My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 208KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #ifdef ENABLE_AUTO_BED_LEVELING
  31. #include "vector_3.h"
  32. #ifdef AUTO_BED_LEVELING_GRID
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #ifdef MESH_BED_LEVELING
  37. #include "mesh_bed_leveling.h"
  38. #endif
  39. #include "ultralcd.h"
  40. #include "planner.h"
  41. #include "stepper.h"
  42. #include "temperature.h"
  43. #include "cardreader.h"
  44. #include "watchdog.h"
  45. #include "configuration_store.h"
  46. #include "language.h"
  47. #include "pins_arduino.h"
  48. #include "math.h"
  49. #include "buzzer.h"
  50. #ifdef BLINKM
  51. #include "blinkm.h"
  52. #include "Wire.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "servo.h"
  56. #endif
  57. #if HAS_DIGIPOTSS
  58. #include <SPI.h>
  59. #endif
  60. /**
  61. * Look here for descriptions of G-codes:
  62. * - http://linuxcnc.org/handbook/gcode/g-code.html
  63. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  64. *
  65. * Help us document these G-codes online:
  66. * - http://www.marlinfirmware.org/index.php/G-Code
  67. * - http://reprap.org/wiki/G-code
  68. *
  69. * -----------------
  70. * Implemented Codes
  71. * -----------------
  72. *
  73. * "G" Codes
  74. *
  75. * G0 -> G1
  76. * G1 - Coordinated Movement X Y Z E
  77. * G2 - CW ARC
  78. * G3 - CCW ARC
  79. * G4 - Dwell S<seconds> or P<milliseconds>
  80. * G10 - retract filament according to settings of M207
  81. * G11 - retract recover filament according to settings of M208
  82. * G28 - Home one or more axes
  83. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  84. * G30 - Single Z Probe, probes bed at current XY location.
  85. * G31 - Dock sled (Z_PROBE_SLED only)
  86. * G32 - Undock sled (Z_PROBE_SLED only)
  87. * G90 - Use Absolute Coordinates
  88. * G91 - Use Relative Coordinates
  89. * G92 - Set current position to coordinates given
  90. *
  91. * "M" Codes
  92. *
  93. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  94. * M1 - Same as M0
  95. * M17 - Enable/Power all stepper motors
  96. * M18 - Disable all stepper motors; same as M84
  97. * M20 - List SD card
  98. * M21 - Init SD card
  99. * M22 - Release SD card
  100. * M23 - Select SD file (M23 filename.g)
  101. * M24 - Start/resume SD print
  102. * M25 - Pause SD print
  103. * M26 - Set SD position in bytes (M26 S12345)
  104. * M27 - Report SD print status
  105. * M28 - Start SD write (M28 filename.g)
  106. * M29 - Stop SD write
  107. * M30 - Delete file from SD (M30 filename.g)
  108. * M31 - Output time since last M109 or SD card start to serial
  109. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  110. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  111. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  112. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  113. * M33 - Get the longname version of a path
  114. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  115. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  116. * M80 - Turn on Power Supply
  117. * M81 - Turn off Power Supply
  118. * M82 - Set E codes absolute (default)
  119. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  120. * M84 - Disable steppers until next move,
  121. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  122. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  123. * M92 - Set axis_steps_per_unit - same syntax as G92
  124. * M104 - Set extruder target temp
  125. * M105 - Read current temp
  126. * M106 - Fan on
  127. * M107 - Fan off
  128. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  129. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  130. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  131. * M110 - Set the current line number
  132. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  133. * M112 - Emergency stop
  134. * M114 - Output current position to serial port
  135. * M115 - Capabilities string
  136. * M117 - Display a message on the controller screen
  137. * M119 - Output Endstop status to serial port
  138. * M120 - Enable endstop detection
  139. * M121 - Disable endstop detection
  140. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  141. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  142. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  143. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  144. * M140 - Set bed target temp
  145. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  146. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  147. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  148. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  149. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  150. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  151. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  152. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  153. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  154. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  155. * M206 - Set additional homing offset
  156. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  157. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  158. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  159. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  160. * M220 - Set speed factor override percentage: S<factor in percent>
  161. * M221 - Set extrude factor override percentage: S<factor in percent>
  162. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  163. * M240 - Trigger a camera to take a photograph
  164. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  165. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  166. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  167. * M301 - Set PID parameters P I and D
  168. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  169. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  170. * M304 - Set bed PID parameters P I and D
  171. * M380 - Activate solenoid on active extruder
  172. * M381 - Disable all solenoids
  173. * M400 - Finish all moves
  174. * M401 - Lower z-probe if present
  175. * M402 - Raise z-probe if present
  176. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  177. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  178. * M406 - Turn off Filament Sensor extrusion control
  179. * M407 - Display measured filament diameter
  180. * M410 - Quickstop. Abort all the planned moves
  181. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  182. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  183. * M428 - Set the home_offset logically based on the current_position
  184. * M500 - Store parameters in EEPROM
  185. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  188. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  189. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  190. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  191. * M666 - Set delta endstop adjustment
  192. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  193. * M907 - Set digital trimpot motor current using axis codes.
  194. * M908 - Control digital trimpot directly.
  195. * M350 - Set microstepping mode.
  196. * M351 - Toggle MS1 MS2 pins directly.
  197. *
  198. * ************ SCARA Specific - This can change to suit future G-code regulations
  199. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  200. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  201. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  202. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  203. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  204. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M851 - Set probe's Z offset (mm above extruder -- The value will always be negative)
  209. * M928 - Start SD logging (M928 filename.g) - ended by M29
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  215. *
  216. */
  217. #ifdef SDSUPPORT
  218. CardReader card;
  219. #endif
  220. bool Running = true;
  221. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  222. static float feedrate = 1500.0, saved_feedrate;
  223. float current_position[NUM_AXIS] = { 0.0 };
  224. static float destination[NUM_AXIS] = { 0.0 };
  225. bool axis_known_position[3] = { false };
  226. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  227. static char *current_command, *current_command_args;
  228. static int cmd_queue_index_r = 0;
  229. static int cmd_queue_index_w = 0;
  230. static int commands_in_queue = 0;
  231. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  232. float homing_feedrate[] = HOMING_FEEDRATE;
  233. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  234. int feedrate_multiplier = 100; //100->1 200->2
  235. int saved_feedrate_multiplier;
  236. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  237. bool volumetric_enabled = false;
  238. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  239. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  240. float home_offset[3] = { 0 };
  241. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  242. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  243. uint8_t active_extruder = 0;
  244. int fanSpeed = 0;
  245. bool cancel_heatup = false;
  246. const char errormagic[] PROGMEM = "Error:";
  247. const char echomagic[] PROGMEM = "echo:";
  248. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  249. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  250. static char serial_char;
  251. static int serial_count = 0;
  252. static boolean comment_mode = false;
  253. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  254. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  255. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  256. // Inactivity shutdown
  257. millis_t previous_cmd_ms = 0;
  258. static millis_t max_inactive_time = 0;
  259. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  260. millis_t print_job_start_ms = 0; ///< Print job start time
  261. millis_t print_job_stop_ms = 0; ///< Print job stop time
  262. static uint8_t target_extruder;
  263. bool no_wait_for_cooling = true;
  264. bool target_direction;
  265. #ifdef ENABLE_AUTO_BED_LEVELING
  266. int xy_travel_speed = XY_TRAVEL_SPEED;
  267. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  268. #endif
  269. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  270. float z_endstop_adj = 0;
  271. #endif
  272. // Extruder offsets
  273. #if EXTRUDERS > 1
  274. #ifndef EXTRUDER_OFFSET_X
  275. #define EXTRUDER_OFFSET_X { 0 }
  276. #endif
  277. #ifndef EXTRUDER_OFFSET_Y
  278. #define EXTRUDER_OFFSET_Y { 0 }
  279. #endif
  280. float extruder_offset[][EXTRUDERS] = {
  281. EXTRUDER_OFFSET_X,
  282. EXTRUDER_OFFSET_Y
  283. #ifdef DUAL_X_CARRIAGE
  284. , { 0 } // supports offsets in XYZ plane
  285. #endif
  286. };
  287. #endif
  288. #ifdef SERVO_ENDSTOPS
  289. int servo_endstops[] = SERVO_ENDSTOPS;
  290. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  291. #endif
  292. #ifdef BARICUDA
  293. int ValvePressure = 0;
  294. int EtoPPressure = 0;
  295. #endif
  296. #ifdef FWRETRACT
  297. bool autoretract_enabled = false;
  298. bool retracted[EXTRUDERS] = { false };
  299. bool retracted_swap[EXTRUDERS] = { false };
  300. float retract_length = RETRACT_LENGTH;
  301. float retract_length_swap = RETRACT_LENGTH_SWAP;
  302. float retract_feedrate = RETRACT_FEEDRATE;
  303. float retract_zlift = RETRACT_ZLIFT;
  304. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  305. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  306. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  307. #endif // FWRETRACT
  308. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  309. bool powersupply =
  310. #ifdef PS_DEFAULT_OFF
  311. false
  312. #else
  313. true
  314. #endif
  315. ;
  316. #endif
  317. #ifdef DELTA
  318. float delta[3] = { 0 };
  319. #define SIN_60 0.8660254037844386
  320. #define COS_60 0.5
  321. float endstop_adj[3] = { 0 };
  322. // these are the default values, can be overriden with M665
  323. float delta_radius = DELTA_RADIUS;
  324. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  325. float delta_tower1_y = -COS_60 * delta_radius;
  326. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  327. float delta_tower2_y = -COS_60 * delta_radius;
  328. float delta_tower3_x = 0; // back middle tower
  329. float delta_tower3_y = delta_radius;
  330. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  331. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  332. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  333. #ifdef ENABLE_AUTO_BED_LEVELING
  334. int delta_grid_spacing[2] = { 0, 0 };
  335. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  336. #endif
  337. #else
  338. static bool home_all_axis = true;
  339. #endif
  340. #ifdef SCARA
  341. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  342. static float delta[3] = { 0 };
  343. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1 = 0; //index into ring buffer
  352. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist = 0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. #ifdef FILAMENT_RUNOUT_SENSOR
  357. static bool filrunoutEnqueued = false;
  358. #endif
  359. #ifdef SDSUPPORT
  360. static bool fromsd[BUFSIZE];
  361. #endif
  362. #if NUM_SERVOS > 0
  363. Servo servo[NUM_SERVOS];
  364. #endif
  365. #ifdef CHDK
  366. unsigned long chdkHigh = 0;
  367. boolean chdkActive = false;
  368. #endif
  369. //===========================================================================
  370. //================================ Functions ================================
  371. //===========================================================================
  372. void process_next_command();
  373. bool setTargetedHotend(int code);
  374. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  375. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  376. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  377. #ifdef PREVENT_DANGEROUS_EXTRUDE
  378. float extrude_min_temp = EXTRUDE_MINTEMP;
  379. #endif
  380. #ifdef SDSUPPORT
  381. #include "SdFatUtil.h"
  382. int freeMemory() { return SdFatUtil::FreeRam(); }
  383. #else
  384. extern "C" {
  385. extern unsigned int __bss_end;
  386. extern unsigned int __heap_start;
  387. extern void *__brkval;
  388. int freeMemory() {
  389. int free_memory;
  390. if ((int)__brkval == 0)
  391. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  392. else
  393. free_memory = ((int)&free_memory) - ((int)__brkval);
  394. return free_memory;
  395. }
  396. }
  397. #endif //!SDSUPPORT
  398. /**
  399. * Inject the next command from the command queue, when possible
  400. * Return false only if no command was pending
  401. */
  402. static bool drain_queued_commands_P() {
  403. if (!queued_commands_P) return false;
  404. // Get the next 30 chars from the sequence of gcodes to run
  405. char cmd[30];
  406. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  407. cmd[sizeof(cmd) - 1] = '\0';
  408. // Look for the end of line, or the end of sequence
  409. size_t i = 0;
  410. char c;
  411. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  412. cmd[i] = '\0';
  413. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  414. if (c)
  415. queued_commands_P += i + 1; // move to next command
  416. else
  417. queued_commands_P = NULL; // will have no more commands in the sequence
  418. }
  419. return true;
  420. }
  421. /**
  422. * Record one or many commands to run from program memory.
  423. * Aborts the current queue, if any.
  424. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  425. */
  426. void enqueuecommands_P(const char* pgcode) {
  427. queued_commands_P = pgcode;
  428. drain_queued_commands_P(); // first command executed asap (when possible)
  429. }
  430. /**
  431. * Copy a command directly into the main command buffer, from RAM.
  432. *
  433. * This is done in a non-safe way and needs a rework someday.
  434. * Returns false if it doesn't add any command
  435. */
  436. bool enqueuecommand(const char *cmd) {
  437. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  438. // This is dangerous if a mixing of serial and this happens
  439. char *command = command_queue[cmd_queue_index_w];
  440. strcpy(command, cmd);
  441. SERIAL_ECHO_START;
  442. SERIAL_ECHOPGM(MSG_Enqueueing);
  443. SERIAL_ECHO(command);
  444. SERIAL_ECHOLNPGM("\"");
  445. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  446. commands_in_queue++;
  447. return true;
  448. }
  449. void setup_killpin() {
  450. #if HAS_KILL
  451. SET_INPUT(KILL_PIN);
  452. WRITE(KILL_PIN, HIGH);
  453. #endif
  454. }
  455. void setup_filrunoutpin() {
  456. #if HAS_FILRUNOUT
  457. pinMode(FILRUNOUT_PIN, INPUT);
  458. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  459. WRITE(FILRUNOUT_PIN, HIGH);
  460. #endif
  461. #endif
  462. }
  463. // Set home pin
  464. void setup_homepin(void) {
  465. #if HAS_HOME
  466. SET_INPUT(HOME_PIN);
  467. WRITE(HOME_PIN, HIGH);
  468. #endif
  469. }
  470. void setup_photpin() {
  471. #if HAS_PHOTOGRAPH
  472. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  473. #endif
  474. }
  475. void setup_powerhold() {
  476. #if HAS_SUICIDE
  477. OUT_WRITE(SUICIDE_PIN, HIGH);
  478. #endif
  479. #if HAS_POWER_SWITCH
  480. #ifdef PS_DEFAULT_OFF
  481. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  482. #else
  483. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  484. #endif
  485. #endif
  486. }
  487. void suicide() {
  488. #if HAS_SUICIDE
  489. OUT_WRITE(SUICIDE_PIN, LOW);
  490. #endif
  491. }
  492. void servo_init() {
  493. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  494. servo[0].attach(SERVO0_PIN);
  495. #endif
  496. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  497. servo[1].attach(SERVO1_PIN);
  498. #endif
  499. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  500. servo[2].attach(SERVO2_PIN);
  501. #endif
  502. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  503. servo[3].attach(SERVO3_PIN);
  504. #endif
  505. // Set position of Servo Endstops that are defined
  506. #ifdef SERVO_ENDSTOPS
  507. for (int i = 0; i < 3; i++)
  508. if (servo_endstops[i] >= 0)
  509. servo[servo_endstops[i]].move(0, servo_endstop_angles[i * 2 + 1]);
  510. #endif
  511. }
  512. /**
  513. * Stepper Reset (RigidBoard, et.al.)
  514. */
  515. #if HAS_STEPPER_RESET
  516. void disableStepperDrivers() {
  517. pinMode(STEPPER_RESET_PIN, OUTPUT);
  518. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  519. }
  520. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  521. #endif
  522. /**
  523. * Marlin entry-point: Set up before the program loop
  524. * - Set up the kill pin, filament runout, power hold
  525. * - Start the serial port
  526. * - Print startup messages and diagnostics
  527. * - Get EEPROM or default settings
  528. * - Initialize managers for:
  529. * • temperature
  530. * • planner
  531. * • watchdog
  532. * • stepper
  533. * • photo pin
  534. * • servos
  535. * • LCD controller
  536. * • Digipot I2C
  537. * • Z probe sled
  538. * • status LEDs
  539. */
  540. void setup() {
  541. setup_killpin();
  542. setup_filrunoutpin();
  543. setup_powerhold();
  544. #if HAS_STEPPER_RESET
  545. disableStepperDrivers();
  546. #endif
  547. MYSERIAL.begin(BAUDRATE);
  548. SERIAL_PROTOCOLLNPGM("start");
  549. SERIAL_ECHO_START;
  550. // Check startup - does nothing if bootloader sets MCUSR to 0
  551. byte mcu = MCUSR;
  552. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  553. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  554. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  555. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  556. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  557. MCUSR = 0;
  558. SERIAL_ECHOPGM(MSG_MARLIN);
  559. SERIAL_ECHOLNPGM(" " BUILD_VERSION);
  560. #ifdef STRING_DISTRIBUTION_DATE
  561. #ifdef STRING_CONFIG_H_AUTHOR
  562. SERIAL_ECHO_START;
  563. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  564. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  565. SERIAL_ECHOPGM(MSG_AUTHOR);
  566. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  567. SERIAL_ECHOPGM("Compiled: ");
  568. SERIAL_ECHOLNPGM(__DATE__);
  569. #endif // STRING_CONFIG_H_AUTHOR
  570. #endif // STRING_DISTRIBUTION_DATE
  571. SERIAL_ECHO_START;
  572. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  573. SERIAL_ECHO(freeMemory());
  574. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  575. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  576. #ifdef SDSUPPORT
  577. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  578. #endif
  579. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  580. Config_RetrieveSettings();
  581. lcd_init();
  582. _delay_ms(1000); // wait 1sec to display the splash screen
  583. tp_init(); // Initialize temperature loop
  584. plan_init(); // Initialize planner;
  585. watchdog_init();
  586. st_init(); // Initialize stepper, this enables interrupts!
  587. setup_photpin();
  588. servo_init();
  589. #if HAS_CONTROLLERFAN
  590. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  591. #endif
  592. #if HAS_STEPPER_RESET
  593. enableStepperDrivers();
  594. #endif
  595. #ifdef DIGIPOT_I2C
  596. digipot_i2c_init();
  597. #endif
  598. #ifdef Z_PROBE_SLED
  599. pinMode(SLED_PIN, OUTPUT);
  600. digitalWrite(SLED_PIN, LOW); // turn it off
  601. #endif // Z_PROBE_SLED
  602. setup_homepin();
  603. #ifdef STAT_LED_RED
  604. pinMode(STAT_LED_RED, OUTPUT);
  605. digitalWrite(STAT_LED_RED, LOW); // turn it off
  606. #endif
  607. #ifdef STAT_LED_BLUE
  608. pinMode(STAT_LED_BLUE, OUTPUT);
  609. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  610. #endif
  611. }
  612. /**
  613. * The main Marlin program loop
  614. *
  615. * - Save or log commands to SD
  616. * - Process available commands (if not saving)
  617. * - Call heater manager
  618. * - Call inactivity manager
  619. * - Call endstop manager
  620. * - Call LCD update
  621. */
  622. void loop() {
  623. if (commands_in_queue < BUFSIZE - 1) get_command();
  624. #ifdef SDSUPPORT
  625. card.checkautostart(false);
  626. #endif
  627. if (commands_in_queue) {
  628. #ifdef SDSUPPORT
  629. if (card.saving) {
  630. char *command = command_queue[cmd_queue_index_r];
  631. if (strstr_P(command, PSTR("M29"))) {
  632. // M29 closes the file
  633. card.closefile();
  634. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  635. }
  636. else {
  637. // Write the string from the read buffer to SD
  638. card.write_command(command);
  639. if (card.logging)
  640. process_next_command(); // The card is saving because it's logging
  641. else
  642. SERIAL_PROTOCOLLNPGM(MSG_OK);
  643. }
  644. }
  645. else
  646. process_next_command();
  647. #else
  648. process_next_command();
  649. #endif // SDSUPPORT
  650. commands_in_queue--;
  651. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  652. }
  653. checkHitEndstops();
  654. idle();
  655. }
  656. void gcode_line_error(const char *err, bool doFlush=true) {
  657. SERIAL_ERROR_START;
  658. serialprintPGM(err);
  659. SERIAL_ERRORLN(gcode_LastN);
  660. //Serial.println(gcode_N);
  661. if (doFlush) FlushSerialRequestResend();
  662. serial_count = 0;
  663. }
  664. /**
  665. * Add to the circular command queue the next command from:
  666. * - The command-injection queue (queued_commands_P)
  667. * - The active serial input (usually USB)
  668. * - The SD card file being actively printed
  669. */
  670. void get_command() {
  671. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  672. #ifdef NO_TIMEOUTS
  673. static millis_t last_command_time = 0;
  674. millis_t ms = millis();
  675. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  676. SERIAL_ECHOLNPGM(MSG_WAIT);
  677. last_command_time = ms;
  678. }
  679. #endif
  680. //
  681. // Loop while serial characters are incoming and the queue is not full
  682. //
  683. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  684. #ifdef NO_TIMEOUTS
  685. last_command_time = ms;
  686. #endif
  687. serial_char = MYSERIAL.read();
  688. //
  689. // If the character ends the line, or the line is full...
  690. //
  691. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  692. // end of line == end of comment
  693. comment_mode = false;
  694. if (!serial_count) return; // empty lines just exit
  695. char *command = command_queue[cmd_queue_index_w];
  696. command[serial_count] = 0; // terminate string
  697. // this item in the queue is not from sd
  698. #ifdef SDSUPPORT
  699. fromsd[cmd_queue_index_w] = false;
  700. #endif
  701. char *npos = strchr(command, 'N');
  702. char *apos = strchr(command, '*');
  703. if (npos) {
  704. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  705. if (M110) {
  706. char *n2pos = strchr(command + 4, 'N');
  707. if (n2pos) npos = n2pos;
  708. }
  709. gcode_N = strtol(npos + 1, NULL, 10);
  710. if (gcode_N != gcode_LastN + 1 && !M110) {
  711. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  712. return;
  713. }
  714. if (apos) {
  715. byte checksum = 0, count = 0;
  716. while (command[count] != '*') checksum ^= command[count++];
  717. if (strtol(apos + 1, NULL, 10) != checksum) {
  718. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  719. return;
  720. }
  721. // if no errors, continue parsing
  722. }
  723. else if (npos == command) {
  724. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  725. return;
  726. }
  727. gcode_LastN = gcode_N;
  728. // if no errors, continue parsing
  729. }
  730. else if (apos) { // No '*' without 'N'
  731. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  732. return;
  733. }
  734. // Movement commands alert when stopped
  735. if (IsStopped()) {
  736. char *gpos = strchr(command, 'G');
  737. if (gpos) {
  738. int codenum = strtol(gpos + 1, NULL, 10);
  739. switch (codenum) {
  740. case 0:
  741. case 1:
  742. case 2:
  743. case 3:
  744. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  745. LCD_MESSAGEPGM(MSG_STOPPED);
  746. break;
  747. }
  748. }
  749. }
  750. // If command was e-stop process now
  751. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  752. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  753. commands_in_queue += 1;
  754. serial_count = 0; //clear buffer
  755. }
  756. else if (serial_char == '\\') { // Handle escapes
  757. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  758. // if we have one more character, copy it over
  759. serial_char = MYSERIAL.read();
  760. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  761. }
  762. // otherwise do nothing
  763. }
  764. else { // its not a newline, carriage return or escape char
  765. if (serial_char == ';') comment_mode = true;
  766. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  767. }
  768. }
  769. #ifdef SDSUPPORT
  770. if (!card.sdprinting || serial_count) return;
  771. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  772. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  773. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  774. static bool stop_buffering = false;
  775. if (commands_in_queue == 0) stop_buffering = false;
  776. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  777. int16_t n = card.get();
  778. serial_char = (char)n;
  779. if (serial_char == '\n' || serial_char == '\r' ||
  780. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  781. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  782. ) {
  783. if (card.eof()) {
  784. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  785. print_job_stop_ms = millis();
  786. char time[30];
  787. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  788. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  789. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  790. SERIAL_ECHO_START;
  791. SERIAL_ECHOLN(time);
  792. lcd_setstatus(time, true);
  793. card.printingHasFinished();
  794. card.checkautostart(true);
  795. }
  796. if (serial_char == '#') stop_buffering = true;
  797. if (!serial_count) {
  798. comment_mode = false; //for new command
  799. return; //if empty line
  800. }
  801. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  802. // if (!comment_mode) {
  803. fromsd[cmd_queue_index_w] = true;
  804. commands_in_queue += 1;
  805. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  806. // }
  807. comment_mode = false; //for new command
  808. serial_count = 0; //clear buffer
  809. }
  810. else {
  811. if (serial_char == ';') comment_mode = true;
  812. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  813. }
  814. }
  815. #endif // SDSUPPORT
  816. }
  817. bool code_has_value() {
  818. int i = 1;
  819. char c = seen_pointer[i];
  820. if (c == '-' || c == '+') c = seen_pointer[++i];
  821. if (c == '.') c = seen_pointer[++i];
  822. return (c >= '0' && c <= '9');
  823. }
  824. float code_value() {
  825. float ret;
  826. char *e = strchr(seen_pointer, 'E');
  827. if (e) {
  828. *e = 0;
  829. ret = strtod(seen_pointer+1, NULL);
  830. *e = 'E';
  831. }
  832. else
  833. ret = strtod(seen_pointer+1, NULL);
  834. return ret;
  835. }
  836. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  837. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  838. bool code_seen(char code) {
  839. seen_pointer = strchr(current_command_args, code);
  840. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  841. }
  842. #define DEFINE_PGM_READ_ANY(type, reader) \
  843. static inline type pgm_read_any(const type *p) \
  844. { return pgm_read_##reader##_near(p); }
  845. DEFINE_PGM_READ_ANY(float, float);
  846. DEFINE_PGM_READ_ANY(signed char, byte);
  847. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  848. static const PROGMEM type array##_P[3] = \
  849. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  850. static inline type array(int axis) \
  851. { return pgm_read_any(&array##_P[axis]); }
  852. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  853. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  854. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  855. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  856. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  857. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  858. #ifdef DUAL_X_CARRIAGE
  859. #define DXC_FULL_CONTROL_MODE 0
  860. #define DXC_AUTO_PARK_MODE 1
  861. #define DXC_DUPLICATION_MODE 2
  862. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  863. static float x_home_pos(int extruder) {
  864. if (extruder == 0)
  865. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  866. else
  867. // In dual carriage mode the extruder offset provides an override of the
  868. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  869. // This allow soft recalibration of the second extruder offset position without firmware reflash
  870. // (through the M218 command).
  871. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  872. }
  873. static int x_home_dir(int extruder) {
  874. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  875. }
  876. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  877. static bool active_extruder_parked = false; // used in mode 1 & 2
  878. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  879. static millis_t delayed_move_time = 0; // used in mode 1
  880. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  881. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  882. bool extruder_duplication_enabled = false; // used in mode 2
  883. #endif //DUAL_X_CARRIAGE
  884. static void set_axis_is_at_home(AxisEnum axis) {
  885. #ifdef DUAL_X_CARRIAGE
  886. if (axis == X_AXIS) {
  887. if (active_extruder != 0) {
  888. current_position[X_AXIS] = x_home_pos(active_extruder);
  889. min_pos[X_AXIS] = X2_MIN_POS;
  890. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  891. return;
  892. }
  893. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  894. float xoff = home_offset[X_AXIS];
  895. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  896. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  897. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  898. return;
  899. }
  900. }
  901. #endif
  902. #ifdef SCARA
  903. if (axis == X_AXIS || axis == Y_AXIS) {
  904. float homeposition[3];
  905. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  906. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  907. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  908. // Works out real Homeposition angles using inverse kinematics,
  909. // and calculates homing offset using forward kinematics
  910. calculate_delta(homeposition);
  911. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  912. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  913. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  914. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  915. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  916. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  917. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  918. calculate_SCARA_forward_Transform(delta);
  919. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  920. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  921. current_position[axis] = delta[axis];
  922. // SCARA home positions are based on configuration since the actual limits are determined by the
  923. // inverse kinematic transform.
  924. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  925. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  926. }
  927. else
  928. #endif
  929. {
  930. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  931. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  932. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  933. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  934. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  935. #endif
  936. }
  937. }
  938. /**
  939. * Some planner shorthand inline functions
  940. */
  941. inline void set_homing_bump_feedrate(AxisEnum axis) {
  942. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  943. if (homing_bump_divisor[axis] >= 1)
  944. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  945. else {
  946. feedrate = homing_feedrate[axis] / 10;
  947. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  948. }
  949. }
  950. inline void line_to_current_position() {
  951. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  952. }
  953. inline void line_to_z(float zPosition) {
  954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  955. }
  956. inline void line_to_destination(float mm_m) {
  957. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  958. }
  959. inline void line_to_destination() {
  960. line_to_destination(feedrate);
  961. }
  962. inline void sync_plan_position() {
  963. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  964. }
  965. #if defined(DELTA) || defined(SCARA)
  966. inline void sync_plan_position_delta() {
  967. calculate_delta(current_position);
  968. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  969. }
  970. #endif
  971. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  972. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  973. static void setup_for_endstop_move() {
  974. saved_feedrate = feedrate;
  975. saved_feedrate_multiplier = feedrate_multiplier;
  976. feedrate_multiplier = 100;
  977. refresh_cmd_timeout();
  978. enable_endstops(true);
  979. }
  980. #ifdef ENABLE_AUTO_BED_LEVELING
  981. #ifdef DELTA
  982. /**
  983. * Calculate delta, start a line, and set current_position to destination
  984. */
  985. void prepare_move_raw() {
  986. refresh_cmd_timeout();
  987. calculate_delta(destination);
  988. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  989. set_current_to_destination();
  990. }
  991. #endif
  992. #ifdef AUTO_BED_LEVELING_GRID
  993. #ifndef DELTA
  994. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  995. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  996. planeNormal.debug("planeNormal");
  997. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  998. //bedLevel.debug("bedLevel");
  999. //plan_bed_level_matrix.debug("bed level before");
  1000. //vector_3 uncorrected_position = plan_get_position_mm();
  1001. //uncorrected_position.debug("position before");
  1002. vector_3 corrected_position = plan_get_position();
  1003. //corrected_position.debug("position after");
  1004. current_position[X_AXIS] = corrected_position.x;
  1005. current_position[Y_AXIS] = corrected_position.y;
  1006. current_position[Z_AXIS] = corrected_position.z;
  1007. sync_plan_position();
  1008. }
  1009. #endif // !DELTA
  1010. #else // !AUTO_BED_LEVELING_GRID
  1011. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1012. plan_bed_level_matrix.set_to_identity();
  1013. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1014. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1015. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1016. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1017. if (planeNormal.z < 0) {
  1018. planeNormal.x = -planeNormal.x;
  1019. planeNormal.y = -planeNormal.y;
  1020. planeNormal.z = -planeNormal.z;
  1021. }
  1022. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1023. vector_3 corrected_position = plan_get_position();
  1024. current_position[X_AXIS] = corrected_position.x;
  1025. current_position[Y_AXIS] = corrected_position.y;
  1026. current_position[Z_AXIS] = corrected_position.z;
  1027. sync_plan_position();
  1028. }
  1029. #endif // !AUTO_BED_LEVELING_GRID
  1030. static void run_z_probe() {
  1031. #ifdef DELTA
  1032. float start_z = current_position[Z_AXIS];
  1033. long start_steps = st_get_position(Z_AXIS);
  1034. // move down slowly until you find the bed
  1035. feedrate = homing_feedrate[Z_AXIS] / 4;
  1036. destination[Z_AXIS] = -10;
  1037. prepare_move_raw(); // this will also set_current_to_destination
  1038. st_synchronize();
  1039. endstops_hit_on_purpose(); // clear endstop hit flags
  1040. // we have to let the planner know where we are right now as it is not where we said to go.
  1041. long stop_steps = st_get_position(Z_AXIS);
  1042. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1043. current_position[Z_AXIS] = mm;
  1044. sync_plan_position_delta();
  1045. #else // !DELTA
  1046. plan_bed_level_matrix.set_to_identity();
  1047. feedrate = homing_feedrate[Z_AXIS];
  1048. // Move down until the probe (or endstop?) is triggered
  1049. float zPosition = -(Z_MAX_LENGTH + 10);
  1050. line_to_z(zPosition);
  1051. st_synchronize();
  1052. // Tell the planner where we ended up - Get this from the stepper handler
  1053. zPosition = st_get_position_mm(Z_AXIS);
  1054. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1055. // move up the retract distance
  1056. zPosition += home_bump_mm(Z_AXIS);
  1057. line_to_z(zPosition);
  1058. st_synchronize();
  1059. endstops_hit_on_purpose(); // clear endstop hit flags
  1060. // move back down slowly to find bed
  1061. set_homing_bump_feedrate(Z_AXIS);
  1062. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1063. line_to_z(zPosition);
  1064. st_synchronize();
  1065. endstops_hit_on_purpose(); // clear endstop hit flags
  1066. // Get the current stepper position after bumping an endstop
  1067. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1068. sync_plan_position();
  1069. #endif // !DELTA
  1070. }
  1071. /**
  1072. * Plan a move to (X, Y, Z) and set the current_position
  1073. * The final current_position may not be the one that was requested
  1074. */
  1075. static void do_blocking_move_to(float x, float y, float z) {
  1076. float oldFeedRate = feedrate;
  1077. #ifdef DELTA
  1078. feedrate = XY_TRAVEL_SPEED;
  1079. destination[X_AXIS] = x;
  1080. destination[Y_AXIS] = y;
  1081. destination[Z_AXIS] = z;
  1082. prepare_move_raw(); // this will also set_current_to_destination
  1083. st_synchronize();
  1084. #else
  1085. feedrate = homing_feedrate[Z_AXIS];
  1086. current_position[Z_AXIS] = z;
  1087. line_to_current_position();
  1088. st_synchronize();
  1089. feedrate = xy_travel_speed;
  1090. current_position[X_AXIS] = x;
  1091. current_position[Y_AXIS] = y;
  1092. line_to_current_position();
  1093. st_synchronize();
  1094. #endif
  1095. feedrate = oldFeedRate;
  1096. }
  1097. static void clean_up_after_endstop_move() {
  1098. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1099. enable_endstops(false);
  1100. #endif
  1101. feedrate = saved_feedrate;
  1102. feedrate_multiplier = saved_feedrate_multiplier;
  1103. refresh_cmd_timeout();
  1104. }
  1105. static void deploy_z_probe() {
  1106. #ifdef SERVO_ENDSTOPS
  1107. // Engage Z Servo endstop if enabled
  1108. if (servo_endstops[Z_AXIS] >= 0) {
  1109. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1110. srv->move(0, servo_endstop_angles[Z_AXIS * 2]);
  1111. }
  1112. #elif defined(Z_PROBE_ALLEN_KEY)
  1113. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1114. // If endstop is already false, the probe is deployed
  1115. #ifdef Z_PROBE_ENDSTOP
  1116. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1117. if (z_probe_endstop)
  1118. #else
  1119. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1120. if (z_min_endstop)
  1121. #endif
  1122. {
  1123. // Move to the start position to initiate deployment
  1124. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1125. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1126. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1127. prepare_move_raw(); // this will also set_current_to_destination
  1128. // Move to engage deployment
  1129. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE) {
  1130. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1131. }
  1132. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X) {
  1133. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1134. }
  1135. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) {
  1136. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1137. }
  1138. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) {
  1139. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1140. }
  1141. prepare_move_raw();
  1142. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1143. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1144. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1145. }
  1146. // Move to trigger deployment
  1147. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1148. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1149. }
  1150. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X) {
  1151. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1152. }
  1153. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) {
  1154. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1155. }
  1156. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) {
  1157. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1158. }
  1159. prepare_move_raw();
  1160. #endif
  1161. }
  1162. // Partially Home X,Y for safety
  1163. destination[X_AXIS] = destination[X_AXIS]*0.75;
  1164. destination[Y_AXIS] = destination[Y_AXIS]*0.75;
  1165. prepare_move_raw(); // this will also set_current_to_destination
  1166. st_synchronize();
  1167. #ifdef Z_PROBE_ENDSTOP
  1168. z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1169. if (z_probe_endstop)
  1170. #else
  1171. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1172. if (z_min_endstop)
  1173. #endif
  1174. {
  1175. if (IsRunning()) {
  1176. SERIAL_ERROR_START;
  1177. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1178. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1179. }
  1180. Stop();
  1181. }
  1182. #endif // Z_PROBE_ALLEN_KEY
  1183. }
  1184. static void stow_z_probe(bool doRaise=true) {
  1185. #ifdef SERVO_ENDSTOPS
  1186. // Retract Z Servo endstop if enabled
  1187. if (servo_endstops[Z_AXIS] >= 0) {
  1188. #if Z_RAISE_AFTER_PROBING > 0
  1189. if (doRaise) {
  1190. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1191. st_synchronize();
  1192. }
  1193. #endif
  1194. // Change the Z servo angle
  1195. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1196. srv->move(0, servo_endstop_angles[Z_AXIS * 2 + 1]);
  1197. }
  1198. #elif defined(Z_PROBE_ALLEN_KEY)
  1199. // Move up for safety
  1200. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1201. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1202. prepare_move_raw(); // this will also set_current_to_destination
  1203. // Move to the start position to initiate retraction
  1204. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1205. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1206. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1207. prepare_move_raw();
  1208. // Move the nozzle down to push the probe into retracted position
  1209. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE) {
  1210. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1211. }
  1212. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X) {
  1213. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1214. }
  1215. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y) {
  1216. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1217. }
  1218. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1219. prepare_move_raw();
  1220. // Move up for safety
  1221. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) {
  1222. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1223. }
  1224. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X) {
  1225. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1226. }
  1227. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y) {
  1228. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1229. }
  1230. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1231. prepare_move_raw();
  1232. // Home XY for safety
  1233. feedrate = homing_feedrate[X_AXIS]/2;
  1234. destination[X_AXIS] = 0;
  1235. destination[Y_AXIS] = 0;
  1236. prepare_move_raw(); // this will also set_current_to_destination
  1237. st_synchronize();
  1238. #ifdef Z_PROBE_ENDSTOP
  1239. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1240. if (!z_probe_endstop)
  1241. #else
  1242. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1243. if (!z_min_endstop)
  1244. #endif
  1245. {
  1246. if (IsRunning()) {
  1247. SERIAL_ERROR_START;
  1248. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1249. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1250. }
  1251. Stop();
  1252. }
  1253. #endif // Z_PROBE_ALLEN_KEY
  1254. }
  1255. enum ProbeAction {
  1256. ProbeStay = 0,
  1257. ProbeDeploy = BIT(0),
  1258. ProbeStow = BIT(1),
  1259. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1260. };
  1261. // Probe bed height at position (x,y), returns the measured z value
  1262. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1263. // Move Z up to the z_before height, then move the probe to the given XY
  1264. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1265. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1266. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1267. if (probe_action & ProbeDeploy) deploy_z_probe();
  1268. #endif
  1269. run_z_probe();
  1270. float measured_z = current_position[Z_AXIS];
  1271. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1272. if (probe_action & ProbeStow) stow_z_probe();
  1273. #endif
  1274. if (verbose_level > 2) {
  1275. SERIAL_PROTOCOLPGM("Bed X: ");
  1276. SERIAL_PROTOCOL_F(x, 3);
  1277. SERIAL_PROTOCOLPGM(" Y: ");
  1278. SERIAL_PROTOCOL_F(y, 3);
  1279. SERIAL_PROTOCOLPGM(" Z: ");
  1280. SERIAL_PROTOCOL_F(measured_z, 3);
  1281. SERIAL_EOL;
  1282. }
  1283. return measured_z;
  1284. }
  1285. #ifdef DELTA
  1286. /**
  1287. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1288. */
  1289. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1290. if (bed_level[x][y] != 0.0) {
  1291. return; // Don't overwrite good values.
  1292. }
  1293. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1294. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1295. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1296. float median = c; // Median is robust (ignores outliers).
  1297. if (a < b) {
  1298. if (b < c) median = b;
  1299. if (c < a) median = a;
  1300. } else { // b <= a
  1301. if (c < b) median = b;
  1302. if (a < c) median = a;
  1303. }
  1304. bed_level[x][y] = median;
  1305. }
  1306. // Fill in the unprobed points (corners of circular print surface)
  1307. // using linear extrapolation, away from the center.
  1308. static void extrapolate_unprobed_bed_level() {
  1309. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1310. for (int y = 0; y <= half; y++) {
  1311. for (int x = 0; x <= half; x++) {
  1312. if (x + y < 3) continue;
  1313. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1314. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1315. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1316. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1317. }
  1318. }
  1319. }
  1320. // Print calibration results for plotting or manual frame adjustment.
  1321. static void print_bed_level() {
  1322. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1323. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1324. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1325. SERIAL_PROTOCOLCHAR(' ');
  1326. }
  1327. SERIAL_EOL;
  1328. }
  1329. }
  1330. // Reset calibration results to zero.
  1331. void reset_bed_level() {
  1332. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1333. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1334. bed_level[x][y] = 0.0;
  1335. }
  1336. }
  1337. }
  1338. #endif // DELTA
  1339. #endif // ENABLE_AUTO_BED_LEVELING
  1340. #ifdef Z_PROBE_SLED
  1341. #ifndef SLED_DOCKING_OFFSET
  1342. #define SLED_DOCKING_OFFSET 0
  1343. #endif
  1344. /**
  1345. * Method to dock/undock a sled designed by Charles Bell.
  1346. *
  1347. * dock[in] If true, move to MAX_X and engage the electromagnet
  1348. * offset[in] The additional distance to move to adjust docking location
  1349. */
  1350. static void dock_sled(bool dock, int offset=0) {
  1351. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1352. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1353. SERIAL_ECHO_START;
  1354. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1355. return;
  1356. }
  1357. if (dock) {
  1358. float oldXpos = current_position[X_AXIS]; // save x position
  1359. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z
  1360. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]); // Dock sled a bit closer to ensure proper capturing
  1361. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1362. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1363. } else {
  1364. float oldXpos = current_position[X_AXIS]; // save x position
  1365. float z_loc = current_position[Z_AXIS];
  1366. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1367. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1368. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1369. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1370. }
  1371. }
  1372. #endif // Z_PROBE_SLED
  1373. /**
  1374. * Home an individual axis
  1375. */
  1376. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1377. static void homeaxis(AxisEnum axis) {
  1378. #define HOMEAXIS_DO(LETTER) \
  1379. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1380. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1381. int axis_home_dir =
  1382. #ifdef DUAL_X_CARRIAGE
  1383. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1384. #endif
  1385. home_dir(axis);
  1386. // Set the axis position as setup for the move
  1387. current_position[axis] = 0;
  1388. sync_plan_position();
  1389. #ifdef Z_PROBE_SLED
  1390. // Get Probe
  1391. if (axis == Z_AXIS) {
  1392. if (axis_home_dir < 0) dock_sled(false);
  1393. }
  1394. #endif
  1395. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1396. // Deploy a probe if there is one, and homing towards the bed
  1397. if (axis == Z_AXIS) {
  1398. if (axis_home_dir < 0) deploy_z_probe();
  1399. }
  1400. #endif
  1401. #ifdef SERVO_ENDSTOPS
  1402. if (axis != Z_AXIS) {
  1403. // Engage Servo endstop if enabled
  1404. if (servo_endstops[axis] > -1)
  1405. servo[servo_endstops[axis]].move(0, servo_endstop_angles[axis * 2]);
  1406. }
  1407. #endif
  1408. // Set a flag for Z motor locking
  1409. #ifdef Z_DUAL_ENDSTOPS
  1410. if (axis == Z_AXIS) In_Homing_Process(true);
  1411. #endif
  1412. // Move towards the endstop until an endstop is triggered
  1413. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1414. feedrate = homing_feedrate[axis];
  1415. line_to_destination();
  1416. st_synchronize();
  1417. // Set the axis position as setup for the move
  1418. current_position[axis] = 0;
  1419. sync_plan_position();
  1420. enable_endstops(false); // Disable endstops while moving away
  1421. // Move away from the endstop by the axis HOME_BUMP_MM
  1422. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1423. line_to_destination();
  1424. st_synchronize();
  1425. enable_endstops(true); // Enable endstops for next homing move
  1426. // Slow down the feedrate for the next move
  1427. set_homing_bump_feedrate(axis);
  1428. // Move slowly towards the endstop until triggered
  1429. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1430. line_to_destination();
  1431. st_synchronize();
  1432. #ifdef Z_DUAL_ENDSTOPS
  1433. if (axis == Z_AXIS) {
  1434. float adj = fabs(z_endstop_adj);
  1435. bool lockZ1;
  1436. if (axis_home_dir > 0) {
  1437. adj = -adj;
  1438. lockZ1 = (z_endstop_adj > 0);
  1439. }
  1440. else
  1441. lockZ1 = (z_endstop_adj < 0);
  1442. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1443. sync_plan_position();
  1444. // Move to the adjusted endstop height
  1445. feedrate = homing_feedrate[axis];
  1446. destination[Z_AXIS] = adj;
  1447. line_to_destination();
  1448. st_synchronize();
  1449. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1450. In_Homing_Process(false);
  1451. } // Z_AXIS
  1452. #endif
  1453. #ifdef DELTA
  1454. // retrace by the amount specified in endstop_adj
  1455. if (endstop_adj[axis] * axis_home_dir < 0) {
  1456. enable_endstops(false); // Disable endstops while moving away
  1457. sync_plan_position();
  1458. destination[axis] = endstop_adj[axis];
  1459. line_to_destination();
  1460. st_synchronize();
  1461. enable_endstops(true); // Enable endstops for next homing move
  1462. }
  1463. #endif
  1464. // Set the axis position to its home position (plus home offsets)
  1465. set_axis_is_at_home(axis);
  1466. sync_plan_position();
  1467. destination[axis] = current_position[axis];
  1468. feedrate = 0.0;
  1469. endstops_hit_on_purpose(); // clear endstop hit flags
  1470. axis_known_position[axis] = true;
  1471. #ifdef Z_PROBE_SLED
  1472. // bring probe back
  1473. if (axis == Z_AXIS) {
  1474. if (axis_home_dir < 0) dock_sled(true);
  1475. }
  1476. #endif
  1477. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1478. // Deploy a probe if there is one, and homing towards the bed
  1479. if (axis == Z_AXIS) {
  1480. if (axis_home_dir < 0) stow_z_probe();
  1481. }
  1482. else
  1483. #endif
  1484. {
  1485. #ifdef SERVO_ENDSTOPS
  1486. // Retract Servo endstop if enabled
  1487. if (servo_endstops[axis] > -1)
  1488. servo[servo_endstops[axis]].move(0, servo_endstop_angles[axis * 2 + 1]);
  1489. #endif
  1490. }
  1491. }
  1492. }
  1493. #ifdef FWRETRACT
  1494. void retract(bool retracting, bool swapping=false) {
  1495. if (retracting == retracted[active_extruder]) return;
  1496. float oldFeedrate = feedrate;
  1497. set_destination_to_current();
  1498. if (retracting) {
  1499. feedrate = retract_feedrate * 60;
  1500. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1501. plan_set_e_position(current_position[E_AXIS]);
  1502. prepare_move();
  1503. if (retract_zlift > 0.01) {
  1504. current_position[Z_AXIS] -= retract_zlift;
  1505. #ifdef DELTA
  1506. sync_plan_position_delta();
  1507. #else
  1508. sync_plan_position();
  1509. #endif
  1510. prepare_move();
  1511. }
  1512. }
  1513. else {
  1514. if (retract_zlift > 0.01) {
  1515. current_position[Z_AXIS] += retract_zlift;
  1516. #ifdef DELTA
  1517. sync_plan_position_delta();
  1518. #else
  1519. sync_plan_position();
  1520. #endif
  1521. //prepare_move();
  1522. }
  1523. feedrate = retract_recover_feedrate * 60;
  1524. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1525. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1526. plan_set_e_position(current_position[E_AXIS]);
  1527. prepare_move();
  1528. }
  1529. feedrate = oldFeedrate;
  1530. retracted[active_extruder] = retracting;
  1531. } // retract()
  1532. #endif // FWRETRACT
  1533. /**
  1534. *
  1535. * G-Code Handler functions
  1536. *
  1537. */
  1538. /**
  1539. * Set XYZE destination and feedrate from the current GCode command
  1540. *
  1541. * - Set destination from included axis codes
  1542. * - Set to current for missing axis codes
  1543. * - Set the feedrate, if included
  1544. */
  1545. void gcode_get_destination() {
  1546. for (int i = 0; i < NUM_AXIS; i++) {
  1547. if (code_seen(axis_codes[i]))
  1548. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1549. else
  1550. destination[i] = current_position[i];
  1551. }
  1552. if (code_seen('F')) {
  1553. float next_feedrate = code_value();
  1554. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1555. }
  1556. }
  1557. void unknown_command_error() {
  1558. SERIAL_ECHO_START;
  1559. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1560. SERIAL_ECHO(current_command);
  1561. SERIAL_ECHOPGM("\"\n");
  1562. }
  1563. /**
  1564. * G0, G1: Coordinated movement of X Y Z E axes
  1565. */
  1566. inline void gcode_G0_G1() {
  1567. if (IsRunning()) {
  1568. gcode_get_destination(); // For X Y Z E F
  1569. #ifdef FWRETRACT
  1570. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1571. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1572. // Is this move an attempt to retract or recover?
  1573. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1574. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1575. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1576. retract(!retracted[active_extruder]);
  1577. return;
  1578. }
  1579. }
  1580. #endif //FWRETRACT
  1581. prepare_move();
  1582. }
  1583. }
  1584. /**
  1585. * Plan an arc in 2 dimensions
  1586. *
  1587. * The arc is approximated by generating many small linear segments.
  1588. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  1589. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  1590. * larger segments will tend to be more efficient. Your slicer should have
  1591. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  1592. */
  1593. void plan_arc(
  1594. float *target, // Destination position
  1595. float *offset, // Center of rotation relative to current_position
  1596. uint8_t clockwise // Clockwise?
  1597. ) {
  1598. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  1599. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  1600. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  1601. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  1602. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  1603. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  1604. r_axis1 = -offset[Y_AXIS],
  1605. rt_axis0 = target[X_AXIS] - center_axis0,
  1606. rt_axis1 = target[Y_AXIS] - center_axis1;
  1607. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  1608. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  1609. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  1610. if (clockwise) { angular_travel -= RADIANS(360); }
  1611. // Make a circle if the angular rotation is 0
  1612. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  1613. angular_travel += RADIANS(360);
  1614. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  1615. if (mm_of_travel < 0.001) { return; }
  1616. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  1617. if (segments == 0) segments = 1;
  1618. float theta_per_segment = angular_travel/segments;
  1619. float linear_per_segment = linear_travel/segments;
  1620. float extruder_per_segment = extruder_travel/segments;
  1621. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  1622. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  1623. r_T = [cos(phi) -sin(phi);
  1624. sin(phi) cos(phi] * r ;
  1625. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  1626. defined from the circle center to the initial position. Each line segment is formed by successive
  1627. vector rotations. This requires only two cos() and sin() computations to form the rotation
  1628. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  1629. all double numbers are single precision on the Arduino. (True double precision will not have
  1630. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  1631. tool precision in some cases. Therefore, arc path correction is implemented.
  1632. Small angle approximation may be used to reduce computation overhead further. This approximation
  1633. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  1634. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  1635. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  1636. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  1637. issue for CNC machines with the single precision Arduino calculations.
  1638. This approximation also allows plan_arc to immediately insert a line segment into the planner
  1639. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  1640. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  1641. This is important when there are successive arc motions.
  1642. */
  1643. // Vector rotation matrix values
  1644. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  1645. float sin_T = theta_per_segment;
  1646. float arc_target[4];
  1647. float sin_Ti;
  1648. float cos_Ti;
  1649. float r_axisi;
  1650. uint16_t i;
  1651. int8_t count = 0;
  1652. // Initialize the linear axis
  1653. arc_target[Z_AXIS] = current_position[Z_AXIS];
  1654. // Initialize the extruder axis
  1655. arc_target[E_AXIS] = current_position[E_AXIS];
  1656. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  1657. for (i = 1; i < segments; i++) { // Increment (segments-1)
  1658. if (count < N_ARC_CORRECTION) {
  1659. // Apply vector rotation matrix to previous r_axis0 / 1
  1660. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  1661. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  1662. r_axis1 = r_axisi;
  1663. count++;
  1664. }
  1665. else {
  1666. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  1667. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  1668. cos_Ti = cos(i*theta_per_segment);
  1669. sin_Ti = sin(i*theta_per_segment);
  1670. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  1671. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  1672. count = 0;
  1673. }
  1674. // Update arc_target location
  1675. arc_target[X_AXIS] = center_axis0 + r_axis0;
  1676. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  1677. arc_target[Z_AXIS] += linear_per_segment;
  1678. arc_target[E_AXIS] += extruder_per_segment;
  1679. clamp_to_software_endstops(arc_target);
  1680. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  1681. }
  1682. // Ensure last segment arrives at target location.
  1683. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  1684. // As far as the parser is concerned, the position is now == target. In reality the
  1685. // motion control system might still be processing the action and the real tool position
  1686. // in any intermediate location.
  1687. set_current_to_destination();
  1688. }
  1689. /**
  1690. * G2: Clockwise Arc
  1691. * G3: Counterclockwise Arc
  1692. */
  1693. inline void gcode_G2_G3(bool clockwise) {
  1694. if (IsRunning()) {
  1695. #ifdef SF_ARC_FIX
  1696. bool relative_mode_backup = relative_mode;
  1697. relative_mode = true;
  1698. #endif
  1699. gcode_get_destination();
  1700. #ifdef SF_ARC_FIX
  1701. relative_mode = relative_mode_backup;
  1702. #endif
  1703. // Center of arc as offset from current_position
  1704. float arc_offset[2] = {
  1705. code_seen('I') ? code_value() : 0,
  1706. code_seen('J') ? code_value() : 0
  1707. };
  1708. // Send an arc to the planner
  1709. plan_arc(destination, arc_offset, clockwise);
  1710. refresh_cmd_timeout();
  1711. }
  1712. }
  1713. /**
  1714. * G4: Dwell S<seconds> or P<milliseconds>
  1715. */
  1716. inline void gcode_G4() {
  1717. millis_t codenum = 0;
  1718. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1719. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1720. st_synchronize();
  1721. refresh_cmd_timeout();
  1722. codenum += previous_cmd_ms; // keep track of when we started waiting
  1723. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1724. while (millis() < codenum) idle();
  1725. }
  1726. #ifdef FWRETRACT
  1727. /**
  1728. * G10 - Retract filament according to settings of M207
  1729. * G11 - Recover filament according to settings of M208
  1730. */
  1731. inline void gcode_G10_G11(bool doRetract=false) {
  1732. #if EXTRUDERS > 1
  1733. if (doRetract) {
  1734. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1735. }
  1736. #endif
  1737. retract(doRetract
  1738. #if EXTRUDERS > 1
  1739. , retracted_swap[active_extruder]
  1740. #endif
  1741. );
  1742. }
  1743. #endif //FWRETRACT
  1744. /**
  1745. * G28: Home all axes according to settings
  1746. *
  1747. * Parameters
  1748. *
  1749. * None Home to all axes with no parameters.
  1750. * With QUICK_HOME enabled XY will home together, then Z.
  1751. *
  1752. * Cartesian parameters
  1753. *
  1754. * X Home to the X endstop
  1755. * Y Home to the Y endstop
  1756. * Z Home to the Z endstop
  1757. *
  1758. */
  1759. inline void gcode_G28() {
  1760. // Wait for planner moves to finish!
  1761. st_synchronize();
  1762. // For auto bed leveling, clear the level matrix
  1763. #ifdef ENABLE_AUTO_BED_LEVELING
  1764. plan_bed_level_matrix.set_to_identity();
  1765. #ifdef DELTA
  1766. reset_bed_level();
  1767. #endif
  1768. #endif
  1769. // For manual bed leveling deactivate the matrix temporarily
  1770. #ifdef MESH_BED_LEVELING
  1771. uint8_t mbl_was_active = mbl.active;
  1772. mbl.active = 0;
  1773. #endif
  1774. setup_for_endstop_move();
  1775. set_destination_to_current();
  1776. feedrate = 0.0;
  1777. #ifdef DELTA
  1778. // A delta can only safely home all axis at the same time
  1779. // all axis have to home at the same time
  1780. // Pretend the current position is 0,0,0
  1781. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1782. sync_plan_position();
  1783. // Move all carriages up together until the first endstop is hit.
  1784. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1785. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1786. line_to_destination();
  1787. st_synchronize();
  1788. endstops_hit_on_purpose(); // clear endstop hit flags
  1789. // Destination reached
  1790. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1791. // take care of back off and rehome now we are all at the top
  1792. HOMEAXIS(X);
  1793. HOMEAXIS(Y);
  1794. HOMEAXIS(Z);
  1795. sync_plan_position_delta();
  1796. #else // NOT DELTA
  1797. bool homeX = code_seen(axis_codes[X_AXIS]),
  1798. homeY = code_seen(axis_codes[Y_AXIS]),
  1799. homeZ = code_seen(axis_codes[Z_AXIS]);
  1800. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1801. if (home_all_axis || homeZ) {
  1802. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1803. HOMEAXIS(Z);
  1804. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1805. // Raise Z before homing any other axes
  1806. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1807. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1808. feedrate = max_feedrate[Z_AXIS] * 60;
  1809. line_to_destination();
  1810. st_synchronize();
  1811. #endif
  1812. } // home_all_axis || homeZ
  1813. #ifdef QUICK_HOME
  1814. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1815. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1816. #ifdef DUAL_X_CARRIAGE
  1817. int x_axis_home_dir = x_home_dir(active_extruder);
  1818. extruder_duplication_enabled = false;
  1819. #else
  1820. int x_axis_home_dir = home_dir(X_AXIS);
  1821. #endif
  1822. sync_plan_position();
  1823. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1824. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1825. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1826. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1827. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1828. line_to_destination();
  1829. st_synchronize();
  1830. set_axis_is_at_home(X_AXIS);
  1831. set_axis_is_at_home(Y_AXIS);
  1832. sync_plan_position();
  1833. destination[X_AXIS] = current_position[X_AXIS];
  1834. destination[Y_AXIS] = current_position[Y_AXIS];
  1835. line_to_destination();
  1836. feedrate = 0.0;
  1837. st_synchronize();
  1838. endstops_hit_on_purpose(); // clear endstop hit flags
  1839. current_position[X_AXIS] = destination[X_AXIS];
  1840. current_position[Y_AXIS] = destination[Y_AXIS];
  1841. #ifndef SCARA
  1842. current_position[Z_AXIS] = destination[Z_AXIS];
  1843. #endif
  1844. }
  1845. #endif // QUICK_HOME
  1846. #ifdef HOME_Y_BEFORE_X
  1847. // Home Y
  1848. if (home_all_axis || homeY) HOMEAXIS(Y);
  1849. #endif
  1850. // Home X
  1851. if (home_all_axis || homeX) {
  1852. #ifdef DUAL_X_CARRIAGE
  1853. int tmp_extruder = active_extruder;
  1854. extruder_duplication_enabled = false;
  1855. active_extruder = !active_extruder;
  1856. HOMEAXIS(X);
  1857. inactive_extruder_x_pos = current_position[X_AXIS];
  1858. active_extruder = tmp_extruder;
  1859. HOMEAXIS(X);
  1860. // reset state used by the different modes
  1861. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1862. delayed_move_time = 0;
  1863. active_extruder_parked = true;
  1864. #else
  1865. HOMEAXIS(X);
  1866. #endif
  1867. }
  1868. #ifndef HOME_Y_BEFORE_X
  1869. // Home Y
  1870. if (home_all_axis || homeY) HOMEAXIS(Y);
  1871. #endif
  1872. // Home Z last if homing towards the bed
  1873. #if Z_HOME_DIR < 0
  1874. if (home_all_axis || homeZ) {
  1875. #ifdef Z_SAFE_HOMING
  1876. if (home_all_axis) {
  1877. current_position[Z_AXIS] = 0;
  1878. sync_plan_position();
  1879. //
  1880. // Set the probe (or just the nozzle) destination to the safe homing point
  1881. //
  1882. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1883. // then this may not work as expected.
  1884. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1885. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1886. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1887. feedrate = XY_TRAVEL_SPEED;
  1888. // This could potentially move X, Y, Z all together
  1889. line_to_destination();
  1890. st_synchronize();
  1891. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1892. current_position[X_AXIS] = destination[X_AXIS];
  1893. current_position[Y_AXIS] = destination[Y_AXIS];
  1894. // Home the Z axis
  1895. HOMEAXIS(Z);
  1896. }
  1897. else if (homeZ) { // Don't need to Home Z twice
  1898. // Let's see if X and Y are homed
  1899. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1900. // Make sure the probe is within the physical limits
  1901. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1902. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1903. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1904. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1905. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1906. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1907. // Set the plan current position to X, Y, 0
  1908. current_position[Z_AXIS] = 0;
  1909. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1910. // Set Z destination away from bed and raise the axis
  1911. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1912. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1913. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1914. line_to_destination();
  1915. st_synchronize();
  1916. // Home the Z axis
  1917. HOMEAXIS(Z);
  1918. }
  1919. else {
  1920. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1921. SERIAL_ECHO_START;
  1922. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1923. }
  1924. }
  1925. else {
  1926. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1927. SERIAL_ECHO_START;
  1928. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1929. }
  1930. } // !home_all_axes && homeZ
  1931. #else // !Z_SAFE_HOMING
  1932. HOMEAXIS(Z);
  1933. #endif // !Z_SAFE_HOMING
  1934. } // home_all_axis || homeZ
  1935. #endif // Z_HOME_DIR < 0
  1936. sync_plan_position();
  1937. #endif // else DELTA
  1938. #ifdef SCARA
  1939. sync_plan_position_delta();
  1940. #endif
  1941. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1942. enable_endstops(false);
  1943. #endif
  1944. // For manual leveling move back to 0,0
  1945. #ifdef MESH_BED_LEVELING
  1946. if (mbl_was_active) {
  1947. current_position[X_AXIS] = mbl.get_x(0);
  1948. current_position[Y_AXIS] = mbl.get_y(0);
  1949. set_destination_to_current();
  1950. feedrate = homing_feedrate[X_AXIS];
  1951. line_to_destination();
  1952. st_synchronize();
  1953. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1954. sync_plan_position();
  1955. mbl.active = 1;
  1956. }
  1957. #endif
  1958. feedrate = saved_feedrate;
  1959. feedrate_multiplier = saved_feedrate_multiplier;
  1960. refresh_cmd_timeout();
  1961. endstops_hit_on_purpose(); // clear endstop hit flags
  1962. }
  1963. #ifdef MESH_BED_LEVELING
  1964. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1965. /**
  1966. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1967. * mesh to compensate for variable bed height
  1968. *
  1969. * Parameters With MESH_BED_LEVELING:
  1970. *
  1971. * S0 Produce a mesh report
  1972. * S1 Start probing mesh points
  1973. * S2 Probe the next mesh point
  1974. * S3 Xn Yn Zn.nn Manually modify a single point
  1975. *
  1976. * The S0 report the points as below
  1977. *
  1978. * +----> X-axis
  1979. * |
  1980. * |
  1981. * v Y-axis
  1982. *
  1983. */
  1984. inline void gcode_G29() {
  1985. static int probe_point = -1;
  1986. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  1987. if (state < 0 || state > 3) {
  1988. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1989. return;
  1990. }
  1991. int ix, iy;
  1992. float z;
  1993. switch(state) {
  1994. case MeshReport:
  1995. if (mbl.active) {
  1996. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1997. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1998. SERIAL_PROTOCOLCHAR(',');
  1999. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2000. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2001. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2002. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2003. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2004. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2005. SERIAL_PROTOCOLPGM(" ");
  2006. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2007. }
  2008. SERIAL_EOL;
  2009. }
  2010. }
  2011. else
  2012. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2013. break;
  2014. case MeshStart:
  2015. mbl.reset();
  2016. probe_point = 0;
  2017. enqueuecommands_P(PSTR("G28\nG29 S2"));
  2018. break;
  2019. case MeshNext:
  2020. if (probe_point < 0) {
  2021. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2022. return;
  2023. }
  2024. if (probe_point == 0) {
  2025. // Set Z to a positive value before recording the first Z.
  2026. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2027. sync_plan_position();
  2028. }
  2029. else {
  2030. // For others, save the Z of the previous point, then raise Z again.
  2031. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  2032. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  2033. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2034. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2035. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2036. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  2037. st_synchronize();
  2038. }
  2039. // Is there another point to sample? Move there.
  2040. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  2041. ix = probe_point % MESH_NUM_X_POINTS;
  2042. iy = probe_point / MESH_NUM_X_POINTS;
  2043. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2044. current_position[X_AXIS] = mbl.get_x(ix);
  2045. current_position[Y_AXIS] = mbl.get_y(iy);
  2046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  2047. st_synchronize();
  2048. probe_point++;
  2049. }
  2050. else {
  2051. // After recording the last point, activate the mbl and home
  2052. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2053. probe_point = -1;
  2054. mbl.active = 1;
  2055. enqueuecommands_P(PSTR("G28"));
  2056. }
  2057. break;
  2058. case MeshSet:
  2059. if (code_seen('X')) {
  2060. ix = code_value_long()-1;
  2061. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2062. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2063. return;
  2064. }
  2065. } else {
  2066. SERIAL_PROTOCOLPGM("X not entered.\n");
  2067. return;
  2068. }
  2069. if (code_seen('Y')) {
  2070. iy = code_value_long()-1;
  2071. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2072. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2073. return;
  2074. }
  2075. } else {
  2076. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2077. return;
  2078. }
  2079. if (code_seen('Z')) {
  2080. z = code_value();
  2081. } else {
  2082. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2083. return;
  2084. }
  2085. mbl.z_values[iy][ix] = z;
  2086. } // switch(state)
  2087. }
  2088. #elif defined(ENABLE_AUTO_BED_LEVELING)
  2089. void out_of_range_error(const char *p_edge) {
  2090. SERIAL_PROTOCOLPGM("?Probe ");
  2091. serialprintPGM(p_edge);
  2092. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2093. }
  2094. /**
  2095. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2096. * Will fail if the printer has not been homed with G28.
  2097. *
  2098. * Enhanced G29 Auto Bed Leveling Probe Routine
  2099. *
  2100. * Parameters With AUTO_BED_LEVELING_GRID:
  2101. *
  2102. * P Set the size of the grid that will be probed (P x P points).
  2103. * Not supported by non-linear delta printer bed leveling.
  2104. * Example: "G29 P4"
  2105. *
  2106. * S Set the XY travel speed between probe points (in mm/min)
  2107. *
  2108. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2109. * or clean the rotation Matrix. Useful to check the topology
  2110. * after a first run of G29.
  2111. *
  2112. * V Set the verbose level (0-4). Example: "G29 V3"
  2113. *
  2114. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2115. * This is useful for manual bed leveling and finding flaws in the bed (to
  2116. * assist with part placement).
  2117. * Not supported by non-linear delta printer bed leveling.
  2118. *
  2119. * F Set the Front limit of the probing grid
  2120. * B Set the Back limit of the probing grid
  2121. * L Set the Left limit of the probing grid
  2122. * R Set the Right limit of the probing grid
  2123. *
  2124. * Global Parameters:
  2125. *
  2126. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2127. * Include "E" to engage/disengage the probe for each sample.
  2128. * There's no extra effect if you have a fixed probe.
  2129. * Usage: "G29 E" or "G29 e"
  2130. *
  2131. */
  2132. inline void gcode_G29() {
  2133. // Don't allow auto-leveling without homing first
  2134. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2135. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2136. SERIAL_ECHO_START;
  2137. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2138. return;
  2139. }
  2140. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2141. if (verbose_level < 0 || verbose_level > 4) {
  2142. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2143. return;
  2144. }
  2145. bool dryrun = code_seen('D'),
  2146. deploy_probe_for_each_reading = code_seen('E');
  2147. #ifdef AUTO_BED_LEVELING_GRID
  2148. #ifndef DELTA
  2149. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2150. #endif
  2151. if (verbose_level > 0) {
  2152. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2153. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2154. }
  2155. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2156. #ifndef DELTA
  2157. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2158. if (auto_bed_leveling_grid_points < 2) {
  2159. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2160. return;
  2161. }
  2162. #endif
  2163. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2164. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2165. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2166. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2167. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2168. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2169. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2170. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2171. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2172. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2173. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2174. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2175. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2176. if (left_out || right_out || front_out || back_out) {
  2177. if (left_out) {
  2178. out_of_range_error(PSTR("(L)eft"));
  2179. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2180. }
  2181. if (right_out) {
  2182. out_of_range_error(PSTR("(R)ight"));
  2183. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2184. }
  2185. if (front_out) {
  2186. out_of_range_error(PSTR("(F)ront"));
  2187. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2188. }
  2189. if (back_out) {
  2190. out_of_range_error(PSTR("(B)ack"));
  2191. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2192. }
  2193. return;
  2194. }
  2195. #endif // AUTO_BED_LEVELING_GRID
  2196. #ifdef Z_PROBE_SLED
  2197. dock_sled(false); // engage (un-dock) the probe
  2198. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2199. deploy_z_probe();
  2200. #endif
  2201. st_synchronize();
  2202. if (!dryrun) {
  2203. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2204. plan_bed_level_matrix.set_to_identity();
  2205. #ifdef DELTA
  2206. reset_bed_level();
  2207. #else //!DELTA
  2208. //vector_3 corrected_position = plan_get_position_mm();
  2209. //corrected_position.debug("position before G29");
  2210. vector_3 uncorrected_position = plan_get_position();
  2211. //uncorrected_position.debug("position during G29");
  2212. current_position[X_AXIS] = uncorrected_position.x;
  2213. current_position[Y_AXIS] = uncorrected_position.y;
  2214. current_position[Z_AXIS] = uncorrected_position.z;
  2215. sync_plan_position();
  2216. #endif // !DELTA
  2217. }
  2218. setup_for_endstop_move();
  2219. feedrate = homing_feedrate[Z_AXIS];
  2220. #ifdef AUTO_BED_LEVELING_GRID
  2221. // probe at the points of a lattice grid
  2222. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2223. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2224. #ifdef DELTA
  2225. delta_grid_spacing[0] = xGridSpacing;
  2226. delta_grid_spacing[1] = yGridSpacing;
  2227. float z_offset = zprobe_zoffset;
  2228. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2229. #else // !DELTA
  2230. // solve the plane equation ax + by + d = z
  2231. // A is the matrix with rows [x y 1] for all the probed points
  2232. // B is the vector of the Z positions
  2233. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2234. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2235. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2236. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2237. eqnBVector[abl2], // "B" vector of Z points
  2238. mean = 0.0;
  2239. #endif // !DELTA
  2240. int probePointCounter = 0;
  2241. bool zig = true;
  2242. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2243. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2244. int xStart, xStop, xInc;
  2245. if (zig) {
  2246. xStart = 0;
  2247. xStop = auto_bed_leveling_grid_points;
  2248. xInc = 1;
  2249. }
  2250. else {
  2251. xStart = auto_bed_leveling_grid_points - 1;
  2252. xStop = -1;
  2253. xInc = -1;
  2254. }
  2255. #ifndef DELTA
  2256. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2257. // This gets the probe points in more readable order.
  2258. if (!do_topography_map) zig = !zig;
  2259. #else
  2260. zig = !zig;
  2261. #endif
  2262. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2263. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2264. // raise extruder
  2265. float measured_z,
  2266. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2267. #ifdef DELTA
  2268. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2269. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2270. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2271. #endif //DELTA
  2272. ProbeAction act;
  2273. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2274. act = ProbeDeployAndStow;
  2275. else if (yCount == 0 && xCount == xStart)
  2276. act = ProbeDeploy;
  2277. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2278. act = ProbeStow;
  2279. else
  2280. act = ProbeStay;
  2281. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2282. #ifndef DELTA
  2283. mean += measured_z;
  2284. eqnBVector[probePointCounter] = measured_z;
  2285. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2286. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2287. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2288. #else
  2289. bed_level[xCount][yCount] = measured_z + z_offset;
  2290. #endif
  2291. probePointCounter++;
  2292. idle();
  2293. } //xProbe
  2294. } //yProbe
  2295. clean_up_after_endstop_move();
  2296. #ifdef DELTA
  2297. if (!dryrun) extrapolate_unprobed_bed_level();
  2298. print_bed_level();
  2299. #else // !DELTA
  2300. // solve lsq problem
  2301. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2302. mean /= abl2;
  2303. if (verbose_level) {
  2304. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2305. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2306. SERIAL_PROTOCOLPGM(" b: ");
  2307. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2308. SERIAL_PROTOCOLPGM(" d: ");
  2309. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2310. SERIAL_EOL;
  2311. if (verbose_level > 2) {
  2312. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2313. SERIAL_PROTOCOL_F(mean, 8);
  2314. SERIAL_EOL;
  2315. }
  2316. }
  2317. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2318. free(plane_equation_coefficients);
  2319. // Show the Topography map if enabled
  2320. if (do_topography_map) {
  2321. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2322. SERIAL_PROTOCOLPGM("+-----------+\n");
  2323. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2324. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2325. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2326. SERIAL_PROTOCOLPGM("+-----------+\n");
  2327. float min_diff = 999;
  2328. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2329. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2330. int ind = yy * auto_bed_leveling_grid_points + xx;
  2331. float diff = eqnBVector[ind] - mean;
  2332. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2333. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2334. z_tmp = 0;
  2335. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2336. if (eqnBVector[ind] - z_tmp < min_diff)
  2337. min_diff = eqnBVector[ind] - z_tmp;
  2338. if (diff >= 0.0)
  2339. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2340. else
  2341. SERIAL_PROTOCOLCHAR(' ');
  2342. SERIAL_PROTOCOL_F(diff, 5);
  2343. } // xx
  2344. SERIAL_EOL;
  2345. } // yy
  2346. SERIAL_EOL;
  2347. if (verbose_level > 3) {
  2348. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2349. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2350. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2351. int ind = yy * auto_bed_leveling_grid_points + xx;
  2352. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2353. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2354. z_tmp = 0;
  2355. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2356. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2357. if (diff >= 0.0)
  2358. SERIAL_PROTOCOLPGM(" +");
  2359. // Include + for column alignment
  2360. else
  2361. SERIAL_PROTOCOLCHAR(' ');
  2362. SERIAL_PROTOCOL_F(diff, 5);
  2363. } // xx
  2364. SERIAL_EOL;
  2365. } // yy
  2366. SERIAL_EOL;
  2367. }
  2368. } //do_topography_map
  2369. #endif //!DELTA
  2370. #else // !AUTO_BED_LEVELING_GRID
  2371. // Actions for each probe
  2372. ProbeAction p1, p2, p3;
  2373. if (deploy_probe_for_each_reading)
  2374. p1 = p2 = p3 = ProbeDeployAndStow;
  2375. else
  2376. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2377. // Probe at 3 arbitrary points
  2378. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2379. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2380. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2381. clean_up_after_endstop_move();
  2382. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2383. #endif // !AUTO_BED_LEVELING_GRID
  2384. #ifndef DELTA
  2385. if (verbose_level > 0)
  2386. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2387. if (!dryrun) {
  2388. // Correct the Z height difference from z-probe position and hotend tip position.
  2389. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2390. // When the bed is uneven, this height must be corrected.
  2391. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2392. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2393. z_tmp = current_position[Z_AXIS],
  2394. real_z = st_get_position_mm(Z_AXIS); //get the real Z (since the auto bed leveling is already correcting the plane)
  2395. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2396. //line below controls z probe offset, zprobe_zoffset is the actual offset that can be modified via m851 or is read from EEPROM
  2397. current_position[Z_AXIS] = z_tmp - real_z - zprobe_zoffset; // The difference is added to current position and sent to planner.
  2398. sync_plan_position();
  2399. }
  2400. #endif // !DELTA
  2401. #ifdef Z_PROBE_SLED
  2402. dock_sled(true); // dock the probe
  2403. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2404. stow_z_probe();
  2405. #endif
  2406. #ifdef Z_PROBE_END_SCRIPT
  2407. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2408. st_synchronize();
  2409. #endif
  2410. }
  2411. #ifndef Z_PROBE_SLED
  2412. inline void gcode_G30() {
  2413. deploy_z_probe(); // Engage Z Servo endstop if available
  2414. st_synchronize();
  2415. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2416. setup_for_endstop_move();
  2417. feedrate = homing_feedrate[Z_AXIS];
  2418. run_z_probe();
  2419. SERIAL_PROTOCOLPGM("Bed X: ");
  2420. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2421. SERIAL_PROTOCOLPGM(" Y: ");
  2422. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2423. SERIAL_PROTOCOLPGM(" Z: ");
  2424. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2425. SERIAL_EOL;
  2426. clean_up_after_endstop_move();
  2427. stow_z_probe(); // Retract Z Servo endstop if available
  2428. }
  2429. #endif //!Z_PROBE_SLED
  2430. #endif //ENABLE_AUTO_BED_LEVELING
  2431. /**
  2432. * G92: Set current position to given X Y Z E
  2433. */
  2434. inline void gcode_G92() {
  2435. if (!code_seen(axis_codes[E_AXIS]))
  2436. st_synchronize();
  2437. bool didXYZ = false;
  2438. for (int i = 0; i < NUM_AXIS; i++) {
  2439. if (code_seen(axis_codes[i])) {
  2440. float v = current_position[i] = code_value();
  2441. if (i == E_AXIS)
  2442. plan_set_e_position(v);
  2443. else
  2444. didXYZ = true;
  2445. }
  2446. }
  2447. if (didXYZ) {
  2448. #if defined(DELTA) || defined(SCARA)
  2449. sync_plan_position_delta();
  2450. #else
  2451. sync_plan_position();
  2452. #endif
  2453. }
  2454. }
  2455. #ifdef ULTIPANEL
  2456. /**
  2457. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2458. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2459. */
  2460. inline void gcode_M0_M1() {
  2461. char *args = current_command_args;
  2462. millis_t codenum = 0;
  2463. bool hasP = false, hasS = false;
  2464. if (code_seen('P')) {
  2465. codenum = code_value_short(); // milliseconds to wait
  2466. hasP = codenum > 0;
  2467. }
  2468. if (code_seen('S')) {
  2469. codenum = code_value() * 1000; // seconds to wait
  2470. hasS = codenum > 0;
  2471. }
  2472. if (!hasP && !hasS && *args != '\0')
  2473. lcd_setstatus(args, true);
  2474. else {
  2475. LCD_MESSAGEPGM(MSG_USERWAIT);
  2476. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2477. dontExpireStatus();
  2478. #endif
  2479. }
  2480. lcd_ignore_click();
  2481. st_synchronize();
  2482. refresh_cmd_timeout();
  2483. if (codenum > 0) {
  2484. codenum += previous_cmd_ms; // wait until this time for a click
  2485. while (millis() < codenum && !lcd_clicked()) idle();
  2486. lcd_ignore_click(false);
  2487. }
  2488. else {
  2489. if (!lcd_detected()) return;
  2490. while (!lcd_clicked()) idle();
  2491. }
  2492. if (IS_SD_PRINTING)
  2493. LCD_MESSAGEPGM(MSG_RESUMING);
  2494. else
  2495. LCD_MESSAGEPGM(WELCOME_MSG);
  2496. }
  2497. #endif // ULTIPANEL
  2498. /**
  2499. * M17: Enable power on all stepper motors
  2500. */
  2501. inline void gcode_M17() {
  2502. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2503. enable_all_steppers();
  2504. }
  2505. #ifdef SDSUPPORT
  2506. /**
  2507. * M20: List SD card to serial output
  2508. */
  2509. inline void gcode_M20() {
  2510. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2511. card.ls();
  2512. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2513. }
  2514. /**
  2515. * M21: Init SD Card
  2516. */
  2517. inline void gcode_M21() {
  2518. card.initsd();
  2519. }
  2520. /**
  2521. * M22: Release SD Card
  2522. */
  2523. inline void gcode_M22() {
  2524. card.release();
  2525. }
  2526. /**
  2527. * M23: Select a file
  2528. */
  2529. inline void gcode_M23() {
  2530. card.openFile(current_command_args, true);
  2531. }
  2532. /**
  2533. * M24: Start SD Print
  2534. */
  2535. inline void gcode_M24() {
  2536. card.startFileprint();
  2537. print_job_start_ms = millis();
  2538. }
  2539. /**
  2540. * M25: Pause SD Print
  2541. */
  2542. inline void gcode_M25() {
  2543. card.pauseSDPrint();
  2544. }
  2545. /**
  2546. * M26: Set SD Card file index
  2547. */
  2548. inline void gcode_M26() {
  2549. if (card.cardOK && code_seen('S'))
  2550. card.setIndex(code_value_short());
  2551. }
  2552. /**
  2553. * M27: Get SD Card status
  2554. */
  2555. inline void gcode_M27() {
  2556. card.getStatus();
  2557. }
  2558. /**
  2559. * M28: Start SD Write
  2560. */
  2561. inline void gcode_M28() {
  2562. card.openFile(current_command_args, false);
  2563. }
  2564. /**
  2565. * M29: Stop SD Write
  2566. * Processed in write to file routine above
  2567. */
  2568. inline void gcode_M29() {
  2569. // card.saving = false;
  2570. }
  2571. /**
  2572. * M30 <filename>: Delete SD Card file
  2573. */
  2574. inline void gcode_M30() {
  2575. if (card.cardOK) {
  2576. card.closefile();
  2577. card.removeFile(current_command_args);
  2578. }
  2579. }
  2580. #endif
  2581. /**
  2582. * M31: Get the time since the start of SD Print (or last M109)
  2583. */
  2584. inline void gcode_M31() {
  2585. print_job_stop_ms = millis();
  2586. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2587. int min = t / 60, sec = t % 60;
  2588. char time[30];
  2589. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2590. SERIAL_ECHO_START;
  2591. SERIAL_ECHOLN(time);
  2592. lcd_setstatus(time);
  2593. autotempShutdown();
  2594. }
  2595. #ifdef SDSUPPORT
  2596. /**
  2597. * M32: Select file and start SD Print
  2598. */
  2599. inline void gcode_M32() {
  2600. if (card.sdprinting)
  2601. st_synchronize();
  2602. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2603. if (!namestartpos)
  2604. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2605. else
  2606. namestartpos++; //to skip the '!'
  2607. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2608. if (card.cardOK) {
  2609. card.openFile(namestartpos, true, !call_procedure);
  2610. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2611. card.setIndex(code_value_short());
  2612. card.startFileprint();
  2613. if (!call_procedure)
  2614. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2615. }
  2616. }
  2617. #ifdef LONG_FILENAME_HOST_SUPPORT
  2618. /**
  2619. * M33: Get the long full path of a file or folder
  2620. *
  2621. * Parameters:
  2622. * <dospath> Case-insensitive DOS-style path to a file or folder
  2623. *
  2624. * Example:
  2625. * M33 miscel~1/armchair/armcha~1.gco
  2626. *
  2627. * Output:
  2628. * /Miscellaneous/Armchair/Armchair.gcode
  2629. */
  2630. inline void gcode_M33() {
  2631. card.printLongPath(current_command_args);
  2632. }
  2633. #endif
  2634. /**
  2635. * M928: Start SD Write
  2636. */
  2637. inline void gcode_M928() {
  2638. card.openLogFile(current_command_args);
  2639. }
  2640. #endif // SDSUPPORT
  2641. /**
  2642. * M42: Change pin status via GCode
  2643. */
  2644. inline void gcode_M42() {
  2645. if (code_seen('S')) {
  2646. int pin_status = code_value_short(),
  2647. pin_number = LED_PIN;
  2648. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2649. pin_number = code_value_short();
  2650. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2651. if (sensitive_pins[i] == pin_number) {
  2652. pin_number = -1;
  2653. break;
  2654. }
  2655. }
  2656. #if HAS_FAN
  2657. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2658. #endif
  2659. if (pin_number > -1) {
  2660. pinMode(pin_number, OUTPUT);
  2661. digitalWrite(pin_number, pin_status);
  2662. analogWrite(pin_number, pin_status);
  2663. }
  2664. } // code_seen('S')
  2665. }
  2666. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2667. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2668. #ifdef Z_PROBE_ENDSTOP
  2669. #if !HAS_Z_PROBE
  2670. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2671. #endif
  2672. #elif !HAS_Z_MIN
  2673. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2674. #endif
  2675. /**
  2676. * M48: Z-Probe repeatability measurement function.
  2677. *
  2678. * Usage:
  2679. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2680. * P = Number of sampled points (4-50, default 10)
  2681. * X = Sample X position
  2682. * Y = Sample Y position
  2683. * V = Verbose level (0-4, default=1)
  2684. * E = Engage probe for each reading
  2685. * L = Number of legs of movement before probe
  2686. *
  2687. * This function assumes the bed has been homed. Specifically, that a G28 command
  2688. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2689. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2690. * regenerated.
  2691. */
  2692. inline void gcode_M48() {
  2693. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2694. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2695. if (code_seen('V')) {
  2696. verbose_level = code_value_short();
  2697. if (verbose_level < 0 || verbose_level > 4 ) {
  2698. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2699. return;
  2700. }
  2701. }
  2702. if (verbose_level > 0)
  2703. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2704. if (code_seen('P')) {
  2705. n_samples = code_value_short();
  2706. if (n_samples < 4 || n_samples > 50) {
  2707. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2708. return;
  2709. }
  2710. }
  2711. double X_current = st_get_position_mm(X_AXIS),
  2712. Y_current = st_get_position_mm(Y_AXIS),
  2713. Z_current = st_get_position_mm(Z_AXIS),
  2714. E_current = st_get_position_mm(E_AXIS),
  2715. X_probe_location = X_current, Y_probe_location = Y_current,
  2716. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2717. bool deploy_probe_for_each_reading = code_seen('E');
  2718. if (code_seen('X')) {
  2719. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2720. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2721. out_of_range_error(PSTR("X"));
  2722. return;
  2723. }
  2724. }
  2725. if (code_seen('Y')) {
  2726. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2727. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2728. out_of_range_error(PSTR("Y"));
  2729. return;
  2730. }
  2731. }
  2732. if (code_seen('L')) {
  2733. n_legs = code_value_short();
  2734. if (n_legs == 1) n_legs = 2;
  2735. if (n_legs < 0 || n_legs > 15) {
  2736. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2737. return;
  2738. }
  2739. }
  2740. //
  2741. // Do all the preliminary setup work. First raise the probe.
  2742. //
  2743. st_synchronize();
  2744. plan_bed_level_matrix.set_to_identity();
  2745. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2746. st_synchronize();
  2747. //
  2748. // Now get everything to the specified probe point So we can safely do a probe to
  2749. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2750. // use that as a starting point for each probe.
  2751. //
  2752. if (verbose_level > 2)
  2753. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2754. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2755. E_current,
  2756. homing_feedrate[X_AXIS]/60,
  2757. active_extruder);
  2758. st_synchronize();
  2759. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2760. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2761. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2762. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2763. //
  2764. // OK, do the initial probe to get us close to the bed.
  2765. // Then retrace the right amount and use that in subsequent probes
  2766. //
  2767. deploy_z_probe();
  2768. setup_for_endstop_move();
  2769. run_z_probe();
  2770. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2771. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2772. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2773. E_current,
  2774. homing_feedrate[X_AXIS]/60,
  2775. active_extruder);
  2776. st_synchronize();
  2777. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2778. if (deploy_probe_for_each_reading) stow_z_probe();
  2779. for (uint8_t n=0; n < n_samples; n++) {
  2780. // Make sure we are at the probe location
  2781. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2782. if (n_legs) {
  2783. millis_t ms = millis();
  2784. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2785. theta = RADIANS(ms % 360L);
  2786. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2787. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2788. //SERIAL_ECHOPAIR(" theta: ",theta);
  2789. //SERIAL_ECHOPAIR(" direction: ",dir);
  2790. //SERIAL_EOL;
  2791. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2792. ms = millis();
  2793. theta += RADIANS(dir * (ms % 20L));
  2794. radius += (ms % 10L) - 5L;
  2795. if (radius < 0.0) radius = -radius;
  2796. X_current = X_probe_location + cos(theta) * radius;
  2797. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2798. Y_current = Y_probe_location + sin(theta) * radius;
  2799. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2800. if (verbose_level > 3) {
  2801. SERIAL_ECHOPAIR("x: ", X_current);
  2802. SERIAL_ECHOPAIR("y: ", Y_current);
  2803. SERIAL_EOL;
  2804. }
  2805. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2806. } // n_legs loop
  2807. // Go back to the probe location
  2808. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2809. } // n_legs
  2810. if (deploy_probe_for_each_reading) {
  2811. deploy_z_probe();
  2812. delay(1000);
  2813. }
  2814. setup_for_endstop_move();
  2815. run_z_probe();
  2816. sample_set[n] = current_position[Z_AXIS];
  2817. //
  2818. // Get the current mean for the data points we have so far
  2819. //
  2820. sum = 0.0;
  2821. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2822. mean = sum / (n + 1);
  2823. //
  2824. // Now, use that mean to calculate the standard deviation for the
  2825. // data points we have so far
  2826. //
  2827. sum = 0.0;
  2828. for (uint8_t j = 0; j <= n; j++) {
  2829. float ss = sample_set[j] - mean;
  2830. sum += ss * ss;
  2831. }
  2832. sigma = sqrt(sum / (n + 1));
  2833. if (verbose_level > 1) {
  2834. SERIAL_PROTOCOL(n+1);
  2835. SERIAL_PROTOCOLPGM(" of ");
  2836. SERIAL_PROTOCOL((int)n_samples);
  2837. SERIAL_PROTOCOLPGM(" z: ");
  2838. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2839. if (verbose_level > 2) {
  2840. SERIAL_PROTOCOLPGM(" mean: ");
  2841. SERIAL_PROTOCOL_F(mean,6);
  2842. SERIAL_PROTOCOLPGM(" sigma: ");
  2843. SERIAL_PROTOCOL_F(sigma,6);
  2844. }
  2845. }
  2846. if (verbose_level > 0) SERIAL_EOL;
  2847. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2848. st_synchronize();
  2849. // Stow between
  2850. if (deploy_probe_for_each_reading) {
  2851. stow_z_probe();
  2852. delay(1000);
  2853. }
  2854. }
  2855. // Stow after
  2856. if (!deploy_probe_for_each_reading) {
  2857. stow_z_probe();
  2858. delay(1000);
  2859. }
  2860. clean_up_after_endstop_move();
  2861. if (verbose_level > 0) {
  2862. SERIAL_PROTOCOLPGM("Mean: ");
  2863. SERIAL_PROTOCOL_F(mean, 6);
  2864. SERIAL_EOL;
  2865. }
  2866. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2867. SERIAL_PROTOCOL_F(sigma, 6);
  2868. SERIAL_EOL; SERIAL_EOL;
  2869. }
  2870. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2871. /**
  2872. * M104: Set hot end temperature
  2873. */
  2874. inline void gcode_M104() {
  2875. if (setTargetedHotend(104)) return;
  2876. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2877. if (code_seen('S')) {
  2878. float temp = code_value();
  2879. setTargetHotend(temp, target_extruder);
  2880. #ifdef DUAL_X_CARRIAGE
  2881. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2882. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2883. #endif
  2884. }
  2885. }
  2886. /**
  2887. * M105: Read hot end and bed temperature
  2888. */
  2889. inline void gcode_M105() {
  2890. if (setTargetedHotend(105)) return;
  2891. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2892. SERIAL_PROTOCOLPGM(MSG_OK);
  2893. #if HAS_TEMP_0 || defined(HEATER_0_USES_MAX6675)
  2894. SERIAL_PROTOCOLPGM(" T:");
  2895. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2896. SERIAL_PROTOCOLPGM(" /");
  2897. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2898. #endif
  2899. #if HAS_TEMP_BED
  2900. SERIAL_PROTOCOLPGM(" B:");
  2901. SERIAL_PROTOCOL_F(degBed(), 1);
  2902. SERIAL_PROTOCOLPGM(" /");
  2903. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2904. #endif
  2905. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2906. SERIAL_PROTOCOLPGM(" T");
  2907. SERIAL_PROTOCOL(e);
  2908. SERIAL_PROTOCOLCHAR(':');
  2909. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2910. SERIAL_PROTOCOLPGM(" /");
  2911. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2912. }
  2913. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2914. SERIAL_ERROR_START;
  2915. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2916. #endif
  2917. SERIAL_PROTOCOLPGM(" @:");
  2918. #ifdef EXTRUDER_WATTS
  2919. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2920. SERIAL_PROTOCOLCHAR('W');
  2921. #else
  2922. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2923. #endif
  2924. SERIAL_PROTOCOLPGM(" B@:");
  2925. #ifdef BED_WATTS
  2926. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2927. SERIAL_PROTOCOLCHAR('W');
  2928. #else
  2929. SERIAL_PROTOCOL(getHeaterPower(-1));
  2930. #endif
  2931. #ifdef SHOW_TEMP_ADC_VALUES
  2932. #if HAS_TEMP_BED
  2933. SERIAL_PROTOCOLPGM(" ADC B:");
  2934. SERIAL_PROTOCOL_F(degBed(),1);
  2935. SERIAL_PROTOCOLPGM("C->");
  2936. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2937. #endif
  2938. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2939. SERIAL_PROTOCOLPGM(" T");
  2940. SERIAL_PROTOCOL(cur_extruder);
  2941. SERIAL_PROTOCOLCHAR(':');
  2942. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2943. SERIAL_PROTOCOLPGM("C->");
  2944. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2945. }
  2946. #endif
  2947. SERIAL_EOL;
  2948. }
  2949. #if HAS_FAN
  2950. /**
  2951. * M106: Set Fan Speed
  2952. */
  2953. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2954. /**
  2955. * M107: Fan Off
  2956. */
  2957. inline void gcode_M107() { fanSpeed = 0; }
  2958. #endif // HAS_FAN
  2959. /**
  2960. * M109: Wait for extruder(s) to reach temperature
  2961. */
  2962. inline void gcode_M109() {
  2963. if (setTargetedHotend(109)) return;
  2964. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2965. LCD_MESSAGEPGM(MSG_HEATING);
  2966. no_wait_for_cooling = code_seen('S');
  2967. if (no_wait_for_cooling || code_seen('R')) {
  2968. float temp = code_value();
  2969. setTargetHotend(temp, target_extruder);
  2970. #ifdef DUAL_X_CARRIAGE
  2971. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2972. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2973. #endif
  2974. }
  2975. #ifdef AUTOTEMP
  2976. autotemp_enabled = code_seen('F');
  2977. if (autotemp_enabled) autotemp_factor = code_value();
  2978. if (code_seen('S')) autotemp_min = code_value();
  2979. if (code_seen('B')) autotemp_max = code_value();
  2980. #endif
  2981. millis_t temp_ms = millis();
  2982. /* See if we are heating up or cooling down */
  2983. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2984. cancel_heatup = false;
  2985. #ifdef TEMP_RESIDENCY_TIME
  2986. long residency_start_ms = -1;
  2987. /* continue to loop until we have reached the target temp
  2988. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2989. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2990. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2991. #else
  2992. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2993. #endif //TEMP_RESIDENCY_TIME
  2994. { // while loop
  2995. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2996. SERIAL_PROTOCOLPGM("T:");
  2997. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2998. SERIAL_PROTOCOLPGM(" E:");
  2999. SERIAL_PROTOCOL((int)target_extruder);
  3000. #ifdef TEMP_RESIDENCY_TIME
  3001. SERIAL_PROTOCOLPGM(" W:");
  3002. if (residency_start_ms > -1) {
  3003. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  3004. SERIAL_PROTOCOLLN(temp_ms);
  3005. }
  3006. else {
  3007. SERIAL_PROTOCOLLNPGM("?");
  3008. }
  3009. #else
  3010. SERIAL_EOL;
  3011. #endif
  3012. temp_ms = millis();
  3013. }
  3014. idle();
  3015. #ifdef TEMP_RESIDENCY_TIME
  3016. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  3017. // or when current temp falls outside the hysteresis after target temp was reached
  3018. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  3019. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  3020. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  3021. {
  3022. residency_start_ms = millis();
  3023. }
  3024. #endif //TEMP_RESIDENCY_TIME
  3025. }
  3026. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3027. refresh_cmd_timeout();
  3028. print_job_start_ms = previous_cmd_ms;
  3029. }
  3030. #if HAS_TEMP_BED
  3031. /**
  3032. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3033. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3034. */
  3035. inline void gcode_M190() {
  3036. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3037. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3038. no_wait_for_cooling = code_seen('S');
  3039. if (no_wait_for_cooling || code_seen('R'))
  3040. setTargetBed(code_value());
  3041. millis_t temp_ms = millis();
  3042. cancel_heatup = false;
  3043. target_direction = isHeatingBed(); // true if heating, false if cooling
  3044. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  3045. millis_t ms = millis();
  3046. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  3047. temp_ms = ms;
  3048. float tt = degHotend(active_extruder);
  3049. SERIAL_PROTOCOLPGM("T:");
  3050. SERIAL_PROTOCOL(tt);
  3051. SERIAL_PROTOCOLPGM(" E:");
  3052. SERIAL_PROTOCOL((int)active_extruder);
  3053. SERIAL_PROTOCOLPGM(" B:");
  3054. SERIAL_PROTOCOL_F(degBed(), 1);
  3055. SERIAL_EOL;
  3056. }
  3057. idle();
  3058. }
  3059. LCD_MESSAGEPGM(MSG_BED_DONE);
  3060. refresh_cmd_timeout();
  3061. }
  3062. #endif // HAS_TEMP_BED
  3063. /**
  3064. * M111: Set the debug level
  3065. */
  3066. inline void gcode_M111() {
  3067. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_COMMUNICATION;
  3068. if (marlin_debug_flags & DEBUG_ECHO) {
  3069. SERIAL_ECHO_START;
  3070. SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  3071. }
  3072. // FOR MOMENT NOT ACTIVE
  3073. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3074. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3075. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3076. SERIAL_ECHO_START;
  3077. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3078. disable_all_heaters();
  3079. }
  3080. }
  3081. /**
  3082. * M112: Emergency Stop
  3083. */
  3084. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3085. #ifdef BARICUDA
  3086. #if HAS_HEATER_1
  3087. /**
  3088. * M126: Heater 1 valve open
  3089. */
  3090. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3091. /**
  3092. * M127: Heater 1 valve close
  3093. */
  3094. inline void gcode_M127() { ValvePressure = 0; }
  3095. #endif
  3096. #if HAS_HEATER_2
  3097. /**
  3098. * M128: Heater 2 valve open
  3099. */
  3100. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3101. /**
  3102. * M129: Heater 2 valve close
  3103. */
  3104. inline void gcode_M129() { EtoPPressure = 0; }
  3105. #endif
  3106. #endif //BARICUDA
  3107. /**
  3108. * M140: Set bed temperature
  3109. */
  3110. inline void gcode_M140() {
  3111. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3112. if (code_seen('S')) setTargetBed(code_value());
  3113. }
  3114. #ifdef ULTIPANEL
  3115. /**
  3116. * M145: Set the heatup state for a material in the LCD menu
  3117. * S<material> (0=PLA, 1=ABS)
  3118. * H<hotend temp>
  3119. * B<bed temp>
  3120. * F<fan speed>
  3121. */
  3122. inline void gcode_M145() {
  3123. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3124. if (material < 0 || material > 1) {
  3125. SERIAL_ERROR_START;
  3126. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3127. }
  3128. else {
  3129. int v;
  3130. switch (material) {
  3131. case 0:
  3132. if (code_seen('H')) {
  3133. v = code_value_short();
  3134. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3135. }
  3136. if (code_seen('F')) {
  3137. v = code_value_short();
  3138. plaPreheatFanSpeed = constrain(v, 0, 255);
  3139. }
  3140. #if TEMP_SENSOR_BED != 0
  3141. if (code_seen('B')) {
  3142. v = code_value_short();
  3143. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3144. }
  3145. #endif
  3146. break;
  3147. case 1:
  3148. if (code_seen('H')) {
  3149. v = code_value_short();
  3150. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3151. }
  3152. if (code_seen('F')) {
  3153. v = code_value_short();
  3154. absPreheatFanSpeed = constrain(v, 0, 255);
  3155. }
  3156. #if TEMP_SENSOR_BED != 0
  3157. if (code_seen('B')) {
  3158. v = code_value_short();
  3159. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3160. }
  3161. #endif
  3162. break;
  3163. }
  3164. }
  3165. }
  3166. #endif
  3167. #if HAS_POWER_SWITCH
  3168. /**
  3169. * M80: Turn on Power Supply
  3170. */
  3171. inline void gcode_M80() {
  3172. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3173. // If you have a switch on suicide pin, this is useful
  3174. // if you want to start another print with suicide feature after
  3175. // a print without suicide...
  3176. #if HAS_SUICIDE
  3177. OUT_WRITE(SUICIDE_PIN, HIGH);
  3178. #endif
  3179. #ifdef ULTIPANEL
  3180. powersupply = true;
  3181. LCD_MESSAGEPGM(WELCOME_MSG);
  3182. lcd_update();
  3183. #endif
  3184. }
  3185. #endif // HAS_POWER_SWITCH
  3186. /**
  3187. * M81: Turn off Power, including Power Supply, if there is one.
  3188. *
  3189. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3190. */
  3191. inline void gcode_M81() {
  3192. disable_all_heaters();
  3193. st_synchronize();
  3194. disable_e0();
  3195. disable_e1();
  3196. disable_e2();
  3197. disable_e3();
  3198. finishAndDisableSteppers();
  3199. fanSpeed = 0;
  3200. delay(1000); // Wait 1 second before switching off
  3201. #if HAS_SUICIDE
  3202. st_synchronize();
  3203. suicide();
  3204. #elif HAS_POWER_SWITCH
  3205. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3206. #endif
  3207. #ifdef ULTIPANEL
  3208. #if HAS_POWER_SWITCH
  3209. powersupply = false;
  3210. #endif
  3211. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3212. lcd_update();
  3213. #endif
  3214. }
  3215. /**
  3216. * M82: Set E codes absolute (default)
  3217. */
  3218. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3219. /**
  3220. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3221. */
  3222. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3223. /**
  3224. * M18, M84: Disable all stepper motors
  3225. */
  3226. inline void gcode_M18_M84() {
  3227. if (code_seen('S')) {
  3228. stepper_inactive_time = code_value() * 1000;
  3229. }
  3230. else {
  3231. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3232. if (all_axis) {
  3233. st_synchronize();
  3234. disable_e0();
  3235. disable_e1();
  3236. disable_e2();
  3237. disable_e3();
  3238. finishAndDisableSteppers();
  3239. }
  3240. else {
  3241. st_synchronize();
  3242. if (code_seen('X')) disable_x();
  3243. if (code_seen('Y')) disable_y();
  3244. if (code_seen('Z')) disable_z();
  3245. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3246. if (code_seen('E')) {
  3247. disable_e0();
  3248. disable_e1();
  3249. disable_e2();
  3250. disable_e3();
  3251. }
  3252. #endif
  3253. }
  3254. }
  3255. }
  3256. /**
  3257. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3258. */
  3259. inline void gcode_M85() {
  3260. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3261. }
  3262. /**
  3263. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3264. * (Follows the same syntax as G92)
  3265. */
  3266. inline void gcode_M92() {
  3267. for(int8_t i=0; i < NUM_AXIS; i++) {
  3268. if (code_seen(axis_codes[i])) {
  3269. if (i == E_AXIS) {
  3270. float value = code_value();
  3271. if (value < 20.0) {
  3272. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3273. max_e_jerk *= factor;
  3274. max_feedrate[i] *= factor;
  3275. axis_steps_per_sqr_second[i] *= factor;
  3276. }
  3277. axis_steps_per_unit[i] = value;
  3278. }
  3279. else {
  3280. axis_steps_per_unit[i] = code_value();
  3281. }
  3282. }
  3283. }
  3284. }
  3285. /**
  3286. * M114: Output current position to serial port
  3287. */
  3288. inline void gcode_M114() {
  3289. SERIAL_PROTOCOLPGM("X:");
  3290. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3291. SERIAL_PROTOCOLPGM(" Y:");
  3292. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3293. SERIAL_PROTOCOLPGM(" Z:");
  3294. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3295. SERIAL_PROTOCOLPGM(" E:");
  3296. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3297. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3298. SERIAL_PROTOCOL(st_get_position_mm(X_AXIS));
  3299. SERIAL_PROTOCOLPGM(" Y:");
  3300. SERIAL_PROTOCOL(st_get_position_mm(Y_AXIS));
  3301. SERIAL_PROTOCOLPGM(" Z:");
  3302. SERIAL_PROTOCOL(st_get_position_mm(Z_AXIS));
  3303. SERIAL_EOL;
  3304. #ifdef SCARA
  3305. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3306. SERIAL_PROTOCOL(delta[X_AXIS]);
  3307. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3308. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3309. SERIAL_EOL;
  3310. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3311. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3312. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3313. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3314. SERIAL_EOL;
  3315. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3316. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3317. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3318. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3319. SERIAL_EOL; SERIAL_EOL;
  3320. #endif
  3321. }
  3322. /**
  3323. * M115: Capabilities string
  3324. */
  3325. inline void gcode_M115() {
  3326. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3327. }
  3328. /**
  3329. * M117: Set LCD Status Message
  3330. */
  3331. inline void gcode_M117() {
  3332. lcd_setstatus(current_command_args);
  3333. }
  3334. /**
  3335. * M119: Output endstop states to serial output
  3336. */
  3337. inline void gcode_M119() {
  3338. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3339. #if HAS_X_MIN
  3340. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3341. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3342. #endif
  3343. #if HAS_X_MAX
  3344. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3345. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3346. #endif
  3347. #if HAS_Y_MIN
  3348. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3349. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3350. #endif
  3351. #if HAS_Y_MAX
  3352. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3353. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3354. #endif
  3355. #if HAS_Z_MIN
  3356. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3357. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3358. #endif
  3359. #if HAS_Z_MAX
  3360. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3361. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3362. #endif
  3363. #if HAS_Z2_MAX
  3364. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3365. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3366. #endif
  3367. #if HAS_Z_PROBE
  3368. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3369. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3370. #endif
  3371. }
  3372. /**
  3373. * M120: Enable endstops
  3374. */
  3375. inline void gcode_M120() { enable_endstops(true); }
  3376. /**
  3377. * M121: Disable endstops
  3378. */
  3379. inline void gcode_M121() { enable_endstops(false); }
  3380. #ifdef BLINKM
  3381. /**
  3382. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3383. */
  3384. inline void gcode_M150() {
  3385. SendColors(
  3386. code_seen('R') ? (byte)code_value_short() : 0,
  3387. code_seen('U') ? (byte)code_value_short() : 0,
  3388. code_seen('B') ? (byte)code_value_short() : 0
  3389. );
  3390. }
  3391. #endif // BLINKM
  3392. /**
  3393. * M200: Set filament diameter and set E axis units to cubic millimeters
  3394. *
  3395. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3396. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3397. */
  3398. inline void gcode_M200() {
  3399. if (setTargetedHotend(200)) return;
  3400. if (code_seen('D')) {
  3401. float diameter = code_value();
  3402. // setting any extruder filament size disables volumetric on the assumption that
  3403. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3404. // for all extruders
  3405. volumetric_enabled = (diameter != 0.0);
  3406. if (volumetric_enabled) {
  3407. filament_size[target_extruder] = diameter;
  3408. // make sure all extruders have some sane value for the filament size
  3409. for (int i=0; i<EXTRUDERS; i++)
  3410. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3411. }
  3412. }
  3413. else {
  3414. //reserved for setting filament diameter via UFID or filament measuring device
  3415. return;
  3416. }
  3417. calculate_volumetric_multipliers();
  3418. }
  3419. /**
  3420. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3421. */
  3422. inline void gcode_M201() {
  3423. for (int8_t i=0; i < NUM_AXIS; i++) {
  3424. if (code_seen(axis_codes[i])) {
  3425. max_acceleration_units_per_sq_second[i] = code_value();
  3426. }
  3427. }
  3428. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3429. reset_acceleration_rates();
  3430. }
  3431. #if 0 // Not used for Sprinter/grbl gen6
  3432. inline void gcode_M202() {
  3433. for(int8_t i=0; i < NUM_AXIS; i++) {
  3434. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3435. }
  3436. }
  3437. #endif
  3438. /**
  3439. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3440. */
  3441. inline void gcode_M203() {
  3442. for (int8_t i=0; i < NUM_AXIS; i++) {
  3443. if (code_seen(axis_codes[i])) {
  3444. max_feedrate[i] = code_value();
  3445. }
  3446. }
  3447. }
  3448. /**
  3449. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3450. *
  3451. * P = Printing moves
  3452. * R = Retract only (no X, Y, Z) moves
  3453. * T = Travel (non printing) moves
  3454. *
  3455. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3456. */
  3457. inline void gcode_M204() {
  3458. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3459. travel_acceleration = acceleration = code_value();
  3460. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  3461. SERIAL_EOL;
  3462. }
  3463. if (code_seen('P')) {
  3464. acceleration = code_value();
  3465. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3466. SERIAL_EOL;
  3467. }
  3468. if (code_seen('R')) {
  3469. retract_acceleration = code_value();
  3470. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3471. SERIAL_EOL;
  3472. }
  3473. if (code_seen('T')) {
  3474. travel_acceleration = code_value();
  3475. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3476. SERIAL_EOL;
  3477. }
  3478. }
  3479. /**
  3480. * M205: Set Advanced Settings
  3481. *
  3482. * S = Min Feed Rate (mm/s)
  3483. * T = Min Travel Feed Rate (mm/s)
  3484. * B = Min Segment Time (µs)
  3485. * X = Max XY Jerk (mm/s/s)
  3486. * Z = Max Z Jerk (mm/s/s)
  3487. * E = Max E Jerk (mm/s/s)
  3488. */
  3489. inline void gcode_M205() {
  3490. if (code_seen('S')) minimumfeedrate = code_value();
  3491. if (code_seen('T')) mintravelfeedrate = code_value();
  3492. if (code_seen('B')) minsegmenttime = code_value();
  3493. if (code_seen('X')) max_xy_jerk = code_value();
  3494. if (code_seen('Z')) max_z_jerk = code_value();
  3495. if (code_seen('E')) max_e_jerk = code_value();
  3496. }
  3497. /**
  3498. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3499. */
  3500. inline void gcode_M206() {
  3501. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3502. if (code_seen(axis_codes[i])) {
  3503. home_offset[i] = code_value();
  3504. }
  3505. }
  3506. #ifdef SCARA
  3507. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3508. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3509. #endif
  3510. }
  3511. #ifdef DELTA
  3512. /**
  3513. * M665: Set delta configurations
  3514. *
  3515. * L = diagonal rod
  3516. * R = delta radius
  3517. * S = segments per second
  3518. */
  3519. inline void gcode_M665() {
  3520. if (code_seen('L')) delta_diagonal_rod = code_value();
  3521. if (code_seen('R')) delta_radius = code_value();
  3522. if (code_seen('S')) delta_segments_per_second = code_value();
  3523. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3524. }
  3525. /**
  3526. * M666: Set delta endstop adjustment
  3527. */
  3528. inline void gcode_M666() {
  3529. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3530. if (code_seen(axis_codes[i])) {
  3531. endstop_adj[i] = code_value();
  3532. }
  3533. }
  3534. }
  3535. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3536. /**
  3537. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3538. */
  3539. inline void gcode_M666() {
  3540. if (code_seen('Z')) z_endstop_adj = code_value();
  3541. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3542. SERIAL_EOL;
  3543. }
  3544. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3545. #ifdef FWRETRACT
  3546. /**
  3547. * M207: Set firmware retraction values
  3548. *
  3549. * S[+mm] retract_length
  3550. * W[+mm] retract_length_swap (multi-extruder)
  3551. * F[mm/min] retract_feedrate
  3552. * Z[mm] retract_zlift
  3553. */
  3554. inline void gcode_M207() {
  3555. if (code_seen('S')) retract_length = code_value();
  3556. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3557. if (code_seen('Z')) retract_zlift = code_value();
  3558. #if EXTRUDERS > 1
  3559. if (code_seen('W')) retract_length_swap = code_value();
  3560. #endif
  3561. }
  3562. /**
  3563. * M208: Set firmware un-retraction values
  3564. *
  3565. * S[+mm] retract_recover_length (in addition to M207 S*)
  3566. * W[+mm] retract_recover_length_swap (multi-extruder)
  3567. * F[mm/min] retract_recover_feedrate
  3568. */
  3569. inline void gcode_M208() {
  3570. if (code_seen('S')) retract_recover_length = code_value();
  3571. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3572. #if EXTRUDERS > 1
  3573. if (code_seen('W')) retract_recover_length_swap = code_value();
  3574. #endif
  3575. }
  3576. /**
  3577. * M209: Enable automatic retract (M209 S1)
  3578. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3579. */
  3580. inline void gcode_M209() {
  3581. if (code_seen('S')) {
  3582. int t = code_value_short();
  3583. switch(t) {
  3584. case 0:
  3585. autoretract_enabled = false;
  3586. break;
  3587. case 1:
  3588. autoretract_enabled = true;
  3589. break;
  3590. default:
  3591. unknown_command_error();
  3592. return;
  3593. }
  3594. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3595. }
  3596. }
  3597. #endif // FWRETRACT
  3598. #if EXTRUDERS > 1
  3599. /**
  3600. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3601. */
  3602. inline void gcode_M218() {
  3603. if (setTargetedHotend(218)) return;
  3604. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3605. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3606. #ifdef DUAL_X_CARRIAGE
  3607. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3608. #endif
  3609. SERIAL_ECHO_START;
  3610. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3611. for (int e = 0; e < EXTRUDERS; e++) {
  3612. SERIAL_CHAR(' ');
  3613. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3614. SERIAL_CHAR(',');
  3615. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3616. #ifdef DUAL_X_CARRIAGE
  3617. SERIAL_CHAR(',');
  3618. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3619. #endif
  3620. }
  3621. SERIAL_EOL;
  3622. }
  3623. #endif // EXTRUDERS > 1
  3624. /**
  3625. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3626. */
  3627. inline void gcode_M220() {
  3628. if (code_seen('S')) feedrate_multiplier = code_value();
  3629. }
  3630. /**
  3631. * M221: Set extrusion percentage (M221 T0 S95)
  3632. */
  3633. inline void gcode_M221() {
  3634. if (code_seen('S')) {
  3635. int sval = code_value();
  3636. if (code_seen('T')) {
  3637. if (setTargetedHotend(221)) return;
  3638. extruder_multiplier[target_extruder] = sval;
  3639. }
  3640. else {
  3641. extruder_multiplier[active_extruder] = sval;
  3642. }
  3643. }
  3644. }
  3645. /**
  3646. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3647. */
  3648. inline void gcode_M226() {
  3649. if (code_seen('P')) {
  3650. int pin_number = code_value();
  3651. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3652. if (pin_state >= -1 && pin_state <= 1) {
  3653. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3654. if (sensitive_pins[i] == pin_number) {
  3655. pin_number = -1;
  3656. break;
  3657. }
  3658. }
  3659. if (pin_number > -1) {
  3660. int target = LOW;
  3661. st_synchronize();
  3662. pinMode(pin_number, INPUT);
  3663. switch(pin_state){
  3664. case 1:
  3665. target = HIGH;
  3666. break;
  3667. case 0:
  3668. target = LOW;
  3669. break;
  3670. case -1:
  3671. target = !digitalRead(pin_number);
  3672. break;
  3673. }
  3674. while (digitalRead(pin_number) != target) idle();
  3675. } // pin_number > -1
  3676. } // pin_state -1 0 1
  3677. } // code_seen('P')
  3678. }
  3679. #if NUM_SERVOS > 0
  3680. /**
  3681. * M280: Get or set servo position. P<index> S<angle>
  3682. */
  3683. inline void gcode_M280() {
  3684. int servo_index = code_seen('P') ? code_value_short() : -1;
  3685. int servo_position = 0;
  3686. if (code_seen('S')) {
  3687. servo_position = code_value_short();
  3688. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3689. Servo *srv = &servo[servo_index];
  3690. srv->move(0, servo_position);
  3691. }
  3692. else {
  3693. SERIAL_ECHO_START;
  3694. SERIAL_ECHO("Servo ");
  3695. SERIAL_ECHO(servo_index);
  3696. SERIAL_ECHOLN(" out of range");
  3697. }
  3698. }
  3699. else if (servo_index >= 0) {
  3700. SERIAL_PROTOCOL(MSG_OK);
  3701. SERIAL_PROTOCOL(" Servo ");
  3702. SERIAL_PROTOCOL(servo_index);
  3703. SERIAL_PROTOCOL(": ");
  3704. SERIAL_PROTOCOL(servo[servo_index].read());
  3705. SERIAL_EOL;
  3706. }
  3707. }
  3708. #endif // NUM_SERVOS > 0
  3709. #if HAS_BUZZER
  3710. /**
  3711. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3712. */
  3713. inline void gcode_M300() {
  3714. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3715. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3716. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3717. buzz(beepP, beepS);
  3718. }
  3719. #endif // HAS_BUZZER
  3720. #ifdef PIDTEMP
  3721. /**
  3722. * M301: Set PID parameters P I D (and optionally C)
  3723. */
  3724. inline void gcode_M301() {
  3725. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3726. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3727. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3728. if (e < EXTRUDERS) { // catch bad input value
  3729. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3730. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3731. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3732. #ifdef PID_ADD_EXTRUSION_RATE
  3733. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3734. #endif
  3735. updatePID();
  3736. SERIAL_PROTOCOL(MSG_OK);
  3737. #ifdef PID_PARAMS_PER_EXTRUDER
  3738. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3739. SERIAL_PROTOCOL(e);
  3740. #endif // PID_PARAMS_PER_EXTRUDER
  3741. SERIAL_PROTOCOL(" p:");
  3742. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3743. SERIAL_PROTOCOL(" i:");
  3744. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3745. SERIAL_PROTOCOL(" d:");
  3746. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3747. #ifdef PID_ADD_EXTRUSION_RATE
  3748. SERIAL_PROTOCOL(" c:");
  3749. //Kc does not have scaling applied above, or in resetting defaults
  3750. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3751. #endif
  3752. SERIAL_EOL;
  3753. }
  3754. else {
  3755. SERIAL_ECHO_START;
  3756. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3757. }
  3758. }
  3759. #endif // PIDTEMP
  3760. #ifdef PIDTEMPBED
  3761. inline void gcode_M304() {
  3762. if (code_seen('P')) bedKp = code_value();
  3763. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3764. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3765. updatePID();
  3766. SERIAL_PROTOCOL(MSG_OK);
  3767. SERIAL_PROTOCOL(" p:");
  3768. SERIAL_PROTOCOL(bedKp);
  3769. SERIAL_PROTOCOL(" i:");
  3770. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3771. SERIAL_PROTOCOL(" d:");
  3772. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3773. SERIAL_EOL;
  3774. }
  3775. #endif // PIDTEMPBED
  3776. #if defined(CHDK) || HAS_PHOTOGRAPH
  3777. /**
  3778. * M240: Trigger a camera by emulating a Canon RC-1
  3779. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3780. */
  3781. inline void gcode_M240() {
  3782. #ifdef CHDK
  3783. OUT_WRITE(CHDK, HIGH);
  3784. chdkHigh = millis();
  3785. chdkActive = true;
  3786. #elif HAS_PHOTOGRAPH
  3787. const uint8_t NUM_PULSES = 16;
  3788. const float PULSE_LENGTH = 0.01524;
  3789. for (int i = 0; i < NUM_PULSES; i++) {
  3790. WRITE(PHOTOGRAPH_PIN, HIGH);
  3791. _delay_ms(PULSE_LENGTH);
  3792. WRITE(PHOTOGRAPH_PIN, LOW);
  3793. _delay_ms(PULSE_LENGTH);
  3794. }
  3795. delay(7.33);
  3796. for (int i = 0; i < NUM_PULSES; i++) {
  3797. WRITE(PHOTOGRAPH_PIN, HIGH);
  3798. _delay_ms(PULSE_LENGTH);
  3799. WRITE(PHOTOGRAPH_PIN, LOW);
  3800. _delay_ms(PULSE_LENGTH);
  3801. }
  3802. #endif // !CHDK && HAS_PHOTOGRAPH
  3803. }
  3804. #endif // CHDK || PHOTOGRAPH_PIN
  3805. #ifdef HAS_LCD_CONTRAST
  3806. /**
  3807. * M250: Read and optionally set the LCD contrast
  3808. */
  3809. inline void gcode_M250() {
  3810. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3811. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3812. SERIAL_PROTOCOL(lcd_contrast);
  3813. SERIAL_EOL;
  3814. }
  3815. #endif // HAS_LCD_CONTRAST
  3816. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3817. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3818. /**
  3819. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3820. */
  3821. inline void gcode_M302() {
  3822. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3823. }
  3824. #endif // PREVENT_DANGEROUS_EXTRUDE
  3825. /**
  3826. * M303: PID relay autotune
  3827. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3828. * E<extruder> (-1 for the bed)
  3829. * C<cycles>
  3830. */
  3831. inline void gcode_M303() {
  3832. int e = code_seen('E') ? code_value_short() : 0;
  3833. int c = code_seen('C') ? code_value_short() : 5;
  3834. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3835. PID_autotune(temp, e, c);
  3836. }
  3837. #ifdef SCARA
  3838. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3839. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3840. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3841. if (IsRunning()) {
  3842. //gcode_get_destination(); // For X Y Z E F
  3843. delta[X_AXIS] = delta_x;
  3844. delta[Y_AXIS] = delta_y;
  3845. calculate_SCARA_forward_Transform(delta);
  3846. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3847. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3848. prepare_move();
  3849. //ok_to_send();
  3850. return true;
  3851. }
  3852. return false;
  3853. }
  3854. /**
  3855. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3856. */
  3857. inline bool gcode_M360() {
  3858. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3859. return SCARA_move_to_cal(0, 120);
  3860. }
  3861. /**
  3862. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3863. */
  3864. inline bool gcode_M361() {
  3865. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3866. return SCARA_move_to_cal(90, 130);
  3867. }
  3868. /**
  3869. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3870. */
  3871. inline bool gcode_M362() {
  3872. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3873. return SCARA_move_to_cal(60, 180);
  3874. }
  3875. /**
  3876. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3877. */
  3878. inline bool gcode_M363() {
  3879. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3880. return SCARA_move_to_cal(50, 90);
  3881. }
  3882. /**
  3883. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3884. */
  3885. inline bool gcode_M364() {
  3886. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3887. return SCARA_move_to_cal(45, 135);
  3888. }
  3889. /**
  3890. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3891. */
  3892. inline void gcode_M365() {
  3893. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3894. if (code_seen(axis_codes[i])) {
  3895. axis_scaling[i] = code_value();
  3896. }
  3897. }
  3898. }
  3899. #endif // SCARA
  3900. #ifdef EXT_SOLENOID
  3901. void enable_solenoid(uint8_t num) {
  3902. switch(num) {
  3903. case 0:
  3904. OUT_WRITE(SOL0_PIN, HIGH);
  3905. break;
  3906. #if HAS_SOLENOID_1
  3907. case 1:
  3908. OUT_WRITE(SOL1_PIN, HIGH);
  3909. break;
  3910. #endif
  3911. #if HAS_SOLENOID_2
  3912. case 2:
  3913. OUT_WRITE(SOL2_PIN, HIGH);
  3914. break;
  3915. #endif
  3916. #if HAS_SOLENOID_3
  3917. case 3:
  3918. OUT_WRITE(SOL3_PIN, HIGH);
  3919. break;
  3920. #endif
  3921. default:
  3922. SERIAL_ECHO_START;
  3923. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3924. break;
  3925. }
  3926. }
  3927. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3928. void disable_all_solenoids() {
  3929. OUT_WRITE(SOL0_PIN, LOW);
  3930. OUT_WRITE(SOL1_PIN, LOW);
  3931. OUT_WRITE(SOL2_PIN, LOW);
  3932. OUT_WRITE(SOL3_PIN, LOW);
  3933. }
  3934. /**
  3935. * M380: Enable solenoid on the active extruder
  3936. */
  3937. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3938. /**
  3939. * M381: Disable all solenoids
  3940. */
  3941. inline void gcode_M381() { disable_all_solenoids(); }
  3942. #endif // EXT_SOLENOID
  3943. /**
  3944. * M400: Finish all moves
  3945. */
  3946. inline void gcode_M400() { st_synchronize(); }
  3947. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3948. #ifdef SERVO_ENDSTOPS
  3949. void raise_z_for_servo() {
  3950. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3951. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset : zpos;
  3952. if (zpos < z_dest)
  3953. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3954. }
  3955. #endif
  3956. /**
  3957. * M401: Engage Z Servo endstop if available
  3958. */
  3959. inline void gcode_M401() {
  3960. #ifdef SERVO_ENDSTOPS
  3961. raise_z_for_servo();
  3962. #endif
  3963. deploy_z_probe();
  3964. }
  3965. /**
  3966. * M402: Retract Z Servo endstop if enabled
  3967. */
  3968. inline void gcode_M402() {
  3969. #ifdef SERVO_ENDSTOPS
  3970. raise_z_for_servo();
  3971. #endif
  3972. stow_z_probe(false);
  3973. }
  3974. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3975. #ifdef FILAMENT_SENSOR
  3976. /**
  3977. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3978. */
  3979. inline void gcode_M404() {
  3980. #if HAS_FILWIDTH
  3981. if (code_seen('W')) {
  3982. filament_width_nominal = code_value();
  3983. }
  3984. else {
  3985. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3986. SERIAL_PROTOCOLLN(filament_width_nominal);
  3987. }
  3988. #endif
  3989. }
  3990. /**
  3991. * M405: Turn on filament sensor for control
  3992. */
  3993. inline void gcode_M405() {
  3994. if (code_seen('D')) meas_delay_cm = code_value();
  3995. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3996. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3997. int temp_ratio = widthFil_to_size_ratio();
  3998. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3999. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  4000. delay_index1 = delay_index2 = 0;
  4001. }
  4002. filament_sensor = true;
  4003. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4004. //SERIAL_PROTOCOL(filament_width_meas);
  4005. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4006. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4007. }
  4008. /**
  4009. * M406: Turn off filament sensor for control
  4010. */
  4011. inline void gcode_M406() { filament_sensor = false; }
  4012. /**
  4013. * M407: Get measured filament diameter on serial output
  4014. */
  4015. inline void gcode_M407() {
  4016. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4017. SERIAL_PROTOCOLLN(filament_width_meas);
  4018. }
  4019. #endif // FILAMENT_SENSOR
  4020. /**
  4021. * M410: Quickstop - Abort all planned moves
  4022. *
  4023. * This will stop the carriages mid-move, so most likely they
  4024. * will be out of sync with the stepper position after this.
  4025. */
  4026. inline void gcode_M410() { quickStop(); }
  4027. #ifdef MESH_BED_LEVELING
  4028. /**
  4029. * M420: Enable/Disable Mesh Bed Leveling
  4030. */
  4031. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4032. /**
  4033. * M421: Set a single Mesh Bed Leveling Z coordinate
  4034. */
  4035. inline void gcode_M421() {
  4036. float x, y, z;
  4037. bool err = false, hasX, hasY, hasZ;
  4038. if ((hasX = code_seen('X'))) x = code_value();
  4039. if ((hasY = code_seen('Y'))) y = code_value();
  4040. if ((hasZ = code_seen('Z'))) z = code_value();
  4041. if (!hasX || !hasY || !hasZ) {
  4042. SERIAL_ERROR_START;
  4043. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4044. err = true;
  4045. }
  4046. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4047. SERIAL_ERROR_START;
  4048. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4049. err = true;
  4050. }
  4051. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4052. }
  4053. #endif
  4054. /**
  4055. * M428: Set home_offset based on the distance between the
  4056. * current_position and the nearest "reference point."
  4057. * If an axis is past center its endstop position
  4058. * is the reference-point. Otherwise it uses 0. This allows
  4059. * the Z offset to be set near the bed when using a max endstop.
  4060. *
  4061. * M428 can't be used more than 2cm away from 0 or an endstop.
  4062. *
  4063. * Use M206 to set these values directly.
  4064. */
  4065. inline void gcode_M428() {
  4066. bool err = false;
  4067. float new_offs[3], new_pos[3];
  4068. memcpy(new_pos, current_position, sizeof(new_pos));
  4069. memcpy(new_offs, home_offset, sizeof(new_offs));
  4070. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4071. if (axis_known_position[i]) {
  4072. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4073. diff = new_pos[i] - base;
  4074. if (diff > -20 && diff < 20) {
  4075. new_offs[i] -= diff;
  4076. new_pos[i] = base;
  4077. }
  4078. else {
  4079. SERIAL_ERROR_START;
  4080. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4081. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4082. #if HAS_BUZZER
  4083. enqueuecommands_P(PSTR("M300 S40 P200"));
  4084. #endif
  4085. err = true;
  4086. break;
  4087. }
  4088. }
  4089. }
  4090. if (!err) {
  4091. memcpy(current_position, new_pos, sizeof(new_pos));
  4092. memcpy(home_offset, new_offs, sizeof(new_offs));
  4093. sync_plan_position();
  4094. LCD_ALERTMESSAGEPGM("Offset applied.");
  4095. #if HAS_BUZZER
  4096. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4097. #endif
  4098. }
  4099. }
  4100. /**
  4101. * M500: Store settings in EEPROM
  4102. */
  4103. inline void gcode_M500() {
  4104. Config_StoreSettings();
  4105. }
  4106. /**
  4107. * M501: Read settings from EEPROM
  4108. */
  4109. inline void gcode_M501() {
  4110. Config_RetrieveSettings();
  4111. }
  4112. /**
  4113. * M502: Revert to default settings
  4114. */
  4115. inline void gcode_M502() {
  4116. Config_ResetDefault();
  4117. }
  4118. /**
  4119. * M503: print settings currently in memory
  4120. */
  4121. inline void gcode_M503() {
  4122. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4123. }
  4124. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4125. /**
  4126. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4127. */
  4128. inline void gcode_M540() {
  4129. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4130. }
  4131. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4132. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4133. inline void gcode_SET_Z_PROBE_OFFSET() {
  4134. float value;
  4135. if (code_seen('Z')) {
  4136. value = code_value();
  4137. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4138. zprobe_zoffset = value;
  4139. SERIAL_ECHO_START;
  4140. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4141. SERIAL_EOL;
  4142. }
  4143. else {
  4144. SERIAL_ECHO_START;
  4145. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4146. SERIAL_ECHOPGM(MSG_Z_MIN);
  4147. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4148. SERIAL_ECHOPGM(MSG_Z_MAX);
  4149. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4150. SERIAL_EOL;
  4151. }
  4152. }
  4153. else {
  4154. SERIAL_ECHO_START;
  4155. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " : ");
  4156. SERIAL_ECHO(zprobe_zoffset);
  4157. SERIAL_EOL;
  4158. }
  4159. }
  4160. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4161. #ifdef FILAMENTCHANGEENABLE
  4162. /**
  4163. * M600: Pause for filament change
  4164. *
  4165. * E[distance] - Retract the filament this far (negative value)
  4166. * Z[distance] - Move the Z axis by this distance
  4167. * X[position] - Move to this X position, with Y
  4168. * Y[position] - Move to this Y position, with X
  4169. * L[distance] - Retract distance for removal (manual reload)
  4170. *
  4171. * Default values are used for omitted arguments.
  4172. *
  4173. */
  4174. inline void gcode_M600() {
  4175. if (degHotend(active_extruder) < extrude_min_temp) {
  4176. SERIAL_ERROR_START;
  4177. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4178. return;
  4179. }
  4180. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4181. for (int i=0; i<NUM_AXIS; i++)
  4182. lastpos[i] = destination[i] = current_position[i];
  4183. #ifdef DELTA
  4184. #define RUNPLAN calculate_delta(destination); \
  4185. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4186. #else
  4187. #define RUNPLAN line_to_destination();
  4188. #endif
  4189. //retract by E
  4190. if (code_seen('E')) destination[E_AXIS] += code_value();
  4191. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4192. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4193. #endif
  4194. RUNPLAN;
  4195. //lift Z
  4196. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4197. #ifdef FILAMENTCHANGE_ZADD
  4198. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4199. #endif
  4200. RUNPLAN;
  4201. //move xy
  4202. if (code_seen('X')) destination[X_AXIS] = code_value();
  4203. #ifdef FILAMENTCHANGE_XPOS
  4204. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4205. #endif
  4206. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4207. #ifdef FILAMENTCHANGE_YPOS
  4208. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4209. #endif
  4210. RUNPLAN;
  4211. if (code_seen('L')) destination[E_AXIS] += code_value();
  4212. #ifdef FILAMENTCHANGE_FINALRETRACT
  4213. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4214. #endif
  4215. RUNPLAN;
  4216. //finish moves
  4217. st_synchronize();
  4218. //disable extruder steppers so filament can be removed
  4219. disable_e0();
  4220. disable_e1();
  4221. disable_e2();
  4222. disable_e3();
  4223. delay(100);
  4224. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4225. millis_t next_tick = 0;
  4226. while (!lcd_clicked()) {
  4227. #ifndef AUTO_FILAMENT_CHANGE
  4228. millis_t ms = millis();
  4229. if (ms >= next_tick) {
  4230. lcd_quick_feedback();
  4231. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4232. }
  4233. manage_heater();
  4234. manage_inactivity(true);
  4235. lcd_update();
  4236. #else
  4237. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4238. destination[E_AXIS] = current_position[E_AXIS];
  4239. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4240. st_synchronize();
  4241. #endif
  4242. } // while(!lcd_clicked)
  4243. lcd_quick_feedback(); // click sound feedback
  4244. #ifdef AUTO_FILAMENT_CHANGE
  4245. current_position[E_AXIS] = 0;
  4246. st_synchronize();
  4247. #endif
  4248. //return to normal
  4249. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4250. #ifdef FILAMENTCHANGE_FINALRETRACT
  4251. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4252. #endif
  4253. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4254. plan_set_e_position(current_position[E_AXIS]);
  4255. RUNPLAN; //should do nothing
  4256. lcd_reset_alert_level();
  4257. #ifdef DELTA
  4258. // Move XYZ to starting position, then E
  4259. calculate_delta(lastpos);
  4260. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4261. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4262. #else
  4263. // Move XY to starting position, then Z, then E
  4264. destination[X_AXIS] = lastpos[X_AXIS];
  4265. destination[Y_AXIS] = lastpos[Y_AXIS];
  4266. line_to_destination();
  4267. destination[Z_AXIS] = lastpos[Z_AXIS];
  4268. line_to_destination();
  4269. destination[E_AXIS] = lastpos[E_AXIS];
  4270. line_to_destination();
  4271. #endif
  4272. #ifdef FILAMENT_RUNOUT_SENSOR
  4273. filrunoutEnqueued = false;
  4274. #endif
  4275. }
  4276. #endif // FILAMENTCHANGEENABLE
  4277. #ifdef DUAL_X_CARRIAGE
  4278. /**
  4279. * M605: Set dual x-carriage movement mode
  4280. *
  4281. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4282. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4283. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4284. * millimeters x-offset and an optional differential hotend temperature of
  4285. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4286. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4287. *
  4288. * Note: the X axis should be homed after changing dual x-carriage mode.
  4289. */
  4290. inline void gcode_M605() {
  4291. st_synchronize();
  4292. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4293. switch(dual_x_carriage_mode) {
  4294. case DXC_DUPLICATION_MODE:
  4295. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4296. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4297. SERIAL_ECHO_START;
  4298. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4299. SERIAL_CHAR(' ');
  4300. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4301. SERIAL_CHAR(',');
  4302. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4303. SERIAL_CHAR(' ');
  4304. SERIAL_ECHO(duplicate_extruder_x_offset);
  4305. SERIAL_CHAR(',');
  4306. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4307. break;
  4308. case DXC_FULL_CONTROL_MODE:
  4309. case DXC_AUTO_PARK_MODE:
  4310. break;
  4311. default:
  4312. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4313. break;
  4314. }
  4315. active_extruder_parked = false;
  4316. extruder_duplication_enabled = false;
  4317. delayed_move_time = 0;
  4318. }
  4319. #endif // DUAL_X_CARRIAGE
  4320. /**
  4321. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4322. */
  4323. inline void gcode_M907() {
  4324. #if HAS_DIGIPOTSS
  4325. for (int i=0;i<NUM_AXIS;i++)
  4326. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4327. if (code_seen('B')) digipot_current(4, code_value());
  4328. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4329. #endif
  4330. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4331. if (code_seen('X')) digipot_current(0, code_value());
  4332. #endif
  4333. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4334. if (code_seen('Z')) digipot_current(1, code_value());
  4335. #endif
  4336. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4337. if (code_seen('E')) digipot_current(2, code_value());
  4338. #endif
  4339. #ifdef DIGIPOT_I2C
  4340. // this one uses actual amps in floating point
  4341. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4342. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4343. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4344. #endif
  4345. }
  4346. #if HAS_DIGIPOTSS
  4347. /**
  4348. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4349. */
  4350. inline void gcode_M908() {
  4351. digitalPotWrite(
  4352. code_seen('P') ? code_value() : 0,
  4353. code_seen('S') ? code_value() : 0
  4354. );
  4355. }
  4356. #endif // HAS_DIGIPOTSS
  4357. #if HAS_MICROSTEPS
  4358. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4359. inline void gcode_M350() {
  4360. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4361. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4362. if(code_seen('B')) microstep_mode(4,code_value());
  4363. microstep_readings();
  4364. }
  4365. /**
  4366. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4367. * S# determines MS1 or MS2, X# sets the pin high/low.
  4368. */
  4369. inline void gcode_M351() {
  4370. if (code_seen('S')) switch(code_value_short()) {
  4371. case 1:
  4372. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4373. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4374. break;
  4375. case 2:
  4376. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4377. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4378. break;
  4379. }
  4380. microstep_readings();
  4381. }
  4382. #endif // HAS_MICROSTEPS
  4383. /**
  4384. * M999: Restart after being stopped
  4385. */
  4386. inline void gcode_M999() {
  4387. Running = true;
  4388. lcd_reset_alert_level();
  4389. gcode_LastN = Stopped_gcode_LastN;
  4390. FlushSerialRequestResend();
  4391. }
  4392. /**
  4393. * T0-T3: Switch tool, usually switching extruders
  4394. *
  4395. * F[mm/min] Set the movement feedrate
  4396. */
  4397. inline void gcode_T(uint8_t tmp_extruder) {
  4398. if (tmp_extruder >= EXTRUDERS) {
  4399. SERIAL_ECHO_START;
  4400. SERIAL_CHAR('T');
  4401. SERIAL_PROTOCOL_F(tmp_extruder,DEC);
  4402. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4403. }
  4404. else {
  4405. target_extruder = tmp_extruder;
  4406. #if EXTRUDERS > 1
  4407. bool make_move = false;
  4408. #endif
  4409. if (code_seen('F')) {
  4410. #if EXTRUDERS > 1
  4411. make_move = true;
  4412. #endif
  4413. float next_feedrate = code_value();
  4414. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4415. }
  4416. #if EXTRUDERS > 1
  4417. if (tmp_extruder != active_extruder) {
  4418. // Save current position to return to after applying extruder offset
  4419. set_destination_to_current();
  4420. #ifdef DUAL_X_CARRIAGE
  4421. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4422. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4423. // Park old head: 1) raise 2) move to park position 3) lower
  4424. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4425. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4426. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4427. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4428. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4429. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4430. st_synchronize();
  4431. }
  4432. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4433. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4434. extruder_offset[Y_AXIS][active_extruder] +
  4435. extruder_offset[Y_AXIS][tmp_extruder];
  4436. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4437. extruder_offset[Z_AXIS][active_extruder] +
  4438. extruder_offset[Z_AXIS][tmp_extruder];
  4439. active_extruder = tmp_extruder;
  4440. // This function resets the max/min values - the current position may be overwritten below.
  4441. set_axis_is_at_home(X_AXIS);
  4442. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4443. current_position[X_AXIS] = inactive_extruder_x_pos;
  4444. inactive_extruder_x_pos = destination[X_AXIS];
  4445. }
  4446. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4447. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4448. if (active_extruder == 0 || active_extruder_parked)
  4449. current_position[X_AXIS] = inactive_extruder_x_pos;
  4450. else
  4451. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4452. inactive_extruder_x_pos = destination[X_AXIS];
  4453. extruder_duplication_enabled = false;
  4454. }
  4455. else {
  4456. // record raised toolhead position for use by unpark
  4457. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4458. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4459. active_extruder_parked = true;
  4460. delayed_move_time = 0;
  4461. }
  4462. #else // !DUAL_X_CARRIAGE
  4463. // Offset extruder (only by XY)
  4464. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4465. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4466. // Set the new active extruder and position
  4467. active_extruder = tmp_extruder;
  4468. #endif // !DUAL_X_CARRIAGE
  4469. #ifdef DELTA
  4470. sync_plan_position_delta();
  4471. #else
  4472. sync_plan_position();
  4473. #endif
  4474. // Move to the old position if 'F' was in the parameters
  4475. if (make_move && IsRunning()) prepare_move();
  4476. }
  4477. #ifdef EXT_SOLENOID
  4478. st_synchronize();
  4479. disable_all_solenoids();
  4480. enable_solenoid_on_active_extruder();
  4481. #endif // EXT_SOLENOID
  4482. #endif // EXTRUDERS > 1
  4483. SERIAL_ECHO_START;
  4484. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4485. SERIAL_PROTOCOLLN((int)active_extruder);
  4486. }
  4487. }
  4488. /**
  4489. * Process a single command and dispatch it to its handler
  4490. * This is called from the main loop()
  4491. */
  4492. void process_next_command() {
  4493. current_command = command_queue[cmd_queue_index_r];
  4494. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4495. SERIAL_ECHO_START;
  4496. SERIAL_ECHOLN(current_command);
  4497. }
  4498. // Sanitize the current command:
  4499. // - Skip leading spaces
  4500. // - Bypass N[0-9][0-9]*[ ]*
  4501. // - Overwrite * with nul to mark the end
  4502. while (*current_command == ' ') ++current_command;
  4503. if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
  4504. current_command += 2; // skip N[-0-9]
  4505. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  4506. while (*current_command == ' ') ++current_command; // skip [ ]*
  4507. }
  4508. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4509. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  4510. // Get the command code, which must be G, M, or T
  4511. char command_code = *current_command;
  4512. // The code must have a numeric value
  4513. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4514. int codenum; // define ahead of goto
  4515. // Bail early if there's no code
  4516. if (!code_is_good) goto ExitUnknownCommand;
  4517. // Args pointer optimizes code_seen, especially those taking XYZEF
  4518. // This wastes a little cpu on commands that expect no arguments.
  4519. current_command_args = current_command;
  4520. while (*current_command_args && *current_command_args != ' ') ++current_command_args;
  4521. while (*current_command_args == ' ') ++current_command_args;
  4522. // Interpret the code int
  4523. seen_pointer = current_command;
  4524. codenum = code_value_short();
  4525. // Handle a known G, M, or T
  4526. switch(command_code) {
  4527. case 'G': switch (codenum) {
  4528. // G0, G1
  4529. case 0:
  4530. case 1:
  4531. gcode_G0_G1();
  4532. break;
  4533. // G2, G3
  4534. #ifndef SCARA
  4535. case 2: // G2 - CW ARC
  4536. case 3: // G3 - CCW ARC
  4537. gcode_G2_G3(codenum == 2);
  4538. break;
  4539. #endif
  4540. // G4 Dwell
  4541. case 4:
  4542. gcode_G4();
  4543. break;
  4544. #ifdef FWRETRACT
  4545. case 10: // G10: retract
  4546. case 11: // G11: retract_recover
  4547. gcode_G10_G11(codenum == 10);
  4548. break;
  4549. #endif //FWRETRACT
  4550. case 28: // G28: Home all axes, one at a time
  4551. gcode_G28();
  4552. break;
  4553. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4554. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4555. gcode_G29();
  4556. break;
  4557. #endif
  4558. #ifdef ENABLE_AUTO_BED_LEVELING
  4559. #ifndef Z_PROBE_SLED
  4560. case 30: // G30 Single Z Probe
  4561. gcode_G30();
  4562. break;
  4563. #else // Z_PROBE_SLED
  4564. case 31: // G31: dock the sled
  4565. case 32: // G32: undock the sled
  4566. dock_sled(codenum == 31);
  4567. break;
  4568. #endif // Z_PROBE_SLED
  4569. #endif // ENABLE_AUTO_BED_LEVELING
  4570. case 90: // G90
  4571. relative_mode = false;
  4572. break;
  4573. case 91: // G91
  4574. relative_mode = true;
  4575. break;
  4576. case 92: // G92
  4577. gcode_G92();
  4578. break;
  4579. }
  4580. break;
  4581. case 'M': switch (codenum) {
  4582. #ifdef ULTIPANEL
  4583. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4584. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4585. gcode_M0_M1();
  4586. break;
  4587. #endif // ULTIPANEL
  4588. case 17:
  4589. gcode_M17();
  4590. break;
  4591. #ifdef SDSUPPORT
  4592. case 20: // M20 - list SD card
  4593. gcode_M20(); break;
  4594. case 21: // M21 - init SD card
  4595. gcode_M21(); break;
  4596. case 22: //M22 - release SD card
  4597. gcode_M22(); break;
  4598. case 23: //M23 - Select file
  4599. gcode_M23(); break;
  4600. case 24: //M24 - Start SD print
  4601. gcode_M24(); break;
  4602. case 25: //M25 - Pause SD print
  4603. gcode_M25(); break;
  4604. case 26: //M26 - Set SD index
  4605. gcode_M26(); break;
  4606. case 27: //M27 - Get SD status
  4607. gcode_M27(); break;
  4608. case 28: //M28 - Start SD write
  4609. gcode_M28(); break;
  4610. case 29: //M29 - Stop SD write
  4611. gcode_M29(); break;
  4612. case 30: //M30 <filename> Delete File
  4613. gcode_M30(); break;
  4614. case 32: //M32 - Select file and start SD print
  4615. gcode_M32(); break;
  4616. #ifdef LONG_FILENAME_HOST_SUPPORT
  4617. case 33: //M33 - Get the long full path to a file or folder
  4618. gcode_M33(); break;
  4619. #endif // LONG_FILENAME_HOST_SUPPORT
  4620. case 928: //M928 - Start SD write
  4621. gcode_M928(); break;
  4622. #endif //SDSUPPORT
  4623. case 31: //M31 take time since the start of the SD print or an M109 command
  4624. gcode_M31();
  4625. break;
  4626. case 42: //M42 -Change pin status via gcode
  4627. gcode_M42();
  4628. break;
  4629. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4630. case 48: // M48 Z-Probe repeatability
  4631. gcode_M48();
  4632. break;
  4633. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4634. case 104: // M104
  4635. gcode_M104();
  4636. break;
  4637. case 111: // M111: Set debug level
  4638. gcode_M111();
  4639. break;
  4640. case 112: // M112: Emergency Stop
  4641. gcode_M112();
  4642. break;
  4643. case 140: // M140: Set bed temp
  4644. gcode_M140();
  4645. break;
  4646. case 105: // M105: Read current temperature
  4647. gcode_M105();
  4648. return; // "ok" already printed
  4649. case 109: // M109: Wait for temperature
  4650. gcode_M109();
  4651. break;
  4652. #if HAS_TEMP_BED
  4653. case 190: // M190: Wait for bed heater to reach target
  4654. gcode_M190();
  4655. break;
  4656. #endif // HAS_TEMP_BED
  4657. #if HAS_FAN
  4658. case 106: // M106: Fan On
  4659. gcode_M106();
  4660. break;
  4661. case 107: // M107: Fan Off
  4662. gcode_M107();
  4663. break;
  4664. #endif // HAS_FAN
  4665. #ifdef BARICUDA
  4666. // PWM for HEATER_1_PIN
  4667. #if HAS_HEATER_1
  4668. case 126: // M126: valve open
  4669. gcode_M126();
  4670. break;
  4671. case 127: // M127: valve closed
  4672. gcode_M127();
  4673. break;
  4674. #endif // HAS_HEATER_1
  4675. // PWM for HEATER_2_PIN
  4676. #if HAS_HEATER_2
  4677. case 128: // M128: valve open
  4678. gcode_M128();
  4679. break;
  4680. case 129: // M129: valve closed
  4681. gcode_M129();
  4682. break;
  4683. #endif // HAS_HEATER_2
  4684. #endif // BARICUDA
  4685. #if HAS_POWER_SWITCH
  4686. case 80: // M80: Turn on Power Supply
  4687. gcode_M80();
  4688. break;
  4689. #endif // HAS_POWER_SWITCH
  4690. case 81: // M81: Turn off Power, including Power Supply, if possible
  4691. gcode_M81();
  4692. break;
  4693. case 82:
  4694. gcode_M82();
  4695. break;
  4696. case 83:
  4697. gcode_M83();
  4698. break;
  4699. case 18: // (for compatibility)
  4700. case 84: // M84
  4701. gcode_M18_M84();
  4702. break;
  4703. case 85: // M85
  4704. gcode_M85();
  4705. break;
  4706. case 92: // M92: Set the steps-per-unit for one or more axes
  4707. gcode_M92();
  4708. break;
  4709. case 115: // M115: Report capabilities
  4710. gcode_M115();
  4711. break;
  4712. case 117: // M117: Set LCD message text, if possible
  4713. gcode_M117();
  4714. break;
  4715. case 114: // M114: Report current position
  4716. gcode_M114();
  4717. break;
  4718. case 120: // M120: Enable endstops
  4719. gcode_M120();
  4720. break;
  4721. case 121: // M121: Disable endstops
  4722. gcode_M121();
  4723. break;
  4724. case 119: // M119: Report endstop states
  4725. gcode_M119();
  4726. break;
  4727. #ifdef ULTIPANEL
  4728. case 145: // M145: Set material heatup parameters
  4729. gcode_M145();
  4730. break;
  4731. #endif
  4732. #ifdef BLINKM
  4733. case 150: // M150
  4734. gcode_M150();
  4735. break;
  4736. #endif //BLINKM
  4737. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4738. gcode_M200();
  4739. break;
  4740. case 201: // M201
  4741. gcode_M201();
  4742. break;
  4743. #if 0 // Not used for Sprinter/grbl gen6
  4744. case 202: // M202
  4745. gcode_M202();
  4746. break;
  4747. #endif
  4748. case 203: // M203 max feedrate mm/sec
  4749. gcode_M203();
  4750. break;
  4751. case 204: // M204 acclereration S normal moves T filmanent only moves
  4752. gcode_M204();
  4753. break;
  4754. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4755. gcode_M205();
  4756. break;
  4757. case 206: // M206 additional homing offset
  4758. gcode_M206();
  4759. break;
  4760. #ifdef DELTA
  4761. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4762. gcode_M665();
  4763. break;
  4764. #endif
  4765. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4766. case 666: // M666 set delta / dual endstop adjustment
  4767. gcode_M666();
  4768. break;
  4769. #endif
  4770. #ifdef FWRETRACT
  4771. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4772. gcode_M207();
  4773. break;
  4774. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4775. gcode_M208();
  4776. break;
  4777. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4778. gcode_M209();
  4779. break;
  4780. #endif // FWRETRACT
  4781. #if EXTRUDERS > 1
  4782. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4783. gcode_M218();
  4784. break;
  4785. #endif
  4786. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4787. gcode_M220();
  4788. break;
  4789. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4790. gcode_M221();
  4791. break;
  4792. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4793. gcode_M226();
  4794. break;
  4795. #if NUM_SERVOS > 0
  4796. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4797. gcode_M280();
  4798. break;
  4799. #endif // NUM_SERVOS > 0
  4800. #if HAS_BUZZER
  4801. case 300: // M300 - Play beep tone
  4802. gcode_M300();
  4803. break;
  4804. #endif // HAS_BUZZER
  4805. #ifdef PIDTEMP
  4806. case 301: // M301
  4807. gcode_M301();
  4808. break;
  4809. #endif // PIDTEMP
  4810. #ifdef PIDTEMPBED
  4811. case 304: // M304
  4812. gcode_M304();
  4813. break;
  4814. #endif // PIDTEMPBED
  4815. #if defined(CHDK) || HAS_PHOTOGRAPH
  4816. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4817. gcode_M240();
  4818. break;
  4819. #endif // CHDK || PHOTOGRAPH_PIN
  4820. #ifdef HAS_LCD_CONTRAST
  4821. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4822. gcode_M250();
  4823. break;
  4824. #endif // HAS_LCD_CONTRAST
  4825. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4826. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4827. gcode_M302();
  4828. break;
  4829. #endif // PREVENT_DANGEROUS_EXTRUDE
  4830. case 303: // M303 PID autotune
  4831. gcode_M303();
  4832. break;
  4833. #ifdef SCARA
  4834. case 360: // M360 SCARA Theta pos1
  4835. if (gcode_M360()) return;
  4836. break;
  4837. case 361: // M361 SCARA Theta pos2
  4838. if (gcode_M361()) return;
  4839. break;
  4840. case 362: // M362 SCARA Psi pos1
  4841. if (gcode_M362()) return;
  4842. break;
  4843. case 363: // M363 SCARA Psi pos2
  4844. if (gcode_M363()) return;
  4845. break;
  4846. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4847. if (gcode_M364()) return;
  4848. break;
  4849. case 365: // M365 Set SCARA scaling for X Y Z
  4850. gcode_M365();
  4851. break;
  4852. #endif // SCARA
  4853. case 400: // M400 finish all moves
  4854. gcode_M400();
  4855. break;
  4856. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
  4857. case 401:
  4858. gcode_M401();
  4859. break;
  4860. case 402:
  4861. gcode_M402();
  4862. break;
  4863. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4864. #ifdef FILAMENT_SENSOR
  4865. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4866. gcode_M404();
  4867. break;
  4868. case 405: //M405 Turn on filament sensor for control
  4869. gcode_M405();
  4870. break;
  4871. case 406: //M406 Turn off filament sensor for control
  4872. gcode_M406();
  4873. break;
  4874. case 407: //M407 Display measured filament diameter
  4875. gcode_M407();
  4876. break;
  4877. #endif // FILAMENT_SENSOR
  4878. case 410: // M410 quickstop - Abort all the planned moves.
  4879. gcode_M410();
  4880. break;
  4881. #ifdef MESH_BED_LEVELING
  4882. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4883. gcode_M420();
  4884. break;
  4885. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4886. gcode_M421();
  4887. break;
  4888. #endif
  4889. case 428: // M428 Apply current_position to home_offset
  4890. gcode_M428();
  4891. break;
  4892. case 500: // M500 Store settings in EEPROM
  4893. gcode_M500();
  4894. break;
  4895. case 501: // M501 Read settings from EEPROM
  4896. gcode_M501();
  4897. break;
  4898. case 502: // M502 Revert to default settings
  4899. gcode_M502();
  4900. break;
  4901. case 503: // M503 print settings currently in memory
  4902. gcode_M503();
  4903. break;
  4904. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4905. case 540:
  4906. gcode_M540();
  4907. break;
  4908. #endif
  4909. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4910. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4911. gcode_SET_Z_PROBE_OFFSET();
  4912. break;
  4913. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4914. #ifdef FILAMENTCHANGEENABLE
  4915. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4916. gcode_M600();
  4917. break;
  4918. #endif // FILAMENTCHANGEENABLE
  4919. #ifdef DUAL_X_CARRIAGE
  4920. case 605:
  4921. gcode_M605();
  4922. break;
  4923. #endif // DUAL_X_CARRIAGE
  4924. case 907: // M907 Set digital trimpot motor current using axis codes.
  4925. gcode_M907();
  4926. break;
  4927. #if HAS_DIGIPOTSS
  4928. case 908: // M908 Control digital trimpot directly.
  4929. gcode_M908();
  4930. break;
  4931. #endif // HAS_DIGIPOTSS
  4932. #if HAS_MICROSTEPS
  4933. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4934. gcode_M350();
  4935. break;
  4936. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4937. gcode_M351();
  4938. break;
  4939. #endif // HAS_MICROSTEPS
  4940. case 999: // M999: Restart after being Stopped
  4941. gcode_M999();
  4942. break;
  4943. }
  4944. break;
  4945. case 'T':
  4946. gcode_T(codenum);
  4947. break;
  4948. default: code_is_good = false;
  4949. }
  4950. ExitUnknownCommand:
  4951. // Still unknown command? Throw an error
  4952. if (!code_is_good) unknown_command_error();
  4953. ok_to_send();
  4954. }
  4955. void FlushSerialRequestResend() {
  4956. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4957. MYSERIAL.flush();
  4958. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4959. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4960. ok_to_send();
  4961. }
  4962. void ok_to_send() {
  4963. refresh_cmd_timeout();
  4964. #ifdef SDSUPPORT
  4965. if (fromsd[cmd_queue_index_r]) return;
  4966. #endif
  4967. SERIAL_PROTOCOLPGM(MSG_OK);
  4968. #ifdef ADVANCED_OK
  4969. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4970. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4971. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4972. #endif
  4973. SERIAL_EOL;
  4974. }
  4975. void clamp_to_software_endstops(float target[3]) {
  4976. if (min_software_endstops) {
  4977. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4978. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4979. float negative_z_offset = 0;
  4980. #ifdef ENABLE_AUTO_BED_LEVELING
  4981. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  4982. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4983. #endif
  4984. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4985. }
  4986. if (max_software_endstops) {
  4987. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4988. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4989. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4990. }
  4991. }
  4992. #ifdef DELTA
  4993. void recalc_delta_settings(float radius, float diagonal_rod) {
  4994. delta_tower1_x = -SIN_60 * radius; // front left tower
  4995. delta_tower1_y = -COS_60 * radius;
  4996. delta_tower2_x = SIN_60 * radius; // front right tower
  4997. delta_tower2_y = -COS_60 * radius;
  4998. delta_tower3_x = 0.0; // back middle tower
  4999. delta_tower3_y = radius;
  5000. delta_diagonal_rod_2 = sq(diagonal_rod);
  5001. }
  5002. void calculate_delta(float cartesian[3]) {
  5003. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  5004. - sq(delta_tower1_x-cartesian[X_AXIS])
  5005. - sq(delta_tower1_y-cartesian[Y_AXIS])
  5006. ) + cartesian[Z_AXIS];
  5007. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  5008. - sq(delta_tower2_x-cartesian[X_AXIS])
  5009. - sq(delta_tower2_y-cartesian[Y_AXIS])
  5010. ) + cartesian[Z_AXIS];
  5011. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  5012. - sq(delta_tower3_x-cartesian[X_AXIS])
  5013. - sq(delta_tower3_y-cartesian[Y_AXIS])
  5014. ) + cartesian[Z_AXIS];
  5015. /*
  5016. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5017. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5018. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5019. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5020. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5021. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5022. */
  5023. }
  5024. #ifdef ENABLE_AUTO_BED_LEVELING
  5025. // Adjust print surface height by linear interpolation over the bed_level array.
  5026. void adjust_delta(float cartesian[3]) {
  5027. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5028. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5029. float h1 = 0.001 - half, h2 = half - 0.001,
  5030. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5031. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5032. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5033. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5034. z1 = bed_level[floor_x + half][floor_y + half],
  5035. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5036. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5037. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5038. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5039. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5040. offset = (1 - ratio_x) * left + ratio_x * right;
  5041. delta[X_AXIS] += offset;
  5042. delta[Y_AXIS] += offset;
  5043. delta[Z_AXIS] += offset;
  5044. /*
  5045. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5046. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5047. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5048. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5049. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5050. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5051. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5052. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5053. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5054. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5055. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5056. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5057. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5058. */
  5059. }
  5060. #endif // ENABLE_AUTO_BED_LEVELING
  5061. #endif // DELTA
  5062. #ifdef MESH_BED_LEVELING
  5063. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5064. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  5065. {
  5066. if (!mbl.active) {
  5067. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5068. set_current_to_destination();
  5069. return;
  5070. }
  5071. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5072. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5073. int ix = mbl.select_x_index(x);
  5074. int iy = mbl.select_y_index(y);
  5075. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5076. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5077. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5078. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5079. if (pix == ix && piy == iy) {
  5080. // Start and end on same mesh square
  5081. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5082. set_current_to_destination();
  5083. return;
  5084. }
  5085. float nx, ny, ne, normalized_dist;
  5086. if (ix > pix && (x_splits) & BIT(ix)) {
  5087. nx = mbl.get_x(ix);
  5088. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5089. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5090. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5091. x_splits ^= BIT(ix);
  5092. } else if (ix < pix && (x_splits) & BIT(pix)) {
  5093. nx = mbl.get_x(pix);
  5094. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5095. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5096. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5097. x_splits ^= BIT(pix);
  5098. } else if (iy > piy && (y_splits) & BIT(iy)) {
  5099. ny = mbl.get_y(iy);
  5100. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5101. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5102. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5103. y_splits ^= BIT(iy);
  5104. } else if (iy < piy && (y_splits) & BIT(piy)) {
  5105. ny = mbl.get_y(piy);
  5106. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5107. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5108. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5109. y_splits ^= BIT(piy);
  5110. } else {
  5111. // Already split on a border
  5112. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5113. set_current_to_destination();
  5114. return;
  5115. }
  5116. // Do the split and look for more borders
  5117. destination[X_AXIS] = nx;
  5118. destination[Y_AXIS] = ny;
  5119. destination[E_AXIS] = ne;
  5120. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5121. destination[X_AXIS] = x;
  5122. destination[Y_AXIS] = y;
  5123. destination[E_AXIS] = e;
  5124. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5125. }
  5126. #endif // MESH_BED_LEVELING
  5127. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5128. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5129. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5130. float de = dest_e - curr_e;
  5131. if (de) {
  5132. if (degHotend(active_extruder) < extrude_min_temp) {
  5133. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5134. SERIAL_ECHO_START;
  5135. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5136. }
  5137. #ifdef PREVENT_LENGTHY_EXTRUDE
  5138. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5139. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5140. SERIAL_ECHO_START;
  5141. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5142. }
  5143. #endif
  5144. }
  5145. }
  5146. #endif // PREVENT_DANGEROUS_EXTRUDE
  5147. #if defined(DELTA) || defined(SCARA)
  5148. inline bool prepare_move_delta() {
  5149. float difference[NUM_AXIS];
  5150. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  5151. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5152. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5153. if (cartesian_mm < 0.000001) return false;
  5154. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5155. int steps = max(1, int(delta_segments_per_second * seconds));
  5156. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5157. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5158. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5159. for (int s = 1; s <= steps; s++) {
  5160. float fraction = float(s) / float(steps);
  5161. for (int8_t i = 0; i < NUM_AXIS; i++)
  5162. destination[i] = current_position[i] + difference[i] * fraction;
  5163. calculate_delta(destination);
  5164. #ifdef ENABLE_AUTO_BED_LEVELING
  5165. adjust_delta(destination);
  5166. #endif
  5167. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  5168. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  5169. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  5170. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5171. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5172. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5173. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5174. }
  5175. return true;
  5176. }
  5177. #endif // DELTA || SCARA
  5178. #ifdef SCARA
  5179. inline bool prepare_move_scara() { return prepare_move_delta(); }
  5180. #endif
  5181. #ifdef DUAL_X_CARRIAGE
  5182. inline bool prepare_move_dual_x_carriage() {
  5183. if (active_extruder_parked) {
  5184. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5185. // move duplicate extruder into correct duplication position.
  5186. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5187. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5188. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5189. sync_plan_position();
  5190. st_synchronize();
  5191. extruder_duplication_enabled = true;
  5192. active_extruder_parked = false;
  5193. }
  5194. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5195. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5196. // This is a travel move (with no extrusion)
  5197. // Skip it, but keep track of the current position
  5198. // (so it can be used as the start of the next non-travel move)
  5199. if (delayed_move_time != 0xFFFFFFFFUL) {
  5200. set_current_to_destination();
  5201. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5202. delayed_move_time = millis();
  5203. return false;
  5204. }
  5205. }
  5206. delayed_move_time = 0;
  5207. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5208. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5209. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5211. active_extruder_parked = false;
  5212. }
  5213. }
  5214. return true;
  5215. }
  5216. #endif // DUAL_X_CARRIAGE
  5217. #if !defined(DELTA) && !defined(SCARA)
  5218. inline bool prepare_move_cartesian() {
  5219. // Do not use feedrate_multiplier for E or Z only moves
  5220. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5221. line_to_destination();
  5222. }
  5223. else {
  5224. #ifdef MESH_BED_LEVELING
  5225. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5226. return false;
  5227. #else
  5228. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5229. #endif
  5230. }
  5231. return true;
  5232. }
  5233. #endif // !DELTA && !SCARA
  5234. /**
  5235. * Prepare a single move and get ready for the next one
  5236. *
  5237. * (This may call plan_buffer_line several times to put
  5238. * smaller moves into the planner for DELTA or SCARA.)
  5239. */
  5240. void prepare_move() {
  5241. clamp_to_software_endstops(destination);
  5242. refresh_cmd_timeout();
  5243. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5244. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5245. #endif
  5246. #ifdef SCARA
  5247. if (!prepare_move_scara()) return;
  5248. #elif defined(DELTA)
  5249. if (!prepare_move_delta()) return;
  5250. #endif
  5251. #ifdef DUAL_X_CARRIAGE
  5252. if (!prepare_move_dual_x_carriage()) return;
  5253. #endif
  5254. #if !defined(DELTA) && !defined(SCARA)
  5255. if (!prepare_move_cartesian()) return;
  5256. #endif
  5257. set_current_to_destination();
  5258. }
  5259. #if HAS_CONTROLLERFAN
  5260. void controllerFan() {
  5261. static millis_t lastMotor = 0; // Last time a motor was turned on
  5262. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5263. millis_t ms = millis();
  5264. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5265. lastMotorCheck = ms;
  5266. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5267. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5268. #if EXTRUDERS > 1
  5269. || E1_ENABLE_READ == E_ENABLE_ON
  5270. #if HAS_X2_ENABLE
  5271. || X2_ENABLE_READ == X_ENABLE_ON
  5272. #endif
  5273. #if EXTRUDERS > 2
  5274. || E2_ENABLE_READ == E_ENABLE_ON
  5275. #if EXTRUDERS > 3
  5276. || E3_ENABLE_READ == E_ENABLE_ON
  5277. #endif
  5278. #endif
  5279. #endif
  5280. ) {
  5281. lastMotor = ms; //... set time to NOW so the fan will turn on
  5282. }
  5283. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5284. // allows digital or PWM fan output to be used (see M42 handling)
  5285. digitalWrite(CONTROLLERFAN_PIN, speed);
  5286. analogWrite(CONTROLLERFAN_PIN, speed);
  5287. }
  5288. }
  5289. #endif // HAS_CONTROLLERFAN
  5290. #ifdef SCARA
  5291. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5292. // Perform forward kinematics, and place results in delta[3]
  5293. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5294. float x_sin, x_cos, y_sin, y_cos;
  5295. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5296. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5297. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5298. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5299. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5300. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5301. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5302. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5303. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5304. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5305. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5306. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5307. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5308. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5309. }
  5310. void calculate_delta(float cartesian[3]){
  5311. //reverse kinematics.
  5312. // Perform reversed kinematics, and place results in delta[3]
  5313. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5314. float SCARA_pos[2];
  5315. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5316. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5317. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5318. #if (Linkage_1 == Linkage_2)
  5319. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5320. #else
  5321. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5322. #endif
  5323. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5324. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5325. SCARA_K2 = Linkage_2 * SCARA_S2;
  5326. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5327. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5328. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5329. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5330. delta[Z_AXIS] = cartesian[Z_AXIS];
  5331. /*
  5332. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5333. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5334. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5335. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5336. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5337. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5338. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5339. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5340. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5341. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5342. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5343. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5344. SERIAL_EOL;
  5345. */
  5346. }
  5347. #endif // SCARA
  5348. #ifdef TEMP_STAT_LEDS
  5349. static bool red_led = false;
  5350. static millis_t next_status_led_update_ms = 0;
  5351. void handle_status_leds(void) {
  5352. float max_temp = 0.0;
  5353. if (millis() > next_status_led_update_ms) {
  5354. next_status_led_update_ms += 500; // Update every 0.5s
  5355. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5356. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5357. #if HAS_TEMP_BED
  5358. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5359. #endif
  5360. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5361. if (new_led != red_led) {
  5362. red_led = new_led;
  5363. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5364. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5365. }
  5366. }
  5367. }
  5368. #endif
  5369. void enable_all_steppers() {
  5370. enable_x();
  5371. enable_y();
  5372. enable_z();
  5373. enable_e0();
  5374. enable_e1();
  5375. enable_e2();
  5376. enable_e3();
  5377. }
  5378. void disable_all_steppers() {
  5379. disable_x();
  5380. disable_y();
  5381. disable_z();
  5382. disable_e0();
  5383. disable_e1();
  5384. disable_e2();
  5385. disable_e3();
  5386. }
  5387. /**
  5388. * Standard idle routine keeps the machine alive
  5389. */
  5390. void idle() {
  5391. manage_heater();
  5392. manage_inactivity();
  5393. lcd_update();
  5394. }
  5395. /**
  5396. * Manage several activities:
  5397. * - Check for Filament Runout
  5398. * - Keep the command buffer full
  5399. * - Check for maximum inactive time between commands
  5400. * - Check for maximum inactive time between stepper commands
  5401. * - Check if pin CHDK needs to go LOW
  5402. * - Check for KILL button held down
  5403. * - Check for HOME button held down
  5404. * - Check if cooling fan needs to be switched on
  5405. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5406. */
  5407. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5408. #if HAS_FILRUNOUT
  5409. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5410. filrunout();
  5411. #endif
  5412. if (commands_in_queue < BUFSIZE - 1) get_command();
  5413. millis_t ms = millis();
  5414. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5415. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5416. && !ignore_stepper_queue && !blocks_queued()) {
  5417. #if DISABLE_X == true
  5418. disable_x();
  5419. #endif
  5420. #if DISABLE_Y == true
  5421. disable_y();
  5422. #endif
  5423. #if DISABLE_Z == true
  5424. disable_z();
  5425. #endif
  5426. #if DISABLE_E == true
  5427. disable_e0();
  5428. disable_e1();
  5429. disable_e2();
  5430. disable_e3();
  5431. #endif
  5432. }
  5433. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5434. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5435. chdkActive = false;
  5436. WRITE(CHDK, LOW);
  5437. }
  5438. #endif
  5439. #if HAS_KILL
  5440. // Check if the kill button was pressed and wait just in case it was an accidental
  5441. // key kill key press
  5442. // -------------------------------------------------------------------------------
  5443. static int killCount = 0; // make the inactivity button a bit less responsive
  5444. const int KILL_DELAY = 750;
  5445. if (!READ(KILL_PIN))
  5446. killCount++;
  5447. else if (killCount > 0)
  5448. killCount--;
  5449. // Exceeded threshold and we can confirm that it was not accidental
  5450. // KILL the machine
  5451. // ----------------------------------------------------------------
  5452. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5453. #endif
  5454. #if HAS_HOME
  5455. // Check to see if we have to home, use poor man's debouncer
  5456. // ---------------------------------------------------------
  5457. static int homeDebounceCount = 0; // poor man's debouncing count
  5458. const int HOME_DEBOUNCE_DELAY = 750;
  5459. if (!READ(HOME_PIN)) {
  5460. if (!homeDebounceCount) {
  5461. enqueuecommands_P(PSTR("G28"));
  5462. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5463. }
  5464. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5465. homeDebounceCount++;
  5466. else
  5467. homeDebounceCount = 0;
  5468. }
  5469. #endif
  5470. #if HAS_CONTROLLERFAN
  5471. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5472. #endif
  5473. #ifdef EXTRUDER_RUNOUT_PREVENT
  5474. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5475. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5476. bool oldstatus;
  5477. switch(active_extruder) {
  5478. case 0:
  5479. oldstatus = E0_ENABLE_READ;
  5480. enable_e0();
  5481. break;
  5482. #if EXTRUDERS > 1
  5483. case 1:
  5484. oldstatus = E1_ENABLE_READ;
  5485. enable_e1();
  5486. break;
  5487. #if EXTRUDERS > 2
  5488. case 2:
  5489. oldstatus = E2_ENABLE_READ;
  5490. enable_e2();
  5491. break;
  5492. #if EXTRUDERS > 3
  5493. case 3:
  5494. oldstatus = E3_ENABLE_READ;
  5495. enable_e3();
  5496. break;
  5497. #endif
  5498. #endif
  5499. #endif
  5500. }
  5501. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5502. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5503. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5504. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5505. current_position[E_AXIS] = oldepos;
  5506. destination[E_AXIS] = oldedes;
  5507. plan_set_e_position(oldepos);
  5508. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5509. st_synchronize();
  5510. switch(active_extruder) {
  5511. case 0:
  5512. E0_ENABLE_WRITE(oldstatus);
  5513. break;
  5514. #if EXTRUDERS > 1
  5515. case 1:
  5516. E1_ENABLE_WRITE(oldstatus);
  5517. break;
  5518. #if EXTRUDERS > 2
  5519. case 2:
  5520. E2_ENABLE_WRITE(oldstatus);
  5521. break;
  5522. #if EXTRUDERS > 3
  5523. case 3:
  5524. E3_ENABLE_WRITE(oldstatus);
  5525. break;
  5526. #endif
  5527. #endif
  5528. #endif
  5529. }
  5530. }
  5531. #endif
  5532. #ifdef DUAL_X_CARRIAGE
  5533. // handle delayed move timeout
  5534. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5535. // travel moves have been received so enact them
  5536. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5537. set_destination_to_current();
  5538. prepare_move();
  5539. }
  5540. #endif
  5541. #ifdef TEMP_STAT_LEDS
  5542. handle_status_leds();
  5543. #endif
  5544. check_axes_activity();
  5545. }
  5546. void kill(const char *lcd_msg) {
  5547. #ifdef ULTRA_LCD
  5548. lcd_setalertstatuspgm(lcd_msg);
  5549. #endif
  5550. cli(); // Stop interrupts
  5551. disable_all_heaters();
  5552. disable_all_steppers();
  5553. #if HAS_POWER_SWITCH
  5554. pinMode(PS_ON_PIN, INPUT);
  5555. #endif
  5556. SERIAL_ERROR_START;
  5557. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5558. // FMC small patch to update the LCD before ending
  5559. sei(); // enable interrupts
  5560. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5561. cli(); // disable interrupts
  5562. suicide();
  5563. while(1) { /* Intentionally left empty */ } // Wait for reset
  5564. }
  5565. #ifdef FILAMENT_RUNOUT_SENSOR
  5566. void filrunout() {
  5567. if (!filrunoutEnqueued) {
  5568. filrunoutEnqueued = true;
  5569. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5570. st_synchronize();
  5571. }
  5572. }
  5573. #endif // FILAMENT_RUNOUT_SENSOR
  5574. #ifdef FAST_PWM_FAN
  5575. void setPwmFrequency(uint8_t pin, int val) {
  5576. val &= 0x07;
  5577. switch (digitalPinToTimer(pin)) {
  5578. #if defined(TCCR0A)
  5579. case TIMER0A:
  5580. case TIMER0B:
  5581. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5582. // TCCR0B |= val;
  5583. break;
  5584. #endif
  5585. #if defined(TCCR1A)
  5586. case TIMER1A:
  5587. case TIMER1B:
  5588. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5589. // TCCR1B |= val;
  5590. break;
  5591. #endif
  5592. #if defined(TCCR2)
  5593. case TIMER2:
  5594. case TIMER2:
  5595. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5596. TCCR2 |= val;
  5597. break;
  5598. #endif
  5599. #if defined(TCCR2A)
  5600. case TIMER2A:
  5601. case TIMER2B:
  5602. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5603. TCCR2B |= val;
  5604. break;
  5605. #endif
  5606. #if defined(TCCR3A)
  5607. case TIMER3A:
  5608. case TIMER3B:
  5609. case TIMER3C:
  5610. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5611. TCCR3B |= val;
  5612. break;
  5613. #endif
  5614. #if defined(TCCR4A)
  5615. case TIMER4A:
  5616. case TIMER4B:
  5617. case TIMER4C:
  5618. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5619. TCCR4B |= val;
  5620. break;
  5621. #endif
  5622. #if defined(TCCR5A)
  5623. case TIMER5A:
  5624. case TIMER5B:
  5625. case TIMER5C:
  5626. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5627. TCCR5B |= val;
  5628. break;
  5629. #endif
  5630. }
  5631. }
  5632. #endif // FAST_PWM_FAN
  5633. void Stop() {
  5634. disable_all_heaters();
  5635. if (IsRunning()) {
  5636. Running = false;
  5637. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5638. SERIAL_ERROR_START;
  5639. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5640. LCD_MESSAGEPGM(MSG_STOPPED);
  5641. }
  5642. }
  5643. /**
  5644. * Set target_extruder from the T parameter or the active_extruder
  5645. *
  5646. * Returns TRUE if the target is invalid
  5647. */
  5648. bool setTargetedHotend(int code) {
  5649. target_extruder = active_extruder;
  5650. if (code_seen('T')) {
  5651. target_extruder = code_value_short();
  5652. if (target_extruder >= EXTRUDERS) {
  5653. SERIAL_ECHO_START;
  5654. SERIAL_CHAR('M');
  5655. SERIAL_ECHO(code);
  5656. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  5657. SERIAL_ECHOLN(target_extruder);
  5658. return true;
  5659. }
  5660. }
  5661. return false;
  5662. }
  5663. float calculate_volumetric_multiplier(float diameter) {
  5664. if (!volumetric_enabled || diameter == 0) return 1.0;
  5665. float d2 = diameter * 0.5;
  5666. return 1.0 / (M_PI * d2 * d2);
  5667. }
  5668. void calculate_volumetric_multipliers() {
  5669. for (int i=0; i<EXTRUDERS; i++)
  5670. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5671. }