123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * stepper.cpp - A singleton object to execute motion plans using stepper motors
- * Marlin Firmware
- *
- * Derived from Grbl
- * Copyright (c) 2009-2011 Simen Svale Skogsrud
- *
- * Grbl is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * Grbl is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
-
- /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
- and Philipp Tiefenbacher. */
-
- /* Jerk controlled movements planner added by Eduardo José Tagle in April
- 2018, Equations based on Synthethos TinyG2 sources, but the fixed-point
- implementation is a complete new one, as we are running the ISR with a
- variable period.
- Also implemented the Bézier velocity curve evaluation in ARM assembler,
- to avoid impacting ISR speed. */
-
- #include "stepper.h"
-
- #ifdef __AVR__
- #include "speed_lookuptable.h"
- #endif
-
- #include "endstops.h"
- #include "planner.h"
- #include "motion.h"
-
- #include "../module/temperature.h"
- #include "../lcd/ultralcd.h"
- #include "../core/language.h"
- #include "../gcode/queue.h"
- #include "../sd/cardreader.h"
- #include "../Marlin.h"
-
- #if MB(ALLIGATOR)
- #include "../feature/dac/dac_dac084s085.h"
- #endif
-
- #if HAS_DIGIPOTSS
- #include <SPI.h>
- #endif
-
- Stepper stepper; // Singleton
-
- // public:
-
- block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
-
- #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
- bool Stepper::abort_on_endstop_hit = false;
- #endif
-
- #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
- bool Stepper::performing_homing = false;
- #endif
-
- #if HAS_MOTOR_CURRENT_PWM
- uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
- #endif
-
- // private:
-
- uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
- int16_t Stepper::cleaning_buffer_counter = 0;
-
- #if ENABLED(X_DUAL_ENDSTOPS)
- bool Stepper::locked_x_motor = false, Stepper::locked_x2_motor = false;
- #endif
- #if ENABLED(Y_DUAL_ENDSTOPS)
- bool Stepper::locked_y_motor = false, Stepper::locked_y2_motor = false;
- #endif
- #if ENABLED(Z_DUAL_ENDSTOPS)
- bool Stepper::locked_z_motor = false, Stepper::locked_z2_motor = false;
- #endif
-
- long Stepper::counter_X = 0,
- Stepper::counter_Y = 0,
- Stepper::counter_Z = 0,
- Stepper::counter_E = 0;
-
- volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
-
- #if ENABLED(BEZIER_JERK_CONTROL)
- int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
- int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
- int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
- uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
- uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
- #ifdef __AVR__
- bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
- #endif
- bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
- #endif
-
- #if ENABLED(LIN_ADVANCE)
-
- uint32_t Stepper::LA_decelerate_after;
-
- constexpr hal_timer_t ADV_NEVER = HAL_TIMER_TYPE_MAX;
-
- hal_timer_t Stepper::nextMainISR = 0,
- Stepper::nextAdvanceISR = ADV_NEVER,
- Stepper::eISR_Rate = ADV_NEVER;
- uint16_t Stepper::current_adv_steps = 0,
- Stepper::final_adv_steps,
- Stepper::max_adv_steps;
-
- int8_t Stepper::e_steps = 0;
-
- #if E_STEPPERS > 1
- int8_t Stepper::LA_active_extruder; // Copy from current executed block. Needed because current_block is set to NULL "too early".
- #else
- constexpr int8_t Stepper::LA_active_extruder;
- #endif
-
- bool Stepper::use_advance_lead;
-
- #endif // LIN_ADVANCE
-
- int32_t Stepper::acceleration_time, Stepper::deceleration_time;
-
- volatile int32_t Stepper::count_position[NUM_AXIS] = { 0 };
- volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
-
- #if ENABLED(MIXING_EXTRUDER)
- long Stepper::counter_m[MIXING_STEPPERS];
- #endif
-
- uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
-
- hal_timer_t Stepper::OCR1A_nominal;
- #if DISABLED(BEZIER_JERK_CONTROL)
- hal_timer_t Stepper::acc_step_rate; // needed for deceleration start point
- #endif
-
- volatile long Stepper::endstops_trigsteps[XYZ];
-
- #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
- #define LOCKED_X_MOTOR locked_x_motor
- #define LOCKED_Y_MOTOR locked_y_motor
- #define LOCKED_Z_MOTOR locked_z_motor
- #define LOCKED_X2_MOTOR locked_x2_motor
- #define LOCKED_Y2_MOTOR locked_y2_motor
- #define LOCKED_Z2_MOTOR locked_z2_motor
- #define DUAL_ENDSTOP_APPLY_STEP(AXIS,v) \
- if (performing_homing) { \
- if (AXIS##_HOME_DIR < 0) { \
- if (!(TEST(endstops.old_endstop_bits, AXIS##_MIN) && count_direction[AXIS##_AXIS] < 0) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
- if (!(TEST(endstops.old_endstop_bits, AXIS##2_MIN) && count_direction[AXIS##_AXIS] < 0) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
- } \
- else { \
- if (!(TEST(endstops.old_endstop_bits, AXIS##_MAX) && count_direction[AXIS##_AXIS] > 0) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
- if (!(TEST(endstops.old_endstop_bits, AXIS##2_MAX) && count_direction[AXIS##_AXIS] > 0) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
- } \
- } \
- else { \
- AXIS##_STEP_WRITE(v); \
- AXIS##2_STEP_WRITE(v); \
- }
- #endif
-
- #if ENABLED(X_DUAL_STEPPER_DRIVERS)
- #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
- #if ENABLED(X_DUAL_ENDSTOPS)
- #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
- #else
- #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
- #endif
- #elif ENABLED(DUAL_X_CARRIAGE)
- #define X_APPLY_DIR(v,ALWAYS) \
- if (extruder_duplication_enabled || ALWAYS) { \
- X_DIR_WRITE(v); \
- X2_DIR_WRITE(v); \
- } \
- else { \
- if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
- }
- #define X_APPLY_STEP(v,ALWAYS) \
- if (extruder_duplication_enabled || ALWAYS) { \
- X_STEP_WRITE(v); \
- X2_STEP_WRITE(v); \
- } \
- else { \
- if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
- }
- #else
- #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
- #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
- #endif
-
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
- #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
- #if ENABLED(Y_DUAL_ENDSTOPS)
- #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
- #else
- #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
- #endif
- #else
- #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
- #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
- #endif
-
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
- #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
- #if ENABLED(Z_DUAL_ENDSTOPS)
- #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
- #else
- #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
- #endif
- #else
- #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
- #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
- #endif
-
- #if DISABLED(MIXING_EXTRUDER)
- #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
- #endif
-
- /**
- * __________________________
- * /| |\ _________________ ^
- * / | | \ /| |\ |
- * / | | \ / | | \ s
- * / | | | | | \ p
- * / | | | | | \ e
- * +-----+------------------------+---+--+---------------+----+ e
- * | BLOCK 1 | BLOCK 2 | d
- *
- * time ----->
- *
- * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
- * first block->accelerate_until step_events_completed, then keeps going at constant speed until
- * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
- * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
- */
- void Stepper::wake_up() {
- // TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
-
- /**
- * Set the stepper direction of each axis
- *
- * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
- * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
- * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
- */
- void Stepper::set_directions() {
-
- #define SET_STEP_DIR(AXIS) \
- if (motor_direction(AXIS ##_AXIS)) { \
- AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
- count_direction[AXIS ##_AXIS] = -1; \
- } \
- else { \
- AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
- count_direction[AXIS ##_AXIS] = 1; \
- }
-
- #if HAS_X_DIR
- SET_STEP_DIR(X); // A
- #endif
- #if HAS_Y_DIR
- SET_STEP_DIR(Y); // B
- #endif
- #if HAS_Z_DIR
- SET_STEP_DIR(Z); // C
- #endif
-
- #if DISABLED(LIN_ADVANCE)
- if (motor_direction(E_AXIS)) {
- REV_E_DIR();
- count_direction[E_AXIS] = -1;
- }
- else {
- NORM_E_DIR();
- count_direction[E_AXIS] = 1;
- }
- #endif // !LIN_ADVANCE
- }
-
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- extern volatile uint8_t e_hit;
- #endif
-
- #if ENABLED(BEZIER_JERK_CONTROL)
- /**
- * We are using a quintic (fifth-degree) Bézier polynomial for the velocity curve.
- * This gives us a "linear pop" velocity curve; with pop being the sixth derivative of position:
- * velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
- *
- * The Bézier curve takes the form:
- *
- * V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
- *
- * Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
- * through B_5(t) are the Bernstein basis as follows:
- *
- * B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
- * B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
- * B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
- * B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
- * B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
- * B_5(t) = t^5 = t^5
- * ^ ^ ^ ^ ^ ^
- * | | | | | |
- * A B C D E F
- *
- * Unfortunately, we cannot use forward-differencing to calculate each position through
- * the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
- *
- * V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
- *
- * Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
- * through t of the Bézier form of V(t), we can determine that:
- *
- * A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
- * B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
- * C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
- * D = 10*P_0 - 20*P_1 + 10*P_2
- * E = - 5*P_0 + 5*P_1
- * F = P_0
- *
- * Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
- * We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
- * which, after simplification, resolves to:
- *
- * A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
- * B = 15*P_i - 15*P_t = 15*(P_i - P_t)
- * C = -10*P_i + 10*P_t = 10*(P_t - P_i)
- * D = 0
- * E = 0
- * F = P_i
- *
- * As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
- * the Bézier curve at each point:
- *
- * V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
- *
- * Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
- * use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
- * per second (driver pulses should at least be 2uS hi/2uS lo), and allocating 2 bits to avoid
- * overflows on the evaluation of the Bézier curve, means we can use
- *
- * t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
- * A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
- * B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
- * C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
- * F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
- *
- * The trapezoid generator state contains the following information, that we will use to create and evaluate
- * the Bézier curve:
- *
- * blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
- * blk->initial_rate [VI] = The initial steps per second (=velocity)
- * blk->final_rate [VF] = The ending steps per second (=velocity)
- * and the count of events completed (step_events_completed) [CS] (=distance until now)
- *
- * Note the abbreviations we use in the following formulae are between []s
- *
- * For Any 32bit CPU:
- *
- * At the start of each trapezoid, we calculate the coefficients A,B,C,F and Advance [AV], as follows:
- *
- * A = 6*128*(VF - VI) = 768*(VF - VI)
- * B = 15*128*(VI - VF) = 1920*(VI - VF)
- * C = 10*128*(VF - VI) = 1280*(VF - VI)
- * F = 128*VI = 128*VI
- * AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
- *
- * And for each point, we will evaluate the curve with the following sequence:
- *
- * void lsrs(uint32_t& d, uint32_t s, int cnt) {
- * d = s >> cnt;
- * }
- * void lsls(uint32_t& d, uint32_t s, int cnt) {
- * d = s << cnt;
- * }
- * void lsrs(int32_t& d, uint32_t s, int cnt) {
- * d = uint32_t(s) >> cnt;
- * }
- * void lsls(int32_t& d, uint32_t s, int cnt) {
- * d = uint32_t(s) << cnt;
- * }
- * void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
- * uint64_t res = uint64_t(op1) * op2;
- * rlo = uint32_t(res & 0xFFFFFFFF);
- * rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
- * }
- * void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
- * int64_t mul = int64_t(op1) * op2;
- * int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
- * mul += s;
- * rlo = int32_t(mul & 0xFFFFFFFF);
- * rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
- * }
- * int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
- * register uint32_t flo = 0;
- * register uint32_t fhi = bezier_AV * curr_step;
- * register uint32_t t = fhi;
- * register int32_t alo = bezier_F;
- * register int32_t ahi = 0;
- * register int32_t A = bezier_A;
- * register int32_t B = bezier_B;
- * register int32_t C = bezier_C;
- *
- * lsrs(ahi, alo, 1); // a = F << 31
- * lsls(alo, alo, 31); //
- * umull(flo, fhi, fhi, t); // f *= t
- * umull(flo, fhi, fhi, t); // f>>=32; f*=t
- * lsrs(flo, fhi, 1); //
- * smlal(alo, ahi, flo, C); // a+=(f>>33)*C
- * umull(flo, fhi, fhi, t); // f>>=32; f*=t
- * lsrs(flo, fhi, 1); //
- * smlal(alo, ahi, flo, B); // a+=(f>>33)*B
- * umull(flo, fhi, fhi, t); // f>>=32; f*=t
- * lsrs(flo, fhi, 1); // f>>=33;
- * smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
- * lsrs(alo, ahi, 6); // a>>=38
- *
- * return alo;
- * }
- *
- * This will be rewritten in ARM assembly to get peak performance and will take 43 cycles to execute
- *
- * For AVR, we scale precision of coefficients to make it possible to evaluate the Bézier curve in
- * realtime: Let's reduce precision as much as possible. After some experimentation we found that:
- *
- * Assume t and AV with 24 bits is enough
- * A = 6*(VF - VI)
- * B = 15*(VI - VF)
- * C = 10*(VF - VI)
- * F = VI
- * AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
- *
- * Instead of storing sign for each coefficient, we will store its absolute value,
- * and flag the sign of the A coefficient, so we can save to store the sign bit.
- * It always holds that sign(A) = - sign(B) = sign(C)
- *
- * So, the resulting range of the coefficients are:
- *
- * t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
- * A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
- * B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
- * C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
- * F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
- *
- * And for each curve, we estimate its coefficients with:
- *
- * void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
- * // Calculate the Bézier coefficients
- * if (v1 < v0) {
- * A_negative = true;
- * bezier_A = 6 * (v0 - v1);
- * bezier_B = 15 * (v0 - v1);
- * bezier_C = 10 * (v0 - v1);
- * }
- * else {
- * A_negative = false;
- * bezier_A = 6 * (v1 - v0);
- * bezier_B = 15 * (v1 - v0);
- * bezier_C = 10 * (v1 - v0);
- * }
- * bezier_F = v0;
- * }
- *
- * And for each point, we will evaluate the curve with the following sequence:
- *
- * // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
- * void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
- * r = (uint64_t(op1) * op2) >> 8;
- * }
- * // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
- * void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
- * r = (uint32_t(op1) * op2) >> 16;
- * }
- * // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
- * void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
- * r = uint24_t((uint64_t(op1) * op2) >> 16);
- * }
- *
- * int32_t _eval_bezier_curve(uint32_t curr_step) {
- * // To save computing, the first step is always the initial speed
- * if (!curr_step)
- * return bezier_F;
- *
- * uint16_t t;
- * umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
- * uint16_t f = t;
- * umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
- * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
- * uint24_t acc = bezier_F; // Range 20 bits (unsigned)
- * if (A_negative) {
- * uint24_t v;
- * umul16x24to24hi(v, f, bezier_C); // Range 21bits
- * acc -= v;
- * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
- * umul16x24to24hi(v, f, bezier_B); // Range 22bits
- * acc += v;
- * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
- * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
- * acc -= v;
- * }
- * else {
- * uint24_t v;
- * umul16x24to24hi(v, f, bezier_C); // Range 21bits
- * acc += v;
- * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
- * umul16x24to24hi(v, f, bezier_B); // Range 22bits
- * acc -= v;
- * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
- * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
- * acc += v;
- * }
- * return acc;
- * }
- * Those functions will be translated into assembler to get peak performance. coefficient calculations takes 70 cycles,
- * Bezier point evaluation takes 150 cycles
- *
- */
-
- #ifdef __AVR__
-
- // For AVR we use assembly to maximize speed
- void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
-
- // Store advance
- bezier_AV = av;
-
- // Calculate the rest of the coefficients
- register uint8_t r2 = v0 & 0xFF;
- register uint8_t r3 = (v0 >> 8) & 0xFF;
- register uint8_t r12 = (v0 >> 16) & 0xFF;
- register uint8_t r5 = v1 & 0xFF;
- register uint8_t r6 = (v1 >> 8) & 0xFF;
- register uint8_t r7 = (v1 >> 16) & 0xFF;
- register uint8_t r4,r8,r9,r10,r11;
-
- __asm__ __volatile__(
- /* Calculate the Bézier coefficients */
- /* %10:%1:%0 = v0*/
- /* %5:%4:%3 = v1*/
- /* %7:%6:%10 = temporary*/
- /* %9 = val (must be high register!)*/
- /* %10 (must be high register!)*/
-
- /* Store initial velocity*/
- " sts bezier_F, %0" "\n\t"
- " sts bezier_F+1, %1" "\n\t"
- " sts bezier_F+2, %10" "\n\t" /* bezier_F = %10:%1:%0 = v0 */
-
- /* Get delta speed */
- " ldi %2,-1" "\n\t" /* %2 = 0xff, means A_negative = true */
- " clr %8" "\n\t" /* %8 = 0 */
- " sub %0,%3" "\n\t"
- " sbc %1,%4" "\n\t"
- " sbc %10,%5" "\n\t" /* v0 -= v1, C=1 if result is negative */
- " brcc 1f" "\n\t" /* branch if result is positive (C=0), that means v0 >= v1 */
-
- /* Result was negative, get the absolute value*/
- " com %10" "\n\t"
- " com %1" "\n\t"
- " neg %0" "\n\t"
- " sbc %1,%2" "\n\t"
- " sbc %10,%2" "\n\t" /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
- " clr %2" "\n\t" /* %2 = 0, means A_negative = false */
-
- /* Store negative flag*/
- "1:" "\n\t"
- " sts A_negative, %2" "\n\t" /* Store negative flag */
-
- /* Compute coefficients A,B and C [20 cycles worst case]*/
- " ldi %9,6" "\n\t" /* %9 = 6 */
- " mul %0,%9" "\n\t" /* r1:r0 = 6*LO(v0-v1) */
- " sts bezier_A, r0" "\n\t"
- " mov %6,r1" "\n\t"
- " clr %7" "\n\t" /* %7:%6:r0 = 6*LO(v0-v1) */
- " mul %1,%9" "\n\t" /* r1:r0 = 6*MI(v0-v1) */
- " add %6,r0" "\n\t"
- " adc %7,r1" "\n\t" /* %7:%6:?? += 6*MI(v0-v1) << 8 */
- " mul %10,%9" "\n\t" /* r1:r0 = 6*HI(v0-v1) */
- " add %7,r0" "\n\t" /* %7:%6:?? += 6*HI(v0-v1) << 16 */
- " sts bezier_A+1, %6" "\n\t"
- " sts bezier_A+2, %7" "\n\t" /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
-
- " ldi %9,15" "\n\t" /* %9 = 15 */
- " mul %0,%9" "\n\t" /* r1:r0 = 5*LO(v0-v1) */
- " sts bezier_B, r0" "\n\t"
- " mov %6,r1" "\n\t"
- " clr %7" "\n\t" /* %7:%6:?? = 5*LO(v0-v1) */
- " mul %1,%9" "\n\t" /* r1:r0 = 5*MI(v0-v1) */
- " add %6,r0" "\n\t"
- " adc %7,r1" "\n\t" /* %7:%6:?? += 5*MI(v0-v1) << 8 */
- " mul %10,%9" "\n\t" /* r1:r0 = 5*HI(v0-v1) */
- " add %7,r0" "\n\t" /* %7:%6:?? += 5*HI(v0-v1) << 16 */
- " sts bezier_B+1, %6" "\n\t"
- " sts bezier_B+2, %7" "\n\t" /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
-
- " ldi %9,10" "\n\t" /* %9 = 10 */
- " mul %0,%9" "\n\t" /* r1:r0 = 10*LO(v0-v1) */
- " sts bezier_C, r0" "\n\t"
- " mov %6,r1" "\n\t"
- " clr %7" "\n\t" /* %7:%6:?? = 10*LO(v0-v1) */
- " mul %1,%9" "\n\t" /* r1:r0 = 10*MI(v0-v1) */
- " add %6,r0" "\n\t"
- " adc %7,r1" "\n\t" /* %7:%6:?? += 10*MI(v0-v1) << 8 */
- " mul %10,%9" "\n\t" /* r1:r0 = 10*HI(v0-v1) */
- " add %7,r0" "\n\t" /* %7:%6:?? += 10*HI(v0-v1) << 16 */
- " sts bezier_C+1, %6" "\n\t"
- " sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
- : "+r" (r2),
- "+d" (r3),
- "=r" (r4),
- "+r" (r5),
- "+r" (r6),
- "+r" (r7),
- "=r" (r8),
- "=r" (r9),
- "=r" (r10),
- "=d" (r11),
- "+r" (r12)
- :
- : "r0", "r1", "cc", "memory"
- );
- }
-
- FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
-
- // If dealing with the first step, save expensive computing and return the initial speed
- if (!curr_step)
- return bezier_F;
-
- register uint8_t r0 = 0; /* Zero register */
- register uint8_t r2 = (curr_step) & 0xFF;
- register uint8_t r3 = (curr_step >> 8) & 0xFF;
- register uint8_t r4 = (curr_step >> 16) & 0xFF;
- register uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
-
- __asm__ __volatile(
- /* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
- " lds %9,bezier_AV" "\n\t" /* %9 = LO(AV)*/
- " mul %9,%2" "\n\t" /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
- " mov %7,r1" "\n\t" /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
- " clr %8" "\n\t" /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
- " lds %10,bezier_AV+1" "\n\t" /* %10 = MI(AV)*/
- " mul %10,%2" "\n\t" /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
- " add %7,r0" "\n\t"
- " adc %8,r1" "\n\t" /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
- " lds r1,bezier_AV+2" "\n\t" /* r11 = HI(AV)*/
- " mul r1,%2" "\n\t" /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
- " add %8,r0" "\n\t" /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
- " mul %9,%3" "\n\t" /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
- " add %7,r0" "\n\t"
- " adc %8,r1" "\n\t" /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
- " mul %10,%3" "\n\t" /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
- " add %8,r0" "\n\t" /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
- " mul %9,%4" "\n\t" /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
- " add %8,r0" "\n\t" /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
- /* %8:%7 = t*/
-
- /* uint16_t f = t;*/
- " mov %5,%7" "\n\t" /* %6:%5 = f*/
- " mov %6,%8" "\n\t"
- /* %6:%5 = f*/
-
- /* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
- " mul %5,%7" "\n\t" /* r1:r0 = LO(f) * LO(t)*/
- " mov %9,r1" "\n\t" /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
- " clr %10" "\n\t" /* %10 = 0*/
- " clr %11" "\n\t" /* %11 = 0*/
- " mul %5,%8" "\n\t" /* r1:r0 = LO(f) * HI(t)*/
- " add %9,r0" "\n\t" /* %9 += LO(LO(f) * HI(t))*/
- " adc %10,r1" "\n\t" /* %10 = HI(LO(f) * HI(t))*/
- " adc %11,%0" "\n\t" /* %11 += carry*/
- " mul %6,%7" "\n\t" /* r1:r0 = HI(f) * LO(t)*/
- " add %9,r0" "\n\t" /* %9 += LO(HI(f) * LO(t))*/
- " adc %10,r1" "\n\t" /* %10 += HI(HI(f) * LO(t)) */
- " adc %11,%0" "\n\t" /* %11 += carry*/
- " mul %6,%8" "\n\t" /* r1:r0 = HI(f) * HI(t)*/
- " add %10,r0" "\n\t" /* %10 += LO(HI(f) * HI(t))*/
- " adc %11,r1" "\n\t" /* %11 += HI(HI(f) * HI(t))*/
- " mov %5,%10" "\n\t" /* %6:%5 = */
- " mov %6,%11" "\n\t" /* f = %10:%11*/
-
- /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
- " mul %5,%7" "\n\t" /* r1:r0 = LO(f) * LO(t)*/
- " mov %1,r1" "\n\t" /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
- " clr %10" "\n\t" /* %10 = 0*/
- " clr %11" "\n\t" /* %11 = 0*/
- " mul %5,%8" "\n\t" /* r1:r0 = LO(f) * HI(t)*/
- " add %1,r0" "\n\t" /* %1 += LO(LO(f) * HI(t))*/
- " adc %10,r1" "\n\t" /* %10 = HI(LO(f) * HI(t))*/
- " adc %11,%0" "\n\t" /* %11 += carry*/
- " mul %6,%7" "\n\t" /* r1:r0 = HI(f) * LO(t)*/
- " add %1,r0" "\n\t" /* %1 += LO(HI(f) * LO(t))*/
- " adc %10,r1" "\n\t" /* %10 += HI(HI(f) * LO(t))*/
- " adc %11,%0" "\n\t" /* %11 += carry*/
- " mul %6,%8" "\n\t" /* r1:r0 = HI(f) * HI(t)*/
- " add %10,r0" "\n\t" /* %10 += LO(HI(f) * HI(t))*/
- " adc %11,r1" "\n\t" /* %11 += HI(HI(f) * HI(t))*/
- " mov %5,%10" "\n\t" /* %6:%5 =*/
- " mov %6,%11" "\n\t" /* f = %10:%11*/
- /* [15 +17*2] = [49]*/
-
- /* %4:%3:%2 will be acc from now on*/
-
- /* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
- " clr %9" "\n\t" /* "decimal place we get for free"*/
- " lds %2,bezier_F" "\n\t"
- " lds %3,bezier_F+1" "\n\t"
- " lds %4,bezier_F+2" "\n\t" /* %4:%3:%2 = acc*/
-
- /* if (A_negative) {*/
- " lds r0,A_negative" "\n\t"
- " or r0,%0" "\n\t" /* Is flag signalling negative? */
- " brne 3f" "\n\t" /* If yes, Skip next instruction if A was negative*/
- " rjmp 1f" "\n\t" /* Otherwise, jump */
-
- /* uint24_t v; */
- /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
- /* acc -= v; */
- "3:" "\n\t"
- " lds %10, bezier_C" "\n\t" /* %10 = LO(bezier_C)*/
- " mul %10,%5" "\n\t" /* r1:r0 = LO(bezier_C) * LO(f)*/
- " sub %9,r1" "\n\t"
- " sbc %2,%0" "\n\t"
- " sbc %3,%0" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
- " lds %11, bezier_C+1" "\n\t" /* %11 = MI(bezier_C)*/
- " mul %11,%5" "\n\t" /* r1:r0 = MI(bezier_C) * LO(f)*/
- " sub %9,r0" "\n\t"
- " sbc %2,r1" "\n\t"
- " sbc %3,%0" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
- " lds %1, bezier_C+2" "\n\t" /* %1 = HI(bezier_C)*/
- " mul %1,%5" "\n\t" /* r1:r0 = MI(bezier_C) * LO(f)*/
- " sub %2,r0" "\n\t"
- " sbc %3,r1" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
- " mul %10,%6" "\n\t" /* r1:r0 = LO(bezier_C) * MI(f)*/
- " sub %9,r0" "\n\t"
- " sbc %2,r1" "\n\t"
- " sbc %3,%0" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
- " mul %11,%6" "\n\t" /* r1:r0 = MI(bezier_C) * MI(f)*/
- " sub %2,r0" "\n\t"
- " sbc %3,r1" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
- " mul %1,%6" "\n\t" /* r1:r0 = HI(bezier_C) * LO(f)*/
- " sub %3,r0" "\n\t"
- " sbc %4,r1" "\n\t" /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
-
- /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
- " mul %5,%7" "\n\t" /* r1:r0 = LO(f) * LO(t)*/
- " mov %1,r1" "\n\t" /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
- " clr %10" "\n\t" /* %10 = 0*/
- " clr %11" "\n\t" /* %11 = 0*/
- " mul %5,%8" "\n\t" /* r1:r0 = LO(f) * HI(t)*/
- " add %1,r0" "\n\t" /* %1 += LO(LO(f) * HI(t))*/
- " adc %10,r1" "\n\t" /* %10 = HI(LO(f) * HI(t))*/
- " adc %11,%0" "\n\t" /* %11 += carry*/
- " mul %6,%7" "\n\t" /* r1:r0 = HI(f) * LO(t)*/
- " add %1,r0" "\n\t" /* %1 += LO(HI(f) * LO(t))*/
- " adc %10,r1" "\n\t" /* %10 += HI(HI(f) * LO(t))*/
- " adc %11,%0" "\n\t" /* %11 += carry*/
- " mul %6,%8" "\n\t" /* r1:r0 = HI(f) * HI(t)*/
- " add %10,r0" "\n\t" /* %10 += LO(HI(f) * HI(t))*/
- " adc %11,r1" "\n\t" /* %11 += HI(HI(f) * HI(t))*/
- " mov %5,%10" "\n\t" /* %6:%5 =*/
- " mov %6,%11" "\n\t" /* f = %10:%11*/
-
- /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
- /* acc += v; */
- " lds %10, bezier_B" "\n\t" /* %10 = LO(bezier_B)*/
- " mul %10,%5" "\n\t" /* r1:r0 = LO(bezier_B) * LO(f)*/
- " add %9,r1" "\n\t"
- " adc %2,%0" "\n\t"
- " adc %3,%0" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
- " lds %11, bezier_B+1" "\n\t" /* %11 = MI(bezier_B)*/
- " mul %11,%5" "\n\t" /* r1:r0 = MI(bezier_B) * LO(f)*/
- " add %9,r0" "\n\t"
- " adc %2,r1" "\n\t"
- " adc %3,%0" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
- " lds %1, bezier_B+2" "\n\t" /* %1 = HI(bezier_B)*/
- " mul %1,%5" "\n\t" /* r1:r0 = MI(bezier_B) * LO(f)*/
- " add %2,r0" "\n\t"
- " adc %3,r1" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
- " mul %10,%6" "\n\t" /* r1:r0 = LO(bezier_B) * MI(f)*/
- " add %9,r0" "\n\t"
- " adc %2,r1" "\n\t"
- " adc %3,%0" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
- " mul %11,%6" "\n\t" /* r1:r0 = MI(bezier_B) * MI(f)*/
- " add %2,r0" "\n\t"
- " adc %3,r1" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
- " mul %1,%6" "\n\t" /* r1:r0 = HI(bezier_B) * LO(f)*/
- " add %3,r0" "\n\t"
- " adc %4,r1" "\n\t" /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
-
- /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
- " mul %5,%7" "\n\t" /* r1:r0 = LO(f) * LO(t)*/
- " mov %1,r1" "\n\t" /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
- " clr %10" "\n\t" /* %10 = 0*/
- " clr %11" "\n\t" /* %11 = 0*/
- " mul %5,%8" "\n\t" /* r1:r0 = LO(f) * HI(t)*/
- " add %1,r0" "\n\t" /* %1 += LO(LO(f) * HI(t))*/
- " adc %10,r1" "\n\t" /* %10 = HI(LO(f) * HI(t))*/
- " adc %11,%0" "\n\t" /* %11 += carry*/
- " mul %6,%7" "\n\t" /* r1:r0 = HI(f) * LO(t)*/
- " add %1,r0" "\n\t" /* %1 += LO(HI(f) * LO(t))*/
- " adc %10,r1" "\n\t" /* %10 += HI(HI(f) * LO(t))*/
- " adc %11,%0" "\n\t" /* %11 += carry*/
- " mul %6,%8" "\n\t" /* r1:r0 = HI(f) * HI(t)*/
- " add %10,r0" "\n\t" /* %10 += LO(HI(f) * HI(t))*/
- " adc %11,r1" "\n\t" /* %11 += HI(HI(f) * HI(t))*/
- " mov %5,%10" "\n\t" /* %6:%5 =*/
- " mov %6,%11" "\n\t" /* f = %10:%11*/
-
- /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
- /* acc -= v; */
- " lds %10, bezier_A" "\n\t" /* %10 = LO(bezier_A)*/
- " mul %10,%5" "\n\t" /* r1:r0 = LO(bezier_A) * LO(f)*/
- " sub %9,r1" "\n\t"
- " sbc %2,%0" "\n\t"
- " sbc %3,%0" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
- " lds %11, bezier_A+1" "\n\t" /* %11 = MI(bezier_A)*/
- " mul %11,%5" "\n\t" /* r1:r0 = MI(bezier_A) * LO(f)*/
- " sub %9,r0" "\n\t"
- " sbc %2,r1" "\n\t"
- " sbc %3,%0" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
- " lds %1, bezier_A+2" "\n\t" /* %1 = HI(bezier_A)*/
- " mul %1,%5" "\n\t" /* r1:r0 = MI(bezier_A) * LO(f)*/
- " sub %2,r0" "\n\t"
- " sbc %3,r1" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
- " mul %10,%6" "\n\t" /* r1:r0 = LO(bezier_A) * MI(f)*/
- " sub %9,r0" "\n\t"
- " sbc %2,r1" "\n\t"
- " sbc %3,%0" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
- " mul %11,%6" "\n\t" /* r1:r0 = MI(bezier_A) * MI(f)*/
- " sub %2,r0" "\n\t"
- " sbc %3,r1" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
- " mul %1,%6" "\n\t" /* r1:r0 = HI(bezier_A) * LO(f)*/
- " sub %3,r0" "\n\t"
- " sbc %4,r1" "\n\t" /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
- " jmp 2f" "\n\t" /* Done!*/
-
- "1:" "\n\t"
-
- /* uint24_t v; */
- /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
- /* acc += v; */
- " lds %10, bezier_C" "\n\t" /* %10 = LO(bezier_C)*/
- " mul %10,%5" "\n\t" /* r1:r0 = LO(bezier_C) * LO(f)*/
- " add %9,r1" "\n\t"
- " adc %2,%0" "\n\t"
- " adc %3,%0" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
- " lds %11, bezier_C+1" "\n\t" /* %11 = MI(bezier_C)*/
- " mul %11,%5" "\n\t" /* r1:r0 = MI(bezier_C) * LO(f)*/
- " add %9,r0" "\n\t"
- " adc %2,r1" "\n\t"
- " adc %3,%0" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
- " lds %1, bezier_C+2" "\n\t" /* %1 = HI(bezier_C)*/
- " mul %1,%5" "\n\t" /* r1:r0 = MI(bezier_C) * LO(f)*/
- " add %2,r0" "\n\t"
- " adc %3,r1" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
- " mul %10,%6" "\n\t" /* r1:r0 = LO(bezier_C) * MI(f)*/
- " add %9,r0" "\n\t"
- " adc %2,r1" "\n\t"
- " adc %3,%0" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
- " mul %11,%6" "\n\t" /* r1:r0 = MI(bezier_C) * MI(f)*/
- " add %2,r0" "\n\t"
- " adc %3,r1" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
- " mul %1,%6" "\n\t" /* r1:r0 = HI(bezier_C) * LO(f)*/
- " add %3,r0" "\n\t"
- " adc %4,r1" "\n\t" /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
-
- /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
- " mul %5,%7" "\n\t" /* r1:r0 = LO(f) * LO(t)*/
- " mov %1,r1" "\n\t" /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
- " clr %10" "\n\t" /* %10 = 0*/
- " clr %11" "\n\t" /* %11 = 0*/
- " mul %5,%8" "\n\t" /* r1:r0 = LO(f) * HI(t)*/
- " add %1,r0" "\n\t" /* %1 += LO(LO(f) * HI(t))*/
- " adc %10,r1" "\n\t" /* %10 = HI(LO(f) * HI(t))*/
- " adc %11,%0" "\n\t" /* %11 += carry*/
- " mul %6,%7" "\n\t" /* r1:r0 = HI(f) * LO(t)*/
- " add %1,r0" "\n\t" /* %1 += LO(HI(f) * LO(t))*/
- " adc %10,r1" "\n\t" /* %10 += HI(HI(f) * LO(t))*/
- " adc %11,%0" "\n\t" /* %11 += carry*/
- " mul %6,%8" "\n\t" /* r1:r0 = HI(f) * HI(t)*/
- " add %10,r0" "\n\t" /* %10 += LO(HI(f) * HI(t))*/
- " adc %11,r1" "\n\t" /* %11 += HI(HI(f) * HI(t))*/
- " mov %5,%10" "\n\t" /* %6:%5 =*/
- " mov %6,%11" "\n\t" /* f = %10:%11*/
-
- /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
- /* acc -= v;*/
- " lds %10, bezier_B" "\n\t" /* %10 = LO(bezier_B)*/
- " mul %10,%5" "\n\t" /* r1:r0 = LO(bezier_B) * LO(f)*/
- " sub %9,r1" "\n\t"
- " sbc %2,%0" "\n\t"
- " sbc %3,%0" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
- " lds %11, bezier_B+1" "\n\t" /* %11 = MI(bezier_B)*/
- " mul %11,%5" "\n\t" /* r1:r0 = MI(bezier_B) * LO(f)*/
- " sub %9,r0" "\n\t"
- " sbc %2,r1" "\n\t"
- " sbc %3,%0" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
- " lds %1, bezier_B+2" "\n\t" /* %1 = HI(bezier_B)*/
- " mul %1,%5" "\n\t" /* r1:r0 = MI(bezier_B) * LO(f)*/
- " sub %2,r0" "\n\t"
- " sbc %3,r1" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
- " mul %10,%6" "\n\t" /* r1:r0 = LO(bezier_B) * MI(f)*/
- " sub %9,r0" "\n\t"
- " sbc %2,r1" "\n\t"
- " sbc %3,%0" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
- " mul %11,%6" "\n\t" /* r1:r0 = MI(bezier_B) * MI(f)*/
- " sub %2,r0" "\n\t"
- " sbc %3,r1" "\n\t"
- " sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
- " mul %1,%6" "\n\t" /* r1:r0 = HI(bezier_B) * LO(f)*/
- " sub %3,r0" "\n\t"
- " sbc %4,r1" "\n\t" /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
-
- /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
- " mul %5,%7" "\n\t" /* r1:r0 = LO(f) * LO(t)*/
- " mov %1,r1" "\n\t" /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
- " clr %10" "\n\t" /* %10 = 0*/
- " clr %11" "\n\t" /* %11 = 0*/
- " mul %5,%8" "\n\t" /* r1:r0 = LO(f) * HI(t)*/
- " add %1,r0" "\n\t" /* %1 += LO(LO(f) * HI(t))*/
- " adc %10,r1" "\n\t" /* %10 = HI(LO(f) * HI(t))*/
- " adc %11,%0" "\n\t" /* %11 += carry*/
- " mul %6,%7" "\n\t" /* r1:r0 = HI(f) * LO(t)*/
- " add %1,r0" "\n\t" /* %1 += LO(HI(f) * LO(t))*/
- " adc %10,r1" "\n\t" /* %10 += HI(HI(f) * LO(t))*/
- " adc %11,%0" "\n\t" /* %11 += carry*/
- " mul %6,%8" "\n\t" /* r1:r0 = HI(f) * HI(t)*/
- " add %10,r0" "\n\t" /* %10 += LO(HI(f) * HI(t))*/
- " adc %11,r1" "\n\t" /* %11 += HI(HI(f) * HI(t))*/
- " mov %5,%10" "\n\t" /* %6:%5 =*/
- " mov %6,%11" "\n\t" /* f = %10:%11*/
-
- /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
- /* acc += v; */
- " lds %10, bezier_A" "\n\t" /* %10 = LO(bezier_A)*/
- " mul %10,%5" "\n\t" /* r1:r0 = LO(bezier_A) * LO(f)*/
- " add %9,r1" "\n\t"
- " adc %2,%0" "\n\t"
- " adc %3,%0" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
- " lds %11, bezier_A+1" "\n\t" /* %11 = MI(bezier_A)*/
- " mul %11,%5" "\n\t" /* r1:r0 = MI(bezier_A) * LO(f)*/
- " add %9,r0" "\n\t"
- " adc %2,r1" "\n\t"
- " adc %3,%0" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
- " lds %1, bezier_A+2" "\n\t" /* %1 = HI(bezier_A)*/
- " mul %1,%5" "\n\t" /* r1:r0 = MI(bezier_A) * LO(f)*/
- " add %2,r0" "\n\t"
- " adc %3,r1" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
- " mul %10,%6" "\n\t" /* r1:r0 = LO(bezier_A) * MI(f)*/
- " add %9,r0" "\n\t"
- " adc %2,r1" "\n\t"
- " adc %3,%0" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
- " mul %11,%6" "\n\t" /* r1:r0 = MI(bezier_A) * MI(f)*/
- " add %2,r0" "\n\t"
- " adc %3,r1" "\n\t"
- " adc %4,%0" "\n\t" /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
- " mul %1,%6" "\n\t" /* r1:r0 = HI(bezier_A) * LO(f)*/
- " add %3,r0" "\n\t"
- " adc %4,r1" "\n\t" /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
- "2:" "\n\t"
- " clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
- : "+r"(r0),
- "+r"(r1),
- "+r"(r2),
- "+r"(r3),
- "+r"(r4),
- "+r"(r5),
- "+r"(r6),
- "+r"(r7),
- "+r"(r8),
- "+r"(r9),
- "+r"(r10),
- "+r"(r11)
- :
- :"cc","r0","r1"
- );
- return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
- }
-
- #else
-
- // For all the other 32bit CPUs
- FORCE_INLINE void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
- // Calculate the Bézier coefficients
- bezier_A = 768 * (v1 - v0);
- bezier_B = 1920 * (v0 - v1);
- bezier_C = 1280 * (v1 - v0);
- bezier_F = 128 * v0;
- bezier_AV = av;
- }
-
- FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
- #if defined(__ARM__) || defined(__thumb__)
-
- // For ARM Cortex M3/M4 CPUs, we have the optimized assembler version, that takes 43 cycles to execute
- register uint32_t flo = 0;
- register uint32_t fhi = bezier_AV * curr_step;
- register uint32_t t = fhi;
- register int32_t alo = bezier_F;
- register int32_t ahi = 0;
- register int32_t A = bezier_A;
- register int32_t B = bezier_B;
- register int32_t C = bezier_C;
-
- __asm__ __volatile__(
- ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
- " lsrs %[ahi],%[alo],#1" "\n\t" // a = F << 31 1 cycles
- " lsls %[alo],%[alo],#31" "\n\t" // 1 cycles
- " umull %[flo],%[fhi],%[fhi],%[t]" "\n\t" // f *= t 5 cycles [fhi:flo=64bits]
- " umull %[flo],%[fhi],%[fhi],%[t]" "\n\t" // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
- " lsrs %[flo],%[fhi],#1" "\n\t" // 1 cycles [31bits]
- " smlal %[alo],%[ahi],%[flo],%[C]" "\n\t" // a+=(f>>33)*C; 5 cycles
- " umull %[flo],%[fhi],%[fhi],%[t]" "\n\t" // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
- " lsrs %[flo],%[fhi],#1" "\n\t" // 1 cycles [31bits]
- " smlal %[alo],%[ahi],%[flo],%[B]" "\n\t" // a+=(f>>33)*B; 5 cycles
- " umull %[flo],%[fhi],%[fhi],%[t]" "\n\t" // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
- " lsrs %[flo],%[fhi],#1" "\n\t" // f>>=33; 1 cycles [31bits]
- " smlal %[alo],%[ahi],%[flo],%[A]" "\n\t" // a+=(f>>33)*A; 5 cycles
- " lsrs %[alo],%[ahi],#6" "\n\t" // a>>=38 1 cycles
- : [alo]"+r"( alo ) ,
- [flo]"+r"( flo ) ,
- [fhi]"+r"( fhi ) ,
- [ahi]"+r"( ahi ) ,
- [A]"+r"( A ) , // <== Note: Even if A, B, C, and t registers are INPUT ONLY
- [B]"+r"( B ) , // GCC does bad optimizations on the code if we list them as
- [C]"+r"( C ) , // such, breaking this function. So, to avoid that problem,
- [t]"+r"( t ) // we list all registers as input-outputs.
- :
- : "cc"
- );
- return alo;
-
- #else
-
- // For non ARM targets, we provide a fallback implementation. Really doubt it
- // will be useful, unless the processor is fast and 32bit
-
- uint32_t t = bezier_AV * curr_step; // t: Range 0 - 1^32 = 32 bits
- uint64_t f = t;
- f *= t; // Range 32*2 = 64 bits (unsigned)
- f >>= 32; // Range 32 bits (unsigned)
- f *= t; // Range 32*2 = 64 bits (unsigned)
- f >>= 32; // Range 32 bits : f = t^3 (unsigned)
- int64_t acc = (int64_t) bezier_F << 31; // Range 63 bits (signed)
- acc += ((uint32_t) f >> 1) * (int64_t) bezier_C; // Range 29bits + 31 = 60bits (plus sign)
- f *= t; // Range 32*2 = 64 bits
- f >>= 32; // Range 32 bits : f = t^3 (unsigned)
- acc += ((uint32_t) f >> 1) * (int64_t) bezier_B; // Range 29bits + 31 = 60bits (plus sign)
- f *= t; // Range 32*2 = 64 bits
- f >>= 32; // Range 32 bits : f = t^3 (unsigned)
- acc += ((uint32_t) f >> 1) * (int64_t) bezier_A; // Range 28bits + 31 = 59bits (plus sign)
- acc >>= (31 + 7); // Range 24bits (plus sign)
- return (int32_t) acc;
-
- #endif
- }
- #endif
- #endif // BEZIER_JERK_CONTROL
-
- /**
- * Stepper Driver Interrupt
- *
- * Directly pulses the stepper motors at high frequency.
- *
- * AVR :
- * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
- *
- * OCR1A Frequency
- * 1 2 MHz
- * 50 40 KHz
- * 100 20 KHz - capped max rate
- * 200 10 KHz - nominal max rate
- * 2000 1 KHz - sleep rate
- * 4000 500 Hz - init rate
- */
-
- HAL_STEP_TIMER_ISR {
- HAL_timer_isr_prologue(STEP_TIMER_NUM);
- #if ENABLED(LIN_ADVANCE)
- Stepper::advance_isr_scheduler();
- #else
- Stepper::isr();
- #endif
- }
-
- void Stepper::isr() {
-
- #define ENDSTOP_NOMINAL_OCR_VAL 1500 * HAL_TICKS_PER_US // Check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
- #define OCR_VAL_TOLERANCE 500 * HAL_TICKS_PER_US // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
-
- #if DISABLED(LIN_ADVANCE)
- // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
- DISABLE_TEMPERATURE_INTERRUPT(); // Temperature ISR
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- #ifndef CPU_32_BIT
- sei();
- #endif
- #endif
-
- hal_timer_t ocr_val;
- static uint32_t step_remaining = 0; // SPLIT function always runs. This allows 16 bit timers to be
- // used to generate the stepper ISR.
- #define SPLIT(L) do { \
- if (L > ENDSTOP_NOMINAL_OCR_VAL) { \
- const uint32_t remainder = (uint32_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
- ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
- step_remaining = (uint32_t)L - ocr_val; \
- } \
- else \
- ocr_val = L;\
- }while(0)
-
- // Time remaining before the next step?
- if (step_remaining) {
-
- // Make sure endstops are updated
- if (ENDSTOPS_ENABLED) endstops.update();
-
- // Next ISR either for endstops or stepping
- ocr_val = step_remaining <= ENDSTOP_NOMINAL_OCR_VAL ? step_remaining : ENDSTOP_NOMINAL_OCR_VAL;
- step_remaining -= ocr_val;
- _NEXT_ISR(ocr_val);
-
- #if DISABLED(LIN_ADVANCE)
- HAL_timer_restrain(STEP_TIMER_NUM, STEP_TIMER_MIN_INTERVAL * HAL_TICKS_PER_US);
- HAL_ENABLE_ISRs();
- #endif
-
- return;
- }
-
- //
- // When cleaning, discard the current block and run fast
- //
- if (cleaning_buffer_counter) {
- if (cleaning_buffer_counter < 0) { // Count up for endstop hit
- if (current_block) planner.discard_current_block(); // Discard the active block that led to the trigger
- if (!planner.discard_continued_block()) // Discard next CONTINUED block
- cleaning_buffer_counter = 0; // Keep discarding until non-CONTINUED
- }
- else {
- planner.discard_current_block();
- --cleaning_buffer_counter; // Count down for abort print
- #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
- if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
- #endif
- }
- current_block = NULL; // Prep to get a new block after cleaning
- _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 10000); // Run at max speed - 10 KHz
- HAL_ENABLE_ISRs();
- return;
- }
-
- // If there is no current block, attempt to pop one from the buffer
- if (!current_block) {
-
- // Anything in the buffer?
- if ((current_block = planner.get_current_block())) {
-
- // Initialize the trapezoid generator from the current block.
- static int8_t last_extruder = -1;
-
- #if ENABLED(LIN_ADVANCE)
- #if E_STEPPERS > 1
- if (current_block->active_extruder != last_extruder) {
- current_adv_steps = 0; // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
- LA_active_extruder = current_block->active_extruder;
- }
- #endif
-
- if ((use_advance_lead = current_block->use_advance_lead)) {
- LA_decelerate_after = current_block->decelerate_after;
- final_adv_steps = current_block->final_adv_steps;
- max_adv_steps = current_block->max_adv_steps;
- }
- #endif
-
- if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
- last_direction_bits = current_block->direction_bits;
- last_extruder = current_block->active_extruder;
- set_directions();
- }
-
- // No acceleration / deceleration time elapsed so far
- acceleration_time = deceleration_time = 0;
-
- // No step events completed so far
- step_events_completed = 0;
-
- // step_rate to timer interval
- OCR1A_nominal = calc_timer_interval(current_block->nominal_rate);
-
- // make a note of the number of step loops required at nominal speed
- step_loops_nominal = step_loops;
-
- #if DISABLED(BEZIER_JERK_CONTROL)
- // Set as deceleration point the initial rate of the block
- acc_step_rate = current_block->initial_rate;
- #endif
-
- #if ENABLED(BEZIER_JERK_CONTROL)
- // Initialize the Bézier speed curve
- _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
-
- // We have not started the 2nd half of the trapezoid
- bezier_2nd_half = false;
- #endif
-
- // Initialize Bresenham counters to 1/2 the ceiling
- counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(i)
- counter_m[i] = -(current_block->mix_event_count[i] >> 1);
- #endif
-
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
- // No 'change' can be detected.
- #endif
-
- #if ENABLED(Z_LATE_ENABLE)
- // If delayed Z enable, postpone move for 1mS
- if (current_block->steps[Z_AXIS] > 0) {
- enable_Z();
- _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz
- HAL_ENABLE_ISRs();
- return;
- }
- #endif
- }
- else {
- // If no more queued moves, postpone next check for 1mS
- _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz
- HAL_ENABLE_ISRs();
- return;
- }
- }
-
- // Update endstops state, if enabled
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- if (e_hit && ENDSTOPS_ENABLED) {
- endstops.update();
- e_hit--;
- }
- #else
- if (ENDSTOPS_ENABLED) endstops.update();
- #endif
-
- // Take multiple steps per interrupt (For high speed moves)
- bool all_steps_done = false;
- for (uint8_t i = step_loops; i--;) {
-
- #define _COUNTER(AXIS) counter_## AXIS
- #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
- #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
-
- // Advance the Bresenham counter; start a pulse if the axis needs a step
- #define PULSE_START(AXIS) do{ \
- _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
- if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), 0); } \
- }while(0)
-
- // Advance the Bresenham counter; start a pulse if the axis needs a step
- #define STEP_TICK(AXIS) do { \
- if (_COUNTER(AXIS) > 0) { \
- _COUNTER(AXIS) -= current_block->step_event_count; \
- count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
- } \
- }while(0)
-
- // Stop an active pulse, if any
- #define PULSE_STOP(AXIS) _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), 0)
-
- /**
- * Estimate the number of cycles that the stepper logic already takes
- * up between the start and stop of the X stepper pulse.
- *
- * Currently this uses very modest estimates of around 5 cycles.
- * True values may be derived by careful testing.
- *
- * Once any delay is added, the cost of the delay code itself
- * may be subtracted from this value to get a more accurate delay.
- * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
- * Longer delays use a loop. The resolution is 8 cycles.
- */
- #if HAS_X_STEP
- #define _CYCLE_APPROX_1 5
- #else
- #define _CYCLE_APPROX_1 0
- #endif
- #if ENABLED(X_DUAL_STEPPER_DRIVERS)
- #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
- #else
- #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
- #endif
- #if HAS_Y_STEP
- #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
- #else
- #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
- #endif
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
- #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
- #else
- #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
- #endif
- #if HAS_Z_STEP
- #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
- #else
- #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
- #endif
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
- #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
- #else
- #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
- #endif
- #if DISABLED(LIN_ADVANCE)
- #if ENABLED(MIXING_EXTRUDER)
- #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
- #else
- #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
- #endif
- #else
- #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
- #endif
-
- #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
- #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
-
- /**
- * If a minimum pulse time was specified get the timer 0 value.
- *
- * On AVR the TCNT0 timer has an 8x prescaler, so it increments every 8 cycles.
- * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
- * 20 counts of TCNT0 -by itself- is a good pulse delay.
- * 10µs = 160 or 200 cycles.
- */
- #if EXTRA_CYCLES_XYZE > 20
- hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM);
- #endif
-
- #if HAS_X_STEP
- PULSE_START(X);
- #endif
- #if HAS_Y_STEP
- PULSE_START(Y);
- #endif
- #if HAS_Z_STEP
- PULSE_START(Z);
- #endif
-
- #if ENABLED(LIN_ADVANCE)
- counter_E += current_block->steps[E_AXIS];
- if (counter_E > 0) {
- #if DISABLED(MIXING_EXTRUDER)
- // Don't step E here for mixing extruder
- motor_direction(E_AXIS) ? --e_steps : ++e_steps;
- #endif
- }
-
- #if ENABLED(MIXING_EXTRUDER)
- // Step mixing steppers proportionally
- const bool dir = motor_direction(E_AXIS);
- MIXING_STEPPERS_LOOP(j) {
- counter_m[j] += current_block->steps[E_AXIS];
- if (counter_m[j] > 0) {
- counter_m[j] -= current_block->mix_event_count[j];
- dir ? --e_steps[j] : ++e_steps[j];
- }
- }
- #endif
-
- #else // !LIN_ADVANCE - use linear interpolation for E also
-
- #if ENABLED(MIXING_EXTRUDER)
- // Keep updating the single E axis
- counter_E += current_block->steps[E_AXIS];
- // Tick the counters used for this mix
- MIXING_STEPPERS_LOOP(j) {
- // Step mixing steppers (proportionally)
- counter_m[j] += current_block->steps[E_AXIS];
- // Step when the counter goes over zero
- if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
- }
- #else // !MIXING_EXTRUDER
- PULSE_START(E);
- #endif
- #endif // !LIN_ADVANCE
-
- #if HAS_X_STEP
- STEP_TICK(X);
- #endif
- #if HAS_Y_STEP
- STEP_TICK(Y);
- #endif
- #if HAS_Z_STEP
- STEP_TICK(Z);
- #endif
-
- STEP_TICK(E); // Always tick the single E axis
-
- // For minimum pulse time wait before stopping pulses
- #if EXTRA_CYCLES_XYZE > 20
- while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
- pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM);
- #elif EXTRA_CYCLES_XYZE > 0
- DELAY_NOPS(EXTRA_CYCLES_XYZE);
- #endif
-
- #if HAS_X_STEP
- PULSE_STOP(X);
- #endif
- #if HAS_Y_STEP
- PULSE_STOP(Y);
- #endif
- #if HAS_Z_STEP
- PULSE_STOP(Z);
- #endif
-
- #if DISABLED(LIN_ADVANCE)
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(j) {
- if (counter_m[j] > 0) {
- counter_m[j] -= current_block->mix_event_count[j];
- En_STEP_WRITE(j, INVERT_E_STEP_PIN);
- }
- }
- #else // !MIXING_EXTRUDER
- PULSE_STOP(E);
- #endif
- #endif // !LIN_ADVANCE
-
- if (++step_events_completed >= current_block->step_event_count) {
- all_steps_done = true;
- break;
- }
-
- // For minimum pulse time wait after stopping pulses also
- #if EXTRA_CYCLES_XYZE > 20
- if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
- #elif EXTRA_CYCLES_XYZE > 0
- if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
- #endif
-
- } // steps_loop
-
- // Calculate new timer value
- if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
-
- #if ENABLED(BEZIER_JERK_CONTROL)
- // Get the next speed to use (Jerk limited!)
- hal_timer_t acc_step_rate =
- acceleration_time < current_block->acceleration_time
- ? _eval_bezier_curve(acceleration_time)
- : current_block->cruise_rate;
- #else
- #ifdef CPU_32_BIT
- MultiU32X24toH32(acc_step_rate, acceleration_time, current_block->acceleration_rate);
- #else
- MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
- #endif
- acc_step_rate += current_block->initial_rate;
-
- // upper limit
- NOMORE(acc_step_rate, current_block->nominal_rate);
- #endif
-
- // step_rate to timer interval
- const hal_timer_t interval = calc_timer_interval(acc_step_rate);
-
- SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
- _NEXT_ISR(ocr_val);
-
- acceleration_time += interval;
-
- #if ENABLED(LIN_ADVANCE)
- if (current_block->use_advance_lead) {
- if (step_events_completed == step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) {
- nextAdvanceISR = 0; // Wake up eISR on first acceleration loop and fire ISR if final adv_rate is reached
- eISR_Rate = current_block->advance_speed;
- }
- }
- else {
- eISR_Rate = ADV_NEVER;
- if (e_steps) nextAdvanceISR = 0;
- }
- #endif // LIN_ADVANCE
- }
- else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
- hal_timer_t step_rate;
-
- #if ENABLED(BEZIER_JERK_CONTROL)
- // If this is the 1st time we process the 2nd half of the trapezoid...
- if (!bezier_2nd_half) {
-
- // Initialize the Bézier speed curve
- _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
- bezier_2nd_half = true;
- }
-
- // Calculate the next speed to use
- step_rate = deceleration_time < current_block->deceleration_time
- ? _eval_bezier_curve(deceleration_time)
- : current_block->final_rate;
- #else
-
- // Using the old trapezoidal control
- #ifdef CPU_32_BIT
- MultiU32X24toH32(step_rate, deceleration_time, current_block->acceleration_rate);
- #else
- MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
- #endif
-
- if (step_rate < acc_step_rate) { // Still decelerating?
- step_rate = acc_step_rate - step_rate;
- NOLESS(step_rate, current_block->final_rate);
- }
- else
- step_rate = current_block->final_rate;
- #endif
-
- // step_rate to timer interval
- const hal_timer_t interval = calc_timer_interval(step_rate);
-
- SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
- _NEXT_ISR(ocr_val);
-
- deceleration_time += interval;
-
- #if ENABLED(LIN_ADVANCE)
- if (current_block->use_advance_lead) {
- if (step_events_completed <= (uint32_t)current_block->decelerate_after + step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) {
- nextAdvanceISR = 0; // Wake up eISR on first deceleration loop
- eISR_Rate = current_block->advance_speed;
- }
- }
- else {
- eISR_Rate = ADV_NEVER;
- if (e_steps) nextAdvanceISR = 0;
- }
- #endif // LIN_ADVANCE
- }
- else {
-
- #if ENABLED(LIN_ADVANCE)
- // If we have esteps to execute, fire the next advance_isr "now"
- if (e_steps && eISR_Rate != current_block->advance_speed) nextAdvanceISR = 0;
- #endif
-
- SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
- _NEXT_ISR(ocr_val);
-
- // ensure we're running at the correct step rate, even if we just came off an acceleration
- step_loops = step_loops_nominal;
- }
-
- #if DISABLED(LIN_ADVANCE)
- // Make sure stepper ISR doesn't monopolize the CPU
- HAL_timer_restrain(STEP_TIMER_NUM, STEP_TIMER_MIN_INTERVAL * HAL_TICKS_PER_US);
- #endif
-
- // If current block is finished, reset pointer
- if (all_steps_done) {
- current_block = NULL;
- planner.discard_current_block();
- }
- #if DISABLED(LIN_ADVANCE)
- HAL_ENABLE_ISRs();
- #endif
- }
-
- #if ENABLED(LIN_ADVANCE)
-
- #define CYCLES_EATEN_E (E_STEPPERS * 5)
- #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
-
- // Timer interrupt for E. e_steps is set in the main routine;
-
- void Stepper::advance_isr() {
-
- #if ENABLED(MK2_MULTIPLEXER) // For SNMM even-numbered steppers are reversed
- #define SET_E_STEP_DIR(INDEX) do{ if (e_steps) E0_DIR_WRITE(e_steps < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0)); }while(0)
- #elif ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
- #define SET_E_STEP_DIR(INDEX) do{ if (e_steps) { if (e_steps < 0) REV_E_DIR(); else NORM_E_DIR(); } }while(0)
- #else
- #define SET_E_STEP_DIR(INDEX) do{ if (e_steps) E## INDEX ##_DIR_WRITE(e_steps < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR); }while(0)
- #endif
-
- #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
- #define START_E_PULSE(INDEX) do{ if (e_steps) E_STEP_WRITE(!INVERT_E_STEP_PIN); }while(0)
- #define STOP_E_PULSE(INDEX) do{ if (e_steps) { E_STEP_WRITE(INVERT_E_STEP_PIN); e_steps < 0 ? ++e_steps : --e_steps; } }while(0)
- #else
- #define START_E_PULSE(INDEX) do{ if (e_steps) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); }while(0)
- #define STOP_E_PULSE(INDEX) do { if (e_steps) { e_steps < 0 ? ++e_steps : --e_steps; E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); } }while(0)
- #endif
-
- if (use_advance_lead) {
- if (step_events_completed > LA_decelerate_after && current_adv_steps > final_adv_steps) {
- e_steps--;
- current_adv_steps--;
- nextAdvanceISR = eISR_Rate;
- }
- else if (step_events_completed < LA_decelerate_after && current_adv_steps < max_adv_steps) {
- //step_events_completed <= (uint32_t)current_block->accelerate_until) {
- e_steps++;
- current_adv_steps++;
- nextAdvanceISR = eISR_Rate;
- }
- else {
- nextAdvanceISR = ADV_NEVER;
- eISR_Rate = ADV_NEVER;
- }
- }
- else
- nextAdvanceISR = ADV_NEVER;
-
- switch (LA_active_extruder) {
- case 0: SET_E_STEP_DIR(0); break;
- #if EXTRUDERS > 1
- case 1: SET_E_STEP_DIR(1); break;
- #if EXTRUDERS > 2
- case 2: SET_E_STEP_DIR(2); break;
- #if EXTRUDERS > 3
- case 3: SET_E_STEP_DIR(3); break;
- #if EXTRUDERS > 4
- case 4: SET_E_STEP_DIR(4); break;
- #endif // EXTRUDERS > 4
- #endif // EXTRUDERS > 3
- #endif // EXTRUDERS > 2
- #endif // EXTRUDERS > 1
- }
-
- // Step E stepper if we have steps
- while (e_steps) {
-
- #if EXTRA_CYCLES_E > 20
- hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM);
- #endif
-
- switch (LA_active_extruder) {
- case 0: START_E_PULSE(0); break;
- #if EXTRUDERS > 1
- case 1: START_E_PULSE(1); break;
- #if EXTRUDERS > 2
- case 2: START_E_PULSE(2); break;
- #if EXTRUDERS > 3
- case 3: START_E_PULSE(3); break;
- #if EXTRUDERS > 4
- case 4: START_E_PULSE(4); break;
- #endif // EXTRUDERS > 4
- #endif // EXTRUDERS > 3
- #endif // EXTRUDERS > 2
- #endif // EXTRUDERS > 1
- }
-
- // For minimum pulse time wait before stopping pulses
- #if EXTRA_CYCLES_E > 20
- while (EXTRA_CYCLES_E > (hal_timer_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
- pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM);
- #elif EXTRA_CYCLES_E > 0
- DELAY_NOPS(EXTRA_CYCLES_E);
- #endif
-
- switch (LA_active_extruder) {
- case 0: STOP_E_PULSE(0); break;
- #if EXTRUDERS > 1
- case 1: STOP_E_PULSE(1); break;
- #if EXTRUDERS > 2
- case 2: STOP_E_PULSE(2); break;
- #if EXTRUDERS > 3
- case 3: STOP_E_PULSE(3); break;
- #if EXTRUDERS > 4
- case 4: STOP_E_PULSE(4); break;
- #endif // EXTRUDERS > 4
- #endif // EXTRUDERS > 3
- #endif // EXTRUDERS > 2
- #endif // EXTRUDERS > 1
- }
-
- // For minimum pulse time wait before looping
- #if EXTRA_CYCLES_E > 20
- if (e_steps) while (EXTRA_CYCLES_E > (hal_timer_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
- #elif EXTRA_CYCLES_E > 0
- if (e_steps) DELAY_NOPS(EXTRA_CYCLES_E);
- #endif
-
- } // e_steps
- }
-
- void Stepper::advance_isr_scheduler() {
- // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
- DISABLE_TEMPERATURE_INTERRUPT(); // Temperature ISR
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- sei();
-
- // Run main stepping ISR if flagged
- if (!nextMainISR) isr();
-
- // Run Advance stepping ISR if flagged
- if (!nextAdvanceISR) advance_isr();
-
- // Is the next advance ISR scheduled before the next main ISR?
- if (nextAdvanceISR <= nextMainISR) {
- // Set up the next interrupt
- HAL_timer_set_compare(STEP_TIMER_NUM, nextAdvanceISR);
- // New interval for the next main ISR
- if (nextMainISR) nextMainISR -= nextAdvanceISR;
- // Will call Stepper::advance_isr on the next interrupt
- nextAdvanceISR = 0;
- }
- else {
- // The next main ISR comes first
- HAL_timer_set_compare(STEP_TIMER_NUM, nextMainISR);
- // New interval for the next advance ISR, if any
- if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
- nextAdvanceISR -= nextMainISR;
- // Will call Stepper::isr on the next interrupt
- nextMainISR = 0;
- }
-
- // Make sure stepper ISR doesn't monopolize the CPU
- HAL_timer_restrain(STEP_TIMER_NUM, STEP_TIMER_MIN_INTERVAL * HAL_TICKS_PER_US);
-
- // Restore original ISR settings
- HAL_ENABLE_ISRs();
- }
-
- #endif // LIN_ADVANCE
-
- void Stepper::init() {
-
- // Init Digipot Motor Current
- #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
- digipot_init();
- #endif
-
- #if MB(ALLIGATOR)
- const float motor_current[] = MOTOR_CURRENT;
- unsigned int digipot_motor = 0;
- for (uint8_t i = 0; i < 3 + EXTRUDERS; i++) {
- digipot_motor = 255 * (motor_current[i] / 2.5);
- dac084s085::setValue(i, digipot_motor);
- }
- #endif//MB(ALLIGATOR)
-
- // Init Microstepping Pins
- #if HAS_MICROSTEPS
- microstep_init();
- #endif
-
- // Init Dir Pins
- #if HAS_X_DIR
- X_DIR_INIT;
- #endif
- #if HAS_X2_DIR
- X2_DIR_INIT;
- #endif
- #if HAS_Y_DIR
- Y_DIR_INIT;
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
- Y2_DIR_INIT;
- #endif
- #endif
- #if HAS_Z_DIR
- Z_DIR_INIT;
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
- Z2_DIR_INIT;
- #endif
- #endif
- #if HAS_E0_DIR
- E0_DIR_INIT;
- #endif
- #if HAS_E1_DIR
- E1_DIR_INIT;
- #endif
- #if HAS_E2_DIR
- E2_DIR_INIT;
- #endif
- #if HAS_E3_DIR
- E3_DIR_INIT;
- #endif
- #if HAS_E4_DIR
- E4_DIR_INIT;
- #endif
-
- // Init Enable Pins - steppers default to disabled.
- #if HAS_X_ENABLE
- X_ENABLE_INIT;
- if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
- #if (ENABLED(DUAL_X_CARRIAGE) || ENABLED(X_DUAL_STEPPER_DRIVERS)) && HAS_X2_ENABLE
- X2_ENABLE_INIT;
- if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_Y_ENABLE
- Y_ENABLE_INIT;
- if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
- Y2_ENABLE_INIT;
- if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_Z_ENABLE
- Z_ENABLE_INIT;
- if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
- Z2_ENABLE_INIT;
- if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_E0_ENABLE
- E0_ENABLE_INIT;
- if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E1_ENABLE
- E1_ENABLE_INIT;
- if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E2_ENABLE
- E2_ENABLE_INIT;
- if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E3_ENABLE
- E3_ENABLE_INIT;
- if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E4_ENABLE
- E4_ENABLE_INIT;
- if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
- #endif
-
- // Init endstops and pullups
- endstops.init();
-
- #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
- #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
- #define _DISABLE(AXIS) disable_## AXIS()
-
- #define AXIS_INIT(AXIS, PIN) \
- _STEP_INIT(AXIS); \
- _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
- _DISABLE(AXIS)
-
- #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
-
- // Init Step Pins
- #if HAS_X_STEP
- #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
- X2_STEP_INIT;
- X2_STEP_WRITE(INVERT_X_STEP_PIN);
- #endif
- AXIS_INIT(X, X);
- #endif
-
- #if HAS_Y_STEP
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
- Y2_STEP_INIT;
- Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
- #endif
- AXIS_INIT(Y, Y);
- #endif
-
- #if HAS_Z_STEP
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
- Z2_STEP_INIT;
- Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
- #endif
- AXIS_INIT(Z, Z);
- #endif
-
- #if HAS_E0_STEP
- E_AXIS_INIT(0);
- #endif
- #if HAS_E1_STEP
- E_AXIS_INIT(1);
- #endif
- #if HAS_E2_STEP
- E_AXIS_INIT(2);
- #endif
- #if HAS_E3_STEP
- E_AXIS_INIT(3);
- #endif
- #if HAS_E4_STEP
- E_AXIS_INIT(4);
- #endif
-
- #ifdef __AVR__
- // waveform generation = 0100 = CTC
- SET_WGM(1, CTC_OCRnA);
-
- // output mode = 00 (disconnected)
- SET_COMA(1, NORMAL);
-
- // Set the timer pre-scaler
- // Generally we use a divider of 8, resulting in a 2MHz timer
- // frequency on a 16MHz MCU. If you are going to change this, be
- // sure to regenerate speed_lookuptable.h with
- // create_speed_lookuptable.py
- SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
-
- // Init Stepper ISR to 122 Hz for quick starting
- OCR1A = 0x4000;
- TCNT1 = 0;
- #else
- // Init Stepper ISR to 122 Hz for quick starting
- HAL_timer_start(STEP_TIMER_NUM, 122);
- #endif
-
- ENABLE_STEPPER_DRIVER_INTERRUPT();
-
- endstops.enable(true); // Start with endstops active. After homing they can be disabled
- sei();
-
- set_directions(); // Init directions to last_direction_bits = 0
- }
-
-
- /**
- * Block until all buffered steps are executed / cleaned
- */
- void Stepper::synchronize() { while (planner.has_blocks_queued() || cleaning_buffer_counter) idle(); }
-
- /**
- * Set the stepper positions directly in steps
- *
- * The input is based on the typical per-axis XYZ steps.
- * For CORE machines XYZ needs to be translated to ABC.
- *
- * This allows get_axis_position_mm to correctly
- * derive the current XYZ position later on.
- */
- void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
-
- synchronize(); // Bad to set stepper counts in the middle of a move
-
- CRITICAL_SECTION_START;
-
- #if CORE_IS_XY
- // corexy positioning
- // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
- count_position[A_AXIS] = a + b;
- count_position[B_AXIS] = CORESIGN(a - b);
- count_position[Z_AXIS] = c;
- #elif CORE_IS_XZ
- // corexz planning
- count_position[A_AXIS] = a + c;
- count_position[Y_AXIS] = b;
- count_position[C_AXIS] = CORESIGN(a - c);
- #elif CORE_IS_YZ
- // coreyz planning
- count_position[X_AXIS] = a;
- count_position[B_AXIS] = b + c;
- count_position[C_AXIS] = CORESIGN(b - c);
- #else
- // default non-h-bot planning
- count_position[X_AXIS] = a;
- count_position[Y_AXIS] = b;
- count_position[Z_AXIS] = c;
- #endif
-
- count_position[E_AXIS] = e;
- CRITICAL_SECTION_END;
- }
-
- void Stepper::set_position(const AxisEnum &axis, const long &v) {
- CRITICAL_SECTION_START;
- count_position[axis] = v;
- CRITICAL_SECTION_END;
- }
-
- void Stepper::set_e_position(const long &e) {
- CRITICAL_SECTION_START;
- count_position[E_AXIS] = e;
- CRITICAL_SECTION_END;
- }
-
- /**
- * Get a stepper's position in steps.
- */
- long Stepper::position(const AxisEnum axis) {
- CRITICAL_SECTION_START;
- const long count_pos = count_position[axis];
- CRITICAL_SECTION_END;
- return count_pos;
- }
-
- /**
- * Get an axis position according to stepper position(s)
- * For CORE machines apply translation from ABC to XYZ.
- */
- float Stepper::get_axis_position_mm(const AxisEnum axis) {
- float axis_steps;
- #if IS_CORE
- // Requesting one of the "core" axes?
- if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
- CRITICAL_SECTION_START;
- // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
- // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
- axis_steps = 0.5f * (
- axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
- : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
- );
- CRITICAL_SECTION_END;
- }
- else
- axis_steps = position(axis);
- #else
- axis_steps = position(axis);
- #endif
- return axis_steps * planner.steps_to_mm[axis];
- }
-
- void Stepper::finish_and_disable() {
- synchronize();
- disable_all_steppers();
- }
-
- void Stepper::quick_stop() {
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- kill_current_block();
- current_block = NULL;
- cleaning_buffer_counter = 5000;
- planner.clear_block_buffer();
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- #if ENABLED(ULTRA_LCD)
- planner.clear_block_buffer_runtime();
- #endif
- }
-
- void Stepper::endstop_triggered(const AxisEnum axis) {
-
- #if IS_CORE
-
- endstops_trigsteps[axis] = 0.5f * (
- axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
- : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
- );
-
- #else // !COREXY && !COREXZ && !COREYZ
-
- endstops_trigsteps[axis] = count_position[axis];
-
- #endif // !COREXY && !COREXZ && !COREYZ
-
- kill_current_block();
- cleaning_buffer_counter = -1; // Discard the rest of the move
- }
-
- void Stepper::report_positions() {
- CRITICAL_SECTION_START;
- const long xpos = count_position[X_AXIS],
- ypos = count_position[Y_AXIS],
- zpos = count_position[Z_AXIS];
- CRITICAL_SECTION_END;
-
- #if CORE_IS_XY || CORE_IS_XZ || IS_DELTA || IS_SCARA
- SERIAL_PROTOCOLPGM(MSG_COUNT_A);
- #else
- SERIAL_PROTOCOLPGM(MSG_COUNT_X);
- #endif
- SERIAL_PROTOCOL(xpos);
-
- #if CORE_IS_XY || CORE_IS_YZ || IS_DELTA || IS_SCARA
- SERIAL_PROTOCOLPGM(" B:");
- #else
- SERIAL_PROTOCOLPGM(" Y:");
- #endif
- SERIAL_PROTOCOL(ypos);
-
- #if CORE_IS_XZ || CORE_IS_YZ || IS_DELTA
- SERIAL_PROTOCOLPGM(" C:");
- #else
- SERIAL_PROTOCOLPGM(" Z:");
- #endif
- SERIAL_PROTOCOL(zpos);
-
- SERIAL_EOL();
- }
-
- #if ENABLED(BABYSTEPPING)
-
- #if ENABLED(DELTA)
- #define CYCLES_EATEN_BABYSTEP (2 * 15)
- #else
- #define CYCLES_EATEN_BABYSTEP 0
- #endif
- #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
-
- #define _ENABLE(AXIS) enable_## AXIS()
- #define _READ_DIR(AXIS) AXIS ##_DIR_READ
- #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
- #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
-
- #if EXTRA_CYCLES_BABYSTEP > 20
- #define _SAVE_START const hal_timer_t pulse_start = HAL_timer_get_count(STEP_TIMER_NUM)
- #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(STEP_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
- #else
- #define _SAVE_START NOOP
- #if EXTRA_CYCLES_BABYSTEP > 0
- #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
- #elif STEP_PULSE_CYCLES > 0
- #define _PULSE_WAIT NOOP
- #elif ENABLED(DELTA)
- #define _PULSE_WAIT delayMicroseconds(2);
- #else
- #define _PULSE_WAIT delayMicroseconds(4);
- #endif
- #endif
-
- #define BABYSTEP_AXIS(AXIS, INVERT, DIR) { \
- const uint8_t old_dir = _READ_DIR(AXIS); \
- _ENABLE(AXIS); \
- _SAVE_START; \
- _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INVERT); \
- _PULSE_WAIT; \
- _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
- _PULSE_WAIT; \
- _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
- _APPLY_DIR(AXIS, old_dir); \
- }
-
- // MUST ONLY BE CALLED BY AN ISR,
- // No other ISR should ever interrupt this!
- void Stepper::babystep(const AxisEnum axis, const bool direction) {
- cli();
-
- switch (axis) {
-
- #if ENABLED(BABYSTEP_XY)
-
- case X_AXIS:
- #if CORE_IS_XY
- BABYSTEP_AXIS(X, false, direction);
- BABYSTEP_AXIS(Y, false, direction);
- #elif CORE_IS_XZ
- BABYSTEP_AXIS(X, false, direction);
- BABYSTEP_AXIS(Z, false, direction);
- #else
- BABYSTEP_AXIS(X, false, direction);
- #endif
- break;
-
- case Y_AXIS:
- #if CORE_IS_XY
- BABYSTEP_AXIS(X, false, direction);
- BABYSTEP_AXIS(Y, false, direction^(CORESIGN(1)<0));
- #elif CORE_IS_YZ
- BABYSTEP_AXIS(Y, false, direction);
- BABYSTEP_AXIS(Z, false, direction^(CORESIGN(1)<0));
- #else
- BABYSTEP_AXIS(Y, false, direction);
- #endif
- break;
-
- #endif
-
- case Z_AXIS: {
-
- #if CORE_IS_XZ
- BABYSTEP_AXIS(X, BABYSTEP_INVERT_Z, direction);
- BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction^(CORESIGN(1)<0));
-
- #elif CORE_IS_YZ
- BABYSTEP_AXIS(Y, BABYSTEP_INVERT_Z, direction);
- BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction^(CORESIGN(1)<0));
-
- #elif DISABLED(DELTA)
- BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction);
-
- #else // DELTA
-
- const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
-
- enable_X();
- enable_Y();
- enable_Z();
-
- const uint8_t old_x_dir_pin = X_DIR_READ,
- old_y_dir_pin = Y_DIR_READ,
- old_z_dir_pin = Z_DIR_READ;
-
- X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
- Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
- Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
-
- _SAVE_START;
-
- X_STEP_WRITE(!INVERT_X_STEP_PIN);
- Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
- Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
-
- _PULSE_WAIT;
-
- X_STEP_WRITE(INVERT_X_STEP_PIN);
- Y_STEP_WRITE(INVERT_Y_STEP_PIN);
- Z_STEP_WRITE(INVERT_Z_STEP_PIN);
-
- // Restore direction bits
- X_DIR_WRITE(old_x_dir_pin);
- Y_DIR_WRITE(old_y_dir_pin);
- Z_DIR_WRITE(old_z_dir_pin);
-
- #endif
-
- } break;
-
- default: break;
- }
- sei();
- }
-
- #endif // BABYSTEPPING
-
- /**
- * Software-controlled Stepper Motor Current
- */
-
- #if HAS_DIGIPOTSS
-
- // From Arduino DigitalPotControl example
- void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
- WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
- SPI.transfer(address); // Send the address and value via SPI
- SPI.transfer(value);
- WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
- //delay(10);
- }
-
- #endif // HAS_DIGIPOTSS
-
- #if HAS_MOTOR_CURRENT_PWM
-
- void Stepper::refresh_motor_power() {
- for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
- switch (i) {
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
- case 0:
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
- case 1:
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
- case 2:
- #endif
- digipot_current(i, motor_current_setting[i]);
- default: break;
- }
- }
- }
-
- #endif // HAS_MOTOR_CURRENT_PWM
-
- #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
-
- void Stepper::digipot_current(const uint8_t driver, const int current) {
-
- #if HAS_DIGIPOTSS
-
- const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
- digitalPotWrite(digipot_ch[driver], current);
-
- #elif HAS_MOTOR_CURRENT_PWM
-
- if (WITHIN(driver, 0, 2))
- motor_current_setting[driver] = current; // update motor_current_setting
-
- #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
- switch (driver) {
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
- case 0: _WRITE_CURRENT_PWM(XY); break;
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
- case 1: _WRITE_CURRENT_PWM(Z); break;
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
- case 2: _WRITE_CURRENT_PWM(E); break;
- #endif
- }
- #endif
- }
-
- void Stepper::digipot_init() {
-
- #if HAS_DIGIPOTSS
-
- static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
-
- SPI.begin();
- SET_OUTPUT(DIGIPOTSS_PIN);
-
- for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
- //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
- digipot_current(i, digipot_motor_current[i]);
- }
-
- #elif HAS_MOTOR_CURRENT_PWM
-
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
- SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
- SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
- SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
- #endif
-
- refresh_motor_power();
-
- // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
- SET_CS5(PRESCALER_1);
-
- #endif
- }
-
- #endif
-
- #if HAS_MICROSTEPS
-
- /**
- * Software-controlled Microstepping
- */
-
- void Stepper::microstep_init() {
- SET_OUTPUT(X_MS1_PIN);
- SET_OUTPUT(X_MS2_PIN);
- #if HAS_Y_MICROSTEPS
- SET_OUTPUT(Y_MS1_PIN);
- SET_OUTPUT(Y_MS2_PIN);
- #endif
- #if HAS_Z_MICROSTEPS
- SET_OUTPUT(Z_MS1_PIN);
- SET_OUTPUT(Z_MS2_PIN);
- #endif
- #if HAS_E0_MICROSTEPS
- SET_OUTPUT(E0_MS1_PIN);
- SET_OUTPUT(E0_MS2_PIN);
- #endif
- #if HAS_E1_MICROSTEPS
- SET_OUTPUT(E1_MS1_PIN);
- SET_OUTPUT(E1_MS2_PIN);
- #endif
- #if HAS_E2_MICROSTEPS
- SET_OUTPUT(E2_MS1_PIN);
- SET_OUTPUT(E2_MS2_PIN);
- #endif
- #if HAS_E3_MICROSTEPS
- SET_OUTPUT(E3_MS1_PIN);
- SET_OUTPUT(E3_MS2_PIN);
- #endif
- #if HAS_E4_MICROSTEPS
- SET_OUTPUT(E4_MS1_PIN);
- SET_OUTPUT(E4_MS2_PIN);
- #endif
- static const uint8_t microstep_modes[] = MICROSTEP_MODES;
- for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
- microstep_mode(i, microstep_modes[i]);
- }
-
- void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
- if (ms1 >= 0) switch (driver) {
- case 0: WRITE(X_MS1_PIN, ms1); break;
- #if HAS_Y_MICROSTEPS
- case 1: WRITE(Y_MS1_PIN, ms1); break;
- #endif
- #if HAS_Z_MICROSTEPS
- case 2: WRITE(Z_MS1_PIN, ms1); break;
- #endif
- #if HAS_E0_MICROSTEPS
- case 3: WRITE(E0_MS1_PIN, ms1); break;
- #endif
- #if HAS_E1_MICROSTEPS
- case 4: WRITE(E1_MS1_PIN, ms1); break;
- #endif
- #if HAS_E2_MICROSTEPS
- case 5: WRITE(E2_MS1_PIN, ms1); break;
- #endif
- #if HAS_E3_MICROSTEPS
- case 6: WRITE(E3_MS1_PIN, ms1); break;
- #endif
- #if HAS_E4_MICROSTEPS
- case 7: WRITE(E4_MS1_PIN, ms1); break;
- #endif
- }
- if (ms2 >= 0) switch (driver) {
- case 0: WRITE(X_MS2_PIN, ms2); break;
- #if HAS_Y_MICROSTEPS
- case 1: WRITE(Y_MS2_PIN, ms2); break;
- #endif
- #if HAS_Z_MICROSTEPS
- case 2: WRITE(Z_MS2_PIN, ms2); break;
- #endif
- #if HAS_E0_MICROSTEPS
- case 3: WRITE(E0_MS2_PIN, ms2); break;
- #endif
- #if HAS_E1_MICROSTEPS
- case 4: WRITE(E1_MS2_PIN, ms2); break;
- #endif
- #if HAS_E2_MICROSTEPS
- case 5: WRITE(E2_MS2_PIN, ms2); break;
- #endif
- #if HAS_E3_MICROSTEPS
- case 6: WRITE(E3_MS2_PIN, ms2); break;
- #endif
- #if HAS_E4_MICROSTEPS
- case 7: WRITE(E4_MS2_PIN, ms2); break;
- #endif
- }
- }
-
- void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
- switch (stepping_mode) {
- case 1: microstep_ms(driver, MICROSTEP1); break;
- #if ENABLED(HEROIC_STEPPER_DRIVERS)
- case 128: microstep_ms(driver, MICROSTEP128); break;
- #else
- case 2: microstep_ms(driver, MICROSTEP2); break;
- case 4: microstep_ms(driver, MICROSTEP4); break;
- #endif
- case 8: microstep_ms(driver, MICROSTEP8); break;
- case 16: microstep_ms(driver, MICROSTEP16); break;
- #if MB(ALLIGATOR)
- case 32: microstep_ms(driver, MICROSTEP32); break;
- #endif
- default: SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("Microsteps unavailable"); break;
- }
- }
-
- void Stepper::microstep_readings() {
- SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
- SERIAL_PROTOCOLPGM("X: ");
- SERIAL_PROTOCOL(READ(X_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
- #if HAS_Y_MICROSTEPS
- SERIAL_PROTOCOLPGM("Y: ");
- SERIAL_PROTOCOL(READ(Y_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
- #endif
- #if HAS_Z_MICROSTEPS
- SERIAL_PROTOCOLPGM("Z: ");
- SERIAL_PROTOCOL(READ(Z_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
- #endif
- #if HAS_E0_MICROSTEPS
- SERIAL_PROTOCOLPGM("E0: ");
- SERIAL_PROTOCOL(READ(E0_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
- #endif
- #if HAS_E1_MICROSTEPS
- SERIAL_PROTOCOLPGM("E1: ");
- SERIAL_PROTOCOL(READ(E1_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
- #endif
- #if HAS_E2_MICROSTEPS
- SERIAL_PROTOCOLPGM("E2: ");
- SERIAL_PROTOCOL(READ(E2_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
- #endif
- #if HAS_E3_MICROSTEPS
- SERIAL_PROTOCOLPGM("E3: ");
- SERIAL_PROTOCOL(READ(E3_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
- #endif
- #if HAS_E4_MICROSTEPS
- SERIAL_PROTOCOLPGM("E4: ");
- SERIAL_PROTOCOL(READ(E4_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
- #endif
- }
-
- #endif // HAS_MICROSTEPS
|