My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 117KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef ACCURATE_BED_LEVELING
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to cordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homeing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores paramters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from eeprom)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M666 - set delta endstop adjustemnt
  149. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  150. // M907 - Set digital trimpot motor current using axis codes.
  151. // M908 - Control digital trimpot directly.
  152. // M350 - Set microstepping mode.
  153. // M351 - Toggle MS1 MS2 pins directly.
  154. // M928 - Start SD logging (M928 filename.g) - ended by M29
  155. // M999 - Restart after being stopped by error
  156. //Stepper Movement Variables
  157. //===========================================================================
  158. //=============================imported variables============================
  159. //===========================================================================
  160. //===========================================================================
  161. //=============================public variables=============================
  162. //===========================================================================
  163. #ifdef SDSUPPORT
  164. CardReader card;
  165. #endif
  166. float homing_feedrate[] = HOMING_FEEDRATE;
  167. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  168. int feedmultiply=100; //100->1 200->2
  169. int saved_feedmultiply;
  170. int extrudemultiply=100; //100->1 200->2
  171. float volumetric_multiplier[EXTRUDERS] = {1.0
  172. #if EXTRUDERS > 1
  173. , 1.0
  174. #if EXTRUDERS > 2
  175. , 1.0
  176. #endif
  177. #endif
  178. };
  179. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  180. float add_homeing[3]={0,0,0};
  181. #ifdef DELTA
  182. float endstop_adj[3]={0,0,0};
  183. #endif
  184. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  185. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  186. bool axis_known_position[3] = {false, false, false};
  187. float zprobe_zoffset;
  188. // Extruder offset
  189. #if EXTRUDERS > 1
  190. #ifndef DUAL_X_CARRIAGE
  191. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  192. #else
  193. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  194. #endif
  195. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  196. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  197. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  198. #endif
  199. };
  200. #endif
  201. uint8_t active_extruder = 0;
  202. int fanSpeed=0;
  203. #ifdef SERVO_ENDSTOPS
  204. int servo_endstops[] = SERVO_ENDSTOPS;
  205. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  206. #endif
  207. #ifdef BARICUDA
  208. int ValvePressure=0;
  209. int EtoPPressure=0;
  210. #endif
  211. #ifdef FWRETRACT
  212. bool autoretract_enabled=true;
  213. bool retracted=false;
  214. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  215. float retract_recover_length=0, retract_recover_feedrate=8*60;
  216. #endif
  217. #ifdef ULTIPANEL
  218. #ifdef PS_DEFAULT_OFF
  219. bool powersupply = false;
  220. #else
  221. bool powersupply = true;
  222. #endif
  223. #endif
  224. #ifdef DELTA
  225. float delta[3] = {0.0, 0.0, 0.0};
  226. #endif
  227. //===========================================================================
  228. //=============================private variables=============================
  229. //===========================================================================
  230. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  231. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  232. static float offset[3] = {0.0, 0.0, 0.0};
  233. static bool home_all_axis = true;
  234. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  235. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  236. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  237. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  238. static bool fromsd[BUFSIZE];
  239. static int bufindr = 0;
  240. static int bufindw = 0;
  241. static int buflen = 0;
  242. //static int i = 0;
  243. static char serial_char;
  244. static int serial_count = 0;
  245. static boolean comment_mode = false;
  246. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  247. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  248. //static float tt = 0;
  249. //static float bt = 0;
  250. //Inactivity shutdown variables
  251. static unsigned long previous_millis_cmd = 0;
  252. static unsigned long max_inactive_time = 0;
  253. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  254. unsigned long starttime=0;
  255. unsigned long stoptime=0;
  256. static uint8_t tmp_extruder;
  257. bool Stopped=false;
  258. #if NUM_SERVOS > 0
  259. Servo servos[NUM_SERVOS];
  260. #endif
  261. bool CooldownNoWait = true;
  262. bool target_direction;
  263. //===========================================================================
  264. //=============================ROUTINES=============================
  265. //===========================================================================
  266. void get_arc_coordinates();
  267. bool setTargetedHotend(int code);
  268. void serial_echopair_P(const char *s_P, float v)
  269. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  270. void serial_echopair_P(const char *s_P, double v)
  271. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  272. void serial_echopair_P(const char *s_P, unsigned long v)
  273. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  274. extern "C"{
  275. extern unsigned int __bss_end;
  276. extern unsigned int __heap_start;
  277. extern void *__brkval;
  278. int freeMemory() {
  279. int free_memory;
  280. if((int)__brkval == 0)
  281. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  282. else
  283. free_memory = ((int)&free_memory) - ((int)__brkval);
  284. return free_memory;
  285. }
  286. }
  287. //adds an command to the main command buffer
  288. //thats really done in a non-safe way.
  289. //needs overworking someday
  290. void enquecommand(const char *cmd)
  291. {
  292. if(buflen < BUFSIZE)
  293. {
  294. //this is dangerous if a mixing of serial and this happsens
  295. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  296. SERIAL_ECHO_START;
  297. SERIAL_ECHOPGM("enqueing \"");
  298. SERIAL_ECHO(cmdbuffer[bufindw]);
  299. SERIAL_ECHOLNPGM("\"");
  300. bufindw= (bufindw + 1)%BUFSIZE;
  301. buflen += 1;
  302. }
  303. }
  304. void enquecommand_P(const char *cmd)
  305. {
  306. if(buflen < BUFSIZE)
  307. {
  308. //this is dangerous if a mixing of serial and this happsens
  309. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  310. SERIAL_ECHO_START;
  311. SERIAL_ECHOPGM("enqueing \"");
  312. SERIAL_ECHO(cmdbuffer[bufindw]);
  313. SERIAL_ECHOLNPGM("\"");
  314. bufindw= (bufindw + 1)%BUFSIZE;
  315. buflen += 1;
  316. }
  317. }
  318. void setup_killpin()
  319. {
  320. #if defined(KILL_PIN) && KILL_PIN > -1
  321. pinMode(KILL_PIN,INPUT);
  322. WRITE(KILL_PIN,HIGH);
  323. #endif
  324. }
  325. void setup_photpin()
  326. {
  327. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  328. SET_OUTPUT(PHOTOGRAPH_PIN);
  329. WRITE(PHOTOGRAPH_PIN, LOW);
  330. #endif
  331. }
  332. void setup_powerhold()
  333. {
  334. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  335. SET_OUTPUT(SUICIDE_PIN);
  336. WRITE(SUICIDE_PIN, HIGH);
  337. #endif
  338. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  339. SET_OUTPUT(PS_ON_PIN);
  340. #if defined(PS_DEFAULT_OFF)
  341. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  342. #else
  343. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  344. #endif
  345. #endif
  346. }
  347. void suicide()
  348. {
  349. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  350. SET_OUTPUT(SUICIDE_PIN);
  351. WRITE(SUICIDE_PIN, LOW);
  352. #endif
  353. }
  354. void servo_init()
  355. {
  356. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  357. servos[0].attach(SERVO0_PIN);
  358. #endif
  359. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  360. servos[1].attach(SERVO1_PIN);
  361. #endif
  362. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  363. servos[2].attach(SERVO2_PIN);
  364. #endif
  365. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  366. servos[3].attach(SERVO3_PIN);
  367. #endif
  368. #if (NUM_SERVOS >= 5)
  369. #error "TODO: enter initalisation code for more servos"
  370. #endif
  371. // Set position of Servo Endstops that are defined
  372. #ifdef SERVO_ENDSTOPS
  373. for(int8_t i = 0; i < 3; i++)
  374. {
  375. if(servo_endstops[i] > -1) {
  376. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  377. }
  378. }
  379. #endif
  380. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  381. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  382. servos[servo_endstops[Z_AXIS]].detach();
  383. #endif
  384. }
  385. void setup()
  386. {
  387. setup_killpin();
  388. setup_powerhold();
  389. MYSERIAL.begin(BAUDRATE);
  390. SERIAL_PROTOCOLLNPGM("start");
  391. SERIAL_ECHO_START;
  392. // Check startup - does nothing if bootloader sets MCUSR to 0
  393. byte mcu = MCUSR;
  394. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  395. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  396. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  397. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  398. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  399. MCUSR=0;
  400. SERIAL_ECHOPGM(MSG_MARLIN);
  401. SERIAL_ECHOLNPGM(VERSION_STRING);
  402. #ifdef STRING_VERSION_CONFIG_H
  403. #ifdef STRING_CONFIG_H_AUTHOR
  404. SERIAL_ECHO_START;
  405. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  406. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  407. SERIAL_ECHOPGM(MSG_AUTHOR);
  408. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  409. SERIAL_ECHOPGM("Compiled: ");
  410. SERIAL_ECHOLNPGM(__DATE__);
  411. #endif
  412. #endif
  413. SERIAL_ECHO_START;
  414. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  415. SERIAL_ECHO(freeMemory());
  416. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  417. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  418. for(int8_t i = 0; i < BUFSIZE; i++)
  419. {
  420. fromsd[i] = false;
  421. }
  422. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  423. Config_RetrieveSettings();
  424. tp_init(); // Initialize temperature loop
  425. plan_init(); // Initialize planner;
  426. watchdog_init();
  427. st_init(); // Initialize stepper, this enables interrupts!
  428. setup_photpin();
  429. servo_init();
  430. lcd_init();
  431. _delay_ms(1000); // wait 1sec to display the splash screen
  432. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  433. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  434. #endif
  435. #ifdef DIGIPOT_I2C
  436. digipot_i2c_init();
  437. #endif
  438. }
  439. void loop()
  440. {
  441. if(buflen < (BUFSIZE-1))
  442. get_command();
  443. #ifdef SDSUPPORT
  444. card.checkautostart(false);
  445. #endif
  446. if(buflen)
  447. {
  448. #ifdef SDSUPPORT
  449. if(card.saving)
  450. {
  451. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  452. {
  453. card.write_command(cmdbuffer[bufindr]);
  454. if(card.logging)
  455. {
  456. process_commands();
  457. }
  458. else
  459. {
  460. SERIAL_PROTOCOLLNPGM(MSG_OK);
  461. }
  462. }
  463. else
  464. {
  465. card.closefile();
  466. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  467. }
  468. }
  469. else
  470. {
  471. process_commands();
  472. }
  473. #else
  474. process_commands();
  475. #endif //SDSUPPORT
  476. buflen = (buflen-1);
  477. bufindr = (bufindr + 1)%BUFSIZE;
  478. }
  479. //check heater every n milliseconds
  480. manage_heater();
  481. manage_inactivity();
  482. checkHitEndstops();
  483. lcd_update();
  484. }
  485. void get_command()
  486. {
  487. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  488. serial_char = MYSERIAL.read();
  489. if(serial_char == '\n' ||
  490. serial_char == '\r' ||
  491. (serial_char == ':' && comment_mode == false) ||
  492. serial_count >= (MAX_CMD_SIZE - 1) )
  493. {
  494. if(!serial_count) { //if empty line
  495. comment_mode = false; //for new command
  496. return;
  497. }
  498. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  499. if(!comment_mode){
  500. comment_mode = false; //for new command
  501. fromsd[bufindw] = false;
  502. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  503. {
  504. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  505. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  506. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  507. SERIAL_ERROR_START;
  508. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  509. SERIAL_ERRORLN(gcode_LastN);
  510. //Serial.println(gcode_N);
  511. FlushSerialRequestResend();
  512. serial_count = 0;
  513. return;
  514. }
  515. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  516. {
  517. byte checksum = 0;
  518. byte count = 0;
  519. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  520. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  521. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  522. SERIAL_ERROR_START;
  523. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  524. SERIAL_ERRORLN(gcode_LastN);
  525. FlushSerialRequestResend();
  526. serial_count = 0;
  527. return;
  528. }
  529. //if no errors, continue parsing
  530. }
  531. else
  532. {
  533. SERIAL_ERROR_START;
  534. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  535. SERIAL_ERRORLN(gcode_LastN);
  536. FlushSerialRequestResend();
  537. serial_count = 0;
  538. return;
  539. }
  540. gcode_LastN = gcode_N;
  541. //if no errors, continue parsing
  542. }
  543. else // if we don't receive 'N' but still see '*'
  544. {
  545. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  546. {
  547. SERIAL_ERROR_START;
  548. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  549. SERIAL_ERRORLN(gcode_LastN);
  550. serial_count = 0;
  551. return;
  552. }
  553. }
  554. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  555. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  556. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  557. case 0:
  558. case 1:
  559. case 2:
  560. case 3:
  561. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  562. #ifdef SDSUPPORT
  563. if(card.saving)
  564. break;
  565. #endif //SDSUPPORT
  566. SERIAL_PROTOCOLLNPGM(MSG_OK);
  567. }
  568. else {
  569. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  570. LCD_MESSAGEPGM(MSG_STOPPED);
  571. }
  572. break;
  573. default:
  574. break;
  575. }
  576. }
  577. bufindw = (bufindw + 1)%BUFSIZE;
  578. buflen += 1;
  579. }
  580. serial_count = 0; //clear buffer
  581. }
  582. else
  583. {
  584. if(serial_char == ';') comment_mode = true;
  585. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  586. }
  587. }
  588. #ifdef SDSUPPORT
  589. if(!card.sdprinting || serial_count!=0){
  590. return;
  591. }
  592. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  593. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  594. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  595. static bool stop_buffering=false;
  596. if(buflen==0) stop_buffering=false;
  597. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  598. int16_t n=card.get();
  599. serial_char = (char)n;
  600. if(serial_char == '\n' ||
  601. serial_char == '\r' ||
  602. (serial_char == '#' && comment_mode == false) ||
  603. (serial_char == ':' && comment_mode == false) ||
  604. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  605. {
  606. if(card.eof()){
  607. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  608. stoptime=millis();
  609. char time[30];
  610. unsigned long t=(stoptime-starttime)/1000;
  611. int hours, minutes;
  612. minutes=(t/60)%60;
  613. hours=t/60/60;
  614. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  615. SERIAL_ECHO_START;
  616. SERIAL_ECHOLN(time);
  617. lcd_setstatus(time);
  618. card.printingHasFinished();
  619. card.checkautostart(true);
  620. }
  621. if(serial_char=='#')
  622. stop_buffering=true;
  623. if(!serial_count)
  624. {
  625. comment_mode = false; //for new command
  626. return; //if empty line
  627. }
  628. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  629. // if(!comment_mode){
  630. fromsd[bufindw] = true;
  631. buflen += 1;
  632. bufindw = (bufindw + 1)%BUFSIZE;
  633. // }
  634. comment_mode = false; //for new command
  635. serial_count = 0; //clear buffer
  636. }
  637. else
  638. {
  639. if(serial_char == ';') comment_mode = true;
  640. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  641. }
  642. }
  643. #endif //SDSUPPORT
  644. }
  645. float code_value()
  646. {
  647. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  648. }
  649. long code_value_long()
  650. {
  651. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  652. }
  653. bool code_seen(char code)
  654. {
  655. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  656. return (strchr_pointer != NULL); //Return True if a character was found
  657. }
  658. #define DEFINE_PGM_READ_ANY(type, reader) \
  659. static inline type pgm_read_any(const type *p) \
  660. { return pgm_read_##reader##_near(p); }
  661. DEFINE_PGM_READ_ANY(float, float);
  662. DEFINE_PGM_READ_ANY(signed char, byte);
  663. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  664. static const PROGMEM type array##_P[3] = \
  665. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  666. static inline type array(int axis) \
  667. { return pgm_read_any(&array##_P[axis]); }
  668. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  669. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  670. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  671. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  672. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  673. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  674. #ifdef DUAL_X_CARRIAGE
  675. #if EXTRUDERS == 1 || defined(COREXY) \
  676. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  677. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  678. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  679. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  680. #endif
  681. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  682. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  683. #endif
  684. #define DXC_FULL_CONTROL_MODE 0
  685. #define DXC_AUTO_PARK_MODE 1
  686. #define DXC_DUPLICATION_MODE 2
  687. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  688. static float x_home_pos(int extruder) {
  689. if (extruder == 0)
  690. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  691. else
  692. // In dual carriage mode the extruder offset provides an override of the
  693. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  694. // This allow soft recalibration of the second extruder offset position without firmware reflash
  695. // (through the M218 command).
  696. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  697. }
  698. static int x_home_dir(int extruder) {
  699. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  700. }
  701. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  702. static bool active_extruder_parked = false; // used in mode 1 & 2
  703. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  704. static unsigned long delayed_move_time = 0; // used in mode 1
  705. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  706. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  707. bool extruder_duplication_enabled = false; // used in mode 2
  708. #endif //DUAL_X_CARRIAGE
  709. static void axis_is_at_home(int axis) {
  710. #ifdef DUAL_X_CARRIAGE
  711. if (axis == X_AXIS) {
  712. if (active_extruder != 0) {
  713. current_position[X_AXIS] = x_home_pos(active_extruder);
  714. min_pos[X_AXIS] = X2_MIN_POS;
  715. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  716. return;
  717. }
  718. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  719. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  720. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  721. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  722. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  723. return;
  724. }
  725. }
  726. #endif
  727. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  728. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  729. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  730. }
  731. #ifdef ENABLE_AUTO_BED_LEVELING
  732. #ifdef ACCURATE_BED_LEVELING
  733. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  734. {
  735. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  736. planeNormal.debug("planeNormal");
  737. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  738. //bedLevel.debug("bedLevel");
  739. //plan_bed_level_matrix.debug("bed level before");
  740. //vector_3 uncorrected_position = plan_get_position_mm();
  741. //uncorrected_position.debug("position before");
  742. vector_3 corrected_position = plan_get_position();
  743. // corrected_position.debug("position after");
  744. current_position[X_AXIS] = corrected_position.x;
  745. current_position[Y_AXIS] = corrected_position.y;
  746. current_position[Z_AXIS] = corrected_position.z;
  747. // but the bed at 0 so we don't go below it.
  748. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  749. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  750. }
  751. #else
  752. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  753. plan_bed_level_matrix.set_to_identity();
  754. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  755. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  756. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  757. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  758. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  759. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  760. //planeNormal.debug("planeNormal");
  761. //yPositive.debug("yPositive");
  762. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  763. //bedLevel.debug("bedLevel");
  764. //plan_bed_level_matrix.debug("bed level before");
  765. //vector_3 uncorrected_position = plan_get_position_mm();
  766. //uncorrected_position.debug("position before");
  767. // and set our bed level equation to do the right thing
  768. //plan_bed_level_matrix.debug("bed level after");
  769. vector_3 corrected_position = plan_get_position();
  770. //corrected_position.debug("position after");
  771. current_position[X_AXIS] = corrected_position.x;
  772. current_position[Y_AXIS] = corrected_position.y;
  773. current_position[Z_AXIS] = corrected_position.z;
  774. // but the bed at 0 so we don't go below it.
  775. current_position[Z_AXIS] = zprobe_zoffset;
  776. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  777. }
  778. #endif // ACCURATE_BED_LEVELING
  779. static void run_z_probe() {
  780. plan_bed_level_matrix.set_to_identity();
  781. feedrate = homing_feedrate[Z_AXIS];
  782. // move down until you find the bed
  783. float zPosition = -10;
  784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  785. st_synchronize();
  786. // we have to let the planner know where we are right now as it is not where we said to go.
  787. zPosition = st_get_position_mm(Z_AXIS);
  788. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  789. // move up the retract distance
  790. zPosition += home_retract_mm(Z_AXIS);
  791. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  792. st_synchronize();
  793. // move back down slowly to find bed
  794. feedrate = homing_feedrate[Z_AXIS]/4;
  795. zPosition -= home_retract_mm(Z_AXIS) * 2;
  796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  797. st_synchronize();
  798. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  799. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  800. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  801. }
  802. static void do_blocking_move_to(float x, float y, float z) {
  803. float oldFeedRate = feedrate;
  804. feedrate = XY_TRAVEL_SPEED;
  805. current_position[X_AXIS] = x;
  806. current_position[Y_AXIS] = y;
  807. current_position[Z_AXIS] = z;
  808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  809. st_synchronize();
  810. feedrate = oldFeedRate;
  811. }
  812. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  813. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  814. }
  815. static void setup_for_endstop_move() {
  816. saved_feedrate = feedrate;
  817. saved_feedmultiply = feedmultiply;
  818. feedmultiply = 100;
  819. previous_millis_cmd = millis();
  820. enable_endstops(true);
  821. }
  822. static void clean_up_after_endstop_move() {
  823. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  824. enable_endstops(false);
  825. #endif
  826. feedrate = saved_feedrate;
  827. feedmultiply = saved_feedmultiply;
  828. previous_millis_cmd = millis();
  829. }
  830. static void engage_z_probe() {
  831. // Engage Z Servo endstop if enabled
  832. #ifdef SERVO_ENDSTOPS
  833. if (servo_endstops[Z_AXIS] > -1) {
  834. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  835. servos[servo_endstops[Z_AXIS]].attach(0);
  836. #endif
  837. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  838. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  839. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  840. servos[servo_endstops[Z_AXIS]].detach();
  841. #endif
  842. }
  843. #endif
  844. }
  845. static void retract_z_probe() {
  846. // Retract Z Servo endstop if enabled
  847. #ifdef SERVO_ENDSTOPS
  848. if (servo_endstops[Z_AXIS] > -1) {
  849. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  850. servos[servo_endstops[Z_AXIS]].attach(0);
  851. #endif
  852. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  853. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  854. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  855. servos[servo_endstops[Z_AXIS]].detach();
  856. #endif
  857. }
  858. #endif
  859. }
  860. /// Probe bed height at position (x,y), returns the measured z value
  861. static float probe_pt(float x, float y, float z_before) {
  862. // move to right place
  863. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  864. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  865. engage_z_probe(); // Engage Z Servo endstop if available
  866. run_z_probe();
  867. float measured_z = current_position[Z_AXIS];
  868. retract_z_probe();
  869. SERIAL_PROTOCOLPGM(MSG_BED);
  870. SERIAL_PROTOCOLPGM(" x: ");
  871. SERIAL_PROTOCOL(x);
  872. SERIAL_PROTOCOLPGM(" y: ");
  873. SERIAL_PROTOCOL(y);
  874. SERIAL_PROTOCOLPGM(" z: ");
  875. SERIAL_PROTOCOL(measured_z);
  876. SERIAL_PROTOCOLPGM("\n");
  877. return measured_z;
  878. }
  879. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  880. static void homeaxis(int axis) {
  881. #define HOMEAXIS_DO(LETTER) \
  882. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  883. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  884. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  885. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  886. 0) {
  887. int axis_home_dir = home_dir(axis);
  888. #ifdef DUAL_X_CARRIAGE
  889. if (axis == X_AXIS)
  890. axis_home_dir = x_home_dir(active_extruder);
  891. #endif
  892. current_position[axis] = 0;
  893. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  894. // Engage Servo endstop if enabled
  895. #ifdef SERVO_ENDSTOPS
  896. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  897. if (axis==Z_AXIS) {
  898. engage_z_probe();
  899. }
  900. else
  901. #endif
  902. if (servo_endstops[axis] > -1) {
  903. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  904. }
  905. #endif
  906. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  907. feedrate = homing_feedrate[axis];
  908. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  909. st_synchronize();
  910. current_position[axis] = 0;
  911. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  912. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  913. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  914. st_synchronize();
  915. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  916. #ifdef DELTA
  917. feedrate = homing_feedrate[axis]/10;
  918. #else
  919. feedrate = homing_feedrate[axis]/2 ;
  920. #endif
  921. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  922. st_synchronize();
  923. #ifdef DELTA
  924. // retrace by the amount specified in endstop_adj
  925. if (endstop_adj[axis] * axis_home_dir < 0) {
  926. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  927. destination[axis] = endstop_adj[axis];
  928. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  929. st_synchronize();
  930. }
  931. #endif
  932. axis_is_at_home(axis);
  933. destination[axis] = current_position[axis];
  934. feedrate = 0.0;
  935. endstops_hit_on_purpose();
  936. axis_known_position[axis] = true;
  937. // Retract Servo endstop if enabled
  938. #ifdef SERVO_ENDSTOPS
  939. if (servo_endstops[axis] > -1) {
  940. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  941. }
  942. #endif
  943. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  944. if (axis==Z_AXIS) retract_z_probe();
  945. #endif
  946. }
  947. }
  948. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  949. void process_commands()
  950. {
  951. unsigned long codenum; //throw away variable
  952. char *starpos = NULL;
  953. #ifdef ENABLE_AUTO_BED_LEVELING
  954. float x_tmp, y_tmp, z_tmp, real_z;
  955. #endif
  956. if(code_seen('G'))
  957. {
  958. switch((int)code_value())
  959. {
  960. case 0: // G0 -> G1
  961. case 1: // G1
  962. if(Stopped == false) {
  963. get_coordinates(); // For X Y Z E F
  964. prepare_move();
  965. //ClearToSend();
  966. return;
  967. }
  968. //break;
  969. case 2: // G2 - CW ARC
  970. if(Stopped == false) {
  971. get_arc_coordinates();
  972. prepare_arc_move(true);
  973. return;
  974. }
  975. case 3: // G3 - CCW ARC
  976. if(Stopped == false) {
  977. get_arc_coordinates();
  978. prepare_arc_move(false);
  979. return;
  980. }
  981. case 4: // G4 dwell
  982. LCD_MESSAGEPGM(MSG_DWELL);
  983. codenum = 0;
  984. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  985. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  986. st_synchronize();
  987. codenum += millis(); // keep track of when we started waiting
  988. previous_millis_cmd = millis();
  989. while(millis() < codenum ){
  990. manage_heater();
  991. manage_inactivity();
  992. lcd_update();
  993. }
  994. break;
  995. #ifdef FWRETRACT
  996. case 10: // G10 retract
  997. if(!retracted)
  998. {
  999. destination[X_AXIS]=current_position[X_AXIS];
  1000. destination[Y_AXIS]=current_position[Y_AXIS];
  1001. destination[Z_AXIS]=current_position[Z_AXIS];
  1002. current_position[Z_AXIS]-=retract_zlift;
  1003. destination[E_AXIS]=current_position[E_AXIS];
  1004. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1005. plan_set_e_position(current_position[E_AXIS]);
  1006. float oldFeedrate = feedrate;
  1007. feedrate=retract_feedrate;
  1008. retracted=true;
  1009. prepare_move();
  1010. feedrate = oldFeedrate;
  1011. }
  1012. break;
  1013. case 11: // G11 retract_recover
  1014. if(retracted)
  1015. {
  1016. destination[X_AXIS]=current_position[X_AXIS];
  1017. destination[Y_AXIS]=current_position[Y_AXIS];
  1018. destination[Z_AXIS]=current_position[Z_AXIS];
  1019. current_position[Z_AXIS]+=retract_zlift;
  1020. destination[E_AXIS]=current_position[E_AXIS];
  1021. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1022. plan_set_e_position(current_position[E_AXIS]);
  1023. float oldFeedrate = feedrate;
  1024. feedrate=retract_recover_feedrate;
  1025. retracted=false;
  1026. prepare_move();
  1027. feedrate = oldFeedrate;
  1028. }
  1029. break;
  1030. #endif //FWRETRACT
  1031. case 28: //G28 Home all Axis one at a time
  1032. #ifdef ENABLE_AUTO_BED_LEVELING
  1033. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1034. #endif //ENABLE_AUTO_BED_LEVELING
  1035. saved_feedrate = feedrate;
  1036. saved_feedmultiply = feedmultiply;
  1037. feedmultiply = 100;
  1038. previous_millis_cmd = millis();
  1039. enable_endstops(true);
  1040. for(int8_t i=0; i < NUM_AXIS; i++) {
  1041. destination[i] = current_position[i];
  1042. }
  1043. feedrate = 0.0;
  1044. #ifdef DELTA
  1045. // A delta can only safely home all axis at the same time
  1046. // all axis have to home at the same time
  1047. // Move all carriages up together until the first endstop is hit.
  1048. current_position[X_AXIS] = 0;
  1049. current_position[Y_AXIS] = 0;
  1050. current_position[Z_AXIS] = 0;
  1051. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1052. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1053. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1054. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1055. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1056. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1057. st_synchronize();
  1058. endstops_hit_on_purpose();
  1059. current_position[X_AXIS] = destination[X_AXIS];
  1060. current_position[Y_AXIS] = destination[Y_AXIS];
  1061. current_position[Z_AXIS] = destination[Z_AXIS];
  1062. // take care of back off and rehome now we are all at the top
  1063. HOMEAXIS(X);
  1064. HOMEAXIS(Y);
  1065. HOMEAXIS(Z);
  1066. calculate_delta(current_position);
  1067. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1068. #else // NOT DELTA
  1069. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1070. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1071. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1072. HOMEAXIS(Z);
  1073. }
  1074. #endif
  1075. #ifdef QUICK_HOME
  1076. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1077. {
  1078. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1079. #ifndef DUAL_X_CARRIAGE
  1080. int x_axis_home_dir = home_dir(X_AXIS);
  1081. #else
  1082. int x_axis_home_dir = x_home_dir(active_extruder);
  1083. extruder_duplication_enabled = false;
  1084. #endif
  1085. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1086. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1087. feedrate = homing_feedrate[X_AXIS];
  1088. if(homing_feedrate[Y_AXIS]<feedrate)
  1089. feedrate =homing_feedrate[Y_AXIS];
  1090. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1091. st_synchronize();
  1092. axis_is_at_home(X_AXIS);
  1093. axis_is_at_home(Y_AXIS);
  1094. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1095. destination[X_AXIS] = current_position[X_AXIS];
  1096. destination[Y_AXIS] = current_position[Y_AXIS];
  1097. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1098. feedrate = 0.0;
  1099. st_synchronize();
  1100. endstops_hit_on_purpose();
  1101. current_position[X_AXIS] = destination[X_AXIS];
  1102. current_position[Y_AXIS] = destination[Y_AXIS];
  1103. current_position[Z_AXIS] = destination[Z_AXIS];
  1104. }
  1105. #endif
  1106. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1107. {
  1108. #ifdef DUAL_X_CARRIAGE
  1109. int tmp_extruder = active_extruder;
  1110. extruder_duplication_enabled = false;
  1111. active_extruder = !active_extruder;
  1112. HOMEAXIS(X);
  1113. inactive_extruder_x_pos = current_position[X_AXIS];
  1114. active_extruder = tmp_extruder;
  1115. HOMEAXIS(X);
  1116. // reset state used by the different modes
  1117. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1118. delayed_move_time = 0;
  1119. active_extruder_parked = true;
  1120. #else
  1121. HOMEAXIS(X);
  1122. #endif
  1123. }
  1124. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1125. HOMEAXIS(Y);
  1126. }
  1127. if(code_seen(axis_codes[X_AXIS]))
  1128. {
  1129. if(code_value_long() != 0) {
  1130. current_position[X_AXIS]=code_value()+add_homeing[0];
  1131. }
  1132. }
  1133. if(code_seen(axis_codes[Y_AXIS])) {
  1134. if(code_value_long() != 0) {
  1135. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1136. }
  1137. }
  1138. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1139. #ifndef Z_SAFE_HOMING
  1140. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1141. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1142. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1143. feedrate = max_feedrate[Z_AXIS];
  1144. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1145. st_synchronize();
  1146. #endif
  1147. HOMEAXIS(Z);
  1148. }
  1149. #else // Z Safe mode activated.
  1150. if(home_all_axis) {
  1151. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1152. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1153. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1154. feedrate = XY_TRAVEL_SPEED;
  1155. current_position[Z_AXIS] = 0;
  1156. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1157. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1158. st_synchronize();
  1159. current_position[X_AXIS] = destination[X_AXIS];
  1160. current_position[Y_AXIS] = destination[Y_AXIS];
  1161. HOMEAXIS(Z);
  1162. }
  1163. // Let's see if X and Y are homed and probe is inside bed area.
  1164. if(code_seen(axis_codes[Z_AXIS])) {
  1165. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1166. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1167. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1168. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1169. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1170. current_position[Z_AXIS] = 0;
  1171. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1172. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1173. feedrate = max_feedrate[Z_AXIS];
  1174. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1175. st_synchronize();
  1176. HOMEAXIS(Z);
  1177. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1178. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1179. SERIAL_ECHO_START;
  1180. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1181. } else {
  1182. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1183. SERIAL_ECHO_START;
  1184. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1185. }
  1186. }
  1187. #endif
  1188. #endif
  1189. if(code_seen(axis_codes[Z_AXIS])) {
  1190. if(code_value_long() != 0) {
  1191. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1192. }
  1193. }
  1194. #ifdef ENABLE_AUTO_BED_LEVELING
  1195. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1196. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1197. }
  1198. #endif
  1199. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1200. #endif // else DELTA
  1201. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1202. enable_endstops(false);
  1203. #endif
  1204. feedrate = saved_feedrate;
  1205. feedmultiply = saved_feedmultiply;
  1206. previous_millis_cmd = millis();
  1207. endstops_hit_on_purpose();
  1208. break;
  1209. #ifdef ENABLE_AUTO_BED_LEVELING
  1210. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1211. {
  1212. #if Z_MIN_PIN == -1
  1213. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1214. #endif
  1215. st_synchronize();
  1216. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1217. //vector_3 corrected_position = plan_get_position_mm();
  1218. //corrected_position.debug("position before G29");
  1219. plan_bed_level_matrix.set_to_identity();
  1220. vector_3 uncorrected_position = plan_get_position();
  1221. //uncorrected_position.debug("position durring G29");
  1222. current_position[X_AXIS] = uncorrected_position.x;
  1223. current_position[Y_AXIS] = uncorrected_position.y;
  1224. current_position[Z_AXIS] = uncorrected_position.z;
  1225. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1226. setup_for_endstop_move();
  1227. feedrate = homing_feedrate[Z_AXIS];
  1228. #ifdef ACCURATE_BED_LEVELING
  1229. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1230. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1231. // solve the plane equation ax + by + d = z
  1232. // A is the matrix with rows [x y 1] for all the probed points
  1233. // B is the vector of the Z positions
  1234. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1235. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1236. // "A" matrix of the linear system of equations
  1237. double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
  1238. // "B" vector of Z points
  1239. double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
  1240. int probePointCounter = 0;
  1241. bool zig = true;
  1242. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1243. {
  1244. int xProbe, xInc;
  1245. if (zig)
  1246. {
  1247. xProbe = LEFT_PROBE_BED_POSITION;
  1248. //xEnd = RIGHT_PROBE_BED_POSITION;
  1249. xInc = xGridSpacing;
  1250. zig = false;
  1251. } else // zag
  1252. {
  1253. xProbe = RIGHT_PROBE_BED_POSITION;
  1254. //xEnd = LEFT_PROBE_BED_POSITION;
  1255. xInc = -xGridSpacing;
  1256. zig = true;
  1257. }
  1258. for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++)
  1259. {
  1260. float z_before;
  1261. if (probePointCounter == 0)
  1262. {
  1263. // raise before probing
  1264. z_before = Z_RAISE_BEFORE_PROBING;
  1265. } else
  1266. {
  1267. // raise extruder
  1268. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1269. }
  1270. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1271. eqnBVector[probePointCounter] = measured_z;
  1272. eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
  1273. eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
  1274. eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
  1275. probePointCounter++;
  1276. xProbe += xInc;
  1277. }
  1278. }
  1279. clean_up_after_endstop_move();
  1280. // solve lsq problem
  1281. double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
  1282. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1283. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1284. SERIAL_PROTOCOLPGM(" b: ");
  1285. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1286. SERIAL_PROTOCOLPGM(" d: ");
  1287. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1288. set_bed_level_equation_lsq(plane_equation_coefficients);
  1289. free(plane_equation_coefficients);
  1290. #else // ACCURATE_BED_LEVELING not defined
  1291. // prob 1
  1292. float z_at_xLeft_yBack = probe_pt(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, Z_RAISE_BEFORE_PROBING);
  1293. // prob 2
  1294. float z_at_xLeft_yFront = probe_pt(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1295. // prob 3
  1296. float z_at_xRight_yFront = probe_pt(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1297. clean_up_after_endstop_move();
  1298. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1299. #endif // ACCURATE_BED_LEVELING
  1300. st_synchronize();
  1301. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1302. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1303. // When the bed is uneven, this height must be corrected.
  1304. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1305. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1306. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1307. z_tmp = current_position[Z_AXIS];
  1308. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1309. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1310. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1311. }
  1312. break;
  1313. case 30: // G30 Single Z Probe
  1314. {
  1315. engage_z_probe(); // Engage Z Servo endstop if available
  1316. st_synchronize();
  1317. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1318. setup_for_endstop_move();
  1319. feedrate = homing_feedrate[Z_AXIS];
  1320. run_z_probe();
  1321. SERIAL_PROTOCOLPGM(MSG_BED);
  1322. SERIAL_PROTOCOLPGM(" X: ");
  1323. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1324. SERIAL_PROTOCOLPGM(" Y: ");
  1325. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1326. SERIAL_PROTOCOLPGM(" Z: ");
  1327. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1328. SERIAL_PROTOCOLPGM("\n");
  1329. clean_up_after_endstop_move();
  1330. retract_z_probe(); // Retract Z Servo endstop if available
  1331. }
  1332. break;
  1333. #endif // ENABLE_AUTO_BED_LEVELING
  1334. case 90: // G90
  1335. relative_mode = false;
  1336. break;
  1337. case 91: // G91
  1338. relative_mode = true;
  1339. break;
  1340. case 92: // G92
  1341. if(!code_seen(axis_codes[E_AXIS]))
  1342. st_synchronize();
  1343. for(int8_t i=0; i < NUM_AXIS; i++) {
  1344. if(code_seen(axis_codes[i])) {
  1345. if(i == E_AXIS) {
  1346. current_position[i] = code_value();
  1347. plan_set_e_position(current_position[E_AXIS]);
  1348. }
  1349. else {
  1350. current_position[i] = code_value()+add_homeing[i];
  1351. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1352. }
  1353. }
  1354. }
  1355. break;
  1356. }
  1357. }
  1358. else if(code_seen('M'))
  1359. {
  1360. switch( (int)code_value() )
  1361. {
  1362. #ifdef ULTIPANEL
  1363. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1364. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1365. {
  1366. LCD_MESSAGEPGM(MSG_USERWAIT);
  1367. codenum = 0;
  1368. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1369. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1370. st_synchronize();
  1371. previous_millis_cmd = millis();
  1372. if (codenum > 0){
  1373. codenum += millis(); // keep track of when we started waiting
  1374. while(millis() < codenum && !lcd_clicked()){
  1375. manage_heater();
  1376. manage_inactivity();
  1377. lcd_update();
  1378. }
  1379. }else{
  1380. while(!lcd_clicked()){
  1381. manage_heater();
  1382. manage_inactivity();
  1383. lcd_update();
  1384. }
  1385. }
  1386. LCD_MESSAGEPGM(MSG_RESUMING);
  1387. }
  1388. break;
  1389. #endif
  1390. case 17:
  1391. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1392. enable_x();
  1393. enable_y();
  1394. enable_z();
  1395. enable_e0();
  1396. enable_e1();
  1397. enable_e2();
  1398. break;
  1399. #ifdef SDSUPPORT
  1400. case 20: // M20 - list SD card
  1401. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1402. card.ls();
  1403. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1404. break;
  1405. case 21: // M21 - init SD card
  1406. card.initsd();
  1407. break;
  1408. case 22: //M22 - release SD card
  1409. card.release();
  1410. break;
  1411. case 23: //M23 - Select file
  1412. starpos = (strchr(strchr_pointer + 4,'*'));
  1413. if(starpos!=NULL)
  1414. *(starpos-1)='\0';
  1415. card.openFile(strchr_pointer + 4,true);
  1416. break;
  1417. case 24: //M24 - Start SD print
  1418. card.startFileprint();
  1419. starttime=millis();
  1420. break;
  1421. case 25: //M25 - Pause SD print
  1422. card.pauseSDPrint();
  1423. break;
  1424. case 26: //M26 - Set SD index
  1425. if(card.cardOK && code_seen('S')) {
  1426. card.setIndex(code_value_long());
  1427. }
  1428. break;
  1429. case 27: //M27 - Get SD status
  1430. card.getStatus();
  1431. break;
  1432. case 28: //M28 - Start SD write
  1433. starpos = (strchr(strchr_pointer + 4,'*'));
  1434. if(starpos != NULL){
  1435. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1436. strchr_pointer = strchr(npos,' ') + 1;
  1437. *(starpos-1) = '\0';
  1438. }
  1439. card.openFile(strchr_pointer+4,false);
  1440. break;
  1441. case 29: //M29 - Stop SD write
  1442. //processed in write to file routine above
  1443. //card,saving = false;
  1444. break;
  1445. case 30: //M30 <filename> Delete File
  1446. if (card.cardOK){
  1447. card.closefile();
  1448. starpos = (strchr(strchr_pointer + 4,'*'));
  1449. if(starpos != NULL){
  1450. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1451. strchr_pointer = strchr(npos,' ') + 1;
  1452. *(starpos-1) = '\0';
  1453. }
  1454. card.removeFile(strchr_pointer + 4);
  1455. }
  1456. break;
  1457. case 32: //M32 - Select file and start SD print
  1458. {
  1459. if(card.sdprinting) {
  1460. st_synchronize();
  1461. }
  1462. starpos = (strchr(strchr_pointer + 4,'*'));
  1463. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1464. if(namestartpos==NULL)
  1465. {
  1466. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1467. }
  1468. else
  1469. namestartpos++; //to skip the '!'
  1470. if(starpos!=NULL)
  1471. *(starpos-1)='\0';
  1472. bool call_procedure=(code_seen('P'));
  1473. if(strchr_pointer>namestartpos)
  1474. call_procedure=false; //false alert, 'P' found within filename
  1475. if( card.cardOK )
  1476. {
  1477. card.openFile(namestartpos,true,!call_procedure);
  1478. if(code_seen('S'))
  1479. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1480. card.setIndex(code_value_long());
  1481. card.startFileprint();
  1482. if(!call_procedure)
  1483. starttime=millis(); //procedure calls count as normal print time.
  1484. }
  1485. } break;
  1486. case 928: //M928 - Start SD write
  1487. starpos = (strchr(strchr_pointer + 5,'*'));
  1488. if(starpos != NULL){
  1489. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1490. strchr_pointer = strchr(npos,' ') + 1;
  1491. *(starpos-1) = '\0';
  1492. }
  1493. card.openLogFile(strchr_pointer+5);
  1494. break;
  1495. #endif //SDSUPPORT
  1496. case 31: //M31 take time since the start of the SD print or an M109 command
  1497. {
  1498. stoptime=millis();
  1499. char time[30];
  1500. unsigned long t=(stoptime-starttime)/1000;
  1501. int sec,min;
  1502. min=t/60;
  1503. sec=t%60;
  1504. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1505. SERIAL_ECHO_START;
  1506. SERIAL_ECHOLN(time);
  1507. lcd_setstatus(time);
  1508. autotempShutdown();
  1509. }
  1510. break;
  1511. case 42: //M42 -Change pin status via gcode
  1512. if (code_seen('S'))
  1513. {
  1514. int pin_status = code_value();
  1515. int pin_number = LED_PIN;
  1516. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1517. pin_number = code_value();
  1518. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1519. {
  1520. if (sensitive_pins[i] == pin_number)
  1521. {
  1522. pin_number = -1;
  1523. break;
  1524. }
  1525. }
  1526. #if defined(FAN_PIN) && FAN_PIN > -1
  1527. if (pin_number == FAN_PIN)
  1528. fanSpeed = pin_status;
  1529. #endif
  1530. if (pin_number > -1)
  1531. {
  1532. pinMode(pin_number, OUTPUT);
  1533. digitalWrite(pin_number, pin_status);
  1534. analogWrite(pin_number, pin_status);
  1535. }
  1536. }
  1537. break;
  1538. case 104: // M104
  1539. if(setTargetedHotend(104)){
  1540. break;
  1541. }
  1542. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1543. #ifdef DUAL_X_CARRIAGE
  1544. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1545. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1546. #endif
  1547. setWatch();
  1548. break;
  1549. case 140: // M140 set bed temp
  1550. if (code_seen('S')) setTargetBed(code_value());
  1551. break;
  1552. case 105 : // M105
  1553. if(setTargetedHotend(105)){
  1554. break;
  1555. }
  1556. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1557. SERIAL_PROTOCOLPGM("ok T:");
  1558. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1559. SERIAL_PROTOCOLPGM(" /");
  1560. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1561. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1562. SERIAL_PROTOCOLPGM(" B:");
  1563. SERIAL_PROTOCOL_F(degBed(),1);
  1564. SERIAL_PROTOCOLPGM(" /");
  1565. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1566. #endif //TEMP_BED_PIN
  1567. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1568. SERIAL_PROTOCOLPGM(" T");
  1569. SERIAL_PROTOCOL(cur_extruder);
  1570. SERIAL_PROTOCOLPGM(":");
  1571. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1572. SERIAL_PROTOCOLPGM(" /");
  1573. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1574. }
  1575. #else
  1576. SERIAL_ERROR_START;
  1577. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1578. #endif
  1579. SERIAL_PROTOCOLPGM(" @:");
  1580. #ifdef EXTRUDER_WATTS
  1581. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1582. SERIAL_PROTOCOLPGM("W");
  1583. #else
  1584. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1585. #endif
  1586. SERIAL_PROTOCOLPGM(" B@:");
  1587. #ifdef BED_WATTS
  1588. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1589. SERIAL_PROTOCOLPGM("W");
  1590. #else
  1591. SERIAL_PROTOCOL(getHeaterPower(-1));
  1592. #endif
  1593. #ifdef SHOW_TEMP_ADC_VALUES
  1594. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1595. SERIAL_PROTOCOLPGM(" ADC B:");
  1596. SERIAL_PROTOCOL_F(degBed(),1);
  1597. SERIAL_PROTOCOLPGM("C->");
  1598. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1599. #endif
  1600. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1601. SERIAL_PROTOCOLPGM(" T");
  1602. SERIAL_PROTOCOL(cur_extruder);
  1603. SERIAL_PROTOCOLPGM(":");
  1604. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1605. SERIAL_PROTOCOLPGM("C->");
  1606. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1607. }
  1608. #endif
  1609. SERIAL_PROTOCOLLN("");
  1610. return;
  1611. break;
  1612. case 109:
  1613. {// M109 - Wait for extruder heater to reach target.
  1614. if(setTargetedHotend(109)){
  1615. break;
  1616. }
  1617. LCD_MESSAGEPGM(MSG_HEATING);
  1618. #ifdef AUTOTEMP
  1619. autotemp_enabled=false;
  1620. #endif
  1621. if (code_seen('S')) {
  1622. setTargetHotend(code_value(), tmp_extruder);
  1623. #ifdef DUAL_X_CARRIAGE
  1624. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1625. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1626. #endif
  1627. CooldownNoWait = true;
  1628. } else if (code_seen('R')) {
  1629. setTargetHotend(code_value(), tmp_extruder);
  1630. #ifdef DUAL_X_CARRIAGE
  1631. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1632. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1633. #endif
  1634. CooldownNoWait = false;
  1635. }
  1636. #ifdef AUTOTEMP
  1637. if (code_seen('S')) autotemp_min=code_value();
  1638. if (code_seen('B')) autotemp_max=code_value();
  1639. if (code_seen('F'))
  1640. {
  1641. autotemp_factor=code_value();
  1642. autotemp_enabled=true;
  1643. }
  1644. #endif
  1645. setWatch();
  1646. codenum = millis();
  1647. /* See if we are heating up or cooling down */
  1648. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1649. #ifdef TEMP_RESIDENCY_TIME
  1650. long residencyStart;
  1651. residencyStart = -1;
  1652. /* continue to loop until we have reached the target temp
  1653. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1654. while((residencyStart == -1) ||
  1655. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1656. #else
  1657. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1658. #endif //TEMP_RESIDENCY_TIME
  1659. if( (millis() - codenum) > 1000UL )
  1660. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1661. SERIAL_PROTOCOLPGM("T:");
  1662. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1663. SERIAL_PROTOCOLPGM(" E:");
  1664. SERIAL_PROTOCOL((int)tmp_extruder);
  1665. #ifdef TEMP_RESIDENCY_TIME
  1666. SERIAL_PROTOCOLPGM(" W:");
  1667. if(residencyStart > -1)
  1668. {
  1669. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1670. SERIAL_PROTOCOLLN( codenum );
  1671. }
  1672. else
  1673. {
  1674. SERIAL_PROTOCOLLN( "?" );
  1675. }
  1676. #else
  1677. SERIAL_PROTOCOLLN("");
  1678. #endif
  1679. codenum = millis();
  1680. }
  1681. manage_heater();
  1682. manage_inactivity();
  1683. lcd_update();
  1684. #ifdef TEMP_RESIDENCY_TIME
  1685. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1686. or when current temp falls outside the hysteresis after target temp was reached */
  1687. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1688. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1689. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1690. {
  1691. residencyStart = millis();
  1692. }
  1693. #endif //TEMP_RESIDENCY_TIME
  1694. }
  1695. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1696. starttime=millis();
  1697. previous_millis_cmd = millis();
  1698. }
  1699. break;
  1700. case 190: // M190 - Wait for bed heater to reach target.
  1701. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1702. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1703. if (code_seen('S')) {
  1704. setTargetBed(code_value());
  1705. CooldownNoWait = true;
  1706. } else if (code_seen('R')) {
  1707. setTargetBed(code_value());
  1708. CooldownNoWait = false;
  1709. }
  1710. codenum = millis();
  1711. target_direction = isHeatingBed(); // true if heating, false if cooling
  1712. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1713. {
  1714. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1715. {
  1716. float tt=degHotend(active_extruder);
  1717. SERIAL_PROTOCOLPGM("T:");
  1718. SERIAL_PROTOCOL(tt);
  1719. SERIAL_PROTOCOLPGM(" E:");
  1720. SERIAL_PROTOCOL((int)active_extruder);
  1721. SERIAL_PROTOCOLPGM(" B:");
  1722. SERIAL_PROTOCOL_F(degBed(),1);
  1723. SERIAL_PROTOCOLLN("");
  1724. codenum = millis();
  1725. }
  1726. manage_heater();
  1727. manage_inactivity();
  1728. lcd_update();
  1729. }
  1730. LCD_MESSAGEPGM(MSG_BED_DONE);
  1731. previous_millis_cmd = millis();
  1732. #endif
  1733. break;
  1734. #if defined(FAN_PIN) && FAN_PIN > -1
  1735. case 106: //M106 Fan On
  1736. if (code_seen('S')){
  1737. fanSpeed=constrain(code_value(),0,255);
  1738. }
  1739. else {
  1740. fanSpeed=255;
  1741. }
  1742. break;
  1743. case 107: //M107 Fan Off
  1744. fanSpeed = 0;
  1745. break;
  1746. #endif //FAN_PIN
  1747. #ifdef BARICUDA
  1748. // PWM for HEATER_1_PIN
  1749. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1750. case 126: //M126 valve open
  1751. if (code_seen('S')){
  1752. ValvePressure=constrain(code_value(),0,255);
  1753. }
  1754. else {
  1755. ValvePressure=255;
  1756. }
  1757. break;
  1758. case 127: //M127 valve closed
  1759. ValvePressure = 0;
  1760. break;
  1761. #endif //HEATER_1_PIN
  1762. // PWM for HEATER_2_PIN
  1763. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1764. case 128: //M128 valve open
  1765. if (code_seen('S')){
  1766. EtoPPressure=constrain(code_value(),0,255);
  1767. }
  1768. else {
  1769. EtoPPressure=255;
  1770. }
  1771. break;
  1772. case 129: //M129 valve closed
  1773. EtoPPressure = 0;
  1774. break;
  1775. #endif //HEATER_2_PIN
  1776. #endif
  1777. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1778. case 80: // M80 - Turn on Power Supply
  1779. SET_OUTPUT(PS_ON_PIN); //GND
  1780. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1781. // If you have a switch on suicide pin, this is useful
  1782. // if you want to start another print with suicide feature after
  1783. // a print without suicide...
  1784. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1785. SET_OUTPUT(SUICIDE_PIN);
  1786. WRITE(SUICIDE_PIN, HIGH);
  1787. #endif
  1788. #ifdef ULTIPANEL
  1789. powersupply = true;
  1790. LCD_MESSAGEPGM(WELCOME_MSG);
  1791. lcd_update();
  1792. #endif
  1793. break;
  1794. #endif
  1795. case 81: // M81 - Turn off Power Supply
  1796. disable_heater();
  1797. st_synchronize();
  1798. disable_e0();
  1799. disable_e1();
  1800. disable_e2();
  1801. finishAndDisableSteppers();
  1802. fanSpeed = 0;
  1803. delay(1000); // Wait a little before to switch off
  1804. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1805. st_synchronize();
  1806. suicide();
  1807. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1808. SET_OUTPUT(PS_ON_PIN);
  1809. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1810. #endif
  1811. #ifdef ULTIPANEL
  1812. powersupply = false;
  1813. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1814. lcd_update();
  1815. #endif
  1816. break;
  1817. case 82:
  1818. axis_relative_modes[3] = false;
  1819. break;
  1820. case 83:
  1821. axis_relative_modes[3] = true;
  1822. break;
  1823. case 18: //compatibility
  1824. case 84: // M84
  1825. if(code_seen('S')){
  1826. stepper_inactive_time = code_value() * 1000;
  1827. }
  1828. else
  1829. {
  1830. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1831. if(all_axis)
  1832. {
  1833. st_synchronize();
  1834. disable_e0();
  1835. disable_e1();
  1836. disable_e2();
  1837. finishAndDisableSteppers();
  1838. }
  1839. else
  1840. {
  1841. st_synchronize();
  1842. if(code_seen('X')) disable_x();
  1843. if(code_seen('Y')) disable_y();
  1844. if(code_seen('Z')) disable_z();
  1845. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1846. if(code_seen('E')) {
  1847. disable_e0();
  1848. disable_e1();
  1849. disable_e2();
  1850. }
  1851. #endif
  1852. }
  1853. }
  1854. break;
  1855. case 85: // M85
  1856. code_seen('S');
  1857. max_inactive_time = code_value() * 1000;
  1858. break;
  1859. case 92: // M92
  1860. for(int8_t i=0; i < NUM_AXIS; i++)
  1861. {
  1862. if(code_seen(axis_codes[i]))
  1863. {
  1864. if(i == 3) { // E
  1865. float value = code_value();
  1866. if(value < 20.0) {
  1867. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1868. max_e_jerk *= factor;
  1869. max_feedrate[i] *= factor;
  1870. axis_steps_per_sqr_second[i] *= factor;
  1871. }
  1872. axis_steps_per_unit[i] = value;
  1873. }
  1874. else {
  1875. axis_steps_per_unit[i] = code_value();
  1876. }
  1877. }
  1878. }
  1879. break;
  1880. case 115: // M115
  1881. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1882. break;
  1883. case 117: // M117 display message
  1884. starpos = (strchr(strchr_pointer + 5,'*'));
  1885. if(starpos!=NULL)
  1886. *(starpos-1)='\0';
  1887. lcd_setstatus(strchr_pointer + 5);
  1888. break;
  1889. case 114: // M114
  1890. SERIAL_PROTOCOLPGM("X:");
  1891. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1892. SERIAL_PROTOCOLPGM("Y:");
  1893. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1894. SERIAL_PROTOCOLPGM("Z:");
  1895. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1896. SERIAL_PROTOCOLPGM("E:");
  1897. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1898. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1899. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1900. SERIAL_PROTOCOLPGM("Y:");
  1901. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1902. SERIAL_PROTOCOLPGM("Z:");
  1903. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1904. SERIAL_PROTOCOLLN("");
  1905. break;
  1906. case 120: // M120
  1907. enable_endstops(false) ;
  1908. break;
  1909. case 121: // M121
  1910. enable_endstops(true) ;
  1911. break;
  1912. case 119: // M119
  1913. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1914. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1915. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1916. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1917. #endif
  1918. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1919. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1920. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1921. #endif
  1922. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1923. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1924. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1925. #endif
  1926. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1927. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1928. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1929. #endif
  1930. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1931. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1932. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1933. #endif
  1934. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1935. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1936. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1937. #endif
  1938. break;
  1939. //TODO: update for all axis, use for loop
  1940. #ifdef BLINKM
  1941. case 150: // M150
  1942. {
  1943. byte red;
  1944. byte grn;
  1945. byte blu;
  1946. if(code_seen('R')) red = code_value();
  1947. if(code_seen('U')) grn = code_value();
  1948. if(code_seen('B')) blu = code_value();
  1949. SendColors(red,grn,blu);
  1950. }
  1951. break;
  1952. #endif //BLINKM
  1953. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  1954. {
  1955. float area = .0;
  1956. float radius = .0;
  1957. if(code_seen('D')) {
  1958. radius = (float)code_value() * .5;
  1959. if(radius == 0) {
  1960. area = 1;
  1961. } else {
  1962. area = M_PI * pow(radius, 2);
  1963. }
  1964. } else {
  1965. //reserved for setting filament diameter via UFID or filament measuring device
  1966. break;
  1967. }
  1968. tmp_extruder = active_extruder;
  1969. if(code_seen('T')) {
  1970. tmp_extruder = code_value();
  1971. if(tmp_extruder >= EXTRUDERS) {
  1972. SERIAL_ECHO_START;
  1973. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  1974. }
  1975. SERIAL_ECHOLN(tmp_extruder);
  1976. break;
  1977. }
  1978. volumetric_multiplier[tmp_extruder] = 1 / area;
  1979. }
  1980. break;
  1981. case 201: // M201
  1982. for(int8_t i=0; i < NUM_AXIS; i++)
  1983. {
  1984. if(code_seen(axis_codes[i]))
  1985. {
  1986. max_acceleration_units_per_sq_second[i] = code_value();
  1987. }
  1988. }
  1989. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1990. reset_acceleration_rates();
  1991. break;
  1992. #if 0 // Not used for Sprinter/grbl gen6
  1993. case 202: // M202
  1994. for(int8_t i=0; i < NUM_AXIS; i++) {
  1995. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1996. }
  1997. break;
  1998. #endif
  1999. case 203: // M203 max feedrate mm/sec
  2000. for(int8_t i=0; i < NUM_AXIS; i++) {
  2001. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2002. }
  2003. break;
  2004. case 204: // M204 acclereration S normal moves T filmanent only moves
  2005. {
  2006. if(code_seen('S')) acceleration = code_value() ;
  2007. if(code_seen('T')) retract_acceleration = code_value() ;
  2008. }
  2009. break;
  2010. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2011. {
  2012. if(code_seen('S')) minimumfeedrate = code_value();
  2013. if(code_seen('T')) mintravelfeedrate = code_value();
  2014. if(code_seen('B')) minsegmenttime = code_value() ;
  2015. if(code_seen('X')) max_xy_jerk = code_value() ;
  2016. if(code_seen('Z')) max_z_jerk = code_value() ;
  2017. if(code_seen('E')) max_e_jerk = code_value() ;
  2018. }
  2019. break;
  2020. case 206: // M206 additional homeing offset
  2021. for(int8_t i=0; i < 3; i++)
  2022. {
  2023. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2024. }
  2025. break;
  2026. #ifdef DELTA
  2027. case 666: // M666 set delta endstop adjustemnt
  2028. for(int8_t i=0; i < 3; i++)
  2029. {
  2030. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2031. }
  2032. break;
  2033. #endif
  2034. #ifdef FWRETRACT
  2035. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2036. {
  2037. if(code_seen('S'))
  2038. {
  2039. retract_length = code_value() ;
  2040. }
  2041. if(code_seen('F'))
  2042. {
  2043. retract_feedrate = code_value() ;
  2044. }
  2045. if(code_seen('Z'))
  2046. {
  2047. retract_zlift = code_value() ;
  2048. }
  2049. }break;
  2050. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2051. {
  2052. if(code_seen('S'))
  2053. {
  2054. retract_recover_length = code_value() ;
  2055. }
  2056. if(code_seen('F'))
  2057. {
  2058. retract_recover_feedrate = code_value() ;
  2059. }
  2060. }break;
  2061. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2062. {
  2063. if(code_seen('S'))
  2064. {
  2065. int t= code_value() ;
  2066. switch(t)
  2067. {
  2068. case 0: autoretract_enabled=false;retracted=false;break;
  2069. case 1: autoretract_enabled=true;retracted=false;break;
  2070. default:
  2071. SERIAL_ECHO_START;
  2072. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2073. SERIAL_ECHO(cmdbuffer[bufindr]);
  2074. SERIAL_ECHOLNPGM("\"");
  2075. }
  2076. }
  2077. }break;
  2078. #endif // FWRETRACT
  2079. #if EXTRUDERS > 1
  2080. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2081. {
  2082. if(setTargetedHotend(218)){
  2083. break;
  2084. }
  2085. if(code_seen('X'))
  2086. {
  2087. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2088. }
  2089. if(code_seen('Y'))
  2090. {
  2091. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2092. }
  2093. #ifdef DUAL_X_CARRIAGE
  2094. if(code_seen('Z'))
  2095. {
  2096. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2097. }
  2098. #endif
  2099. SERIAL_ECHO_START;
  2100. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2101. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2102. {
  2103. SERIAL_ECHO(" ");
  2104. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2105. SERIAL_ECHO(",");
  2106. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2107. #ifdef DUAL_X_CARRIAGE
  2108. SERIAL_ECHO(",");
  2109. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2110. #endif
  2111. }
  2112. SERIAL_ECHOLN("");
  2113. }break;
  2114. #endif
  2115. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2116. {
  2117. if(code_seen('S'))
  2118. {
  2119. feedmultiply = code_value() ;
  2120. }
  2121. }
  2122. break;
  2123. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2124. {
  2125. if(code_seen('S'))
  2126. {
  2127. extrudemultiply = code_value() ;
  2128. }
  2129. }
  2130. break;
  2131. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2132. {
  2133. if(code_seen('P')){
  2134. int pin_number = code_value(); // pin number
  2135. int pin_state = -1; // required pin state - default is inverted
  2136. if(code_seen('S')) pin_state = code_value(); // required pin state
  2137. if(pin_state >= -1 && pin_state <= 1){
  2138. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2139. {
  2140. if (sensitive_pins[i] == pin_number)
  2141. {
  2142. pin_number = -1;
  2143. break;
  2144. }
  2145. }
  2146. if (pin_number > -1)
  2147. {
  2148. st_synchronize();
  2149. pinMode(pin_number, INPUT);
  2150. int target;
  2151. switch(pin_state){
  2152. case 1:
  2153. target = HIGH;
  2154. break;
  2155. case 0:
  2156. target = LOW;
  2157. break;
  2158. case -1:
  2159. target = !digitalRead(pin_number);
  2160. break;
  2161. }
  2162. while(digitalRead(pin_number) != target){
  2163. manage_heater();
  2164. manage_inactivity();
  2165. lcd_update();
  2166. }
  2167. }
  2168. }
  2169. }
  2170. }
  2171. break;
  2172. #if NUM_SERVOS > 0
  2173. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2174. {
  2175. int servo_index = -1;
  2176. int servo_position = 0;
  2177. if (code_seen('P'))
  2178. servo_index = code_value();
  2179. if (code_seen('S')) {
  2180. servo_position = code_value();
  2181. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2182. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2183. servos[servo_index].attach(0);
  2184. #endif
  2185. servos[servo_index].write(servo_position);
  2186. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2187. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2188. servos[servo_index].detach();
  2189. #endif
  2190. }
  2191. else {
  2192. SERIAL_ECHO_START;
  2193. SERIAL_ECHO("Servo ");
  2194. SERIAL_ECHO(servo_index);
  2195. SERIAL_ECHOLN(" out of range");
  2196. }
  2197. }
  2198. else if (servo_index >= 0) {
  2199. SERIAL_PROTOCOL(MSG_OK);
  2200. SERIAL_PROTOCOL(" Servo ");
  2201. SERIAL_PROTOCOL(servo_index);
  2202. SERIAL_PROTOCOL(": ");
  2203. SERIAL_PROTOCOL(servos[servo_index].read());
  2204. SERIAL_PROTOCOLLN("");
  2205. }
  2206. }
  2207. break;
  2208. #endif // NUM_SERVOS > 0
  2209. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2210. case 300: // M300
  2211. {
  2212. int beepS = code_seen('S') ? code_value() : 110;
  2213. int beepP = code_seen('P') ? code_value() : 1000;
  2214. if (beepS > 0)
  2215. {
  2216. #if BEEPER > 0
  2217. tone(BEEPER, beepS);
  2218. delay(beepP);
  2219. noTone(BEEPER);
  2220. #elif defined(ULTRALCD)
  2221. lcd_buzz(beepS, beepP);
  2222. #elif defined(LCD_USE_I2C_BUZZER)
  2223. lcd_buzz(beepP, beepS);
  2224. #endif
  2225. }
  2226. else
  2227. {
  2228. delay(beepP);
  2229. }
  2230. }
  2231. break;
  2232. #endif // M300
  2233. #ifdef PIDTEMP
  2234. case 301: // M301
  2235. {
  2236. if(code_seen('P')) Kp = code_value();
  2237. if(code_seen('I')) Ki = scalePID_i(code_value());
  2238. if(code_seen('D')) Kd = scalePID_d(code_value());
  2239. #ifdef PID_ADD_EXTRUSION_RATE
  2240. if(code_seen('C')) Kc = code_value();
  2241. #endif
  2242. updatePID();
  2243. SERIAL_PROTOCOL(MSG_OK);
  2244. SERIAL_PROTOCOL(" p:");
  2245. SERIAL_PROTOCOL(Kp);
  2246. SERIAL_PROTOCOL(" i:");
  2247. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2248. SERIAL_PROTOCOL(" d:");
  2249. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2250. #ifdef PID_ADD_EXTRUSION_RATE
  2251. SERIAL_PROTOCOL(" c:");
  2252. //Kc does not have scaling applied above, or in resetting defaults
  2253. SERIAL_PROTOCOL(Kc);
  2254. #endif
  2255. SERIAL_PROTOCOLLN("");
  2256. }
  2257. break;
  2258. #endif //PIDTEMP
  2259. #ifdef PIDTEMPBED
  2260. case 304: // M304
  2261. {
  2262. if(code_seen('P')) bedKp = code_value();
  2263. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2264. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2265. updatePID();
  2266. SERIAL_PROTOCOL(MSG_OK);
  2267. SERIAL_PROTOCOL(" p:");
  2268. SERIAL_PROTOCOL(bedKp);
  2269. SERIAL_PROTOCOL(" i:");
  2270. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2271. SERIAL_PROTOCOL(" d:");
  2272. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2273. SERIAL_PROTOCOLLN("");
  2274. }
  2275. break;
  2276. #endif //PIDTEMP
  2277. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2278. {
  2279. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2280. const uint8_t NUM_PULSES=16;
  2281. const float PULSE_LENGTH=0.01524;
  2282. for(int i=0; i < NUM_PULSES; i++) {
  2283. WRITE(PHOTOGRAPH_PIN, HIGH);
  2284. _delay_ms(PULSE_LENGTH);
  2285. WRITE(PHOTOGRAPH_PIN, LOW);
  2286. _delay_ms(PULSE_LENGTH);
  2287. }
  2288. delay(7.33);
  2289. for(int i=0; i < NUM_PULSES; i++) {
  2290. WRITE(PHOTOGRAPH_PIN, HIGH);
  2291. _delay_ms(PULSE_LENGTH);
  2292. WRITE(PHOTOGRAPH_PIN, LOW);
  2293. _delay_ms(PULSE_LENGTH);
  2294. }
  2295. #endif
  2296. }
  2297. break;
  2298. #ifdef DOGLCD
  2299. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2300. {
  2301. if (code_seen('C')) {
  2302. lcd_setcontrast( ((int)code_value())&63 );
  2303. }
  2304. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2305. SERIAL_PROTOCOL(lcd_contrast);
  2306. SERIAL_PROTOCOLLN("");
  2307. }
  2308. break;
  2309. #endif
  2310. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2311. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2312. {
  2313. float temp = .0;
  2314. if (code_seen('S')) temp=code_value();
  2315. set_extrude_min_temp(temp);
  2316. }
  2317. break;
  2318. #endif
  2319. case 303: // M303 PID autotune
  2320. {
  2321. float temp = 150.0;
  2322. int e=0;
  2323. int c=5;
  2324. if (code_seen('E')) e=code_value();
  2325. if (e<0)
  2326. temp=70;
  2327. if (code_seen('S')) temp=code_value();
  2328. if (code_seen('C')) c=code_value();
  2329. PID_autotune(temp, e, c);
  2330. }
  2331. break;
  2332. case 400: // M400 finish all moves
  2333. {
  2334. st_synchronize();
  2335. }
  2336. break;
  2337. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2338. case 401:
  2339. {
  2340. engage_z_probe(); // Engage Z Servo endstop if available
  2341. }
  2342. break;
  2343. case 402:
  2344. {
  2345. retract_z_probe(); // Retract Z Servo endstop if enabled
  2346. }
  2347. break;
  2348. #endif
  2349. case 500: // M500 Store settings in EEPROM
  2350. {
  2351. Config_StoreSettings();
  2352. }
  2353. break;
  2354. case 501: // M501 Read settings from EEPROM
  2355. {
  2356. Config_RetrieveSettings();
  2357. }
  2358. break;
  2359. case 502: // M502 Revert to default settings
  2360. {
  2361. Config_ResetDefault();
  2362. }
  2363. break;
  2364. case 503: // M503 print settings currently in memory
  2365. {
  2366. Config_PrintSettings();
  2367. }
  2368. break;
  2369. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2370. case 540:
  2371. {
  2372. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2373. }
  2374. break;
  2375. #endif
  2376. #ifdef FILAMENTCHANGEENABLE
  2377. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2378. {
  2379. float target[4];
  2380. float lastpos[4];
  2381. target[X_AXIS]=current_position[X_AXIS];
  2382. target[Y_AXIS]=current_position[Y_AXIS];
  2383. target[Z_AXIS]=current_position[Z_AXIS];
  2384. target[E_AXIS]=current_position[E_AXIS];
  2385. lastpos[X_AXIS]=current_position[X_AXIS];
  2386. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2387. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2388. lastpos[E_AXIS]=current_position[E_AXIS];
  2389. //retract by E
  2390. if(code_seen('E'))
  2391. {
  2392. target[E_AXIS]+= code_value();
  2393. }
  2394. else
  2395. {
  2396. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2397. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2398. #endif
  2399. }
  2400. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2401. //lift Z
  2402. if(code_seen('Z'))
  2403. {
  2404. target[Z_AXIS]+= code_value();
  2405. }
  2406. else
  2407. {
  2408. #ifdef FILAMENTCHANGE_ZADD
  2409. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2410. #endif
  2411. }
  2412. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2413. //move xy
  2414. if(code_seen('X'))
  2415. {
  2416. target[X_AXIS]+= code_value();
  2417. }
  2418. else
  2419. {
  2420. #ifdef FILAMENTCHANGE_XPOS
  2421. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2422. #endif
  2423. }
  2424. if(code_seen('Y'))
  2425. {
  2426. target[Y_AXIS]= code_value();
  2427. }
  2428. else
  2429. {
  2430. #ifdef FILAMENTCHANGE_YPOS
  2431. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2432. #endif
  2433. }
  2434. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2435. if(code_seen('L'))
  2436. {
  2437. target[E_AXIS]+= code_value();
  2438. }
  2439. else
  2440. {
  2441. #ifdef FILAMENTCHANGE_FINALRETRACT
  2442. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2443. #endif
  2444. }
  2445. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2446. //finish moves
  2447. st_synchronize();
  2448. //disable extruder steppers so filament can be removed
  2449. disable_e0();
  2450. disable_e1();
  2451. disable_e2();
  2452. delay(100);
  2453. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2454. uint8_t cnt=0;
  2455. while(!lcd_clicked()){
  2456. cnt++;
  2457. manage_heater();
  2458. manage_inactivity();
  2459. lcd_update();
  2460. if(cnt==0)
  2461. {
  2462. #if BEEPER > 0
  2463. SET_OUTPUT(BEEPER);
  2464. WRITE(BEEPER,HIGH);
  2465. delay(3);
  2466. WRITE(BEEPER,LOW);
  2467. delay(3);
  2468. #else
  2469. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2470. lcd_buzz(1000/6,100);
  2471. #else
  2472. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2473. #endif
  2474. #endif
  2475. }
  2476. }
  2477. //return to normal
  2478. if(code_seen('L'))
  2479. {
  2480. target[E_AXIS]+= -code_value();
  2481. }
  2482. else
  2483. {
  2484. #ifdef FILAMENTCHANGE_FINALRETRACT
  2485. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2486. #endif
  2487. }
  2488. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2489. plan_set_e_position(current_position[E_AXIS]);
  2490. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2491. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2492. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2493. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2494. }
  2495. break;
  2496. #endif //FILAMENTCHANGEENABLE
  2497. #ifdef DUAL_X_CARRIAGE
  2498. case 605: // Set dual x-carriage movement mode:
  2499. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2500. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2501. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2502. // millimeters x-offset and an optional differential hotend temperature of
  2503. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2504. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2505. //
  2506. // Note: the X axis should be homed after changing dual x-carriage mode.
  2507. {
  2508. st_synchronize();
  2509. if (code_seen('S'))
  2510. dual_x_carriage_mode = code_value();
  2511. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2512. {
  2513. if (code_seen('X'))
  2514. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2515. if (code_seen('R'))
  2516. duplicate_extruder_temp_offset = code_value();
  2517. SERIAL_ECHO_START;
  2518. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2519. SERIAL_ECHO(" ");
  2520. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2521. SERIAL_ECHO(",");
  2522. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2523. SERIAL_ECHO(" ");
  2524. SERIAL_ECHO(duplicate_extruder_x_offset);
  2525. SERIAL_ECHO(",");
  2526. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2527. }
  2528. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2529. {
  2530. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2531. }
  2532. active_extruder_parked = false;
  2533. extruder_duplication_enabled = false;
  2534. delayed_move_time = 0;
  2535. }
  2536. break;
  2537. #endif //DUAL_X_CARRIAGE
  2538. case 907: // M907 Set digital trimpot motor current using axis codes.
  2539. {
  2540. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2541. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2542. if(code_seen('B')) digipot_current(4,code_value());
  2543. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2544. #endif
  2545. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2546. if(code_seen('X')) digipot_current(0, code_value());
  2547. #endif
  2548. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2549. if(code_seen('Z')) digipot_current(1, code_value());
  2550. #endif
  2551. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2552. if(code_seen('E')) digipot_current(2, code_value());
  2553. #endif
  2554. #ifdef DIGIPOT_I2C
  2555. // this one uses actual amps in floating point
  2556. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2557. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2558. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2559. #endif
  2560. }
  2561. break;
  2562. case 908: // M908 Control digital trimpot directly.
  2563. {
  2564. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2565. uint8_t channel,current;
  2566. if(code_seen('P')) channel=code_value();
  2567. if(code_seen('S')) current=code_value();
  2568. digitalPotWrite(channel, current);
  2569. #endif
  2570. }
  2571. break;
  2572. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2573. {
  2574. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2575. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2576. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2577. if(code_seen('B')) microstep_mode(4,code_value());
  2578. microstep_readings();
  2579. #endif
  2580. }
  2581. break;
  2582. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2583. {
  2584. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2585. if(code_seen('S')) switch((int)code_value())
  2586. {
  2587. case 1:
  2588. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2589. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2590. break;
  2591. case 2:
  2592. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2593. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2594. break;
  2595. }
  2596. microstep_readings();
  2597. #endif
  2598. }
  2599. break;
  2600. case 999: // M999: Restart after being stopped
  2601. Stopped = false;
  2602. lcd_reset_alert_level();
  2603. gcode_LastN = Stopped_gcode_LastN;
  2604. FlushSerialRequestResend();
  2605. break;
  2606. }
  2607. }
  2608. else if(code_seen('T'))
  2609. {
  2610. tmp_extruder = code_value();
  2611. if(tmp_extruder >= EXTRUDERS) {
  2612. SERIAL_ECHO_START;
  2613. SERIAL_ECHO("T");
  2614. SERIAL_ECHO(tmp_extruder);
  2615. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2616. }
  2617. else {
  2618. boolean make_move = false;
  2619. if(code_seen('F')) {
  2620. make_move = true;
  2621. next_feedrate = code_value();
  2622. if(next_feedrate > 0.0) {
  2623. feedrate = next_feedrate;
  2624. }
  2625. }
  2626. #if EXTRUDERS > 1
  2627. if(tmp_extruder != active_extruder) {
  2628. // Save current position to return to after applying extruder offset
  2629. memcpy(destination, current_position, sizeof(destination));
  2630. #ifdef DUAL_X_CARRIAGE
  2631. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2632. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2633. {
  2634. // Park old head: 1) raise 2) move to park position 3) lower
  2635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2636. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2637. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2638. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2639. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2640. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2641. st_synchronize();
  2642. }
  2643. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2644. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2645. extruder_offset[Y_AXIS][active_extruder] +
  2646. extruder_offset[Y_AXIS][tmp_extruder];
  2647. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2648. extruder_offset[Z_AXIS][active_extruder] +
  2649. extruder_offset[Z_AXIS][tmp_extruder];
  2650. active_extruder = tmp_extruder;
  2651. // This function resets the max/min values - the current position may be overwritten below.
  2652. axis_is_at_home(X_AXIS);
  2653. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2654. {
  2655. current_position[X_AXIS] = inactive_extruder_x_pos;
  2656. inactive_extruder_x_pos = destination[X_AXIS];
  2657. }
  2658. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2659. {
  2660. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2661. if (active_extruder == 0 || active_extruder_parked)
  2662. current_position[X_AXIS] = inactive_extruder_x_pos;
  2663. else
  2664. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2665. inactive_extruder_x_pos = destination[X_AXIS];
  2666. extruder_duplication_enabled = false;
  2667. }
  2668. else
  2669. {
  2670. // record raised toolhead position for use by unpark
  2671. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2672. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2673. active_extruder_parked = true;
  2674. delayed_move_time = 0;
  2675. }
  2676. #else
  2677. // Offset extruder (only by XY)
  2678. int i;
  2679. for(i = 0; i < 2; i++) {
  2680. current_position[i] = current_position[i] -
  2681. extruder_offset[i][active_extruder] +
  2682. extruder_offset[i][tmp_extruder];
  2683. }
  2684. // Set the new active extruder and position
  2685. active_extruder = tmp_extruder;
  2686. #endif //else DUAL_X_CARRIAGE
  2687. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2688. // Move to the old position if 'F' was in the parameters
  2689. if(make_move && Stopped == false) {
  2690. prepare_move();
  2691. }
  2692. }
  2693. #endif
  2694. SERIAL_ECHO_START;
  2695. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2696. SERIAL_PROTOCOLLN((int)active_extruder);
  2697. }
  2698. }
  2699. else
  2700. {
  2701. SERIAL_ECHO_START;
  2702. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2703. SERIAL_ECHO(cmdbuffer[bufindr]);
  2704. SERIAL_ECHOLNPGM("\"");
  2705. }
  2706. ClearToSend();
  2707. }
  2708. void FlushSerialRequestResend()
  2709. {
  2710. //char cmdbuffer[bufindr][100]="Resend:";
  2711. MYSERIAL.flush();
  2712. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2713. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2714. ClearToSend();
  2715. }
  2716. void ClearToSend()
  2717. {
  2718. previous_millis_cmd = millis();
  2719. #ifdef SDSUPPORT
  2720. if(fromsd[bufindr])
  2721. return;
  2722. #endif //SDSUPPORT
  2723. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2724. }
  2725. void get_coordinates()
  2726. {
  2727. bool seen[4]={false,false,false,false};
  2728. for(int8_t i=0; i < NUM_AXIS; i++) {
  2729. if(code_seen(axis_codes[i]))
  2730. {
  2731. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2732. seen[i]=true;
  2733. }
  2734. else destination[i] = current_position[i]; //Are these else lines really needed?
  2735. }
  2736. if(code_seen('F')) {
  2737. next_feedrate = code_value();
  2738. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2739. }
  2740. #ifdef FWRETRACT
  2741. if(autoretract_enabled)
  2742. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2743. {
  2744. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2745. if(echange<-MIN_RETRACT) //retract
  2746. {
  2747. if(!retracted)
  2748. {
  2749. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2750. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2751. float correctede=-echange-retract_length;
  2752. //to generate the additional steps, not the destination is changed, but inversely the current position
  2753. current_position[E_AXIS]+=-correctede;
  2754. feedrate=retract_feedrate;
  2755. retracted=true;
  2756. }
  2757. }
  2758. else
  2759. if(echange>MIN_RETRACT) //retract_recover
  2760. {
  2761. if(retracted)
  2762. {
  2763. //current_position[Z_AXIS]+=-retract_zlift;
  2764. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2765. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2766. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2767. feedrate=retract_recover_feedrate;
  2768. retracted=false;
  2769. }
  2770. }
  2771. }
  2772. #endif //FWRETRACT
  2773. }
  2774. void get_arc_coordinates()
  2775. {
  2776. #ifdef SF_ARC_FIX
  2777. bool relative_mode_backup = relative_mode;
  2778. relative_mode = true;
  2779. #endif
  2780. get_coordinates();
  2781. #ifdef SF_ARC_FIX
  2782. relative_mode=relative_mode_backup;
  2783. #endif
  2784. if(code_seen('I')) {
  2785. offset[0] = code_value();
  2786. }
  2787. else {
  2788. offset[0] = 0.0;
  2789. }
  2790. if(code_seen('J')) {
  2791. offset[1] = code_value();
  2792. }
  2793. else {
  2794. offset[1] = 0.0;
  2795. }
  2796. }
  2797. void clamp_to_software_endstops(float target[3])
  2798. {
  2799. if (min_software_endstops) {
  2800. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2801. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2802. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2803. }
  2804. if (max_software_endstops) {
  2805. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2806. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2807. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2808. }
  2809. }
  2810. #ifdef DELTA
  2811. void calculate_delta(float cartesian[3])
  2812. {
  2813. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2814. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2815. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2816. ) + cartesian[Z_AXIS];
  2817. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2818. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2819. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2820. ) + cartesian[Z_AXIS];
  2821. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2822. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2823. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2824. ) + cartesian[Z_AXIS];
  2825. /*
  2826. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2827. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2828. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2829. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2830. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2831. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2832. */
  2833. }
  2834. #endif
  2835. void prepare_move()
  2836. {
  2837. clamp_to_software_endstops(destination);
  2838. previous_millis_cmd = millis();
  2839. #ifdef DELTA
  2840. float difference[NUM_AXIS];
  2841. for (int8_t i=0; i < NUM_AXIS; i++) {
  2842. difference[i] = destination[i] - current_position[i];
  2843. }
  2844. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2845. sq(difference[Y_AXIS]) +
  2846. sq(difference[Z_AXIS]));
  2847. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2848. if (cartesian_mm < 0.000001) { return; }
  2849. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2850. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2851. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2852. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2853. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2854. for (int s = 1; s <= steps; s++) {
  2855. float fraction = float(s) / float(steps);
  2856. for(int8_t i=0; i < NUM_AXIS; i++) {
  2857. destination[i] = current_position[i] + difference[i] * fraction;
  2858. }
  2859. calculate_delta(destination);
  2860. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2861. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2862. active_extruder);
  2863. }
  2864. #else
  2865. #ifdef DUAL_X_CARRIAGE
  2866. if (active_extruder_parked)
  2867. {
  2868. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2869. {
  2870. // move duplicate extruder into correct duplication position.
  2871. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2872. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2873. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2874. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2875. st_synchronize();
  2876. extruder_duplication_enabled = true;
  2877. active_extruder_parked = false;
  2878. }
  2879. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2880. {
  2881. if (current_position[E_AXIS] == destination[E_AXIS])
  2882. {
  2883. // this is a travel move - skit it but keep track of current position (so that it can later
  2884. // be used as start of first non-travel move)
  2885. if (delayed_move_time != 0xFFFFFFFFUL)
  2886. {
  2887. memcpy(current_position, destination, sizeof(current_position));
  2888. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2889. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2890. delayed_move_time = millis();
  2891. return;
  2892. }
  2893. }
  2894. delayed_move_time = 0;
  2895. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2896. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2897. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2898. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2899. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2900. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2901. active_extruder_parked = false;
  2902. }
  2903. }
  2904. #endif //DUAL_X_CARRIAGE
  2905. // Do not use feedmultiply for E or Z only moves
  2906. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2907. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2908. }
  2909. else {
  2910. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2911. }
  2912. #endif //else DELTA
  2913. for(int8_t i=0; i < NUM_AXIS; i++) {
  2914. current_position[i] = destination[i];
  2915. }
  2916. }
  2917. void prepare_arc_move(char isclockwise) {
  2918. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2919. // Trace the arc
  2920. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2921. // As far as the parser is concerned, the position is now == target. In reality the
  2922. // motion control system might still be processing the action and the real tool position
  2923. // in any intermediate location.
  2924. for(int8_t i=0; i < NUM_AXIS; i++) {
  2925. current_position[i] = destination[i];
  2926. }
  2927. previous_millis_cmd = millis();
  2928. }
  2929. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2930. #if defined(FAN_PIN)
  2931. #if CONTROLLERFAN_PIN == FAN_PIN
  2932. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2933. #endif
  2934. #endif
  2935. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2936. unsigned long lastMotorCheck = 0;
  2937. void controllerFan()
  2938. {
  2939. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2940. {
  2941. lastMotorCheck = millis();
  2942. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2943. #if EXTRUDERS > 2
  2944. || !READ(E2_ENABLE_PIN)
  2945. #endif
  2946. #if EXTRUDER > 1
  2947. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2948. || !READ(X2_ENABLE_PIN)
  2949. #endif
  2950. || !READ(E1_ENABLE_PIN)
  2951. #endif
  2952. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2953. {
  2954. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2955. }
  2956. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2957. {
  2958. digitalWrite(CONTROLLERFAN_PIN, 0);
  2959. analogWrite(CONTROLLERFAN_PIN, 0);
  2960. }
  2961. else
  2962. {
  2963. // allows digital or PWM fan output to be used (see M42 handling)
  2964. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2965. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2966. }
  2967. }
  2968. }
  2969. #endif
  2970. #ifdef TEMP_STAT_LEDS
  2971. static bool blue_led = false;
  2972. static bool red_led = false;
  2973. static uint32_t stat_update = 0;
  2974. void handle_status_leds(void) {
  2975. float max_temp = 0.0;
  2976. if(millis() > stat_update) {
  2977. stat_update += 500; // Update every 0.5s
  2978. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2979. max_temp = max(max_temp, degHotend(cur_extruder));
  2980. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2981. }
  2982. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2983. max_temp = max(max_temp, degTargetBed());
  2984. max_temp = max(max_temp, degBed());
  2985. #endif
  2986. if((max_temp > 55.0) && (red_led == false)) {
  2987. digitalWrite(STAT_LED_RED, 1);
  2988. digitalWrite(STAT_LED_BLUE, 0);
  2989. red_led = true;
  2990. blue_led = false;
  2991. }
  2992. if((max_temp < 54.0) && (blue_led == false)) {
  2993. digitalWrite(STAT_LED_RED, 0);
  2994. digitalWrite(STAT_LED_BLUE, 1);
  2995. red_led = false;
  2996. blue_led = true;
  2997. }
  2998. }
  2999. }
  3000. #endif
  3001. void manage_inactivity()
  3002. {
  3003. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3004. if(max_inactive_time)
  3005. kill();
  3006. if(stepper_inactive_time) {
  3007. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3008. {
  3009. if(blocks_queued() == false) {
  3010. disable_x();
  3011. disable_y();
  3012. disable_z();
  3013. disable_e0();
  3014. disable_e1();
  3015. disable_e2();
  3016. }
  3017. }
  3018. }
  3019. #if defined(KILL_PIN) && KILL_PIN > -1
  3020. if( 0 == READ(KILL_PIN) )
  3021. kill();
  3022. #endif
  3023. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3024. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3025. #endif
  3026. #ifdef EXTRUDER_RUNOUT_PREVENT
  3027. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3028. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3029. {
  3030. bool oldstatus=READ(E0_ENABLE_PIN);
  3031. enable_e0();
  3032. float oldepos=current_position[E_AXIS];
  3033. float oldedes=destination[E_AXIS];
  3034. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3035. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3036. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3037. current_position[E_AXIS]=oldepos;
  3038. destination[E_AXIS]=oldedes;
  3039. plan_set_e_position(oldepos);
  3040. previous_millis_cmd=millis();
  3041. st_synchronize();
  3042. WRITE(E0_ENABLE_PIN,oldstatus);
  3043. }
  3044. #endif
  3045. #if defined(DUAL_X_CARRIAGE)
  3046. // handle delayed move timeout
  3047. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3048. {
  3049. // travel moves have been received so enact them
  3050. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3051. memcpy(destination,current_position,sizeof(destination));
  3052. prepare_move();
  3053. }
  3054. #endif
  3055. #ifdef TEMP_STAT_LEDS
  3056. handle_status_leds();
  3057. #endif
  3058. check_axes_activity();
  3059. }
  3060. void kill()
  3061. {
  3062. cli(); // Stop interrupts
  3063. disable_heater();
  3064. disable_x();
  3065. disable_y();
  3066. disable_z();
  3067. disable_e0();
  3068. disable_e1();
  3069. disable_e2();
  3070. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3071. pinMode(PS_ON_PIN,INPUT);
  3072. #endif
  3073. SERIAL_ERROR_START;
  3074. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3075. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3076. suicide();
  3077. while(1) { /* Intentionally left empty */ } // Wait for reset
  3078. }
  3079. void Stop()
  3080. {
  3081. disable_heater();
  3082. if(Stopped == false) {
  3083. Stopped = true;
  3084. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3085. SERIAL_ERROR_START;
  3086. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3087. LCD_MESSAGEPGM(MSG_STOPPED);
  3088. }
  3089. }
  3090. bool IsStopped() { return Stopped; };
  3091. #ifdef FAST_PWM_FAN
  3092. void setPwmFrequency(uint8_t pin, int val)
  3093. {
  3094. val &= 0x07;
  3095. switch(digitalPinToTimer(pin))
  3096. {
  3097. #if defined(TCCR0A)
  3098. case TIMER0A:
  3099. case TIMER0B:
  3100. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3101. // TCCR0B |= val;
  3102. break;
  3103. #endif
  3104. #if defined(TCCR1A)
  3105. case TIMER1A:
  3106. case TIMER1B:
  3107. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3108. // TCCR1B |= val;
  3109. break;
  3110. #endif
  3111. #if defined(TCCR2)
  3112. case TIMER2:
  3113. case TIMER2:
  3114. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3115. TCCR2 |= val;
  3116. break;
  3117. #endif
  3118. #if defined(TCCR2A)
  3119. case TIMER2A:
  3120. case TIMER2B:
  3121. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3122. TCCR2B |= val;
  3123. break;
  3124. #endif
  3125. #if defined(TCCR3A)
  3126. case TIMER3A:
  3127. case TIMER3B:
  3128. case TIMER3C:
  3129. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3130. TCCR3B |= val;
  3131. break;
  3132. #endif
  3133. #if defined(TCCR4A)
  3134. case TIMER4A:
  3135. case TIMER4B:
  3136. case TIMER4C:
  3137. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3138. TCCR4B |= val;
  3139. break;
  3140. #endif
  3141. #if defined(TCCR5A)
  3142. case TIMER5A:
  3143. case TIMER5B:
  3144. case TIMER5C:
  3145. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3146. TCCR5B |= val;
  3147. break;
  3148. #endif
  3149. }
  3150. }
  3151. #endif //FAST_PWM_FAN
  3152. bool setTargetedHotend(int code){
  3153. tmp_extruder = active_extruder;
  3154. if(code_seen('T')) {
  3155. tmp_extruder = code_value();
  3156. if(tmp_extruder >= EXTRUDERS) {
  3157. SERIAL_ECHO_START;
  3158. switch(code){
  3159. case 104:
  3160. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3161. break;
  3162. case 105:
  3163. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3164. break;
  3165. case 109:
  3166. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3167. break;
  3168. case 218:
  3169. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3170. break;
  3171. }
  3172. SERIAL_ECHOLN(tmp_extruder);
  3173. return true;
  3174. }
  3175. }
  3176. return false;
  3177. }