has been added here to get faster swap recovery
  2762. feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
  2763. const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length;
  2764. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2765. sync_plan_position_e();
  2766. prepare_move_to_destination(); // Recover E
  2767. }
  2768. // Restore flow and feedrate
  2769. flow_percentage[active_extruder] = old_flow;
  2770. feedrate_mm_s = old_feedrate_mm_s;
  2771. // The active extruder is now retracted or recovered
  2772. retracted[active_extruder] = retracting;
  2773. // If swap retract/recover then update the retracted_swap flag too
  2774. #if EXTRUDERS > 1
  2775. if (swapping) retracted_swap[active_extruder] = retracting;
  2776. #endif
  2777. /* // debugging
  2778. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2779. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2780. SERIAL_ECHOLNPAIR("active_extruder ", active_extruder);
  2781. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2782. SERIAL_ECHOPAIR("retracted[", i);
  2783. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2784. SERIAL_ECHOPAIR("retracted_swap[", i);
  2785. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2786. }
  2787. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2788. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2789. //*/
  2790. } // retract()
  2791. #endif // FWRETRACT
  2792. #if ENABLED(MIXING_EXTRUDER)
  2793. void normalize_mix() {
  2794. float mix_total = 0.0;
  2795. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2796. // Scale all values if they don't add up to ~1.0
  2797. if (!NEAR(mix_total, 1.0)) {
  2798. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2799. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2800. }
  2801. }
  2802. #if ENABLED(DIRECT_MIXING_IN_G1)
  2803. // Get mixing parameters from the GCode
  2804. // The total "must" be 1.0 (but it will be normalized)
  2805. // If no mix factors are given, the old mix is preserved
  2806. void gcode_get_mix() {
  2807. const char* mixing_codes = "ABCDHI";
  2808. byte mix_bits = 0;
  2809. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2810. if (parser.seenval(mixing_codes[i])) {
  2811. SBI(mix_bits, i);
  2812. float v = parser.value_float();
  2813. NOLESS(v, 0.0);
  2814. mixing_factor[i] = RECIPROCAL(v);
  2815. }
  2816. }
  2817. // If any mixing factors were included, clear the rest
  2818. // If none were included, preserve the last mix
  2819. if (mix_bits) {
  2820. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2821. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2822. normalize_mix();
  2823. }
  2824. }
  2825. #endif
  2826. #endif
  2827. /**
  2828. * ***************************************************************************
  2829. * ***************************** G-CODE HANDLING *****************************
  2830. * ***************************************************************************
  2831. */
  2832. /**
  2833. * Set XYZE destination and feedrate from the current GCode command
  2834. *
  2835. * - Set destination from included axis codes
  2836. * - Set to current for missing axis codes
  2837. * - Set the feedrate, if included
  2838. */
  2839. void gcode_get_destination() {
  2840. LOOP_XYZE(i) {
  2841. if (parser.seen(axis_codes[i]))
  2842. destination[i] = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2843. else
  2844. destination[i] = current_position[i];
  2845. }
  2846. if (parser.linearval('F') > 0.0)
  2847. feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
  2848. #if ENABLED(PRINTCOUNTER)
  2849. if (!DEBUGGING(DRYRUN))
  2850. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2851. #endif
  2852. // Get ABCDHI mixing factors
  2853. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2854. gcode_get_mix();
  2855. #endif
  2856. }
  2857. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2858. /**
  2859. * Output a "busy" message at regular intervals
  2860. * while the machine is not accepting commands.
  2861. */
  2862. void host_keepalive() {
  2863. const millis_t ms = millis();
  2864. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2865. if (PENDING(ms, next_busy_signal_ms)) return;
  2866. switch (busy_state) {
  2867. case IN_HANDLER:
  2868. case IN_PROCESS:
  2869. SERIAL_ECHO_START();
  2870. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2871. break;
  2872. case PAUSED_FOR_USER:
  2873. SERIAL_ECHO_START();
  2874. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2875. break;
  2876. case PAUSED_FOR_INPUT:
  2877. SERIAL_ECHO_START();
  2878. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2879. break;
  2880. default:
  2881. break;
  2882. }
  2883. }
  2884. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2885. }
  2886. #endif // HOST_KEEPALIVE_FEATURE
  2887. /**************************************************
  2888. ***************** GCode Handlers *****************
  2889. **************************************************/
  2890. /**
  2891. * G0, G1: Coordinated movement of X Y Z E axes
  2892. */
  2893. inline void gcode_G0_G1(
  2894. #if IS_SCARA
  2895. bool fast_move=false
  2896. #endif
  2897. ) {
  2898. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2899. if (axis_unhomed_error()) return;
  2900. #endif
  2901. if (IsRunning()) {
  2902. gcode_get_destination(); // For X Y Z E F
  2903. #if ENABLED(FWRETRACT)
  2904. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  2905. // When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
  2906. if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
  2907. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2908. // Is this a retract or recover move?
  2909. if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) {
  2910. current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations
  2911. sync_plan_position_e(); // AND from the planner
  2912. return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored)
  2913. }
  2914. }
  2915. }
  2916. #endif // FWRETRACT
  2917. #if IS_SCARA
  2918. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2919. #else
  2920. prepare_move_to_destination();
  2921. #endif
  2922. }
  2923. }
  2924. /**
  2925. * G2: Clockwise Arc
  2926. * G3: Counterclockwise Arc
  2927. *
  2928. * This command has two forms: IJ-form and R-form.
  2929. *
  2930. * - I specifies an X offset. J specifies a Y offset.
  2931. * At least one of the IJ parameters is required.
  2932. * X and Y can be omitted to do a complete circle.
  2933. * The given XY is not error-checked. The arc ends
  2934. * based on the angle of the destination.
  2935. * Mixing I or J with R will throw an error.
  2936. *
  2937. * - R specifies the radius. X or Y is required.
  2938. * Omitting both X and Y will throw an error.
  2939. * X or Y must differ from the current XY.
  2940. * Mixing R with I or J will throw an error.
  2941. *
  2942. * - P specifies the number of full circles to do
  2943. * before the specified arc move.
  2944. *
  2945. * Examples:
  2946. *
  2947. * G2 I10 ; CW circle centered at X+10
  2948. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2949. */
  2950. #if ENABLED(ARC_SUPPORT)
  2951. inline void gcode_G2_G3(bool clockwise) {
  2952. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2953. if (axis_unhomed_error()) return;
  2954. #endif
  2955. if (IsRunning()) {
  2956. #if ENABLED(SF_ARC_FIX)
  2957. const bool relative_mode_backup = relative_mode;
  2958. relative_mode = true;
  2959. #endif
  2960. gcode_get_destination();
  2961. #if ENABLED(SF_ARC_FIX)
  2962. relative_mode = relative_mode_backup;
  2963. #endif
  2964. float arc_offset[2] = { 0.0, 0.0 };
  2965. if (parser.seenval('R')) {
  2966. const float r = parser.value_linear_units(),
  2967. p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
  2968. p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
  2969. if (r && (p2 != p1 || q2 != q1)) {
  2970. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2971. dx = p2 - p1, dy = q2 - q1, // X and Y differences
  2972. d = HYPOT(dx, dy), // Linear distance between the points
  2973. h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2974. mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
  2975. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2976. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2977. arc_offset[0] = cx - p1;
  2978. arc_offset[1] = cy - q1;
  2979. }
  2980. }
  2981. else {
  2982. if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
  2983. if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
  2984. }
  2985. if (arc_offset[0] || arc_offset[1]) {
  2986. #if ENABLED(ARC_P_CIRCLES)
  2987. // P indicates number of circles to do
  2988. int8_t circles_to_do = parser.byteval('P');
  2989. if (!WITHIN(circles_to_do, 0, 100)) {
  2990. SERIAL_ERROR_START();
  2991. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2992. }
  2993. while (circles_to_do--)
  2994. plan_arc(current_position, arc_offset, clockwise);
  2995. #endif
  2996. // Send the arc to the planner
  2997. plan_arc(destination, arc_offset, clockwise);
  2998. refresh_cmd_timeout();
  2999. }
  3000. else {
  3001. // Bad arguments
  3002. SERIAL_ERROR_START();
  3003. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  3004. }
  3005. }
  3006. }
  3007. #endif // ARC_SUPPORT
  3008. void dwell(millis_t time) {
  3009. refresh_cmd_timeout();
  3010. time += previous_cmd_ms;
  3011. while (PENDING(millis(), time)) idle();
  3012. }
  3013. /**
  3014. * G4: Dwell S<seconds> or P<milliseconds>
  3015. */
  3016. inline void gcode_G4() {
  3017. millis_t dwell_ms = 0;
  3018. if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
  3019. if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
  3020. stepper.synchronize();
  3021. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  3022. dwell(dwell_ms);
  3023. }
  3024. #if ENABLED(BEZIER_CURVE_SUPPORT)
  3025. /**
  3026. * Parameters interpreted according to:
  3027. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  3028. * However I, J omission is not supported at this point; all
  3029. * parameters can be omitted and default to zero.
  3030. */
  3031. /**
  3032. * G5: Cubic B-spline
  3033. */
  3034. inline void gcode_G5() {
  3035. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  3036. if (axis_unhomed_error()) return;
  3037. #endif
  3038. if (IsRunning()) {
  3039. #if ENABLED(CNC_WORKSPACE_PLANES)
  3040. if (workspace_plane != PLANE_XY) {
  3041. SERIAL_ERROR_START();
  3042. SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
  3043. return;
  3044. }
  3045. #endif
  3046. gcode_get_destination();
  3047. const float offset[] = {
  3048. parser.linearval('I'),
  3049. parser.linearval('J'),
  3050. parser.linearval('P'),
  3051. parser.linearval('Q')
  3052. };
  3053. plan_cubic_move(offset);
  3054. }
  3055. }
  3056. #endif // BEZIER_CURVE_SUPPORT
  3057. #if ENABLED(FWRETRACT)
  3058. /**
  3059. * G10 - Retract filament according to settings of M207
  3060. */
  3061. inline void gcode_G10() {
  3062. #if EXTRUDERS > 1
  3063. const bool rs = parser.boolval('S');
  3064. retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
  3065. #endif
  3066. retract(true
  3067. #if EXTRUDERS > 1
  3068. , rs
  3069. #endif
  3070. );
  3071. }
  3072. /**
  3073. * G11 - Recover filament according to settings of M208
  3074. */
  3075. inline void gcode_G11() { retract(false); }
  3076. #endif // FWRETRACT
  3077. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  3078. /**
  3079. * G12: Clean the nozzle
  3080. */
  3081. inline void gcode_G12() {
  3082. // Don't allow nozzle cleaning without homing first
  3083. if (axis_unhomed_error()) return;
  3084. const uint8_t pattern = parser.ushortval('P', 0),
  3085. strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
  3086. objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
  3087. const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
  3088. Nozzle::clean(pattern, strokes, radius, objects);
  3089. }
  3090. #endif
  3091. #if ENABLED(CNC_WORKSPACE_PLANES)
  3092. void report_workspace_plane() {
  3093. SERIAL_ECHO_START();
  3094. SERIAL_ECHOPGM("Workspace Plane ");
  3095. serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") : workspace_plane == PLANE_ZX ? PSTR("ZX\n") : PSTR("XY\n"));
  3096. }
  3097. /**
  3098. * G17: Select Plane XY
  3099. * G18: Select Plane ZX
  3100. * G19: Select Plane YZ
  3101. */
  3102. inline void gcode_G17() { workspace_plane = PLANE_XY; }
  3103. inline void gcode_G18() { workspace_plane = PLANE_ZX; }
  3104. inline void gcode_G19() { workspace_plane = PLANE_YZ; }
  3105. #endif // CNC_WORKSPACE_PLANES
  3106. #if ENABLED(INCH_MODE_SUPPORT)
  3107. /**
  3108. * G20: Set input mode to inches
  3109. */
  3110. inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
  3111. /**
  3112. * G21: Set input mode to millimeters
  3113. */
  3114. inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
  3115. #endif
  3116. #if ENABLED(NOZZLE_PARK_FEATURE)
  3117. /**
  3118. * G27: Park the nozzle
  3119. */
  3120. inline void gcode_G27() {
  3121. // Don't allow nozzle parking without homing first
  3122. if (axis_unhomed_error()) return;
  3123. Nozzle::park(parser.ushortval('P'));
  3124. }
  3125. #endif // NOZZLE_PARK_FEATURE
  3126. #if ENABLED(QUICK_HOME)
  3127. static void quick_home_xy() {
  3128. // Pretend the current position is 0,0
  3129. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3130. sync_plan_position();
  3131. const int x_axis_home_dir =
  3132. #if ENABLED(DUAL_X_CARRIAGE)
  3133. x_home_dir(active_extruder)
  3134. #else
  3135. home_dir(X_AXIS)
  3136. #endif
  3137. ;
  3138. const float mlx = max_length(X_AXIS),
  3139. mly = max_length(Y_AXIS),
  3140. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  3141. fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
  3142. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  3143. endstops.hit_on_purpose(); // clear endstop hit flags
  3144. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3145. }
  3146. #endif // QUICK_HOME
  3147. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3148. void log_machine_info() {
  3149. SERIAL_ECHOPGM("Machine Type: ");
  3150. #if ENABLED(DELTA)
  3151. SERIAL_ECHOLNPGM("Delta");
  3152. #elif IS_SCARA
  3153. SERIAL_ECHOLNPGM("SCARA");
  3154. #elif IS_CORE
  3155. SERIAL_ECHOLNPGM("Core");
  3156. #else
  3157. SERIAL_ECHOLNPGM("Cartesian");
  3158. #endif
  3159. SERIAL_ECHOPGM("Probe: ");
  3160. #if ENABLED(PROBE_MANUALLY)
  3161. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3162. #elif ENABLED(FIX_MOUNTED_PROBE)
  3163. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3164. #elif ENABLED(BLTOUCH)
  3165. SERIAL_ECHOLNPGM("BLTOUCH");
  3166. #elif HAS_Z_SERVO_ENDSTOP
  3167. SERIAL_ECHOLNPGM("SERVO PROBE");
  3168. #elif ENABLED(Z_PROBE_SLED)
  3169. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3170. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3171. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3172. #else
  3173. SERIAL_ECHOLNPGM("NONE");
  3174. #endif
  3175. #if HAS_BED_PROBE
  3176. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3177. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3178. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3179. #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
  3180. SERIAL_ECHOPGM(" (Right");
  3181. #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
  3182. SERIAL_ECHOPGM(" (Left");
  3183. #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
  3184. SERIAL_ECHOPGM(" (Middle");
  3185. #else
  3186. SERIAL_ECHOPGM(" (Aligned With");
  3187. #endif
  3188. #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
  3189. SERIAL_ECHOPGM("-Back");
  3190. #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
  3191. SERIAL_ECHOPGM("-Front");
  3192. #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
  3193. SERIAL_ECHOPGM("-Center");
  3194. #endif
  3195. if (zprobe_zoffset < 0)
  3196. SERIAL_ECHOPGM(" & Below");
  3197. else if (zprobe_zoffset > 0)
  3198. SERIAL_ECHOPGM(" & Above");
  3199. else
  3200. SERIAL_ECHOPGM(" & Same Z as");
  3201. SERIAL_ECHOLNPGM(" Nozzle)");
  3202. #endif
  3203. #if HAS_ABL
  3204. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3205. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3206. SERIAL_ECHOPGM("LINEAR");
  3207. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3208. SERIAL_ECHOPGM("BILINEAR");
  3209. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3210. SERIAL_ECHOPGM("3POINT");
  3211. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3212. SERIAL_ECHOPGM("UBL");
  3213. #endif
  3214. if (leveling_is_active()) {
  3215. SERIAL_ECHOLNPGM(" (enabled)");
  3216. #if ABL_PLANAR
  3217. const float diff[XYZ] = {
  3218. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3219. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3220. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3221. };
  3222. SERIAL_ECHOPGM("ABL Adjustment X");
  3223. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3224. SERIAL_ECHO(diff[X_AXIS]);
  3225. SERIAL_ECHOPGM(" Y");
  3226. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3227. SERIAL_ECHO(diff[Y_AXIS]);
  3228. SERIAL_ECHOPGM(" Z");
  3229. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3230. SERIAL_ECHO(diff[Z_AXIS]);
  3231. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3232. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3233. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3234. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3235. #endif
  3236. }
  3237. else
  3238. SERIAL_ECHOLNPGM(" (disabled)");
  3239. SERIAL_EOL();
  3240. #elif ENABLED(MESH_BED_LEVELING)
  3241. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3242. if (leveling_is_active()) {
  3243. float lz = current_position[Z_AXIS];
  3244. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3245. SERIAL_ECHOLNPGM(" (enabled)");
  3246. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3247. }
  3248. else
  3249. SERIAL_ECHOPGM(" (disabled)");
  3250. SERIAL_EOL();
  3251. #endif // MESH_BED_LEVELING
  3252. }
  3253. #endif // DEBUG_LEVELING_FEATURE
  3254. #if ENABLED(DELTA)
  3255. /**
  3256. * A delta can only safely home all axes at the same time
  3257. * This is like quick_home_xy() but for 3 towers.
  3258. */
  3259. inline bool home_delta() {
  3260. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3261. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3262. #endif
  3263. // Init the current position of all carriages to 0,0,0
  3264. ZERO(current_position);
  3265. sync_plan_position();
  3266. // Move all carriages together linearly until an endstop is hit.
  3267. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (DELTA_HEIGHT + home_offset[Z_AXIS] + 10);
  3268. feedrate_mm_s = homing_feedrate(X_AXIS);
  3269. line_to_current_position();
  3270. stepper.synchronize();
  3271. // If an endstop was not hit, then damage can occur if homing is continued.
  3272. // This can occur if the delta height (DELTA_HEIGHT + home_offset[Z_AXIS]) is
  3273. // not set correctly.
  3274. if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
  3275. LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
  3276. SERIAL_ERROR_START();
  3277. SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
  3278. return false;
  3279. }
  3280. endstops.hit_on_purpose(); // clear endstop hit flags
  3281. // At least one carriage has reached the top.
  3282. // Now re-home each carriage separately.
  3283. HOMEAXIS(A);
  3284. HOMEAXIS(B);
  3285. HOMEAXIS(C);
  3286. // Set all carriages to their home positions
  3287. // Do this here all at once for Delta, because
  3288. // XYZ isn't ABC. Applying this per-tower would
  3289. // give the impression that they are the same.
  3290. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3291. SYNC_PLAN_POSITION_KINEMATIC();
  3292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3293. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3294. #endif
  3295. return true;
  3296. }
  3297. #endif // DELTA
  3298. #if ENABLED(Z_SAFE_HOMING)
  3299. inline void home_z_safely() {
  3300. // Disallow Z homing if X or Y are unknown
  3301. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3302. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3303. SERIAL_ECHO_START();
  3304. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3305. return;
  3306. }
  3307. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3308. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3309. #endif
  3310. SYNC_PLAN_POSITION_KINEMATIC();
  3311. /**
  3312. * Move the Z probe (or just the nozzle) to the safe homing point
  3313. */
  3314. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3315. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3316. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3317. #if HOMING_Z_WITH_PROBE
  3318. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3319. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3320. #endif
  3321. if (position_is_reachable_xy(destination[X_AXIS], destination[Y_AXIS])) {
  3322. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3323. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3324. #endif
  3325. // This causes the carriage on Dual X to unpark
  3326. #if ENABLED(DUAL_X_CARRIAGE)
  3327. active_extruder_parked = false;
  3328. #endif
  3329. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3330. HOMEAXIS(Z);
  3331. }
  3332. else {
  3333. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3334. SERIAL_ECHO_START();
  3335. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3336. }
  3337. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3338. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3339. #endif
  3340. }
  3341. #endif // Z_SAFE_HOMING
  3342. #if ENABLED(PROBE_MANUALLY)
  3343. bool g29_in_progress = false;
  3344. #else
  3345. constexpr bool g29_in_progress = false;
  3346. #endif
  3347. /**
  3348. * G28: Home all axes according to settings
  3349. *
  3350. * Parameters
  3351. *
  3352. * None Home to all axes with no parameters.
  3353. * With QUICK_HOME enabled XY will home together, then Z.
  3354. *
  3355. * Cartesian parameters
  3356. *
  3357. * X Home to the X endstop
  3358. * Y Home to the Y endstop
  3359. * Z Home to the Z endstop
  3360. *
  3361. */
  3362. inline void gcode_G28(const bool always_home_all) {
  3363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3364. if (DEBUGGING(LEVELING)) {
  3365. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3366. log_machine_info();
  3367. }
  3368. #endif
  3369. // Wait for planner moves to finish!
  3370. stepper.synchronize();
  3371. // Cancel the active G29 session
  3372. #if ENABLED(PROBE_MANUALLY)
  3373. g29_in_progress = false;
  3374. #endif
  3375. // Disable the leveling matrix before homing
  3376. #if HAS_LEVELING
  3377. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3378. const bool ubl_state_at_entry = leveling_is_active();
  3379. #endif
  3380. set_bed_leveling_enabled(false);
  3381. #endif
  3382. #if ENABLED(CNC_WORKSPACE_PLANES)
  3383. workspace_plane = PLANE_XY;
  3384. #endif
  3385. // Always home with tool 0 active
  3386. #if HOTENDS > 1
  3387. const uint8_t old_tool_index = active_extruder;
  3388. tool_change(0, 0, true);
  3389. #endif
  3390. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3391. extruder_duplication_enabled = false;
  3392. #endif
  3393. setup_for_endstop_or_probe_move();
  3394. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3395. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3396. #endif
  3397. endstops.enable(true); // Enable endstops for next homing move
  3398. #if ENABLED(DELTA)
  3399. home_delta();
  3400. UNUSED(always_home_all);
  3401. #else // NOT DELTA
  3402. const bool homeX = always_home_all || parser.seen('X'),
  3403. homeY = always_home_all || parser.seen('Y'),
  3404. homeZ = always_home_all || parser.seen('Z'),
  3405. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3406. set_destination_to_current();
  3407. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3408. if (home_all || homeZ) {
  3409. HOMEAXIS(Z);
  3410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3411. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3412. #endif
  3413. }
  3414. #else
  3415. if (home_all || homeX || homeY) {
  3416. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3417. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3418. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3419. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3420. if (DEBUGGING(LEVELING))
  3421. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3422. #endif
  3423. do_blocking_move_to_z(destination[Z_AXIS]);
  3424. }
  3425. }
  3426. #endif
  3427. #if ENABLED(QUICK_HOME)
  3428. if (home_all || (homeX && homeY)) quick_home_xy();
  3429. #endif
  3430. #if ENABLED(HOME_Y_BEFORE_X)
  3431. // Home Y
  3432. if (home_all || homeY) {
  3433. HOMEAXIS(Y);
  3434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3435. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3436. #endif
  3437. }
  3438. #endif
  3439. // Home X
  3440. if (home_all || homeX) {
  3441. #if ENABLED(DUAL_X_CARRIAGE)
  3442. // Always home the 2nd (right) extruder first
  3443. active_extruder = 1;
  3444. HOMEAXIS(X);
  3445. // Remember this extruder's position for later tool change
  3446. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3447. // Home the 1st (left) extruder
  3448. active_extruder = 0;
  3449. HOMEAXIS(X);
  3450. // Consider the active extruder to be parked
  3451. COPY(raised_parked_position, current_position);
  3452. delayed_move_time = 0;
  3453. active_extruder_parked = true;
  3454. #else
  3455. HOMEAXIS(X);
  3456. #endif
  3457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3458. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3459. #endif
  3460. }
  3461. #if DISABLED(HOME_Y_BEFORE_X)
  3462. // Home Y
  3463. if (home_all || homeY) {
  3464. HOMEAXIS(Y);
  3465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3466. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3467. #endif
  3468. }
  3469. #endif
  3470. // Home Z last if homing towards the bed
  3471. #if Z_HOME_DIR < 0
  3472. if (home_all || homeZ) {
  3473. #if ENABLED(Z_SAFE_HOMING)
  3474. home_z_safely();
  3475. #else
  3476. HOMEAXIS(Z);
  3477. #endif
  3478. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3479. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3480. #endif
  3481. } // home_all || homeZ
  3482. #endif // Z_HOME_DIR < 0
  3483. SYNC_PLAN_POSITION_KINEMATIC();
  3484. #endif // !DELTA (gcode_G28)
  3485. endstops.not_homing();
  3486. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3487. // move to a height where we can use the full xy-area
  3488. do_blocking_move_to_z(delta_clip_start_height);
  3489. #endif
  3490. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3491. set_bed_leveling_enabled(ubl_state_at_entry);
  3492. #endif
  3493. clean_up_after_endstop_or_probe_move();
  3494. // Restore the active tool after homing
  3495. #if HOTENDS > 1
  3496. tool_change(old_tool_index, 0,
  3497. #if ENABLED(PARKING_EXTRUDER)
  3498. false // fetch the previous toolhead
  3499. #else
  3500. true
  3501. #endif
  3502. );
  3503. #endif
  3504. lcd_refresh();
  3505. report_current_position();
  3506. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3507. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3508. #endif
  3509. } // G28
  3510. void home_all_axes() { gcode_G28(true); }
  3511. #if HAS_PROBING_PROCEDURE
  3512. void out_of_range_error(const char* p_edge) {
  3513. SERIAL_PROTOCOLPGM("?Probe ");
  3514. serialprintPGM(p_edge);
  3515. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3516. }
  3517. #endif
  3518. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3519. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3520. extern bool lcd_wait_for_move;
  3521. #endif
  3522. inline void _manual_goto_xy(const float &x, const float &y) {
  3523. const float old_feedrate_mm_s = feedrate_mm_s;
  3524. #if MANUAL_PROBE_HEIGHT > 0
  3525. const float prev_z = current_position[Z_AXIS];
  3526. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3527. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MANUAL_PROBE_HEIGHT);
  3528. line_to_current_position();
  3529. #endif
  3530. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3531. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3532. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3533. line_to_current_position();
  3534. #if MANUAL_PROBE_HEIGHT > 0
  3535. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3536. current_position[Z_AXIS] = prev_z; // move back to the previous Z.
  3537. line_to_current_position();
  3538. #endif
  3539. feedrate_mm_s = old_feedrate_mm_s;
  3540. stepper.synchronize();
  3541. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3542. lcd_wait_for_move = false;
  3543. #endif
  3544. }
  3545. #endif
  3546. #if ENABLED(MESH_BED_LEVELING)
  3547. // Save 130 bytes with non-duplication of PSTR
  3548. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3549. void mbl_mesh_report() {
  3550. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3551. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3552. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3553. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3554. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3555. );
  3556. }
  3557. void mesh_probing_done() {
  3558. mbl.set_has_mesh(true);
  3559. home_all_axes();
  3560. set_bed_leveling_enabled(true);
  3561. #if ENABLED(MESH_G28_REST_ORIGIN)
  3562. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3563. set_destination_to_current();
  3564. line_to_destination(homing_feedrate(Z_AXIS));
  3565. stepper.synchronize();
  3566. #endif
  3567. }
  3568. /**
  3569. * G29: Mesh-based Z probe, probes a grid and produces a
  3570. * mesh to compensate for variable bed height
  3571. *
  3572. * Parameters With MESH_BED_LEVELING:
  3573. *
  3574. * S0 Produce a mesh report
  3575. * S1 Start probing mesh points
  3576. * S2 Probe the next mesh point
  3577. * S3 Xn Yn Zn.nn Manually modify a single point
  3578. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3579. * S5 Reset and disable mesh
  3580. *
  3581. * The S0 report the points as below
  3582. *
  3583. * +----> X-axis 1-n
  3584. * |
  3585. * |
  3586. * v Y-axis 1-n
  3587. *
  3588. */
  3589. inline void gcode_G29() {
  3590. static int mbl_probe_index = -1;
  3591. #if HAS_SOFTWARE_ENDSTOPS
  3592. static bool enable_soft_endstops;
  3593. #endif
  3594. const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
  3595. if (!WITHIN(state, 0, 5)) {
  3596. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3597. return;
  3598. }
  3599. int8_t px, py;
  3600. switch (state) {
  3601. case MeshReport:
  3602. if (leveling_is_valid()) {
  3603. SERIAL_PROTOCOLLNPAIR("State: ", leveling_is_active() ? MSG_ON : MSG_OFF);
  3604. mbl_mesh_report();
  3605. }
  3606. else
  3607. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3608. break;
  3609. case MeshStart:
  3610. mbl.reset();
  3611. mbl_probe_index = 0;
  3612. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3613. break;
  3614. case MeshNext:
  3615. if (mbl_probe_index < 0) {
  3616. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3617. return;
  3618. }
  3619. // For each G29 S2...
  3620. if (mbl_probe_index == 0) {
  3621. #if HAS_SOFTWARE_ENDSTOPS
  3622. // For the initial G29 S2 save software endstop state
  3623. enable_soft_endstops = soft_endstops_enabled;
  3624. #endif
  3625. }
  3626. else {
  3627. // For G29 S2 after adjusting Z.
  3628. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3629. #if HAS_SOFTWARE_ENDSTOPS
  3630. soft_endstops_enabled = enable_soft_endstops;
  3631. #endif
  3632. }
  3633. // If there's another point to sample, move there with optional lift.
  3634. if (mbl_probe_index < GRID_MAX_POINTS) {
  3635. mbl.zigzag(mbl_probe_index, px, py);
  3636. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3637. #if HAS_SOFTWARE_ENDSTOPS
  3638. // Disable software endstops to allow manual adjustment
  3639. // If G29 is not completed, they will not be re-enabled
  3640. soft_endstops_enabled = false;
  3641. #endif
  3642. mbl_probe_index++;
  3643. }
  3644. else {
  3645. // One last "return to the bed" (as originally coded) at completion
  3646. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3647. line_to_current_position();
  3648. stepper.synchronize();
  3649. // After recording the last point, activate home and activate
  3650. mbl_probe_index = -1;
  3651. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3652. BUZZ(100, 659);
  3653. BUZZ(100, 698);
  3654. mesh_probing_done();
  3655. }
  3656. break;
  3657. case MeshSet:
  3658. if (parser.seenval('X')) {
  3659. px = parser.value_int() - 1;
  3660. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3661. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3662. return;
  3663. }
  3664. }
  3665. else {
  3666. SERIAL_CHAR('X'); echo_not_entered();
  3667. return;
  3668. }
  3669. if (parser.seenval('Y')) {
  3670. py = parser.value_int() - 1;
  3671. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3672. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3673. return;
  3674. }
  3675. }
  3676. else {
  3677. SERIAL_CHAR('Y'); echo_not_entered();
  3678. return;
  3679. }
  3680. if (parser.seenval('Z')) {
  3681. mbl.z_values[px][py] = parser.value_linear_units();
  3682. }
  3683. else {
  3684. SERIAL_CHAR('Z'); echo_not_entered();
  3685. return;
  3686. }
  3687. break;
  3688. case MeshSetZOffset:
  3689. if (parser.seenval('Z')) {
  3690. mbl.z_offset = parser.value_linear_units();
  3691. }
  3692. else {
  3693. SERIAL_CHAR('Z'); echo_not_entered();
  3694. return;
  3695. }
  3696. break;
  3697. case MeshReset:
  3698. reset_bed_level();
  3699. break;
  3700. } // switch(state)
  3701. report_current_position();
  3702. }
  3703. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3704. #if ABL_GRID
  3705. #if ENABLED(PROBE_Y_FIRST)
  3706. #define PR_OUTER_VAR xCount
  3707. #define PR_OUTER_END abl_grid_points_x
  3708. #define PR_INNER_VAR yCount
  3709. #define PR_INNER_END abl_grid_points_y
  3710. #else
  3711. #define PR_OUTER_VAR yCount
  3712. #define PR_OUTER_END abl_grid_points_y
  3713. #define PR_INNER_VAR xCount
  3714. #define PR_INNER_END abl_grid_points_x
  3715. #endif
  3716. #endif
  3717. /**
  3718. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3719. * Will fail if the printer has not been homed with G28.
  3720. *
  3721. * Enhanced G29 Auto Bed Leveling Probe Routine
  3722. *
  3723. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3724. * or alter the bed level data. Useful to check the topology
  3725. * after a first run of G29.
  3726. *
  3727. * J Jettison current bed leveling data
  3728. *
  3729. * V Set the verbose level (0-4). Example: "G29 V3"
  3730. *
  3731. * Parameters With LINEAR leveling only:
  3732. *
  3733. * P Set the size of the grid that will be probed (P x P points).
  3734. * Example: "G29 P4"
  3735. *
  3736. * X Set the X size of the grid that will be probed (X x Y points).
  3737. * Example: "G29 X7 Y5"
  3738. *
  3739. * Y Set the Y size of the grid that will be probed (X x Y points).
  3740. *
  3741. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3742. * This is useful for manual bed leveling and finding flaws in the bed (to
  3743. * assist with part placement).
  3744. * Not supported by non-linear delta printer bed leveling.
  3745. *
  3746. * Parameters With LINEAR and BILINEAR leveling only:
  3747. *
  3748. * S Set the XY travel speed between probe points (in units/min)
  3749. *
  3750. * F Set the Front limit of the probing grid
  3751. * B Set the Back limit of the probing grid
  3752. * L Set the Left limit of the probing grid
  3753. * R Set the Right limit of the probing grid
  3754. *
  3755. * Parameters with DEBUG_LEVELING_FEATURE only:
  3756. *
  3757. * C Make a totally fake grid with no actual probing.
  3758. * For use in testing when no probing is possible.
  3759. *
  3760. * Parameters with BILINEAR leveling only:
  3761. *
  3762. * Z Supply an additional Z probe offset
  3763. *
  3764. * Extra parameters with PROBE_MANUALLY:
  3765. *
  3766. * To do manual probing simply repeat G29 until the procedure is complete.
  3767. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3768. *
  3769. * Q Query leveling and G29 state
  3770. *
  3771. * A Abort current leveling procedure
  3772. *
  3773. * Extra parameters with BILINEAR only:
  3774. *
  3775. * W Write a mesh point. (If G29 is idle.)
  3776. * I X index for mesh point
  3777. * J Y index for mesh point
  3778. * X X for mesh point, overrides I
  3779. * Y Y for mesh point, overrides J
  3780. * Z Z for mesh point. Otherwise, raw current Z.
  3781. *
  3782. * Without PROBE_MANUALLY:
  3783. *
  3784. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3785. * Include "E" to engage/disengage the Z probe for each sample.
  3786. * There's no extra effect if you have a fixed Z probe.
  3787. *
  3788. */
  3789. inline void gcode_G29() {
  3790. // G29 Q is also available if debugging
  3791. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3792. const bool query = parser.seen('Q');
  3793. const uint8_t old_debug_flags = marlin_debug_flags;
  3794. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3795. if (DEBUGGING(LEVELING)) {
  3796. DEBUG_POS(">>> gcode_G29", current_position);
  3797. log_machine_info();
  3798. }
  3799. marlin_debug_flags = old_debug_flags;
  3800. #if DISABLED(PROBE_MANUALLY)
  3801. if (query) return;
  3802. #endif
  3803. #endif
  3804. #if ENABLED(PROBE_MANUALLY)
  3805. const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
  3806. #endif
  3807. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3808. const bool faux = parser.boolval('C');
  3809. #elif ENABLED(PROBE_MANUALLY)
  3810. const bool faux = no_action;
  3811. #else
  3812. bool constexpr faux = false;
  3813. #endif
  3814. // Don't allow auto-leveling without homing first
  3815. if (axis_unhomed_error()) return;
  3816. // Define local vars 'static' for manual probing, 'auto' otherwise
  3817. #if ENABLED(PROBE_MANUALLY)
  3818. #define ABL_VAR static
  3819. #else
  3820. #define ABL_VAR
  3821. #endif
  3822. ABL_VAR int verbose_level;
  3823. ABL_VAR float xProbe, yProbe, measured_z;
  3824. ABL_VAR bool dryrun, abl_should_enable;
  3825. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3826. ABL_VAR int abl_probe_index;
  3827. #endif
  3828. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3829. ABL_VAR bool enable_soft_endstops = true;
  3830. #endif
  3831. #if ABL_GRID
  3832. #if ENABLED(PROBE_MANUALLY)
  3833. ABL_VAR uint8_t PR_OUTER_VAR;
  3834. ABL_VAR int8_t PR_INNER_VAR;
  3835. #endif
  3836. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3837. ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
  3838. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3839. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3840. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3841. ABL_VAR bool do_topography_map;
  3842. #else // Bilinear
  3843. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3844. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3845. #endif
  3846. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3847. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3848. ABL_VAR int abl2;
  3849. #else // Bilinear
  3850. int constexpr abl2 = GRID_MAX_POINTS;
  3851. #endif
  3852. #endif
  3853. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3854. ABL_VAR float zoffset;
  3855. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3856. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3857. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3858. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3859. mean;
  3860. #endif
  3861. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3862. int constexpr abl2 = 3;
  3863. // Probe at 3 arbitrary points
  3864. ABL_VAR vector_3 points[3] = {
  3865. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3866. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3867. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3868. };
  3869. #endif // AUTO_BED_LEVELING_3POINT
  3870. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3871. struct linear_fit_data lsf_results;
  3872. incremental_LSF_reset(&lsf_results);
  3873. #endif
  3874. /**
  3875. * On the initial G29 fetch command parameters.
  3876. */
  3877. if (!g29_in_progress) {
  3878. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3879. abl_probe_index = -1;
  3880. #endif
  3881. abl_should_enable = leveling_is_active();
  3882. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3883. if (parser.seen('W')) {
  3884. if (!leveling_is_valid()) {
  3885. SERIAL_ERROR_START();
  3886. SERIAL_ERRORLNPGM("No bilinear grid");
  3887. return;
  3888. }
  3889. const float z = parser.floatval('Z', RAW_CURRENT_POSITION(Z));
  3890. if (!WITHIN(z, -10, 10)) {
  3891. SERIAL_ERROR_START();
  3892. SERIAL_ERRORLNPGM("Bad Z value");
  3893. return;
  3894. }
  3895. const float x = parser.floatval('X', NAN),
  3896. y = parser.floatval('Y', NAN);
  3897. int8_t i = parser.byteval('I', -1),
  3898. j = parser.byteval('J', -1);
  3899. if (!isnan(x) && !isnan(y)) {
  3900. // Get nearest i / j from x / y
  3901. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3902. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3903. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3904. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3905. }
  3906. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3907. set_bed_leveling_enabled(false);
  3908. z_values[i][j] = z;
  3909. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3910. bed_level_virt_interpolate();
  3911. #endif
  3912. set_bed_leveling_enabled(abl_should_enable);
  3913. }
  3914. return;
  3915. } // parser.seen('W')
  3916. #endif
  3917. #if HAS_LEVELING
  3918. // Jettison bed leveling data
  3919. if (parser.seen('J')) {
  3920. reset_bed_level();
  3921. return;
  3922. }
  3923. #endif
  3924. verbose_level = parser.intval('V');
  3925. if (!WITHIN(verbose_level, 0, 4)) {
  3926. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  3927. return;
  3928. }
  3929. dryrun = parser.boolval('D')
  3930. #if ENABLED(PROBE_MANUALLY)
  3931. || no_action
  3932. #endif
  3933. ;
  3934. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3935. do_topography_map = verbose_level > 2 || parser.boolval('T');
  3936. // X and Y specify points in each direction, overriding the default
  3937. // These values may be saved with the completed mesh
  3938. abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
  3939. abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
  3940. if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
  3941. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3942. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3943. return;
  3944. }
  3945. abl2 = abl_grid_points_x * abl_grid_points_y;
  3946. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3947. zoffset = parser.linearval('Z');
  3948. #endif
  3949. #if ABL_GRID
  3950. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  3951. left_probe_bed_position = (int)parser.linearval('L', LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION));
  3952. right_probe_bed_position = (int)parser.linearval('R', LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION));
  3953. front_probe_bed_position = (int)parser.linearval('F', LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION));
  3954. back_probe_bed_position = (int)parser.linearval('B', LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION));
  3955. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3956. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3957. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3958. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3959. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3960. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3961. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3962. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3963. if (left_out || right_out || front_out || back_out) {
  3964. if (left_out) {
  3965. out_of_range_error(PSTR("(L)eft"));
  3966. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3967. }
  3968. if (right_out) {
  3969. out_of_range_error(PSTR("(R)ight"));
  3970. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3971. }
  3972. if (front_out) {
  3973. out_of_range_error(PSTR("(F)ront"));
  3974. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3975. }
  3976. if (back_out) {
  3977. out_of_range_error(PSTR("(B)ack"));
  3978. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3979. }
  3980. return;
  3981. }
  3982. // probe at the points of a lattice grid
  3983. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3984. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3985. #endif // ABL_GRID
  3986. if (verbose_level > 0) {
  3987. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3988. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3989. }
  3990. stepper.synchronize();
  3991. // Disable auto bed leveling during G29
  3992. planner.abl_enabled = false;
  3993. if (!dryrun) {
  3994. // Re-orient the current position without leveling
  3995. // based on where the steppers are positioned.
  3996. set_current_from_steppers_for_axis(ALL_AXES);
  3997. // Sync the planner to where the steppers stopped
  3998. SYNC_PLAN_POSITION_KINEMATIC();
  3999. }
  4000. #if HAS_BED_PROBE
  4001. // Deploy the probe. Probe will raise if needed.
  4002. if (DEPLOY_PROBE()) {
  4003. planner.abl_enabled = abl_should_enable;
  4004. return;
  4005. }
  4006. #endif
  4007. if (!faux) setup_for_endstop_or_probe_move();
  4008. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4009. #if ENABLED(PROBE_MANUALLY)
  4010. if (!no_action)
  4011. #endif
  4012. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  4013. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  4014. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  4015. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  4016. ) {
  4017. if (dryrun) {
  4018. // Before reset bed level, re-enable to correct the position
  4019. planner.abl_enabled = abl_should_enable;
  4020. }
  4021. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  4022. reset_bed_level();
  4023. // Initialize a grid with the given dimensions
  4024. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  4025. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  4026. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  4027. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  4028. // Can't re-enable (on error) until the new grid is written
  4029. abl_should_enable = false;
  4030. }
  4031. #endif // AUTO_BED_LEVELING_BILINEAR
  4032. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  4033. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4034. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  4035. #endif
  4036. // Probe at 3 arbitrary points
  4037. points[0].z = points[1].z = points[2].z = 0;
  4038. #endif // AUTO_BED_LEVELING_3POINT
  4039. } // !g29_in_progress
  4040. #if ENABLED(PROBE_MANUALLY)
  4041. // For manual probing, get the next index to probe now.
  4042. // On the first probe this will be incremented to 0.
  4043. if (!no_action) {
  4044. ++abl_probe_index;
  4045. g29_in_progress = true;
  4046. }
  4047. // Abort current G29 procedure, go back to idle state
  4048. if (seenA && g29_in_progress) {
  4049. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  4050. #if HAS_SOFTWARE_ENDSTOPS
  4051. soft_endstops_enabled = enable_soft_endstops;
  4052. #endif
  4053. planner.abl_enabled = abl_should_enable;
  4054. g29_in_progress = false;
  4055. #if ENABLED(LCD_BED_LEVELING)
  4056. lcd_wait_for_move = false;
  4057. #endif
  4058. }
  4059. // Query G29 status
  4060. if (verbose_level || seenQ) {
  4061. SERIAL_PROTOCOLPGM("Manual G29 ");
  4062. if (g29_in_progress) {
  4063. SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
  4064. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  4065. }
  4066. else
  4067. SERIAL_PROTOCOLLNPGM("idle");
  4068. }
  4069. if (no_action) return;
  4070. if (abl_probe_index == 0) {
  4071. // For the initial G29 save software endstop state
  4072. #if HAS_SOFTWARE_ENDSTOPS
  4073. enable_soft_endstops = soft_endstops_enabled;
  4074. #endif
  4075. }
  4076. else {
  4077. // For G29 after adjusting Z.
  4078. // Save the previous Z before going to the next point
  4079. measured_z = current_position[Z_AXIS];
  4080. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4081. mean += measured_z;
  4082. eqnBVector[abl_probe_index] = measured_z;
  4083. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4084. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4085. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4086. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4087. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4088. z_values[xCount][yCount] = measured_z + zoffset;
  4089. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4090. if (DEBUGGING(LEVELING)) {
  4091. SERIAL_PROTOCOLPAIR("Save X", xCount);
  4092. SERIAL_PROTOCOLPAIR(" Y", yCount);
  4093. SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
  4094. }
  4095. #endif
  4096. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4097. points[abl_probe_index].z = measured_z;
  4098. #endif
  4099. }
  4100. //
  4101. // If there's another point to sample, move there with optional lift.
  4102. //
  4103. #if ABL_GRID
  4104. // Skip any unreachable points
  4105. while (abl_probe_index < abl2) {
  4106. // Set xCount, yCount based on abl_probe_index, with zig-zag
  4107. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  4108. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  4109. // Probe in reverse order for every other row/column
  4110. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  4111. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  4112. const float xBase = xCount * xGridSpacing + left_probe_bed_position,
  4113. yBase = yCount * yGridSpacing + front_probe_bed_position;
  4114. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4115. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4116. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4117. indexIntoAB[xCount][yCount] = abl_probe_index;
  4118. #endif
  4119. // Keep looping till a reachable point is found
  4120. if (position_is_reachable_xy(xProbe, yProbe)) break;
  4121. ++abl_probe_index;
  4122. }
  4123. // Is there a next point to move to?
  4124. if (abl_probe_index < abl2) {
  4125. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  4126. #if HAS_SOFTWARE_ENDSTOPS
  4127. // Disable software endstops to allow manual adjustment
  4128. // If G29 is not completed, they will not be re-enabled
  4129. soft_endstops_enabled = false;
  4130. #endif
  4131. return;
  4132. }
  4133. else {
  4134. // Leveling done! Fall through to G29 finishing code below
  4135. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  4136. // Re-enable software endstops, if needed
  4137. #if HAS_SOFTWARE_ENDSTOPS
  4138. soft_endstops_enabled = enable_soft_endstops;
  4139. #endif
  4140. }
  4141. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4142. // Probe at 3 arbitrary points
  4143. if (abl_probe_index < 3) {
  4144. xProbe = LOGICAL_X_POSITION(points[abl_probe_index].x);
  4145. yProbe = LOGICAL_Y_POSITION(points[abl_probe_index].y);
  4146. #if HAS_SOFTWARE_ENDSTOPS
  4147. // Disable software endstops to allow manual adjustment
  4148. // If G29 is not completed, they will not be re-enabled
  4149. soft_endstops_enabled = false;
  4150. #endif
  4151. return;
  4152. }
  4153. else {
  4154. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  4155. // Re-enable software endstops, if needed
  4156. #if HAS_SOFTWARE_ENDSTOPS
  4157. soft_endstops_enabled = enable_soft_endstops;
  4158. #endif
  4159. if (!dryrun) {
  4160. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4161. if (planeNormal.z < 0) {
  4162. planeNormal.x *= -1;
  4163. planeNormal.y *= -1;
  4164. planeNormal.z *= -1;
  4165. }
  4166. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4167. // Can't re-enable (on error) until the new grid is written
  4168. abl_should_enable = false;
  4169. }
  4170. }
  4171. #endif // AUTO_BED_LEVELING_3POINT
  4172. #else // !PROBE_MANUALLY
  4173. {
  4174. const bool stow_probe_after_each = parser.boolval('E');
  4175. #if ABL_GRID
  4176. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  4177. // Outer loop is Y with PROBE_Y_FIRST disabled
  4178. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  4179. int8_t inStart, inStop, inInc;
  4180. if (zig) { // away from origin
  4181. inStart = 0;
  4182. inStop = PR_INNER_END;
  4183. inInc = 1;
  4184. }
  4185. else { // towards origin
  4186. inStart = PR_INNER_END - 1;
  4187. inStop = -1;
  4188. inInc = -1;
  4189. }
  4190. zig ^= true; // zag
  4191. // Inner loop is Y with PROBE_Y_FIRST enabled
  4192. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4193. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4194. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4195. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4196. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4197. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4198. indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
  4199. #endif
  4200. #if IS_KINEMATIC
  4201. // Avoid probing outside the round or hexagonal area
  4202. if (!position_is_reachable_by_probe_xy(xProbe, yProbe)) continue;
  4203. #endif
  4204. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4205. if (isnan(measured_z)) {
  4206. planner.abl_enabled = abl_should_enable;
  4207. break;
  4208. }
  4209. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4210. mean += measured_z;
  4211. eqnBVector[abl_probe_index] = measured_z;
  4212. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4213. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4214. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4215. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4216. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4217. z_values[xCount][yCount] = measured_z + zoffset;
  4218. #endif
  4219. abl_should_enable = false;
  4220. idle();
  4221. } // inner
  4222. } // outer
  4223. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4224. // Probe at 3 arbitrary points
  4225. for (uint8_t i = 0; i < 3; ++i) {
  4226. // Retain the last probe position
  4227. xProbe = LOGICAL_X_POSITION(points[i].x);
  4228. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4229. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4230. if (isnan(measured_z)) {
  4231. planner.abl_enabled = abl_should_enable;
  4232. break;
  4233. }
  4234. points[i].z = measured_z;
  4235. }
  4236. if (!dryrun && !isnan(measured_z)) {
  4237. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4238. if (planeNormal.z < 0) {
  4239. planeNormal.x *= -1;
  4240. planeNormal.y *= -1;
  4241. planeNormal.z *= -1;
  4242. }
  4243. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4244. // Can't re-enable (on error) until the new grid is written
  4245. abl_should_enable = false;
  4246. }
  4247. #endif // AUTO_BED_LEVELING_3POINT
  4248. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4249. if (STOW_PROBE()) {
  4250. planner.abl_enabled = abl_should_enable;
  4251. measured_z = NAN;
  4252. }
  4253. }
  4254. #endif // !PROBE_MANUALLY
  4255. //
  4256. // G29 Finishing Code
  4257. //
  4258. // Unless this is a dry run, auto bed leveling will
  4259. // definitely be enabled after this point.
  4260. //
  4261. // If code above wants to continue leveling, it should
  4262. // return or loop before this point.
  4263. //
  4264. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4265. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4266. #endif
  4267. #if ENABLED(PROBE_MANUALLY)
  4268. g29_in_progress = false;
  4269. #if ENABLED(LCD_BED_LEVELING)
  4270. lcd_wait_for_move = false;
  4271. #endif
  4272. #endif
  4273. // Calculate leveling, print reports, correct the position
  4274. if (!isnan(measured_z)) {
  4275. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4276. if (!dryrun) extrapolate_unprobed_bed_level();
  4277. print_bilinear_leveling_grid();
  4278. refresh_bed_level();
  4279. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4280. print_bilinear_leveling_grid_virt();
  4281. #endif
  4282. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4283. // For LINEAR leveling calculate matrix, print reports, correct the position
  4284. /**
  4285. * solve the plane equation ax + by + d = z
  4286. * A is the matrix with rows [x y 1] for all the probed points
  4287. * B is the vector of the Z positions
  4288. * the normal vector to the plane is formed by the coefficients of the
  4289. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4290. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4291. */
  4292. float plane_equation_coefficients[3];
  4293. finish_incremental_LSF(&lsf_results);
  4294. plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  4295. plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
  4296. plane_equation_coefficients[2] = -lsf_results.D;
  4297. mean /= abl2;
  4298. if (verbose_level) {
  4299. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4300. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4301. SERIAL_PROTOCOLPGM(" b: ");
  4302. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4303. SERIAL_PROTOCOLPGM(" d: ");
  4304. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4305. SERIAL_EOL();
  4306. if (verbose_level > 2) {
  4307. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4308. SERIAL_PROTOCOL_F(mean, 8);
  4309. SERIAL_EOL();
  4310. }
  4311. }
  4312. // Create the matrix but don't correct the position yet
  4313. if (!dryrun)
  4314. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4315. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
  4316. );
  4317. // Show the Topography map if enabled
  4318. if (do_topography_map) {
  4319. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4320. " +--- BACK --+\n"
  4321. " | |\n"
  4322. " L | (+) | R\n"
  4323. " E | | I\n"
  4324. " F | (-) N (+) | G\n"
  4325. " T | | H\n"
  4326. " | (-) | T\n"
  4327. " | |\n"
  4328. " O-- FRONT --+\n"
  4329. " (0,0)");
  4330. float min_diff = 999;
  4331. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4332. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4333. int ind = indexIntoAB[xx][yy];
  4334. float diff = eqnBVector[ind] - mean,
  4335. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4336. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4337. z_tmp = 0;
  4338. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4339. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4340. if (diff >= 0.0)
  4341. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4342. else
  4343. SERIAL_PROTOCOLCHAR(' ');
  4344. SERIAL_PROTOCOL_F(diff, 5);
  4345. } // xx
  4346. SERIAL_EOL();
  4347. } // yy
  4348. SERIAL_EOL();
  4349. if (verbose_level > 3) {
  4350. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4351. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4352. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4353. int ind = indexIntoAB[xx][yy];
  4354. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4355. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4356. z_tmp = 0;
  4357. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4358. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4359. if (diff >= 0.0)
  4360. SERIAL_PROTOCOLPGM(" +");
  4361. // Include + for column alignment
  4362. else
  4363. SERIAL_PROTOCOLCHAR(' ');
  4364. SERIAL_PROTOCOL_F(diff, 5);
  4365. } // xx
  4366. SERIAL_EOL();
  4367. } // yy
  4368. SERIAL_EOL();
  4369. }
  4370. } //do_topography_map
  4371. #endif // AUTO_BED_LEVELING_LINEAR
  4372. #if ABL_PLANAR
  4373. // For LINEAR and 3POINT leveling correct the current position
  4374. if (verbose_level > 0)
  4375. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4376. if (!dryrun) {
  4377. //
  4378. // Correct the current XYZ position based on the tilted plane.
  4379. //
  4380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4381. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4382. #endif
  4383. float converted[XYZ];
  4384. COPY(converted, current_position);
  4385. planner.abl_enabled = true;
  4386. planner.unapply_leveling(converted); // use conversion machinery
  4387. planner.abl_enabled = false;
  4388. // Use the last measured distance to the bed, if possible
  4389. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4390. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4391. ) {
  4392. const float simple_z = current_position[Z_AXIS] - measured_z;
  4393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4394. if (DEBUGGING(LEVELING)) {
  4395. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4396. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4397. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4398. }
  4399. #endif
  4400. converted[Z_AXIS] = simple_z;
  4401. }
  4402. // The rotated XY and corrected Z are now current_position
  4403. COPY(current_position, converted);
  4404. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4405. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4406. #endif
  4407. }
  4408. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4409. if (!dryrun) {
  4410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4411. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4412. #endif
  4413. // Unapply the offset because it is going to be immediately applied
  4414. // and cause compensation movement in Z
  4415. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4416. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4417. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4418. #endif
  4419. }
  4420. #endif // ABL_PLANAR
  4421. #ifdef Z_PROBE_END_SCRIPT
  4422. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4423. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4424. #endif
  4425. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4426. stepper.synchronize();
  4427. #endif
  4428. // Auto Bed Leveling is complete! Enable if possible.
  4429. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4430. } // !isnan(measured_z)
  4431. // Restore state after probing
  4432. if (!faux) clean_up_after_endstop_or_probe_move();
  4433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4434. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4435. #endif
  4436. report_current_position();
  4437. KEEPALIVE_STATE(IN_HANDLER);
  4438. if (planner.abl_enabled)
  4439. SYNC_PLAN_POSITION_KINEMATIC();
  4440. }
  4441. #endif // HAS_ABL && !AUTO_BED_LEVELING_UBL
  4442. #if HAS_BED_PROBE
  4443. /**
  4444. * G30: Do a single Z probe at the current XY
  4445. *
  4446. * Parameters:
  4447. *
  4448. * X Probe X position (default current X)
  4449. * Y Probe Y position (default current Y)
  4450. * S0 Leave the probe deployed
  4451. */
  4452. inline void gcode_G30() {
  4453. const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
  4454. ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
  4455. if (!position_is_reachable_by_probe_xy(xpos, ypos)) return;
  4456. // Disable leveling so the planner won't mess with us
  4457. #if HAS_LEVELING
  4458. set_bed_leveling_enabled(false);
  4459. #endif
  4460. setup_for_endstop_or_probe_move();
  4461. const float measured_z = probe_pt(xpos, ypos, parser.boolval('S', true), 1);
  4462. if (!isnan(measured_z)) {
  4463. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4464. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4465. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4466. }
  4467. clean_up_after_endstop_or_probe_move();
  4468. report_current_position();
  4469. }
  4470. #if ENABLED(Z_PROBE_SLED)
  4471. /**
  4472. * G31: Deploy the Z probe
  4473. */
  4474. inline void gcode_G31() { DEPLOY_PROBE(); }
  4475. /**
  4476. * G32: Stow the Z probe
  4477. */
  4478. inline void gcode_G32() { STOW_PROBE(); }
  4479. #endif // Z_PROBE_SLED
  4480. #endif // HAS_BED_PROBE
  4481. #if PROBE_SELECTED
  4482. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4483. /**
  4484. * G33 - Delta '1-4-7-point' Auto-Calibration
  4485. * Calibrate height, endstops, delta radius, and tower angles.
  4486. *
  4487. * Parameters:
  4488. *
  4489. * Pn Number of probe points:
  4490. *
  4491. * P0 No probe. Normalize only.
  4492. * P1 Probe center and set height only.
  4493. * P2 Probe center and towers. Set height, endstops, and delta radius.
  4494. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4495. * P4-P7 Probe all positions at different locations and average them.
  4496. *
  4497. * T0 Don't calibrate tower angle corrections
  4498. *
  4499. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4500. *
  4501. * Fn Force to run at least n iterations and takes the best result
  4502. *
  4503. * Vn Verbose level:
  4504. *
  4505. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4506. * V1 Report settings
  4507. * V2 Report settings and probe results
  4508. *
  4509. * E Engage the probe for each point
  4510. */
  4511. void print_signed_float(const char * const prefix, const float &f) {
  4512. SERIAL_PROTOCOLPGM(" ");
  4513. serialprintPGM(prefix);
  4514. SERIAL_PROTOCOLCHAR(':');
  4515. if (f >= 0) SERIAL_CHAR('+');
  4516. SERIAL_PROTOCOL_F(f, 2);
  4517. }
  4518. void print_G33_settings(const bool end_stops, const bool tower_angles) {
  4519. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4520. if (end_stops) {
  4521. print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
  4522. print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
  4523. print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
  4524. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4525. }
  4526. SERIAL_EOL();
  4527. if (tower_angles) {
  4528. SERIAL_PROTOCOLPGM(".Tower angle : ");
  4529. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4530. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4531. print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
  4532. SERIAL_EOL();
  4533. }
  4534. }
  4535. void G33_cleanup(
  4536. #if HOTENDS > 1
  4537. const uint8_t old_tool_index
  4538. #endif
  4539. ) {
  4540. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4541. do_blocking_move_to_z(delta_clip_start_height);
  4542. #endif
  4543. STOW_PROBE();
  4544. clean_up_after_endstop_or_probe_move();
  4545. #if HOTENDS > 1
  4546. tool_change(old_tool_index, 0, true);
  4547. #endif
  4548. }
  4549. inline void gcode_G33() {
  4550. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  4551. if (!WITHIN(probe_points, 0, 7)) {
  4552. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7).");
  4553. return;
  4554. }
  4555. const int8_t verbose_level = parser.byteval('V', 1);
  4556. if (!WITHIN(verbose_level, 0, 2)) {
  4557. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
  4558. return;
  4559. }
  4560. const float calibration_precision = parser.floatval('C');
  4561. if (calibration_precision < 0) {
  4562. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
  4563. return;
  4564. }
  4565. const int8_t force_iterations = parser.intval('F', 0);
  4566. if (!WITHIN(force_iterations, 0, 30)) {
  4567. SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
  4568. return;
  4569. }
  4570. const bool towers_set = parser.boolval('T', true),
  4571. stow_after_each = parser.boolval('E'),
  4572. _0p_calibration = probe_points == 0,
  4573. _1p_calibration = probe_points == 1,
  4574. _4p_calibration = probe_points == 2,
  4575. _4p_towers_points = _4p_calibration && towers_set,
  4576. _4p_opposite_points = _4p_calibration && !towers_set,
  4577. _7p_calibration = probe_points >= 3 || _0p_calibration,
  4578. _7p_half_circle = probe_points == 3,
  4579. _7p_double_circle = probe_points == 5,
  4580. _7p_triple_circle = probe_points == 6,
  4581. _7p_quadruple_circle = probe_points == 7,
  4582. _7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
  4583. _7p_intermed_points = _7p_calibration && !_7p_half_circle;
  4584. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4585. const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
  4586. dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
  4587. int8_t iterations = 0;
  4588. float test_precision,
  4589. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4590. zero_std_dev_old = zero_std_dev,
  4591. zero_std_dev_min = zero_std_dev,
  4592. e_old[ABC] = {
  4593. endstop_adj[A_AXIS],
  4594. endstop_adj[B_AXIS],
  4595. endstop_adj[C_AXIS]
  4596. },
  4597. dr_old = delta_radius,
  4598. zh_old = home_offset[Z_AXIS],
  4599. ta_old[ABC] = {
  4600. delta_tower_angle_trim[A_AXIS],
  4601. delta_tower_angle_trim[B_AXIS],
  4602. delta_tower_angle_trim[C_AXIS]
  4603. };
  4604. if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
  4605. const float circles = (_7p_quadruple_circle ? 1.5 :
  4606. _7p_triple_circle ? 1.0 :
  4607. _7p_double_circle ? 0.5 : 0),
  4608. r = (1 + circles * 0.1) * delta_calibration_radius;
  4609. for (uint8_t axis = 1; axis < 13; ++axis) {
  4610. const float a = RADIANS(180 + 30 * axis);
  4611. if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
  4612. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4613. return;
  4614. }
  4615. }
  4616. }
  4617. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4618. stepper.synchronize();
  4619. #if HAS_LEVELING
  4620. reset_bed_level(); // After calibration bed-level data is no longer valid
  4621. #endif
  4622. #if HOTENDS > 1
  4623. const uint8_t old_tool_index = active_extruder;
  4624. tool_change(0, 0, true);
  4625. #define G33_CLEANUP() G33_cleanup(old_tool_index)
  4626. #else
  4627. #define G33_CLEANUP() G33_cleanup()
  4628. #endif
  4629. setup_for_endstop_or_probe_move();
  4630. endstops.enable(true);
  4631. if (!_0p_calibration) {
  4632. if (!home_delta())
  4633. return;
  4634. endstops.not_homing();
  4635. }
  4636. // print settings
  4637. const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
  4638. serialprintPGM(checkingac);
  4639. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4640. SERIAL_EOL();
  4641. lcd_setstatusPGM(checkingac);
  4642. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4643. do {
  4644. float z_at_pt[13] = { 0.0 };
  4645. test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
  4646. iterations++;
  4647. // Probe the points
  4648. if (!_0p_calibration){
  4649. if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
  4650. #if ENABLED(PROBE_MANUALLY)
  4651. z_at_pt[0] += lcd_probe_pt(0, 0);
  4652. #else
  4653. z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
  4654. if (isnan(z_at_pt[0])) return G33_CLEANUP();
  4655. #endif
  4656. }
  4657. if (_7p_calibration) { // probe extra center points
  4658. for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
  4659. const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
  4660. #if ENABLED(PROBE_MANUALLY)
  4661. z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
  4662. #else
  4663. z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
  4664. if (isnan(z_at_pt[0])) return G33_CLEANUP();
  4665. #endif
  4666. }
  4667. z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
  4668. }
  4669. if (!_1p_calibration) { // probe the radius
  4670. bool zig_zag = true;
  4671. const uint8_t start = _4p_opposite_points ? 3 : 1,
  4672. step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
  4673. for (uint8_t axis = start; axis < 13; axis += step) {
  4674. const float zigadd = (zig_zag ? 0.5 : 0.0),
  4675. offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
  4676. _7p_triple_circle ? zigadd + 0.5 :
  4677. _7p_double_circle ? zigadd : 0;
  4678. for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
  4679. const float a = RADIANS(180 + 30 * axis),
  4680. r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
  4681. #if ENABLED(PROBE_MANUALLY)
  4682. z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
  4683. #else
  4684. z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
  4685. if (isnan(z_at_pt[axis])) return G33_CLEANUP();
  4686. #endif
  4687. }
  4688. zig_zag = !zig_zag;
  4689. z_at_pt[axis] /= (2 * offset_circles + 1);
  4690. }
  4691. }
  4692. if (_7p_intermed_points) // average intermediates to tower and opposites
  4693. for (uint8_t axis = 1; axis < 13; axis += 2)
  4694. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4695. }
  4696. float S1 = z_at_pt[0],
  4697. S2 = sq(z_at_pt[0]);
  4698. int16_t N = 1;
  4699. if (!_1p_calibration) // std dev from zero plane
  4700. for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
  4701. S1 += z_at_pt[axis];
  4702. S2 += sq(z_at_pt[axis]);
  4703. N++;
  4704. }
  4705. zero_std_dev_old = zero_std_dev;
  4706. zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4707. // Solve matrices
  4708. if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
  4709. if (zero_std_dev < zero_std_dev_min) {
  4710. COPY(e_old, endstop_adj);
  4711. dr_old = delta_radius;
  4712. zh_old = home_offset[Z_AXIS];
  4713. COPY(ta_old, delta_tower_angle_trim);
  4714. }
  4715. float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
  4716. const float r_diff = delta_radius - delta_calibration_radius,
  4717. h_factor = (1.00 + r_diff * 0.001) / 6.0, // 1.02 for r_diff = 20mm
  4718. r_factor = (-(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff))) / 6.0, // 2.25 for r_diff = 20mm
  4719. a_factor = (66.66 / delta_calibration_radius) / (iterations == 1 ? 16.0 : 2.0); // 0.83 for cal_rd = 80mm (Slow down on 1st iteration)
  4720. #define ZP(N,I) ((N) * z_at_pt[I])
  4721. #define Z6(I) ZP(6, I)
  4722. #define Z4(I) ZP(4, I)
  4723. #define Z2(I) ZP(2, I)
  4724. #define Z1(I) ZP(1, I)
  4725. #if ENABLED(PROBE_MANUALLY)
  4726. test_precision = 0.00; // forced end
  4727. #endif
  4728. switch (probe_points) {
  4729. case 0:
  4730. #if DISABLED(PROBE_MANUALLY)
  4731. test_precision = 0.00; // forced end
  4732. #endif
  4733. break;
  4734. case 1:
  4735. #if DISABLED(PROBE_MANUALLY)
  4736. test_precision = 0.00; // forced end
  4737. #endif
  4738. LOOP_XYZ(axis) e_delta[axis] = Z1(0);
  4739. break;
  4740. case 2:
  4741. if (towers_set) {
  4742. e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor;
  4743. e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor;
  4744. e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor;
  4745. r_delta = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor;
  4746. }
  4747. else {
  4748. e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor;
  4749. e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor;
  4750. e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor;
  4751. r_delta = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor;
  4752. }
  4753. break;
  4754. default:
  4755. e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor;
  4756. e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor;
  4757. e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor;
  4758. r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor;
  4759. if (towers_set) {
  4760. t_delta[A_AXIS] = ( - Z2(5) + Z2(9) - Z2(11) + Z2(3)) * a_factor;
  4761. t_delta[B_AXIS] = ( Z2(1) - Z2(9) + Z2(7) - Z2(3)) * a_factor;
  4762. t_delta[C_AXIS] = (-Z2(1) + Z2(5) - Z2(7) + Z2(11) ) * a_factor;
  4763. e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
  4764. e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
  4765. e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
  4766. }
  4767. break;
  4768. }
  4769. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4770. delta_radius += r_delta;
  4771. LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
  4772. }
  4773. else if (zero_std_dev >= test_precision) { // step one back
  4774. COPY(endstop_adj, e_old);
  4775. delta_radius = dr_old;
  4776. home_offset[Z_AXIS] = zh_old;
  4777. COPY(delta_tower_angle_trim, ta_old);
  4778. }
  4779. if (verbose_level != 0) { // !dry run
  4780. // normalise angles to least squares
  4781. float a_sum = 0.0;
  4782. LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
  4783. LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
  4784. // adjust delta_height and endstops by the max amount
  4785. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  4786. home_offset[Z_AXIS] -= z_temp;
  4787. LOOP_XYZ(axis) endstop_adj[axis] -= z_temp;
  4788. }
  4789. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  4790. NOMORE(zero_std_dev_min, zero_std_dev);
  4791. // print report
  4792. if (verbose_level != 1) {
  4793. SERIAL_PROTOCOLPGM(". ");
  4794. print_signed_float(PSTR("c"), z_at_pt[0]);
  4795. if (_4p_towers_points || _7p_calibration) {
  4796. print_signed_float(PSTR(" x"), z_at_pt[1]);
  4797. print_signed_float(PSTR(" y"), z_at_pt[5]);
  4798. print_signed_float(PSTR(" z"), z_at_pt[9]);
  4799. }
  4800. if (!_4p_opposite_points) SERIAL_EOL();
  4801. if ((_4p_opposite_points) || _7p_calibration) {
  4802. if (_7p_calibration) {
  4803. SERIAL_CHAR('.');
  4804. SERIAL_PROTOCOL_SP(13);
  4805. }
  4806. print_signed_float(PSTR(" yz"), z_at_pt[7]);
  4807. print_signed_float(PSTR("zx"), z_at_pt[11]);
  4808. print_signed_float(PSTR("xy"), z_at_pt[3]);
  4809. SERIAL_EOL();
  4810. }
  4811. }
  4812. if (verbose_level != 0) { // !dry run
  4813. if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
  4814. SERIAL_PROTOCOLPGM("Calibration OK");
  4815. SERIAL_PROTOCOL_SP(36);
  4816. #if DISABLED(PROBE_MANUALLY)
  4817. if (zero_std_dev >= test_precision && !_1p_calibration)
  4818. SERIAL_PROTOCOLPGM("rolling back.");
  4819. else
  4820. #endif
  4821. {
  4822. SERIAL_PROTOCOLPGM("std dev:");
  4823. SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
  4824. }
  4825. SERIAL_EOL();
  4826. char mess[21];
  4827. sprintf_P(mess, PSTR("Calibration sd:"));
  4828. if (zero_std_dev_min < 1)
  4829. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
  4830. else
  4831. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
  4832. lcd_setstatus(mess);
  4833. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4834. serialprintPGM(save_message);
  4835. SERIAL_EOL();
  4836. }
  4837. else { // !end iterations
  4838. char mess[15];
  4839. if (iterations < 31)
  4840. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4841. else
  4842. sprintf_P(mess, PSTR("No convergence"));
  4843. SERIAL_PROTOCOL(mess);
  4844. SERIAL_PROTOCOL_SP(36);
  4845. SERIAL_PROTOCOLPGM("std dev:");
  4846. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4847. SERIAL_EOL();
  4848. lcd_setstatus(mess);
  4849. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4850. }
  4851. }
  4852. else { // dry run
  4853. const char *enddryrun = PSTR("End DRY-RUN");
  4854. serialprintPGM(enddryrun);
  4855. SERIAL_PROTOCOL_SP(39);
  4856. SERIAL_PROTOCOLPGM("std dev:");
  4857. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4858. SERIAL_EOL();
  4859. char mess[21];
  4860. sprintf_P(mess, enddryrun);
  4861. sprintf_P(&mess[11], PSTR(" sd:"));
  4862. if (zero_std_dev < 1)
  4863. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
  4864. else
  4865. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
  4866. lcd_setstatus(mess);
  4867. }
  4868. endstops.enable(true);
  4869. home_delta();
  4870. endstops.not_homing();
  4871. }
  4872. while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
  4873. G33_CLEANUP();
  4874. }
  4875. #endif // DELTA_AUTO_CALIBRATION
  4876. #endif // PROBE_SELECTED
  4877. #if ENABLED(G38_PROBE_TARGET)
  4878. static bool G38_run_probe() {
  4879. bool G38_pass_fail = false;
  4880. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4881. // Get direction of move and retract
  4882. float retract_mm[XYZ];
  4883. LOOP_XYZ(i) {
  4884. float dist = destination[i] - current_position[i];
  4885. retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4886. }
  4887. #endif
  4888. stepper.synchronize(); // wait until the machine is idle
  4889. // Move until destination reached or target hit
  4890. endstops.enable(true);
  4891. G38_move = true;
  4892. G38_endstop_hit = false;
  4893. prepare_move_to_destination();
  4894. stepper.synchronize();
  4895. G38_move = false;
  4896. endstops.hit_on_purpose();
  4897. set_current_from_steppers_for_axis(ALL_AXES);
  4898. SYNC_PLAN_POSITION_KINEMATIC();
  4899. if (G38_endstop_hit) {
  4900. G38_pass_fail = true;
  4901. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4902. // Move away by the retract distance
  4903. set_destination_to_current();
  4904. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4905. endstops.enable(false);
  4906. prepare_move_to_destination();
  4907. stepper.synchronize();
  4908. feedrate_mm_s /= 4;
  4909. // Bump the target more slowly
  4910. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4911. endstops.enable(true);
  4912. G38_move = true;
  4913. prepare_move_to_destination();
  4914. stepper.synchronize();
  4915. G38_move = false;
  4916. set_current_from_steppers_for_axis(ALL_AXES);
  4917. SYNC_PLAN_POSITION_KINEMATIC();
  4918. #endif
  4919. }
  4920. endstops.hit_on_purpose();
  4921. endstops.not_homing();
  4922. return G38_pass_fail;
  4923. }
  4924. /**
  4925. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4926. * G38.3 - probe toward workpiece, stop on contact
  4927. *
  4928. * Like G28 except uses Z min probe for all axes
  4929. */
  4930. inline void gcode_G38(bool is_38_2) {
  4931. // Get X Y Z E F
  4932. gcode_get_destination();
  4933. setup_for_endstop_or_probe_move();
  4934. // If any axis has enough movement, do the move
  4935. LOOP_XYZ(i)
  4936. if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4937. if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
  4938. // If G38.2 fails throw an error
  4939. if (!G38_run_probe() && is_38_2) {
  4940. SERIAL_ERROR_START();
  4941. SERIAL_ERRORLNPGM("Failed to reach target");
  4942. }
  4943. break;
  4944. }
  4945. clean_up_after_endstop_or_probe_move();
  4946. }
  4947. #endif // G38_PROBE_TARGET
  4948. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
  4949. /**
  4950. * G42: Move X & Y axes to mesh coordinates (I & J)
  4951. */
  4952. inline void gcode_G42() {
  4953. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  4954. if (axis_unhomed_error()) return;
  4955. #endif
  4956. if (IsRunning()) {
  4957. const bool hasI = parser.seenval('I');
  4958. const int8_t ix = hasI ? parser.value_int() : 0;
  4959. const bool hasJ = parser.seenval('J');
  4960. const int8_t iy = hasJ ? parser.value_int() : 0;
  4961. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  4962. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  4963. return;
  4964. }
  4965. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4966. #define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
  4967. #define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
  4968. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  4969. #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
  4970. #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
  4971. #elif ENABLED(MESH_BED_LEVELING)
  4972. #define _GET_MESH_X(I) mbl.index_to_xpos[I]
  4973. #define _GET_MESH_Y(J) mbl.index_to_ypos[J]
  4974. #endif
  4975. set_destination_to_current();
  4976. if (hasI) destination[X_AXIS] = LOGICAL_X_POSITION(_GET_MESH_X(ix));
  4977. if (hasJ) destination[Y_AXIS] = LOGICAL_Y_POSITION(_GET_MESH_Y(iy));
  4978. if (parser.boolval('P')) {
  4979. if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  4980. if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  4981. }
  4982. const float fval = parser.linearval('F');
  4983. if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
  4984. // SCARA kinematic has "safe" XY raw moves
  4985. #if IS_SCARA
  4986. prepare_uninterpolated_move_to_destination();
  4987. #else
  4988. prepare_move_to_destination();
  4989. #endif
  4990. }
  4991. }
  4992. #endif // AUTO_BED_LEVELING_UBL
  4993. /**
  4994. * G92: Set current position to given X Y Z E
  4995. */
  4996. inline void gcode_G92() {
  4997. bool didXYZ = false,
  4998. didE = parser.seenval('E');
  4999. if (!didE) stepper.synchronize();
  5000. LOOP_XYZE(i) {
  5001. if (parser.seenval(axis_codes[i])) {
  5002. #if IS_SCARA
  5003. current_position[i] = parser.value_axis_units((AxisEnum)i);
  5004. if (i != E_AXIS) didXYZ = true;
  5005. #else
  5006. #if HAS_POSITION_SHIFT
  5007. const float p = current_position[i];
  5008. #endif
  5009. const float v = parser.value_axis_units((AxisEnum)i);
  5010. current_position[i] = v;
  5011. if (i != E_AXIS) {
  5012. didXYZ = true;
  5013. #if HAS_POSITION_SHIFT
  5014. position_shift[i] += v - p; // Offset the coordinate space
  5015. update_software_endstops((AxisEnum)i);
  5016. #if ENABLED(I2C_POSITION_ENCODERS)
  5017. I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum)i)].set_axis_offset(position_shift[i]);
  5018. #endif
  5019. #endif
  5020. }
  5021. #endif
  5022. }
  5023. }
  5024. if (didXYZ)
  5025. SYNC_PLAN_POSITION_KINEMATIC();
  5026. else if (didE)
  5027. sync_plan_position_e();
  5028. report_current_position();
  5029. }
  5030. #if HAS_RESUME_CONTINUE
  5031. /**
  5032. * M0: Unconditional stop - Wait for user button press on LCD
  5033. * M1: Conditional stop - Wait for user button press on LCD
  5034. */
  5035. inline void gcode_M0_M1() {
  5036. const char * const args = parser.string_arg;
  5037. millis_t ms = 0;
  5038. bool hasP = false, hasS = false;
  5039. if (parser.seenval('P')) {
  5040. ms = parser.value_millis(); // milliseconds to wait
  5041. hasP = ms > 0;
  5042. }
  5043. if (parser.seenval('S')) {
  5044. ms = parser.value_millis_from_seconds(); // seconds to wait
  5045. hasS = ms > 0;
  5046. }
  5047. #if ENABLED(ULTIPANEL)
  5048. if (!hasP && !hasS && args && *args)
  5049. lcd_setstatus(args, true);
  5050. else {
  5051. LCD_MESSAGEPGM(MSG_USERWAIT);
  5052. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  5053. dontExpireStatus();
  5054. #endif
  5055. }
  5056. #else
  5057. if (!hasP && !hasS && args && *args) {
  5058. SERIAL_ECHO_START();
  5059. SERIAL_ECHOLN(args);
  5060. }
  5061. #endif
  5062. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5063. wait_for_user = true;
  5064. stepper.synchronize();
  5065. refresh_cmd_timeout();
  5066. if (ms > 0) {
  5067. ms += previous_cmd_ms; // wait until this time for a click
  5068. while (PENDING(millis(), ms) && wait_for_user) idle();
  5069. }
  5070. else {
  5071. #if ENABLED(ULTIPANEL)
  5072. if (lcd_detected()) {
  5073. while (wait_for_user) idle();
  5074. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  5075. }
  5076. #else
  5077. while (wait_for_user) idle();
  5078. #endif
  5079. }
  5080. wait_for_user = false;
  5081. KEEPALIVE_STATE(IN_HANDLER);
  5082. }
  5083. #endif // HAS_RESUME_CONTINUE
  5084. #if ENABLED(SPINDLE_LASER_ENABLE)
  5085. /**
  5086. * M3: Spindle Clockwise
  5087. * M4: Spindle Counter-clockwise
  5088. *
  5089. * S0 turns off spindle.
  5090. *
  5091. * If no speed PWM output is defined then M3/M4 just turns it on.
  5092. *
  5093. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  5094. * Hardware PWM is required. ISRs are too slow.
  5095. *
  5096. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  5097. * No other settings give a PWM signal that goes from 0 to 5 volts.
  5098. *
  5099. * The system automatically sets WGM to Mode 1, so no special
  5100. * initialization is needed.
  5101. *
  5102. * WGM bits for timer 2 are automatically set by the system to
  5103. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  5104. * No special initialization is needed.
  5105. *
  5106. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  5107. * factors for timers 2, 3, 4, and 5 are acceptable.
  5108. *
  5109. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  5110. * the spindle/laser during power-up or when connecting to the host
  5111. * (usually goes through a reset which sets all I/O pins to tri-state)
  5112. *
  5113. * PWM duty cycle goes from 0 (off) to 255 (always on).
  5114. */
  5115. // Wait for spindle to come up to speed
  5116. inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
  5117. // Wait for spindle to stop turning
  5118. inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
  5119. /**
  5120. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  5121. *
  5122. * it accepts inputs of 0-255
  5123. */
  5124. inline void ocr_val_mode() {
  5125. uint8_t spindle_laser_power = parser.value_byte();
  5126. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5127. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  5128. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  5129. }
  5130. inline void gcode_M3_M4(bool is_M3) {
  5131. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  5132. #if SPINDLE_DIR_CHANGE
  5133. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  5134. if (SPINDLE_STOP_ON_DIR_CHANGE \
  5135. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  5136. && READ(SPINDLE_DIR_PIN) != rotation_dir
  5137. ) {
  5138. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  5139. delay_for_power_down();
  5140. }
  5141. WRITE(SPINDLE_DIR_PIN, rotation_dir);
  5142. #endif
  5143. /**
  5144. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  5145. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  5146. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  5147. */
  5148. #if ENABLED(SPINDLE_LASER_PWM)
  5149. if (parser.seen('O')) ocr_val_mode();
  5150. else {
  5151. const float spindle_laser_power = parser.floatval('S');
  5152. if (spindle_laser_power == 0) {
  5153. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  5154. delay_for_power_down();
  5155. }
  5156. else {
  5157. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  5158. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  5159. if (spindle_laser_power <= SPEED_POWER_MIN)
  5160. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  5161. if (spindle_laser_power >= SPEED_POWER_MAX)
  5162. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  5163. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  5164. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5165. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  5166. delay_for_power_up();
  5167. }
  5168. }
  5169. #else
  5170. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  5171. delay_for_power_up();
  5172. #endif
  5173. }
  5174. /**
  5175. * M5 turn off spindle
  5176. */
  5177. inline void gcode_M5() {
  5178. stepper.synchronize();
  5179. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  5180. delay_for_power_down();
  5181. }
  5182. #endif // SPINDLE_LASER_ENABLE
  5183. /**
  5184. * M17: Enable power on all stepper motors
  5185. */
  5186. inline void gcode_M17() {
  5187. LCD_MESSAGEPGM(MSG_NO_MOVE);
  5188. enable_all_steppers();
  5189. }
  5190. #if IS_KINEMATIC
  5191. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  5192. #else
  5193. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  5194. #endif
  5195. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  5196. static float resume_position[XYZE];
  5197. static bool move_away_flag = false;
  5198. #if ENABLED(SDSUPPORT)
  5199. static bool sd_print_paused = false;
  5200. #endif
  5201. static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
  5202. static millis_t next_buzz = 0;
  5203. static int8_t runout_beep = 0;
  5204. if (init) next_buzz = runout_beep = 0;
  5205. const millis_t ms = millis();
  5206. if (ELAPSED(ms, next_buzz)) {
  5207. if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
  5208. next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
  5209. BUZZ(300, 2000);
  5210. runout_beep++;
  5211. }
  5212. }
  5213. }
  5214. static void ensure_safe_temperature() {
  5215. bool heaters_heating = true;
  5216. wait_for_heatup = true; // M108 will clear this
  5217. while (wait_for_heatup && heaters_heating) {
  5218. idle();
  5219. heaters_heating = false;
  5220. HOTEND_LOOP() {
  5221. if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
  5222. heaters_heating = true;
  5223. #if ENABLED(ULTIPANEL)
  5224. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  5225. #endif
  5226. break;
  5227. }
  5228. }
  5229. }
  5230. }
  5231. static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
  5232. const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
  5233. ) {
  5234. if (move_away_flag) return false; // already paused
  5235. if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
  5236. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5237. if (!thermalManager.allow_cold_extrude &&
  5238. thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
  5239. SERIAL_ERROR_START();
  5240. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5241. return false;
  5242. }
  5243. #endif
  5244. ensure_safe_temperature(); // wait for extruder to heat up before unloading
  5245. }
  5246. // Indicate that the printer is paused
  5247. move_away_flag = true;
  5248. // Pause the print job and timer
  5249. #if ENABLED(SDSUPPORT)
  5250. if (card.sdprinting) {
  5251. card.pauseSDPrint();
  5252. sd_print_paused = true;
  5253. }
  5254. #endif
  5255. print_job_timer.pause();
  5256. // Show initial message and wait for synchronize steppers
  5257. if (show_lcd) {
  5258. #if ENABLED(ULTIPANEL)
  5259. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
  5260. #endif
  5261. }
  5262. // Save current position
  5263. stepper.synchronize();
  5264. COPY(resume_position, current_position);
  5265. if (retract) {
  5266. // Initial retract before move to filament change position
  5267. set_destination_to_current();
  5268. destination[E_AXIS] += retract;
  5269. RUNPLAN(PAUSE_PARK_RETRACT_FEEDRATE);
  5270. stepper.synchronize();
  5271. }
  5272. // Lift Z axis
  5273. if (z_lift > 0)
  5274. do_blocking_move_to_z(current_position[Z_AXIS] + z_lift, PAUSE_PARK_Z_FEEDRATE);
  5275. // Move XY axes to filament exchange position
  5276. do_blocking_move_to_xy(x_pos, y_pos, PAUSE_PARK_XY_FEEDRATE);
  5277. if (unload_length != 0) {
  5278. if (show_lcd) {
  5279. #if ENABLED(ULTIPANEL)
  5280. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
  5281. idle();
  5282. #endif
  5283. }
  5284. // Unload filament
  5285. set_destination_to_current();
  5286. destination[E_AXIS] += unload_length;
  5287. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5288. stepper.synchronize();
  5289. }
  5290. if (show_lcd) {
  5291. #if ENABLED(ULTIPANEL)
  5292. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5293. #endif
  5294. }
  5295. #if HAS_BUZZER
  5296. filament_change_beep(max_beep_count, true);
  5297. #endif
  5298. idle();
  5299. // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
  5300. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
  5301. disable_e_steppers();
  5302. safe_delay(100);
  5303. #endif
  5304. // Start the heater idle timers
  5305. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5306. HOTEND_LOOP()
  5307. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5308. return true;
  5309. }
  5310. static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
  5311. bool nozzle_timed_out = false;
  5312. // Wait for filament insert by user and press button
  5313. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5314. wait_for_user = true; // LCD click or M108 will clear this
  5315. while (wait_for_user) {
  5316. #if HAS_BUZZER
  5317. filament_change_beep(max_beep_count);
  5318. #endif
  5319. // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
  5320. // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
  5321. if (!nozzle_timed_out)
  5322. HOTEND_LOOP()
  5323. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5324. if (nozzle_timed_out) {
  5325. #if ENABLED(ULTIPANEL)
  5326. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  5327. #endif
  5328. // Wait for LCD click or M108
  5329. while (wait_for_user) idle(true);
  5330. // Re-enable the heaters if they timed out
  5331. HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
  5332. // Wait for the heaters to reach the target temperatures
  5333. ensure_safe_temperature();
  5334. #if ENABLED(ULTIPANEL)
  5335. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5336. #endif
  5337. // Start the heater idle timers
  5338. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5339. HOTEND_LOOP()
  5340. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5341. wait_for_user = true; /* Wait for user to load filament */
  5342. nozzle_timed_out = false;
  5343. #if HAS_BUZZER
  5344. filament_change_beep(max_beep_count, true);
  5345. #endif
  5346. }
  5347. idle(true);
  5348. }
  5349. KEEPALIVE_STATE(IN_HANDLER);
  5350. }
  5351. static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
  5352. bool nozzle_timed_out = false;
  5353. if (!move_away_flag) return;
  5354. // Re-enable the heaters if they timed out
  5355. HOTEND_LOOP() {
  5356. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5357. thermalManager.reset_heater_idle_timer(e);
  5358. }
  5359. if (nozzle_timed_out) ensure_safe_temperature();
  5360. #if HAS_BUZZER
  5361. filament_change_beep(max_beep_count, true);
  5362. #endif
  5363. set_destination_to_current();
  5364. if (load_length != 0) {
  5365. #if ENABLED(ULTIPANEL)
  5366. // Show "insert filament"
  5367. if (nozzle_timed_out)
  5368. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5369. #endif
  5370. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5371. wait_for_user = true; // LCD click or M108 will clear this
  5372. while (wait_for_user && nozzle_timed_out) {
  5373. #if HAS_BUZZER
  5374. filament_change_beep(max_beep_count);
  5375. #endif
  5376. idle(true);
  5377. }
  5378. KEEPALIVE_STATE(IN_HANDLER);
  5379. #if ENABLED(ULTIPANEL)
  5380. // Show "load" message
  5381. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
  5382. #endif
  5383. // Load filament
  5384. destination[E_AXIS] += load_length;
  5385. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5386. stepper.synchronize();
  5387. }
  5388. #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
  5389. float extrude_length = initial_extrude_length;
  5390. do {
  5391. if (extrude_length > 0) {
  5392. // "Wait for filament extrude"
  5393. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
  5394. // Extrude filament to get into hotend
  5395. destination[E_AXIS] += extrude_length;
  5396. RUNPLAN(ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
  5397. stepper.synchronize();
  5398. }
  5399. // Show "Extrude More" / "Resume" menu and wait for reply
  5400. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5401. wait_for_user = false;
  5402. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
  5403. while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
  5404. KEEPALIVE_STATE(IN_HANDLER);
  5405. extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
  5406. // Keep looping if "Extrude More" was selected
  5407. } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
  5408. #endif
  5409. #if ENABLED(ULTIPANEL)
  5410. // "Wait for print to resume"
  5411. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
  5412. #endif
  5413. // Set extruder to saved position
  5414. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  5415. planner.set_e_position_mm(current_position[E_AXIS]);
  5416. // Move XY to starting position, then Z
  5417. do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], PAUSE_PARK_XY_FEEDRATE);
  5418. do_blocking_move_to_z(resume_position[Z_AXIS], PAUSE_PARK_Z_FEEDRATE);
  5419. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5420. filament_ran_out = false;
  5421. #endif
  5422. #if ENABLED(ULTIPANEL)
  5423. // Show status screen
  5424. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
  5425. #endif
  5426. #if ENABLED(SDSUPPORT)
  5427. if (sd_print_paused) {
  5428. card.startFileprint();
  5429. sd_print_paused = false;
  5430. }
  5431. #endif
  5432. move_away_flag = false;
  5433. }
  5434. #endif // ADVANCED_PAUSE_FEATURE
  5435. #if ENABLED(SDSUPPORT)
  5436. /**
  5437. * M20: List SD card to serial output
  5438. */
  5439. inline void gcode_M20() {
  5440. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  5441. card.ls();
  5442. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  5443. }
  5444. /**
  5445. * M21: Init SD Card
  5446. */
  5447. inline void gcode_M21() { card.initsd(); }
  5448. /**
  5449. * M22: Release SD Card
  5450. */
  5451. inline void gcode_M22() { card.release(); }
  5452. /**
  5453. * M23: Open a file
  5454. */
  5455. inline void gcode_M23() {
  5456. // Simplify3D includes the size, so zero out all spaces (#7227)
  5457. for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
  5458. card.openFile(parser.string_arg, true);
  5459. }
  5460. /**
  5461. * M24: Start or Resume SD Print
  5462. */
  5463. inline void gcode_M24() {
  5464. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5465. resume_print();
  5466. #endif
  5467. card.startFileprint();
  5468. print_job_timer.start();
  5469. }
  5470. /**
  5471. * M25: Pause SD Print
  5472. */
  5473. inline void gcode_M25() {
  5474. card.pauseSDPrint();
  5475. print_job_timer.pause();
  5476. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5477. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  5478. #endif
  5479. }
  5480. /**
  5481. * M26: Set SD Card file index
  5482. */
  5483. inline void gcode_M26() {
  5484. if (card.cardOK && parser.seenval('S'))
  5485. card.setIndex(parser.value_long());
  5486. }
  5487. /**
  5488. * M27: Get SD Card status
  5489. */
  5490. inline void gcode_M27() { card.getStatus(); }
  5491. /**
  5492. * M28: Start SD Write
  5493. */
  5494. inline void gcode_M28() { card.openFile(parser.string_arg, false); }
  5495. /**
  5496. * M29: Stop SD Write
  5497. * Processed in write to file routine above
  5498. */
  5499. inline void gcode_M29() {
  5500. // card.saving = false;
  5501. }
  5502. /**
  5503. * M30 <filename>: Delete SD Card file
  5504. */
  5505. inline void gcode_M30() {
  5506. if (card.cardOK) {
  5507. card.closefile();
  5508. card.removeFile(parser.string_arg);
  5509. }
  5510. }
  5511. #endif // SDSUPPORT
  5512. /**
  5513. * M31: Get the time since the start of SD Print (or last M109)
  5514. */
  5515. inline void gcode_M31() {
  5516. char buffer[21];
  5517. duration_t elapsed = print_job_timer.duration();
  5518. elapsed.toString(buffer);
  5519. lcd_setstatus(buffer);
  5520. SERIAL_ECHO_START();
  5521. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5522. }
  5523. #if ENABLED(SDSUPPORT)
  5524. /**
  5525. * M32: Select file and start SD Print
  5526. */
  5527. inline void gcode_M32() {
  5528. if (card.sdprinting)
  5529. stepper.synchronize();
  5530. char* namestartpos = parser.string_arg;
  5531. const bool call_procedure = parser.boolval('P');
  5532. if (card.cardOK) {
  5533. card.openFile(namestartpos, true, call_procedure);
  5534. if (parser.seenval('S'))
  5535. card.setIndex(parser.value_long());
  5536. card.startFileprint();
  5537. // Procedure calls count as normal print time.
  5538. if (!call_procedure) print_job_timer.start();
  5539. }
  5540. }
  5541. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5542. /**
  5543. * M33: Get the long full path of a file or folder
  5544. *
  5545. * Parameters:
  5546. * <dospath> Case-insensitive DOS-style path to a file or folder
  5547. *
  5548. * Example:
  5549. * M33 miscel~1/armchair/armcha~1.gco
  5550. *
  5551. * Output:
  5552. * /Miscellaneous/Armchair/Armchair.gcode
  5553. */
  5554. inline void gcode_M33() {
  5555. card.printLongPath(parser.string_arg);
  5556. }
  5557. #endif
  5558. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5559. /**
  5560. * M34: Set SD Card Sorting Options
  5561. */
  5562. inline void gcode_M34() {
  5563. if (parser.seen('S')) card.setSortOn(parser.value_bool());
  5564. if (parser.seenval('F')) {
  5565. const int v = parser.value_long();
  5566. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5567. }
  5568. //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
  5569. }
  5570. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5571. /**
  5572. * M928: Start SD Write
  5573. */
  5574. inline void gcode_M928() {
  5575. card.openLogFile(parser.string_arg);
  5576. }
  5577. #endif // SDSUPPORT
  5578. /**
  5579. * Sensitive pin test for M42, M226
  5580. */
  5581. static bool pin_is_protected(const int8_t pin) {
  5582. static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
  5583. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5584. if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
  5585. return false;
  5586. }
  5587. /**
  5588. * M42: Change pin status via GCode
  5589. *
  5590. * P<pin> Pin number (LED if omitted)
  5591. * S<byte> Pin status from 0 - 255
  5592. */
  5593. inline void gcode_M42() {
  5594. if (!parser.seenval('S')) return;
  5595. const byte pin_status = parser.value_byte();
  5596. const int pin_number = parser.intval('P', LED_PIN);
  5597. if (pin_number < 0) return;
  5598. if (pin_is_protected(pin_number)) {
  5599. SERIAL_ERROR_START();
  5600. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5601. return;
  5602. }
  5603. pinMode(pin_number, OUTPUT);
  5604. digitalWrite(pin_number, pin_status);
  5605. analogWrite(pin_number, pin_status);
  5606. #if FAN_COUNT > 0
  5607. switch (pin_number) {
  5608. #if HAS_FAN0
  5609. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5610. #endif
  5611. #if HAS_FAN1
  5612. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5613. #endif
  5614. #if HAS_FAN2
  5615. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5616. #endif
  5617. }
  5618. #endif
  5619. }
  5620. #if ENABLED(PINS_DEBUGGING)
  5621. #include "pinsDebug.h"
  5622. inline void toggle_pins() {
  5623. const bool I_flag = parser.boolval('I');
  5624. const int repeat = parser.intval('R', 1),
  5625. start = parser.intval('S'),
  5626. end = parser.intval('E', NUM_DIGITAL_PINS - 1),
  5627. wait = parser.intval('W', 500);
  5628. for (uint8_t pin = start; pin <= end; pin++) {
  5629. //report_pin_state_extended(pin, I_flag, false);
  5630. if (!I_flag && pin_is_protected(pin)) {
  5631. report_pin_state_extended(pin, I_flag, true, "Untouched ");
  5632. SERIAL_EOL();
  5633. }
  5634. else {
  5635. report_pin_state_extended(pin, I_flag, true, "Pulsing ");
  5636. #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
  5637. if (pin == TEENSY_E2) {
  5638. SET_OUTPUT(TEENSY_E2);
  5639. for (int16_t j = 0; j < repeat; j++) {
  5640. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5641. WRITE(TEENSY_E2, HIGH); safe_delay(wait);
  5642. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5643. }
  5644. }
  5645. else if (pin == TEENSY_E3) {
  5646. SET_OUTPUT(TEENSY_E3);
  5647. for (int16_t j = 0; j < repeat; j++) {
  5648. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5649. WRITE(TEENSY_E3, HIGH); safe_delay(wait);
  5650. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5651. }
  5652. }
  5653. else
  5654. #endif
  5655. {
  5656. pinMode(pin, OUTPUT);
  5657. for (int16_t j = 0; j < repeat; j++) {
  5658. digitalWrite(pin, 0); safe_delay(wait);
  5659. digitalWrite(pin, 1); safe_delay(wait);
  5660. digitalWrite(pin, 0); safe_delay(wait);
  5661. }
  5662. }
  5663. }
  5664. SERIAL_EOL();
  5665. }
  5666. SERIAL_ECHOLNPGM("Done.");
  5667. } // toggle_pins
  5668. inline void servo_probe_test() {
  5669. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5670. SERIAL_ERROR_START();
  5671. SERIAL_ERRORLNPGM("SERVO not setup");
  5672. #elif !HAS_Z_SERVO_ENDSTOP
  5673. SERIAL_ERROR_START();
  5674. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5675. #else // HAS_Z_SERVO_ENDSTOP
  5676. const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
  5677. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5678. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5679. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5680. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5681. bool probe_inverting;
  5682. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5683. #define PROBE_TEST_PIN Z_MIN_PIN
  5684. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5685. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5686. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5687. #if Z_MIN_ENDSTOP_INVERTING
  5688. SERIAL_PROTOCOLLNPGM("true");
  5689. #else
  5690. SERIAL_PROTOCOLLNPGM("false");
  5691. #endif
  5692. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5693. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5694. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5695. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5696. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5697. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5698. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5699. SERIAL_PROTOCOLLNPGM("true");
  5700. #else
  5701. SERIAL_PROTOCOLLNPGM("false");
  5702. #endif
  5703. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5704. #endif
  5705. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5706. SET_INPUT_PULLUP(PROBE_TEST_PIN);
  5707. bool deploy_state, stow_state;
  5708. for (uint8_t i = 0; i < 4; i++) {
  5709. MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
  5710. safe_delay(500);
  5711. deploy_state = READ(PROBE_TEST_PIN);
  5712. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  5713. safe_delay(500);
  5714. stow_state = READ(PROBE_TEST_PIN);
  5715. }
  5716. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5717. refresh_cmd_timeout();
  5718. if (deploy_state != stow_state) {
  5719. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5720. if (deploy_state) {
  5721. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5722. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5723. }
  5724. else {
  5725. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5726. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5727. }
  5728. #if ENABLED(BLTOUCH)
  5729. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5730. #endif
  5731. }
  5732. else { // measure active signal length
  5733. MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
  5734. safe_delay(500);
  5735. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5736. uint16_t probe_counter = 0;
  5737. // Allow 30 seconds max for operator to trigger probe
  5738. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5739. safe_delay(2);
  5740. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5741. refresh_cmd_timeout();
  5742. if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
  5743. for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
  5744. safe_delay(2);
  5745. if (probe_counter == 50)
  5746. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5747. else if (probe_counter >= 2)
  5748. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5749. else
  5750. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5751. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  5752. } // pulse detected
  5753. } // for loop waiting for trigger
  5754. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5755. } // measure active signal length
  5756. #endif
  5757. } // servo_probe_test
  5758. /**
  5759. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5760. *
  5761. * M43 - report name and state of pin(s)
  5762. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5763. * I Flag to ignore Marlin's pin protection.
  5764. *
  5765. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5766. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5767. * I Flag to ignore Marlin's pin protection.
  5768. *
  5769. * M43 E<bool> - Enable / disable background endstop monitoring
  5770. * - Machine continues to operate
  5771. * - Reports changes to endstops
  5772. * - Toggles LED_PIN when an endstop changes
  5773. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5774. *
  5775. * M43 T - Toggle pin(s) and report which pin is being toggled
  5776. * S<pin> - Start Pin number. If not given, will default to 0
  5777. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5778. * I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5779. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5780. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5781. *
  5782. * M43 S - Servo probe test
  5783. * P<index> - Probe index (optional - defaults to 0
  5784. */
  5785. inline void gcode_M43() {
  5786. if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
  5787. toggle_pins();
  5788. return;
  5789. }
  5790. // Enable or disable endstop monitoring
  5791. if (parser.seen('E')) {
  5792. endstop_monitor_flag = parser.value_bool();
  5793. SERIAL_PROTOCOLPGM("endstop monitor ");
  5794. serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
  5795. SERIAL_PROTOCOLLNPGM("abled");
  5796. return;
  5797. }
  5798. if (parser.seen('S')) {
  5799. servo_probe_test();
  5800. return;
  5801. }
  5802. // Get the range of pins to test or watch
  5803. const uint8_t first_pin = parser.byteval('P'),
  5804. last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5805. if (first_pin > last_pin) return;
  5806. const bool ignore_protection = parser.boolval('I');
  5807. // Watch until click, M108, or reset
  5808. if (parser.boolval('W')) {
  5809. SERIAL_PROTOCOLLNPGM("Watching pins");
  5810. byte pin_state[last_pin - first_pin + 1];
  5811. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5812. if (pin_is_protected(pin) && !ignore_protection) continue;
  5813. pinMode(pin, INPUT_PULLUP);
  5814. delay(1);
  5815. /*
  5816. if (IS_ANALOG(pin))
  5817. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5818. else
  5819. //*/
  5820. pin_state[pin - first_pin] = digitalRead(pin);
  5821. }
  5822. #if HAS_RESUME_CONTINUE
  5823. wait_for_user = true;
  5824. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5825. #endif
  5826. for (;;) {
  5827. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5828. if (pin_is_protected(pin) && !ignore_protection) continue;
  5829. const byte val =
  5830. /*
  5831. IS_ANALOG(pin)
  5832. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5833. :
  5834. //*/
  5835. digitalRead(pin);
  5836. if (val != pin_state[pin - first_pin]) {
  5837. report_pin_state_extended(pin, ignore_protection, false);
  5838. pin_state[pin - first_pin] = val;
  5839. }
  5840. }
  5841. #if HAS_RESUME_CONTINUE
  5842. if (!wait_for_user) {
  5843. KEEPALIVE_STATE(IN_HANDLER);
  5844. break;
  5845. }
  5846. #endif
  5847. safe_delay(200);
  5848. }
  5849. return;
  5850. }
  5851. // Report current state of selected pin(s)
  5852. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5853. report_pin_state_extended(pin, ignore_protection, true);
  5854. }
  5855. #endif // PINS_DEBUGGING
  5856. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5857. /**
  5858. * M48: Z probe repeatability measurement function.
  5859. *
  5860. * Usage:
  5861. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5862. * P = Number of sampled points (4-50, default 10)
  5863. * X = Sample X position
  5864. * Y = Sample Y position
  5865. * V = Verbose level (0-4, default=1)
  5866. * E = Engage Z probe for each reading
  5867. * L = Number of legs of movement before probe
  5868. * S = Schizoid (Or Star if you prefer)
  5869. *
  5870. * This function assumes the bed has been homed. Specifically, that a G28 command
  5871. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5872. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5873. * regenerated.
  5874. */
  5875. inline void gcode_M48() {
  5876. if (axis_unhomed_error()) return;
  5877. const int8_t verbose_level = parser.byteval('V', 1);
  5878. if (!WITHIN(verbose_level, 0, 4)) {
  5879. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  5880. return;
  5881. }
  5882. if (verbose_level > 0)
  5883. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5884. const int8_t n_samples = parser.byteval('P', 10);
  5885. if (!WITHIN(n_samples, 4, 50)) {
  5886. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5887. return;
  5888. }
  5889. const bool stow_probe_after_each = parser.boolval('E');
  5890. float X_current = current_position[X_AXIS],
  5891. Y_current = current_position[Y_AXIS];
  5892. const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
  5893. Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5894. #if DISABLED(DELTA)
  5895. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5896. out_of_range_error(PSTR("X"));
  5897. return;
  5898. }
  5899. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5900. out_of_range_error(PSTR("Y"));
  5901. return;
  5902. }
  5903. #else
  5904. if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) {
  5905. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5906. return;
  5907. }
  5908. #endif
  5909. bool seen_L = parser.seen('L');
  5910. uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  5911. if (n_legs > 15) {
  5912. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5913. return;
  5914. }
  5915. if (n_legs == 1) n_legs = 2;
  5916. const bool schizoid_flag = parser.boolval('S');
  5917. if (schizoid_flag && !seen_L) n_legs = 7;
  5918. /**
  5919. * Now get everything to the specified probe point So we can safely do a
  5920. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5921. * we don't want to use that as a starting point for each probe.
  5922. */
  5923. if (verbose_level > 2)
  5924. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5925. // Disable bed level correction in M48 because we want the raw data when we probe
  5926. #if HAS_LEVELING
  5927. const bool was_enabled = leveling_is_active();
  5928. set_bed_leveling_enabled(false);
  5929. #endif
  5930. setup_for_endstop_or_probe_move();
  5931. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5932. // Move to the first point, deploy, and probe
  5933. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5934. bool probing_good = !isnan(t);
  5935. if (probing_good) {
  5936. randomSeed(millis());
  5937. for (uint8_t n = 0; n < n_samples; n++) {
  5938. if (n_legs) {
  5939. const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5940. float angle = random(0.0, 360.0);
  5941. const float radius = random(
  5942. #if ENABLED(DELTA)
  5943. 0.1250000000 * (DELTA_PROBEABLE_RADIUS),
  5944. 0.3333333333 * (DELTA_PROBEABLE_RADIUS)
  5945. #else
  5946. 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
  5947. #endif
  5948. );
  5949. if (verbose_level > 3) {
  5950. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5951. SERIAL_ECHOPAIR(" angle: ", angle);
  5952. SERIAL_ECHOPGM(" Direction: ");
  5953. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5954. SERIAL_ECHOLNPGM("Clockwise");
  5955. }
  5956. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5957. double delta_angle;
  5958. if (schizoid_flag)
  5959. // The points of a 5 point star are 72 degrees apart. We need to
  5960. // skip a point and go to the next one on the star.
  5961. delta_angle = dir * 2.0 * 72.0;
  5962. else
  5963. // If we do this line, we are just trying to move further
  5964. // around the circle.
  5965. delta_angle = dir * (float) random(25, 45);
  5966. angle += delta_angle;
  5967. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5968. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5969. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5970. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5971. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5972. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5973. #if DISABLED(DELTA)
  5974. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5975. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5976. #else
  5977. // If we have gone out too far, we can do a simple fix and scale the numbers
  5978. // back in closer to the origin.
  5979. while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
  5980. X_current *= 0.8;
  5981. Y_current *= 0.8;
  5982. if (verbose_level > 3) {
  5983. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5984. SERIAL_ECHOLNPAIR(", ", Y_current);
  5985. }
  5986. }
  5987. #endif
  5988. if (verbose_level > 3) {
  5989. SERIAL_PROTOCOLPGM("Going to:");
  5990. SERIAL_ECHOPAIR(" X", X_current);
  5991. SERIAL_ECHOPAIR(" Y", Y_current);
  5992. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5993. }
  5994. do_blocking_move_to_xy(X_current, Y_current);
  5995. } // n_legs loop
  5996. } // n_legs
  5997. // Probe a single point
  5998. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5999. // Break the loop if the probe fails
  6000. probing_good = !isnan(sample_set[n]);
  6001. if (!probing_good) break;
  6002. /**
  6003. * Get the current mean for the data points we have so far
  6004. */
  6005. double sum = 0.0;
  6006. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  6007. mean = sum / (n + 1);
  6008. NOMORE(min, sample_set[n]);
  6009. NOLESS(max, sample_set[n]);
  6010. /**
  6011. * Now, use that mean to calculate the standard deviation for the
  6012. * data points we have so far
  6013. */
  6014. sum = 0.0;
  6015. for (uint8_t j = 0; j <= n; j++)
  6016. sum += sq(sample_set[j] - mean);
  6017. sigma = SQRT(sum / (n + 1));
  6018. if (verbose_level > 0) {
  6019. if (verbose_level > 1) {
  6020. SERIAL_PROTOCOL(n + 1);
  6021. SERIAL_PROTOCOLPGM(" of ");
  6022. SERIAL_PROTOCOL((int)n_samples);
  6023. SERIAL_PROTOCOLPGM(": z: ");
  6024. SERIAL_PROTOCOL_F(sample_set[n], 3);
  6025. if (verbose_level > 2) {
  6026. SERIAL_PROTOCOLPGM(" mean: ");
  6027. SERIAL_PROTOCOL_F(mean, 4);
  6028. SERIAL_PROTOCOLPGM(" sigma: ");
  6029. SERIAL_PROTOCOL_F(sigma, 6);
  6030. SERIAL_PROTOCOLPGM(" min: ");
  6031. SERIAL_PROTOCOL_F(min, 3);
  6032. SERIAL_PROTOCOLPGM(" max: ");
  6033. SERIAL_PROTOCOL_F(max, 3);
  6034. SERIAL_PROTOCOLPGM(" range: ");
  6035. SERIAL_PROTOCOL_F(max-min, 3);
  6036. }
  6037. SERIAL_EOL();
  6038. }
  6039. }
  6040. } // n_samples loop
  6041. }
  6042. STOW_PROBE();
  6043. if (probing_good) {
  6044. SERIAL_PROTOCOLLNPGM("Finished!");
  6045. if (verbose_level > 0) {
  6046. SERIAL_PROTOCOLPGM("Mean: ");
  6047. SERIAL_PROTOCOL_F(mean, 6);
  6048. SERIAL_PROTOCOLPGM(" Min: ");
  6049. SERIAL_PROTOCOL_F(min, 3);
  6050. SERIAL_PROTOCOLPGM(" Max: ");
  6051. SERIAL_PROTOCOL_F(max, 3);
  6052. SERIAL_PROTOCOLPGM(" Range: ");
  6053. SERIAL_PROTOCOL_F(max-min, 3);
  6054. SERIAL_EOL();
  6055. }
  6056. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  6057. SERIAL_PROTOCOL_F(sigma, 6);
  6058. SERIAL_EOL();
  6059. SERIAL_EOL();
  6060. }
  6061. clean_up_after_endstop_or_probe_move();
  6062. // Re-enable bed level correction if it had been on
  6063. #if HAS_LEVELING
  6064. set_bed_leveling_enabled(was_enabled);
  6065. #endif
  6066. report_current_position();
  6067. }
  6068. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6069. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  6070. inline void gcode_M49() {
  6071. ubl.g26_debug_flag ^= true;
  6072. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  6073. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  6074. }
  6075. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  6076. /**
  6077. * M75: Start print timer
  6078. */
  6079. inline void gcode_M75() { print_job_timer.start(); }
  6080. /**
  6081. * M76: Pause print timer
  6082. */
  6083. inline void gcode_M76() { print_job_timer.pause(); }
  6084. /**
  6085. * M77: Stop print timer
  6086. */
  6087. inline void gcode_M77() { print_job_timer.stop(); }
  6088. #if ENABLED(PRINTCOUNTER)
  6089. /**
  6090. * M78: Show print statistics
  6091. */
  6092. inline void gcode_M78() {
  6093. // "M78 S78" will reset the statistics
  6094. if (parser.intval('S') == 78)
  6095. print_job_timer.initStats();
  6096. else
  6097. print_job_timer.showStats();
  6098. }
  6099. #endif
  6100. /**
  6101. * M104: Set hot end temperature
  6102. */
  6103. inline void gcode_M104() {
  6104. if (get_target_extruder_from_command(104)) return;
  6105. if (DEBUGGING(DRYRUN)) return;
  6106. #if ENABLED(SINGLENOZZLE)
  6107. if (target_extruder != active_extruder) return;
  6108. #endif
  6109. if (parser.seenval('S')) {
  6110. const int16_t temp = parser.value_celsius();
  6111. thermalManager.setTargetHotend(temp, target_extruder);
  6112. #if ENABLED(DUAL_X_CARRIAGE)
  6113. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6114. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6115. #endif
  6116. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6117. /**
  6118. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  6119. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  6120. * standby mode, for instance in a dual extruder setup, without affecting
  6121. * the running print timer.
  6122. */
  6123. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6124. print_job_timer.stop();
  6125. LCD_MESSAGEPGM(WELCOME_MSG);
  6126. }
  6127. #endif
  6128. if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
  6129. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6130. }
  6131. #if ENABLED(AUTOTEMP)
  6132. planner.autotemp_M104_M109();
  6133. #endif
  6134. }
  6135. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6136. void print_heater_state(const float &c, const float &t,
  6137. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6138. const float r,
  6139. #endif
  6140. const int8_t e=-2
  6141. ) {
  6142. #if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1
  6143. UNUSED(e);
  6144. #endif
  6145. SERIAL_PROTOCOLCHAR(' ');
  6146. SERIAL_PROTOCOLCHAR(
  6147. #if HAS_TEMP_BED && HAS_TEMP_HOTEND
  6148. e == -1 ? 'B' : 'T'
  6149. #elif HAS_TEMP_HOTEND
  6150. 'T'
  6151. #else
  6152. 'B'
  6153. #endif
  6154. );
  6155. #if HOTENDS > 1
  6156. if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
  6157. #endif
  6158. SERIAL_PROTOCOLCHAR(':');
  6159. SERIAL_PROTOCOL(c);
  6160. SERIAL_PROTOCOLPAIR(" /" , t);
  6161. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6162. SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
  6163. SERIAL_PROTOCOLCHAR(')');
  6164. #endif
  6165. }
  6166. void print_heaterstates() {
  6167. #if HAS_TEMP_HOTEND
  6168. print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
  6169. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6170. , thermalManager.rawHotendTemp(target_extruder)
  6171. #endif
  6172. );
  6173. #endif
  6174. #if HAS_TEMP_BED
  6175. print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
  6176. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6177. thermalManager.rawBedTemp(),
  6178. #endif
  6179. -1 // BED
  6180. );
  6181. #endif
  6182. #if HOTENDS > 1
  6183. HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
  6184. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6185. thermalManager.rawHotendTemp(e),
  6186. #endif
  6187. e
  6188. );
  6189. #endif
  6190. SERIAL_PROTOCOLPGM(" @:");
  6191. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  6192. #if HAS_TEMP_BED
  6193. SERIAL_PROTOCOLPGM(" B@:");
  6194. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  6195. #endif
  6196. #if HOTENDS > 1
  6197. HOTEND_LOOP() {
  6198. SERIAL_PROTOCOLPAIR(" @", e);
  6199. SERIAL_PROTOCOLCHAR(':');
  6200. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  6201. }
  6202. #endif
  6203. }
  6204. #endif
  6205. /**
  6206. * M105: Read hot end and bed temperature
  6207. */
  6208. inline void gcode_M105() {
  6209. if (get_target_extruder_from_command(105)) return;
  6210. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6211. SERIAL_PROTOCOLPGM(MSG_OK);
  6212. print_heaterstates();
  6213. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  6214. SERIAL_ERROR_START();
  6215. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  6216. #endif
  6217. SERIAL_EOL();
  6218. }
  6219. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6220. static uint8_t auto_report_temp_interval;
  6221. static millis_t next_temp_report_ms;
  6222. /**
  6223. * M155: Set temperature auto-report interval. M155 S<seconds>
  6224. */
  6225. inline void gcode_M155() {
  6226. if (parser.seenval('S')) {
  6227. auto_report_temp_interval = parser.value_byte();
  6228. NOMORE(auto_report_temp_interval, 60);
  6229. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6230. }
  6231. }
  6232. inline void auto_report_temperatures() {
  6233. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  6234. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6235. print_heaterstates();
  6236. SERIAL_EOL();
  6237. }
  6238. }
  6239. #endif // AUTO_REPORT_TEMPERATURES
  6240. #if FAN_COUNT > 0
  6241. /**
  6242. * M106: Set Fan Speed
  6243. *
  6244. * S<int> Speed between 0-255
  6245. * P<index> Fan index, if more than one fan
  6246. */
  6247. inline void gcode_M106() {
  6248. uint16_t s = parser.ushortval('S', 255);
  6249. NOMORE(s, 255);
  6250. const uint8_t p = parser.byteval('P', 0);
  6251. if (p < FAN_COUNT) fanSpeeds[p] = s;
  6252. }
  6253. /**
  6254. * M107: Fan Off
  6255. */
  6256. inline void gcode_M107() {
  6257. const uint16_t p = parser.ushortval('P');
  6258. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  6259. }
  6260. #endif // FAN_COUNT > 0
  6261. #if DISABLED(EMERGENCY_PARSER)
  6262. /**
  6263. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  6264. */
  6265. inline void gcode_M108() { wait_for_heatup = false; }
  6266. /**
  6267. * M112: Emergency Stop
  6268. */
  6269. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  6270. /**
  6271. * M410: Quickstop - Abort all planned moves
  6272. *
  6273. * This will stop the carriages mid-move, so most likely they
  6274. * will be out of sync with the stepper position after this.
  6275. */
  6276. inline void gcode_M410() { quickstop_stepper(); }
  6277. #endif
  6278. /**
  6279. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  6280. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  6281. */
  6282. #ifndef MIN_COOLING_SLOPE_DEG
  6283. #define MIN_COOLING_SLOPE_DEG 1.50
  6284. #endif
  6285. #ifndef MIN_COOLING_SLOPE_TIME
  6286. #define MIN_COOLING_SLOPE_TIME 60
  6287. #endif
  6288. inline void gcode_M109() {
  6289. if (get_target_extruder_from_command(109)) return;
  6290. if (DEBUGGING(DRYRUN)) return;
  6291. #if ENABLED(SINGLENOZZLE)
  6292. if (target_extruder != active_extruder) return;
  6293. #endif
  6294. const bool no_wait_for_cooling = parser.seenval('S');
  6295. if (no_wait_for_cooling || parser.seenval('R')) {
  6296. const int16_t temp = parser.value_celsius();
  6297. thermalManager.setTargetHotend(temp, target_extruder);
  6298. #if ENABLED(DUAL_X_CARRIAGE)
  6299. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6300. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6301. #endif
  6302. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6303. /**
  6304. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  6305. * standby mode, (e.g., in a dual extruder setup) without affecting
  6306. * the running print timer.
  6307. */
  6308. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6309. print_job_timer.stop();
  6310. LCD_MESSAGEPGM(WELCOME_MSG);
  6311. }
  6312. else
  6313. print_job_timer.start();
  6314. #endif
  6315. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6316. }
  6317. else return;
  6318. #if ENABLED(AUTOTEMP)
  6319. planner.autotemp_M104_M109();
  6320. #endif
  6321. #if TEMP_RESIDENCY_TIME > 0
  6322. millis_t residency_start_ms = 0;
  6323. // Loop until the temperature has stabilized
  6324. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  6325. #else
  6326. // Loop until the temperature is very close target
  6327. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  6328. #endif
  6329. float target_temp = -1.0, old_temp = 9999.0;
  6330. bool wants_to_cool = false;
  6331. wait_for_heatup = true;
  6332. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6333. #if DISABLED(BUSY_WHILE_HEATING)
  6334. KEEPALIVE_STATE(NOT_BUSY);
  6335. #endif
  6336. #if ENABLED(PRINTER_EVENT_LEDS)
  6337. const float start_temp = thermalManager.degHotend(target_extruder);
  6338. uint8_t old_blue = 0;
  6339. #endif
  6340. do {
  6341. // Target temperature might be changed during the loop
  6342. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  6343. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  6344. target_temp = thermalManager.degTargetHotend(target_extruder);
  6345. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6346. if (no_wait_for_cooling && wants_to_cool) break;
  6347. }
  6348. now = millis();
  6349. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  6350. next_temp_ms = now + 1000UL;
  6351. print_heaterstates();
  6352. #if TEMP_RESIDENCY_TIME > 0
  6353. SERIAL_PROTOCOLPGM(" W:");
  6354. if (residency_start_ms)
  6355. SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6356. else
  6357. SERIAL_PROTOCOLCHAR('?');
  6358. #endif
  6359. SERIAL_EOL();
  6360. }
  6361. idle();
  6362. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6363. const float temp = thermalManager.degHotend(target_extruder);
  6364. #if ENABLED(PRINTER_EVENT_LEDS)
  6365. // Gradually change LED strip from violet to red as nozzle heats up
  6366. if (!wants_to_cool) {
  6367. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  6368. if (blue != old_blue) {
  6369. old_blue = blue;
  6370. set_led_color(255, 0, blue
  6371. #if ENABLED(NEOPIXEL_RGBW_LED)
  6372. , 0, true
  6373. #endif
  6374. );
  6375. }
  6376. }
  6377. #endif
  6378. #if TEMP_RESIDENCY_TIME > 0
  6379. const float temp_diff = FABS(target_temp - temp);
  6380. if (!residency_start_ms) {
  6381. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  6382. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  6383. }
  6384. else if (temp_diff > TEMP_HYSTERESIS) {
  6385. // Restart the timer whenever the temperature falls outside the hysteresis.
  6386. residency_start_ms = now;
  6387. }
  6388. #endif
  6389. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  6390. if (wants_to_cool) {
  6391. // break after MIN_COOLING_SLOPE_TIME seconds
  6392. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  6393. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6394. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  6395. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  6396. old_temp = temp;
  6397. }
  6398. }
  6399. } while (wait_for_heatup && TEMP_CONDITIONS);
  6400. if (wait_for_heatup) {
  6401. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  6402. #if ENABLED(PRINTER_EVENT_LEDS)
  6403. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
  6404. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  6405. #else
  6406. set_led_color(255, 255, 255); // Set LEDs All On
  6407. #endif
  6408. #endif
  6409. }
  6410. #if DISABLED(BUSY_WHILE_HEATING)
  6411. KEEPALIVE_STATE(IN_HANDLER);
  6412. #endif
  6413. }
  6414. #if HAS_TEMP_BED
  6415. #ifndef MIN_COOLING_SLOPE_DEG_BED
  6416. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  6417. #endif
  6418. #ifndef MIN_COOLING_SLOPE_TIME_BED
  6419. #define MIN_COOLING_SLOPE_TIME_BED 60
  6420. #endif
  6421. /**
  6422. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  6423. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  6424. */
  6425. inline void gcode_M190() {
  6426. if (DEBUGGING(DRYRUN)) return;
  6427. LCD_MESSAGEPGM(MSG_BED_HEATING);
  6428. const bool no_wait_for_cooling = parser.seenval('S');
  6429. if (no_wait_for_cooling || parser.seenval('R')) {
  6430. thermalManager.setTargetBed(parser.value_celsius());
  6431. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6432. if (parser.value_celsius() > BED_MINTEMP)
  6433. print_job_timer.start();
  6434. #endif
  6435. }
  6436. else return;
  6437. #if TEMP_BED_RESIDENCY_TIME > 0
  6438. millis_t residency_start_ms = 0;
  6439. // Loop until the temperature has stabilized
  6440. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  6441. #else
  6442. // Loop until the temperature is very close target
  6443. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  6444. #endif
  6445. float target_temp = -1.0, old_temp = 9999.0;
  6446. bool wants_to_cool = false;
  6447. wait_for_heatup = true;
  6448. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6449. #if DISABLED(BUSY_WHILE_HEATING)
  6450. KEEPALIVE_STATE(NOT_BUSY);
  6451. #endif
  6452. target_extruder = active_extruder; // for print_heaterstates
  6453. #if ENABLED(PRINTER_EVENT_LEDS)
  6454. const float start_temp = thermalManager.degBed();
  6455. uint8_t old_red = 255;
  6456. #endif
  6457. do {
  6458. // Target temperature might be changed during the loop
  6459. if (target_temp != thermalManager.degTargetBed()) {
  6460. wants_to_cool = thermalManager.isCoolingBed();
  6461. target_temp = thermalManager.degTargetBed();
  6462. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6463. if (no_wait_for_cooling && wants_to_cool) break;
  6464. }
  6465. now = millis();
  6466. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  6467. next_temp_ms = now + 1000UL;
  6468. print_heaterstates();
  6469. #if TEMP_BED_RESIDENCY_TIME > 0
  6470. SERIAL_PROTOCOLPGM(" W:");
  6471. if (residency_start_ms)
  6472. SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6473. else
  6474. SERIAL_PROTOCOLCHAR('?');
  6475. #endif
  6476. SERIAL_EOL();
  6477. }
  6478. idle();
  6479. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6480. const float temp = thermalManager.degBed();
  6481. #if ENABLED(PRINTER_EVENT_LEDS)
  6482. // Gradually change LED strip from blue to violet as bed heats up
  6483. if (!wants_to_cool) {
  6484. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  6485. if (red != old_red) {
  6486. old_red = red;
  6487. set_led_color(red, 0, 255
  6488. #if ENABLED(NEOPIXEL_RGBW_LED)
  6489. , 0, true
  6490. #endif
  6491. );
  6492. }
  6493. }
  6494. #endif
  6495. #if TEMP_BED_RESIDENCY_TIME > 0
  6496. const float temp_diff = FABS(target_temp - temp);
  6497. if (!residency_start_ms) {
  6498. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  6499. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  6500. }
  6501. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  6502. // Restart the timer whenever the temperature falls outside the hysteresis.
  6503. residency_start_ms = now;
  6504. }
  6505. #endif // TEMP_BED_RESIDENCY_TIME > 0
  6506. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  6507. if (wants_to_cool) {
  6508. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  6509. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  6510. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6511. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  6512. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  6513. old_temp = temp;
  6514. }
  6515. }
  6516. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  6517. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  6518. #if DISABLED(BUSY_WHILE_HEATING)
  6519. KEEPALIVE_STATE(IN_HANDLER);
  6520. #endif
  6521. }
  6522. #endif // HAS_TEMP_BED
  6523. /**
  6524. * M110: Set Current Line Number
  6525. */
  6526. inline void gcode_M110() {
  6527. if (parser.seenval('N')) gcode_LastN = parser.value_long();
  6528. }
  6529. /**
  6530. * M111: Set the debug level
  6531. */
  6532. inline void gcode_M111() {
  6533. if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
  6534. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
  6535. str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
  6536. str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
  6537. str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
  6538. str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
  6539. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6540. , str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
  6541. #endif
  6542. ;
  6543. const static char* const debug_strings[] PROGMEM = {
  6544. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
  6545. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6546. , str_debug_32
  6547. #endif
  6548. };
  6549. SERIAL_ECHO_START();
  6550. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6551. if (marlin_debug_flags) {
  6552. uint8_t comma = 0;
  6553. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6554. if (TEST(marlin_debug_flags, i)) {
  6555. if (comma++) SERIAL_CHAR(',');
  6556. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6557. }
  6558. }
  6559. }
  6560. else {
  6561. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6562. }
  6563. SERIAL_EOL();
  6564. }
  6565. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6566. /**
  6567. * M113: Get or set Host Keepalive interval (0 to disable)
  6568. *
  6569. * S<seconds> Optional. Set the keepalive interval.
  6570. */
  6571. inline void gcode_M113() {
  6572. if (parser.seenval('S')) {
  6573. host_keepalive_interval = parser.value_byte();
  6574. NOMORE(host_keepalive_interval, 60);
  6575. }
  6576. else {
  6577. SERIAL_ECHO_START();
  6578. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6579. }
  6580. }
  6581. #endif
  6582. #if ENABLED(BARICUDA)
  6583. #if HAS_HEATER_1
  6584. /**
  6585. * M126: Heater 1 valve open
  6586. */
  6587. inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
  6588. /**
  6589. * M127: Heater 1 valve close
  6590. */
  6591. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6592. #endif
  6593. #if HAS_HEATER_2
  6594. /**
  6595. * M128: Heater 2 valve open
  6596. */
  6597. inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
  6598. /**
  6599. * M129: Heater 2 valve close
  6600. */
  6601. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6602. #endif
  6603. #endif // BARICUDA
  6604. /**
  6605. * M140: Set bed temperature
  6606. */
  6607. inline void gcode_M140() {
  6608. if (DEBUGGING(DRYRUN)) return;
  6609. if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
  6610. }
  6611. #if ENABLED(ULTIPANEL)
  6612. /**
  6613. * M145: Set the heatup state for a material in the LCD menu
  6614. *
  6615. * S<material> (0=PLA, 1=ABS)
  6616. * H<hotend temp>
  6617. * B<bed temp>
  6618. * F<fan speed>
  6619. */
  6620. inline void gcode_M145() {
  6621. const uint8_t material = (uint8_t)parser.intval('S');
  6622. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6623. SERIAL_ERROR_START();
  6624. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6625. }
  6626. else {
  6627. int v;
  6628. if (parser.seenval('H')) {
  6629. v = parser.value_int();
  6630. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  6631. }
  6632. if (parser.seenval('F')) {
  6633. v = parser.value_int();
  6634. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  6635. }
  6636. #if TEMP_SENSOR_BED != 0
  6637. if (parser.seenval('B')) {
  6638. v = parser.value_int();
  6639. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  6640. }
  6641. #endif
  6642. }
  6643. }
  6644. #endif // ULTIPANEL
  6645. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6646. /**
  6647. * M149: Set temperature units
  6648. */
  6649. inline void gcode_M149() {
  6650. if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
  6651. else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
  6652. else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
  6653. }
  6654. #endif
  6655. #if HAS_POWER_SWITCH
  6656. /**
  6657. * M80 : Turn on the Power Supply
  6658. * M80 S : Report the current state and exit
  6659. */
  6660. inline void gcode_M80() {
  6661. // S: Report the current power supply state and exit
  6662. if (parser.seen('S')) {
  6663. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  6664. return;
  6665. }
  6666. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  6667. /**
  6668. * If you have a switch on suicide pin, this is useful
  6669. * if you want to start another print with suicide feature after
  6670. * a print without suicide...
  6671. */
  6672. #if HAS_SUICIDE
  6673. OUT_WRITE(SUICIDE_PIN, HIGH);
  6674. #endif
  6675. #if ENABLED(HAVE_TMC2130)
  6676. delay(100);
  6677. tmc2130_init(); // Settings only stick when the driver has power
  6678. #endif
  6679. powersupply_on = true;
  6680. #if ENABLED(ULTIPANEL)
  6681. LCD_MESSAGEPGM(WELCOME_MSG);
  6682. #endif
  6683. }
  6684. #endif // HAS_POWER_SWITCH
  6685. /**
  6686. * M81: Turn off Power, including Power Supply, if there is one.
  6687. *
  6688. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  6689. */
  6690. inline void gcode_M81() {
  6691. thermalManager.disable_all_heaters();
  6692. stepper.finish_and_disable();
  6693. #if FAN_COUNT > 0
  6694. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  6695. #if ENABLED(PROBING_FANS_OFF)
  6696. fans_paused = false;
  6697. ZERO(paused_fanSpeeds);
  6698. #endif
  6699. #endif
  6700. safe_delay(1000); // Wait 1 second before switching off
  6701. #if HAS_SUICIDE
  6702. stepper.synchronize();
  6703. suicide();
  6704. #elif HAS_POWER_SWITCH
  6705. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  6706. powersupply_on = false;
  6707. #endif
  6708. #if ENABLED(ULTIPANEL)
  6709. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  6710. #endif
  6711. }
  6712. /**
  6713. * M82: Set E codes absolute (default)
  6714. */
  6715. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  6716. /**
  6717. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  6718. */
  6719. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6720. /**
  6721. * M18, M84: Disable stepper motors
  6722. */
  6723. inline void gcode_M18_M84() {
  6724. if (parser.seenval('S')) {
  6725. stepper_inactive_time = parser.value_millis_from_seconds();
  6726. }
  6727. else {
  6728. bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
  6729. if (all_axis) {
  6730. stepper.finish_and_disable();
  6731. }
  6732. else {
  6733. stepper.synchronize();
  6734. if (parser.seen('X')) disable_X();
  6735. if (parser.seen('Y')) disable_Y();
  6736. if (parser.seen('Z')) disable_Z();
  6737. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
  6738. if (parser.seen('E')) disable_e_steppers();
  6739. #endif
  6740. }
  6741. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  6742. ubl_lcd_map_control = defer_return_to_status = false;
  6743. #endif
  6744. }
  6745. }
  6746. /**
  6747. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6748. */
  6749. inline void gcode_M85() {
  6750. if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
  6751. }
  6752. /**
  6753. * Multi-stepper support for M92, M201, M203
  6754. */
  6755. #if ENABLED(DISTINCT_E_FACTORS)
  6756. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6757. #define TARGET_EXTRUDER target_extruder
  6758. #else
  6759. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6760. #define TARGET_EXTRUDER 0
  6761. #endif
  6762. /**
  6763. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6764. * (Follows the same syntax as G92)
  6765. *
  6766. * With multiple extruders use T to specify which one.
  6767. */
  6768. inline void gcode_M92() {
  6769. GET_TARGET_EXTRUDER(92);
  6770. LOOP_XYZE(i) {
  6771. if (parser.seen(axis_codes[i])) {
  6772. if (i == E_AXIS) {
  6773. const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  6774. if (value < 20.0) {
  6775. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6776. planner.max_jerk[E_AXIS] *= factor;
  6777. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6778. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6779. }
  6780. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6781. }
  6782. else {
  6783. planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
  6784. }
  6785. }
  6786. }
  6787. planner.refresh_positioning();
  6788. }
  6789. /**
  6790. * Output the current position to serial
  6791. */
  6792. void report_current_position() {
  6793. SERIAL_PROTOCOLPGM("X:");
  6794. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6795. SERIAL_PROTOCOLPGM(" Y:");
  6796. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6797. SERIAL_PROTOCOLPGM(" Z:");
  6798. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6799. SERIAL_PROTOCOLPGM(" E:");
  6800. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6801. stepper.report_positions();
  6802. #if IS_SCARA
  6803. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6804. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6805. SERIAL_EOL();
  6806. #endif
  6807. }
  6808. #ifdef M114_DETAIL
  6809. void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
  6810. char str[12];
  6811. for (uint8_t i = 0; i < n; i++) {
  6812. SERIAL_CHAR(' ');
  6813. SERIAL_CHAR(axis_codes[i]);
  6814. SERIAL_CHAR(':');
  6815. SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
  6816. }
  6817. SERIAL_EOL();
  6818. }
  6819. inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
  6820. void report_current_position_detail() {
  6821. stepper.synchronize();
  6822. SERIAL_PROTOCOLPGM("\nLogical:");
  6823. report_xyze(current_position);
  6824. SERIAL_PROTOCOLPGM("Raw: ");
  6825. const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) };
  6826. report_xyz(raw);
  6827. SERIAL_PROTOCOLPGM("Leveled:");
  6828. float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  6829. planner.apply_leveling(leveled);
  6830. report_xyz(leveled);
  6831. SERIAL_PROTOCOLPGM("UnLevel:");
  6832. float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
  6833. planner.unapply_leveling(unleveled);
  6834. report_xyz(unleveled);
  6835. #if IS_KINEMATIC
  6836. #if IS_SCARA
  6837. SERIAL_PROTOCOLPGM("ScaraK: ");
  6838. #else
  6839. SERIAL_PROTOCOLPGM("DeltaK: ");
  6840. #endif
  6841. inverse_kinematics(leveled); // writes delta[]
  6842. report_xyz(delta);
  6843. #endif
  6844. SERIAL_PROTOCOLPGM("Stepper:");
  6845. const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
  6846. report_xyze(step_count, 4, 0);
  6847. #if IS_SCARA
  6848. const float deg[XYZ] = {
  6849. stepper.get_axis_position_degrees(A_AXIS),
  6850. stepper.get_axis_position_degrees(B_AXIS)
  6851. };
  6852. SERIAL_PROTOCOLPGM("Degrees:");
  6853. report_xyze(deg, 2);
  6854. #endif
  6855. SERIAL_PROTOCOLPGM("FromStp:");
  6856. get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
  6857. const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
  6858. report_xyze(from_steppers);
  6859. const float diff[XYZE] = {
  6860. from_steppers[X_AXIS] - leveled[X_AXIS],
  6861. from_steppers[Y_AXIS] - leveled[Y_AXIS],
  6862. from_steppers[Z_AXIS] - leveled[Z_AXIS],
  6863. from_steppers[E_AXIS] - current_position[E_AXIS]
  6864. };
  6865. SERIAL_PROTOCOLPGM("Differ: ");
  6866. report_xyze(diff);
  6867. }
  6868. #endif // M114_DETAIL
  6869. /**
  6870. * M114: Report current position to host
  6871. */
  6872. inline void gcode_M114() {
  6873. #ifdef M114_DETAIL
  6874. if (parser.seen('D')) {
  6875. report_current_position_detail();
  6876. return;
  6877. }
  6878. #endif
  6879. stepper.synchronize();
  6880. report_current_position();
  6881. }
  6882. /**
  6883. * M115: Capabilities string
  6884. */
  6885. inline void gcode_M115() {
  6886. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6887. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6888. // EEPROM (M500, M501)
  6889. #if ENABLED(EEPROM_SETTINGS)
  6890. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6891. #else
  6892. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6893. #endif
  6894. // AUTOREPORT_TEMP (M155)
  6895. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6896. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6897. #else
  6898. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6899. #endif
  6900. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6901. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6902. // Print Job timer M75, M76, M77
  6903. SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
  6904. // AUTOLEVEL (G29)
  6905. #if HAS_ABL
  6906. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6907. #else
  6908. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6909. #endif
  6910. // Z_PROBE (G30)
  6911. #if HAS_BED_PROBE
  6912. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6913. #else
  6914. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6915. #endif
  6916. // MESH_REPORT (M420 V)
  6917. #if HAS_LEVELING
  6918. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6919. #else
  6920. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6921. #endif
  6922. // SOFTWARE_POWER (M80, M81)
  6923. #if HAS_POWER_SWITCH
  6924. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6925. #else
  6926. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6927. #endif
  6928. // CASE LIGHTS (M355)
  6929. #if HAS_CASE_LIGHT
  6930. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6931. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  6932. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
  6933. }
  6934. else
  6935. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  6936. #else
  6937. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6938. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  6939. #endif
  6940. // EMERGENCY_PARSER (M108, M112, M410)
  6941. #if ENABLED(EMERGENCY_PARSER)
  6942. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6943. #else
  6944. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6945. #endif
  6946. #endif // EXTENDED_CAPABILITIES_REPORT
  6947. }
  6948. /**
  6949. * M117: Set LCD Status Message
  6950. */
  6951. inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
  6952. /**
  6953. * M118: Display a message in the host console.
  6954. *
  6955. * A Append '// ' for an action command, as in OctoPrint
  6956. * E Have the host 'echo:' the text
  6957. */
  6958. inline void gcode_M118() {
  6959. if (parser.boolval('E')) SERIAL_ECHO_START();
  6960. if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
  6961. SERIAL_ECHOLN(parser.string_arg);
  6962. }
  6963. /**
  6964. * M119: Output endstop states to serial output
  6965. */
  6966. inline void gcode_M119() { endstops.M119(); }
  6967. /**
  6968. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6969. */
  6970. inline void gcode_M120() { endstops.enable_globally(true); }
  6971. /**
  6972. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6973. */
  6974. inline void gcode_M121() { endstops.enable_globally(false); }
  6975. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6976. /**
  6977. * M125: Store current position and move to filament change position.
  6978. * Called on pause (by M25) to prevent material leaking onto the
  6979. * object. On resume (M24) the head will be moved back and the
  6980. * print will resume.
  6981. *
  6982. * If Marlin is compiled without SD Card support, M125 can be
  6983. * used directly to pause the print and move to park position,
  6984. * resuming with a button click or M108.
  6985. *
  6986. * L = override retract length
  6987. * X = override X
  6988. * Y = override Y
  6989. * Z = override Z raise
  6990. */
  6991. inline void gcode_M125() {
  6992. // Initial retract before move to filament change position
  6993. const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  6994. #ifdef PAUSE_PARK_RETRACT_LENGTH
  6995. - (PAUSE_PARK_RETRACT_LENGTH)
  6996. #endif
  6997. ;
  6998. // Lift Z axis
  6999. const float z_lift = parser.linearval('Z')
  7000. #ifdef PAUSE_PARK_Z_ADD
  7001. + PAUSE_PARK_Z_ADD
  7002. #endif
  7003. ;
  7004. // Move XY axes to filament change position or given position
  7005. const float x_pos = parser.linearval('X')
  7006. #ifdef PAUSE_PARK_X_POS
  7007. + PAUSE_PARK_X_POS
  7008. #endif
  7009. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7010. + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
  7011. #endif
  7012. ;
  7013. const float y_pos = parser.linearval('Y')
  7014. #ifdef PAUSE_PARK_Y_POS
  7015. + PAUSE_PARK_Y_POS
  7016. #endif
  7017. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7018. + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
  7019. #endif
  7020. ;
  7021. #if DISABLED(SDSUPPORT)
  7022. const bool job_running = print_job_timer.isRunning();
  7023. #endif
  7024. if (pause_print(retract, z_lift, x_pos, y_pos)) {
  7025. #if DISABLED(SDSUPPORT)
  7026. // Wait for lcd click or M108
  7027. wait_for_filament_reload();
  7028. // Return to print position and continue
  7029. resume_print();
  7030. if (job_running) print_job_timer.start();
  7031. #endif
  7032. }
  7033. }
  7034. #endif // PARK_HEAD_ON_PAUSE
  7035. #if HAS_COLOR_LEDS
  7036. /**
  7037. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  7038. *
  7039. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  7040. *
  7041. * Examples:
  7042. *
  7043. * M150 R255 ; Turn LED red
  7044. * M150 R255 U127 ; Turn LED orange (PWM only)
  7045. * M150 ; Turn LED off
  7046. * M150 R U B ; Turn LED white
  7047. * M150 W ; Turn LED white using a white LED
  7048. *
  7049. */
  7050. inline void gcode_M150() {
  7051. set_led_color(
  7052. parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7053. parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7054. parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7055. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
  7056. , parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7057. #endif
  7058. );
  7059. }
  7060. #endif // HAS_COLOR_LEDS
  7061. /**
  7062. * M200: Set filament diameter and set E axis units to cubic units
  7063. *
  7064. * T<extruder> - Optional extruder number. Current extruder if omitted.
  7065. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  7066. */
  7067. inline void gcode_M200() {
  7068. if (get_target_extruder_from_command(200)) return;
  7069. if (parser.seen('D')) {
  7070. // setting any extruder filament size disables volumetric on the assumption that
  7071. // slicers either generate in extruder values as cubic mm or as as filament feeds
  7072. // for all extruders
  7073. volumetric_enabled = (parser.value_linear_units() != 0.0);
  7074. if (volumetric_enabled) {
  7075. filament_size[target_extruder] = parser.value_linear_units();
  7076. // make sure all extruders have some sane value for the filament size
  7077. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7078. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  7079. }
  7080. }
  7081. calculate_volumetric_multipliers();
  7082. }
  7083. /**
  7084. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  7085. *
  7086. * With multiple extruders use T to specify which one.
  7087. */
  7088. inline void gcode_M201() {
  7089. GET_TARGET_EXTRUDER(201);
  7090. LOOP_XYZE(i) {
  7091. if (parser.seen(axis_codes[i])) {
  7092. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7093. planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
  7094. }
  7095. }
  7096. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  7097. planner.reset_acceleration_rates();
  7098. }
  7099. #if 0 // Not used for Sprinter/grbl gen6
  7100. inline void gcode_M202() {
  7101. LOOP_XYZE(i) {
  7102. if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  7103. }
  7104. }
  7105. #endif
  7106. /**
  7107. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  7108. *
  7109. * With multiple extruders use T to specify which one.
  7110. */
  7111. inline void gcode_M203() {
  7112. GET_TARGET_EXTRUDER(203);
  7113. LOOP_XYZE(i)
  7114. if (parser.seen(axis_codes[i])) {
  7115. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7116. planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
  7117. }
  7118. }
  7119. /**
  7120. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  7121. *
  7122. * P = Printing moves
  7123. * R = Retract only (no X, Y, Z) moves
  7124. * T = Travel (non printing) moves
  7125. *
  7126. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  7127. */
  7128. inline void gcode_M204() {
  7129. if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  7130. planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
  7131. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  7132. }
  7133. if (parser.seen('P')) {
  7134. planner.acceleration = parser.value_linear_units();
  7135. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  7136. }
  7137. if (parser.seen('R')) {
  7138. planner.retract_acceleration = parser.value_linear_units();
  7139. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  7140. }
  7141. if (parser.seen('T')) {
  7142. planner.travel_acceleration = parser.value_linear_units();
  7143. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  7144. }
  7145. }
  7146. /**
  7147. * M205: Set Advanced Settings
  7148. *
  7149. * S = Min Feed Rate (units/s)
  7150. * T = Min Travel Feed Rate (units/s)
  7151. * B = Min Segment Time (µs)
  7152. * X = Max X Jerk (units/sec^2)
  7153. * Y = Max Y Jerk (units/sec^2)
  7154. * Z = Max Z Jerk (units/sec^2)
  7155. * E = Max E Jerk (units/sec^2)
  7156. */
  7157. inline void gcode_M205() {
  7158. if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  7159. if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  7160. if (parser.seen('B')) planner.min_segment_time = parser.value_millis();
  7161. if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  7162. if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  7163. if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  7164. if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
  7165. }
  7166. #if HAS_M206_COMMAND
  7167. /**
  7168. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  7169. *
  7170. * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
  7171. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
  7172. * *** In the next 1.2 release, it will simply be disabled by default.
  7173. */
  7174. inline void gcode_M206() {
  7175. LOOP_XYZ(i)
  7176. if (parser.seen(axis_codes[i]))
  7177. set_home_offset((AxisEnum)i, parser.value_linear_units());
  7178. #if ENABLED(MORGAN_SCARA)
  7179. if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta
  7180. if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi
  7181. #endif
  7182. SYNC_PLAN_POSITION_KINEMATIC();
  7183. report_current_position();
  7184. }
  7185. #endif // HAS_M206_COMMAND
  7186. #if ENABLED(DELTA)
  7187. /**
  7188. * M665: Set delta configurations
  7189. *
  7190. * H = delta height
  7191. * L = diagonal rod
  7192. * R = delta radius
  7193. * S = segments per second
  7194. * B = delta calibration radius
  7195. * X = Alpha (Tower 1) angle trim
  7196. * Y = Beta (Tower 2) angle trim
  7197. * Z = Rotate A and B by this angle
  7198. */
  7199. inline void gcode_M665() {
  7200. if (parser.seen('H')) {
  7201. home_offset[Z_AXIS] = parser.value_linear_units() - DELTA_HEIGHT;
  7202. update_software_endstops(Z_AXIS);
  7203. }
  7204. if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
  7205. if (parser.seen('R')) delta_radius = parser.value_linear_units();
  7206. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7207. if (parser.seen('B')) delta_calibration_radius = parser.value_float();
  7208. if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
  7209. if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
  7210. if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
  7211. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  7212. }
  7213. /**
  7214. * M666: Set delta endstop adjustment
  7215. */
  7216. inline void gcode_M666() {
  7217. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7218. if (DEBUGGING(LEVELING)) {
  7219. SERIAL_ECHOLNPGM(">>> gcode_M666");
  7220. }
  7221. #endif
  7222. LOOP_XYZ(i) {
  7223. if (parser.seen(axis_codes[i])) {
  7224. if (parser.value_linear_units() * Z_HOME_DIR <= 0)
  7225. endstop_adj[i] = parser.value_linear_units();
  7226. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7227. if (DEBUGGING(LEVELING)) {
  7228. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  7229. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  7230. }
  7231. #endif
  7232. }
  7233. }
  7234. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7235. if (DEBUGGING(LEVELING)) {
  7236. SERIAL_ECHOLNPGM("<<< gcode_M666");
  7237. }
  7238. #endif
  7239. }
  7240. #elif IS_SCARA
  7241. /**
  7242. * M665: Set SCARA settings
  7243. *
  7244. * Parameters:
  7245. *
  7246. * S[segments-per-second] - Segments-per-second
  7247. * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
  7248. * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
  7249. *
  7250. * A, P, and X are all aliases for the shoulder angle
  7251. * B, T, and Y are all aliases for the elbow angle
  7252. */
  7253. inline void gcode_M665() {
  7254. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7255. const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
  7256. const uint8_t sumAPX = hasA + hasP + hasX;
  7257. if (sumAPX == 1)
  7258. home_offset[A_AXIS] = parser.value_float();
  7259. else if (sumAPX > 1) {
  7260. SERIAL_ERROR_START();
  7261. SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
  7262. return;
  7263. }
  7264. const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
  7265. const uint8_t sumBTY = hasB + hasT + hasY;
  7266. if (sumBTY == 1)
  7267. home_offset[B_AXIS] = parser.value_float();
  7268. else if (sumBTY > 1) {
  7269. SERIAL_ERROR_START();
  7270. SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
  7271. return;
  7272. }
  7273. }
  7274. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  7275. /**
  7276. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  7277. */
  7278. inline void gcode_M666() {
  7279. if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
  7280. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  7281. }
  7282. #endif // !DELTA && Z_DUAL_ENDSTOPS
  7283. #if ENABLED(FWRETRACT)
  7284. /**
  7285. * M207: Set firmware retraction values
  7286. *
  7287. * S[+units] retract_length
  7288. * W[+units] swap_retract_length (multi-extruder)
  7289. * F[units/min] retract_feedrate_mm_s
  7290. * Z[units] retract_zlift
  7291. */
  7292. inline void gcode_M207() {
  7293. if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
  7294. if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7295. if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
  7296. if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS);
  7297. }
  7298. /**
  7299. * M208: Set firmware un-retraction values
  7300. *
  7301. * S[+units] retract_recover_length (in addition to M207 S*)
  7302. * W[+units] swap_retract_recover_length (multi-extruder)
  7303. * F[units/min] retract_recover_feedrate_mm_s
  7304. * R[units/min] swap_retract_recover_feedrate_mm_s
  7305. */
  7306. inline void gcode_M208() {
  7307. if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
  7308. if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7309. if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7310. if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS);
  7311. }
  7312. /**
  7313. * M209: Enable automatic retract (M209 S1)
  7314. * For slicers that don't support G10/11, reversed extrude-only
  7315. * moves will be classified as retraction.
  7316. */
  7317. inline void gcode_M209() {
  7318. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  7319. if (parser.seen('S')) {
  7320. autoretract_enabled = parser.value_bool();
  7321. for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  7322. }
  7323. }
  7324. }
  7325. #endif // FWRETRACT
  7326. /**
  7327. * M211: Enable, Disable, and/or Report software endstops
  7328. *
  7329. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  7330. */
  7331. inline void gcode_M211() {
  7332. SERIAL_ECHO_START();
  7333. #if HAS_SOFTWARE_ENDSTOPS
  7334. if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
  7335. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7336. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  7337. #else
  7338. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7339. SERIAL_ECHOPGM(MSG_OFF);
  7340. #endif
  7341. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  7342. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  7343. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  7344. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  7345. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  7346. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  7347. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  7348. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  7349. }
  7350. #if HOTENDS > 1
  7351. /**
  7352. * M218 - set hotend offset (in linear units)
  7353. *
  7354. * T<tool>
  7355. * X<xoffset>
  7356. * Y<yoffset>
  7357. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  7358. */
  7359. inline void gcode_M218() {
  7360. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  7361. if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
  7362. if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
  7363. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7364. if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
  7365. #endif
  7366. SERIAL_ECHO_START();
  7367. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7368. HOTEND_LOOP() {
  7369. SERIAL_CHAR(' ');
  7370. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  7371. SERIAL_CHAR(',');
  7372. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  7373. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7374. SERIAL_CHAR(',');
  7375. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  7376. #endif
  7377. }
  7378. SERIAL_EOL();
  7379. }
  7380. #endif // HOTENDS > 1
  7381. /**
  7382. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  7383. */
  7384. inline void gcode_M220() {
  7385. if (parser.seenval('S')) feedrate_percentage = parser.value_int();
  7386. }
  7387. /**
  7388. * M221: Set extrusion percentage (M221 T0 S95)
  7389. */
  7390. inline void gcode_M221() {
  7391. if (get_target_extruder_from_command(221)) return;
  7392. if (parser.seenval('S'))
  7393. flow_percentage[target_extruder] = parser.value_int();
  7394. }
  7395. /**
  7396. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  7397. */
  7398. inline void gcode_M226() {
  7399. if (parser.seen('P')) {
  7400. const int pin_number = parser.value_int(),
  7401. pin_state = parser.intval('S', -1); // required pin state - default is inverted
  7402. if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
  7403. int target = LOW;
  7404. stepper.synchronize();
  7405. pinMode(pin_number, INPUT);
  7406. switch (pin_state) {
  7407. case 1:
  7408. target = HIGH;
  7409. break;
  7410. case 0:
  7411. target = LOW;
  7412. break;
  7413. case -1:
  7414. target = !digitalRead(pin_number);
  7415. break;
  7416. }
  7417. while (digitalRead(pin_number) != target) idle();
  7418. } // pin_state -1 0 1 && pin_number > -1
  7419. } // parser.seen('P')
  7420. }
  7421. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7422. /**
  7423. * M260: Send data to a I2C slave device
  7424. *
  7425. * This is a PoC, the formating and arguments for the GCODE will
  7426. * change to be more compatible, the current proposal is:
  7427. *
  7428. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  7429. *
  7430. * M260 B<byte-1 value in base 10>
  7431. * M260 B<byte-2 value in base 10>
  7432. * M260 B<byte-3 value in base 10>
  7433. *
  7434. * M260 S1 ; Send the buffered data and reset the buffer
  7435. * M260 R1 ; Reset the buffer without sending data
  7436. *
  7437. */
  7438. inline void gcode_M260() {
  7439. // Set the target address
  7440. if (parser.seen('A')) i2c.address(parser.value_byte());
  7441. // Add a new byte to the buffer
  7442. if (parser.seen('B')) i2c.addbyte(parser.value_byte());
  7443. // Flush the buffer to the bus
  7444. if (parser.seen('S')) i2c.send();
  7445. // Reset and rewind the buffer
  7446. else if (parser.seen('R')) i2c.reset();
  7447. }
  7448. /**
  7449. * M261: Request X bytes from I2C slave device
  7450. *
  7451. * Usage: M261 A<slave device address base 10> B<number of bytes>
  7452. */
  7453. inline void gcode_M261() {
  7454. if (parser.seen('A')) i2c.address(parser.value_byte());
  7455. uint8_t bytes = parser.byteval('B', 1);
  7456. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  7457. i2c.relay(bytes);
  7458. }
  7459. else {
  7460. SERIAL_ERROR_START();
  7461. SERIAL_ERRORLN("Bad i2c request");
  7462. }
  7463. }
  7464. #endif // EXPERIMENTAL_I2CBUS
  7465. #if HAS_SERVOS
  7466. /**
  7467. * M280: Get or set servo position. P<index> [S<angle>]
  7468. */
  7469. inline void gcode_M280() {
  7470. if (!parser.seen('P')) return;
  7471. const int servo_index = parser.value_int();
  7472. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  7473. if (parser.seen('S'))
  7474. MOVE_SERVO(servo_index, parser.value_int());
  7475. else {
  7476. SERIAL_ECHO_START();
  7477. SERIAL_ECHOPAIR(" Servo ", servo_index);
  7478. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  7479. }
  7480. }
  7481. else {
  7482. SERIAL_ERROR_START();
  7483. SERIAL_ECHOPAIR("Servo ", servo_index);
  7484. SERIAL_ECHOLNPGM(" out of range");
  7485. }
  7486. }
  7487. #endif // HAS_SERVOS
  7488. #if HAS_BUZZER
  7489. /**
  7490. * M300: Play beep sound S<frequency Hz> P<duration ms>
  7491. */
  7492. inline void gcode_M300() {
  7493. uint16_t const frequency = parser.ushortval('S', 260);
  7494. uint16_t duration = parser.ushortval('P', 1000);
  7495. // Limits the tone duration to 0-5 seconds.
  7496. NOMORE(duration, 5000);
  7497. BUZZ(duration, frequency);
  7498. }
  7499. #endif // HAS_BUZZER
  7500. #if ENABLED(PIDTEMP)
  7501. /**
  7502. * M301: Set PID parameters P I D (and optionally C, L)
  7503. *
  7504. * P[float] Kp term
  7505. * I[float] Ki term (unscaled)
  7506. * D[float] Kd term (unscaled)
  7507. *
  7508. * With PID_EXTRUSION_SCALING:
  7509. *
  7510. * C[float] Kc term
  7511. * L[float] LPQ length
  7512. */
  7513. inline void gcode_M301() {
  7514. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  7515. // default behaviour (omitting E parameter) is to update for extruder 0 only
  7516. const uint8_t e = parser.byteval('E'); // extruder being updated
  7517. if (e < HOTENDS) { // catch bad input value
  7518. if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
  7519. if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
  7520. if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
  7521. #if ENABLED(PID_EXTRUSION_SCALING)
  7522. if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
  7523. if (parser.seen('L')) lpq_len = parser.value_float();
  7524. NOMORE(lpq_len, LPQ_MAX_LEN);
  7525. #endif
  7526. thermalManager.updatePID();
  7527. SERIAL_ECHO_START();
  7528. #if ENABLED(PID_PARAMS_PER_HOTEND)
  7529. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  7530. #endif // PID_PARAMS_PER_HOTEND
  7531. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  7532. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  7533. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  7534. #if ENABLED(PID_EXTRUSION_SCALING)
  7535. //Kc does not have scaling applied above, or in resetting defaults
  7536. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  7537. #endif
  7538. SERIAL_EOL();
  7539. }
  7540. else {
  7541. SERIAL_ERROR_START();
  7542. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  7543. }
  7544. }
  7545. #endif // PIDTEMP
  7546. #if ENABLED(PIDTEMPBED)
  7547. inline void gcode_M304() {
  7548. if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
  7549. if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
  7550. if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
  7551. thermalManager.updatePID();
  7552. SERIAL_ECHO_START();
  7553. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  7554. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  7555. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  7556. }
  7557. #endif // PIDTEMPBED
  7558. #if defined(CHDK) || HAS_PHOTOGRAPH
  7559. /**
  7560. * M240: Trigger a camera by emulating a Canon RC-1
  7561. * See http://www.doc-diy.net/photo/rc-1_hacked/
  7562. */
  7563. inline void gcode_M240() {
  7564. #ifdef CHDK
  7565. OUT_WRITE(CHDK, HIGH);
  7566. chdkHigh = millis();
  7567. chdkActive = true;
  7568. #elif HAS_PHOTOGRAPH
  7569. const uint8_t NUM_PULSES = 16;
  7570. const float PULSE_LENGTH = 0.01524;
  7571. for (int i = 0; i < NUM_PULSES; i++) {
  7572. WRITE(PHOTOGRAPH_PIN, HIGH);
  7573. _delay_ms(PULSE_LENGTH);
  7574. WRITE(PHOTOGRAPH_PIN, LOW);
  7575. _delay_ms(PULSE_LENGTH);
  7576. }
  7577. delay(7.33);
  7578. for (int i = 0; i < NUM_PULSES; i++) {
  7579. WRITE(PHOTOGRAPH_PIN, HIGH);
  7580. _delay_ms(PULSE_LENGTH);
  7581. WRITE(PHOTOGRAPH_PIN, LOW);
  7582. _delay_ms(PULSE_LENGTH);
  7583. }
  7584. #endif // !CHDK && HAS_PHOTOGRAPH
  7585. }
  7586. #endif // CHDK || PHOTOGRAPH_PIN
  7587. #if HAS_LCD_CONTRAST
  7588. /**
  7589. * M250: Read and optionally set the LCD contrast
  7590. */
  7591. inline void gcode_M250() {
  7592. if (parser.seen('C')) set_lcd_contrast(parser.value_int());
  7593. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  7594. SERIAL_PROTOCOL(lcd_contrast);
  7595. SERIAL_EOL();
  7596. }
  7597. #endif // HAS_LCD_CONTRAST
  7598. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7599. /**
  7600. * M302: Allow cold extrudes, or set the minimum extrude temperature
  7601. *
  7602. * S<temperature> sets the minimum extrude temperature
  7603. * P<bool> enables (1) or disables (0) cold extrusion
  7604. *
  7605. * Examples:
  7606. *
  7607. * M302 ; report current cold extrusion state
  7608. * M302 P0 ; enable cold extrusion checking
  7609. * M302 P1 ; disables cold extrusion checking
  7610. * M302 S0 ; always allow extrusion (disables checking)
  7611. * M302 S170 ; only allow extrusion above 170
  7612. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  7613. */
  7614. inline void gcode_M302() {
  7615. const bool seen_S = parser.seen('S');
  7616. if (seen_S) {
  7617. thermalManager.extrude_min_temp = parser.value_celsius();
  7618. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  7619. }
  7620. if (parser.seen('P'))
  7621. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
  7622. else if (!seen_S) {
  7623. // Report current state
  7624. SERIAL_ECHO_START();
  7625. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  7626. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  7627. SERIAL_ECHOLNPGM("C)");
  7628. }
  7629. }
  7630. #endif // PREVENT_COLD_EXTRUSION
  7631. /**
  7632. * M303: PID relay autotune
  7633. *
  7634. * S<temperature> sets the target temperature. (default 150C)
  7635. * E<extruder> (-1 for the bed) (default 0)
  7636. * C<cycles>
  7637. * U<bool> with a non-zero value will apply the result to current settings
  7638. */
  7639. inline void gcode_M303() {
  7640. #if HAS_PID_HEATING
  7641. const int e = parser.intval('E'), c = parser.intval('C', 5);
  7642. const bool u = parser.boolval('U');
  7643. int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
  7644. if (WITHIN(e, 0, HOTENDS - 1))
  7645. target_extruder = e;
  7646. #if DISABLED(BUSY_WHILE_HEATING)
  7647. KEEPALIVE_STATE(NOT_BUSY);
  7648. #endif
  7649. thermalManager.PID_autotune(temp, e, c, u);
  7650. #if DISABLED(BUSY_WHILE_HEATING)
  7651. KEEPALIVE_STATE(IN_HANDLER);
  7652. #endif
  7653. #else
  7654. SERIAL_ERROR_START();
  7655. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  7656. #endif
  7657. }
  7658. #if ENABLED(MORGAN_SCARA)
  7659. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  7660. if (IsRunning()) {
  7661. forward_kinematics_SCARA(delta_a, delta_b);
  7662. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  7663. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  7664. destination[Z_AXIS] = current_position[Z_AXIS];
  7665. prepare_move_to_destination();
  7666. return true;
  7667. }
  7668. return false;
  7669. }
  7670. /**
  7671. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  7672. */
  7673. inline bool gcode_M360() {
  7674. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  7675. return SCARA_move_to_cal(0, 120);
  7676. }
  7677. /**
  7678. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  7679. */
  7680. inline bool gcode_M361() {
  7681. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  7682. return SCARA_move_to_cal(90, 130);
  7683. }
  7684. /**
  7685. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  7686. */
  7687. inline bool gcode_M362() {
  7688. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  7689. return SCARA_move_to_cal(60, 180);
  7690. }
  7691. /**
  7692. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  7693. */
  7694. inline bool gcode_M363() {
  7695. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  7696. return SCARA_move_to_cal(50, 90);
  7697. }
  7698. /**
  7699. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  7700. */
  7701. inline bool gcode_M364() {
  7702. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  7703. return SCARA_move_to_cal(45, 135);
  7704. }
  7705. #endif // SCARA
  7706. #if ENABLED(EXT_SOLENOID)
  7707. void enable_solenoid(const uint8_t num) {
  7708. switch (num) {
  7709. case 0:
  7710. OUT_WRITE(SOL0_PIN, HIGH);
  7711. break;
  7712. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7713. case 1:
  7714. OUT_WRITE(SOL1_PIN, HIGH);
  7715. break;
  7716. #endif
  7717. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7718. case 2:
  7719. OUT_WRITE(SOL2_PIN, HIGH);
  7720. break;
  7721. #endif
  7722. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7723. case 3:
  7724. OUT_WRITE(SOL3_PIN, HIGH);
  7725. break;
  7726. #endif
  7727. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7728. case 4:
  7729. OUT_WRITE(SOL4_PIN, HIGH);
  7730. break;
  7731. #endif
  7732. default:
  7733. SERIAL_ECHO_START();
  7734. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  7735. break;
  7736. }
  7737. }
  7738. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  7739. void disable_all_solenoids() {
  7740. OUT_WRITE(SOL0_PIN, LOW);
  7741. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7742. OUT_WRITE(SOL1_PIN, LOW);
  7743. #endif
  7744. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7745. OUT_WRITE(SOL2_PIN, LOW);
  7746. #endif
  7747. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7748. OUT_WRITE(SOL3_PIN, LOW);
  7749. #endif
  7750. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7751. OUT_WRITE(SOL4_PIN, LOW);
  7752. #endif
  7753. }
  7754. /**
  7755. * M380: Enable solenoid on the active extruder
  7756. */
  7757. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  7758. /**
  7759. * M381: Disable all solenoids
  7760. */
  7761. inline void gcode_M381() { disable_all_solenoids(); }
  7762. #endif // EXT_SOLENOID
  7763. /**
  7764. * M400: Finish all moves
  7765. */
  7766. inline void gcode_M400() { stepper.synchronize(); }
  7767. #if HAS_BED_PROBE
  7768. /**
  7769. * M401: Engage Z Servo endstop if available
  7770. */
  7771. inline void gcode_M401() { DEPLOY_PROBE(); }
  7772. /**
  7773. * M402: Retract Z Servo endstop if enabled
  7774. */
  7775. inline void gcode_M402() { STOW_PROBE(); }
  7776. #endif // HAS_BED_PROBE
  7777. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7778. /**
  7779. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  7780. */
  7781. inline void gcode_M404() {
  7782. if (parser.seen('W')) {
  7783. filament_width_nominal = parser.value_linear_units();
  7784. }
  7785. else {
  7786. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  7787. SERIAL_PROTOCOLLN(filament_width_nominal);
  7788. }
  7789. }
  7790. /**
  7791. * M405: Turn on filament sensor for control
  7792. */
  7793. inline void gcode_M405() {
  7794. // This is technically a linear measurement, but since it's quantized to centimeters and is a different
  7795. // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
  7796. if (parser.seen('D')) {
  7797. meas_delay_cm = parser.value_byte();
  7798. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  7799. }
  7800. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  7801. const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  7802. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  7803. measurement_delay[i] = temp_ratio;
  7804. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  7805. }
  7806. filament_sensor = true;
  7807. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7808. //SERIAL_PROTOCOL(filament_width_meas);
  7809. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  7810. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  7811. }
  7812. /**
  7813. * M406: Turn off filament sensor for control
  7814. */
  7815. inline void gcode_M406() {
  7816. filament_sensor = false;
  7817. calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
  7818. }
  7819. /**
  7820. * M407: Get measured filament diameter on serial output
  7821. */
  7822. inline void gcode_M407() {
  7823. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7824. SERIAL_PROTOCOLLN(filament_width_meas);
  7825. }
  7826. #endif // FILAMENT_WIDTH_SENSOR
  7827. void quickstop_stepper() {
  7828. stepper.quick_stop();
  7829. stepper.synchronize();
  7830. set_current_from_steppers_for_axis(ALL_AXES);
  7831. SYNC_PLAN_POSITION_KINEMATIC();
  7832. }
  7833. #if HAS_LEVELING
  7834. /**
  7835. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  7836. *
  7837. * S[bool] Turns leveling on or off
  7838. * Z[height] Sets the Z fade height (0 or none to disable)
  7839. * V[bool] Verbose - Print the leveling grid
  7840. *
  7841. * With AUTO_BED_LEVELING_UBL only:
  7842. *
  7843. * L[index] Load UBL mesh from index (0 is default)
  7844. */
  7845. inline void gcode_M420() {
  7846. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7847. // L to load a mesh from the EEPROM
  7848. if (parser.seen('L')) {
  7849. #if ENABLED(EEPROM_SETTINGS)
  7850. const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.state.storage_slot;
  7851. const int16_t a = settings.calc_num_meshes();
  7852. if (!a) {
  7853. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7854. return;
  7855. }
  7856. if (!WITHIN(storage_slot, 0, a - 1)) {
  7857. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  7858. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  7859. return;
  7860. }
  7861. settings.load_mesh(storage_slot);
  7862. ubl.state.storage_slot = storage_slot;
  7863. #else
  7864. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7865. return;
  7866. #endif
  7867. }
  7868. // L to load a mesh from the EEPROM
  7869. if (parser.seen('L') || parser.seen('V')) {
  7870. ubl.display_map(0); // Currently only supports one map type
  7871. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7872. SERIAL_ECHOLNPAIR("ubl.state.storage_slot = ", ubl.state.storage_slot);
  7873. }
  7874. #endif // AUTO_BED_LEVELING_UBL
  7875. // V to print the matrix or mesh
  7876. if (parser.seen('V')) {
  7877. #if ABL_PLANAR
  7878. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  7879. #else
  7880. if (leveling_is_valid()) {
  7881. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7882. print_bilinear_leveling_grid();
  7883. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7884. print_bilinear_leveling_grid_virt();
  7885. #endif
  7886. #elif ENABLED(MESH_BED_LEVELING)
  7887. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7888. mbl_mesh_report();
  7889. #endif
  7890. }
  7891. #endif
  7892. }
  7893. const bool to_enable = parser.boolval('S');
  7894. if (parser.seen('S'))
  7895. set_bed_leveling_enabled(to_enable);
  7896. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7897. if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
  7898. #endif
  7899. const bool new_status = leveling_is_active();
  7900. if (to_enable && !new_status) {
  7901. SERIAL_ERROR_START();
  7902. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7903. }
  7904. SERIAL_ECHO_START();
  7905. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7906. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7907. SERIAL_ECHO_START();
  7908. SERIAL_ECHOPGM("Fade Height ");
  7909. if (planner.z_fade_height > 0.0)
  7910. SERIAL_ECHOLN(planner.z_fade_height);
  7911. else
  7912. SERIAL_ECHOLNPGM(MSG_OFF);
  7913. #endif
  7914. }
  7915. #endif
  7916. #if ENABLED(MESH_BED_LEVELING)
  7917. /**
  7918. * M421: Set a single Mesh Bed Leveling Z coordinate
  7919. *
  7920. * Usage:
  7921. * M421 X<linear> Y<linear> Z<linear>
  7922. * M421 X<linear> Y<linear> Q<offset>
  7923. * M421 I<xindex> J<yindex> Z<linear>
  7924. * M421 I<xindex> J<yindex> Q<offset>
  7925. */
  7926. inline void gcode_M421() {
  7927. const bool hasX = parser.seen('X'), hasI = parser.seen('I');
  7928. const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
  7929. const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
  7930. const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1;
  7931. const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
  7932. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  7933. SERIAL_ERROR_START();
  7934. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7935. }
  7936. else if (ix < 0 || iy < 0) {
  7937. SERIAL_ERROR_START();
  7938. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7939. }
  7940. else
  7941. mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  7942. }
  7943. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7944. /**
  7945. * M421: Set a single Mesh Bed Leveling Z coordinate
  7946. *
  7947. * Usage:
  7948. * M421 I<xindex> J<yindex> Z<linear>
  7949. * M421 I<xindex> J<yindex> Q<offset>
  7950. */
  7951. inline void gcode_M421() {
  7952. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  7953. const bool hasI = ix >= 0,
  7954. hasJ = iy >= 0,
  7955. hasZ = parser.seen('Z'),
  7956. hasQ = !hasZ && parser.seen('Q');
  7957. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  7958. SERIAL_ERROR_START();
  7959. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7960. }
  7961. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  7962. SERIAL_ERROR_START();
  7963. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7964. }
  7965. else {
  7966. z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  7967. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7968. bed_level_virt_interpolate();
  7969. #endif
  7970. }
  7971. }
  7972. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7973. /**
  7974. * M421: Set a single Mesh Bed Leveling Z coordinate
  7975. *
  7976. * Usage:
  7977. * M421 I<xindex> J<yindex> Z<linear>
  7978. * M421 I<xindex> J<yindex> Q<offset>
  7979. * M421 C Z<linear>
  7980. * M421 C Q<offset>
  7981. */
  7982. inline void gcode_M421() {
  7983. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  7984. const bool hasI = ix >= 0,
  7985. hasJ = iy >= 0,
  7986. hasC = parser.seen('C'),
  7987. hasZ = parser.seen('Z'),
  7988. hasQ = !hasZ && parser.seen('Q');
  7989. if (hasC) {
  7990. const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
  7991. ix = location.x_index;
  7992. iy = location.y_index;
  7993. }
  7994. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  7995. SERIAL_ERROR_START();
  7996. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7997. }
  7998. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  7999. SERIAL_ERROR_START();
  8000. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8001. }
  8002. else
  8003. ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  8004. }
  8005. #endif // AUTO_BED_LEVELING_UBL
  8006. #if HAS_M206_COMMAND
  8007. /**
  8008. * M428: Set home_offset based on the distance between the
  8009. * current_position and the nearest "reference point."
  8010. * If an axis is past center its endstop position
  8011. * is the reference-point. Otherwise it uses 0. This allows
  8012. * the Z offset to be set near the bed when using a max endstop.
  8013. *
  8014. * M428 can't be used more than 2cm away from 0 or an endstop.
  8015. *
  8016. * Use M206 to set these values directly.
  8017. */
  8018. inline void gcode_M428() {
  8019. bool err = false;
  8020. LOOP_XYZ(i) {
  8021. if (axis_homed[i]) {
  8022. const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  8023. diff = base - RAW_POSITION(current_position[i], i);
  8024. if (WITHIN(diff, -20, 20)) {
  8025. set_home_offset((AxisEnum)i, diff);
  8026. }
  8027. else {
  8028. SERIAL_ERROR_START();
  8029. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  8030. LCD_ALERTMESSAGEPGM("Err: Too far!");
  8031. BUZZ(200, 40);
  8032. err = true;
  8033. break;
  8034. }
  8035. }
  8036. }
  8037. if (!err) {
  8038. SYNC_PLAN_POSITION_KINEMATIC();
  8039. report_current_position();
  8040. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  8041. BUZZ(100, 659);
  8042. BUZZ(100, 698);
  8043. }
  8044. }
  8045. #endif // HAS_M206_COMMAND
  8046. /**
  8047. * M500: Store settings in EEPROM
  8048. */
  8049. inline void gcode_M500() {
  8050. (void)settings.save();
  8051. }
  8052. /**
  8053. * M501: Read settings from EEPROM
  8054. */
  8055. inline void gcode_M501() {
  8056. (void)settings.load();
  8057. }
  8058. /**
  8059. * M502: Revert to default settings
  8060. */
  8061. inline void gcode_M502() {
  8062. (void)settings.reset();
  8063. }
  8064. #if DISABLED(DISABLE_M503)
  8065. /**
  8066. * M503: print settings currently in memory
  8067. */
  8068. inline void gcode_M503() {
  8069. (void)settings.report(!parser.boolval('S', true));
  8070. }
  8071. #endif
  8072. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8073. /**
  8074. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  8075. */
  8076. inline void gcode_M540() {
  8077. if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  8078. }
  8079. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  8080. #if HAS_BED_PROBE
  8081. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  8082. static float last_zoffset = NAN;
  8083. if (!isnan(last_zoffset)) {
  8084. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  8085. const float diff = zprobe_zoffset - last_zoffset;
  8086. #endif
  8087. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8088. // Correct bilinear grid for new probe offset
  8089. if (diff) {
  8090. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  8091. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  8092. z_values[x][y] -= diff;
  8093. }
  8094. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8095. bed_level_virt_interpolate();
  8096. #endif
  8097. #endif
  8098. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  8099. if (!no_babystep && leveling_is_active())
  8100. thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
  8101. #else
  8102. UNUSED(no_babystep);
  8103. #endif
  8104. #if ENABLED(DELTA) // correct the delta_height
  8105. home_offset[Z_AXIS] -= diff;
  8106. #endif
  8107. }
  8108. last_zoffset = zprobe_zoffset;
  8109. }
  8110. inline void gcode_M851() {
  8111. SERIAL_ECHO_START();
  8112. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  8113. if (parser.seen('Z')) {
  8114. const float value = parser.value_linear_units();
  8115. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  8116. zprobe_zoffset = value;
  8117. refresh_zprobe_zoffset();
  8118. SERIAL_ECHO(zprobe_zoffset);
  8119. }
  8120. else
  8121. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  8122. }
  8123. else
  8124. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  8125. SERIAL_EOL();
  8126. }
  8127. #endif // HAS_BED_PROBE
  8128. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  8129. /**
  8130. * M600: Pause for filament change
  8131. *
  8132. * E[distance] - Retract the filament this far (negative value)
  8133. * Z[distance] - Move the Z axis by this distance
  8134. * X[position] - Move to this X position, with Y
  8135. * Y[position] - Move to this Y position, with X
  8136. * U[distance] - Retract distance for removal (negative value) (manual reload)
  8137. * L[distance] - Extrude distance for insertion (positive value) (manual reload)
  8138. * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
  8139. *
  8140. * Default values are used for omitted arguments.
  8141. *
  8142. */
  8143. inline void gcode_M600() {
  8144. #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
  8145. // Don't allow filament change without homing first
  8146. if (axis_unhomed_error()) home_all_axes();
  8147. #endif
  8148. // Initial retract before move to filament change position
  8149. const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
  8150. #ifdef PAUSE_PARK_RETRACT_LENGTH
  8151. - (PAUSE_PARK_RETRACT_LENGTH)
  8152. #endif
  8153. ;
  8154. // Lift Z axis
  8155. const float z_lift = parser.linearval('Z', 0
  8156. #ifdef PAUSE_PARK_Z_ADD
  8157. + PAUSE_PARK_Z_ADD
  8158. #endif
  8159. );
  8160. // Move XY axes to filament exchange position
  8161. const float x_pos = parser.linearval('X', 0
  8162. #ifdef PAUSE_PARK_X_POS
  8163. + PAUSE_PARK_X_POS
  8164. #endif
  8165. );
  8166. const float y_pos = parser.linearval('Y', 0
  8167. #ifdef PAUSE_PARK_Y_POS
  8168. + PAUSE_PARK_Y_POS
  8169. #endif
  8170. );
  8171. // Unload filament
  8172. const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
  8173. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  8174. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  8175. #endif
  8176. ;
  8177. // Load filament
  8178. const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  8179. #ifdef FILAMENT_CHANGE_LOAD_LENGTH
  8180. + FILAMENT_CHANGE_LOAD_LENGTH
  8181. #endif
  8182. ;
  8183. const int beep_count = parser.intval('B',
  8184. #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8185. FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8186. #else
  8187. -1
  8188. #endif
  8189. );
  8190. const bool job_running = print_job_timer.isRunning();
  8191. if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
  8192. wait_for_filament_reload(beep_count);
  8193. resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
  8194. }
  8195. // Resume the print job timer if it was running
  8196. if (job_running) print_job_timer.start();
  8197. }
  8198. #endif // ADVANCED_PAUSE_FEATURE
  8199. #if ENABLED(MK2_MULTIPLEXER)
  8200. inline void select_multiplexed_stepper(const uint8_t e) {
  8201. stepper.synchronize();
  8202. disable_e_steppers();
  8203. WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8204. WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8205. WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
  8206. safe_delay(100);
  8207. }
  8208. /**
  8209. * M702: Unload all extruders
  8210. */
  8211. inline void gcode_M702() {
  8212. for (uint8_t s = 0; s < E_STEPPERS; s++) {
  8213. select_multiplexed_stepper(e);
  8214. // TODO: standard unload filament function
  8215. // MK2 firmware behavior:
  8216. // - Make sure temperature is high enough
  8217. // - Raise Z to at least 15 to make room
  8218. // - Extrude 1cm of filament in 1 second
  8219. // - Under 230C quickly purge ~12mm, over 230C purge ~10mm
  8220. // - Change E max feedrate to 80, eject the filament from the tube. Sync.
  8221. // - Restore E max feedrate to 50
  8222. }
  8223. // Go back to the last active extruder
  8224. select_multiplexed_stepper(active_extruder);
  8225. disable_e_steppers();
  8226. }
  8227. #endif // MK2_MULTIPLEXER
  8228. #if ENABLED(DUAL_X_CARRIAGE)
  8229. /**
  8230. * M605: Set dual x-carriage movement mode
  8231. *
  8232. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  8233. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  8234. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  8235. * units x-offset and an optional differential hotend temperature of
  8236. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  8237. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  8238. *
  8239. * Note: the X axis should be homed after changing dual x-carriage mode.
  8240. */
  8241. inline void gcode_M605() {
  8242. stepper.synchronize();
  8243. if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
  8244. switch (dual_x_carriage_mode) {
  8245. case DXC_FULL_CONTROL_MODE:
  8246. case DXC_AUTO_PARK_MODE:
  8247. break;
  8248. case DXC_DUPLICATION_MODE:
  8249. if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
  8250. if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
  8251. SERIAL_ECHO_START();
  8252. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  8253. SERIAL_CHAR(' ');
  8254. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  8255. SERIAL_CHAR(',');
  8256. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  8257. SERIAL_CHAR(' ');
  8258. SERIAL_ECHO(duplicate_extruder_x_offset);
  8259. SERIAL_CHAR(',');
  8260. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  8261. break;
  8262. default:
  8263. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  8264. break;
  8265. }
  8266. active_extruder_parked = false;
  8267. extruder_duplication_enabled = false;
  8268. delayed_move_time = 0;
  8269. }
  8270. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  8271. inline void gcode_M605() {
  8272. stepper.synchronize();
  8273. extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
  8274. SERIAL_ECHO_START();
  8275. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  8276. }
  8277. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  8278. #if ENABLED(LIN_ADVANCE)
  8279. /**
  8280. * M900: Set and/or Get advance K factor and WH/D ratio
  8281. *
  8282. * K<factor> Set advance K factor
  8283. * R<ratio> Set ratio directly (overrides WH/D)
  8284. * W<width> H<height> D<diam> Set ratio from WH/D
  8285. */
  8286. inline void gcode_M900() {
  8287. stepper.synchronize();
  8288. const float newK = parser.floatval('K', -1);
  8289. if (newK >= 0) planner.extruder_advance_k = newK;
  8290. float newR = parser.floatval('R', -1);
  8291. if (newR < 0) {
  8292. const float newD = parser.floatval('D', -1),
  8293. newW = parser.floatval('W', -1),
  8294. newH = parser.floatval('H', -1);
  8295. if (newD >= 0 && newW >= 0 && newH >= 0)
  8296. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  8297. }
  8298. if (newR >= 0) planner.advance_ed_ratio = newR;
  8299. SERIAL_ECHO_START();
  8300. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  8301. SERIAL_ECHOPGM(" E/D=");
  8302. const float ratio = planner.advance_ed_ratio;
  8303. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  8304. SERIAL_EOL();
  8305. }
  8306. #endif // LIN_ADVANCE
  8307. #if ENABLED(HAVE_TMC2130)
  8308. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  8309. SERIAL_CHAR(name);
  8310. SERIAL_ECHOPGM(" axis driver current: ");
  8311. SERIAL_ECHOLN(st.getCurrent());
  8312. }
  8313. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  8314. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  8315. tmc2130_get_current(st, name);
  8316. }
  8317. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  8318. SERIAL_CHAR(name);
  8319. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  8320. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  8321. SERIAL_EOL();
  8322. }
  8323. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  8324. st.clear_otpw();
  8325. SERIAL_CHAR(name);
  8326. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  8327. }
  8328. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  8329. SERIAL_CHAR(name);
  8330. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  8331. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  8332. }
  8333. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  8334. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  8335. tmc2130_get_pwmthrs(st, name, spmm);
  8336. }
  8337. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  8338. SERIAL_CHAR(name);
  8339. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  8340. SERIAL_ECHOLN(st.sgt());
  8341. }
  8342. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  8343. st.sgt(sgt_val);
  8344. tmc2130_get_sgt(st, name);
  8345. }
  8346. /**
  8347. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8348. * Report driver currents when no axis specified
  8349. *
  8350. * S1: Enable automatic current control
  8351. * S0: Disable
  8352. */
  8353. inline void gcode_M906() {
  8354. uint16_t values[XYZE];
  8355. LOOP_XYZE(i)
  8356. values[i] = parser.intval(axis_codes[i]);
  8357. #if ENABLED(X_IS_TMC2130)
  8358. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  8359. else tmc2130_get_current(stepperX, 'X');
  8360. #endif
  8361. #if ENABLED(Y_IS_TMC2130)
  8362. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  8363. else tmc2130_get_current(stepperY, 'Y');
  8364. #endif
  8365. #if ENABLED(Z_IS_TMC2130)
  8366. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  8367. else tmc2130_get_current(stepperZ, 'Z');
  8368. #endif
  8369. #if ENABLED(E0_IS_TMC2130)
  8370. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  8371. else tmc2130_get_current(stepperE0, 'E');
  8372. #endif
  8373. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8374. if (parser.seen('S')) auto_current_control = parser.value_bool();
  8375. #endif
  8376. }
  8377. /**
  8378. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  8379. * The flag is held by the library and persist until manually cleared by M912
  8380. */
  8381. inline void gcode_M911() {
  8382. const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
  8383. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  8384. #if ENABLED(X_IS_TMC2130)
  8385. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  8386. #endif
  8387. #if ENABLED(Y_IS_TMC2130)
  8388. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  8389. #endif
  8390. #if ENABLED(Z_IS_TMC2130)
  8391. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  8392. #endif
  8393. #if ENABLED(E0_IS_TMC2130)
  8394. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  8395. #endif
  8396. }
  8397. /**
  8398. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  8399. */
  8400. inline void gcode_M912() {
  8401. const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
  8402. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  8403. #if ENABLED(X_IS_TMC2130)
  8404. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  8405. #endif
  8406. #if ENABLED(Y_IS_TMC2130)
  8407. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  8408. #endif
  8409. #if ENABLED(Z_IS_TMC2130)
  8410. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  8411. #endif
  8412. #if ENABLED(E0_IS_TMC2130)
  8413. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  8414. #endif
  8415. }
  8416. /**
  8417. * M913: Set HYBRID_THRESHOLD speed.
  8418. */
  8419. #if ENABLED(HYBRID_THRESHOLD)
  8420. inline void gcode_M913() {
  8421. uint16_t values[XYZE];
  8422. LOOP_XYZE(i)
  8423. values[i] = parser.intval(axis_codes[i]);
  8424. #if ENABLED(X_IS_TMC2130)
  8425. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  8426. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  8427. #endif
  8428. #if ENABLED(Y_IS_TMC2130)
  8429. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  8430. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  8431. #endif
  8432. #if ENABLED(Z_IS_TMC2130)
  8433. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  8434. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  8435. #endif
  8436. #if ENABLED(E0_IS_TMC2130)
  8437. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  8438. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  8439. #endif
  8440. }
  8441. #endif // HYBRID_THRESHOLD
  8442. /**
  8443. * M914: Set SENSORLESS_HOMING sensitivity.
  8444. */
  8445. #if ENABLED(SENSORLESS_HOMING)
  8446. inline void gcode_M914() {
  8447. #if ENABLED(X_IS_TMC2130)
  8448. if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
  8449. else tmc2130_get_sgt(stepperX, 'X');
  8450. #endif
  8451. #if ENABLED(Y_IS_TMC2130)
  8452. if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
  8453. else tmc2130_get_sgt(stepperY, 'Y');
  8454. #endif
  8455. }
  8456. #endif // SENSORLESS_HOMING
  8457. #endif // HAVE_TMC2130
  8458. /**
  8459. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  8460. */
  8461. inline void gcode_M907() {
  8462. #if HAS_DIGIPOTSS
  8463. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
  8464. if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
  8465. if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  8466. #elif HAS_MOTOR_CURRENT_PWM
  8467. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  8468. if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
  8469. #endif
  8470. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  8471. if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
  8472. #endif
  8473. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  8474. if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
  8475. #endif
  8476. #endif
  8477. #if ENABLED(DIGIPOT_I2C)
  8478. // this one uses actual amps in floating point
  8479. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
  8480. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  8481. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  8482. #endif
  8483. #if ENABLED(DAC_STEPPER_CURRENT)
  8484. if (parser.seen('S')) {
  8485. const float dac_percent = parser.value_float();
  8486. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  8487. }
  8488. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  8489. #endif
  8490. }
  8491. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8492. /**
  8493. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  8494. */
  8495. inline void gcode_M908() {
  8496. #if HAS_DIGIPOTSS
  8497. stepper.digitalPotWrite(
  8498. parser.intval('P'),
  8499. parser.intval('S')
  8500. );
  8501. #endif
  8502. #ifdef DAC_STEPPER_CURRENT
  8503. dac_current_raw(
  8504. parser.byteval('P', -1),
  8505. parser.ushortval('S', 0)
  8506. );
  8507. #endif
  8508. }
  8509. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8510. inline void gcode_M909() { dac_print_values(); }
  8511. inline void gcode_M910() { dac_commit_eeprom(); }
  8512. #endif
  8513. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8514. #if HAS_MICROSTEPS
  8515. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8516. inline void gcode_M350() {
  8517. if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
  8518. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
  8519. if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
  8520. stepper.microstep_readings();
  8521. }
  8522. /**
  8523. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  8524. * S# determines MS1 or MS2, X# sets the pin high/low.
  8525. */
  8526. inline void gcode_M351() {
  8527. if (parser.seenval('S')) switch (parser.value_byte()) {
  8528. case 1:
  8529. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
  8530. if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
  8531. break;
  8532. case 2:
  8533. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
  8534. if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
  8535. break;
  8536. }
  8537. stepper.microstep_readings();
  8538. }
  8539. #endif // HAS_MICROSTEPS
  8540. #if HAS_CASE_LIGHT
  8541. #ifndef INVERT_CASE_LIGHT
  8542. #define INVERT_CASE_LIGHT false
  8543. #endif
  8544. uint8_t case_light_brightness; // LCD routine wants INT
  8545. bool case_light_on;
  8546. void update_case_light() {
  8547. pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
  8548. if (case_light_on) {
  8549. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  8550. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness);
  8551. }
  8552. else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
  8553. }
  8554. else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  8555. }
  8556. #endif // HAS_CASE_LIGHT
  8557. /**
  8558. * M355: Turn case light on/off and set brightness
  8559. *
  8560. * P<byte> Set case light brightness (PWM pin required - ignored otherwise)
  8561. *
  8562. * S<bool> Set case light on/off
  8563. *
  8564. * When S turns on the light on a PWM pin then the current brightness level is used/restored
  8565. *
  8566. * M355 P200 S0 turns off the light & sets the brightness level
  8567. * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
  8568. */
  8569. inline void gcode_M355() {
  8570. #if HAS_CASE_LIGHT
  8571. uint8_t args = 0;
  8572. if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
  8573. if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
  8574. if (args) update_case_light();
  8575. // always report case light status
  8576. SERIAL_ECHO_START();
  8577. if (!case_light_on) {
  8578. SERIAL_ECHOLN("Case light: off");
  8579. }
  8580. else {
  8581. if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
  8582. else SERIAL_ECHOLNPAIR("Case light: ", (int)case_light_brightness);
  8583. }
  8584. #else
  8585. SERIAL_ERROR_START();
  8586. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  8587. #endif // HAS_CASE_LIGHT
  8588. }
  8589. #if ENABLED(MIXING_EXTRUDER)
  8590. /**
  8591. * M163: Set a single mix factor for a mixing extruder
  8592. * This is called "weight" by some systems.
  8593. *
  8594. * S[index] The channel index to set
  8595. * P[float] The mix value
  8596. *
  8597. */
  8598. inline void gcode_M163() {
  8599. const int mix_index = parser.intval('S');
  8600. if (mix_index < MIXING_STEPPERS) {
  8601. float mix_value = parser.floatval('P');
  8602. NOLESS(mix_value, 0.0);
  8603. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  8604. }
  8605. }
  8606. #if MIXING_VIRTUAL_TOOLS > 1
  8607. /**
  8608. * M164: Store the current mix factors as a virtual tool.
  8609. *
  8610. * S[index] The virtual tool to store
  8611. *
  8612. */
  8613. inline void gcode_M164() {
  8614. const int tool_index = parser.intval('S');
  8615. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  8616. normalize_mix();
  8617. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8618. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  8619. }
  8620. }
  8621. #endif
  8622. #if ENABLED(DIRECT_MIXING_IN_G1)
  8623. /**
  8624. * M165: Set multiple mix factors for a mixing extruder.
  8625. * Factors that are left out will be set to 0.
  8626. * All factors together must add up to 1.0.
  8627. *
  8628. * A[factor] Mix factor for extruder stepper 1
  8629. * B[factor] Mix factor for extruder stepper 2
  8630. * C[factor] Mix factor for extruder stepper 3
  8631. * D[factor] Mix factor for extruder stepper 4
  8632. * H[factor] Mix factor for extruder stepper 5
  8633. * I[factor] Mix factor for extruder stepper 6
  8634. *
  8635. */
  8636. inline void gcode_M165() { gcode_get_mix(); }
  8637. #endif
  8638. #endif // MIXING_EXTRUDER
  8639. /**
  8640. * M999: Restart after being stopped
  8641. *
  8642. * Default behaviour is to flush the serial buffer and request
  8643. * a resend to the host starting on the last N line received.
  8644. *
  8645. * Sending "M999 S1" will resume printing without flushing the
  8646. * existing command buffer.
  8647. *
  8648. */
  8649. inline void gcode_M999() {
  8650. Running = true;
  8651. lcd_reset_alert_level();
  8652. if (parser.boolval('S')) return;
  8653. // gcode_LastN = Stopped_gcode_LastN;
  8654. FlushSerialRequestResend();
  8655. }
  8656. #if ENABLED(SWITCHING_EXTRUDER)
  8657. #if EXTRUDERS > 3
  8658. #define REQ_ANGLES 4
  8659. #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
  8660. #else
  8661. #define REQ_ANGLES 2
  8662. #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
  8663. #endif
  8664. inline void move_extruder_servo(const uint8_t e) {
  8665. constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  8666. static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  8667. stepper.synchronize();
  8668. #if EXTRUDERS & 1
  8669. if (e < EXTRUDERS - 1)
  8670. #endif
  8671. {
  8672. MOVE_SERVO(_SERVO_NR, angles[e]);
  8673. safe_delay(500);
  8674. }
  8675. }
  8676. #endif // SWITCHING_EXTRUDER
  8677. #if ENABLED(SWITCHING_NOZZLE)
  8678. inline void move_nozzle_servo(const uint8_t e) {
  8679. const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  8680. stepper.synchronize();
  8681. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  8682. safe_delay(500);
  8683. }
  8684. #endif
  8685. inline void invalid_extruder_error(const uint8_t e) {
  8686. SERIAL_ECHO_START();
  8687. SERIAL_CHAR('T');
  8688. SERIAL_ECHO_F(e, DEC);
  8689. SERIAL_CHAR(' ');
  8690. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  8691. }
  8692. #if ENABLED(PARKING_EXTRUDER)
  8693. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  8694. #define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  8695. #else
  8696. #define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  8697. #endif
  8698. void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
  8699. switch (extruder_num) {
  8700. case 1: OUT_WRITE(SOL1_PIN, state); break;
  8701. default: OUT_WRITE(SOL0_PIN, state); break;
  8702. }
  8703. #if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
  8704. dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
  8705. #endif
  8706. }
  8707. inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
  8708. inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
  8709. #endif // PARKING_EXTRUDER
  8710. #if HAS_FANMUX
  8711. void fanmux_switch(const uint8_t e) {
  8712. WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8713. #if PIN_EXISTS(FANMUX1)
  8714. WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8715. #if PIN_EXISTS(FANMUX2)
  8716. WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
  8717. #endif
  8718. #endif
  8719. }
  8720. FORCE_INLINE void fanmux_init(void){
  8721. SET_OUTPUT(FANMUX0_PIN);
  8722. #if PIN_EXISTS(FANMUX1)
  8723. SET_OUTPUT(FANMUX1_PIN);
  8724. #if PIN_EXISTS(FANMUX2)
  8725. SET_OUTPUT(FANMUX2_PIN);
  8726. #endif
  8727. #endif
  8728. fanmux_switch(0);
  8729. }
  8730. #endif // HAS_FANMUX
  8731. /**
  8732. * Perform a tool-change, which may result in moving the
  8733. * previous tool out of the way and the new tool into place.
  8734. */
  8735. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  8736. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8737. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  8738. return invalid_extruder_error(tmp_extruder);
  8739. // T0-Tnnn: Switch virtual tool by changing the mix
  8740. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  8741. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  8742. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8743. if (tmp_extruder >= EXTRUDERS)
  8744. return invalid_extruder_error(tmp_extruder);
  8745. #if HOTENDS > 1
  8746. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  8747. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  8748. if (tmp_extruder != active_extruder) {
  8749. if (!no_move && axis_unhomed_error()) {
  8750. no_move = true;
  8751. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8752. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
  8753. #endif
  8754. }
  8755. // Save current position to destination, for use later
  8756. set_destination_to_current();
  8757. #if ENABLED(DUAL_X_CARRIAGE)
  8758. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8759. if (DEBUGGING(LEVELING)) {
  8760. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  8761. switch (dual_x_carriage_mode) {
  8762. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  8763. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  8764. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  8765. }
  8766. }
  8767. #endif
  8768. const float xhome = x_home_pos(active_extruder);
  8769. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  8770. && IsRunning()
  8771. && (delayed_move_time || current_position[X_AXIS] != xhome)
  8772. ) {
  8773. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  8774. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8775. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  8776. #endif
  8777. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8778. if (DEBUGGING(LEVELING)) {
  8779. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  8780. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  8781. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  8782. }
  8783. #endif
  8784. // Park old head: 1) raise 2) move to park position 3) lower
  8785. for (uint8_t i = 0; i < 3; i++)
  8786. planner.buffer_line(
  8787. i == 0 ? current_position[X_AXIS] : xhome,
  8788. current_position[Y_AXIS],
  8789. i == 2 ? current_position[Z_AXIS] : raised_z,
  8790. current_position[E_AXIS],
  8791. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  8792. active_extruder
  8793. );
  8794. stepper.synchronize();
  8795. }
  8796. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  8797. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  8798. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  8799. // Activate the new extruder ahead of calling set_axis_is_at_home!
  8800. active_extruder = tmp_extruder;
  8801. // This function resets the max/min values - the current position may be overwritten below.
  8802. set_axis_is_at_home(X_AXIS);
  8803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8804. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  8805. #endif
  8806. // Only when auto-parking are carriages safe to move
  8807. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  8808. switch (dual_x_carriage_mode) {
  8809. case DXC_FULL_CONTROL_MODE:
  8810. // New current position is the position of the activated extruder
  8811. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8812. // Save the inactive extruder's position (from the old current_position)
  8813. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8814. break;
  8815. case DXC_AUTO_PARK_MODE:
  8816. // record raised toolhead position for use by unpark
  8817. COPY(raised_parked_position, current_position);
  8818. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  8819. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8820. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8821. #endif
  8822. active_extruder_parked = true;
  8823. delayed_move_time = 0;
  8824. break;
  8825. case DXC_DUPLICATION_MODE:
  8826. // If the new extruder is the left one, set it "parked"
  8827. // This triggers the second extruder to move into the duplication position
  8828. active_extruder_parked = (active_extruder == 0);
  8829. if (active_extruder_parked)
  8830. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8831. else
  8832. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  8833. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8834. extruder_duplication_enabled = false;
  8835. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8836. if (DEBUGGING(LEVELING)) {
  8837. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  8838. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  8839. }
  8840. #endif
  8841. break;
  8842. }
  8843. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8844. if (DEBUGGING(LEVELING)) {
  8845. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  8846. DEBUG_POS("New extruder (parked)", current_position);
  8847. }
  8848. #endif
  8849. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  8850. #else // !DUAL_X_CARRIAGE
  8851. #if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder
  8852. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  8853. float z_raise = 0;
  8854. if (!no_move) {
  8855. const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
  8856. midpos = ((parkingposx[1] - parkingposx[0])/2) + parkingposx[0] + hotend_offset[X_AXIS][active_extruder],
  8857. grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
  8858. + (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
  8859. /**
  8860. * Steps:
  8861. * 1. raise Z-Axis to have enough clearance
  8862. * 2. move to park poition of old extruder
  8863. * 3. disengage magnetc field, wait for delay
  8864. * 4. move near new extruder
  8865. * 5. engage magnetic field for new extruder
  8866. * 6. move to parking incl. offset of new extruder
  8867. * 7. lower Z-Axis
  8868. */
  8869. // STEP 1
  8870. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8871. SERIAL_ECHOLNPGM("Starting Autopark");
  8872. if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
  8873. #endif
  8874. z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
  8875. current_position[Z_AXIS] += z_raise;
  8876. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8877. SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
  8878. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
  8879. #endif
  8880. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8881. stepper.synchronize();
  8882. // STEP 2
  8883. current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
  8884. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8885. SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
  8886. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
  8887. #endif
  8888. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8889. stepper.synchronize();
  8890. // STEP 3
  8891. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8892. SERIAL_ECHOLNPGM("(3) Disengage magnet ");
  8893. #endif
  8894. pe_deactivate_magnet(active_extruder);
  8895. // STEP 4
  8896. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8897. SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
  8898. #endif
  8899. current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
  8900. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8901. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
  8902. #endif
  8903. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8904. stepper.synchronize();
  8905. // STEP 5
  8906. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8907. SERIAL_ECHOLNPGM("(5) Engage magnetic field");
  8908. #endif
  8909. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  8910. pe_activate_magnet(active_extruder); //just save power for inverted magnets
  8911. #endif
  8912. pe_activate_magnet(tmp_extruder);
  8913. // STEP 6
  8914. current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
  8915. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8916. current_position[X_AXIS] = grabpos;
  8917. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8918. SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
  8919. if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
  8920. #endif
  8921. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
  8922. stepper.synchronize();
  8923. // Step 7
  8924. current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
  8925. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8926. SERIAL_ECHOLNPGM("(7) Move midway between hotends");
  8927. if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
  8928. #endif
  8929. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8930. stepper.synchronize();
  8931. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8932. SERIAL_ECHOLNPGM("Autopark done.");
  8933. #endif
  8934. }
  8935. else { // nomove == true
  8936. // Only engage magnetic field for new extruder
  8937. pe_activate_magnet(tmp_extruder);
  8938. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  8939. pe_activate_magnet(active_extruder); // Just save power for inverted magnets
  8940. #endif
  8941. }
  8942. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; // Apply Zoffset
  8943. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8944. if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
  8945. #endif
  8946. #endif // dualParking extruder
  8947. #if ENABLED(SWITCHING_NOZZLE)
  8948. #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
  8949. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  8950. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  8951. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  8952. // Always raise by some amount (destination copied from current_position earlier)
  8953. current_position[Z_AXIS] += z_raise;
  8954. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8955. move_nozzle_servo(tmp_extruder);
  8956. #endif
  8957. /**
  8958. * Set current_position to the position of the new nozzle.
  8959. * Offsets are based on linear distance, so we need to get
  8960. * the resulting position in coordinate space.
  8961. *
  8962. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  8963. * - With mesh leveling, update Z for the new position
  8964. * - Otherwise, just use the raw linear distance
  8965. *
  8966. * Software endstops are altered here too. Consider a case where:
  8967. * E0 at X=0 ... E1 at X=10
  8968. * When we switch to E1 now X=10, but E1 can't move left.
  8969. * To express this we apply the change in XY to the software endstops.
  8970. * E1 can move farther right than E0, so the right limit is extended.
  8971. *
  8972. * Note that we don't adjust the Z software endstops. Why not?
  8973. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  8974. * because the bed is 1mm lower at the new position. As long as
  8975. * the first nozzle is out of the way, the carriage should be
  8976. * allowed to move 1mm lower. This technically "breaks" the
  8977. * Z software endstop. But this is technically correct (and
  8978. * there is no viable alternative).
  8979. */
  8980. #if ABL_PLANAR
  8981. // Offset extruder, make sure to apply the bed level rotation matrix
  8982. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  8983. hotend_offset[Y_AXIS][tmp_extruder],
  8984. 0),
  8985. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  8986. hotend_offset[Y_AXIS][active_extruder],
  8987. 0),
  8988. offset_vec = tmp_offset_vec - act_offset_vec;
  8989. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8990. if (DEBUGGING(LEVELING)) {
  8991. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  8992. act_offset_vec.debug(PSTR("act_offset_vec"));
  8993. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  8994. }
  8995. #endif
  8996. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  8997. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8998. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  8999. #endif
  9000. // Adjustments to the current position
  9001. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  9002. current_position[Z_AXIS] += offset_vec.z;
  9003. #else // !ABL_PLANAR
  9004. const float xydiff[2] = {
  9005. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  9006. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  9007. };
  9008. #if ENABLED(MESH_BED_LEVELING)
  9009. if (leveling_is_active()) {
  9010. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9011. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  9012. #endif
  9013. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  9014. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  9015. z1 = current_position[Z_AXIS], z2 = z1;
  9016. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  9017. planner.apply_leveling(x2, y2, z2);
  9018. current_position[Z_AXIS] += z2 - z1;
  9019. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9020. if (DEBUGGING(LEVELING))
  9021. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  9022. #endif
  9023. }
  9024. #endif // MESH_BED_LEVELING
  9025. #endif // !HAS_ABL
  9026. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9027. if (DEBUGGING(LEVELING)) {
  9028. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  9029. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  9030. SERIAL_ECHOLNPGM(" }");
  9031. }
  9032. #endif
  9033. // The newly-selected extruder XY is actually at...
  9034. current_position[X_AXIS] += xydiff[X_AXIS];
  9035. current_position[Y_AXIS] += xydiff[Y_AXIS];
  9036. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(PARKING_EXTRUDER)
  9037. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  9038. #if HAS_POSITION_SHIFT
  9039. position_shift[i] += xydiff[i];
  9040. #endif
  9041. update_software_endstops((AxisEnum)i);
  9042. }
  9043. #endif
  9044. // Set the new active extruder
  9045. active_extruder = tmp_extruder;
  9046. #endif // !DUAL_X_CARRIAGE
  9047. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9048. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  9049. #endif
  9050. // Tell the planner the new "current position"
  9051. SYNC_PLAN_POSITION_KINEMATIC();
  9052. // Move to the "old position" (move the extruder into place)
  9053. if (!no_move && IsRunning()) {
  9054. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9055. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  9056. #endif
  9057. prepare_move_to_destination();
  9058. }
  9059. #if ENABLED(SWITCHING_NOZZLE)
  9060. // Move back down, if needed. (Including when the new tool is higher.)
  9061. if (z_raise != z_diff) {
  9062. destination[Z_AXIS] += z_diff;
  9063. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  9064. prepare_move_to_destination();
  9065. }
  9066. #endif
  9067. } // (tmp_extruder != active_extruder)
  9068. stepper.synchronize();
  9069. #if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
  9070. disable_all_solenoids();
  9071. enable_solenoid_on_active_extruder();
  9072. #endif // EXT_SOLENOID
  9073. feedrate_mm_s = old_feedrate_mm_s;
  9074. #else // HOTENDS <= 1
  9075. UNUSED(fr_mm_s);
  9076. UNUSED(no_move);
  9077. #if ENABLED(MK2_MULTIPLEXER)
  9078. if (tmp_extruder >= E_STEPPERS)
  9079. return invalid_extruder_error(tmp_extruder);
  9080. select_multiplexed_stepper(tmp_extruder);
  9081. #endif
  9082. // Set the new active extruder
  9083. active_extruder = tmp_extruder;
  9084. #endif // HOTENDS <= 1
  9085. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  9086. stepper.synchronize();
  9087. move_extruder_servo(active_extruder);
  9088. #endif
  9089. #if HAS_FANMUX
  9090. fanmux_switch(active_extruder);
  9091. #endif
  9092. SERIAL_ECHO_START();
  9093. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  9094. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9095. }
  9096. /**
  9097. * T0-T3: Switch tool, usually switching extruders
  9098. *
  9099. * F[units/min] Set the movement feedrate
  9100. * S1 Don't move the tool in XY after change
  9101. */
  9102. inline void gcode_T(uint8_t tmp_extruder) {
  9103. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9104. if (DEBUGGING(LEVELING)) {
  9105. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  9106. SERIAL_CHAR(')');
  9107. SERIAL_EOL();
  9108. DEBUG_POS("BEFORE", current_position);
  9109. }
  9110. #endif
  9111. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  9112. tool_change(tmp_extruder);
  9113. #elif HOTENDS > 1
  9114. tool_change(
  9115. tmp_extruder,
  9116. MMM_TO_MMS(parser.linearval('F')),
  9117. (tmp_extruder == active_extruder) || parser.boolval('S')
  9118. );
  9119. #endif
  9120. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9121. if (DEBUGGING(LEVELING)) {
  9122. DEBUG_POS("AFTER", current_position);
  9123. SERIAL_ECHOLNPGM("<<< gcode_T");
  9124. }
  9125. #endif
  9126. }
  9127. /**
  9128. * Process a single command and dispatch it to its handler
  9129. * This is called from the main loop()
  9130. */
  9131. void process_next_command() {
  9132. char * const current_command = command_queue[cmd_queue_index_r];
  9133. if (DEBUGGING(ECHO)) {
  9134. SERIAL_ECHO_START();
  9135. SERIAL_ECHOLN(current_command);
  9136. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9137. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  9138. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  9139. #endif
  9140. }
  9141. KEEPALIVE_STATE(IN_HANDLER);
  9142. // Parse the next command in the queue
  9143. parser.parse(current_command);
  9144. // Handle a known G, M, or T
  9145. switch (parser.command_letter) {
  9146. case 'G': switch (parser.codenum) {
  9147. // G0, G1
  9148. case 0:
  9149. case 1:
  9150. #if IS_SCARA
  9151. gcode_G0_G1(parser.codenum == 0);
  9152. #else
  9153. gcode_G0_G1();
  9154. #endif
  9155. break;
  9156. // G2, G3
  9157. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  9158. case 2: // G2: CW ARC
  9159. case 3: // G3: CCW ARC
  9160. gcode_G2_G3(parser.codenum == 2);
  9161. break;
  9162. #endif
  9163. // G4 Dwell
  9164. case 4:
  9165. gcode_G4();
  9166. break;
  9167. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9168. case 5: // G5: Cubic B_spline
  9169. gcode_G5();
  9170. break;
  9171. #endif // BEZIER_CURVE_SUPPORT
  9172. #if ENABLED(FWRETRACT)
  9173. case 10: // G10: retract
  9174. gcode_G10();
  9175. break;
  9176. case 11: // G11: retract_recover
  9177. gcode_G11();
  9178. break;
  9179. #endif // FWRETRACT
  9180. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  9181. case 12:
  9182. gcode_G12(); // G12: Nozzle Clean
  9183. break;
  9184. #endif // NOZZLE_CLEAN_FEATURE
  9185. #if ENABLED(CNC_WORKSPACE_PLANES)
  9186. case 17: // G17: Select Plane XY
  9187. gcode_G17();
  9188. break;
  9189. case 18: // G18: Select Plane ZX
  9190. gcode_G18();
  9191. break;
  9192. case 19: // G19: Select Plane YZ
  9193. gcode_G19();
  9194. break;
  9195. #endif // CNC_WORKSPACE_PLANES
  9196. #if ENABLED(INCH_MODE_SUPPORT)
  9197. case 20: // G20: Inch Mode
  9198. gcode_G20();
  9199. break;
  9200. case 21: // G21: MM Mode
  9201. gcode_G21();
  9202. break;
  9203. #endif // INCH_MODE_SUPPORT
  9204. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  9205. case 26: // G26: Mesh Validation Pattern generation
  9206. gcode_G26();
  9207. break;
  9208. #endif // AUTO_BED_LEVELING_UBL
  9209. #if ENABLED(NOZZLE_PARK_FEATURE)
  9210. case 27: // G27: Nozzle Park
  9211. gcode_G27();
  9212. break;
  9213. #endif // NOZZLE_PARK_FEATURE
  9214. case 28: // G28: Home all axes, one at a time
  9215. gcode_G28(false);
  9216. break;
  9217. #if HAS_LEVELING
  9218. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  9219. // or provides access to the UBL System if enabled.
  9220. gcode_G29();
  9221. break;
  9222. #endif // HAS_LEVELING
  9223. #if HAS_BED_PROBE
  9224. case 30: // G30 Single Z probe
  9225. gcode_G30();
  9226. break;
  9227. #if ENABLED(Z_PROBE_SLED)
  9228. case 31: // G31: dock the sled
  9229. gcode_G31();
  9230. break;
  9231. case 32: // G32: undock the sled
  9232. gcode_G32();
  9233. break;
  9234. #endif // Z_PROBE_SLED
  9235. #endif // HAS_BED_PROBE
  9236. #if PROBE_SELECTED
  9237. #if ENABLED(DELTA_AUTO_CALIBRATION)
  9238. case 33: // G33: Delta Auto-Calibration
  9239. gcode_G33();
  9240. break;
  9241. #endif // DELTA_AUTO_CALIBRATION
  9242. #endif // PROBE_SELECTED
  9243. #if ENABLED(G38_PROBE_TARGET)
  9244. case 38: // G38.2 & G38.3
  9245. if (parser.subcode == 2 || parser.subcode == 3)
  9246. gcode_G38(parser.subcode == 2);
  9247. break;
  9248. #endif
  9249. case 90: // G90
  9250. relative_mode = false;
  9251. break;
  9252. case 91: // G91
  9253. relative_mode = true;
  9254. break;
  9255. case 92: // G92
  9256. gcode_G92();
  9257. break;
  9258. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
  9259. case 42:
  9260. gcode_G42();
  9261. break;
  9262. #endif
  9263. #if ENABLED(DEBUG_GCODE_PARSER)
  9264. case 800:
  9265. parser.debug(); // GCode Parser Test for G
  9266. break;
  9267. #endif
  9268. }
  9269. break;
  9270. case 'M': switch (parser.codenum) {
  9271. #if HAS_RESUME_CONTINUE
  9272. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  9273. case 1: // M1: Conditional stop - Wait for user button press on LCD
  9274. gcode_M0_M1();
  9275. break;
  9276. #endif // ULTIPANEL
  9277. #if ENABLED(SPINDLE_LASER_ENABLE)
  9278. case 3:
  9279. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  9280. break; // synchronizes with movement commands
  9281. case 4:
  9282. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  9283. break; // synchronizes with movement commands
  9284. case 5:
  9285. gcode_M5(); // M5 - turn spindle/laser off
  9286. break; // synchronizes with movement commands
  9287. #endif
  9288. case 17: // M17: Enable all stepper motors
  9289. gcode_M17();
  9290. break;
  9291. #if ENABLED(SDSUPPORT)
  9292. case 20: // M20: list SD card
  9293. gcode_M20(); break;
  9294. case 21: // M21: init SD card
  9295. gcode_M21(); break;
  9296. case 22: // M22: release SD card
  9297. gcode_M22(); break;
  9298. case 23: // M23: Select file
  9299. gcode_M23(); break;
  9300. case 24: // M24: Start SD print
  9301. gcode_M24(); break;
  9302. case 25: // M25: Pause SD print
  9303. gcode_M25(); break;
  9304. case 26: // M26: Set SD index
  9305. gcode_M26(); break;
  9306. case 27: // M27: Get SD status
  9307. gcode_M27(); break;
  9308. case 28: // M28: Start SD write
  9309. gcode_M28(); break;
  9310. case 29: // M29: Stop SD write
  9311. gcode_M29(); break;
  9312. case 30: // M30 <filename> Delete File
  9313. gcode_M30(); break;
  9314. case 32: // M32: Select file and start SD print
  9315. gcode_M32(); break;
  9316. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  9317. case 33: // M33: Get the long full path to a file or folder
  9318. gcode_M33(); break;
  9319. #endif
  9320. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  9321. case 34: // M34: Set SD card sorting options
  9322. gcode_M34(); break;
  9323. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  9324. case 928: // M928: Start SD write
  9325. gcode_M928(); break;
  9326. #endif // SDSUPPORT
  9327. case 31: // M31: Report time since the start of SD print or last M109
  9328. gcode_M31(); break;
  9329. case 42: // M42: Change pin state
  9330. gcode_M42(); break;
  9331. #if ENABLED(PINS_DEBUGGING)
  9332. case 43: // M43: Read pin state
  9333. gcode_M43(); break;
  9334. #endif
  9335. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  9336. case 48: // M48: Z probe repeatability test
  9337. gcode_M48();
  9338. break;
  9339. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  9340. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  9341. case 49: // M49: Turn on or off G26 debug flag for verbose output
  9342. gcode_M49();
  9343. break;
  9344. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  9345. case 75: // M75: Start print timer
  9346. gcode_M75(); break;
  9347. case 76: // M76: Pause print timer
  9348. gcode_M76(); break;
  9349. case 77: // M77: Stop print timer
  9350. gcode_M77(); break;
  9351. #if ENABLED(PRINTCOUNTER)
  9352. case 78: // M78: Show print statistics
  9353. gcode_M78(); break;
  9354. #endif
  9355. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9356. case 100: // M100: Free Memory Report
  9357. gcode_M100();
  9358. break;
  9359. #endif
  9360. case 104: // M104: Set hot end temperature
  9361. gcode_M104();
  9362. break;
  9363. case 110: // M110: Set Current Line Number
  9364. gcode_M110();
  9365. break;
  9366. case 111: // M111: Set debug level
  9367. gcode_M111();
  9368. break;
  9369. #if DISABLED(EMERGENCY_PARSER)
  9370. case 108: // M108: Cancel Waiting
  9371. gcode_M108();
  9372. break;
  9373. case 112: // M112: Emergency Stop
  9374. gcode_M112();
  9375. break;
  9376. case 410: // M410 quickstop - Abort all the planned moves.
  9377. gcode_M410();
  9378. break;
  9379. #endif
  9380. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  9381. case 113: // M113: Set Host Keepalive interval
  9382. gcode_M113();
  9383. break;
  9384. #endif
  9385. case 140: // M140: Set bed temperature
  9386. gcode_M140();
  9387. break;
  9388. case 105: // M105: Report current temperature
  9389. gcode_M105();
  9390. KEEPALIVE_STATE(NOT_BUSY);
  9391. return; // "ok" already printed
  9392. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9393. case 155: // M155: Set temperature auto-report interval
  9394. gcode_M155();
  9395. break;
  9396. #endif
  9397. case 109: // M109: Wait for hotend temperature to reach target
  9398. gcode_M109();
  9399. break;
  9400. #if HAS_TEMP_BED
  9401. case 190: // M190: Wait for bed temperature to reach target
  9402. gcode_M190();
  9403. break;
  9404. #endif // HAS_TEMP_BED
  9405. #if FAN_COUNT > 0
  9406. case 106: // M106: Fan On
  9407. gcode_M106();
  9408. break;
  9409. case 107: // M107: Fan Off
  9410. gcode_M107();
  9411. break;
  9412. #endif // FAN_COUNT > 0
  9413. #if ENABLED(PARK_HEAD_ON_PAUSE)
  9414. case 125: // M125: Store current position and move to filament change position
  9415. gcode_M125(); break;
  9416. #endif
  9417. #if ENABLED(BARICUDA)
  9418. // PWM for HEATER_1_PIN
  9419. #if HAS_HEATER_1
  9420. case 126: // M126: valve open
  9421. gcode_M126();
  9422. break;
  9423. case 127: // M127: valve closed
  9424. gcode_M127();
  9425. break;
  9426. #endif // HAS_HEATER_1
  9427. // PWM for HEATER_2_PIN
  9428. #if HAS_HEATER_2
  9429. case 128: // M128: valve open
  9430. gcode_M128();
  9431. break;
  9432. case 129: // M129: valve closed
  9433. gcode_M129();
  9434. break;
  9435. #endif // HAS_HEATER_2
  9436. #endif // BARICUDA
  9437. #if HAS_POWER_SWITCH
  9438. case 80: // M80: Turn on Power Supply
  9439. gcode_M80();
  9440. break;
  9441. #endif // HAS_POWER_SWITCH
  9442. case 81: // M81: Turn off Power, including Power Supply, if possible
  9443. gcode_M81();
  9444. break;
  9445. case 82: // M82: Set E axis normal mode (same as other axes)
  9446. gcode_M82();
  9447. break;
  9448. case 83: // M83: Set E axis relative mode
  9449. gcode_M83();
  9450. break;
  9451. case 18: // M18 => M84
  9452. case 84: // M84: Disable all steppers or set timeout
  9453. gcode_M18_M84();
  9454. break;
  9455. case 85: // M85: Set inactivity stepper shutdown timeout
  9456. gcode_M85();
  9457. break;
  9458. case 92: // M92: Set the steps-per-unit for one or more axes
  9459. gcode_M92();
  9460. break;
  9461. case 114: // M114: Report current position
  9462. gcode_M114();
  9463. break;
  9464. case 115: // M115: Report capabilities
  9465. gcode_M115();
  9466. break;
  9467. case 117: // M117: Set LCD message text, if possible
  9468. gcode_M117();
  9469. break;
  9470. case 118: // M118: Display a message in the host console
  9471. gcode_M118();
  9472. break;
  9473. case 119: // M119: Report endstop states
  9474. gcode_M119();
  9475. break;
  9476. case 120: // M120: Enable endstops
  9477. gcode_M120();
  9478. break;
  9479. case 121: // M121: Disable endstops
  9480. gcode_M121();
  9481. break;
  9482. #if ENABLED(ULTIPANEL)
  9483. case 145: // M145: Set material heatup parameters
  9484. gcode_M145();
  9485. break;
  9486. #endif
  9487. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  9488. case 149: // M149: Set temperature units
  9489. gcode_M149();
  9490. break;
  9491. #endif
  9492. #if HAS_COLOR_LEDS
  9493. case 150: // M150: Set Status LED Color
  9494. gcode_M150();
  9495. break;
  9496. #endif // HAS_COLOR_LEDS
  9497. #if ENABLED(MIXING_EXTRUDER)
  9498. case 163: // M163: Set a component weight for mixing extruder
  9499. gcode_M163();
  9500. break;
  9501. #if MIXING_VIRTUAL_TOOLS > 1
  9502. case 164: // M164: Save current mix as a virtual extruder
  9503. gcode_M164();
  9504. break;
  9505. #endif
  9506. #if ENABLED(DIRECT_MIXING_IN_G1)
  9507. case 165: // M165: Set multiple mix weights
  9508. gcode_M165();
  9509. break;
  9510. #endif
  9511. #endif
  9512. case 200: // M200: Set filament diameter, E to cubic units
  9513. gcode_M200();
  9514. break;
  9515. case 201: // M201: Set max acceleration for print moves (units/s^2)
  9516. gcode_M201();
  9517. break;
  9518. #if 0 // Not used for Sprinter/grbl gen6
  9519. case 202: // M202
  9520. gcode_M202();
  9521. break;
  9522. #endif
  9523. case 203: // M203: Set max feedrate (units/sec)
  9524. gcode_M203();
  9525. break;
  9526. case 204: // M204: Set acceleration
  9527. gcode_M204();
  9528. break;
  9529. case 205: // M205: Set advanced settings
  9530. gcode_M205();
  9531. break;
  9532. #if HAS_M206_COMMAND
  9533. case 206: // M206: Set home offsets
  9534. gcode_M206();
  9535. break;
  9536. #endif
  9537. #if ENABLED(DELTA)
  9538. case 665: // M665: Set delta configurations
  9539. gcode_M665();
  9540. break;
  9541. #endif
  9542. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  9543. case 666: // M666: Set delta or dual endstop adjustment
  9544. gcode_M666();
  9545. break;
  9546. #endif
  9547. #if ENABLED(FWRETRACT)
  9548. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  9549. gcode_M207();
  9550. break;
  9551. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  9552. gcode_M208();
  9553. break;
  9554. case 209: // M209: Turn Automatic Retract Detection on/off
  9555. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209();
  9556. break;
  9557. #endif // FWRETRACT
  9558. case 211: // M211: Enable, Disable, and/or Report software endstops
  9559. gcode_M211();
  9560. break;
  9561. #if HOTENDS > 1
  9562. case 218: // M218: Set a tool offset
  9563. gcode_M218();
  9564. break;
  9565. #endif
  9566. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  9567. gcode_M220();
  9568. break;
  9569. case 221: // M221: Set Flow Percentage
  9570. gcode_M221();
  9571. break;
  9572. case 226: // M226: Wait until a pin reaches a state
  9573. gcode_M226();
  9574. break;
  9575. #if HAS_SERVOS
  9576. case 280: // M280: Set servo position absolute
  9577. gcode_M280();
  9578. break;
  9579. #endif // HAS_SERVOS
  9580. #if HAS_BUZZER
  9581. case 300: // M300: Play beep tone
  9582. gcode_M300();
  9583. break;
  9584. #endif // HAS_BUZZER
  9585. #if ENABLED(PIDTEMP)
  9586. case 301: // M301: Set hotend PID parameters
  9587. gcode_M301();
  9588. break;
  9589. #endif // PIDTEMP
  9590. #if ENABLED(PIDTEMPBED)
  9591. case 304: // M304: Set bed PID parameters
  9592. gcode_M304();
  9593. break;
  9594. #endif // PIDTEMPBED
  9595. #if defined(CHDK) || HAS_PHOTOGRAPH
  9596. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  9597. gcode_M240();
  9598. break;
  9599. #endif // CHDK || PHOTOGRAPH_PIN
  9600. #if HAS_LCD_CONTRAST
  9601. case 250: // M250: Set LCD contrast
  9602. gcode_M250();
  9603. break;
  9604. #endif // HAS_LCD_CONTRAST
  9605. #if ENABLED(EXPERIMENTAL_I2CBUS)
  9606. case 260: // M260: Send data to an i2c slave
  9607. gcode_M260();
  9608. break;
  9609. case 261: // M261: Request data from an i2c slave
  9610. gcode_M261();
  9611. break;
  9612. #endif // EXPERIMENTAL_I2CBUS
  9613. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9614. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  9615. gcode_M302();
  9616. break;
  9617. #endif // PREVENT_COLD_EXTRUSION
  9618. case 303: // M303: PID autotune
  9619. gcode_M303();
  9620. break;
  9621. #if ENABLED(MORGAN_SCARA)
  9622. case 360: // M360: SCARA Theta pos1
  9623. if (gcode_M360()) return;
  9624. break;
  9625. case 361: // M361: SCARA Theta pos2
  9626. if (gcode_M361()) return;
  9627. break;
  9628. case 362: // M362: SCARA Psi pos1
  9629. if (gcode_M362()) return;
  9630. break;
  9631. case 363: // M363: SCARA Psi pos2
  9632. if (gcode_M363()) return;
  9633. break;
  9634. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  9635. if (gcode_M364()) return;
  9636. break;
  9637. #endif // SCARA
  9638. case 400: // M400: Finish all moves
  9639. gcode_M400();
  9640. break;
  9641. #if HAS_BED_PROBE
  9642. case 401: // M401: Deploy probe
  9643. gcode_M401();
  9644. break;
  9645. case 402: // M402: Stow probe
  9646. gcode_M402();
  9647. break;
  9648. #endif // HAS_BED_PROBE
  9649. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  9650. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  9651. gcode_M404();
  9652. break;
  9653. case 405: // M405: Turn on filament sensor for control
  9654. gcode_M405();
  9655. break;
  9656. case 406: // M406: Turn off filament sensor for control
  9657. gcode_M406();
  9658. break;
  9659. case 407: // M407: Display measured filament diameter
  9660. gcode_M407();
  9661. break;
  9662. #endif // FILAMENT_WIDTH_SENSOR
  9663. #if HAS_LEVELING
  9664. case 420: // M420: Enable/Disable Bed Leveling
  9665. gcode_M420();
  9666. break;
  9667. #endif
  9668. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9669. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  9670. gcode_M421();
  9671. break;
  9672. #endif
  9673. #if HAS_M206_COMMAND
  9674. case 428: // M428: Apply current_position to home_offset
  9675. gcode_M428();
  9676. break;
  9677. #endif
  9678. case 500: // M500: Store settings in EEPROM
  9679. gcode_M500();
  9680. break;
  9681. case 501: // M501: Read settings from EEPROM
  9682. gcode_M501();
  9683. break;
  9684. case 502: // M502: Revert to default settings
  9685. gcode_M502();
  9686. break;
  9687. #if DISABLED(DISABLE_M503)
  9688. case 503: // M503: print settings currently in memory
  9689. gcode_M503();
  9690. break;
  9691. #endif
  9692. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  9693. case 540: // M540: Set abort on endstop hit for SD printing
  9694. gcode_M540();
  9695. break;
  9696. #endif
  9697. #if HAS_BED_PROBE
  9698. case 851: // M851: Set Z Probe Z Offset
  9699. gcode_M851();
  9700. break;
  9701. #endif // HAS_BED_PROBE
  9702. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  9703. case 600: // M600: Pause for filament change
  9704. gcode_M600();
  9705. break;
  9706. #endif // ADVANCED_PAUSE_FEATURE
  9707. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  9708. case 605: // M605: Set Dual X Carriage movement mode
  9709. gcode_M605();
  9710. break;
  9711. #endif // DUAL_X_CARRIAGE
  9712. #if ENABLED(MK2_MULTIPLEXER)
  9713. case 702: // M702: Unload all extruders
  9714. gcode_M702();
  9715. break;
  9716. #endif
  9717. #if ENABLED(LIN_ADVANCE)
  9718. case 900: // M900: Set advance K factor.
  9719. gcode_M900();
  9720. break;
  9721. #endif
  9722. #if ENABLED(HAVE_TMC2130)
  9723. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  9724. gcode_M906();
  9725. break;
  9726. #endif
  9727. case 907: // M907: Set digital trimpot motor current using axis codes.
  9728. gcode_M907();
  9729. break;
  9730. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  9731. case 908: // M908: Control digital trimpot directly.
  9732. gcode_M908();
  9733. break;
  9734. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  9735. case 909: // M909: Print digipot/DAC current value
  9736. gcode_M909();
  9737. break;
  9738. case 910: // M910: Commit digipot/DAC value to external EEPROM
  9739. gcode_M910();
  9740. break;
  9741. #endif
  9742. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  9743. #if ENABLED(HAVE_TMC2130)
  9744. case 911: // M911: Report TMC2130 prewarn triggered flags
  9745. gcode_M911();
  9746. break;
  9747. case 912: // M911: Clear TMC2130 prewarn triggered flags
  9748. gcode_M912();
  9749. break;
  9750. #if ENABLED(HYBRID_THRESHOLD)
  9751. case 913: // M913: Set HYBRID_THRESHOLD speed.
  9752. gcode_M913();
  9753. break;
  9754. #endif
  9755. #if ENABLED(SENSORLESS_HOMING)
  9756. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  9757. gcode_M914();
  9758. break;
  9759. #endif
  9760. #endif
  9761. #if HAS_MICROSTEPS
  9762. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  9763. gcode_M350();
  9764. break;
  9765. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  9766. gcode_M351();
  9767. break;
  9768. #endif // HAS_MICROSTEPS
  9769. case 355: // M355 set case light brightness
  9770. gcode_M355();
  9771. break;
  9772. #if ENABLED(DEBUG_GCODE_PARSER)
  9773. case 800:
  9774. parser.debug(); // GCode Parser Test for M
  9775. break;
  9776. #endif
  9777. #if ENABLED(I2C_POSITION_ENCODERS)
  9778. case 860: // M860 Report encoder module position
  9779. gcode_M860();
  9780. break;
  9781. case 861: // M861 Report encoder module status
  9782. gcode_M861();
  9783. break;
  9784. case 862: // M862 Perform axis test
  9785. gcode_M862();
  9786. break;
  9787. case 863: // M863 Calibrate steps/mm
  9788. gcode_M863();
  9789. break;
  9790. case 864: // M864 Change module address
  9791. gcode_M864();
  9792. break;
  9793. case 865: // M865 Check module firmware version
  9794. gcode_M865();
  9795. break;
  9796. case 866: // M866 Report axis error count
  9797. gcode_M866();
  9798. break;
  9799. case 867: // M867 Toggle error correction
  9800. gcode_M867();
  9801. break;
  9802. case 868: // M868 Set error correction threshold
  9803. gcode_M868();
  9804. break;
  9805. case 869: // M869 Report axis error
  9806. gcode_M869();
  9807. break;
  9808. #endif // I2C_POSITION_ENCODERS
  9809. case 999: // M999: Restart after being Stopped
  9810. gcode_M999();
  9811. break;
  9812. }
  9813. break;
  9814. case 'T':
  9815. gcode_T(parser.codenum);
  9816. break;
  9817. default: parser.unknown_command_error();
  9818. }
  9819. KEEPALIVE_STATE(NOT_BUSY);
  9820. ok_to_send();
  9821. }
  9822. /**
  9823. * Send a "Resend: nnn" message to the host to
  9824. * indicate that a command needs to be re-sent.
  9825. */
  9826. void FlushSerialRequestResend() {
  9827. //char command_queue[cmd_queue_index_r][100]="Resend:";
  9828. MYSERIAL.flush();
  9829. SERIAL_PROTOCOLPGM(MSG_RESEND);
  9830. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  9831. ok_to_send();
  9832. }
  9833. /**
  9834. * Send an "ok" message to the host, indicating
  9835. * that a command was successfully processed.
  9836. *
  9837. * If ADVANCED_OK is enabled also include:
  9838. * N<int> Line number of the command, if any
  9839. * P<int> Planner space remaining
  9840. * B<int> Block queue space remaining
  9841. */
  9842. void ok_to_send() {
  9843. refresh_cmd_timeout();
  9844. if (!send_ok[cmd_queue_index_r]) return;
  9845. SERIAL_PROTOCOLPGM(MSG_OK);
  9846. #if ENABLED(ADVANCED_OK)
  9847. char* p = command_queue[cmd_queue_index_r];
  9848. if (*p == 'N') {
  9849. SERIAL_PROTOCOL(' ');
  9850. SERIAL_ECHO(*p++);
  9851. while (NUMERIC_SIGNED(*p))
  9852. SERIAL_ECHO(*p++);
  9853. }
  9854. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  9855. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  9856. #endif
  9857. SERIAL_EOL();
  9858. }
  9859. #if HAS_SOFTWARE_ENDSTOPS
  9860. /**
  9861. * Constrain the given coordinates to the software endstops.
  9862. */
  9863. // NOTE: This makes no sense for delta beds other than Z-axis.
  9864. // For delta the X/Y would need to be clamped at
  9865. // DELTA_PRINTABLE_RADIUS from center of bed, but delta
  9866. // now enforces is_position_reachable for X/Y regardless
  9867. // of HAS_SOFTWARE_ENDSTOPS, so that enforcement would be
  9868. // redundant here.
  9869. void clamp_to_software_endstops(float target[XYZ]) {
  9870. if (!soft_endstops_enabled) return;
  9871. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  9872. #if DISABLED(DELTA)
  9873. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  9874. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  9875. #endif
  9876. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  9877. #endif
  9878. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9879. #if DISABLED(DELTA)
  9880. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  9881. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  9882. #endif
  9883. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9884. #endif
  9885. }
  9886. #endif
  9887. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9888. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  9889. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  9890. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  9891. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  9892. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  9893. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  9894. #else
  9895. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  9896. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  9897. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  9898. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  9899. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  9900. #endif
  9901. // Get the Z adjustment for non-linear bed leveling
  9902. float bilinear_z_offset(const float logical[XYZ]) {
  9903. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  9904. last_x = -999.999, last_y = -999.999;
  9905. // Whole units for the grid line indices. Constrained within bounds.
  9906. static int8_t gridx, gridy, nextx, nexty,
  9907. last_gridx = -99, last_gridy = -99;
  9908. // XY relative to the probed area
  9909. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  9910. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  9911. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  9912. // Keep using the last grid box
  9913. #define FAR_EDGE_OR_BOX 2
  9914. #else
  9915. // Just use the grid far edge
  9916. #define FAR_EDGE_OR_BOX 1
  9917. #endif
  9918. if (last_x != x) {
  9919. last_x = x;
  9920. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  9921. const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  9922. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  9923. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  9924. // Beyond the grid maintain height at grid edges
  9925. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  9926. #endif
  9927. gridx = gx;
  9928. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  9929. }
  9930. if (last_y != y || last_gridx != gridx) {
  9931. if (last_y != y) {
  9932. last_y = y;
  9933. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  9934. const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  9935. ratio_y -= gy;
  9936. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  9937. // Beyond the grid maintain height at grid edges
  9938. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  9939. #endif
  9940. gridy = gy;
  9941. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  9942. }
  9943. if (last_gridx != gridx || last_gridy != gridy) {
  9944. last_gridx = gridx;
  9945. last_gridy = gridy;
  9946. // Z at the box corners
  9947. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  9948. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  9949. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  9950. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  9951. }
  9952. // Bilinear interpolate. Needed since y or gridx has changed.
  9953. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  9954. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  9955. D = R - L;
  9956. }
  9957. const float offset = L + ratio_x * D; // the offset almost always changes
  9958. /*
  9959. static float last_offset = 0;
  9960. if (FABS(last_offset - offset) > 0.2) {
  9961. SERIAL_ECHOPGM("Sudden Shift at ");
  9962. SERIAL_ECHOPAIR("x=", x);
  9963. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  9964. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  9965. SERIAL_ECHOPAIR(" y=", y);
  9966. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  9967. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  9968. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  9969. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  9970. SERIAL_ECHOPAIR(" z1=", z1);
  9971. SERIAL_ECHOPAIR(" z2=", z2);
  9972. SERIAL_ECHOPAIR(" z3=", z3);
  9973. SERIAL_ECHOLNPAIR(" z4=", z4);
  9974. SERIAL_ECHOPAIR(" L=", L);
  9975. SERIAL_ECHOPAIR(" R=", R);
  9976. SERIAL_ECHOLNPAIR(" offset=", offset);
  9977. }
  9978. last_offset = offset;
  9979. //*/
  9980. return offset;
  9981. }
  9982. #endif // AUTO_BED_LEVELING_BILINEAR
  9983. #if ENABLED(DELTA)
  9984. /**
  9985. * Recalculate factors used for delta kinematics whenever
  9986. * settings have been changed (e.g., by M665).
  9987. */
  9988. void recalc_delta_settings(float radius, float diagonal_rod, float tower_angle_trim[ABC]) {
  9989. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  9990. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  9991. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
  9992. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
  9993. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
  9994. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
  9995. delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]); // back middle tower
  9996. delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]);
  9997. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
  9998. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
  9999. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  10000. }
  10001. #if ENABLED(DELTA_FAST_SQRT)
  10002. /**
  10003. * Fast inverse sqrt from Quake III Arena
  10004. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  10005. */
  10006. float Q_rsqrt(float number) {
  10007. long i;
  10008. float x2, y;
  10009. const float threehalfs = 1.5f;
  10010. x2 = number * 0.5f;
  10011. y = number;
  10012. i = * ( long * ) &y; // evil floating point bit level hacking
  10013. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  10014. y = * ( float * ) &i;
  10015. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  10016. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  10017. return y;
  10018. }
  10019. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  10020. #else
  10021. #define _SQRT(n) SQRT(n)
  10022. #endif
  10023. /**
  10024. * Delta Inverse Kinematics
  10025. *
  10026. * Calculate the tower positions for a given logical
  10027. * position, storing the result in the delta[] array.
  10028. *
  10029. * This is an expensive calculation, requiring 3 square
  10030. * roots per segmented linear move, and strains the limits
  10031. * of a Mega2560 with a Graphical Display.
  10032. *
  10033. * Suggested optimizations include:
  10034. *
  10035. * - Disable the home_offset (M206) and/or position_shift (G92)
  10036. * features to remove up to 12 float additions.
  10037. *
  10038. * - Use a fast-inverse-sqrt function and add the reciprocal.
  10039. * (see above)
  10040. */
  10041. // Macro to obtain the Z position of an individual tower
  10042. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  10043. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  10044. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  10045. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  10046. ) \
  10047. )
  10048. #define DELTA_RAW_IK() do { \
  10049. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  10050. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  10051. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  10052. }while(0)
  10053. #define DELTA_LOGICAL_IK() do { \
  10054. const float raw[XYZ] = { \
  10055. RAW_X_POSITION(logical[X_AXIS]), \
  10056. RAW_Y_POSITION(logical[Y_AXIS]), \
  10057. RAW_Z_POSITION(logical[Z_AXIS]) \
  10058. }; \
  10059. DELTA_RAW_IK(); \
  10060. }while(0)
  10061. #define DELTA_DEBUG() do { \
  10062. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  10063. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  10064. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  10065. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  10066. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  10067. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  10068. }while(0)
  10069. void inverse_kinematics(const float logical[XYZ]) {
  10070. DELTA_LOGICAL_IK();
  10071. // DELTA_DEBUG();
  10072. }
  10073. /**
  10074. * Calculate the highest Z position where the
  10075. * effector has the full range of XY motion.
  10076. */
  10077. float delta_safe_distance_from_top() {
  10078. float cartesian[XYZ] = {
  10079. LOGICAL_X_POSITION(0),
  10080. LOGICAL_Y_POSITION(0),
  10081. LOGICAL_Z_POSITION(0)
  10082. };
  10083. inverse_kinematics(cartesian);
  10084. float distance = delta[A_AXIS];
  10085. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  10086. inverse_kinematics(cartesian);
  10087. return FABS(distance - delta[A_AXIS]);
  10088. }
  10089. /**
  10090. * Delta Forward Kinematics
  10091. *
  10092. * See the Wikipedia article "Trilateration"
  10093. * https://en.wikipedia.org/wiki/Trilateration
  10094. *
  10095. * Establish a new coordinate system in the plane of the
  10096. * three carriage points. This system has its origin at
  10097. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  10098. * plane with a Z component of zero.
  10099. * We will define unit vectors in this coordinate system
  10100. * in our original coordinate system. Then when we calculate
  10101. * the Xnew, Ynew and Znew values, we can translate back into
  10102. * the original system by moving along those unit vectors
  10103. * by the corresponding values.
  10104. *
  10105. * Variable names matched to Marlin, c-version, and avoid the
  10106. * use of any vector library.
  10107. *
  10108. * by Andreas Hardtung 2016-06-07
  10109. * based on a Java function from "Delta Robot Kinematics V3"
  10110. * by Steve Graves
  10111. *
  10112. * The result is stored in the cartes[] array.
  10113. */
  10114. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  10115. // Create a vector in old coordinates along x axis of new coordinate
  10116. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  10117. // Get the Magnitude of vector.
  10118. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  10119. // Create unit vector by dividing by magnitude.
  10120. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  10121. // Get the vector from the origin of the new system to the third point.
  10122. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  10123. // Use the dot product to find the component of this vector on the X axis.
  10124. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  10125. // Create a vector along the x axis that represents the x component of p13.
  10126. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  10127. // Subtract the X component from the original vector leaving only Y. We use the
  10128. // variable that will be the unit vector after we scale it.
  10129. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  10130. // The magnitude of Y component
  10131. float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  10132. // Convert to a unit vector
  10133. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  10134. // The cross product of the unit x and y is the unit z
  10135. // float[] ez = vectorCrossProd(ex, ey);
  10136. float ez[3] = {
  10137. ex[1] * ey[2] - ex[2] * ey[1],
  10138. ex[2] * ey[0] - ex[0] * ey[2],
  10139. ex[0] * ey[1] - ex[1] * ey[0]
  10140. };
  10141. // We now have the d, i and j values defined in Wikipedia.
  10142. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  10143. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  10144. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  10145. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  10146. // Start from the origin of the old coordinates and add vectors in the
  10147. // old coords that represent the Xnew, Ynew and Znew to find the point
  10148. // in the old system.
  10149. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  10150. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  10151. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  10152. }
  10153. void forward_kinematics_DELTA(float point[ABC]) {
  10154. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  10155. }
  10156. #endif // DELTA
  10157. /**
  10158. * Get the stepper positions in the cartes[] array.
  10159. * Forward kinematics are applied for DELTA and SCARA.
  10160. *
  10161. * The result is in the current coordinate space with
  10162. * leveling applied. The coordinates need to be run through
  10163. * unapply_leveling to obtain the "ideal" coordinates
  10164. * suitable for current_position, etc.
  10165. */
  10166. void get_cartesian_from_steppers() {
  10167. #if ENABLED(DELTA)
  10168. forward_kinematics_DELTA(
  10169. stepper.get_axis_position_mm(A_AXIS),
  10170. stepper.get_axis_position_mm(B_AXIS),
  10171. stepper.get_axis_position_mm(C_AXIS)
  10172. );
  10173. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  10174. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  10175. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  10176. #elif IS_SCARA
  10177. forward_kinematics_SCARA(
  10178. stepper.get_axis_position_degrees(A_AXIS),
  10179. stepper.get_axis_position_degrees(B_AXIS)
  10180. );
  10181. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  10182. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  10183. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10184. #else
  10185. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  10186. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  10187. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10188. #endif
  10189. }
  10190. /**
  10191. * Set the current_position for an axis based on
  10192. * the stepper positions, removing any leveling that
  10193. * may have been applied.
  10194. */
  10195. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  10196. get_cartesian_from_steppers();
  10197. #if PLANNER_LEVELING
  10198. planner.unapply_leveling(cartes);
  10199. #endif
  10200. if (axis == ALL_AXES)
  10201. COPY(current_position, cartes);
  10202. else
  10203. current_position[axis] = cartes[axis];
  10204. }
  10205. #if ENABLED(MESH_BED_LEVELING)
  10206. /**
  10207. * Prepare a mesh-leveled linear move in a Cartesian setup,
  10208. * splitting the move where it crosses mesh borders.
  10209. */
  10210. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  10211. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  10212. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  10213. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  10214. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  10215. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  10216. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  10217. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  10218. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  10219. if (cx1 == cx2 && cy1 == cy2) {
  10220. // Start and end on same mesh square
  10221. line_to_destination(fr_mm_s);
  10222. set_current_to_destination();
  10223. return;
  10224. }
  10225. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10226. float normalized_dist, end[XYZE];
  10227. // Split at the left/front border of the right/top square
  10228. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10229. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10230. COPY(end, destination);
  10231. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  10232. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10233. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  10234. CBI(x_splits, gcx);
  10235. }
  10236. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10237. COPY(end, destination);
  10238. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  10239. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10240. destination[X_AXIS] = MBL_SEGMENT_END(X);
  10241. CBI(y_splits, gcy);
  10242. }
  10243. else {
  10244. // Already split on a border
  10245. line_to_destination(fr_mm_s);
  10246. set_current_to_destination();
  10247. return;
  10248. }
  10249. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  10250. destination[E_AXIS] = MBL_SEGMENT_END(E);
  10251. // Do the split and look for more borders
  10252. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10253. // Restore destination from stack
  10254. COPY(destination, end);
  10255. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10256. }
  10257. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  10258. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  10259. /**
  10260. * Prepare a bilinear-leveled linear move on Cartesian,
  10261. * splitting the move where it crosses grid borders.
  10262. */
  10263. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  10264. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  10265. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  10266. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  10267. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  10268. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  10269. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  10270. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  10271. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  10272. if (cx1 == cx2 && cy1 == cy2) {
  10273. // Start and end on same mesh square
  10274. line_to_destination(fr_mm_s);
  10275. set_current_to_destination();
  10276. return;
  10277. }
  10278. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10279. float normalized_dist, end[XYZE];
  10280. // Split at the left/front border of the right/top square
  10281. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10282. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10283. COPY(end, destination);
  10284. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  10285. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10286. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  10287. CBI(x_splits, gcx);
  10288. }
  10289. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10290. COPY(end, destination);
  10291. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  10292. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10293. destination[X_AXIS] = LINE_SEGMENT_END(X);
  10294. CBI(y_splits, gcy);
  10295. }
  10296. else {
  10297. // Already split on a border
  10298. line_to_destination(fr_mm_s);
  10299. set_current_to_destination();
  10300. return;
  10301. }
  10302. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  10303. destination[E_AXIS] = LINE_SEGMENT_END(E);
  10304. // Do the split and look for more borders
  10305. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10306. // Restore destination from stack
  10307. COPY(destination, end);
  10308. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10309. }
  10310. #endif // AUTO_BED_LEVELING_BILINEAR
  10311. #if IS_KINEMATIC && !UBL_DELTA
  10312. /**
  10313. * Prepare a linear move in a DELTA or SCARA setup.
  10314. *
  10315. * This calls planner.buffer_line several times, adding
  10316. * small incremental moves for DELTA or SCARA.
  10317. */
  10318. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  10319. // Get the top feedrate of the move in the XY plane
  10320. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  10321. // If the move is only in Z/E don't split up the move
  10322. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  10323. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10324. return false;
  10325. }
  10326. // Fail if attempting move outside printable radius
  10327. if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
  10328. // Get the cartesian distances moved in XYZE
  10329. const float difference[XYZE] = {
  10330. ltarget[X_AXIS] - current_position[X_AXIS],
  10331. ltarget[Y_AXIS] - current_position[Y_AXIS],
  10332. ltarget[Z_AXIS] - current_position[Z_AXIS],
  10333. ltarget[E_AXIS] - current_position[E_AXIS]
  10334. };
  10335. // Get the linear distance in XYZ
  10336. float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  10337. // If the move is very short, check the E move distance
  10338. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
  10339. // No E move either? Game over.
  10340. if (UNEAR_ZERO(cartesian_mm)) return true;
  10341. // Minimum number of seconds to move the given distance
  10342. const float seconds = cartesian_mm / _feedrate_mm_s;
  10343. // The number of segments-per-second times the duration
  10344. // gives the number of segments
  10345. uint16_t segments = delta_segments_per_second * seconds;
  10346. // For SCARA minimum segment size is 0.25mm
  10347. #if IS_SCARA
  10348. NOMORE(segments, cartesian_mm * 4);
  10349. #endif
  10350. // At least one segment is required
  10351. NOLESS(segments, 1);
  10352. // The approximate length of each segment
  10353. const float inv_segments = 1.0 / float(segments),
  10354. segment_distance[XYZE] = {
  10355. difference[X_AXIS] * inv_segments,
  10356. difference[Y_AXIS] * inv_segments,
  10357. difference[Z_AXIS] * inv_segments,
  10358. difference[E_AXIS] * inv_segments
  10359. };
  10360. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  10361. // SERIAL_ECHOPAIR(" seconds=", seconds);
  10362. // SERIAL_ECHOLNPAIR(" segments=", segments);
  10363. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10364. // SCARA needs to scale the feed rate from mm/s to degrees/s
  10365. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  10366. feed_factor = inv_segment_length * _feedrate_mm_s;
  10367. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  10368. oldB = stepper.get_axis_position_degrees(B_AXIS);
  10369. #endif
  10370. // Get the logical current position as starting point
  10371. float logical[XYZE];
  10372. COPY(logical, current_position);
  10373. // Drop one segment so the last move is to the exact target.
  10374. // If there's only 1 segment, loops will be skipped entirely.
  10375. --segments;
  10376. // Calculate and execute the segments
  10377. for (uint16_t s = segments + 1; --s;) {
  10378. LOOP_XYZE(i) logical[i] += segment_distance[i];
  10379. #if ENABLED(DELTA)
  10380. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  10381. #else
  10382. inverse_kinematics(logical);
  10383. #endif
  10384. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  10385. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10386. // For SCARA scale the feed rate from mm/s to degrees/s
  10387. // Use ratio between the length of the move and the larger angle change
  10388. const float adiff = abs(delta[A_AXIS] - oldA),
  10389. bdiff = abs(delta[B_AXIS] - oldB);
  10390. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10391. oldA = delta[A_AXIS];
  10392. oldB = delta[B_AXIS];
  10393. #else
  10394. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  10395. #endif
  10396. }
  10397. // Since segment_distance is only approximate,
  10398. // the final move must be to the exact destination.
  10399. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10400. // For SCARA scale the feed rate from mm/s to degrees/s
  10401. // With segments > 1 length is 1 segment, otherwise total length
  10402. inverse_kinematics(ltarget);
  10403. ADJUST_DELTA(ltarget);
  10404. const float adiff = abs(delta[A_AXIS] - oldA),
  10405. bdiff = abs(delta[B_AXIS] - oldB);
  10406. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10407. #else
  10408. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10409. #endif
  10410. return false;
  10411. }
  10412. #else // !IS_KINEMATIC || UBL_DELTA
  10413. /**
  10414. * Prepare a linear move in a Cartesian setup.
  10415. * If Mesh Bed Leveling is enabled, perform a mesh move.
  10416. *
  10417. * Returns true if the caller didn't update current_position.
  10418. */
  10419. inline bool prepare_move_to_destination_cartesian() {
  10420. #if ENABLED(AUTO_BED_LEVELING_UBL)
  10421. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  10422. if (ubl.state.active) { // direct use of ubl.state.active for speed
  10423. ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
  10424. return true;
  10425. }
  10426. else
  10427. line_to_destination(fr_scaled);
  10428. #else
  10429. // Do not use feedrate_percentage for E or Z only moves
  10430. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS])
  10431. line_to_destination();
  10432. else {
  10433. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  10434. #if ENABLED(MESH_BED_LEVELING)
  10435. if (mbl.active()) { // direct used of mbl.active() for speed
  10436. mesh_line_to_destination(fr_scaled);
  10437. return true;
  10438. }
  10439. else
  10440. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10441. if (planner.abl_enabled) { // direct use of abl_enabled for speed
  10442. bilinear_line_to_destination(fr_scaled);
  10443. return true;
  10444. }
  10445. else
  10446. #endif
  10447. line_to_destination(fr_scaled);
  10448. }
  10449. #endif
  10450. return false;
  10451. }
  10452. #endif // !IS_KINEMATIC || UBL_DELTA
  10453. #if ENABLED(DUAL_X_CARRIAGE)
  10454. /**
  10455. * Prepare a linear move in a dual X axis setup
  10456. */
  10457. inline bool prepare_move_to_destination_dualx() {
  10458. if (active_extruder_parked) {
  10459. switch (dual_x_carriage_mode) {
  10460. case DXC_FULL_CONTROL_MODE:
  10461. break;
  10462. case DXC_AUTO_PARK_MODE:
  10463. if (current_position[E_AXIS] == destination[E_AXIS]) {
  10464. // This is a travel move (with no extrusion)
  10465. // Skip it, but keep track of the current position
  10466. // (so it can be used as the start of the next non-travel move)
  10467. if (delayed_move_time != 0xFFFFFFFFUL) {
  10468. set_current_to_destination();
  10469. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  10470. delayed_move_time = millis();
  10471. return true;
  10472. }
  10473. }
  10474. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  10475. for (uint8_t i = 0; i < 3; i++)
  10476. planner.buffer_line(
  10477. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  10478. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  10479. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  10480. current_position[E_AXIS],
  10481. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  10482. active_extruder
  10483. );
  10484. delayed_move_time = 0;
  10485. active_extruder_parked = false;
  10486. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10487. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  10488. #endif
  10489. break;
  10490. case DXC_DUPLICATION_MODE:
  10491. if (active_extruder == 0) {
  10492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10493. if (DEBUGGING(LEVELING)) {
  10494. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  10495. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  10496. }
  10497. #endif
  10498. // move duplicate extruder into correct duplication position.
  10499. planner.set_position_mm(
  10500. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  10501. current_position[Y_AXIS],
  10502. current_position[Z_AXIS],
  10503. current_position[E_AXIS]
  10504. );
  10505. planner.buffer_line(
  10506. current_position[X_AXIS] + duplicate_extruder_x_offset,
  10507. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  10508. planner.max_feedrate_mm_s[X_AXIS], 1
  10509. );
  10510. SYNC_PLAN_POSITION_KINEMATIC();
  10511. stepper.synchronize();
  10512. extruder_duplication_enabled = true;
  10513. active_extruder_parked = false;
  10514. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10515. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  10516. #endif
  10517. }
  10518. else {
  10519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10520. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  10521. #endif
  10522. }
  10523. break;
  10524. }
  10525. }
  10526. return prepare_move_to_destination_cartesian();
  10527. }
  10528. #endif // DUAL_X_CARRIAGE
  10529. /**
  10530. * Prepare a single move and get ready for the next one
  10531. *
  10532. * This may result in several calls to planner.buffer_line to
  10533. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  10534. */
  10535. void prepare_move_to_destination() {
  10536. clamp_to_software_endstops(destination);
  10537. refresh_cmd_timeout();
  10538. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10539. if (!DEBUGGING(DRYRUN)) {
  10540. if (destination[E_AXIS] != current_position[E_AXIS]) {
  10541. if (thermalManager.tooColdToExtrude(active_extruder)) {
  10542. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10543. SERIAL_ECHO_START();
  10544. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  10545. }
  10546. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10547. if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) {
  10548. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10549. SERIAL_ECHO_START();
  10550. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  10551. }
  10552. #endif
  10553. }
  10554. }
  10555. #endif
  10556. if (
  10557. #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
  10558. ubl.prepare_segmented_line_to(destination, feedrate_mm_s)
  10559. #elif IS_KINEMATIC
  10560. prepare_kinematic_move_to(destination)
  10561. #elif ENABLED(DUAL_X_CARRIAGE)
  10562. prepare_move_to_destination_dualx()
  10563. #else
  10564. prepare_move_to_destination_cartesian()
  10565. #endif
  10566. ) return;
  10567. set_current_to_destination();
  10568. }
  10569. #if ENABLED(ARC_SUPPORT)
  10570. #if N_ARC_CORRECTION < 1
  10571. #undef N_ARC_CORRECTION
  10572. #define N_ARC_CORRECTION 1
  10573. #endif
  10574. /**
  10575. * Plan an arc in 2 dimensions
  10576. *
  10577. * The arc is approximated by generating many small linear segments.
  10578. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  10579. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  10580. * larger segments will tend to be more efficient. Your slicer should have
  10581. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  10582. */
  10583. void plan_arc(
  10584. float logical[XYZE], // Destination position
  10585. float *offset, // Center of rotation relative to current_position
  10586. uint8_t clockwise // Clockwise?
  10587. ) {
  10588. #if ENABLED(CNC_WORKSPACE_PLANES)
  10589. AxisEnum p_axis, q_axis, l_axis;
  10590. switch (workspace_plane) {
  10591. case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  10592. case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  10593. case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  10594. }
  10595. #else
  10596. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  10597. #endif
  10598. // Radius vector from center to current location
  10599. float r_P = -offset[0], r_Q = -offset[1];
  10600. const float radius = HYPOT(r_P, r_Q),
  10601. center_P = current_position[p_axis] - r_P,
  10602. center_Q = current_position[q_axis] - r_Q,
  10603. rt_X = logical[p_axis] - center_P,
  10604. rt_Y = logical[q_axis] - center_Q,
  10605. linear_travel = logical[l_axis] - current_position[l_axis],
  10606. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  10607. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  10608. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
  10609. if (angular_travel < 0) angular_travel += RADIANS(360);
  10610. if (clockwise) angular_travel -= RADIANS(360);
  10611. // Make a circle if the angular rotation is 0 and the target is current position
  10612. if (angular_travel == 0 && current_position[p_axis] == logical[p_axis] && current_position[q_axis] == logical[q_axis])
  10613. angular_travel = RADIANS(360);
  10614. const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
  10615. if (mm_of_travel < 0.001) return;
  10616. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  10617. if (segments == 0) segments = 1;
  10618. /**
  10619. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  10620. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  10621. * r_T = [cos(phi) -sin(phi);
  10622. * sin(phi) cos(phi)] * r ;
  10623. *
  10624. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  10625. * defined from the circle center to the initial position. Each line segment is formed by successive
  10626. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  10627. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  10628. * all double numbers are single precision on the Arduino. (True double precision will not have
  10629. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  10630. * tool precision in some cases. Therefore, arc path correction is implemented.
  10631. *
  10632. * Small angle approximation may be used to reduce computation overhead further. This approximation
  10633. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  10634. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  10635. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  10636. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  10637. * issue for CNC machines with the single precision Arduino calculations.
  10638. *
  10639. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  10640. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  10641. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  10642. * This is important when there are successive arc motions.
  10643. */
  10644. // Vector rotation matrix values
  10645. float arc_target[XYZE];
  10646. const float theta_per_segment = angular_travel / segments,
  10647. linear_per_segment = linear_travel / segments,
  10648. extruder_per_segment = extruder_travel / segments,
  10649. sin_T = theta_per_segment,
  10650. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  10651. // Initialize the linear axis
  10652. arc_target[l_axis] = current_position[l_axis];
  10653. // Initialize the extruder axis
  10654. arc_target[E_AXIS] = current_position[E_AXIS];
  10655. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  10656. millis_t next_idle_ms = millis() + 200UL;
  10657. #if N_ARC_CORRECTION > 1
  10658. int8_t arc_recalc_count = N_ARC_CORRECTION;
  10659. #endif
  10660. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  10661. thermalManager.manage_heater();
  10662. if (ELAPSED(millis(), next_idle_ms)) {
  10663. next_idle_ms = millis() + 200UL;
  10664. idle();
  10665. }
  10666. #if N_ARC_CORRECTION > 1
  10667. if (--arc_recalc_count) {
  10668. // Apply vector rotation matrix to previous r_P / 1
  10669. const float r_new_Y = r_P * sin_T + r_Q * cos_T;
  10670. r_P = r_P * cos_T - r_Q * sin_T;
  10671. r_Q = r_new_Y;
  10672. }
  10673. else
  10674. #endif
  10675. {
  10676. #if N_ARC_CORRECTION > 1
  10677. arc_recalc_count = N_ARC_CORRECTION;
  10678. #endif
  10679. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  10680. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  10681. // To reduce stuttering, the sin and cos could be computed at different times.
  10682. // For now, compute both at the same time.
  10683. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  10684. r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  10685. r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  10686. }
  10687. // Update arc_target location
  10688. arc_target[p_axis] = center_P + r_P;
  10689. arc_target[q_axis] = center_Q + r_Q;
  10690. arc_target[l_axis] += linear_per_segment;
  10691. arc_target[E_AXIS] += extruder_per_segment;
  10692. clamp_to_software_endstops(arc_target);
  10693. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  10694. }
  10695. // Ensure last segment arrives at target location.
  10696. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  10697. // As far as the parser is concerned, the position is now == target. In reality the
  10698. // motion control system might still be processing the action and the real tool position
  10699. // in any intermediate location.
  10700. set_current_to_destination();
  10701. } // plan_arc
  10702. #endif // ARC_SUPPORT
  10703. #if ENABLED(BEZIER_CURVE_SUPPORT)
  10704. void plan_cubic_move(const float offset[4]) {
  10705. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  10706. // As far as the parser is concerned, the position is now == destination. In reality the
  10707. // motion control system might still be processing the action and the real tool position
  10708. // in any intermediate location.
  10709. set_current_to_destination();
  10710. }
  10711. #endif // BEZIER_CURVE_SUPPORT
  10712. #if ENABLED(USE_CONTROLLER_FAN)
  10713. void controllerFan() {
  10714. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  10715. nextMotorCheck = 0; // Last time the state was checked
  10716. const millis_t ms = millis();
  10717. if (ELAPSED(ms, nextMotorCheck)) {
  10718. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  10719. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  10720. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  10721. #if E_STEPPERS > 1
  10722. || E1_ENABLE_READ == E_ENABLE_ON
  10723. #if HAS_X2_ENABLE
  10724. || X2_ENABLE_READ == X_ENABLE_ON
  10725. #endif
  10726. #if E_STEPPERS > 2
  10727. || E2_ENABLE_READ == E_ENABLE_ON
  10728. #if E_STEPPERS > 3
  10729. || E3_ENABLE_READ == E_ENABLE_ON
  10730. #if E_STEPPERS > 4
  10731. || E4_ENABLE_READ == E_ENABLE_ON
  10732. #endif // E_STEPPERS > 4
  10733. #endif // E_STEPPERS > 3
  10734. #endif // E_STEPPERS > 2
  10735. #endif // E_STEPPERS > 1
  10736. ) {
  10737. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  10738. }
  10739. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  10740. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  10741. // allows digital or PWM fan output to be used (see M42 handling)
  10742. WRITE(CONTROLLER_FAN_PIN, speed);
  10743. analogWrite(CONTROLLER_FAN_PIN, speed);
  10744. }
  10745. }
  10746. #endif // USE_CONTROLLER_FAN
  10747. #if ENABLED(MORGAN_SCARA)
  10748. /**
  10749. * Morgan SCARA Forward Kinematics. Results in cartes[].
  10750. * Maths and first version by QHARLEY.
  10751. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  10752. */
  10753. void forward_kinematics_SCARA(const float &a, const float &b) {
  10754. float a_sin = sin(RADIANS(a)) * L1,
  10755. a_cos = cos(RADIANS(a)) * L1,
  10756. b_sin = sin(RADIANS(b)) * L2,
  10757. b_cos = cos(RADIANS(b)) * L2;
  10758. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  10759. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  10760. /*
  10761. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  10762. SERIAL_ECHOPAIR(" b=", b);
  10763. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  10764. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  10765. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  10766. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  10767. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  10768. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  10769. //*/
  10770. }
  10771. /**
  10772. * Morgan SCARA Inverse Kinematics. Results in delta[].
  10773. *
  10774. * See http://forums.reprap.org/read.php?185,283327
  10775. *
  10776. * Maths and first version by QHARLEY.
  10777. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  10778. */
  10779. void inverse_kinematics(const float logical[XYZ]) {
  10780. static float C2, S2, SK1, SK2, THETA, PSI;
  10781. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  10782. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  10783. if (L1 == L2)
  10784. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  10785. else
  10786. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  10787. S2 = SQRT(1 - sq(C2));
  10788. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  10789. SK1 = L1 + L2 * C2;
  10790. // Rotated Arm2 gives the distance from Arm1 to Arm2
  10791. SK2 = L2 * S2;
  10792. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  10793. THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
  10794. // Angle of Arm2
  10795. PSI = ATAN2(S2, C2);
  10796. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  10797. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  10798. delta[C_AXIS] = logical[Z_AXIS];
  10799. /*
  10800. DEBUG_POS("SCARA IK", logical);
  10801. DEBUG_POS("SCARA IK", delta);
  10802. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  10803. SERIAL_ECHOPAIR(",", sy);
  10804. SERIAL_ECHOPAIR(" C2=", C2);
  10805. SERIAL_ECHOPAIR(" S2=", S2);
  10806. SERIAL_ECHOPAIR(" Theta=", THETA);
  10807. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  10808. //*/
  10809. }
  10810. #endif // MORGAN_SCARA
  10811. #if ENABLED(TEMP_STAT_LEDS)
  10812. static bool red_led = false;
  10813. static millis_t next_status_led_update_ms = 0;
  10814. void handle_status_leds(void) {
  10815. if (ELAPSED(millis(), next_status_led_update_ms)) {
  10816. next_status_led_update_ms += 500; // Update every 0.5s
  10817. float max_temp = 0.0;
  10818. #if HAS_TEMP_BED
  10819. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  10820. #endif
  10821. HOTEND_LOOP()
  10822. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  10823. const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  10824. if (new_led != red_led) {
  10825. red_led = new_led;
  10826. #if PIN_EXISTS(STAT_LED_RED)
  10827. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  10828. #if PIN_EXISTS(STAT_LED_BLUE)
  10829. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  10830. #endif
  10831. #else
  10832. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  10833. #endif
  10834. }
  10835. }
  10836. }
  10837. #endif
  10838. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10839. void handle_filament_runout() {
  10840. if (!filament_ran_out) {
  10841. filament_ran_out = true;
  10842. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  10843. stepper.synchronize();
  10844. }
  10845. }
  10846. #endif // FILAMENT_RUNOUT_SENSOR
  10847. #if ENABLED(FAST_PWM_FAN)
  10848. void setPwmFrequency(uint8_t pin, int val) {
  10849. val &= 0x07;
  10850. switch (digitalPinToTimer(pin)) {
  10851. #ifdef TCCR0A
  10852. #if !AVR_AT90USB1286_FAMILY
  10853. case TIMER0A:
  10854. #endif
  10855. case TIMER0B:
  10856. //_SET_CS(0, val);
  10857. break;
  10858. #endif
  10859. #ifdef TCCR1A
  10860. case TIMER1A:
  10861. case TIMER1B:
  10862. //_SET_CS(1, val);
  10863. break;
  10864. #endif
  10865. #ifdef TCCR2
  10866. case TIMER2:
  10867. case TIMER2:
  10868. _SET_CS(2, val);
  10869. break;
  10870. #endif
  10871. #ifdef TCCR2A
  10872. case TIMER2A:
  10873. case TIMER2B:
  10874. _SET_CS(2, val);
  10875. break;
  10876. #endif
  10877. #ifdef TCCR3A
  10878. case TIMER3A:
  10879. case TIMER3B:
  10880. case TIMER3C:
  10881. _SET_CS(3, val);
  10882. break;
  10883. #endif
  10884. #ifdef TCCR4A
  10885. case TIMER4A:
  10886. case TIMER4B:
  10887. case TIMER4C:
  10888. _SET_CS(4, val);
  10889. break;
  10890. #endif
  10891. #ifdef TCCR5A
  10892. case TIMER5A:
  10893. case TIMER5B:
  10894. case TIMER5C:
  10895. _SET_CS(5, val);
  10896. break;
  10897. #endif
  10898. }
  10899. }
  10900. #endif // FAST_PWM_FAN
  10901. float calculate_volumetric_multiplier(const float diameter) {
  10902. if (!volumetric_enabled || diameter == 0) return 1.0;
  10903. return 1.0 / (M_PI * sq(diameter * 0.5));
  10904. }
  10905. void calculate_volumetric_multipliers() {
  10906. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  10907. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  10908. }
  10909. void enable_all_steppers() {
  10910. enable_X();
  10911. enable_Y();
  10912. enable_Z();
  10913. enable_E0();
  10914. enable_E1();
  10915. enable_E2();
  10916. enable_E3();
  10917. enable_E4();
  10918. }
  10919. void disable_e_steppers() {
  10920. disable_E0();
  10921. disable_E1();
  10922. disable_E2();
  10923. disable_E3();
  10924. disable_E4();
  10925. }
  10926. void disable_all_steppers() {
  10927. disable_X();
  10928. disable_Y();
  10929. disable_Z();
  10930. disable_e_steppers();
  10931. }
  10932. #if ENABLED(HAVE_TMC2130)
  10933. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  10934. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  10935. const bool is_otpw = st.checkOT();
  10936. // Report if a warning was triggered
  10937. static bool previous_otpw = false;
  10938. if (is_otpw && !previous_otpw) {
  10939. char timestamp[10];
  10940. duration_t elapsed = print_job_timer.duration();
  10941. const bool has_days = (elapsed.value > 60*60*24L);
  10942. (void)elapsed.toDigital(timestamp, has_days);
  10943. SERIAL_ECHO(timestamp);
  10944. SERIAL_ECHOPGM(": ");
  10945. SERIAL_ECHO(axisID);
  10946. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  10947. }
  10948. previous_otpw = is_otpw;
  10949. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  10950. // Return if user has not enabled current control start with M906 S1.
  10951. if (!auto_current_control) return;
  10952. /**
  10953. * Decrease current if is_otpw is true.
  10954. * Bail out if driver is disabled.
  10955. * Increase current if OTPW has not been triggered yet.
  10956. */
  10957. uint16_t current = st.getCurrent();
  10958. if (is_otpw) {
  10959. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  10960. #if ENABLED(REPORT_CURRENT_CHANGE)
  10961. SERIAL_ECHO(axisID);
  10962. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  10963. #endif
  10964. }
  10965. else if (!st.isEnabled())
  10966. return;
  10967. else if (!is_otpw && !st.getOTPW()) {
  10968. current += CURRENT_STEP;
  10969. if (current <= AUTO_ADJUST_MAX) {
  10970. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  10971. #if ENABLED(REPORT_CURRENT_CHANGE)
  10972. SERIAL_ECHO(axisID);
  10973. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  10974. #endif
  10975. }
  10976. }
  10977. SERIAL_EOL();
  10978. #endif
  10979. }
  10980. void checkOverTemp() {
  10981. static millis_t next_cOT = 0;
  10982. if (ELAPSED(millis(), next_cOT)) {
  10983. next_cOT = millis() + 5000;
  10984. #if ENABLED(X_IS_TMC2130)
  10985. automatic_current_control(stepperX, "X");
  10986. #endif
  10987. #if ENABLED(Y_IS_TMC2130)
  10988. automatic_current_control(stepperY, "Y");
  10989. #endif
  10990. #if ENABLED(Z_IS_TMC2130)
  10991. automatic_current_control(stepperZ, "Z");
  10992. #endif
  10993. #if ENABLED(X2_IS_TMC2130)
  10994. automatic_current_control(stepperX2, "X2");
  10995. #endif
  10996. #if ENABLED(Y2_IS_TMC2130)
  10997. automatic_current_control(stepperY2, "Y2");
  10998. #endif
  10999. #if ENABLED(Z2_IS_TMC2130)
  11000. automatic_current_control(stepperZ2, "Z2");
  11001. #endif
  11002. #if ENABLED(E0_IS_TMC2130)
  11003. automatic_current_control(stepperE0, "E0");
  11004. #endif
  11005. #if ENABLED(E1_IS_TMC2130)
  11006. automatic_current_control(stepperE1, "E1");
  11007. #endif
  11008. #if ENABLED(E2_IS_TMC2130)
  11009. automatic_current_control(stepperE2, "E2");
  11010. #endif
  11011. #if ENABLED(E3_IS_TMC2130)
  11012. automatic_current_control(stepperE3, "E3");
  11013. #endif
  11014. #if ENABLED(E4_IS_TMC2130)
  11015. automatic_current_control(stepperE4, "E4");
  11016. #endif
  11017. }
  11018. }
  11019. #endif // HAVE_TMC2130
  11020. /**
  11021. * Manage several activities:
  11022. * - Check for Filament Runout
  11023. * - Keep the command buffer full
  11024. * - Check for maximum inactive time between commands
  11025. * - Check for maximum inactive time between stepper commands
  11026. * - Check if pin CHDK needs to go LOW
  11027. * - Check for KILL button held down
  11028. * - Check for HOME button held down
  11029. * - Check if cooling fan needs to be switched on
  11030. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  11031. */
  11032. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  11033. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11034. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  11035. handle_filament_runout();
  11036. #endif
  11037. if (commands_in_queue < BUFSIZE) get_available_commands();
  11038. const millis_t ms = millis();
  11039. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  11040. SERIAL_ERROR_START();
  11041. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
  11042. kill(PSTR(MSG_KILLED));
  11043. }
  11044. // Prevent steppers timing-out in the middle of M600
  11045. #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
  11046. #define MOVE_AWAY_TEST !move_away_flag
  11047. #else
  11048. #define MOVE_AWAY_TEST true
  11049. #endif
  11050. if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  11051. && !ignore_stepper_queue && !planner.blocks_queued()) {
  11052. #if ENABLED(DISABLE_INACTIVE_X)
  11053. disable_X();
  11054. #endif
  11055. #if ENABLED(DISABLE_INACTIVE_Y)
  11056. disable_Y();
  11057. #endif
  11058. #if ENABLED(DISABLE_INACTIVE_Z)
  11059. disable_Z();
  11060. #endif
  11061. #if ENABLED(DISABLE_INACTIVE_E)
  11062. disable_e_steppers();
  11063. #endif
  11064. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  11065. ubl_lcd_map_control = defer_return_to_status = false;
  11066. #endif
  11067. }
  11068. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  11069. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  11070. chdkActive = false;
  11071. WRITE(CHDK, LOW);
  11072. }
  11073. #endif
  11074. #if HAS_KILL
  11075. // Check if the kill button was pressed and wait just in case it was an accidental
  11076. // key kill key press
  11077. // -------------------------------------------------------------------------------
  11078. static int killCount = 0; // make the inactivity button a bit less responsive
  11079. const int KILL_DELAY = 750;
  11080. if (!READ(KILL_PIN))
  11081. killCount++;
  11082. else if (killCount > 0)
  11083. killCount--;
  11084. // Exceeded threshold and we can confirm that it was not accidental
  11085. // KILL the machine
  11086. // ----------------------------------------------------------------
  11087. if (killCount >= KILL_DELAY) {
  11088. SERIAL_ERROR_START();
  11089. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  11090. kill(PSTR(MSG_KILLED));
  11091. }
  11092. #endif
  11093. #if HAS_HOME
  11094. // Check to see if we have to home, use poor man's debouncer
  11095. // ---------------------------------------------------------
  11096. static int homeDebounceCount = 0; // poor man's debouncing count
  11097. const int HOME_DEBOUNCE_DELAY = 2500;
  11098. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  11099. if (!homeDebounceCount) {
  11100. enqueue_and_echo_commands_P(PSTR("G28"));
  11101. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  11102. }
  11103. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  11104. homeDebounceCount++;
  11105. else
  11106. homeDebounceCount = 0;
  11107. }
  11108. #endif
  11109. #if ENABLED(USE_CONTROLLER_FAN)
  11110. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  11111. #endif
  11112. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  11113. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  11114. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  11115. #if ENABLED(SWITCHING_EXTRUDER)
  11116. const bool oldstatus = E0_ENABLE_READ;
  11117. enable_E0();
  11118. #else // !SWITCHING_EXTRUDER
  11119. bool oldstatus;
  11120. switch (active_extruder) {
  11121. default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  11122. #if E_STEPPERS > 1
  11123. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  11124. #if E_STEPPERS > 2
  11125. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  11126. #if E_STEPPERS > 3
  11127. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  11128. #if E_STEPPERS > 4
  11129. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  11130. #endif // E_STEPPERS > 4
  11131. #endif // E_STEPPERS > 3
  11132. #endif // E_STEPPERS > 2
  11133. #endif // E_STEPPERS > 1
  11134. }
  11135. #endif // !SWITCHING_EXTRUDER
  11136. previous_cmd_ms = ms; // refresh_cmd_timeout()
  11137. const float olde = current_position[E_AXIS];
  11138. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  11139. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  11140. current_position[E_AXIS] = olde;
  11141. planner.set_e_position_mm(olde);
  11142. stepper.synchronize();
  11143. #if ENABLED(SWITCHING_EXTRUDER)
  11144. E0_ENABLE_WRITE(oldstatus);
  11145. #else
  11146. switch (active_extruder) {
  11147. case 0: E0_ENABLE_WRITE(oldstatus); break;
  11148. #if E_STEPPERS > 1
  11149. case 1: E1_ENABLE_WRITE(oldstatus); break;
  11150. #if E_STEPPERS > 2
  11151. case 2: E2_ENABLE_WRITE(oldstatus); break;
  11152. #if E_STEPPERS > 3
  11153. case 3: E3_ENABLE_WRITE(oldstatus); break;
  11154. #if E_STEPPERS > 4
  11155. case 4: E4_ENABLE_WRITE(oldstatus); break;
  11156. #endif // E_STEPPERS > 4
  11157. #endif // E_STEPPERS > 3
  11158. #endif // E_STEPPERS > 2
  11159. #endif // E_STEPPERS > 1
  11160. }
  11161. #endif // !SWITCHING_EXTRUDER
  11162. }
  11163. #endif // EXTRUDER_RUNOUT_PREVENT
  11164. #if ENABLED(DUAL_X_CARRIAGE)
  11165. // handle delayed move timeout
  11166. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  11167. // travel moves have been received so enact them
  11168. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  11169. set_destination_to_current();
  11170. prepare_move_to_destination();
  11171. }
  11172. #endif
  11173. #if ENABLED(TEMP_STAT_LEDS)
  11174. handle_status_leds();
  11175. #endif
  11176. #if ENABLED(HAVE_TMC2130)
  11177. checkOverTemp();
  11178. #endif
  11179. planner.check_axes_activity();
  11180. }
  11181. /**
  11182. * Standard idle routine keeps the machine alive
  11183. */
  11184. void idle(
  11185. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11186. bool no_stepper_sleep/*=false*/
  11187. #endif
  11188. ) {
  11189. #if ENABLED(MAX7219_DEBUG)
  11190. Max7219_idle_tasks();
  11191. #endif // MAX7219_DEBUG
  11192. lcd_update();
  11193. host_keepalive();
  11194. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  11195. auto_report_temperatures();
  11196. #endif
  11197. manage_inactivity(
  11198. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11199. no_stepper_sleep
  11200. #endif
  11201. );
  11202. thermalManager.manage_heater();
  11203. #if ENABLED(PRINTCOUNTER)
  11204. print_job_timer.tick();
  11205. #endif
  11206. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  11207. buzzer.tick();
  11208. #endif
  11209. #if ENABLED(I2C_POSITION_ENCODERS)
  11210. if (planner.blocks_queued() &&
  11211. ( (blockBufferIndexRef != planner.block_buffer_head) ||
  11212. ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
  11213. blockBufferIndexRef = planner.block_buffer_head;
  11214. I2CPEM.update();
  11215. lastUpdateMillis = millis();
  11216. }
  11217. #endif
  11218. }
  11219. /**
  11220. * Kill all activity and lock the machine.
  11221. * After this the machine will need to be reset.
  11222. */
  11223. void kill(const char* lcd_msg) {
  11224. SERIAL_ERROR_START();
  11225. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  11226. thermalManager.disable_all_heaters();
  11227. disable_all_steppers();
  11228. #if ENABLED(ULTRA_LCD)
  11229. kill_screen(lcd_msg);
  11230. #else
  11231. UNUSED(lcd_msg);
  11232. #endif
  11233. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  11234. cli(); // Stop interrupts
  11235. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  11236. thermalManager.disable_all_heaters(); //turn off heaters again
  11237. #ifdef ACTION_ON_KILL
  11238. SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
  11239. #endif
  11240. #if HAS_POWER_SWITCH
  11241. SET_INPUT(PS_ON_PIN);
  11242. #endif
  11243. suicide();
  11244. while (1) {
  11245. #if ENABLED(USE_WATCHDOG)
  11246. watchdog_reset();
  11247. #endif
  11248. } // Wait for reset
  11249. }
  11250. /**
  11251. * Turn off heaters and stop the print in progress
  11252. * After a stop the machine may be resumed with M999
  11253. */
  11254. void stop() {
  11255. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  11256. #if ENABLED(PROBING_FANS_OFF)
  11257. if (fans_paused) fans_pause(false); // put things back the way they were
  11258. #endif
  11259. if (IsRunning()) {
  11260. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  11261. SERIAL_ERROR_START();
  11262. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  11263. LCD_MESSAGEPGM(MSG_STOPPED);
  11264. safe_delay(350); // allow enough time for messages to get out before stopping
  11265. Running = false;
  11266. }
  11267. }
  11268. /**
  11269. * Marlin entry-point: Set up before the program loop
  11270. * - Set up the kill pin, filament runout, power hold
  11271. * - Start the serial port
  11272. * - Print startup messages and diagnostics
  11273. * - Get EEPROM or default settings
  11274. * - Initialize managers for:
  11275. * • temperature
  11276. * • planner
  11277. * • watchdog
  11278. * • stepper
  11279. * • photo pin
  11280. * • servos
  11281. * • LCD controller
  11282. * • Digipot I2C
  11283. * • Z probe sled
  11284. * • status LEDs
  11285. */
  11286. void setup() {
  11287. #if ENABLED(MAX7219_DEBUG)
  11288. Max7219_init();
  11289. #endif
  11290. #ifdef DISABLE_JTAG
  11291. // Disable JTAG on AT90USB chips to free up pins for IO
  11292. MCUCR = 0x80;
  11293. MCUCR = 0x80;
  11294. #endif
  11295. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11296. setup_filrunoutpin();
  11297. #endif
  11298. setup_killpin();
  11299. setup_powerhold();
  11300. #if HAS_STEPPER_RESET
  11301. disableStepperDrivers();
  11302. #endif
  11303. MYSERIAL.begin(BAUDRATE);
  11304. SERIAL_PROTOCOLLNPGM("start");
  11305. SERIAL_ECHO_START();
  11306. // Check startup - does nothing if bootloader sets MCUSR to 0
  11307. byte mcu = MCUSR;
  11308. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  11309. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  11310. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  11311. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  11312. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  11313. MCUSR = 0;
  11314. SERIAL_ECHOPGM(MSG_MARLIN);
  11315. SERIAL_CHAR(' ');
  11316. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  11317. SERIAL_EOL();
  11318. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  11319. SERIAL_ECHO_START();
  11320. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  11321. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  11322. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  11323. SERIAL_ECHO_START();
  11324. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  11325. #endif
  11326. SERIAL_ECHO_START();
  11327. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  11328. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  11329. // Send "ok" after commands by default
  11330. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  11331. // Load data from EEPROM if available (or use defaults)
  11332. // This also updates variables in the planner, elsewhere
  11333. (void)settings.load();
  11334. #if HAS_M206_COMMAND
  11335. // Initialize current position based on home_offset
  11336. COPY(current_position, home_offset);
  11337. #else
  11338. ZERO(current_position);
  11339. #endif
  11340. // Vital to init stepper/planner equivalent for current_position
  11341. SYNC_PLAN_POSITION_KINEMATIC();
  11342. thermalManager.init(); // Initialize temperature loop
  11343. #if ENABLED(USE_WATCHDOG)
  11344. watchdog_init();
  11345. #endif
  11346. stepper.init(); // Initialize stepper, this enables interrupts!
  11347. servo_init();
  11348. #if HAS_PHOTOGRAPH
  11349. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  11350. #endif
  11351. #if HAS_CASE_LIGHT
  11352. case_light_on = CASE_LIGHT_DEFAULT_ON;
  11353. case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
  11354. update_case_light();
  11355. #endif
  11356. #if ENABLED(SPINDLE_LASER_ENABLE)
  11357. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  11358. #if SPINDLE_DIR_CHANGE
  11359. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  11360. #endif
  11361. #if ENABLED(SPINDLE_LASER_PWM)
  11362. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  11363. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  11364. #endif
  11365. #endif
  11366. #if HAS_BED_PROBE
  11367. endstops.enable_z_probe(false);
  11368. #endif
  11369. #if ENABLED(USE_CONTROLLER_FAN)
  11370. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  11371. #endif
  11372. #if HAS_STEPPER_RESET
  11373. enableStepperDrivers();
  11374. #endif
  11375. #if ENABLED(DIGIPOT_I2C)
  11376. digipot_i2c_init();
  11377. #endif
  11378. #if ENABLED(DAC_STEPPER_CURRENT)
  11379. dac_init();
  11380. #endif
  11381. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  11382. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  11383. #endif
  11384. #if HAS_HOME
  11385. SET_INPUT_PULLUP(HOME_PIN);
  11386. #endif
  11387. #if PIN_EXISTS(STAT_LED_RED)
  11388. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  11389. #endif
  11390. #if PIN_EXISTS(STAT_LED_BLUE)
  11391. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  11392. #endif
  11393. #if ENABLED(NEOPIXEL_RGBW_LED)
  11394. SET_OUTPUT(NEOPIXEL_PIN);
  11395. setup_neopixel();
  11396. #endif
  11397. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  11398. SET_OUTPUT(RGB_LED_R_PIN);
  11399. SET_OUTPUT(RGB_LED_G_PIN);
  11400. SET_OUTPUT(RGB_LED_B_PIN);
  11401. #if ENABLED(RGBW_LED)
  11402. SET_OUTPUT(RGB_LED_W_PIN);
  11403. #endif
  11404. #endif
  11405. #if ENABLED(MK2_MULTIPLEXER)
  11406. SET_OUTPUT(E_MUX0_PIN);
  11407. SET_OUTPUT(E_MUX1_PIN);
  11408. SET_OUTPUT(E_MUX2_PIN);
  11409. #endif
  11410. #if HAS_FANMUX
  11411. fanmux_init();
  11412. #endif
  11413. lcd_init();
  11414. #ifndef CUSTOM_BOOTSCREEN_TIMEOUT
  11415. #define CUSTOM_BOOTSCREEN_TIMEOUT 2500
  11416. #endif
  11417. #if ENABLED(SHOW_BOOTSCREEN)
  11418. #if ENABLED(DOGLCD) // On DOGM the first bootscreen is already drawn
  11419. #if ENABLED(SHOW_CUSTOM_BOOTSCREEN)
  11420. safe_delay(CUSTOM_BOOTSCREEN_TIMEOUT); // Custom boot screen pause
  11421. lcd_bootscreen(); // Show Marlin boot screen
  11422. #endif
  11423. safe_delay(BOOTSCREEN_TIMEOUT); // Pause
  11424. #elif ENABLED(ULTRA_LCD)
  11425. lcd_bootscreen();
  11426. #if DISABLED(SDSUPPORT)
  11427. lcd_init();
  11428. #endif
  11429. #endif
  11430. #endif
  11431. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  11432. // Initialize mixing to 100% color 1
  11433. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11434. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  11435. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  11436. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11437. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  11438. #endif
  11439. #if ENABLED(BLTOUCH)
  11440. // Make sure any BLTouch error condition is cleared
  11441. bltouch_command(BLTOUCH_RESET);
  11442. set_bltouch_deployed(true);
  11443. set_bltouch_deployed(false);
  11444. #endif
  11445. #if ENABLED(I2C_POSITION_ENCODERS)
  11446. I2CPEM.init();
  11447. #endif
  11448. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  11449. i2c.onReceive(i2c_on_receive);
  11450. i2c.onRequest(i2c_on_request);
  11451. #endif
  11452. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  11453. setup_endstop_interrupts();
  11454. #endif
  11455. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  11456. move_extruder_servo(0); // Initialize extruder servo
  11457. #endif
  11458. #if ENABLED(SWITCHING_NOZZLE)
  11459. move_nozzle_servo(0); // Initialize nozzle servo
  11460. #endif
  11461. #if ENABLED(PARKING_EXTRUDER)
  11462. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  11463. pe_activate_magnet(0);
  11464. pe_activate_magnet(1);
  11465. #else
  11466. pe_deactivate_magnet(0);
  11467. pe_deactivate_magnet(1);
  11468. #endif
  11469. #endif
  11470. }
  11471. /**
  11472. * The main Marlin program loop
  11473. *
  11474. * - Save or log commands to SD
  11475. * - Process available commands (if not saving)
  11476. * - Call heater manager
  11477. * - Call inactivity manager
  11478. * - Call endstop manager
  11479. * - Call LCD update
  11480. */
  11481. void loop() {
  11482. if (commands_in_queue < BUFSIZE) get_available_commands();
  11483. #if ENABLED(SDSUPPORT)
  11484. card.checkautostart(false);
  11485. #endif
  11486. if (commands_in_queue) {
  11487. #if ENABLED(SDSUPPORT)
  11488. if (card.saving) {
  11489. char* command = command_queue[cmd_queue_index_r];
  11490. if (strstr_P(command, PSTR("M29"))) {
  11491. // M29 closes the file
  11492. card.closefile();
  11493. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  11494. #if ENABLED(SERIAL_STATS_DROPPED_RX)
  11495. SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped());
  11496. #endif
  11497. #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
  11498. SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued());
  11499. #endif
  11500. ok_to_send();
  11501. }
  11502. else {
  11503. // Write the string from the read buffer to SD
  11504. card.write_command(command);
  11505. if (card.logging)
  11506. process_next_command(); // The card is saving because it's logging
  11507. else
  11508. ok_to_send();
  11509. }
  11510. }
  11511. else
  11512. process_next_command();
  11513. #else
  11514. process_next_command();
  11515. #endif // SDSUPPORT
  11516. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  11517. if (commands_in_queue) {
  11518. --commands_in_queue;
  11519. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  11520. }
  11521. }
  11522. endstops.report_state();
  11523. idle();
  11524. }