My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.cpp 41KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010
  1. /**
  2. * planner.cpp - Buffer movement commands and manage the acceleration profile plan
  3. * Part of Grbl
  4. *
  5. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  6. *
  7. * Grbl is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * Grbl is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. *
  21. * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
  22. *
  23. *
  24. * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  25. *
  26. * s == speed, a == acceleration, t == time, d == distance
  27. *
  28. * Basic definitions:
  29. * Speed[s_, a_, t_] := s + (a*t)
  30. * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  31. *
  32. * Distance to reach a specific speed with a constant acceleration:
  33. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  34. * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  35. *
  36. * Speed after a given distance of travel with constant acceleration:
  37. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  38. * m -> Sqrt[2 a d + s^2]
  39. *
  40. * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  41. *
  42. * When to start braking (di) to reach a specified destination speed (s2) after accelerating
  43. * from initial speed s1 without ever stopping at a plateau:
  44. * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  45. * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  46. *
  47. * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  48. *
  49. */
  50. #include "Marlin.h"
  51. #include "planner.h"
  52. #include "stepper.h"
  53. #include "temperature.h"
  54. #include "ultralcd.h"
  55. #include "language.h"
  56. #ifdef MESH_BED_LEVELING
  57. #include "mesh_bed_leveling.h"
  58. #endif
  59. //===========================================================================
  60. //============================= public variables ============================
  61. //===========================================================================
  62. millis_t minsegmenttime;
  63. float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
  64. float axis_steps_per_unit[NUM_AXIS];
  65. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  66. float minimumfeedrate;
  67. float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  68. float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  69. float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  70. float max_xy_jerk; // The largest speed change requiring no acceleration
  71. float max_z_jerk;
  72. float max_e_jerk;
  73. float mintravelfeedrate;
  74. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  75. #ifdef ENABLE_AUTO_BED_LEVELING
  76. // Transform required to compensate for bed level
  77. matrix_3x3 plan_bed_level_matrix = {
  78. 1.0, 0.0, 0.0,
  79. 0.0, 1.0, 0.0,
  80. 0.0, 0.0, 1.0
  81. };
  82. #endif // ENABLE_AUTO_BED_LEVELING
  83. #ifdef AUTOTEMP
  84. float autotemp_max = 250;
  85. float autotemp_min = 210;
  86. float autotemp_factor = 0.1;
  87. bool autotemp_enabled = false;
  88. #endif
  89. //===========================================================================
  90. //============ semi-private variables, used in inline functions =============
  91. //===========================================================================
  92. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  93. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  94. volatile unsigned char block_buffer_tail; // Index of the block to process now
  95. //===========================================================================
  96. //============================ private variables ============================
  97. //===========================================================================
  98. // The current position of the tool in absolute steps
  99. long position[NUM_AXIS]; // Rescaled from extern when axis_steps_per_unit are changed by gcode
  100. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  101. static float previous_nominal_speed; // Nominal speed of previous path line segment
  102. unsigned char g_uc_extruder_last_move[4] = {0,0,0,0};
  103. #ifdef XY_FREQUENCY_LIMIT
  104. // Used for the frequency limit
  105. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  106. // Old direction bits. Used for speed calculations
  107. static unsigned char old_direction_bits = 0;
  108. // Segment times (in µs). Used for speed calculations
  109. static long axis_segment_time[2][3] = { {MAX_FREQ_TIME+1,0,0}, {MAX_FREQ_TIME+1,0,0} };
  110. #endif
  111. #ifdef FILAMENT_SENSOR
  112. static char meas_sample; //temporary variable to hold filament measurement sample
  113. #endif
  114. //===========================================================================
  115. //================================ functions ================================
  116. //===========================================================================
  117. // Get the next / previous index of the next block in the ring buffer
  118. // NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2
  119. FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  120. FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  121. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  122. // given acceleration:
  123. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
  124. if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
  125. return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
  126. }
  127. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  128. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  129. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  130. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  131. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
  132. if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
  133. return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
  134. }
  135. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  136. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  137. unsigned long initial_rate = ceil(block->nominal_rate * entry_factor); // (step/min)
  138. unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min)
  139. // Limit minimal step rate (Otherwise the timer will overflow.)
  140. NOLESS(initial_rate, 120);
  141. NOLESS(final_rate, 120);
  142. long acceleration = block->acceleration_st;
  143. int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  144. int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  145. // Calculate the size of Plateau of Nominal Rate.
  146. int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  147. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  148. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  149. // in order to reach the final_rate exactly at the end of this block.
  150. if (plateau_steps < 0) {
  151. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  152. accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
  153. accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  154. plateau_steps = 0;
  155. }
  156. #ifdef ADVANCE
  157. volatile long initial_advance = block->advance * entry_factor * entry_factor;
  158. volatile long final_advance = block->advance * exit_factor * exit_factor;
  159. #endif // ADVANCE
  160. // block->accelerate_until = accelerate_steps;
  161. // block->decelerate_after = accelerate_steps+plateau_steps;
  162. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  163. if (!block->busy) { // Don't update variables if block is busy.
  164. block->accelerate_until = accelerate_steps;
  165. block->decelerate_after = accelerate_steps+plateau_steps;
  166. block->initial_rate = initial_rate;
  167. block->final_rate = final_rate;
  168. #ifdef ADVANCE
  169. block->initial_advance = initial_advance;
  170. block->final_advance = final_advance;
  171. #endif
  172. }
  173. CRITICAL_SECTION_END;
  174. }
  175. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  176. // acceleration within the allotted distance.
  177. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  178. return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
  179. }
  180. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  181. // This method will calculate the junction jerk as the euclidean distance between the nominal
  182. // velocities of the respective blocks.
  183. //inline float junction_jerk(block_t *before, block_t *after) {
  184. // return sqrt(
  185. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  186. //}
  187. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  188. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  189. if (!current) return;
  190. if (next) {
  191. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  192. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  193. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  194. if (current->entry_speed != current->max_entry_speed) {
  195. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  196. // for max allowable speed if block is decelerating and nominal length is false.
  197. if (!current->nominal_length_flag && current->max_entry_speed > next->entry_speed) {
  198. current->entry_speed = min(current->max_entry_speed,
  199. max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
  200. }
  201. else {
  202. current->entry_speed = current->max_entry_speed;
  203. }
  204. current->recalculate_flag = true;
  205. }
  206. } // Skip last block. Already initialized and set for recalculation.
  207. }
  208. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  209. // implements the reverse pass.
  210. void planner_reverse_pass() {
  211. uint8_t block_index = block_buffer_head;
  212. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  213. CRITICAL_SECTION_START;
  214. unsigned char tail = block_buffer_tail;
  215. CRITICAL_SECTION_END
  216. if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
  217. block_index = BLOCK_MOD(block_buffer_head - 3);
  218. block_t *block[3] = { NULL, NULL, NULL };
  219. while (block_index != tail) {
  220. block_index = prev_block_index(block_index);
  221. block[2]= block[1];
  222. block[1]= block[0];
  223. block[0] = &block_buffer[block_index];
  224. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  225. }
  226. }
  227. }
  228. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  229. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  230. if (!previous) return;
  231. // If the previous block is an acceleration block, but it is not long enough to complete the
  232. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  233. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  234. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  235. if (!previous->nominal_length_flag) {
  236. if (previous->entry_speed < current->entry_speed) {
  237. double entry_speed = min(current->entry_speed,
  238. max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
  239. // Check for junction speed change
  240. if (current->entry_speed != entry_speed) {
  241. current->entry_speed = entry_speed;
  242. current->recalculate_flag = true;
  243. }
  244. }
  245. }
  246. }
  247. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  248. // implements the forward pass.
  249. void planner_forward_pass() {
  250. uint8_t block_index = block_buffer_tail;
  251. block_t *block[3] = { NULL, NULL, NULL };
  252. while (block_index != block_buffer_head) {
  253. block[0] = block[1];
  254. block[1] = block[2];
  255. block[2] = &block_buffer[block_index];
  256. planner_forward_pass_kernel(block[0], block[1], block[2]);
  257. block_index = next_block_index(block_index);
  258. }
  259. planner_forward_pass_kernel(block[1], block[2], NULL);
  260. }
  261. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  262. // entry_factor for each junction. Must be called by planner_recalculate() after
  263. // updating the blocks.
  264. void planner_recalculate_trapezoids() {
  265. int8_t block_index = block_buffer_tail;
  266. block_t *current;
  267. block_t *next = NULL;
  268. while (block_index != block_buffer_head) {
  269. current = next;
  270. next = &block_buffer[block_index];
  271. if (current) {
  272. // Recalculate if current block entry or exit junction speed has changed.
  273. if (current->recalculate_flag || next->recalculate_flag) {
  274. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  275. float nom = current->nominal_speed;
  276. calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
  277. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  278. }
  279. }
  280. block_index = next_block_index( block_index );
  281. }
  282. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  283. if (next) {
  284. float nom = next->nominal_speed;
  285. calculate_trapezoid_for_block(next, next->entry_speed / nom, MINIMUM_PLANNER_SPEED / nom);
  286. next->recalculate_flag = false;
  287. }
  288. }
  289. // Recalculates the motion plan according to the following algorithm:
  290. //
  291. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  292. // so that:
  293. // a. The junction jerk is within the set limit
  294. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  295. // acceleration.
  296. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  297. // a. The speed increase within one block would require faster acceleration than the one, true
  298. // constant acceleration.
  299. //
  300. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  301. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  302. // the set limit. Finally it will:
  303. //
  304. // 3. Recalculate trapezoids for all blocks.
  305. void planner_recalculate() {
  306. planner_reverse_pass();
  307. planner_forward_pass();
  308. planner_recalculate_trapezoids();
  309. }
  310. void plan_init() {
  311. block_buffer_head = block_buffer_tail = 0;
  312. memset(position, 0, sizeof(position)); // clear position
  313. for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
  314. previous_nominal_speed = 0.0;
  315. }
  316. #ifdef AUTOTEMP
  317. void getHighESpeed() {
  318. static float oldt = 0;
  319. if (!autotemp_enabled) return;
  320. if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero.
  321. float high = 0.0;
  322. uint8_t block_index = block_buffer_tail;
  323. while (block_index != block_buffer_head) {
  324. block_t *block = &block_buffer[block_index];
  325. if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
  326. float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
  327. if (se > high) high = se;
  328. }
  329. block_index = next_block_index(block_index);
  330. }
  331. float t = autotemp_min + high * autotemp_factor;
  332. t = constrain(t, autotemp_min, autotemp_max);
  333. if (oldt > t) {
  334. t *= (1 - AUTOTEMP_OLDWEIGHT);
  335. t += AUTOTEMP_OLDWEIGHT * oldt;
  336. }
  337. oldt = t;
  338. setTargetHotend0(t);
  339. }
  340. #endif
  341. void check_axes_activity() {
  342. unsigned char axis_active[NUM_AXIS] = { 0 },
  343. tail_fan_speed = fanSpeed;
  344. #ifdef BARICUDA
  345. unsigned char tail_valve_pressure = ValvePressure,
  346. tail_e_to_p_pressure = EtoPPressure;
  347. #endif
  348. block_t *block;
  349. if (blocks_queued()) {
  350. uint8_t block_index = block_buffer_tail;
  351. tail_fan_speed = block_buffer[block_index].fan_speed;
  352. #ifdef BARICUDA
  353. block = &block_buffer[block_index];
  354. tail_valve_pressure = block->valve_pressure;
  355. tail_e_to_p_pressure = block->e_to_p_pressure;
  356. #endif
  357. while (block_index != block_buffer_head) {
  358. block = &block_buffer[block_index];
  359. for (int i=0; i<NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
  360. block_index = next_block_index(block_index);
  361. }
  362. }
  363. if (DISABLE_X && !axis_active[X_AXIS]) disable_x();
  364. if (DISABLE_Y && !axis_active[Y_AXIS]) disable_y();
  365. if (DISABLE_Z && !axis_active[Z_AXIS]) disable_z();
  366. if (DISABLE_E && !axis_active[E_AXIS]) {
  367. disable_e0();
  368. disable_e1();
  369. disable_e2();
  370. disable_e3();
  371. }
  372. #if HAS_FAN
  373. #ifdef FAN_KICKSTART_TIME
  374. static millis_t fan_kick_end;
  375. if (tail_fan_speed) {
  376. millis_t ms = millis();
  377. if (fan_kick_end == 0) {
  378. // Just starting up fan - run at full power.
  379. fan_kick_end = ms + FAN_KICKSTART_TIME;
  380. tail_fan_speed = 255;
  381. } else if (fan_kick_end > ms)
  382. // Fan still spinning up.
  383. tail_fan_speed = 255;
  384. } else {
  385. fan_kick_end = 0;
  386. }
  387. #endif //FAN_KICKSTART_TIME
  388. #ifdef FAN_MIN_PWM
  389. #define CALC_FAN_SPEED (tail_fan_speed ? ( FAN_MIN_PWM + (tail_fan_speed * (255 - FAN_MIN_PWM)) / 255 ) : 0)
  390. #else
  391. #define CALC_FAN_SPEED tail_fan_speed
  392. #endif // FAN_MIN_PWM
  393. #ifdef FAN_SOFT_PWM
  394. fanSpeedSoftPwm = CALC_FAN_SPEED;
  395. #else
  396. analogWrite(FAN_PIN, CALC_FAN_SPEED);
  397. #endif // FAN_SOFT_PWM
  398. #endif // HAS_FAN
  399. #ifdef AUTOTEMP
  400. getHighESpeed();
  401. #endif
  402. #ifdef BARICUDA
  403. #if HAS_HEATER_1
  404. analogWrite(HEATER_1_PIN,tail_valve_pressure);
  405. #endif
  406. #if HAS_HEATER_2
  407. analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
  408. #endif
  409. #endif
  410. }
  411. float junction_deviation = 0.1;
  412. // Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
  413. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  414. // calculation the caller must also provide the physical length of the line in millimeters.
  415. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  416. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  417. #else
  418. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
  419. #endif // ENABLE_AUTO_BED_LEVELING
  420. {
  421. // Calculate the buffer head after we push this byte
  422. int next_buffer_head = next_block_index(block_buffer_head);
  423. // If the buffer is full: good! That means we are well ahead of the robot.
  424. // Rest here until there is room in the buffer.
  425. while (block_buffer_tail == next_buffer_head) idle();
  426. #ifdef MESH_BED_LEVELING
  427. if (mbl.active) z += mbl.get_z(x, y);
  428. #elif defined(ENABLE_AUTO_BED_LEVELING)
  429. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  430. #endif
  431. // The target position of the tool in absolute steps
  432. // Calculate target position in absolute steps
  433. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  434. long target[NUM_AXIS];
  435. target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
  436. target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
  437. target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
  438. target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  439. float dx = target[X_AXIS] - position[X_AXIS],
  440. dy = target[Y_AXIS] - position[Y_AXIS],
  441. dz = target[Z_AXIS] - position[Z_AXIS];
  442. // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
  443. if (marlin_debug_flags & DEBUG_DRYRUN)
  444. position[E_AXIS] = target[E_AXIS];
  445. float de = target[E_AXIS] - position[E_AXIS];
  446. #ifdef PREVENT_DANGEROUS_EXTRUDE
  447. if (de) {
  448. if (degHotend(extruder) < extrude_min_temp) {
  449. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  450. de = 0; // no difference
  451. SERIAL_ECHO_START;
  452. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  453. }
  454. #ifdef PREVENT_LENGTHY_EXTRUDE
  455. if (labs(de) > axis_steps_per_unit[E_AXIS] * EXTRUDE_MAXLENGTH) {
  456. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  457. de = 0; // no difference
  458. SERIAL_ECHO_START;
  459. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  460. }
  461. #endif
  462. }
  463. #endif
  464. // Prepare to set up new block
  465. block_t *block = &block_buffer[block_buffer_head];
  466. // Mark block as not busy (Not executed by the stepper interrupt)
  467. block->busy = false;
  468. // Number of steps for each axis
  469. #ifdef COREXY
  470. // corexy planning
  471. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  472. block->steps[A_AXIS] = labs(dx + dy);
  473. block->steps[B_AXIS] = labs(dx - dy);
  474. #else
  475. // default non-h-bot planning
  476. block->steps[X_AXIS] = labs(dx);
  477. block->steps[Y_AXIS] = labs(dy);
  478. #endif
  479. block->steps[Z_AXIS] = labs(dz);
  480. block->steps[E_AXIS] = labs(de);
  481. block->steps[E_AXIS] *= volumetric_multiplier[extruder];
  482. block->steps[E_AXIS] *= extruder_multiplier[extruder];
  483. block->steps[E_AXIS] /= 100;
  484. block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
  485. // Bail if this is a zero-length block
  486. if (block->step_event_count <= dropsegments) return;
  487. block->fan_speed = fanSpeed;
  488. #ifdef BARICUDA
  489. block->valve_pressure = ValvePressure;
  490. block->e_to_p_pressure = EtoPPressure;
  491. #endif
  492. // Compute direction bits for this block
  493. uint8_t db = 0;
  494. #ifdef COREXY
  495. if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
  496. if (dy < 0) db |= BIT(Y_HEAD); // ...and Y
  497. if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
  498. if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
  499. #else
  500. if (dx < 0) db |= BIT(X_AXIS);
  501. if (dy < 0) db |= BIT(Y_AXIS);
  502. #endif
  503. if (dz < 0) db |= BIT(Z_AXIS);
  504. if (de < 0) db |= BIT(E_AXIS);
  505. block->direction_bits = db;
  506. block->active_extruder = extruder;
  507. //enable active axes
  508. #ifdef COREXY
  509. if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
  510. enable_x();
  511. enable_y();
  512. }
  513. #else
  514. if (block->steps[X_AXIS]) enable_x();
  515. if (block->steps[Y_AXIS]) enable_y();
  516. #endif
  517. #ifndef Z_LATE_ENABLE
  518. if (block->steps[Z_AXIS]) enable_z();
  519. #endif
  520. // Enable extruder(s)
  521. if (block->steps[E_AXIS]) {
  522. if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder
  523. for (int i=0; i<EXTRUDERS; i++)
  524. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  525. switch(extruder) {
  526. case 0:
  527. enable_e0();
  528. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE * 2;
  529. #if EXTRUDERS > 1
  530. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  531. #if EXTRUDERS > 2
  532. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  533. #if EXTRUDERS > 3
  534. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  535. #endif
  536. #endif
  537. #endif
  538. break;
  539. #if EXTRUDERS > 1
  540. case 1:
  541. enable_e1();
  542. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE * 2;
  543. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  544. #if EXTRUDERS > 2
  545. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  546. #if EXTRUDERS > 3
  547. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  548. #endif
  549. #endif
  550. break;
  551. #if EXTRUDERS > 2
  552. case 2:
  553. enable_e2();
  554. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE * 2;
  555. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  556. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  557. #if EXTRUDERS > 3
  558. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  559. #endif
  560. break;
  561. #if EXTRUDERS > 3
  562. case 3:
  563. enable_e3();
  564. g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE * 2;
  565. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  566. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  567. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  568. break;
  569. #endif // EXTRUDERS > 3
  570. #endif // EXTRUDERS > 2
  571. #endif // EXTRUDERS > 1
  572. }
  573. }
  574. else { // enable all
  575. enable_e0();
  576. enable_e1();
  577. enable_e2();
  578. enable_e3();
  579. }
  580. }
  581. if (block->steps[E_AXIS])
  582. NOLESS(feed_rate, minimumfeedrate);
  583. else
  584. NOLESS(feed_rate, mintravelfeedrate);
  585. /**
  586. * This part of the code calculates the total length of the movement.
  587. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  588. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  589. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  590. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  591. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  592. */
  593. #ifdef COREXY
  594. float delta_mm[6];
  595. delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
  596. delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
  597. delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
  598. delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
  599. #else
  600. float delta_mm[4];
  601. delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
  602. delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
  603. #endif
  604. delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
  605. delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
  606. if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
  607. block->millimeters = fabs(delta_mm[E_AXIS]);
  608. }
  609. else {
  610. block->millimeters = sqrt(
  611. #ifdef COREXY
  612. square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD])
  613. #else
  614. square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS])
  615. #endif
  616. + square(delta_mm[Z_AXIS])
  617. );
  618. }
  619. float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
  620. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  621. float inverse_second = feed_rate * inverse_millimeters;
  622. int moves_queued = movesplanned();
  623. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  624. #if defined(OLD_SLOWDOWN) || defined(SLOWDOWN)
  625. bool mq = moves_queued > 1 && moves_queued < BLOCK_BUFFER_SIZE / 2;
  626. #ifdef OLD_SLOWDOWN
  627. if (mq) feed_rate *= 2.0 * moves_queued / BLOCK_BUFFER_SIZE;
  628. #endif
  629. #ifdef SLOWDOWN
  630. // segment time im micro seconds
  631. unsigned long segment_time = lround(1000000.0/inverse_second);
  632. if (mq) {
  633. if (segment_time < minsegmenttime) {
  634. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  635. inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued));
  636. #ifdef XY_FREQUENCY_LIMIT
  637. segment_time = lround(1000000.0 / inverse_second);
  638. #endif
  639. }
  640. }
  641. #endif
  642. #endif
  643. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  644. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  645. #ifdef FILAMENT_SENSOR
  646. //FMM update ring buffer used for delay with filament measurements
  647. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized
  648. const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10;
  649. delay_dist += delta_mm[E_AXIS]; // increment counter with next move in e axis
  650. while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer
  651. while (delay_dist < 0) delay_dist += MMD10;
  652. delay_index1 = delay_dist / 10.0; // calculate index
  653. delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above)
  654. if (delay_index1 != delay_index2) { // moved index
  655. meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
  656. while (delay_index1 != delay_index2) {
  657. // Increment and loop around buffer
  658. if (++delay_index2 >= MMD) delay_index2 -= MMD;
  659. delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY);
  660. measurement_delay[delay_index2] = meas_sample;
  661. }
  662. }
  663. }
  664. #endif
  665. // Calculate and limit speed in mm/sec for each axis
  666. float current_speed[NUM_AXIS];
  667. float speed_factor = 1.0; //factor <=1 do decrease speed
  668. for (int i = 0; i < NUM_AXIS; i++) {
  669. current_speed[i] = delta_mm[i] * inverse_second;
  670. float cs = fabs(current_speed[i]), mf = max_feedrate[i];
  671. if (cs > mf) speed_factor = min(speed_factor, mf / cs);
  672. }
  673. // Max segement time in us.
  674. #ifdef XY_FREQUENCY_LIMIT
  675. #define MAX_FREQ_TIME (1000000.0 / XY_FREQUENCY_LIMIT)
  676. // Check and limit the xy direction change frequency
  677. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  678. old_direction_bits = block->direction_bits;
  679. segment_time = lround((float)segment_time / speed_factor);
  680. long xs0 = axis_segment_time[X_AXIS][0],
  681. xs1 = axis_segment_time[X_AXIS][1],
  682. xs2 = axis_segment_time[X_AXIS][2],
  683. ys0 = axis_segment_time[Y_AXIS][0],
  684. ys1 = axis_segment_time[Y_AXIS][1],
  685. ys2 = axis_segment_time[Y_AXIS][2];
  686. if ((direction_change & BIT(X_AXIS)) != 0) {
  687. xs2 = axis_segment_time[X_AXIS][2] = xs1;
  688. xs1 = axis_segment_time[X_AXIS][1] = xs0;
  689. xs0 = 0;
  690. }
  691. xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
  692. if ((direction_change & BIT(Y_AXIS)) != 0) {
  693. ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
  694. ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
  695. ys0 = 0;
  696. }
  697. ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
  698. long max_x_segment_time = max(xs0, max(xs1, xs2)),
  699. max_y_segment_time = max(ys0, max(ys1, ys2)),
  700. min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
  701. if (min_xy_segment_time < MAX_FREQ_TIME) {
  702. float low_sf = speed_factor * min_xy_segment_time / MAX_FREQ_TIME;
  703. speed_factor = min(speed_factor, low_sf);
  704. }
  705. #endif // XY_FREQUENCY_LIMIT
  706. // Correct the speed
  707. if (speed_factor < 1.0) {
  708. for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
  709. block->nominal_speed *= speed_factor;
  710. block->nominal_rate *= speed_factor;
  711. }
  712. // Compute and limit the acceleration rate for the trapezoid generator.
  713. float steps_per_mm = block->step_event_count / block->millimeters;
  714. long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
  715. if (bsx == 0 && bsy == 0 && bsz == 0) {
  716. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  717. }
  718. else if (bse == 0) {
  719. block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  720. }
  721. else {
  722. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  723. }
  724. // Limit acceleration per axis
  725. unsigned long acc_st = block->acceleration_st,
  726. xsteps = axis_steps_per_sqr_second[X_AXIS],
  727. ysteps = axis_steps_per_sqr_second[Y_AXIS],
  728. zsteps = axis_steps_per_sqr_second[Z_AXIS],
  729. esteps = axis_steps_per_sqr_second[E_AXIS];
  730. if ((float)acc_st * bsx / block->step_event_count > xsteps) acc_st = xsteps;
  731. if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps;
  732. if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps;
  733. if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps;
  734. block->acceleration_st = acc_st;
  735. block->acceleration = acc_st / steps_per_mm;
  736. block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
  737. #if 0 // Use old jerk for now
  738. // Compute path unit vector
  739. double unit_vec[3];
  740. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  741. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  742. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  743. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  744. // Let a circle be tangent to both previous and current path line segments, where the junction
  745. // deviation is defined as the distance from the junction to the closest edge of the circle,
  746. // colinear with the circle center. The circular segment joining the two paths represents the
  747. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  748. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  749. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  750. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  751. // nonlinearities of both the junction angle and junction velocity.
  752. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  753. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  754. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  755. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  756. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  757. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  758. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  759. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  760. // Skip and use default max junction speed for 0 degree acute junction.
  761. if (cos_theta < 0.95) {
  762. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  763. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  764. if (cos_theta > -0.95) {
  765. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  766. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  767. vmax_junction = min(vmax_junction,
  768. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  769. }
  770. }
  771. }
  772. #endif
  773. // Start with a safe speed
  774. float vmax_junction = max_xy_jerk / 2;
  775. float vmax_junction_factor = 1.0;
  776. float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
  777. float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
  778. if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
  779. if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
  780. vmax_junction = min(vmax_junction, block->nominal_speed);
  781. float safe_speed = vmax_junction;
  782. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  783. float dx = current_speed[X_AXIS] - previous_speed[X_AXIS],
  784. dy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
  785. dz = fabs(csz - previous_speed[Z_AXIS]),
  786. de = fabs(cse - previous_speed[E_AXIS]),
  787. jerk = sqrt(dx * dx + dy * dy);
  788. // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  789. vmax_junction = block->nominal_speed;
  790. // }
  791. if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
  792. if (dz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dz);
  793. if (de > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / de);
  794. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  795. }
  796. block->max_entry_speed = vmax_junction;
  797. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  798. double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  799. block->entry_speed = min(vmax_junction, v_allowable);
  800. // Initialize planner efficiency flags
  801. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  802. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  803. // the current block and next block junction speeds are guaranteed to always be at their maximum
  804. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  805. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  806. // the reverse and forward planners, the corresponding block junction speed will always be at the
  807. // the maximum junction speed and may always be ignored for any speed reduction checks.
  808. block->nominal_length_flag = (block->nominal_speed <= v_allowable);
  809. block->recalculate_flag = true; // Always calculate trapezoid for new block
  810. // Update previous path unit_vector and nominal speed
  811. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
  812. previous_nominal_speed = block->nominal_speed;
  813. #ifdef ADVANCE
  814. // Calculate advance rate
  815. if (!bse || (!bsx && !bsy && !bsz)) {
  816. block->advance_rate = 0;
  817. block->advance = 0;
  818. }
  819. else {
  820. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  821. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (cse * cse * EXTRUSION_AREA * EXTRUSION_AREA) * 256;
  822. block->advance = advance;
  823. block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
  824. }
  825. /*
  826. SERIAL_ECHO_START;
  827. SERIAL_ECHOPGM("advance :");
  828. SERIAL_ECHO(block->advance/256.0);
  829. SERIAL_ECHOPGM("advance rate :");
  830. SERIAL_ECHOLN(block->advance_rate/256.0);
  831. */
  832. #endif // ADVANCE
  833. calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
  834. // Move buffer head
  835. block_buffer_head = next_buffer_head;
  836. // Update position
  837. for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
  838. planner_recalculate();
  839. st_wake_up();
  840. } // plan_buffer_line()
  841. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(DELTA)
  842. vector_3 plan_get_position() {
  843. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  844. //position.debug("in plan_get position");
  845. //plan_bed_level_matrix.debug("in plan_get_position");
  846. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  847. //inverse.debug("in plan_get inverse");
  848. position.apply_rotation(inverse);
  849. //position.debug("after rotation");
  850. return position;
  851. }
  852. #endif // ENABLE_AUTO_BED_LEVELING && !DELTA
  853. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  854. void plan_set_position(float x, float y, float z, const float &e)
  855. #else
  856. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  857. #endif // ENABLE_AUTO_BED_LEVELING || MESH_BED_LEVELING
  858. {
  859. #ifdef MESH_BED_LEVELING
  860. if (mbl.active) z += mbl.get_z(x, y);
  861. #elif defined(ENABLE_AUTO_BED_LEVELING)
  862. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  863. #endif
  864. float nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]),
  865. ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
  866. nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
  867. ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  868. st_set_position(nx, ny, nz, ne);
  869. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  870. for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
  871. }
  872. void plan_set_e_position(const float &e) {
  873. position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  874. st_set_e_position(position[E_AXIS]);
  875. }
  876. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  877. void reset_acceleration_rates() {
  878. for (int i = 0; i < NUM_AXIS; i++)
  879. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  880. }