My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #if Z_MIN_PIN == -1
  26. #error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
  27. #endif
  28. #include "vector_3.h"
  29. #ifdef AUTO_BED_LEVELING_GRID
  30. #include "qr_solve.h"
  31. #endif
  32. #endif // ENABLE_AUTO_BED_LEVELING
  33. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. #endif
  187. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  188. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  189. int feedmultiply = 100; //100->1 200->2
  190. int saved_feedmultiply;
  191. int extrudemultiply = 100; //100->1 200->2
  192. int extruder_multiply[EXTRUDERS] = { 100
  193. #if EXTRUDERS > 1
  194. , 100
  195. #if EXTRUDERS > 2
  196. , 100
  197. #if EXTRUDERS > 3
  198. , 100
  199. #endif
  200. #endif
  201. #endif
  202. };
  203. bool volumetric_enabled = false;
  204. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  205. #if EXTRUDERS > 1
  206. , DEFAULT_NOMINAL_FILAMENT_DIA
  207. #if EXTRUDERS > 2
  208. , DEFAULT_NOMINAL_FILAMENT_DIA
  209. #if EXTRUDERS > 3
  210. , DEFAULT_NOMINAL_FILAMENT_DIA
  211. #endif
  212. #endif
  213. #endif
  214. };
  215. float volumetric_multiplier[EXTRUDERS] = {1.0
  216. #if EXTRUDERS > 1
  217. , 1.0
  218. #if EXTRUDERS > 2
  219. , 1.0
  220. #if EXTRUDERS > 3
  221. , 1.0
  222. #endif
  223. #endif
  224. #endif
  225. };
  226. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  227. float add_homing[3] = { 0, 0, 0 };
  228. #ifdef DELTA
  229. float endstop_adj[3] = { 0, 0, 0 };
  230. #endif
  231. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  232. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  233. bool axis_known_position[3] = { false, false, false };
  234. float zprobe_zoffset;
  235. // Extruder offset
  236. #if EXTRUDERS > 1
  237. #ifndef DUAL_X_CARRIAGE
  238. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  239. #else
  240. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  241. #endif
  242. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  243. #if defined(EXTRUDER_OFFSET_X)
  244. EXTRUDER_OFFSET_X
  245. #else
  246. 0
  247. #endif
  248. ,
  249. #if defined(EXTRUDER_OFFSET_Y)
  250. EXTRUDER_OFFSET_Y
  251. #else
  252. 0
  253. #endif
  254. };
  255. #endif
  256. uint8_t active_extruder = 0;
  257. int fanSpeed = 0;
  258. #ifdef SERVO_ENDSTOPS
  259. int servo_endstops[] = SERVO_ENDSTOPS;
  260. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  261. #endif
  262. #ifdef BARICUDA
  263. int ValvePressure = 0;
  264. int EtoPPressure = 0;
  265. #endif
  266. #ifdef FWRETRACT
  267. bool autoretract_enabled = false;
  268. bool retracted[EXTRUDERS] = { false
  269. #if EXTRUDERS > 1
  270. , false
  271. #if EXTRUDERS > 2
  272. , false
  273. #if EXTRUDERS > 3
  274. , false
  275. #endif
  276. #endif
  277. #endif
  278. };
  279. bool retracted_swap[EXTRUDERS] = { false
  280. #if EXTRUDERS > 1
  281. , false
  282. #if EXTRUDERS > 2
  283. , false
  284. #if EXTRUDERS > 3
  285. , false
  286. #endif
  287. #endif
  288. #endif
  289. };
  290. float retract_length = RETRACT_LENGTH;
  291. float retract_length_swap = RETRACT_LENGTH_SWAP;
  292. float retract_feedrate = RETRACT_FEEDRATE;
  293. float retract_zlift = RETRACT_ZLIFT;
  294. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  295. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  296. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  297. #endif // FWRETRACT
  298. #ifdef ULTIPANEL
  299. bool powersupply =
  300. #ifdef PS_DEFAULT_OFF
  301. false
  302. #else
  303. true
  304. #endif
  305. ;
  306. #endif
  307. #ifdef DELTA
  308. float delta[3] = { 0, 0, 0 };
  309. #define SIN_60 0.8660254037844386
  310. #define COS_60 0.5
  311. // these are the default values, can be overriden with M665
  312. float delta_radius = DELTA_RADIUS;
  313. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  314. float delta_tower1_y = -COS_60 * delta_radius;
  315. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  316. float delta_tower2_y = -COS_60 * delta_radius;
  317. float delta_tower3_x = 0; // back middle tower
  318. float delta_tower3_y = delta_radius;
  319. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  320. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  321. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  322. #ifdef ENABLE_AUTO_BED_LEVELING
  323. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  324. #endif
  325. #endif
  326. #ifdef SCARA
  327. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  328. static float delta[3] = { 0, 0, 0 };
  329. #endif
  330. bool cancel_heatup = false;
  331. #ifdef FILAMENT_SENSOR
  332. //Variables for Filament Sensor input
  333. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  334. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  335. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  336. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  337. int delay_index1=0; //index into ring buffer
  338. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  339. float delay_dist=0; //delay distance counter
  340. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  341. #endif
  342. #ifdef FILAMENT_RUNOUT_SENSOR
  343. static bool filrunoutEnqued = false;
  344. #endif
  345. const char errormagic[] PROGMEM = "Error:";
  346. const char echomagic[] PROGMEM = "echo:";
  347. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  348. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  349. static float offset[3] = { 0, 0, 0 };
  350. static bool home_all_axis = true;
  351. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  352. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  353. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  354. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  355. static bool fromsd[BUFSIZE];
  356. static int bufindr = 0;
  357. static int bufindw = 0;
  358. static int buflen = 0;
  359. static char serial_char;
  360. static int serial_count = 0;
  361. static boolean comment_mode = false;
  362. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  363. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  364. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  365. // Inactivity shutdown
  366. static unsigned long previous_millis_cmd = 0;
  367. static unsigned long max_inactive_time = 0;
  368. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  369. unsigned long starttime = 0; ///< Print job start time
  370. unsigned long stoptime = 0; ///< Print job stop time
  371. static uint8_t tmp_extruder;
  372. bool Stopped = false;
  373. #if NUM_SERVOS > 0
  374. Servo servos[NUM_SERVOS];
  375. #endif
  376. bool CooldownNoWait = true;
  377. bool target_direction;
  378. #ifdef CHDK
  379. unsigned long chdkHigh = 0;
  380. boolean chdkActive = false;
  381. #endif
  382. //===========================================================================
  383. //=============================Routines======================================
  384. //===========================================================================
  385. void get_arc_coordinates();
  386. bool setTargetedHotend(int code);
  387. void serial_echopair_P(const char *s_P, float v)
  388. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  389. void serial_echopair_P(const char *s_P, double v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, unsigned long v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. #ifdef SDSUPPORT
  394. #include "SdFatUtil.h"
  395. int freeMemory() { return SdFatUtil::FreeRam(); }
  396. #else
  397. extern "C" {
  398. extern unsigned int __bss_end;
  399. extern unsigned int __heap_start;
  400. extern void *__brkval;
  401. int freeMemory() {
  402. int free_memory;
  403. if ((int)__brkval == 0)
  404. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  405. else
  406. free_memory = ((int)&free_memory) - ((int)__brkval);
  407. return free_memory;
  408. }
  409. }
  410. #endif //!SDSUPPORT
  411. //Injects the next command from the pending sequence of commands, when possible
  412. //Return false if and only if no command was pending
  413. static bool drain_queued_commands_P()
  414. {
  415. char cmd[30];
  416. if(!queued_commands_P)
  417. return false;
  418. // Get the next 30 chars from the sequence of gcodes to run
  419. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  420. cmd[sizeof(cmd)-1]= 0;
  421. // Look for the end of line, or the end of sequence
  422. size_t i= 0;
  423. char c;
  424. while( (c= cmd[i]) && c!='\n' )
  425. ++i; // look for the end of this gcode command
  426. cmd[i]= 0;
  427. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  428. {
  429. if(c)
  430. queued_commands_P+= i+1; // move to next command
  431. else
  432. queued_commands_P= NULL; // will have no more commands in the sequence
  433. }
  434. return true;
  435. }
  436. //Record one or many commands to run from program memory.
  437. //Aborts the current queue, if any.
  438. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  439. void enquecommands_P(const char* pgcode)
  440. {
  441. queued_commands_P= pgcode;
  442. drain_queued_commands_P(); // first command exectuted asap (when possible)
  443. }
  444. //adds a single command to the main command buffer, from RAM
  445. //that is really done in a non-safe way.
  446. //needs overworking someday
  447. //Returns false if it failed to do so
  448. bool enquecommand(const char *cmd)
  449. {
  450. if(*cmd==';')
  451. return false;
  452. if(buflen >= BUFSIZE)
  453. return false;
  454. //this is dangerous if a mixing of serial and this happens
  455. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  456. SERIAL_ECHO_START;
  457. SERIAL_ECHOPGM(MSG_Enqueing);
  458. SERIAL_ECHO(cmdbuffer[bufindw]);
  459. SERIAL_ECHOLNPGM("\"");
  460. bufindw= (bufindw + 1)%BUFSIZE;
  461. buflen += 1;
  462. return true;
  463. }
  464. void setup_killpin()
  465. {
  466. #if defined(KILL_PIN) && KILL_PIN > -1
  467. SET_INPUT(KILL_PIN);
  468. WRITE(KILL_PIN,HIGH);
  469. #endif
  470. }
  471. void setup_filrunoutpin()
  472. {
  473. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  474. pinMode(FILRUNOUT_PIN,INPUT);
  475. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  476. WRITE(FILLRUNOUT_PIN,HIGH);
  477. #endif
  478. #endif
  479. }
  480. // Set home pin
  481. void setup_homepin(void)
  482. {
  483. #if defined(HOME_PIN) && HOME_PIN > -1
  484. SET_INPUT(HOME_PIN);
  485. WRITE(HOME_PIN,HIGH);
  486. #endif
  487. }
  488. void setup_photpin()
  489. {
  490. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  491. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  492. #endif
  493. }
  494. void setup_powerhold()
  495. {
  496. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  497. OUT_WRITE(SUICIDE_PIN, HIGH);
  498. #endif
  499. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  500. #if defined(PS_DEFAULT_OFF)
  501. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  502. #else
  503. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  504. #endif
  505. #endif
  506. }
  507. void suicide()
  508. {
  509. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  510. OUT_WRITE(SUICIDE_PIN, LOW);
  511. #endif
  512. }
  513. void servo_init()
  514. {
  515. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  516. servos[0].attach(SERVO0_PIN);
  517. #endif
  518. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  519. servos[1].attach(SERVO1_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  522. servos[2].attach(SERVO2_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  525. servos[3].attach(SERVO3_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 5)
  528. #error "TODO: enter initalisation code for more servos"
  529. #endif
  530. // Set position of Servo Endstops that are defined
  531. #ifdef SERVO_ENDSTOPS
  532. for(int8_t i = 0; i < 3; i++)
  533. {
  534. if(servo_endstops[i] > -1) {
  535. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  536. }
  537. }
  538. #endif
  539. #if SERVO_LEVELING
  540. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  541. servos[servo_endstops[Z_AXIS]].detach();
  542. #endif
  543. }
  544. void setup()
  545. {
  546. setup_killpin();
  547. setup_filrunoutpin();
  548. setup_powerhold();
  549. MYSERIAL.begin(BAUDRATE);
  550. SERIAL_PROTOCOLLNPGM("start");
  551. SERIAL_ECHO_START;
  552. // Check startup - does nothing if bootloader sets MCUSR to 0
  553. byte mcu = MCUSR;
  554. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  555. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  556. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  557. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  558. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  559. MCUSR=0;
  560. SERIAL_ECHOPGM(MSG_MARLIN);
  561. SERIAL_ECHOLNPGM(STRING_VERSION);
  562. #ifdef STRING_VERSION_CONFIG_H
  563. #ifdef STRING_CONFIG_H_AUTHOR
  564. SERIAL_ECHO_START;
  565. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  566. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  567. SERIAL_ECHOPGM(MSG_AUTHOR);
  568. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  569. SERIAL_ECHOPGM("Compiled: ");
  570. SERIAL_ECHOLNPGM(__DATE__);
  571. #endif // STRING_CONFIG_H_AUTHOR
  572. #endif // STRING_VERSION_CONFIG_H
  573. SERIAL_ECHO_START;
  574. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  575. SERIAL_ECHO(freeMemory());
  576. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  577. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  578. for(int8_t i = 0; i < BUFSIZE; i++)
  579. {
  580. fromsd[i] = false;
  581. }
  582. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  583. Config_RetrieveSettings();
  584. tp_init(); // Initialize temperature loop
  585. plan_init(); // Initialize planner;
  586. watchdog_init();
  587. st_init(); // Initialize stepper, this enables interrupts!
  588. setup_photpin();
  589. servo_init();
  590. lcd_init();
  591. _delay_ms(1000); // wait 1sec to display the splash screen
  592. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  593. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  594. #endif
  595. #ifdef DIGIPOT_I2C
  596. digipot_i2c_init();
  597. #endif
  598. #ifdef Z_PROBE_SLED
  599. pinMode(SERVO0_PIN, OUTPUT);
  600. digitalWrite(SERVO0_PIN, LOW); // turn it off
  601. #endif // Z_PROBE_SLED
  602. setup_homepin();
  603. #ifdef STAT_LED_RED
  604. pinMode(STAT_LED_RED, OUTPUT);
  605. digitalWrite(STAT_LED_RED, LOW); // turn it off
  606. #endif
  607. #ifdef STAT_LED_BLUE
  608. pinMode(STAT_LED_BLUE, OUTPUT);
  609. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  610. #endif
  611. }
  612. void loop()
  613. {
  614. if(buflen < (BUFSIZE-1))
  615. get_command();
  616. #ifdef SDSUPPORT
  617. card.checkautostart(false);
  618. #endif
  619. if(buflen)
  620. {
  621. #ifdef SDSUPPORT
  622. if(card.saving)
  623. {
  624. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  625. {
  626. card.write_command(cmdbuffer[bufindr]);
  627. if(card.logging)
  628. {
  629. process_commands();
  630. }
  631. else
  632. {
  633. SERIAL_PROTOCOLLNPGM(MSG_OK);
  634. }
  635. }
  636. else
  637. {
  638. card.closefile();
  639. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  640. }
  641. }
  642. else
  643. {
  644. process_commands();
  645. }
  646. #else
  647. process_commands();
  648. #endif //SDSUPPORT
  649. buflen = (buflen-1);
  650. bufindr = (bufindr + 1)%BUFSIZE;
  651. }
  652. //check heater every n milliseconds
  653. manage_heater();
  654. manage_inactivity();
  655. checkHitEndstops();
  656. lcd_update();
  657. }
  658. void get_command()
  659. {
  660. if(drain_queued_commands_P()) // priority is given to non-serial commands
  661. return;
  662. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  663. serial_char = MYSERIAL.read();
  664. if(serial_char == '\n' ||
  665. serial_char == '\r' ||
  666. serial_count >= (MAX_CMD_SIZE - 1) )
  667. {
  668. // end of line == end of comment
  669. comment_mode = false;
  670. if(!serial_count) {
  671. // short cut for empty lines
  672. return;
  673. }
  674. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  675. fromsd[bufindw] = false;
  676. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  677. {
  678. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  679. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  680. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  681. SERIAL_ERROR_START;
  682. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  683. SERIAL_ERRORLN(gcode_LastN);
  684. //Serial.println(gcode_N);
  685. FlushSerialRequestResend();
  686. serial_count = 0;
  687. return;
  688. }
  689. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  690. {
  691. byte checksum = 0;
  692. byte count = 0;
  693. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  694. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  695. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  696. SERIAL_ERROR_START;
  697. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  698. SERIAL_ERRORLN(gcode_LastN);
  699. FlushSerialRequestResend();
  700. serial_count = 0;
  701. return;
  702. }
  703. //if no errors, continue parsing
  704. }
  705. else
  706. {
  707. SERIAL_ERROR_START;
  708. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  709. SERIAL_ERRORLN(gcode_LastN);
  710. FlushSerialRequestResend();
  711. serial_count = 0;
  712. return;
  713. }
  714. gcode_LastN = gcode_N;
  715. //if no errors, continue parsing
  716. }
  717. else // if we don't receive 'N' but still see '*'
  718. {
  719. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  720. {
  721. SERIAL_ERROR_START;
  722. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  723. SERIAL_ERRORLN(gcode_LastN);
  724. serial_count = 0;
  725. return;
  726. }
  727. }
  728. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  729. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  730. switch(strtol(strchr_pointer + 1, NULL, 10)){
  731. case 0:
  732. case 1:
  733. case 2:
  734. case 3:
  735. if (Stopped == true) {
  736. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  737. LCD_MESSAGEPGM(MSG_STOPPED);
  738. }
  739. break;
  740. default:
  741. break;
  742. }
  743. }
  744. //If command was e-stop process now
  745. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  746. kill();
  747. bufindw = (bufindw + 1)%BUFSIZE;
  748. buflen += 1;
  749. serial_count = 0; //clear buffer
  750. }
  751. else if(serial_char == '\\') { //Handle escapes
  752. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  753. // if we have one more character, copy it over
  754. serial_char = MYSERIAL.read();
  755. cmdbuffer[bufindw][serial_count++] = serial_char;
  756. }
  757. //otherwise do nothing
  758. }
  759. else { // its not a newline, carriage return or escape char
  760. if(serial_char == ';') comment_mode = true;
  761. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  762. }
  763. }
  764. #ifdef SDSUPPORT
  765. if(!card.sdprinting || serial_count!=0){
  766. return;
  767. }
  768. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  769. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  770. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  771. static bool stop_buffering=false;
  772. if(buflen==0) stop_buffering=false;
  773. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  774. int16_t n=card.get();
  775. serial_char = (char)n;
  776. if(serial_char == '\n' ||
  777. serial_char == '\r' ||
  778. (serial_char == '#' && comment_mode == false) ||
  779. (serial_char == ':' && comment_mode == false) ||
  780. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  781. {
  782. if(card.eof()){
  783. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  784. stoptime=millis();
  785. char time[30];
  786. unsigned long t=(stoptime-starttime)/1000;
  787. int hours, minutes;
  788. minutes=(t/60)%60;
  789. hours=t/60/60;
  790. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  791. SERIAL_ECHO_START;
  792. SERIAL_ECHOLN(time);
  793. lcd_setstatus(time);
  794. card.printingHasFinished();
  795. card.checkautostart(true);
  796. }
  797. if(serial_char=='#')
  798. stop_buffering=true;
  799. if(!serial_count)
  800. {
  801. comment_mode = false; //for new command
  802. return; //if empty line
  803. }
  804. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  805. // if(!comment_mode){
  806. fromsd[bufindw] = true;
  807. buflen += 1;
  808. bufindw = (bufindw + 1)%BUFSIZE;
  809. // }
  810. comment_mode = false; //for new command
  811. serial_count = 0; //clear buffer
  812. }
  813. else
  814. {
  815. if(serial_char == ';') comment_mode = true;
  816. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  817. }
  818. }
  819. #endif //SDSUPPORT
  820. }
  821. float code_value()
  822. {
  823. return (strtod(strchr_pointer + 1, NULL));
  824. }
  825. long code_value_long()
  826. {
  827. return (strtol(strchr_pointer + 1, NULL, 10));
  828. }
  829. bool code_seen(char code)
  830. {
  831. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  832. return (strchr_pointer != NULL); //Return True if a character was found
  833. }
  834. #define DEFINE_PGM_READ_ANY(type, reader) \
  835. static inline type pgm_read_any(const type *p) \
  836. { return pgm_read_##reader##_near(p); }
  837. DEFINE_PGM_READ_ANY(float, float);
  838. DEFINE_PGM_READ_ANY(signed char, byte);
  839. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  840. static const PROGMEM type array##_P[3] = \
  841. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  842. static inline type array(int axis) \
  843. { return pgm_read_any(&array##_P[axis]); }
  844. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  845. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  846. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  847. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  848. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  849. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  850. #ifdef DUAL_X_CARRIAGE
  851. #if EXTRUDERS == 1 || defined(COREXY) \
  852. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  853. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  854. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  855. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  856. #endif
  857. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  858. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  859. #endif
  860. #define DXC_FULL_CONTROL_MODE 0
  861. #define DXC_AUTO_PARK_MODE 1
  862. #define DXC_DUPLICATION_MODE 2
  863. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  864. static float x_home_pos(int extruder) {
  865. if (extruder == 0)
  866. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  867. else
  868. // In dual carriage mode the extruder offset provides an override of the
  869. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  870. // This allow soft recalibration of the second extruder offset position without firmware reflash
  871. // (through the M218 command).
  872. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  873. }
  874. static int x_home_dir(int extruder) {
  875. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  876. }
  877. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  878. static bool active_extruder_parked = false; // used in mode 1 & 2
  879. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  880. static unsigned long delayed_move_time = 0; // used in mode 1
  881. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  882. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  883. bool extruder_duplication_enabled = false; // used in mode 2
  884. #endif //DUAL_X_CARRIAGE
  885. static void axis_is_at_home(int axis) {
  886. #ifdef DUAL_X_CARRIAGE
  887. if (axis == X_AXIS) {
  888. if (active_extruder != 0) {
  889. current_position[X_AXIS] = x_home_pos(active_extruder);
  890. min_pos[X_AXIS] = X2_MIN_POS;
  891. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  892. return;
  893. }
  894. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  895. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  896. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  897. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  898. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  899. return;
  900. }
  901. }
  902. #endif
  903. #ifdef SCARA
  904. float homeposition[3];
  905. char i;
  906. if (axis < 2)
  907. {
  908. for (i=0; i<3; i++)
  909. {
  910. homeposition[i] = base_home_pos(i);
  911. }
  912. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  913. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  914. // Works out real Homeposition angles using inverse kinematics,
  915. // and calculates homing offset using forward kinematics
  916. calculate_delta(homeposition);
  917. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  918. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  919. for (i=0; i<2; i++)
  920. {
  921. delta[i] -= add_homing[i];
  922. }
  923. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  924. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  925. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  926. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  927. calculate_SCARA_forward_Transform(delta);
  928. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  929. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  930. current_position[axis] = delta[axis];
  931. // SCARA home positions are based on configuration since the actual limits are determined by the
  932. // inverse kinematic transform.
  933. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  934. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  935. }
  936. else
  937. {
  938. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  939. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  940. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  941. }
  942. #else
  943. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  944. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  945. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  946. #endif
  947. }
  948. #ifdef ENABLE_AUTO_BED_LEVELING
  949. #ifdef AUTO_BED_LEVELING_GRID
  950. #ifndef DELTA
  951. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  952. {
  953. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  954. planeNormal.debug("planeNormal");
  955. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  956. //bedLevel.debug("bedLevel");
  957. //plan_bed_level_matrix.debug("bed level before");
  958. //vector_3 uncorrected_position = plan_get_position_mm();
  959. //uncorrected_position.debug("position before");
  960. vector_3 corrected_position = plan_get_position();
  961. // corrected_position.debug("position after");
  962. current_position[X_AXIS] = corrected_position.x;
  963. current_position[Y_AXIS] = corrected_position.y;
  964. current_position[Z_AXIS] = corrected_position.z;
  965. // put the bed at 0 so we don't go below it.
  966. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  968. }
  969. #endif
  970. #else // not AUTO_BED_LEVELING_GRID
  971. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  972. plan_bed_level_matrix.set_to_identity();
  973. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  974. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  975. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  976. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  977. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  978. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  979. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  980. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  981. vector_3 corrected_position = plan_get_position();
  982. current_position[X_AXIS] = corrected_position.x;
  983. current_position[Y_AXIS] = corrected_position.y;
  984. current_position[Z_AXIS] = corrected_position.z;
  985. // put the bed at 0 so we don't go below it.
  986. current_position[Z_AXIS] = zprobe_zoffset;
  987. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  988. }
  989. #endif // AUTO_BED_LEVELING_GRID
  990. static void run_z_probe() {
  991. #ifdef DELTA
  992. float start_z = current_position[Z_AXIS];
  993. long start_steps = st_get_position(Z_AXIS);
  994. // move down slowly until you find the bed
  995. feedrate = homing_feedrate[Z_AXIS] / 4;
  996. destination[Z_AXIS] = -10;
  997. prepare_move_raw();
  998. st_synchronize();
  999. endstops_hit_on_purpose();
  1000. // we have to let the planner know where we are right now as it is not where we said to go.
  1001. long stop_steps = st_get_position(Z_AXIS);
  1002. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1003. current_position[Z_AXIS] = mm;
  1004. calculate_delta(current_position);
  1005. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1006. #else
  1007. plan_bed_level_matrix.set_to_identity();
  1008. feedrate = homing_feedrate[Z_AXIS];
  1009. // move down until you find the bed
  1010. float zPosition = -10;
  1011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1012. st_synchronize();
  1013. // we have to let the planner know where we are right now as it is not where we said to go.
  1014. zPosition = st_get_position_mm(Z_AXIS);
  1015. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1016. // move up the retract distance
  1017. zPosition += home_retract_mm(Z_AXIS);
  1018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1019. st_synchronize();
  1020. // move back down slowly to find bed
  1021. if (homing_bump_divisor[Z_AXIS] >= 1)
  1022. {
  1023. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  1024. }
  1025. else
  1026. {
  1027. feedrate = homing_feedrate[Z_AXIS]/10;
  1028. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1029. }
  1030. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1032. st_synchronize();
  1033. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1034. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1035. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1036. #endif
  1037. }
  1038. static void do_blocking_move_to(float x, float y, float z) {
  1039. float oldFeedRate = feedrate;
  1040. #ifdef DELTA
  1041. feedrate = XY_TRAVEL_SPEED;
  1042. destination[X_AXIS] = x;
  1043. destination[Y_AXIS] = y;
  1044. destination[Z_AXIS] = z;
  1045. prepare_move_raw();
  1046. st_synchronize();
  1047. #else
  1048. feedrate = homing_feedrate[Z_AXIS];
  1049. current_position[Z_AXIS] = z;
  1050. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1051. st_synchronize();
  1052. feedrate = xy_travel_speed;
  1053. current_position[X_AXIS] = x;
  1054. current_position[Y_AXIS] = y;
  1055. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1056. st_synchronize();
  1057. #endif
  1058. feedrate = oldFeedRate;
  1059. }
  1060. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1061. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1062. }
  1063. static void setup_for_endstop_move() {
  1064. saved_feedrate = feedrate;
  1065. saved_feedmultiply = feedmultiply;
  1066. feedmultiply = 100;
  1067. previous_millis_cmd = millis();
  1068. enable_endstops(true);
  1069. }
  1070. static void clean_up_after_endstop_move() {
  1071. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1072. enable_endstops(false);
  1073. #endif
  1074. feedrate = saved_feedrate;
  1075. feedmultiply = saved_feedmultiply;
  1076. previous_millis_cmd = millis();
  1077. }
  1078. static void engage_z_probe() {
  1079. // Engage Z Servo endstop if enabled
  1080. #ifdef SERVO_ENDSTOPS
  1081. if (servo_endstops[Z_AXIS] > -1) {
  1082. #if SERVO_LEVELING
  1083. servos[servo_endstops[Z_AXIS]].attach(0);
  1084. #endif
  1085. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1086. #if SERVO_LEVELING
  1087. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1088. servos[servo_endstops[Z_AXIS]].detach();
  1089. #endif
  1090. }
  1091. #elif defined(Z_PROBE_ALLEN_KEY)
  1092. feedrate = homing_feedrate[X_AXIS];
  1093. // Move to the start position to initiate deployment
  1094. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1095. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1096. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1097. prepare_move_raw();
  1098. // Home X to touch the belt
  1099. feedrate = homing_feedrate[X_AXIS]/10;
  1100. destination[X_AXIS] = 0;
  1101. prepare_move_raw();
  1102. // Home Y for safety
  1103. feedrate = homing_feedrate[X_AXIS]/2;
  1104. destination[Y_AXIS] = 0;
  1105. prepare_move_raw();
  1106. st_synchronize();
  1107. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1108. if (z_min_endstop)
  1109. {
  1110. if (!Stopped)
  1111. {
  1112. SERIAL_ERROR_START;
  1113. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1114. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1115. }
  1116. Stop();
  1117. }
  1118. #endif
  1119. }
  1120. static void retract_z_probe() {
  1121. // Retract Z Servo endstop if enabled
  1122. #ifdef SERVO_ENDSTOPS
  1123. if (servo_endstops[Z_AXIS] > -1) {
  1124. #if SERVO_LEVELING
  1125. servos[servo_endstops[Z_AXIS]].attach(0);
  1126. #endif
  1127. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1128. #if SERVO_LEVELING
  1129. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1130. servos[servo_endstops[Z_AXIS]].detach();
  1131. #endif
  1132. }
  1133. #elif defined(Z_PROBE_ALLEN_KEY)
  1134. // Move up for safety
  1135. feedrate = homing_feedrate[X_AXIS];
  1136. destination[Z_AXIS] = current_position[Z_AXIS] + 20;
  1137. prepare_move_raw();
  1138. // Move to the start position to initiate retraction
  1139. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1140. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1141. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1142. prepare_move_raw();
  1143. // Move the nozzle down to push the probe into retracted position
  1144. feedrate = homing_feedrate[Z_AXIS]/10;
  1145. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1146. prepare_move_raw();
  1147. // Move up for safety
  1148. feedrate = homing_feedrate[Z_AXIS]/2;
  1149. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1150. prepare_move_raw();
  1151. // Home XY for safety
  1152. feedrate = homing_feedrate[X_AXIS]/2;
  1153. destination[X_AXIS] = 0;
  1154. destination[Y_AXIS] = 0;
  1155. prepare_move_raw();
  1156. st_synchronize();
  1157. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1158. if (!z_min_endstop)
  1159. {
  1160. if (!Stopped)
  1161. {
  1162. SERIAL_ERROR_START;
  1163. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1164. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1165. }
  1166. Stop();
  1167. }
  1168. #endif
  1169. }
  1170. enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
  1171. /// Probe bed height at position (x,y), returns the measured z value
  1172. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract, int verbose_level=1) {
  1173. // move to right place
  1174. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1175. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1176. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1177. if (retract_action & ProbeEngage) engage_z_probe();
  1178. #endif
  1179. run_z_probe();
  1180. float measured_z = current_position[Z_AXIS];
  1181. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1182. if (retract_action & ProbeRetract) retract_z_probe();
  1183. #endif
  1184. if (verbose_level > 2) {
  1185. SERIAL_PROTOCOLPGM(MSG_BED);
  1186. SERIAL_PROTOCOLPGM(" X: ");
  1187. SERIAL_PROTOCOL(x + 0.0001);
  1188. SERIAL_PROTOCOLPGM(" Y: ");
  1189. SERIAL_PROTOCOL(y + 0.0001);
  1190. SERIAL_PROTOCOLPGM(" Z: ");
  1191. SERIAL_PROTOCOL(measured_z + 0.0001);
  1192. SERIAL_EOL;
  1193. }
  1194. return measured_z;
  1195. }
  1196. #ifdef DELTA
  1197. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1198. if (bed_level[x][y] != 0.0) {
  1199. return; // Don't overwrite good values.
  1200. }
  1201. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1202. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1203. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1204. float median = c; // Median is robust (ignores outliers).
  1205. if (a < b) {
  1206. if (b < c) median = b;
  1207. if (c < a) median = a;
  1208. } else { // b <= a
  1209. if (c < b) median = b;
  1210. if (a < c) median = a;
  1211. }
  1212. bed_level[x][y] = median;
  1213. }
  1214. // Fill in the unprobed points (corners of circular print surface)
  1215. // using linear extrapolation, away from the center.
  1216. static void extrapolate_unprobed_bed_level() {
  1217. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1218. for (int y = 0; y <= half; y++) {
  1219. for (int x = 0; x <= half; x++) {
  1220. if (x + y < 3) continue;
  1221. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1222. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1223. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1224. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1225. }
  1226. }
  1227. }
  1228. // Print calibration results for plotting or manual frame adjustment.
  1229. static void print_bed_level() {
  1230. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1231. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1232. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1233. SERIAL_PROTOCOLPGM(" ");
  1234. }
  1235. SERIAL_ECHOLN("");
  1236. }
  1237. }
  1238. // Reset calibration results to zero.
  1239. void reset_bed_level() {
  1240. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1241. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1242. bed_level[x][y] = 0.0;
  1243. }
  1244. }
  1245. }
  1246. #endif // DELTA
  1247. #endif // ENABLE_AUTO_BED_LEVELING
  1248. static void homeaxis(int axis) {
  1249. #define HOMEAXIS_DO(LETTER) \
  1250. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1251. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1252. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1253. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1254. 0) {
  1255. int axis_home_dir = home_dir(axis);
  1256. #ifdef DUAL_X_CARRIAGE
  1257. if (axis == X_AXIS)
  1258. axis_home_dir = x_home_dir(active_extruder);
  1259. #endif
  1260. current_position[axis] = 0;
  1261. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1262. #ifndef Z_PROBE_SLED
  1263. // Engage Servo endstop if enabled
  1264. #ifdef SERVO_ENDSTOPS
  1265. #if SERVO_LEVELING
  1266. if (axis==Z_AXIS) {
  1267. engage_z_probe();
  1268. }
  1269. else
  1270. #endif
  1271. if (servo_endstops[axis] > -1) {
  1272. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1273. }
  1274. #endif
  1275. #endif // Z_PROBE_SLED
  1276. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1277. feedrate = homing_feedrate[axis];
  1278. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1279. st_synchronize();
  1280. current_position[axis] = 0;
  1281. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1282. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1283. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1284. st_synchronize();
  1285. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1286. if (homing_bump_divisor[axis] >= 1)
  1287. {
  1288. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1289. }
  1290. else
  1291. {
  1292. feedrate = homing_feedrate[axis]/10;
  1293. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1294. }
  1295. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1296. st_synchronize();
  1297. #ifdef DELTA
  1298. // retrace by the amount specified in endstop_adj
  1299. if (endstop_adj[axis] * axis_home_dir < 0) {
  1300. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1301. destination[axis] = endstop_adj[axis];
  1302. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1303. st_synchronize();
  1304. }
  1305. #endif
  1306. axis_is_at_home(axis);
  1307. destination[axis] = current_position[axis];
  1308. feedrate = 0.0;
  1309. endstops_hit_on_purpose();
  1310. axis_known_position[axis] = true;
  1311. // Retract Servo endstop if enabled
  1312. #ifdef SERVO_ENDSTOPS
  1313. if (servo_endstops[axis] > -1) {
  1314. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1315. }
  1316. #endif
  1317. #if SERVO_LEVELING
  1318. #ifndef Z_PROBE_SLED
  1319. if (axis==Z_AXIS) retract_z_probe();
  1320. #endif
  1321. #endif
  1322. }
  1323. }
  1324. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1325. void refresh_cmd_timeout(void)
  1326. {
  1327. previous_millis_cmd = millis();
  1328. }
  1329. #ifdef FWRETRACT
  1330. void retract(bool retracting, bool swapretract = false) {
  1331. if(retracting && !retracted[active_extruder]) {
  1332. destination[X_AXIS]=current_position[X_AXIS];
  1333. destination[Y_AXIS]=current_position[Y_AXIS];
  1334. destination[Z_AXIS]=current_position[Z_AXIS];
  1335. destination[E_AXIS]=current_position[E_AXIS];
  1336. if (swapretract) {
  1337. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1338. } else {
  1339. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1340. }
  1341. plan_set_e_position(current_position[E_AXIS]);
  1342. float oldFeedrate = feedrate;
  1343. feedrate=retract_feedrate*60;
  1344. retracted[active_extruder]=true;
  1345. prepare_move();
  1346. if(retract_zlift > 0.01) {
  1347. current_position[Z_AXIS]-=retract_zlift;
  1348. #ifdef DELTA
  1349. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1350. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1351. #else
  1352. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1353. #endif
  1354. prepare_move();
  1355. }
  1356. feedrate = oldFeedrate;
  1357. } else if(!retracting && retracted[active_extruder]) {
  1358. destination[X_AXIS]=current_position[X_AXIS];
  1359. destination[Y_AXIS]=current_position[Y_AXIS];
  1360. destination[Z_AXIS]=current_position[Z_AXIS];
  1361. destination[E_AXIS]=current_position[E_AXIS];
  1362. if(retract_zlift > 0.01) {
  1363. current_position[Z_AXIS]+=retract_zlift;
  1364. #ifdef DELTA
  1365. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1366. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1367. #else
  1368. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1369. #endif
  1370. //prepare_move();
  1371. }
  1372. if (swapretract) {
  1373. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1374. } else {
  1375. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1376. }
  1377. plan_set_e_position(current_position[E_AXIS]);
  1378. float oldFeedrate = feedrate;
  1379. feedrate=retract_recover_feedrate*60;
  1380. retracted[active_extruder]=false;
  1381. prepare_move();
  1382. feedrate = oldFeedrate;
  1383. }
  1384. } //retract
  1385. #endif //FWRETRACT
  1386. #ifdef Z_PROBE_SLED
  1387. #ifndef SLED_DOCKING_OFFSET
  1388. #define SLED_DOCKING_OFFSET 0
  1389. #endif
  1390. //
  1391. // Method to dock/undock a sled designed by Charles Bell.
  1392. //
  1393. // dock[in] If true, move to MAX_X and engage the electromagnet
  1394. // offset[in] The additional distance to move to adjust docking location
  1395. //
  1396. static void dock_sled(bool dock, int offset=0) {
  1397. int z_loc;
  1398. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1399. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1400. SERIAL_ECHO_START;
  1401. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1402. return;
  1403. }
  1404. if (dock) {
  1405. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1406. current_position[Y_AXIS],
  1407. current_position[Z_AXIS]);
  1408. // turn off magnet
  1409. digitalWrite(SERVO0_PIN, LOW);
  1410. } else {
  1411. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1412. z_loc = Z_RAISE_BEFORE_PROBING;
  1413. else
  1414. z_loc = current_position[Z_AXIS];
  1415. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1416. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1417. // turn on magnet
  1418. digitalWrite(SERVO0_PIN, HIGH);
  1419. }
  1420. }
  1421. #endif
  1422. /**
  1423. *
  1424. * G-Code Handler functions
  1425. *
  1426. */
  1427. /**
  1428. * G0, G1: Coordinated movement of X Y Z E axes
  1429. */
  1430. inline void gcode_G0_G1() {
  1431. if (!Stopped) {
  1432. get_coordinates(); // For X Y Z E F
  1433. #ifdef FWRETRACT
  1434. if (autoretract_enabled)
  1435. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1436. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1437. // Is this move an attempt to retract or recover?
  1438. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1439. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1440. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1441. retract(!retracted[active_extruder]);
  1442. return;
  1443. }
  1444. }
  1445. #endif //FWRETRACT
  1446. prepare_move();
  1447. //ClearToSend();
  1448. }
  1449. }
  1450. /**
  1451. * G2: Clockwise Arc
  1452. * G3: Counterclockwise Arc
  1453. */
  1454. inline void gcode_G2_G3(bool clockwise) {
  1455. if (!Stopped) {
  1456. get_arc_coordinates();
  1457. prepare_arc_move(clockwise);
  1458. }
  1459. }
  1460. /**
  1461. * G4: Dwell S<seconds> or P<milliseconds>
  1462. */
  1463. inline void gcode_G4() {
  1464. unsigned long codenum=0;
  1465. LCD_MESSAGEPGM(MSG_DWELL);
  1466. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1467. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1468. st_synchronize();
  1469. previous_millis_cmd = millis();
  1470. codenum += previous_millis_cmd; // keep track of when we started waiting
  1471. while(millis() < codenum) {
  1472. manage_heater();
  1473. manage_inactivity();
  1474. lcd_update();
  1475. }
  1476. }
  1477. #ifdef FWRETRACT
  1478. /**
  1479. * G10 - Retract filament according to settings of M207
  1480. * G11 - Recover filament according to settings of M208
  1481. */
  1482. inline void gcode_G10_G11(bool doRetract=false) {
  1483. #if EXTRUDERS > 1
  1484. if (doRetract) {
  1485. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1486. }
  1487. #endif
  1488. retract(doRetract
  1489. #if EXTRUDERS > 1
  1490. , retracted_swap[active_extruder]
  1491. #endif
  1492. );
  1493. }
  1494. #endif //FWRETRACT
  1495. /**
  1496. * G28: Home all axes, one at a time
  1497. */
  1498. inline void gcode_G28() {
  1499. #ifdef ENABLE_AUTO_BED_LEVELING
  1500. #ifdef DELTA
  1501. reset_bed_level();
  1502. #else
  1503. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1504. #endif
  1505. #endif
  1506. saved_feedrate = feedrate;
  1507. saved_feedmultiply = feedmultiply;
  1508. feedmultiply = 100;
  1509. previous_millis_cmd = millis();
  1510. enable_endstops(true);
  1511. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
  1512. feedrate = 0.0;
  1513. #ifdef DELTA
  1514. // A delta can only safely home all axis at the same time
  1515. // all axis have to home at the same time
  1516. // Move all carriages up together until the first endstop is hit.
  1517. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1518. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1519. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1520. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1521. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1522. st_synchronize();
  1523. endstops_hit_on_purpose();
  1524. // Destination reached
  1525. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1526. // take care of back off and rehome now we are all at the top
  1527. HOMEAXIS(X);
  1528. HOMEAXIS(Y);
  1529. HOMEAXIS(Z);
  1530. calculate_delta(current_position);
  1531. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1532. #else // NOT DELTA
  1533. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1534. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1535. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1536. HOMEAXIS(Z);
  1537. }
  1538. #endif
  1539. #ifdef QUICK_HOME
  1540. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1541. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1542. #ifndef DUAL_X_CARRIAGE
  1543. int x_axis_home_dir = home_dir(X_AXIS);
  1544. #else
  1545. int x_axis_home_dir = x_home_dir(active_extruder);
  1546. extruder_duplication_enabled = false;
  1547. #endif
  1548. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1549. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1550. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1551. feedrate = homing_feedrate[X_AXIS];
  1552. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1553. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1554. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1555. } else {
  1556. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1557. }
  1558. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1559. st_synchronize();
  1560. axis_is_at_home(X_AXIS);
  1561. axis_is_at_home(Y_AXIS);
  1562. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1563. destination[X_AXIS] = current_position[X_AXIS];
  1564. destination[Y_AXIS] = current_position[Y_AXIS];
  1565. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1566. feedrate = 0.0;
  1567. st_synchronize();
  1568. endstops_hit_on_purpose();
  1569. current_position[X_AXIS] = destination[X_AXIS];
  1570. current_position[Y_AXIS] = destination[Y_AXIS];
  1571. #ifndef SCARA
  1572. current_position[Z_AXIS] = destination[Z_AXIS];
  1573. #endif
  1574. }
  1575. #endif //QUICK_HOME
  1576. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1577. #ifdef DUAL_X_CARRIAGE
  1578. int tmp_extruder = active_extruder;
  1579. extruder_duplication_enabled = false;
  1580. active_extruder = !active_extruder;
  1581. HOMEAXIS(X);
  1582. inactive_extruder_x_pos = current_position[X_AXIS];
  1583. active_extruder = tmp_extruder;
  1584. HOMEAXIS(X);
  1585. // reset state used by the different modes
  1586. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1587. delayed_move_time = 0;
  1588. active_extruder_parked = true;
  1589. #else
  1590. HOMEAXIS(X);
  1591. #endif
  1592. }
  1593. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1594. if (code_seen(axis_codes[X_AXIS])) {
  1595. if (code_value_long() != 0) {
  1596. current_position[X_AXIS] = code_value()
  1597. #ifndef SCARA
  1598. + add_homing[X_AXIS]
  1599. #endif
  1600. ;
  1601. }
  1602. }
  1603. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1604. current_position[Y_AXIS] = code_value()
  1605. #ifndef SCARA
  1606. + add_homing[Y_AXIS]
  1607. #endif
  1608. ;
  1609. }
  1610. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1611. #ifndef Z_SAFE_HOMING
  1612. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1613. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1614. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1615. feedrate = max_feedrate[Z_AXIS];
  1616. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1617. st_synchronize();
  1618. #endif
  1619. HOMEAXIS(Z);
  1620. }
  1621. #else // Z_SAFE_HOMING
  1622. if (home_all_axis) {
  1623. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1624. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1625. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1626. feedrate = XY_TRAVEL_SPEED / 60;
  1627. current_position[Z_AXIS] = 0;
  1628. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1629. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1630. st_synchronize();
  1631. current_position[X_AXIS] = destination[X_AXIS];
  1632. current_position[Y_AXIS] = destination[Y_AXIS];
  1633. HOMEAXIS(Z);
  1634. }
  1635. // Let's see if X and Y are homed and probe is inside bed area.
  1636. if (code_seen(axis_codes[Z_AXIS])) {
  1637. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1638. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1639. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1640. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1641. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1642. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1643. current_position[Z_AXIS] = 0;
  1644. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1645. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1646. feedrate = max_feedrate[Z_AXIS];
  1647. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1648. st_synchronize();
  1649. HOMEAXIS(Z);
  1650. }
  1651. else {
  1652. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1653. SERIAL_ECHO_START;
  1654. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1655. }
  1656. }
  1657. else {
  1658. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1659. SERIAL_ECHO_START;
  1660. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1661. }
  1662. }
  1663. #endif // Z_SAFE_HOMING
  1664. #endif // Z_HOME_DIR < 0
  1665. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1666. current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
  1667. #ifdef ENABLE_AUTO_BED_LEVELING
  1668. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1669. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1670. #endif
  1671. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1672. #endif // else DELTA
  1673. #ifdef SCARA
  1674. calculate_delta(current_position);
  1675. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1676. #endif
  1677. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1678. enable_endstops(false);
  1679. #endif
  1680. feedrate = saved_feedrate;
  1681. feedmultiply = saved_feedmultiply;
  1682. previous_millis_cmd = millis();
  1683. endstops_hit_on_purpose();
  1684. }
  1685. #ifdef ENABLE_AUTO_BED_LEVELING
  1686. // Define the possible boundaries for probing based on set limits
  1687. #define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1688. #define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1689. #define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1690. #define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1691. #ifdef AUTO_BED_LEVELING_GRID
  1692. // Make sure probing points are reachable
  1693. #if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
  1694. #error "The given LEFT_PROBE_BED_POSITION can't be reached by the probe."
  1695. #elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
  1696. #error "The given RIGHT_PROBE_BED_POSITION can't be reached by the probe."
  1697. #elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
  1698. #error "The given FRONT_PROBE_BED_POSITION can't be reached by the probe."
  1699. #elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
  1700. #error "The given BACK_PROBE_BED_POSITION can't be reached by the probe."
  1701. #endif
  1702. #else // !AUTO_BED_LEVELING_GRID
  1703. #if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
  1704. #error "The given ABL_PROBE_PT_1_X can't be reached by the probe."
  1705. #elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
  1706. #error "The given ABL_PROBE_PT_2_X can't be reached by the probe."
  1707. #elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
  1708. #error "The given ABL_PROBE_PT_3_X can't be reached by the probe."
  1709. #elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
  1710. #error "The given ABL_PROBE_PT_1_Y can't be reached by the probe."
  1711. #elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
  1712. #error "The given ABL_PROBE_PT_2_Y can't be reached by the probe."
  1713. #elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
  1714. #error "The given ABL_PROBE_PT_3_Y can't be reached by the probe."
  1715. #endif
  1716. #endif // !AUTO_BED_LEVELING_GRID
  1717. /**
  1718. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1719. * Will fail if the printer has not been homed with G28.
  1720. *
  1721. * Enhanced G29 Auto Bed Leveling Probe Routine
  1722. *
  1723. * Parameters With AUTO_BED_LEVELING_GRID:
  1724. *
  1725. * P Set the size of the grid that will be probed (P x P points).
  1726. * Not supported by non-linear delta printer bed leveling.
  1727. * Example: "G29 P4"
  1728. *
  1729. * S Set the XY travel speed between probe points (in mm/min)
  1730. *
  1731. * V Set the verbose level (0-4). Example: "G29 V3"
  1732. *
  1733. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1734. * This is useful for manual bed leveling and finding flaws in the bed (to
  1735. * assist with part placement).
  1736. * Not supported by non-linear delta printer bed leveling.
  1737. *
  1738. * F Set the Front limit of the probing grid
  1739. * B Set the Back limit of the probing grid
  1740. * L Set the Left limit of the probing grid
  1741. * R Set the Right limit of the probing grid
  1742. *
  1743. * Global Parameters:
  1744. *
  1745. * E/e By default G29 engages / disengages the probe for each point.
  1746. * Include "E" to engage and disengage the probe just once.
  1747. * There's no extra effect if you have a fixed probe.
  1748. * Usage: "G29 E" or "G29 e"
  1749. *
  1750. */
  1751. inline void gcode_G29() {
  1752. // Prevent user from running a G29 without first homing in X and Y
  1753. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1754. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1755. SERIAL_ECHO_START;
  1756. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1757. return;
  1758. }
  1759. int verbose_level = 1;
  1760. float x_tmp, y_tmp, z_tmp, real_z;
  1761. if (code_seen('V') || code_seen('v')) {
  1762. verbose_level = code_value_long();
  1763. if (verbose_level < 0 || verbose_level > 4) {
  1764. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1765. return;
  1766. }
  1767. }
  1768. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1769. #ifdef AUTO_BED_LEVELING_GRID
  1770. #ifndef DELTA
  1771. bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
  1772. #endif
  1773. if (verbose_level > 0)
  1774. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1775. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1776. #ifndef DELTA
  1777. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1778. if (auto_bed_leveling_grid_points < 2) {
  1779. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1780. return;
  1781. }
  1782. #endif
  1783. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1784. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1785. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1786. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1787. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1788. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1789. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1790. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1791. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1792. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1793. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1794. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1795. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1796. if (left_out || right_out || front_out || back_out) {
  1797. if (left_out) {
  1798. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1799. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1800. }
  1801. if (right_out) {
  1802. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1803. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1804. }
  1805. if (front_out) {
  1806. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1807. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1808. }
  1809. if (back_out) {
  1810. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1811. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1812. }
  1813. return;
  1814. }
  1815. #endif // AUTO_BED_LEVELING_GRID
  1816. #ifdef Z_PROBE_SLED
  1817. dock_sled(false); // engage (un-dock) the probe
  1818. #elif not defined(SERVO_ENDSTOPS)
  1819. engage_z_probe();
  1820. #endif
  1821. st_synchronize();
  1822. #ifdef DELTA
  1823. reset_bed_level();
  1824. #else
  1825. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1826. //vector_3 corrected_position = plan_get_position_mm();
  1827. //corrected_position.debug("position before G29");
  1828. plan_bed_level_matrix.set_to_identity();
  1829. vector_3 uncorrected_position = plan_get_position();
  1830. //uncorrected_position.debug("position during G29");
  1831. current_position[X_AXIS] = uncorrected_position.x;
  1832. current_position[Y_AXIS] = uncorrected_position.y;
  1833. current_position[Z_AXIS] = uncorrected_position.z;
  1834. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1835. #endif
  1836. setup_for_endstop_move();
  1837. feedrate = homing_feedrate[Z_AXIS];
  1838. #ifdef AUTO_BED_LEVELING_GRID
  1839. // probe at the points of a lattice grid
  1840. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1841. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1842. #ifndef DELTA
  1843. // solve the plane equation ax + by + d = z
  1844. // A is the matrix with rows [x y 1] for all the probed points
  1845. // B is the vector of the Z positions
  1846. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1847. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1848. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1849. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1850. eqnBVector[abl2], // "B" vector of Z points
  1851. mean = 0.0;
  1852. #else
  1853. delta_grid_spacing[0] = xGridSpacing;
  1854. delta_grid_spacing[1] = yGridSpacing;
  1855. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1856. if (code_seen(axis_codes[Z_AXIS])) {
  1857. z_offset += code_value();
  1858. }
  1859. #endif
  1860. int probePointCounter = 0;
  1861. bool zig = true;
  1862. for (int yCount=0; yCount < auto_bed_leveling_grid_points; yCount++)
  1863. {
  1864. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1865. int xStart, xStop, xInc;
  1866. if (zig)
  1867. {
  1868. xStart = 0;
  1869. xStop = auto_bed_leveling_grid_points;
  1870. xInc = 1;
  1871. zig = false;
  1872. }
  1873. else
  1874. {
  1875. xStart = auto_bed_leveling_grid_points - 1;
  1876. xStop = -1;
  1877. xInc = -1;
  1878. zig = true;
  1879. }
  1880. #ifndef DELTA
  1881. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1882. // This gets the probe points in more readable order.
  1883. if (!topo_flag) zig = !zig;
  1884. #endif
  1885. for (int xCount=xStart; xCount != xStop; xCount += xInc)
  1886. {
  1887. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1888. // raise extruder
  1889. float measured_z,
  1890. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1891. #ifdef DELTA
  1892. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1893. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1894. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  1895. continue;
  1896. #endif //DELTA
  1897. // Enhanced G29 - Do not retract servo between probes
  1898. ProbeAction act;
  1899. if (enhanced_g29) {
  1900. if (yProbe == front_probe_bed_position && xCount == 0)
  1901. act = ProbeEngage;
  1902. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1903. act = ProbeRetract;
  1904. else
  1905. act = ProbeStay;
  1906. }
  1907. else
  1908. act = ProbeEngageRetract;
  1909. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1910. #ifndef DELTA
  1911. mean += measured_z;
  1912. eqnBVector[probePointCounter] = measured_z;
  1913. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1914. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1915. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1916. #else
  1917. bed_level[xCount][yCount] = measured_z + z_offset;
  1918. #endif
  1919. probePointCounter++;
  1920. } //xProbe
  1921. } //yProbe
  1922. clean_up_after_endstop_move();
  1923. #ifndef DELTA
  1924. // solve lsq problem
  1925. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1926. mean /= abl2;
  1927. if (verbose_level) {
  1928. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1929. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  1930. SERIAL_PROTOCOLPGM(" b: ");
  1931. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  1932. SERIAL_PROTOCOLPGM(" d: ");
  1933. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  1934. SERIAL_EOL;
  1935. if (verbose_level > 2) {
  1936. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1937. SERIAL_PROTOCOL_F(mean, 8);
  1938. SERIAL_EOL;
  1939. }
  1940. }
  1941. if (topo_flag) {
  1942. int xx, yy;
  1943. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1944. #if TOPO_ORIGIN == OriginFrontLeft
  1945. SERIAL_PROTOCOLPGM("+-----------+\n");
  1946. SERIAL_PROTOCOLPGM("|...Back....|\n");
  1947. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  1948. SERIAL_PROTOCOLPGM("|...Front...|\n");
  1949. SERIAL_PROTOCOLPGM("+-----------+\n");
  1950. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  1951. #else
  1952. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  1953. #endif
  1954. {
  1955. #if TOPO_ORIGIN == OriginBackRight
  1956. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  1957. #else
  1958. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  1959. #endif
  1960. {
  1961. int ind =
  1962. #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
  1963. yy * auto_bed_leveling_grid_points + xx
  1964. #elif TOPO_ORIGIN == OriginBackLeft
  1965. xx * auto_bed_leveling_grid_points + yy
  1966. #elif TOPO_ORIGIN == OriginFrontRight
  1967. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  1968. #endif
  1969. ;
  1970. float diff = eqnBVector[ind] - mean;
  1971. if (diff >= 0.0)
  1972. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  1973. else
  1974. SERIAL_PROTOCOLPGM(" ");
  1975. SERIAL_PROTOCOL_F(diff, 5);
  1976. } // xx
  1977. SERIAL_EOL;
  1978. } // yy
  1979. SERIAL_EOL;
  1980. } //topo_flag
  1981. set_bed_level_equation_lsq(plane_equation_coefficients);
  1982. free(plane_equation_coefficients);
  1983. #else
  1984. extrapolate_unprobed_bed_level();
  1985. print_bed_level();
  1986. #endif
  1987. #else // !AUTO_BED_LEVELING_GRID
  1988. // Probe at 3 arbitrary points
  1989. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  1990. if (enhanced_g29) {
  1991. // Basic Enhanced G29
  1992. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  1993. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  1994. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  1995. }
  1996. else {
  1997. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level=verbose_level);
  1998. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level=verbose_level);
  1999. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level=verbose_level);
  2000. }
  2001. clean_up_after_endstop_move();
  2002. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2003. #endif // !AUTO_BED_LEVELING_GRID
  2004. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  2005. st_synchronize();
  2006. #ifndef DELTA
  2007. if (verbose_level > 0)
  2008. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2009. // Correct the Z height difference from z-probe position and hotend tip position.
  2010. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2011. // When the bed is uneven, this height must be corrected.
  2012. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2013. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2014. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2015. z_tmp = current_position[Z_AXIS];
  2016. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2017. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2018. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2019. #endif
  2020. #ifdef Z_PROBE_SLED
  2021. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2022. #elif not defined(SERVO_ENDSTOPS)
  2023. retract_z_probe();
  2024. #endif
  2025. #ifdef Z_PROBE_END_SCRIPT
  2026. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2027. st_synchronize();
  2028. #endif
  2029. }
  2030. #ifndef Z_PROBE_SLED
  2031. inline void gcode_G30() {
  2032. engage_z_probe(); // Engage Z Servo endstop if available
  2033. st_synchronize();
  2034. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2035. setup_for_endstop_move();
  2036. feedrate = homing_feedrate[Z_AXIS];
  2037. run_z_probe();
  2038. SERIAL_PROTOCOLPGM(MSG_BED);
  2039. SERIAL_PROTOCOLPGM(" X: ");
  2040. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2041. SERIAL_PROTOCOLPGM(" Y: ");
  2042. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2043. SERIAL_PROTOCOLPGM(" Z: ");
  2044. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2045. SERIAL_EOL;
  2046. clean_up_after_endstop_move();
  2047. retract_z_probe(); // Retract Z Servo endstop if available
  2048. }
  2049. #endif //!Z_PROBE_SLED
  2050. #endif //ENABLE_AUTO_BED_LEVELING
  2051. /**
  2052. * G92: Set current position to given X Y Z E
  2053. */
  2054. inline void gcode_G92() {
  2055. if (!code_seen(axis_codes[E_AXIS]))
  2056. st_synchronize();
  2057. for (int i=0;i<NUM_AXIS;i++) {
  2058. if (code_seen(axis_codes[i])) {
  2059. if (i == E_AXIS) {
  2060. current_position[i] = code_value();
  2061. plan_set_e_position(current_position[E_AXIS]);
  2062. }
  2063. else {
  2064. current_position[i] = code_value() +
  2065. #ifdef SCARA
  2066. ((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
  2067. #else
  2068. add_homing[i]
  2069. #endif
  2070. ;
  2071. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2072. }
  2073. }
  2074. }
  2075. }
  2076. #ifdef ULTIPANEL
  2077. /**
  2078. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2079. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2080. */
  2081. inline void gcode_M0_M1() {
  2082. char *src = strchr_pointer + 2;
  2083. unsigned long codenum = 0;
  2084. bool hasP = false, hasS = false;
  2085. if (code_seen('P')) {
  2086. codenum = code_value(); // milliseconds to wait
  2087. hasP = codenum > 0;
  2088. }
  2089. if (code_seen('S')) {
  2090. codenum = code_value() * 1000; // seconds to wait
  2091. hasS = codenum > 0;
  2092. }
  2093. char* starpos = strchr(src, '*');
  2094. if (starpos != NULL) *(starpos) = '\0';
  2095. while (*src == ' ') ++src;
  2096. if (!hasP && !hasS && *src != '\0')
  2097. lcd_setstatus(src);
  2098. else
  2099. LCD_MESSAGEPGM(MSG_USERWAIT);
  2100. lcd_ignore_click();
  2101. st_synchronize();
  2102. previous_millis_cmd = millis();
  2103. if (codenum > 0) {
  2104. codenum += previous_millis_cmd; // keep track of when we started waiting
  2105. while(millis() < codenum && !lcd_clicked()) {
  2106. manage_heater();
  2107. manage_inactivity();
  2108. lcd_update();
  2109. }
  2110. lcd_ignore_click(false);
  2111. }
  2112. else {
  2113. if (!lcd_detected()) return;
  2114. while (!lcd_clicked()) {
  2115. manage_heater();
  2116. manage_inactivity();
  2117. lcd_update();
  2118. }
  2119. }
  2120. if (IS_SD_PRINTING)
  2121. LCD_MESSAGEPGM(MSG_RESUMING);
  2122. else
  2123. LCD_MESSAGEPGM(WELCOME_MSG);
  2124. }
  2125. #endif // ULTIPANEL
  2126. /**
  2127. * M17: Enable power on all stepper motors
  2128. */
  2129. inline void gcode_M17() {
  2130. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2131. enable_x();
  2132. enable_y();
  2133. enable_z();
  2134. enable_e0();
  2135. enable_e1();
  2136. enable_e2();
  2137. enable_e3();
  2138. }
  2139. #ifdef SDSUPPORT
  2140. /**
  2141. * M20: List SD card to serial output
  2142. */
  2143. inline void gcode_M20() {
  2144. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2145. card.ls();
  2146. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2147. }
  2148. /**
  2149. * M21: Init SD Card
  2150. */
  2151. inline void gcode_M21() {
  2152. card.initsd();
  2153. }
  2154. /**
  2155. * M22: Release SD Card
  2156. */
  2157. inline void gcode_M22() {
  2158. card.release();
  2159. }
  2160. /**
  2161. * M23: Select a file
  2162. */
  2163. inline void gcode_M23() {
  2164. char* codepos = strchr_pointer + 4;
  2165. char* starpos = strchr(codepos, '*');
  2166. if (starpos) *starpos = '\0';
  2167. card.openFile(codepos, true);
  2168. }
  2169. /**
  2170. * M24: Start SD Print
  2171. */
  2172. inline void gcode_M24() {
  2173. card.startFileprint();
  2174. starttime = millis();
  2175. }
  2176. /**
  2177. * M25: Pause SD Print
  2178. */
  2179. inline void gcode_M25() {
  2180. card.pauseSDPrint();
  2181. }
  2182. /**
  2183. * M26: Set SD Card file index
  2184. */
  2185. inline void gcode_M26() {
  2186. if (card.cardOK && code_seen('S'))
  2187. card.setIndex(code_value_long());
  2188. }
  2189. /**
  2190. * M27: Get SD Card status
  2191. */
  2192. inline void gcode_M27() {
  2193. card.getStatus();
  2194. }
  2195. /**
  2196. * M28: Start SD Write
  2197. */
  2198. inline void gcode_M28() {
  2199. char* codepos = strchr_pointer + 4;
  2200. char* starpos = strchr(codepos, '*');
  2201. if (starpos) {
  2202. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2203. strchr_pointer = strchr(npos, ' ') + 1;
  2204. *(starpos) = '\0';
  2205. }
  2206. card.openFile(codepos, false);
  2207. }
  2208. /**
  2209. * M29: Stop SD Write
  2210. * Processed in write to file routine above
  2211. */
  2212. inline void gcode_M29() {
  2213. // card.saving = false;
  2214. }
  2215. /**
  2216. * M30 <filename>: Delete SD Card file
  2217. */
  2218. inline void gcode_M30() {
  2219. if (card.cardOK) {
  2220. card.closefile();
  2221. char* starpos = strchr(strchr_pointer + 4, '*');
  2222. if (starpos) {
  2223. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2224. strchr_pointer = strchr(npos, ' ') + 1;
  2225. *(starpos) = '\0';
  2226. }
  2227. card.removeFile(strchr_pointer + 4);
  2228. }
  2229. }
  2230. #endif
  2231. /**
  2232. * M31: Get the time since the start of SD Print (or last M109)
  2233. */
  2234. inline void gcode_M31() {
  2235. stoptime = millis();
  2236. unsigned long t = (stoptime - starttime) / 1000;
  2237. int min = t / 60, sec = t % 60;
  2238. char time[30];
  2239. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2240. SERIAL_ECHO_START;
  2241. SERIAL_ECHOLN(time);
  2242. lcd_setstatus(time);
  2243. autotempShutdown();
  2244. }
  2245. #ifdef SDSUPPORT
  2246. /**
  2247. * M32: Select file and start SD Print
  2248. */
  2249. inline void gcode_M32() {
  2250. if (card.sdprinting)
  2251. st_synchronize();
  2252. char* codepos = strchr_pointer + 4;
  2253. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2254. if (! namestartpos)
  2255. namestartpos = codepos; //default name position, 4 letters after the M
  2256. else
  2257. namestartpos++; //to skip the '!'
  2258. char* starpos = strchr(codepos, '*');
  2259. if (starpos) *(starpos) = '\0';
  2260. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2261. if (card.cardOK) {
  2262. card.openFile(namestartpos, true, !call_procedure);
  2263. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2264. card.setIndex(code_value_long());
  2265. card.startFileprint();
  2266. if (!call_procedure)
  2267. starttime = millis(); //procedure calls count as normal print time.
  2268. }
  2269. }
  2270. /**
  2271. * M928: Start SD Write
  2272. */
  2273. inline void gcode_M928() {
  2274. char* starpos = strchr(strchr_pointer + 5, '*');
  2275. if (starpos) {
  2276. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2277. strchr_pointer = strchr(npos, ' ') + 1;
  2278. *(starpos) = '\0';
  2279. }
  2280. card.openLogFile(strchr_pointer + 5);
  2281. }
  2282. #endif // SDSUPPORT
  2283. /**
  2284. * M42: Change pin status via GCode
  2285. */
  2286. inline void gcode_M42() {
  2287. if (code_seen('S')) {
  2288. int pin_status = code_value(),
  2289. pin_number = LED_PIN;
  2290. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2291. pin_number = code_value();
  2292. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2293. if (sensitive_pins[i] == pin_number) {
  2294. pin_number = -1;
  2295. break;
  2296. }
  2297. }
  2298. #if defined(FAN_PIN) && FAN_PIN > -1
  2299. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2300. #endif
  2301. if (pin_number > -1) {
  2302. pinMode(pin_number, OUTPUT);
  2303. digitalWrite(pin_number, pin_status);
  2304. analogWrite(pin_number, pin_status);
  2305. }
  2306. } // code_seen('S')
  2307. }
  2308. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2309. #if Z_MIN_PIN == -1
  2310. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2311. #endif
  2312. /**
  2313. * M48: Z-Probe repeatability measurement function.
  2314. *
  2315. * Usage:
  2316. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2317. * n = Number of samples (4-50, default 10)
  2318. * X = Sample X position
  2319. * Y = Sample Y position
  2320. * V = Verbose level (0-4, default=1)
  2321. * E = Engage probe for each reading
  2322. * L = Number of legs of movement before probe
  2323. *
  2324. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2325. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2326. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2327. * regenerated.
  2328. *
  2329. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2330. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2331. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2332. */
  2333. inline void gcode_M48() {
  2334. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2335. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2336. double X_current, Y_current, Z_current;
  2337. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2338. if (code_seen('V') || code_seen('v')) {
  2339. verbose_level = code_value();
  2340. if (verbose_level < 0 || verbose_level > 4 ) {
  2341. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2342. return;
  2343. }
  2344. }
  2345. if (verbose_level > 0)
  2346. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2347. if (code_seen('n')) {
  2348. n_samples = code_value();
  2349. if (n_samples < 4 || n_samples > 50) {
  2350. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2351. return;
  2352. }
  2353. }
  2354. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2355. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2356. Z_current = st_get_position_mm(Z_AXIS);
  2357. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2358. ext_position = st_get_position_mm(E_AXIS);
  2359. if (code_seen('E') || code_seen('e'))
  2360. engage_probe_for_each_reading++;
  2361. if (code_seen('X') || code_seen('x')) {
  2362. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2363. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2364. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2365. return;
  2366. }
  2367. }
  2368. if (code_seen('Y') || code_seen('y')) {
  2369. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2370. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2371. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2372. return;
  2373. }
  2374. }
  2375. if (code_seen('L') || code_seen('l')) {
  2376. n_legs = code_value();
  2377. if (n_legs == 1) n_legs = 2;
  2378. if (n_legs < 0 || n_legs > 15) {
  2379. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2380. return;
  2381. }
  2382. }
  2383. //
  2384. // Do all the preliminary setup work. First raise the probe.
  2385. //
  2386. st_synchronize();
  2387. plan_bed_level_matrix.set_to_identity();
  2388. plan_buffer_line(X_current, Y_current, Z_start_location,
  2389. ext_position,
  2390. homing_feedrate[Z_AXIS] / 60,
  2391. active_extruder);
  2392. st_synchronize();
  2393. //
  2394. // Now get everything to the specified probe point So we can safely do a probe to
  2395. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2396. // use that as a starting point for each probe.
  2397. //
  2398. if (verbose_level > 2)
  2399. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2400. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2401. ext_position,
  2402. homing_feedrate[X_AXIS]/60,
  2403. active_extruder);
  2404. st_synchronize();
  2405. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2406. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2407. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2408. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2409. //
  2410. // OK, do the inital probe to get us close to the bed.
  2411. // Then retrace the right amount and use that in subsequent probes
  2412. //
  2413. engage_z_probe();
  2414. setup_for_endstop_move();
  2415. run_z_probe();
  2416. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2417. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2418. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2419. ext_position,
  2420. homing_feedrate[X_AXIS]/60,
  2421. active_extruder);
  2422. st_synchronize();
  2423. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2424. if (engage_probe_for_each_reading) retract_z_probe();
  2425. for (n=0; n < n_samples; n++) {
  2426. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2427. if (n_legs) {
  2428. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2429. int l;
  2430. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2431. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2432. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2433. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2434. //SERIAL_ECHOPAIR(" theta: ",theta);
  2435. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2436. //SERIAL_PROTOCOLLNPGM("");
  2437. float dir = rotational_direction ? 1 : -1;
  2438. for (l = 0; l < n_legs - 1; l++) {
  2439. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2440. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2441. if (radius < 0.0) radius = -radius;
  2442. X_current = X_probe_location + cos(theta) * radius;
  2443. Y_current = Y_probe_location + sin(theta) * radius;
  2444. // Make sure our X & Y are sane
  2445. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2446. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2447. if (verbose_level > 3) {
  2448. SERIAL_ECHOPAIR("x: ", X_current);
  2449. SERIAL_ECHOPAIR("y: ", Y_current);
  2450. SERIAL_PROTOCOLLNPGM("");
  2451. }
  2452. do_blocking_move_to( X_current, Y_current, Z_current );
  2453. }
  2454. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2455. }
  2456. if (engage_probe_for_each_reading) {
  2457. engage_z_probe();
  2458. delay(1000);
  2459. }
  2460. setup_for_endstop_move();
  2461. run_z_probe();
  2462. sample_set[n] = current_position[Z_AXIS];
  2463. //
  2464. // Get the current mean for the data points we have so far
  2465. //
  2466. sum = 0.0;
  2467. for (j=0; j<=n; j++) sum += sample_set[j];
  2468. mean = sum / (double (n+1));
  2469. //
  2470. // Now, use that mean to calculate the standard deviation for the
  2471. // data points we have so far
  2472. //
  2473. sum = 0.0;
  2474. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2475. sigma = sqrt( sum / (double (n+1)) );
  2476. if (verbose_level > 1) {
  2477. SERIAL_PROTOCOL(n+1);
  2478. SERIAL_PROTOCOL(" of ");
  2479. SERIAL_PROTOCOL(n_samples);
  2480. SERIAL_PROTOCOLPGM(" z: ");
  2481. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2482. }
  2483. if (verbose_level > 2) {
  2484. SERIAL_PROTOCOL(" mean: ");
  2485. SERIAL_PROTOCOL_F(mean,6);
  2486. SERIAL_PROTOCOL(" sigma: ");
  2487. SERIAL_PROTOCOL_F(sigma,6);
  2488. }
  2489. if (verbose_level > 0) SERIAL_EOL;
  2490. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2491. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2492. st_synchronize();
  2493. if (engage_probe_for_each_reading) {
  2494. retract_z_probe();
  2495. delay(1000);
  2496. }
  2497. }
  2498. retract_z_probe();
  2499. delay(1000);
  2500. clean_up_after_endstop_move();
  2501. // enable_endstops(true);
  2502. if (verbose_level > 0) {
  2503. SERIAL_PROTOCOLPGM("Mean: ");
  2504. SERIAL_PROTOCOL_F(mean, 6);
  2505. SERIAL_EOL;
  2506. }
  2507. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2508. SERIAL_PROTOCOL_F(sigma, 6);
  2509. SERIAL_EOL; SERIAL_EOL;
  2510. }
  2511. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2512. /**
  2513. * M104: Set hot end temperature
  2514. */
  2515. inline void gcode_M104() {
  2516. if (setTargetedHotend(104)) return;
  2517. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2518. #ifdef DUAL_X_CARRIAGE
  2519. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2520. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2521. #endif
  2522. setWatch();
  2523. }
  2524. /**
  2525. * M105: Read hot end and bed temperature
  2526. */
  2527. inline void gcode_M105() {
  2528. if (setTargetedHotend(105)) return;
  2529. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2530. SERIAL_PROTOCOLPGM("ok T:");
  2531. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2532. SERIAL_PROTOCOLPGM(" /");
  2533. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2534. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2535. SERIAL_PROTOCOLPGM(" B:");
  2536. SERIAL_PROTOCOL_F(degBed(),1);
  2537. SERIAL_PROTOCOLPGM(" /");
  2538. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2539. #endif //TEMP_BED_PIN
  2540. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2541. SERIAL_PROTOCOLPGM(" T");
  2542. SERIAL_PROTOCOL(cur_extruder);
  2543. SERIAL_PROTOCOLPGM(":");
  2544. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2545. SERIAL_PROTOCOLPGM(" /");
  2546. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2547. }
  2548. #else
  2549. SERIAL_ERROR_START;
  2550. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2551. #endif
  2552. SERIAL_PROTOCOLPGM(" @:");
  2553. #ifdef EXTRUDER_WATTS
  2554. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2555. SERIAL_PROTOCOLPGM("W");
  2556. #else
  2557. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2558. #endif
  2559. SERIAL_PROTOCOLPGM(" B@:");
  2560. #ifdef BED_WATTS
  2561. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2562. SERIAL_PROTOCOLPGM("W");
  2563. #else
  2564. SERIAL_PROTOCOL(getHeaterPower(-1));
  2565. #endif
  2566. #ifdef SHOW_TEMP_ADC_VALUES
  2567. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2568. SERIAL_PROTOCOLPGM(" ADC B:");
  2569. SERIAL_PROTOCOL_F(degBed(),1);
  2570. SERIAL_PROTOCOLPGM("C->");
  2571. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2572. #endif
  2573. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2574. SERIAL_PROTOCOLPGM(" T");
  2575. SERIAL_PROTOCOL(cur_extruder);
  2576. SERIAL_PROTOCOLPGM(":");
  2577. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2578. SERIAL_PROTOCOLPGM("C->");
  2579. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2580. }
  2581. #endif
  2582. SERIAL_PROTOCOLLN("");
  2583. }
  2584. #if defined(FAN_PIN) && FAN_PIN > -1
  2585. /**
  2586. * M106: Set Fan Speed
  2587. */
  2588. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2589. /**
  2590. * M107: Fan Off
  2591. */
  2592. inline void gcode_M107() { fanSpeed = 0; }
  2593. #endif //FAN_PIN
  2594. /**
  2595. * M109: Wait for extruder(s) to reach temperature
  2596. */
  2597. inline void gcode_M109() {
  2598. if (setTargetedHotend(109)) return;
  2599. LCD_MESSAGEPGM(MSG_HEATING);
  2600. CooldownNoWait = code_seen('S');
  2601. if (CooldownNoWait || code_seen('R')) {
  2602. setTargetHotend(code_value(), tmp_extruder);
  2603. #ifdef DUAL_X_CARRIAGE
  2604. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2605. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2606. #endif
  2607. }
  2608. #ifdef AUTOTEMP
  2609. autotemp_enabled = code_seen('F');
  2610. if (autotemp_enabled) autotemp_factor = code_value();
  2611. if (code_seen('S')) autotemp_min = code_value();
  2612. if (code_seen('B')) autotemp_max = code_value();
  2613. #endif
  2614. setWatch();
  2615. unsigned long timetemp = millis();
  2616. /* See if we are heating up or cooling down */
  2617. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2618. cancel_heatup = false;
  2619. #ifdef TEMP_RESIDENCY_TIME
  2620. long residencyStart = -1;
  2621. /* continue to loop until we have reached the target temp
  2622. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2623. while((!cancel_heatup)&&((residencyStart == -1) ||
  2624. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2625. #else
  2626. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2627. #endif //TEMP_RESIDENCY_TIME
  2628. { // while loop
  2629. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2630. SERIAL_PROTOCOLPGM("T:");
  2631. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2632. SERIAL_PROTOCOLPGM(" E:");
  2633. SERIAL_PROTOCOL((int)tmp_extruder);
  2634. #ifdef TEMP_RESIDENCY_TIME
  2635. SERIAL_PROTOCOLPGM(" W:");
  2636. if (residencyStart > -1) {
  2637. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2638. SERIAL_PROTOCOLLN( timetemp );
  2639. }
  2640. else {
  2641. SERIAL_PROTOCOLLN( "?" );
  2642. }
  2643. #else
  2644. SERIAL_PROTOCOLLN("");
  2645. #endif
  2646. timetemp = millis();
  2647. }
  2648. manage_heater();
  2649. manage_inactivity();
  2650. lcd_update();
  2651. #ifdef TEMP_RESIDENCY_TIME
  2652. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2653. // or when current temp falls outside the hysteresis after target temp was reached
  2654. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2655. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2656. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2657. {
  2658. residencyStart = millis();
  2659. }
  2660. #endif //TEMP_RESIDENCY_TIME
  2661. }
  2662. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2663. starttime = previous_millis_cmd = millis();
  2664. }
  2665. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2666. /**
  2667. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2668. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2669. */
  2670. inline void gcode_M190() {
  2671. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2672. CooldownNoWait = code_seen('S');
  2673. if (CooldownNoWait || code_seen('R'))
  2674. setTargetBed(code_value());
  2675. unsigned long timetemp = millis();
  2676. cancel_heatup = false;
  2677. target_direction = isHeatingBed(); // true if heating, false if cooling
  2678. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2679. unsigned long ms = millis();
  2680. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2681. timetemp = ms;
  2682. float tt = degHotend(active_extruder);
  2683. SERIAL_PROTOCOLPGM("T:");
  2684. SERIAL_PROTOCOL(tt);
  2685. SERIAL_PROTOCOLPGM(" E:");
  2686. SERIAL_PROTOCOL((int)active_extruder);
  2687. SERIAL_PROTOCOLPGM(" B:");
  2688. SERIAL_PROTOCOL_F(degBed(), 1);
  2689. SERIAL_PROTOCOLLN("");
  2690. }
  2691. manage_heater();
  2692. manage_inactivity();
  2693. lcd_update();
  2694. }
  2695. LCD_MESSAGEPGM(MSG_BED_DONE);
  2696. previous_millis_cmd = millis();
  2697. }
  2698. #endif // TEMP_BED_PIN > -1
  2699. /**
  2700. * M112: Emergency Stop
  2701. */
  2702. inline void gcode_M112() {
  2703. kill();
  2704. }
  2705. #ifdef BARICUDA
  2706. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2707. /**
  2708. * M126: Heater 1 valve open
  2709. */
  2710. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2711. /**
  2712. * M127: Heater 1 valve close
  2713. */
  2714. inline void gcode_M127() { ValvePressure = 0; }
  2715. #endif
  2716. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2717. /**
  2718. * M128: Heater 2 valve open
  2719. */
  2720. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2721. /**
  2722. * M129: Heater 2 valve close
  2723. */
  2724. inline void gcode_M129() { EtoPPressure = 0; }
  2725. #endif
  2726. #endif //BARICUDA
  2727. /**
  2728. * M140: Set bed temperature
  2729. */
  2730. inline void gcode_M140() {
  2731. if (code_seen('S')) setTargetBed(code_value());
  2732. }
  2733. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2734. /**
  2735. * M80: Turn on Power Supply
  2736. */
  2737. inline void gcode_M80() {
  2738. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2739. // If you have a switch on suicide pin, this is useful
  2740. // if you want to start another print with suicide feature after
  2741. // a print without suicide...
  2742. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2743. OUT_WRITE(SUICIDE_PIN, HIGH);
  2744. #endif
  2745. #ifdef ULTIPANEL
  2746. powersupply = true;
  2747. LCD_MESSAGEPGM(WELCOME_MSG);
  2748. lcd_update();
  2749. #endif
  2750. }
  2751. #endif // PS_ON_PIN
  2752. /**
  2753. * M81: Turn off Power Supply
  2754. */
  2755. inline void gcode_M81() {
  2756. disable_heater();
  2757. st_synchronize();
  2758. disable_e0();
  2759. disable_e1();
  2760. disable_e2();
  2761. disable_e3();
  2762. finishAndDisableSteppers();
  2763. fanSpeed = 0;
  2764. delay(1000); // Wait 1 second before switching off
  2765. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2766. st_synchronize();
  2767. suicide();
  2768. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2769. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2770. #endif
  2771. #ifdef ULTIPANEL
  2772. powersupply = false;
  2773. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2774. lcd_update();
  2775. #endif
  2776. }
  2777. /**
  2778. * M82: Set E codes absolute (default)
  2779. */
  2780. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2781. /**
  2782. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2783. */
  2784. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2785. /**
  2786. * M18, M84: Disable all stepper motors
  2787. */
  2788. inline void gcode_M18_M84() {
  2789. if (code_seen('S')) {
  2790. stepper_inactive_time = code_value() * 1000;
  2791. }
  2792. else {
  2793. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2794. if (all_axis) {
  2795. st_synchronize();
  2796. disable_e0();
  2797. disable_e1();
  2798. disable_e2();
  2799. disable_e3();
  2800. finishAndDisableSteppers();
  2801. }
  2802. else {
  2803. st_synchronize();
  2804. if (code_seen('X')) disable_x();
  2805. if (code_seen('Y')) disable_y();
  2806. if (code_seen('Z')) disable_z();
  2807. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2808. if (code_seen('E')) {
  2809. disable_e0();
  2810. disable_e1();
  2811. disable_e2();
  2812. disable_e3();
  2813. }
  2814. #endif
  2815. }
  2816. }
  2817. }
  2818. /**
  2819. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2820. */
  2821. inline void gcode_M85() {
  2822. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2823. }
  2824. /**
  2825. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2826. */
  2827. inline void gcode_M92() {
  2828. for(int8_t i=0; i < NUM_AXIS; i++) {
  2829. if (code_seen(axis_codes[i])) {
  2830. if (i == E_AXIS) {
  2831. float value = code_value();
  2832. if (value < 20.0) {
  2833. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2834. max_e_jerk *= factor;
  2835. max_feedrate[i] *= factor;
  2836. axis_steps_per_sqr_second[i] *= factor;
  2837. }
  2838. axis_steps_per_unit[i] = value;
  2839. }
  2840. else {
  2841. axis_steps_per_unit[i] = code_value();
  2842. }
  2843. }
  2844. }
  2845. }
  2846. /**
  2847. * M114: Output current position to serial port
  2848. */
  2849. inline void gcode_M114() {
  2850. SERIAL_PROTOCOLPGM("X:");
  2851. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2852. SERIAL_PROTOCOLPGM(" Y:");
  2853. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2854. SERIAL_PROTOCOLPGM(" Z:");
  2855. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2856. SERIAL_PROTOCOLPGM(" E:");
  2857. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2858. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2859. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2860. SERIAL_PROTOCOLPGM(" Y:");
  2861. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2862. SERIAL_PROTOCOLPGM(" Z:");
  2863. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2864. SERIAL_PROTOCOLLN("");
  2865. #ifdef SCARA
  2866. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2867. SERIAL_PROTOCOL(delta[X_AXIS]);
  2868. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2869. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2870. SERIAL_PROTOCOLLN("");
  2871. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2872. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2873. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2874. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2875. SERIAL_PROTOCOLLN("");
  2876. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2877. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2878. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2879. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2880. SERIAL_PROTOCOLLN("");
  2881. SERIAL_PROTOCOLLN("");
  2882. #endif
  2883. }
  2884. /**
  2885. * M115: Capabilities string
  2886. */
  2887. inline void gcode_M115() {
  2888. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2889. }
  2890. /**
  2891. * M117: Set LCD Status Message
  2892. */
  2893. inline void gcode_M117() {
  2894. char* codepos = strchr_pointer + 5;
  2895. char* starpos = strchr(codepos, '*');
  2896. if (starpos) *starpos = '\0';
  2897. lcd_setstatus(codepos);
  2898. }
  2899. /**
  2900. * M119: Output endstop states to serial output
  2901. */
  2902. inline void gcode_M119() {
  2903. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2904. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2905. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2906. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2907. #endif
  2908. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2909. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2910. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2911. #endif
  2912. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2913. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2914. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2915. #endif
  2916. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2917. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2918. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2919. #endif
  2920. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2921. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2922. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2923. #endif
  2924. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2925. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2926. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2927. #endif
  2928. }
  2929. /**
  2930. * M120: Enable endstops
  2931. */
  2932. inline void gcode_M120() { enable_endstops(false); }
  2933. /**
  2934. * M121: Disable endstops
  2935. */
  2936. inline void gcode_M121() { enable_endstops(true); }
  2937. #ifdef BLINKM
  2938. /**
  2939. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2940. */
  2941. inline void gcode_M150() {
  2942. SendColors(
  2943. code_seen('R') ? (byte)code_value() : 0,
  2944. code_seen('U') ? (byte)code_value() : 0,
  2945. code_seen('B') ? (byte)code_value() : 0
  2946. );
  2947. }
  2948. #endif // BLINKM
  2949. /**
  2950. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2951. * T<extruder>
  2952. * D<millimeters>
  2953. */
  2954. inline void gcode_M200() {
  2955. tmp_extruder = active_extruder;
  2956. if (code_seen('T')) {
  2957. tmp_extruder = code_value();
  2958. if (tmp_extruder >= EXTRUDERS) {
  2959. SERIAL_ECHO_START;
  2960. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2961. return;
  2962. }
  2963. }
  2964. float area = .0;
  2965. if (code_seen('D')) {
  2966. float diameter = code_value();
  2967. // setting any extruder filament size disables volumetric on the assumption that
  2968. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2969. // for all extruders
  2970. volumetric_enabled = (diameter != 0.0);
  2971. if (volumetric_enabled) {
  2972. filament_size[tmp_extruder] = diameter;
  2973. // make sure all extruders have some sane value for the filament size
  2974. for (int i=0; i<EXTRUDERS; i++)
  2975. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2976. }
  2977. }
  2978. else {
  2979. //reserved for setting filament diameter via UFID or filament measuring device
  2980. return;
  2981. }
  2982. calculate_volumetric_multipliers();
  2983. }
  2984. /**
  2985. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2986. */
  2987. inline void gcode_M201() {
  2988. for (int8_t i=0; i < NUM_AXIS; i++) {
  2989. if (code_seen(axis_codes[i])) {
  2990. max_acceleration_units_per_sq_second[i] = code_value();
  2991. }
  2992. }
  2993. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2994. reset_acceleration_rates();
  2995. }
  2996. #if 0 // Not used for Sprinter/grbl gen6
  2997. inline void gcode_M202() {
  2998. for(int8_t i=0; i < NUM_AXIS; i++) {
  2999. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3000. }
  3001. }
  3002. #endif
  3003. /**
  3004. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3005. */
  3006. inline void gcode_M203() {
  3007. for (int8_t i=0; i < NUM_AXIS; i++) {
  3008. if (code_seen(axis_codes[i])) {
  3009. max_feedrate[i] = code_value();
  3010. }
  3011. }
  3012. }
  3013. /**
  3014. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3015. *
  3016. * P = Printing moves
  3017. * R = Retract only (no X, Y, Z) moves
  3018. * T = Travel (non printing) moves
  3019. *
  3020. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3021. */
  3022. inline void gcode_M204() {
  3023. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3024. {
  3025. acceleration = code_value();
  3026. travel_acceleration = acceleration;
  3027. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3028. SERIAL_EOL;
  3029. }
  3030. if (code_seen('P'))
  3031. {
  3032. acceleration = code_value();
  3033. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3034. SERIAL_EOL;
  3035. }
  3036. if (code_seen('R'))
  3037. {
  3038. retract_acceleration = code_value();
  3039. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3040. SERIAL_EOL;
  3041. }
  3042. if (code_seen('T'))
  3043. {
  3044. travel_acceleration = code_value();
  3045. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3046. SERIAL_EOL;
  3047. }
  3048. }
  3049. /**
  3050. * M205: Set Advanced Settings
  3051. *
  3052. * S = Min Feed Rate (mm/s)
  3053. * T = Min Travel Feed Rate (mm/s)
  3054. * B = Min Segment Time (µs)
  3055. * X = Max XY Jerk (mm/s/s)
  3056. * Z = Max Z Jerk (mm/s/s)
  3057. * E = Max E Jerk (mm/s/s)
  3058. */
  3059. inline void gcode_M205() {
  3060. if (code_seen('S')) minimumfeedrate = code_value();
  3061. if (code_seen('T')) mintravelfeedrate = code_value();
  3062. if (code_seen('B')) minsegmenttime = code_value();
  3063. if (code_seen('X')) max_xy_jerk = code_value();
  3064. if (code_seen('Z')) max_z_jerk = code_value();
  3065. if (code_seen('E')) max_e_jerk = code_value();
  3066. }
  3067. /**
  3068. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3069. */
  3070. inline void gcode_M206() {
  3071. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3072. if (code_seen(axis_codes[i])) {
  3073. add_homing[i] = code_value();
  3074. }
  3075. }
  3076. #ifdef SCARA
  3077. if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
  3078. if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
  3079. #endif
  3080. }
  3081. #ifdef DELTA
  3082. /**
  3083. * M665: Set delta configurations
  3084. *
  3085. * L = diagonal rod
  3086. * R = delta radius
  3087. * S = segments per second
  3088. */
  3089. inline void gcode_M665() {
  3090. if (code_seen('L')) delta_diagonal_rod = code_value();
  3091. if (code_seen('R')) delta_radius = code_value();
  3092. if (code_seen('S')) delta_segments_per_second = code_value();
  3093. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3094. }
  3095. /**
  3096. * M666: Set delta endstop adjustment
  3097. */
  3098. inline void gcode_M666() {
  3099. for (int8_t i = 0; i < 3; i++) {
  3100. if (code_seen(axis_codes[i])) {
  3101. endstop_adj[i] = code_value();
  3102. }
  3103. }
  3104. }
  3105. #endif // DELTA
  3106. #ifdef FWRETRACT
  3107. /**
  3108. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3109. */
  3110. inline void gcode_M207() {
  3111. if (code_seen('S')) retract_length = code_value();
  3112. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3113. if (code_seen('Z')) retract_zlift = code_value();
  3114. }
  3115. /**
  3116. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3117. */
  3118. inline void gcode_M208() {
  3119. if (code_seen('S')) retract_recover_length = code_value();
  3120. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3121. }
  3122. /**
  3123. * M209: Enable automatic retract (M209 S1)
  3124. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3125. */
  3126. inline void gcode_M209() {
  3127. if (code_seen('S')) {
  3128. int t = code_value();
  3129. switch(t) {
  3130. case 0:
  3131. autoretract_enabled = false;
  3132. break;
  3133. case 1:
  3134. autoretract_enabled = true;
  3135. break;
  3136. default:
  3137. SERIAL_ECHO_START;
  3138. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3139. SERIAL_ECHO(cmdbuffer[bufindr]);
  3140. SERIAL_ECHOLNPGM("\"");
  3141. return;
  3142. }
  3143. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3144. }
  3145. }
  3146. #endif // FWRETRACT
  3147. #if EXTRUDERS > 1
  3148. /**
  3149. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3150. */
  3151. inline void gcode_M218() {
  3152. if (setTargetedHotend(218)) return;
  3153. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3154. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3155. #ifdef DUAL_X_CARRIAGE
  3156. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3157. #endif
  3158. SERIAL_ECHO_START;
  3159. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3160. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3161. SERIAL_ECHO(" ");
  3162. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3163. SERIAL_ECHO(",");
  3164. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3165. #ifdef DUAL_X_CARRIAGE
  3166. SERIAL_ECHO(",");
  3167. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3168. #endif
  3169. }
  3170. SERIAL_EOL;
  3171. }
  3172. #endif // EXTRUDERS > 1
  3173. /**
  3174. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3175. */
  3176. inline void gcode_M220() {
  3177. if (code_seen('S')) feedmultiply = code_value();
  3178. }
  3179. /**
  3180. * M221: Set extrusion percentage (M221 T0 S95)
  3181. */
  3182. inline void gcode_M221() {
  3183. if (code_seen('S')) {
  3184. int sval = code_value();
  3185. if (code_seen('T')) {
  3186. if (setTargetedHotend(221)) return;
  3187. extruder_multiply[tmp_extruder] = sval;
  3188. }
  3189. else {
  3190. extrudemultiply = sval;
  3191. }
  3192. }
  3193. }
  3194. /**
  3195. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3196. */
  3197. inline void gcode_M226() {
  3198. if (code_seen('P')) {
  3199. int pin_number = code_value();
  3200. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3201. if (pin_state >= -1 && pin_state <= 1) {
  3202. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3203. if (sensitive_pins[i] == pin_number) {
  3204. pin_number = -1;
  3205. break;
  3206. }
  3207. }
  3208. if (pin_number > -1) {
  3209. int target = LOW;
  3210. st_synchronize();
  3211. pinMode(pin_number, INPUT);
  3212. switch(pin_state){
  3213. case 1:
  3214. target = HIGH;
  3215. break;
  3216. case 0:
  3217. target = LOW;
  3218. break;
  3219. case -1:
  3220. target = !digitalRead(pin_number);
  3221. break;
  3222. }
  3223. while(digitalRead(pin_number) != target) {
  3224. manage_heater();
  3225. manage_inactivity();
  3226. lcd_update();
  3227. }
  3228. } // pin_number > -1
  3229. } // pin_state -1 0 1
  3230. } // code_seen('P')
  3231. }
  3232. #if NUM_SERVOS > 0
  3233. /**
  3234. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3235. */
  3236. inline void gcode_M280() {
  3237. int servo_index = code_seen('P') ? code_value() : -1;
  3238. int servo_position = 0;
  3239. if (code_seen('S')) {
  3240. servo_position = code_value();
  3241. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3242. #if SERVO_LEVELING
  3243. servos[servo_index].attach(0);
  3244. #endif
  3245. servos[servo_index].write(servo_position);
  3246. #if SERVO_LEVELING
  3247. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3248. servos[servo_index].detach();
  3249. #endif
  3250. }
  3251. else {
  3252. SERIAL_ECHO_START;
  3253. SERIAL_ECHO("Servo ");
  3254. SERIAL_ECHO(servo_index);
  3255. SERIAL_ECHOLN(" out of range");
  3256. }
  3257. }
  3258. else if (servo_index >= 0) {
  3259. SERIAL_PROTOCOL(MSG_OK);
  3260. SERIAL_PROTOCOL(" Servo ");
  3261. SERIAL_PROTOCOL(servo_index);
  3262. SERIAL_PROTOCOL(": ");
  3263. SERIAL_PROTOCOL(servos[servo_index].read());
  3264. SERIAL_PROTOCOLLN("");
  3265. }
  3266. }
  3267. #endif // NUM_SERVOS > 0
  3268. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3269. /**
  3270. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3271. */
  3272. inline void gcode_M300() {
  3273. int beepS = code_seen('S') ? code_value() : 110;
  3274. int beepP = code_seen('P') ? code_value() : 1000;
  3275. if (beepS > 0) {
  3276. #if BEEPER > 0
  3277. tone(BEEPER, beepS);
  3278. delay(beepP);
  3279. noTone(BEEPER);
  3280. #elif defined(ULTRALCD)
  3281. lcd_buzz(beepS, beepP);
  3282. #elif defined(LCD_USE_I2C_BUZZER)
  3283. lcd_buzz(beepP, beepS);
  3284. #endif
  3285. }
  3286. else {
  3287. delay(beepP);
  3288. }
  3289. }
  3290. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3291. #ifdef PIDTEMP
  3292. /**
  3293. * M301: Set PID parameters P I D (and optionally C)
  3294. */
  3295. inline void gcode_M301() {
  3296. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3297. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3298. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3299. if (e < EXTRUDERS) { // catch bad input value
  3300. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3301. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3302. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3303. #ifdef PID_ADD_EXTRUSION_RATE
  3304. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3305. #endif
  3306. updatePID();
  3307. SERIAL_PROTOCOL(MSG_OK);
  3308. #ifdef PID_PARAMS_PER_EXTRUDER
  3309. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3310. SERIAL_PROTOCOL(e);
  3311. #endif // PID_PARAMS_PER_EXTRUDER
  3312. SERIAL_PROTOCOL(" p:");
  3313. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3314. SERIAL_PROTOCOL(" i:");
  3315. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3316. SERIAL_PROTOCOL(" d:");
  3317. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3318. #ifdef PID_ADD_EXTRUSION_RATE
  3319. SERIAL_PROTOCOL(" c:");
  3320. //Kc does not have scaling applied above, or in resetting defaults
  3321. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3322. #endif
  3323. SERIAL_PROTOCOLLN("");
  3324. }
  3325. else {
  3326. SERIAL_ECHO_START;
  3327. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3328. }
  3329. }
  3330. #endif // PIDTEMP
  3331. #ifdef PIDTEMPBED
  3332. inline void gcode_M304() {
  3333. if (code_seen('P')) bedKp = code_value();
  3334. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3335. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3336. updatePID();
  3337. SERIAL_PROTOCOL(MSG_OK);
  3338. SERIAL_PROTOCOL(" p:");
  3339. SERIAL_PROTOCOL(bedKp);
  3340. SERIAL_PROTOCOL(" i:");
  3341. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3342. SERIAL_PROTOCOL(" d:");
  3343. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3344. SERIAL_PROTOCOLLN("");
  3345. }
  3346. #endif // PIDTEMPBED
  3347. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3348. /**
  3349. * M240: Trigger a camera by emulating a Canon RC-1
  3350. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3351. */
  3352. inline void gcode_M240() {
  3353. #ifdef CHDK
  3354. OUT_WRITE(CHDK, HIGH);
  3355. chdkHigh = millis();
  3356. chdkActive = true;
  3357. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3358. const uint8_t NUM_PULSES = 16;
  3359. const float PULSE_LENGTH = 0.01524;
  3360. for (int i = 0; i < NUM_PULSES; i++) {
  3361. WRITE(PHOTOGRAPH_PIN, HIGH);
  3362. _delay_ms(PULSE_LENGTH);
  3363. WRITE(PHOTOGRAPH_PIN, LOW);
  3364. _delay_ms(PULSE_LENGTH);
  3365. }
  3366. delay(7.33);
  3367. for (int i = 0; i < NUM_PULSES; i++) {
  3368. WRITE(PHOTOGRAPH_PIN, HIGH);
  3369. _delay_ms(PULSE_LENGTH);
  3370. WRITE(PHOTOGRAPH_PIN, LOW);
  3371. _delay_ms(PULSE_LENGTH);
  3372. }
  3373. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3374. }
  3375. #endif // CHDK || PHOTOGRAPH_PIN
  3376. #ifdef DOGLCD
  3377. /**
  3378. * M250: Read and optionally set the LCD contrast
  3379. */
  3380. inline void gcode_M250() {
  3381. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3382. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3383. SERIAL_PROTOCOL(lcd_contrast);
  3384. SERIAL_PROTOCOLLN("");
  3385. }
  3386. #endif // DOGLCD
  3387. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3388. /**
  3389. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3390. */
  3391. inline void gcode_M302() {
  3392. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3393. }
  3394. #endif // PREVENT_DANGEROUS_EXTRUDE
  3395. /**
  3396. * M303: PID relay autotune
  3397. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3398. * E<extruder> (-1 for the bed)
  3399. * C<cycles>
  3400. */
  3401. inline void gcode_M303() {
  3402. int e = code_seen('E') ? code_value_long() : 0;
  3403. int c = code_seen('C') ? code_value_long() : 5;
  3404. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3405. PID_autotune(temp, e, c);
  3406. }
  3407. #ifdef SCARA
  3408. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3409. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3410. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3411. if (! Stopped) {
  3412. //get_coordinates(); // For X Y Z E F
  3413. delta[X_AXIS] = delta_x;
  3414. delta[Y_AXIS] = delta_y;
  3415. calculate_SCARA_forward_Transform(delta);
  3416. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3417. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3418. prepare_move();
  3419. //ClearToSend();
  3420. return true;
  3421. }
  3422. return false;
  3423. }
  3424. /**
  3425. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3426. */
  3427. inline bool gcode_M360() {
  3428. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3429. return SCARA_move_to_cal(0, 120);
  3430. }
  3431. /**
  3432. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3433. */
  3434. inline bool gcode_M361() {
  3435. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3436. return SCARA_move_to_cal(90, 130);
  3437. }
  3438. /**
  3439. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3440. */
  3441. inline bool gcode_M362() {
  3442. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3443. return SCARA_move_to_cal(60, 180);
  3444. }
  3445. /**
  3446. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3447. */
  3448. inline bool gcode_M363() {
  3449. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3450. return SCARA_move_to_cal(50, 90);
  3451. }
  3452. /**
  3453. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3454. */
  3455. inline bool gcode_M364() {
  3456. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3457. return SCARA_move_to_cal(45, 135);
  3458. }
  3459. /**
  3460. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3461. */
  3462. inline void gcode_M365() {
  3463. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3464. if (code_seen(axis_codes[i])) {
  3465. axis_scaling[i] = code_value();
  3466. }
  3467. }
  3468. }
  3469. #endif // SCARA
  3470. #ifdef EXT_SOLENOID
  3471. void enable_solenoid(uint8_t num) {
  3472. switch(num) {
  3473. case 0:
  3474. OUT_WRITE(SOL0_PIN, HIGH);
  3475. break;
  3476. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3477. case 1:
  3478. OUT_WRITE(SOL1_PIN, HIGH);
  3479. break;
  3480. #endif
  3481. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3482. case 2:
  3483. OUT_WRITE(SOL2_PIN, HIGH);
  3484. break;
  3485. #endif
  3486. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3487. case 3:
  3488. OUT_WRITE(SOL3_PIN, HIGH);
  3489. break;
  3490. #endif
  3491. default:
  3492. SERIAL_ECHO_START;
  3493. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3494. break;
  3495. }
  3496. }
  3497. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3498. void disable_all_solenoids() {
  3499. OUT_WRITE(SOL0_PIN, LOW);
  3500. OUT_WRITE(SOL1_PIN, LOW);
  3501. OUT_WRITE(SOL2_PIN, LOW);
  3502. OUT_WRITE(SOL3_PIN, LOW);
  3503. }
  3504. /**
  3505. * M380: Enable solenoid on the active extruder
  3506. */
  3507. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3508. /**
  3509. * M381: Disable all solenoids
  3510. */
  3511. inline void gcode_M381() { disable_all_solenoids(); }
  3512. #endif // EXT_SOLENOID
  3513. /**
  3514. * M400: Finish all moves
  3515. */
  3516. inline void gcode_M400() { st_synchronize(); }
  3517. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3518. /**
  3519. * M401: Engage Z Servo endstop if available
  3520. */
  3521. inline void gcode_M401() { engage_z_probe(); }
  3522. /**
  3523. * M402: Retract Z Servo endstop if enabled
  3524. */
  3525. inline void gcode_M402() { retract_z_probe(); }
  3526. #endif
  3527. #ifdef FILAMENT_SENSOR
  3528. /**
  3529. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3530. */
  3531. inline void gcode_M404() {
  3532. #if FILWIDTH_PIN > -1
  3533. if (code_seen('W')) {
  3534. filament_width_nominal = code_value();
  3535. }
  3536. else {
  3537. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3538. SERIAL_PROTOCOLLN(filament_width_nominal);
  3539. }
  3540. #endif
  3541. }
  3542. /**
  3543. * M405: Turn on filament sensor for control
  3544. */
  3545. inline void gcode_M405() {
  3546. if (code_seen('D')) meas_delay_cm = code_value();
  3547. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3548. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3549. int temp_ratio = widthFil_to_size_ratio();
  3550. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3551. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3552. delay_index1 = delay_index2 = 0;
  3553. }
  3554. filament_sensor = true;
  3555. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3556. //SERIAL_PROTOCOL(filament_width_meas);
  3557. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3558. //SERIAL_PROTOCOL(extrudemultiply);
  3559. }
  3560. /**
  3561. * M406: Turn off filament sensor for control
  3562. */
  3563. inline void gcode_M406() { filament_sensor = false; }
  3564. /**
  3565. * M407: Get measured filament diameter on serial output
  3566. */
  3567. inline void gcode_M407() {
  3568. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3569. SERIAL_PROTOCOLLN(filament_width_meas);
  3570. }
  3571. #endif // FILAMENT_SENSOR
  3572. /**
  3573. * M500: Store settings in EEPROM
  3574. */
  3575. inline void gcode_M500() {
  3576. Config_StoreSettings();
  3577. }
  3578. /**
  3579. * M501: Read settings from EEPROM
  3580. */
  3581. inline void gcode_M501() {
  3582. Config_RetrieveSettings();
  3583. }
  3584. /**
  3585. * M502: Revert to default settings
  3586. */
  3587. inline void gcode_M502() {
  3588. Config_ResetDefault();
  3589. }
  3590. /**
  3591. * M503: print settings currently in memory
  3592. */
  3593. inline void gcode_M503() {
  3594. Config_PrintSettings(code_seen('S') && code_value == 0);
  3595. }
  3596. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3597. /**
  3598. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3599. */
  3600. inline void gcode_M540() {
  3601. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3602. }
  3603. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3604. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3605. inline void gcode_SET_Z_PROBE_OFFSET() {
  3606. float value;
  3607. if (code_seen('Z')) {
  3608. value = code_value();
  3609. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3610. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3611. SERIAL_ECHO_START;
  3612. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3613. SERIAL_PROTOCOLLN("");
  3614. }
  3615. else {
  3616. SERIAL_ECHO_START;
  3617. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3618. SERIAL_ECHOPGM(MSG_Z_MIN);
  3619. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3620. SERIAL_ECHOPGM(MSG_Z_MAX);
  3621. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3622. SERIAL_PROTOCOLLN("");
  3623. }
  3624. }
  3625. else {
  3626. SERIAL_ECHO_START;
  3627. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3628. SERIAL_ECHO(-zprobe_zoffset);
  3629. SERIAL_PROTOCOLLN("");
  3630. }
  3631. }
  3632. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3633. #ifdef FILAMENTCHANGEENABLE
  3634. /**
  3635. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3636. */
  3637. inline void gcode_M600() {
  3638. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3639. for (int i=0; i<NUM_AXIS; i++)
  3640. target[i] = lastpos[i] = current_position[i];
  3641. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3642. #ifdef DELTA
  3643. #define RUNPLAN calculate_delta(target); BASICPLAN
  3644. #else
  3645. #define RUNPLAN BASICPLAN
  3646. #endif
  3647. //retract by E
  3648. if (code_seen('E')) target[E_AXIS] += code_value();
  3649. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3650. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3651. #endif
  3652. RUNPLAN;
  3653. //lift Z
  3654. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3655. #ifdef FILAMENTCHANGE_ZADD
  3656. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3657. #endif
  3658. RUNPLAN;
  3659. //move xy
  3660. if (code_seen('X')) target[X_AXIS] = code_value();
  3661. #ifdef FILAMENTCHANGE_XPOS
  3662. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3663. #endif
  3664. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3665. #ifdef FILAMENTCHANGE_YPOS
  3666. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3667. #endif
  3668. RUNPLAN;
  3669. if (code_seen('L')) target[E_AXIS] += code_value();
  3670. #ifdef FILAMENTCHANGE_FINALRETRACT
  3671. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3672. #endif
  3673. RUNPLAN;
  3674. //finish moves
  3675. st_synchronize();
  3676. //disable extruder steppers so filament can be removed
  3677. disable_e0();
  3678. disable_e1();
  3679. disable_e2();
  3680. disable_e3();
  3681. delay(100);
  3682. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3683. uint8_t cnt = 0;
  3684. while (!lcd_clicked()) {
  3685. cnt++;
  3686. manage_heater();
  3687. manage_inactivity(true);
  3688. lcd_update();
  3689. if (cnt == 0) {
  3690. #if BEEPER > 0
  3691. OUT_WRITE(BEEPER,HIGH);
  3692. delay(3);
  3693. WRITE(BEEPER,LOW);
  3694. delay(3);
  3695. #else
  3696. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3697. lcd_buzz(1000/6, 100);
  3698. #else
  3699. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3700. #endif
  3701. #endif
  3702. }
  3703. } // while(!lcd_clicked)
  3704. //return to normal
  3705. if (code_seen('L')) target[E_AXIS] -= code_value();
  3706. #ifdef FILAMENTCHANGE_FINALRETRACT
  3707. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3708. #endif
  3709. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3710. plan_set_e_position(current_position[E_AXIS]);
  3711. RUNPLAN; //should do nothing
  3712. lcd_reset_alert_level();
  3713. #ifdef DELTA
  3714. calculate_delta(lastpos);
  3715. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3716. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3717. #else
  3718. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3719. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3720. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3721. #endif
  3722. #ifdef FILAMENT_RUNOUT_SENSOR
  3723. filrunoutEnqued = false;
  3724. #endif
  3725. }
  3726. #endif // FILAMENTCHANGEENABLE
  3727. #ifdef DUAL_X_CARRIAGE
  3728. /**
  3729. * M605: Set dual x-carriage movement mode
  3730. *
  3731. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3732. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3733. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3734. * millimeters x-offset and an optional differential hotend temperature of
  3735. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3736. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3737. *
  3738. * Note: the X axis should be homed after changing dual x-carriage mode.
  3739. */
  3740. inline void gcode_M605() {
  3741. st_synchronize();
  3742. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3743. switch(dual_x_carriage_mode) {
  3744. case DXC_DUPLICATION_MODE:
  3745. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3746. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3747. SERIAL_ECHO_START;
  3748. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3749. SERIAL_ECHO(" ");
  3750. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3751. SERIAL_ECHO(",");
  3752. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3753. SERIAL_ECHO(" ");
  3754. SERIAL_ECHO(duplicate_extruder_x_offset);
  3755. SERIAL_ECHO(",");
  3756. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3757. break;
  3758. case DXC_FULL_CONTROL_MODE:
  3759. case DXC_AUTO_PARK_MODE:
  3760. break;
  3761. default:
  3762. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3763. break;
  3764. }
  3765. active_extruder_parked = false;
  3766. extruder_duplication_enabled = false;
  3767. delayed_move_time = 0;
  3768. }
  3769. #endif // DUAL_X_CARRIAGE
  3770. /**
  3771. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3772. */
  3773. inline void gcode_M907() {
  3774. #if HAS_DIGIPOTSS
  3775. for (int i=0;i<NUM_AXIS;i++)
  3776. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3777. if (code_seen('B')) digipot_current(4, code_value());
  3778. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3779. #endif
  3780. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3781. if (code_seen('X')) digipot_current(0, code_value());
  3782. #endif
  3783. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3784. if (code_seen('Z')) digipot_current(1, code_value());
  3785. #endif
  3786. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3787. if (code_seen('E')) digipot_current(2, code_value());
  3788. #endif
  3789. #ifdef DIGIPOT_I2C
  3790. // this one uses actual amps in floating point
  3791. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3792. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3793. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3794. #endif
  3795. }
  3796. #if HAS_DIGIPOTSS
  3797. /**
  3798. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3799. */
  3800. inline void gcode_M908() {
  3801. digitalPotWrite(
  3802. code_seen('P') ? code_value() : 0,
  3803. code_seen('S') ? code_value() : 0
  3804. );
  3805. }
  3806. #endif // HAS_DIGIPOTSS
  3807. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3808. inline void gcode_M350() {
  3809. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3810. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3811. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3812. if(code_seen('B')) microstep_mode(4,code_value());
  3813. microstep_readings();
  3814. #endif
  3815. }
  3816. /**
  3817. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3818. * S# determines MS1 or MS2, X# sets the pin high/low.
  3819. */
  3820. inline void gcode_M351() {
  3821. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3822. if (code_seen('S')) switch(code_value_long()) {
  3823. case 1:
  3824. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3825. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3826. break;
  3827. case 2:
  3828. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3829. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3830. break;
  3831. }
  3832. microstep_readings();
  3833. #endif
  3834. }
  3835. /**
  3836. * M999: Restart after being stopped
  3837. */
  3838. inline void gcode_M999() {
  3839. Stopped = false;
  3840. lcd_reset_alert_level();
  3841. gcode_LastN = Stopped_gcode_LastN;
  3842. FlushSerialRequestResend();
  3843. }
  3844. inline void gcode_T() {
  3845. tmp_extruder = code_value();
  3846. if (tmp_extruder >= EXTRUDERS) {
  3847. SERIAL_ECHO_START;
  3848. SERIAL_ECHO("T");
  3849. SERIAL_ECHO(tmp_extruder);
  3850. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3851. }
  3852. else {
  3853. boolean make_move = false;
  3854. if (code_seen('F')) {
  3855. make_move = true;
  3856. next_feedrate = code_value();
  3857. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3858. }
  3859. #if EXTRUDERS > 1
  3860. if (tmp_extruder != active_extruder) {
  3861. // Save current position to return to after applying extruder offset
  3862. memcpy(destination, current_position, sizeof(destination));
  3863. #ifdef DUAL_X_CARRIAGE
  3864. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3865. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3866. // Park old head: 1) raise 2) move to park position 3) lower
  3867. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3868. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3869. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3870. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3871. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3872. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3873. st_synchronize();
  3874. }
  3875. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3876. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3877. extruder_offset[Y_AXIS][active_extruder] +
  3878. extruder_offset[Y_AXIS][tmp_extruder];
  3879. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3880. extruder_offset[Z_AXIS][active_extruder] +
  3881. extruder_offset[Z_AXIS][tmp_extruder];
  3882. active_extruder = tmp_extruder;
  3883. // This function resets the max/min values - the current position may be overwritten below.
  3884. axis_is_at_home(X_AXIS);
  3885. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3886. current_position[X_AXIS] = inactive_extruder_x_pos;
  3887. inactive_extruder_x_pos = destination[X_AXIS];
  3888. }
  3889. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3890. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3891. if (active_extruder == 0 || active_extruder_parked)
  3892. current_position[X_AXIS] = inactive_extruder_x_pos;
  3893. else
  3894. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3895. inactive_extruder_x_pos = destination[X_AXIS];
  3896. extruder_duplication_enabled = false;
  3897. }
  3898. else {
  3899. // record raised toolhead position for use by unpark
  3900. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3901. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3902. active_extruder_parked = true;
  3903. delayed_move_time = 0;
  3904. }
  3905. #else // !DUAL_X_CARRIAGE
  3906. // Offset extruder (only by XY)
  3907. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3908. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3909. // Set the new active extruder and position
  3910. active_extruder = tmp_extruder;
  3911. #endif // !DUAL_X_CARRIAGE
  3912. #ifdef DELTA
  3913. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3914. //sent position to plan_set_position();
  3915. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3916. #else
  3917. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3918. #endif
  3919. // Move to the old position if 'F' was in the parameters
  3920. if (make_move && !Stopped) prepare_move();
  3921. }
  3922. #ifdef EXT_SOLENOID
  3923. st_synchronize();
  3924. disable_all_solenoids();
  3925. enable_solenoid_on_active_extruder();
  3926. #endif // EXT_SOLENOID
  3927. #endif // EXTRUDERS > 1
  3928. SERIAL_ECHO_START;
  3929. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3930. SERIAL_PROTOCOLLN((int)active_extruder);
  3931. }
  3932. }
  3933. /**
  3934. * Process Commands and dispatch them to handlers
  3935. */
  3936. void process_commands() {
  3937. if (code_seen('G')) {
  3938. int gCode = code_value_long();
  3939. switch(gCode) {
  3940. // G0, G1
  3941. case 0:
  3942. case 1:
  3943. gcode_G0_G1();
  3944. break;
  3945. // G2, G3
  3946. #ifndef SCARA
  3947. case 2: // G2 - CW ARC
  3948. case 3: // G3 - CCW ARC
  3949. gcode_G2_G3(gCode == 2);
  3950. break;
  3951. #endif
  3952. // G4 Dwell
  3953. case 4:
  3954. gcode_G4();
  3955. break;
  3956. #ifdef FWRETRACT
  3957. case 10: // G10: retract
  3958. case 11: // G11: retract_recover
  3959. gcode_G10_G11(gCode == 10);
  3960. break;
  3961. #endif //FWRETRACT
  3962. case 28: // G28: Home all axes, one at a time
  3963. gcode_G28();
  3964. break;
  3965. #ifdef ENABLE_AUTO_BED_LEVELING
  3966. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3967. gcode_G29();
  3968. break;
  3969. #ifndef Z_PROBE_SLED
  3970. case 30: // G30 Single Z Probe
  3971. gcode_G30();
  3972. break;
  3973. #else // Z_PROBE_SLED
  3974. case 31: // G31: dock the sled
  3975. case 32: // G32: undock the sled
  3976. dock_sled(gCode == 31);
  3977. break;
  3978. #endif // Z_PROBE_SLED
  3979. #endif // ENABLE_AUTO_BED_LEVELING
  3980. case 90: // G90
  3981. relative_mode = false;
  3982. break;
  3983. case 91: // G91
  3984. relative_mode = true;
  3985. break;
  3986. case 92: // G92
  3987. gcode_G92();
  3988. break;
  3989. }
  3990. }
  3991. else if (code_seen('M')) {
  3992. switch( code_value_long() ) {
  3993. #ifdef ULTIPANEL
  3994. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3995. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3996. gcode_M0_M1();
  3997. break;
  3998. #endif // ULTIPANEL
  3999. case 17:
  4000. gcode_M17();
  4001. break;
  4002. #ifdef SDSUPPORT
  4003. case 20: // M20 - list SD card
  4004. gcode_M20(); break;
  4005. case 21: // M21 - init SD card
  4006. gcode_M21(); break;
  4007. case 22: //M22 - release SD card
  4008. gcode_M22(); break;
  4009. case 23: //M23 - Select file
  4010. gcode_M23(); break;
  4011. case 24: //M24 - Start SD print
  4012. gcode_M24(); break;
  4013. case 25: //M25 - Pause SD print
  4014. gcode_M25(); break;
  4015. case 26: //M26 - Set SD index
  4016. gcode_M26(); break;
  4017. case 27: //M27 - Get SD status
  4018. gcode_M27(); break;
  4019. case 28: //M28 - Start SD write
  4020. gcode_M28(); break;
  4021. case 29: //M29 - Stop SD write
  4022. gcode_M29(); break;
  4023. case 30: //M30 <filename> Delete File
  4024. gcode_M30(); break;
  4025. case 32: //M32 - Select file and start SD print
  4026. gcode_M32(); break;
  4027. case 928: //M928 - Start SD write
  4028. gcode_M928(); break;
  4029. #endif //SDSUPPORT
  4030. case 31: //M31 take time since the start of the SD print or an M109 command
  4031. gcode_M31();
  4032. break;
  4033. case 42: //M42 -Change pin status via gcode
  4034. gcode_M42();
  4035. break;
  4036. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4037. case 48: // M48 Z-Probe repeatability
  4038. gcode_M48();
  4039. break;
  4040. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4041. case 104: // M104
  4042. gcode_M104();
  4043. break;
  4044. case 112: // M112 Emergency Stop
  4045. gcode_M112();
  4046. break;
  4047. case 140: // M140 Set bed temp
  4048. gcode_M140();
  4049. break;
  4050. case 105: // M105 Read current temperature
  4051. gcode_M105();
  4052. return;
  4053. break;
  4054. case 109: // M109 Wait for temperature
  4055. gcode_M109();
  4056. break;
  4057. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4058. case 190: // M190 - Wait for bed heater to reach target.
  4059. gcode_M190();
  4060. break;
  4061. #endif //TEMP_BED_PIN
  4062. #if defined(FAN_PIN) && FAN_PIN > -1
  4063. case 106: //M106 Fan On
  4064. gcode_M106();
  4065. break;
  4066. case 107: //M107 Fan Off
  4067. gcode_M107();
  4068. break;
  4069. #endif //FAN_PIN
  4070. #ifdef BARICUDA
  4071. // PWM for HEATER_1_PIN
  4072. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4073. case 126: // M126 valve open
  4074. gcode_M126();
  4075. break;
  4076. case 127: // M127 valve closed
  4077. gcode_M127();
  4078. break;
  4079. #endif //HEATER_1_PIN
  4080. // PWM for HEATER_2_PIN
  4081. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4082. case 128: // M128 valve open
  4083. gcode_M128();
  4084. break;
  4085. case 129: // M129 valve closed
  4086. gcode_M129();
  4087. break;
  4088. #endif //HEATER_2_PIN
  4089. #endif //BARICUDA
  4090. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4091. case 80: // M80 - Turn on Power Supply
  4092. gcode_M80();
  4093. break;
  4094. #endif // PS_ON_PIN
  4095. case 81: // M81 - Turn off Power Supply
  4096. gcode_M81();
  4097. break;
  4098. case 82:
  4099. gcode_M82();
  4100. break;
  4101. case 83:
  4102. gcode_M83();
  4103. break;
  4104. case 18: //compatibility
  4105. case 84: // M84
  4106. gcode_M18_M84();
  4107. break;
  4108. case 85: // M85
  4109. gcode_M85();
  4110. break;
  4111. case 92: // M92
  4112. gcode_M92();
  4113. break;
  4114. case 115: // M115
  4115. gcode_M115();
  4116. break;
  4117. case 117: // M117 display message
  4118. gcode_M117();
  4119. break;
  4120. case 114: // M114
  4121. gcode_M114();
  4122. break;
  4123. case 120: // M120
  4124. gcode_M120();
  4125. break;
  4126. case 121: // M121
  4127. gcode_M121();
  4128. break;
  4129. case 119: // M119
  4130. gcode_M119();
  4131. break;
  4132. //TODO: update for all axis, use for loop
  4133. #ifdef BLINKM
  4134. case 150: // M150
  4135. gcode_M150();
  4136. break;
  4137. #endif //BLINKM
  4138. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4139. gcode_M200();
  4140. break;
  4141. case 201: // M201
  4142. gcode_M201();
  4143. break;
  4144. #if 0 // Not used for Sprinter/grbl gen6
  4145. case 202: // M202
  4146. gcode_M202();
  4147. break;
  4148. #endif
  4149. case 203: // M203 max feedrate mm/sec
  4150. gcode_M203();
  4151. break;
  4152. case 204: // M204 acclereration S normal moves T filmanent only moves
  4153. gcode_M204();
  4154. break;
  4155. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4156. gcode_M205();
  4157. break;
  4158. case 206: // M206 additional homing offset
  4159. gcode_M206();
  4160. break;
  4161. #ifdef DELTA
  4162. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4163. gcode_M665();
  4164. break;
  4165. case 666: // M666 set delta endstop adjustment
  4166. gcode_M666();
  4167. break;
  4168. #endif // DELTA
  4169. #ifdef FWRETRACT
  4170. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4171. gcode_M207();
  4172. break;
  4173. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4174. gcode_M208();
  4175. break;
  4176. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4177. gcode_M209();
  4178. break;
  4179. #endif // FWRETRACT
  4180. #if EXTRUDERS > 1
  4181. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4182. gcode_M218();
  4183. break;
  4184. #endif
  4185. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4186. gcode_M220();
  4187. break;
  4188. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4189. gcode_M221();
  4190. break;
  4191. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4192. gcode_M226();
  4193. break;
  4194. #if NUM_SERVOS > 0
  4195. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4196. gcode_M280();
  4197. break;
  4198. #endif // NUM_SERVOS > 0
  4199. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4200. case 300: // M300 - Play beep tone
  4201. gcode_M300();
  4202. break;
  4203. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4204. #ifdef PIDTEMP
  4205. case 301: // M301
  4206. gcode_M301();
  4207. break;
  4208. #endif // PIDTEMP
  4209. #ifdef PIDTEMPBED
  4210. case 304: // M304
  4211. gcode_M304();
  4212. break;
  4213. #endif // PIDTEMPBED
  4214. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4215. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4216. gcode_M240();
  4217. break;
  4218. #endif // CHDK || PHOTOGRAPH_PIN
  4219. #ifdef DOGLCD
  4220. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4221. gcode_M250();
  4222. break;
  4223. #endif // DOGLCD
  4224. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4225. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4226. gcode_M302();
  4227. break;
  4228. #endif // PREVENT_DANGEROUS_EXTRUDE
  4229. case 303: // M303 PID autotune
  4230. gcode_M303();
  4231. break;
  4232. #ifdef SCARA
  4233. case 360: // M360 SCARA Theta pos1
  4234. if (gcode_M360()) return;
  4235. break;
  4236. case 361: // M361 SCARA Theta pos2
  4237. if (gcode_M361()) return;
  4238. break;
  4239. case 362: // M362 SCARA Psi pos1
  4240. if (gcode_M362()) return;
  4241. break;
  4242. case 363: // M363 SCARA Psi pos2
  4243. if (gcode_M363()) return;
  4244. break;
  4245. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4246. if (gcode_M364()) return;
  4247. break;
  4248. case 365: // M365 Set SCARA scaling for X Y Z
  4249. gcode_M365();
  4250. break;
  4251. #endif // SCARA
  4252. case 400: // M400 finish all moves
  4253. gcode_M400();
  4254. break;
  4255. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4256. case 401:
  4257. gcode_M401();
  4258. break;
  4259. case 402:
  4260. gcode_M402();
  4261. break;
  4262. #endif
  4263. #ifdef FILAMENT_SENSOR
  4264. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4265. gcode_M404();
  4266. break;
  4267. case 405: //M405 Turn on filament sensor for control
  4268. gcode_M405();
  4269. break;
  4270. case 406: //M406 Turn off filament sensor for control
  4271. gcode_M406();
  4272. break;
  4273. case 407: //M407 Display measured filament diameter
  4274. gcode_M407();
  4275. break;
  4276. #endif // FILAMENT_SENSOR
  4277. case 500: // M500 Store settings in EEPROM
  4278. gcode_M500();
  4279. break;
  4280. case 501: // M501 Read settings from EEPROM
  4281. gcode_M501();
  4282. break;
  4283. case 502: // M502 Revert to default settings
  4284. gcode_M502();
  4285. break;
  4286. case 503: // M503 print settings currently in memory
  4287. gcode_M503();
  4288. break;
  4289. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4290. case 540:
  4291. gcode_M540();
  4292. break;
  4293. #endif
  4294. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4295. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4296. gcode_SET_Z_PROBE_OFFSET();
  4297. break;
  4298. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4299. #ifdef FILAMENTCHANGEENABLE
  4300. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4301. gcode_M600();
  4302. break;
  4303. #endif // FILAMENTCHANGEENABLE
  4304. #ifdef DUAL_X_CARRIAGE
  4305. case 605:
  4306. gcode_M605();
  4307. break;
  4308. #endif // DUAL_X_CARRIAGE
  4309. case 907: // M907 Set digital trimpot motor current using axis codes.
  4310. gcode_M907();
  4311. break;
  4312. #if HAS_DIGIPOTSS
  4313. case 908: // M908 Control digital trimpot directly.
  4314. gcode_M908();
  4315. break;
  4316. #endif // HAS_DIGIPOTSS
  4317. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4318. gcode_M350();
  4319. break;
  4320. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4321. gcode_M351();
  4322. break;
  4323. case 999: // M999: Restart after being Stopped
  4324. gcode_M999();
  4325. break;
  4326. }
  4327. }
  4328. else if (code_seen('T')) {
  4329. gcode_T();
  4330. }
  4331. else {
  4332. SERIAL_ECHO_START;
  4333. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4334. SERIAL_ECHO(cmdbuffer[bufindr]);
  4335. SERIAL_ECHOLNPGM("\"");
  4336. }
  4337. ClearToSend();
  4338. }
  4339. void FlushSerialRequestResend()
  4340. {
  4341. //char cmdbuffer[bufindr][100]="Resend:";
  4342. MYSERIAL.flush();
  4343. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4344. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4345. ClearToSend();
  4346. }
  4347. void ClearToSend()
  4348. {
  4349. previous_millis_cmd = millis();
  4350. #ifdef SDSUPPORT
  4351. if(fromsd[bufindr])
  4352. return;
  4353. #endif //SDSUPPORT
  4354. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4355. }
  4356. void get_coordinates()
  4357. {
  4358. bool seen[4]={false,false,false,false};
  4359. for(int8_t i=0; i < NUM_AXIS; i++) {
  4360. if(code_seen(axis_codes[i]))
  4361. {
  4362. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4363. seen[i]=true;
  4364. }
  4365. else destination[i] = current_position[i]; //Are these else lines really needed?
  4366. }
  4367. if(code_seen('F')) {
  4368. next_feedrate = code_value();
  4369. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4370. }
  4371. }
  4372. void get_arc_coordinates()
  4373. {
  4374. #ifdef SF_ARC_FIX
  4375. bool relative_mode_backup = relative_mode;
  4376. relative_mode = true;
  4377. #endif
  4378. get_coordinates();
  4379. #ifdef SF_ARC_FIX
  4380. relative_mode=relative_mode_backup;
  4381. #endif
  4382. if(code_seen('I')) {
  4383. offset[0] = code_value();
  4384. }
  4385. else {
  4386. offset[0] = 0.0;
  4387. }
  4388. if(code_seen('J')) {
  4389. offset[1] = code_value();
  4390. }
  4391. else {
  4392. offset[1] = 0.0;
  4393. }
  4394. }
  4395. void clamp_to_software_endstops(float target[3])
  4396. {
  4397. if (min_software_endstops) {
  4398. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4399. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4400. float negative_z_offset = 0;
  4401. #ifdef ENABLE_AUTO_BED_LEVELING
  4402. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4403. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4404. #endif
  4405. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4406. }
  4407. if (max_software_endstops) {
  4408. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4409. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4410. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4411. }
  4412. }
  4413. #ifdef DELTA
  4414. void recalc_delta_settings(float radius, float diagonal_rod)
  4415. {
  4416. delta_tower1_x= -SIN_60*radius; // front left tower
  4417. delta_tower1_y= -COS_60*radius;
  4418. delta_tower2_x= SIN_60*radius; // front right tower
  4419. delta_tower2_y= -COS_60*radius;
  4420. delta_tower3_x= 0.0; // back middle tower
  4421. delta_tower3_y= radius;
  4422. delta_diagonal_rod_2= sq(diagonal_rod);
  4423. }
  4424. void calculate_delta(float cartesian[3])
  4425. {
  4426. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4427. - sq(delta_tower1_x-cartesian[X_AXIS])
  4428. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4429. ) + cartesian[Z_AXIS];
  4430. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4431. - sq(delta_tower2_x-cartesian[X_AXIS])
  4432. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4433. ) + cartesian[Z_AXIS];
  4434. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4435. - sq(delta_tower3_x-cartesian[X_AXIS])
  4436. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4437. ) + cartesian[Z_AXIS];
  4438. /*
  4439. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4440. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4441. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4442. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4443. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4444. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4445. */
  4446. }
  4447. #ifdef ENABLE_AUTO_BED_LEVELING
  4448. // Adjust print surface height by linear interpolation over the bed_level array.
  4449. int delta_grid_spacing[2] = { 0, 0 };
  4450. void adjust_delta(float cartesian[3])
  4451. {
  4452. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4453. return; // G29 not done
  4454. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4455. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4456. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4457. int floor_x = floor(grid_x);
  4458. int floor_y = floor(grid_y);
  4459. float ratio_x = grid_x - floor_x;
  4460. float ratio_y = grid_y - floor_y;
  4461. float z1 = bed_level[floor_x+half][floor_y+half];
  4462. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4463. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4464. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4465. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4466. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4467. float offset = (1-ratio_x)*left + ratio_x*right;
  4468. delta[X_AXIS] += offset;
  4469. delta[Y_AXIS] += offset;
  4470. delta[Z_AXIS] += offset;
  4471. /*
  4472. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4473. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4474. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4475. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4476. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4477. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4478. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4479. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4480. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4481. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4482. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4483. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4484. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4485. */
  4486. }
  4487. #endif //ENABLE_AUTO_BED_LEVELING
  4488. void prepare_move_raw()
  4489. {
  4490. previous_millis_cmd = millis();
  4491. calculate_delta(destination);
  4492. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4493. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4494. active_extruder);
  4495. for(int8_t i=0; i < NUM_AXIS; i++) {
  4496. current_position[i] = destination[i];
  4497. }
  4498. }
  4499. #endif //DELTA
  4500. void prepare_move()
  4501. {
  4502. clamp_to_software_endstops(destination);
  4503. previous_millis_cmd = millis();
  4504. #ifdef SCARA //for now same as delta-code
  4505. float difference[NUM_AXIS];
  4506. for (int8_t i=0; i < NUM_AXIS; i++) {
  4507. difference[i] = destination[i] - current_position[i];
  4508. }
  4509. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4510. sq(difference[Y_AXIS]) +
  4511. sq(difference[Z_AXIS]));
  4512. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4513. if (cartesian_mm < 0.000001) { return; }
  4514. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4515. int steps = max(1, int(scara_segments_per_second * seconds));
  4516. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4517. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4518. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4519. for (int s = 1; s <= steps; s++) {
  4520. float fraction = float(s) / float(steps);
  4521. for(int8_t i=0; i < NUM_AXIS; i++) {
  4522. destination[i] = current_position[i] + difference[i] * fraction;
  4523. }
  4524. calculate_delta(destination);
  4525. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4526. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4527. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4528. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4529. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4530. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4531. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4532. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4533. active_extruder);
  4534. }
  4535. #endif // SCARA
  4536. #ifdef DELTA
  4537. float difference[NUM_AXIS];
  4538. for (int8_t i=0; i < NUM_AXIS; i++) {
  4539. difference[i] = destination[i] - current_position[i];
  4540. }
  4541. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4542. sq(difference[Y_AXIS]) +
  4543. sq(difference[Z_AXIS]));
  4544. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4545. if (cartesian_mm < 0.000001) { return; }
  4546. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4547. int steps = max(1, int(delta_segments_per_second * seconds));
  4548. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4549. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4550. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4551. for (int s = 1; s <= steps; s++) {
  4552. float fraction = float(s) / float(steps);
  4553. for(int8_t i=0; i < NUM_AXIS; i++) {
  4554. destination[i] = current_position[i] + difference[i] * fraction;
  4555. }
  4556. calculate_delta(destination);
  4557. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4558. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4559. active_extruder);
  4560. }
  4561. #endif // DELTA
  4562. #ifdef DUAL_X_CARRIAGE
  4563. if (active_extruder_parked)
  4564. {
  4565. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4566. {
  4567. // move duplicate extruder into correct duplication position.
  4568. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4569. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4570. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4571. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4572. st_synchronize();
  4573. extruder_duplication_enabled = true;
  4574. active_extruder_parked = false;
  4575. }
  4576. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4577. {
  4578. if (current_position[E_AXIS] == destination[E_AXIS])
  4579. {
  4580. // this is a travel move - skit it but keep track of current position (so that it can later
  4581. // be used as start of first non-travel move)
  4582. if (delayed_move_time != 0xFFFFFFFFUL)
  4583. {
  4584. memcpy(current_position, destination, sizeof(current_position));
  4585. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4586. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4587. delayed_move_time = millis();
  4588. return;
  4589. }
  4590. }
  4591. delayed_move_time = 0;
  4592. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4593. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4595. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4597. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4598. active_extruder_parked = false;
  4599. }
  4600. }
  4601. #endif //DUAL_X_CARRIAGE
  4602. #if ! (defined DELTA || defined SCARA)
  4603. // Do not use feedmultiply for E or Z only moves
  4604. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4605. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4606. }
  4607. else {
  4608. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4609. }
  4610. #endif // !(DELTA || SCARA)
  4611. for(int8_t i=0; i < NUM_AXIS; i++) {
  4612. current_position[i] = destination[i];
  4613. }
  4614. }
  4615. void prepare_arc_move(char isclockwise) {
  4616. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4617. // Trace the arc
  4618. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4619. // As far as the parser is concerned, the position is now == target. In reality the
  4620. // motion control system might still be processing the action and the real tool position
  4621. // in any intermediate location.
  4622. for(int8_t i=0; i < NUM_AXIS; i++) {
  4623. current_position[i] = destination[i];
  4624. }
  4625. previous_millis_cmd = millis();
  4626. }
  4627. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4628. #if defined(FAN_PIN)
  4629. #if CONTROLLERFAN_PIN == FAN_PIN
  4630. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4631. #endif
  4632. #endif
  4633. unsigned long lastMotor = 0; // Last time a motor was turned on
  4634. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4635. void controllerFan() {
  4636. uint32_t ms = millis();
  4637. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4638. lastMotorCheck = ms;
  4639. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4640. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4641. #if EXTRUDERS > 1
  4642. || E1_ENABLE_READ == E_ENABLE_ON
  4643. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4644. || X2_ENABLE_READ == X_ENABLE_ON
  4645. #endif
  4646. #if EXTRUDERS > 2
  4647. || E2_ENABLE_READ == E_ENABLE_ON
  4648. #if EXTRUDERS > 3
  4649. || E3_ENABLE_READ == E_ENABLE_ON
  4650. #endif
  4651. #endif
  4652. #endif
  4653. ) {
  4654. lastMotor = ms; //... set time to NOW so the fan will turn on
  4655. }
  4656. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4657. // allows digital or PWM fan output to be used (see M42 handling)
  4658. digitalWrite(CONTROLLERFAN_PIN, speed);
  4659. analogWrite(CONTROLLERFAN_PIN, speed);
  4660. }
  4661. }
  4662. #endif
  4663. #ifdef SCARA
  4664. void calculate_SCARA_forward_Transform(float f_scara[3])
  4665. {
  4666. // Perform forward kinematics, and place results in delta[3]
  4667. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4668. float x_sin, x_cos, y_sin, y_cos;
  4669. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4670. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4671. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4672. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4673. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4674. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4675. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4676. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4677. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4678. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4679. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4680. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4681. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4682. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4683. }
  4684. void calculate_delta(float cartesian[3]){
  4685. //reverse kinematics.
  4686. // Perform reversed kinematics, and place results in delta[3]
  4687. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4688. float SCARA_pos[2];
  4689. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4690. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4691. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4692. #if (Linkage_1 == Linkage_2)
  4693. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4694. #else
  4695. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4696. #endif
  4697. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4698. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4699. SCARA_K2 = Linkage_2 * SCARA_S2;
  4700. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4701. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4702. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4703. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4704. delta[Z_AXIS] = cartesian[Z_AXIS];
  4705. /*
  4706. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4707. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4708. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4709. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4710. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4711. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4712. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4713. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4714. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4715. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4716. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4717. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4718. SERIAL_ECHOLN(" ");*/
  4719. }
  4720. #endif
  4721. #ifdef TEMP_STAT_LEDS
  4722. static bool blue_led = false;
  4723. static bool red_led = false;
  4724. static uint32_t stat_update = 0;
  4725. void handle_status_leds(void) {
  4726. float max_temp = 0.0;
  4727. if(millis() > stat_update) {
  4728. stat_update += 500; // Update every 0.5s
  4729. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4730. max_temp = max(max_temp, degHotend(cur_extruder));
  4731. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4732. }
  4733. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4734. max_temp = max(max_temp, degTargetBed());
  4735. max_temp = max(max_temp, degBed());
  4736. #endif
  4737. if((max_temp > 55.0) && (red_led == false)) {
  4738. digitalWrite(STAT_LED_RED, 1);
  4739. digitalWrite(STAT_LED_BLUE, 0);
  4740. red_led = true;
  4741. blue_led = false;
  4742. }
  4743. if((max_temp < 54.0) && (blue_led == false)) {
  4744. digitalWrite(STAT_LED_RED, 0);
  4745. digitalWrite(STAT_LED_BLUE, 1);
  4746. red_led = false;
  4747. blue_led = true;
  4748. }
  4749. }
  4750. }
  4751. #endif
  4752. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4753. {
  4754. #if defined(KILL_PIN) && KILL_PIN > -1
  4755. static int killCount = 0; // make the inactivity button a bit less responsive
  4756. const int KILL_DELAY = 750;
  4757. #endif
  4758. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4759. if(card.sdprinting) {
  4760. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4761. filrunout(); }
  4762. #endif
  4763. #if defined(HOME_PIN) && HOME_PIN > -1
  4764. static int homeDebounceCount = 0; // poor man's debouncing count
  4765. const int HOME_DEBOUNCE_DELAY = 750;
  4766. #endif
  4767. if(buflen < (BUFSIZE-1))
  4768. get_command();
  4769. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4770. if(max_inactive_time)
  4771. kill();
  4772. if(stepper_inactive_time) {
  4773. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4774. {
  4775. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4776. disable_x();
  4777. disable_y();
  4778. disable_z();
  4779. disable_e0();
  4780. disable_e1();
  4781. disable_e2();
  4782. disable_e3();
  4783. }
  4784. }
  4785. }
  4786. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4787. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4788. {
  4789. chdkActive = false;
  4790. WRITE(CHDK, LOW);
  4791. }
  4792. #endif
  4793. #if defined(KILL_PIN) && KILL_PIN > -1
  4794. // Check if the kill button was pressed and wait just in case it was an accidental
  4795. // key kill key press
  4796. // -------------------------------------------------------------------------------
  4797. if( 0 == READ(KILL_PIN) )
  4798. {
  4799. killCount++;
  4800. }
  4801. else if (killCount > 0)
  4802. {
  4803. killCount--;
  4804. }
  4805. // Exceeded threshold and we can confirm that it was not accidental
  4806. // KILL the machine
  4807. // ----------------------------------------------------------------
  4808. if ( killCount >= KILL_DELAY)
  4809. {
  4810. kill();
  4811. }
  4812. #endif
  4813. #if defined(HOME_PIN) && HOME_PIN > -1
  4814. // Check to see if we have to home, use poor man's debouncer
  4815. // ---------------------------------------------------------
  4816. if ( 0 == READ(HOME_PIN) )
  4817. {
  4818. if (homeDebounceCount == 0)
  4819. {
  4820. enquecommands_P((PSTR("G28")));
  4821. homeDebounceCount++;
  4822. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4823. }
  4824. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4825. {
  4826. homeDebounceCount++;
  4827. }
  4828. else
  4829. {
  4830. homeDebounceCount = 0;
  4831. }
  4832. }
  4833. #endif
  4834. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4835. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4836. #endif
  4837. #ifdef EXTRUDER_RUNOUT_PREVENT
  4838. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4839. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4840. {
  4841. bool oldstatus=E0_ENABLE_READ;
  4842. enable_e0();
  4843. float oldepos=current_position[E_AXIS];
  4844. float oldedes=destination[E_AXIS];
  4845. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4846. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4847. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4848. current_position[E_AXIS]=oldepos;
  4849. destination[E_AXIS]=oldedes;
  4850. plan_set_e_position(oldepos);
  4851. previous_millis_cmd=millis();
  4852. st_synchronize();
  4853. E0_ENABLE_WRITE(oldstatus);
  4854. }
  4855. #endif
  4856. #if defined(DUAL_X_CARRIAGE)
  4857. // handle delayed move timeout
  4858. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4859. {
  4860. // travel moves have been received so enact them
  4861. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4862. memcpy(destination,current_position,sizeof(destination));
  4863. prepare_move();
  4864. }
  4865. #endif
  4866. #ifdef TEMP_STAT_LEDS
  4867. handle_status_leds();
  4868. #endif
  4869. check_axes_activity();
  4870. }
  4871. void kill()
  4872. {
  4873. cli(); // Stop interrupts
  4874. disable_heater();
  4875. disable_x();
  4876. disable_y();
  4877. disable_z();
  4878. disable_e0();
  4879. disable_e1();
  4880. disable_e2();
  4881. disable_e3();
  4882. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4883. pinMode(PS_ON_PIN,INPUT);
  4884. #endif
  4885. SERIAL_ERROR_START;
  4886. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4887. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4888. // FMC small patch to update the LCD before ending
  4889. sei(); // enable interrupts
  4890. for ( int i=5; i--; lcd_update())
  4891. {
  4892. delay(200);
  4893. }
  4894. cli(); // disable interrupts
  4895. suicide();
  4896. while(1) { /* Intentionally left empty */ } // Wait for reset
  4897. }
  4898. #ifdef FILAMENT_RUNOUT_SENSOR
  4899. void filrunout()
  4900. {
  4901. if filrunoutEnqued == false {
  4902. filrunoutEnqued = true;
  4903. enquecommand("M600");
  4904. }
  4905. }
  4906. #endif
  4907. void Stop()
  4908. {
  4909. disable_heater();
  4910. if(Stopped == false) {
  4911. Stopped = true;
  4912. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4913. SERIAL_ERROR_START;
  4914. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4915. LCD_MESSAGEPGM(MSG_STOPPED);
  4916. }
  4917. }
  4918. bool IsStopped() { return Stopped; };
  4919. #ifdef FAST_PWM_FAN
  4920. void setPwmFrequency(uint8_t pin, int val)
  4921. {
  4922. val &= 0x07;
  4923. switch(digitalPinToTimer(pin))
  4924. {
  4925. #if defined(TCCR0A)
  4926. case TIMER0A:
  4927. case TIMER0B:
  4928. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4929. // TCCR0B |= val;
  4930. break;
  4931. #endif
  4932. #if defined(TCCR1A)
  4933. case TIMER1A:
  4934. case TIMER1B:
  4935. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4936. // TCCR1B |= val;
  4937. break;
  4938. #endif
  4939. #if defined(TCCR2)
  4940. case TIMER2:
  4941. case TIMER2:
  4942. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4943. TCCR2 |= val;
  4944. break;
  4945. #endif
  4946. #if defined(TCCR2A)
  4947. case TIMER2A:
  4948. case TIMER2B:
  4949. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4950. TCCR2B |= val;
  4951. break;
  4952. #endif
  4953. #if defined(TCCR3A)
  4954. case TIMER3A:
  4955. case TIMER3B:
  4956. case TIMER3C:
  4957. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4958. TCCR3B |= val;
  4959. break;
  4960. #endif
  4961. #if defined(TCCR4A)
  4962. case TIMER4A:
  4963. case TIMER4B:
  4964. case TIMER4C:
  4965. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4966. TCCR4B |= val;
  4967. break;
  4968. #endif
  4969. #if defined(TCCR5A)
  4970. case TIMER5A:
  4971. case TIMER5B:
  4972. case TIMER5C:
  4973. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4974. TCCR5B |= val;
  4975. break;
  4976. #endif
  4977. }
  4978. }
  4979. #endif //FAST_PWM_FAN
  4980. bool setTargetedHotend(int code){
  4981. tmp_extruder = active_extruder;
  4982. if(code_seen('T')) {
  4983. tmp_extruder = code_value();
  4984. if(tmp_extruder >= EXTRUDERS) {
  4985. SERIAL_ECHO_START;
  4986. switch(code){
  4987. case 104:
  4988. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4989. break;
  4990. case 105:
  4991. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4992. break;
  4993. case 109:
  4994. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4995. break;
  4996. case 218:
  4997. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4998. break;
  4999. case 221:
  5000. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5001. break;
  5002. }
  5003. SERIAL_ECHOLN(tmp_extruder);
  5004. return true;
  5005. }
  5006. }
  5007. return false;
  5008. }
  5009. float calculate_volumetric_multiplier(float diameter) {
  5010. if (!volumetric_enabled || diameter == 0) return 1.0;
  5011. float d2 = diameter * 0.5;
  5012. return 1.0 / (M_PI * d2 * d2);
  5013. }
  5014. void calculate_volumetric_multipliers() {
  5015. for (int i=0; i<EXTRUDERS; i++)
  5016. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5017. }