My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 120KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef ACCURATE_BED_LEVELING
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to cordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homeing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores paramters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from eeprom)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M666 - set delta endstop adjustemnt
  149. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  150. // M907 - Set digital trimpot motor current using axis codes.
  151. // M908 - Control digital trimpot directly.
  152. // M350 - Set microstepping mode.
  153. // M351 - Toggle MS1 MS2 pins directly.
  154. // M928 - Start SD logging (M928 filename.g) - ended by M29
  155. // M999 - Restart after being stopped by error
  156. //Stepper Movement Variables
  157. //===========================================================================
  158. //=============================imported variables============================
  159. //===========================================================================
  160. //===========================================================================
  161. //=============================public variables=============================
  162. //===========================================================================
  163. #ifdef SDSUPPORT
  164. CardReader card;
  165. #endif
  166. float homing_feedrate[] = HOMING_FEEDRATE;
  167. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  168. int feedmultiply=100; //100->1 200->2
  169. int saved_feedmultiply;
  170. int extrudemultiply=100; //100->1 200->2
  171. float volumetric_multiplier[EXTRUDERS] = {1.0
  172. #if EXTRUDERS > 1
  173. , 1.0
  174. #if EXTRUDERS > 2
  175. , 1.0
  176. #endif
  177. #endif
  178. };
  179. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  180. float add_homeing[3]={0,0,0};
  181. #ifdef DELTA
  182. float endstop_adj[3]={0,0,0};
  183. #endif
  184. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  185. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  186. bool axis_known_position[3] = {false, false, false};
  187. float zprobe_zoffset;
  188. // Extruder offset
  189. #if EXTRUDERS > 1
  190. #ifndef DUAL_X_CARRIAGE
  191. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  192. #else
  193. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  194. #endif
  195. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  196. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  197. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  198. #endif
  199. };
  200. #endif
  201. uint8_t active_extruder = 0;
  202. int fanSpeed=0;
  203. #ifdef SERVO_ENDSTOPS
  204. int servo_endstops[] = SERVO_ENDSTOPS;
  205. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  206. #endif
  207. #ifdef BARICUDA
  208. int ValvePressure=0;
  209. int EtoPPressure=0;
  210. #endif
  211. #ifdef FWRETRACT
  212. bool autoretract_enabled=false;
  213. bool retracted=false;
  214. float retract_length = RETRACT_LENGTH;
  215. float retract_feedrate = RETRACT_FEEDRATE;
  216. float retract_zlift = RETRACT_ZLIFT;
  217. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  218. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  219. #endif
  220. #ifdef ULTIPANEL
  221. #ifdef PS_DEFAULT_OFF
  222. bool powersupply = false;
  223. #else
  224. bool powersupply = true;
  225. #endif
  226. #endif
  227. #ifdef DELTA
  228. float delta[3] = {0.0, 0.0, 0.0};
  229. #endif
  230. //===========================================================================
  231. //=============================private variables=============================
  232. //===========================================================================
  233. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  234. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  235. static float offset[3] = {0.0, 0.0, 0.0};
  236. static bool home_all_axis = true;
  237. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  238. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  239. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  240. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  241. static bool fromsd[BUFSIZE];
  242. static int bufindr = 0;
  243. static int bufindw = 0;
  244. static int buflen = 0;
  245. //static int i = 0;
  246. static char serial_char;
  247. static int serial_count = 0;
  248. static boolean comment_mode = false;
  249. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  250. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  251. //static float tt = 0;
  252. //static float bt = 0;
  253. //Inactivity shutdown variables
  254. static unsigned long previous_millis_cmd = 0;
  255. static unsigned long max_inactive_time = 0;
  256. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  257. unsigned long starttime=0;
  258. unsigned long stoptime=0;
  259. static uint8_t tmp_extruder;
  260. bool Stopped=false;
  261. #if NUM_SERVOS > 0
  262. Servo servos[NUM_SERVOS];
  263. #endif
  264. bool CooldownNoWait = true;
  265. bool target_direction;
  266. //===========================================================================
  267. //=============================ROUTINES=============================
  268. //===========================================================================
  269. void get_arc_coordinates();
  270. bool setTargetedHotend(int code);
  271. void serial_echopair_P(const char *s_P, float v)
  272. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  273. void serial_echopair_P(const char *s_P, double v)
  274. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  275. void serial_echopair_P(const char *s_P, unsigned long v)
  276. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  277. extern "C"{
  278. extern unsigned int __bss_end;
  279. extern unsigned int __heap_start;
  280. extern void *__brkval;
  281. int freeMemory() {
  282. int free_memory;
  283. if((int)__brkval == 0)
  284. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  285. else
  286. free_memory = ((int)&free_memory) - ((int)__brkval);
  287. return free_memory;
  288. }
  289. }
  290. //adds an command to the main command buffer
  291. //thats really done in a non-safe way.
  292. //needs overworking someday
  293. void enquecommand(const char *cmd)
  294. {
  295. if(buflen < BUFSIZE)
  296. {
  297. //this is dangerous if a mixing of serial and this happsens
  298. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  299. SERIAL_ECHO_START;
  300. SERIAL_ECHOPGM("enqueing \"");
  301. SERIAL_ECHO(cmdbuffer[bufindw]);
  302. SERIAL_ECHOLNPGM("\"");
  303. bufindw= (bufindw + 1)%BUFSIZE;
  304. buflen += 1;
  305. }
  306. }
  307. void enquecommand_P(const char *cmd)
  308. {
  309. if(buflen < BUFSIZE)
  310. {
  311. //this is dangerous if a mixing of serial and this happsens
  312. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  313. SERIAL_ECHO_START;
  314. SERIAL_ECHOPGM("enqueing \"");
  315. SERIAL_ECHO(cmdbuffer[bufindw]);
  316. SERIAL_ECHOLNPGM("\"");
  317. bufindw= (bufindw + 1)%BUFSIZE;
  318. buflen += 1;
  319. }
  320. }
  321. void setup_killpin()
  322. {
  323. #if defined(KILL_PIN) && KILL_PIN > -1
  324. pinMode(KILL_PIN,INPUT);
  325. WRITE(KILL_PIN,HIGH);
  326. #endif
  327. }
  328. void setup_photpin()
  329. {
  330. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  331. SET_OUTPUT(PHOTOGRAPH_PIN);
  332. WRITE(PHOTOGRAPH_PIN, LOW);
  333. #endif
  334. }
  335. void setup_powerhold()
  336. {
  337. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  338. SET_OUTPUT(SUICIDE_PIN);
  339. WRITE(SUICIDE_PIN, HIGH);
  340. #endif
  341. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  342. SET_OUTPUT(PS_ON_PIN);
  343. #if defined(PS_DEFAULT_OFF)
  344. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  345. #else
  346. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  347. #endif
  348. #endif
  349. }
  350. void suicide()
  351. {
  352. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  353. SET_OUTPUT(SUICIDE_PIN);
  354. WRITE(SUICIDE_PIN, LOW);
  355. #endif
  356. }
  357. void servo_init()
  358. {
  359. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  360. servos[0].attach(SERVO0_PIN);
  361. #endif
  362. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  363. servos[1].attach(SERVO1_PIN);
  364. #endif
  365. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  366. servos[2].attach(SERVO2_PIN);
  367. #endif
  368. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  369. servos[3].attach(SERVO3_PIN);
  370. #endif
  371. #if (NUM_SERVOS >= 5)
  372. #error "TODO: enter initalisation code for more servos"
  373. #endif
  374. // Set position of Servo Endstops that are defined
  375. #ifdef SERVO_ENDSTOPS
  376. for(int8_t i = 0; i < 3; i++)
  377. {
  378. if(servo_endstops[i] > -1) {
  379. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  380. }
  381. }
  382. #endif
  383. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  384. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  385. servos[servo_endstops[Z_AXIS]].detach();
  386. #endif
  387. }
  388. void setup()
  389. {
  390. setup_killpin();
  391. setup_powerhold();
  392. MYSERIAL.begin(BAUDRATE);
  393. SERIAL_PROTOCOLLNPGM("start");
  394. SERIAL_ECHO_START;
  395. // Check startup - does nothing if bootloader sets MCUSR to 0
  396. byte mcu = MCUSR;
  397. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  398. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  399. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  400. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  401. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  402. MCUSR=0;
  403. SERIAL_ECHOPGM(MSG_MARLIN);
  404. SERIAL_ECHOLNPGM(VERSION_STRING);
  405. #ifdef STRING_VERSION_CONFIG_H
  406. #ifdef STRING_CONFIG_H_AUTHOR
  407. SERIAL_ECHO_START;
  408. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  409. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  410. SERIAL_ECHOPGM(MSG_AUTHOR);
  411. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  412. SERIAL_ECHOPGM("Compiled: ");
  413. SERIAL_ECHOLNPGM(__DATE__);
  414. #endif
  415. #endif
  416. SERIAL_ECHO_START;
  417. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  418. SERIAL_ECHO(freeMemory());
  419. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  420. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  421. for(int8_t i = 0; i < BUFSIZE; i++)
  422. {
  423. fromsd[i] = false;
  424. }
  425. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  426. Config_RetrieveSettings();
  427. tp_init(); // Initialize temperature loop
  428. plan_init(); // Initialize planner;
  429. watchdog_init();
  430. st_init(); // Initialize stepper, this enables interrupts!
  431. setup_photpin();
  432. servo_init();
  433. lcd_init();
  434. _delay_ms(1000); // wait 1sec to display the splash screen
  435. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  436. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  437. #endif
  438. #ifdef DIGIPOT_I2C
  439. digipot_i2c_init();
  440. #endif
  441. }
  442. void loop()
  443. {
  444. if(buflen < (BUFSIZE-1))
  445. get_command();
  446. #ifdef SDSUPPORT
  447. card.checkautostart(false);
  448. #endif
  449. if(buflen)
  450. {
  451. #ifdef SDSUPPORT
  452. if(card.saving)
  453. {
  454. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  455. {
  456. card.write_command(cmdbuffer[bufindr]);
  457. if(card.logging)
  458. {
  459. process_commands();
  460. }
  461. else
  462. {
  463. SERIAL_PROTOCOLLNPGM(MSG_OK);
  464. }
  465. }
  466. else
  467. {
  468. card.closefile();
  469. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  470. }
  471. }
  472. else
  473. {
  474. process_commands();
  475. }
  476. #else
  477. process_commands();
  478. #endif //SDSUPPORT
  479. buflen = (buflen-1);
  480. bufindr = (bufindr + 1)%BUFSIZE;
  481. }
  482. //check heater every n milliseconds
  483. manage_heater();
  484. manage_inactivity();
  485. checkHitEndstops();
  486. lcd_update();
  487. }
  488. void get_command()
  489. {
  490. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  491. serial_char = MYSERIAL.read();
  492. if(serial_char == '\n' ||
  493. serial_char == '\r' ||
  494. (serial_char == ':' && comment_mode == false) ||
  495. serial_count >= (MAX_CMD_SIZE - 1) )
  496. {
  497. if(!serial_count) { //if empty line
  498. comment_mode = false; //for new command
  499. return;
  500. }
  501. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  502. if(!comment_mode){
  503. comment_mode = false; //for new command
  504. fromsd[bufindw] = false;
  505. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  506. {
  507. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  508. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  509. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  510. SERIAL_ERROR_START;
  511. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  512. SERIAL_ERRORLN(gcode_LastN);
  513. //Serial.println(gcode_N);
  514. FlushSerialRequestResend();
  515. serial_count = 0;
  516. return;
  517. }
  518. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  519. {
  520. byte checksum = 0;
  521. byte count = 0;
  522. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  523. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  524. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  525. SERIAL_ERROR_START;
  526. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  527. SERIAL_ERRORLN(gcode_LastN);
  528. FlushSerialRequestResend();
  529. serial_count = 0;
  530. return;
  531. }
  532. //if no errors, continue parsing
  533. }
  534. else
  535. {
  536. SERIAL_ERROR_START;
  537. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  538. SERIAL_ERRORLN(gcode_LastN);
  539. FlushSerialRequestResend();
  540. serial_count = 0;
  541. return;
  542. }
  543. gcode_LastN = gcode_N;
  544. //if no errors, continue parsing
  545. }
  546. else // if we don't receive 'N' but still see '*'
  547. {
  548. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  549. {
  550. SERIAL_ERROR_START;
  551. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  552. SERIAL_ERRORLN(gcode_LastN);
  553. serial_count = 0;
  554. return;
  555. }
  556. }
  557. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  558. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  559. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  560. case 0:
  561. case 1:
  562. case 2:
  563. case 3:
  564. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  565. #ifdef SDSUPPORT
  566. if(card.saving)
  567. break;
  568. #endif //SDSUPPORT
  569. SERIAL_PROTOCOLLNPGM(MSG_OK);
  570. }
  571. else {
  572. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  573. LCD_MESSAGEPGM(MSG_STOPPED);
  574. }
  575. break;
  576. default:
  577. break;
  578. }
  579. }
  580. bufindw = (bufindw + 1)%BUFSIZE;
  581. buflen += 1;
  582. }
  583. serial_count = 0; //clear buffer
  584. }
  585. else
  586. {
  587. if(serial_char == ';') comment_mode = true;
  588. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  589. }
  590. }
  591. #ifdef SDSUPPORT
  592. if(!card.sdprinting || serial_count!=0){
  593. return;
  594. }
  595. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  596. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  597. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  598. static bool stop_buffering=false;
  599. if(buflen==0) stop_buffering=false;
  600. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  601. int16_t n=card.get();
  602. serial_char = (char)n;
  603. if(serial_char == '\n' ||
  604. serial_char == '\r' ||
  605. (serial_char == '#' && comment_mode == false) ||
  606. (serial_char == ':' && comment_mode == false) ||
  607. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  608. {
  609. if(card.eof()){
  610. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  611. stoptime=millis();
  612. char time[30];
  613. unsigned long t=(stoptime-starttime)/1000;
  614. int hours, minutes;
  615. minutes=(t/60)%60;
  616. hours=t/60/60;
  617. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  618. SERIAL_ECHO_START;
  619. SERIAL_ECHOLN(time);
  620. lcd_setstatus(time);
  621. card.printingHasFinished();
  622. card.checkautostart(true);
  623. }
  624. if(serial_char=='#')
  625. stop_buffering=true;
  626. if(!serial_count)
  627. {
  628. comment_mode = false; //for new command
  629. return; //if empty line
  630. }
  631. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  632. // if(!comment_mode){
  633. fromsd[bufindw] = true;
  634. buflen += 1;
  635. bufindw = (bufindw + 1)%BUFSIZE;
  636. // }
  637. comment_mode = false; //for new command
  638. serial_count = 0; //clear buffer
  639. }
  640. else
  641. {
  642. if(serial_char == ';') comment_mode = true;
  643. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  644. }
  645. }
  646. #endif //SDSUPPORT
  647. }
  648. float code_value()
  649. {
  650. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  651. }
  652. long code_value_long()
  653. {
  654. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  655. }
  656. bool code_seen(char code)
  657. {
  658. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  659. return (strchr_pointer != NULL); //Return True if a character was found
  660. }
  661. #define DEFINE_PGM_READ_ANY(type, reader) \
  662. static inline type pgm_read_any(const type *p) \
  663. { return pgm_read_##reader##_near(p); }
  664. DEFINE_PGM_READ_ANY(float, float);
  665. DEFINE_PGM_READ_ANY(signed char, byte);
  666. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  667. static const PROGMEM type array##_P[3] = \
  668. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  669. static inline type array(int axis) \
  670. { return pgm_read_any(&array##_P[axis]); }
  671. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  672. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  673. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  674. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  675. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  676. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  677. #ifdef DUAL_X_CARRIAGE
  678. #if EXTRUDERS == 1 || defined(COREXY) \
  679. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  680. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  681. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  682. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  683. #endif
  684. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  685. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  686. #endif
  687. #define DXC_FULL_CONTROL_MODE 0
  688. #define DXC_AUTO_PARK_MODE 1
  689. #define DXC_DUPLICATION_MODE 2
  690. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  691. static float x_home_pos(int extruder) {
  692. if (extruder == 0)
  693. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  694. else
  695. // In dual carriage mode the extruder offset provides an override of the
  696. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  697. // This allow soft recalibration of the second extruder offset position without firmware reflash
  698. // (through the M218 command).
  699. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  700. }
  701. static int x_home_dir(int extruder) {
  702. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  703. }
  704. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  705. static bool active_extruder_parked = false; // used in mode 1 & 2
  706. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  707. static unsigned long delayed_move_time = 0; // used in mode 1
  708. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  709. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  710. bool extruder_duplication_enabled = false; // used in mode 2
  711. #endif //DUAL_X_CARRIAGE
  712. static void axis_is_at_home(int axis) {
  713. #ifdef DUAL_X_CARRIAGE
  714. if (axis == X_AXIS) {
  715. if (active_extruder != 0) {
  716. current_position[X_AXIS] = x_home_pos(active_extruder);
  717. min_pos[X_AXIS] = X2_MIN_POS;
  718. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  719. return;
  720. }
  721. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  722. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  723. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  724. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  725. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  726. return;
  727. }
  728. }
  729. #endif
  730. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  731. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  732. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  733. }
  734. #ifdef ENABLE_AUTO_BED_LEVELING
  735. #ifdef ACCURATE_BED_LEVELING
  736. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  737. {
  738. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  739. planeNormal.debug("planeNormal");
  740. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  741. //bedLevel.debug("bedLevel");
  742. //plan_bed_level_matrix.debug("bed level before");
  743. //vector_3 uncorrected_position = plan_get_position_mm();
  744. //uncorrected_position.debug("position before");
  745. vector_3 corrected_position = plan_get_position();
  746. // corrected_position.debug("position after");
  747. current_position[X_AXIS] = corrected_position.x;
  748. current_position[Y_AXIS] = corrected_position.y;
  749. current_position[Z_AXIS] = corrected_position.z;
  750. // but the bed at 0 so we don't go below it.
  751. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  752. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  753. }
  754. #else // not ACCURATE_BED_LEVELING
  755. #ifdef AUTO_BED_LEVELING_ANY_POINTS
  756. static void set_bed_level_equation_any_pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  757. plan_bed_level_matrix.set_to_identity();
  758. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  759. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  760. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  761. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  762. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  763. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  764. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  765. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  766. vector_3 corrected_position = plan_get_position();
  767. current_position[X_AXIS] = corrected_position.x;
  768. current_position[Y_AXIS] = corrected_position.y;
  769. current_position[Z_AXIS] = corrected_position.z;
  770. // but the bed at 0 so we don't go below it.
  771. current_position[Z_AXIS] = zprobe_zoffset;
  772. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  773. }
  774. #else // not AUTO_BED_LEVELING_ANY_POINTS
  775. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  776. plan_bed_level_matrix.set_to_identity();
  777. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  778. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  779. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  780. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  781. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  782. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  783. //planeNormal.debug("planeNormal");
  784. //yPositive.debug("yPositive");
  785. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  786. //bedLevel.debug("bedLevel");
  787. //plan_bed_level_matrix.debug("bed level before");
  788. //vector_3 uncorrected_position = plan_get_position_mm();
  789. //uncorrected_position.debug("position before");
  790. // and set our bed level equation to do the right thing
  791. //plan_bed_level_matrix.debug("bed level after");
  792. vector_3 corrected_position = plan_get_position();
  793. //corrected_position.debug("position after");
  794. current_position[X_AXIS] = corrected_position.x;
  795. current_position[Y_AXIS] = corrected_position.y;
  796. current_position[Z_AXIS] = corrected_position.z;
  797. // but the bed at 0 so we don't go below it.
  798. current_position[Z_AXIS] = zprobe_zoffset;
  799. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  800. }
  801. #endif // AUTO_BED_LEVELING_ANY_POINTS
  802. #endif // ACCURATE_BED_LEVELING
  803. static void run_z_probe() {
  804. plan_bed_level_matrix.set_to_identity();
  805. feedrate = homing_feedrate[Z_AXIS];
  806. // move down until you find the bed
  807. float zPosition = -10;
  808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  809. st_synchronize();
  810. // we have to let the planner know where we are right now as it is not where we said to go.
  811. zPosition = st_get_position_mm(Z_AXIS);
  812. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  813. // move up the retract distance
  814. zPosition += home_retract_mm(Z_AXIS);
  815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  816. st_synchronize();
  817. // move back down slowly to find bed
  818. feedrate = homing_feedrate[Z_AXIS]/4;
  819. zPosition -= home_retract_mm(Z_AXIS) * 2;
  820. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  821. st_synchronize();
  822. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  823. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  824. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  825. }
  826. static void do_blocking_move_to(float x, float y, float z) {
  827. float oldFeedRate = feedrate;
  828. feedrate = XY_TRAVEL_SPEED;
  829. current_position[X_AXIS] = x;
  830. current_position[Y_AXIS] = y;
  831. current_position[Z_AXIS] = z;
  832. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  833. st_synchronize();
  834. feedrate = oldFeedRate;
  835. }
  836. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  837. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  838. }
  839. static void setup_for_endstop_move() {
  840. saved_feedrate = feedrate;
  841. saved_feedmultiply = feedmultiply;
  842. feedmultiply = 100;
  843. previous_millis_cmd = millis();
  844. enable_endstops(true);
  845. }
  846. static void clean_up_after_endstop_move() {
  847. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  848. enable_endstops(false);
  849. #endif
  850. feedrate = saved_feedrate;
  851. feedmultiply = saved_feedmultiply;
  852. previous_millis_cmd = millis();
  853. }
  854. static void engage_z_probe() {
  855. // Engage Z Servo endstop if enabled
  856. #ifdef SERVO_ENDSTOPS
  857. if (servo_endstops[Z_AXIS] > -1) {
  858. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  859. servos[servo_endstops[Z_AXIS]].attach(0);
  860. #endif
  861. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  862. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  863. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  864. servos[servo_endstops[Z_AXIS]].detach();
  865. #endif
  866. }
  867. #endif
  868. }
  869. static void retract_z_probe() {
  870. // Retract Z Servo endstop if enabled
  871. #ifdef SERVO_ENDSTOPS
  872. if (servo_endstops[Z_AXIS] > -1) {
  873. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  874. servos[servo_endstops[Z_AXIS]].attach(0);
  875. #endif
  876. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  877. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  878. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  879. servos[servo_endstops[Z_AXIS]].detach();
  880. #endif
  881. }
  882. #endif
  883. }
  884. /// Probe bed height at position (x,y), returns the measured z value
  885. static float probe_pt(float x, float y, float z_before) {
  886. // move to right place
  887. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  888. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  889. engage_z_probe(); // Engage Z Servo endstop if available
  890. run_z_probe();
  891. float measured_z = current_position[Z_AXIS];
  892. retract_z_probe();
  893. SERIAL_PROTOCOLPGM(MSG_BED);
  894. SERIAL_PROTOCOLPGM(" x: ");
  895. SERIAL_PROTOCOL(x);
  896. SERIAL_PROTOCOLPGM(" y: ");
  897. SERIAL_PROTOCOL(y);
  898. SERIAL_PROTOCOLPGM(" z: ");
  899. SERIAL_PROTOCOL(measured_z);
  900. SERIAL_PROTOCOLPGM("\n");
  901. return measured_z;
  902. }
  903. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  904. static void homeaxis(int axis) {
  905. #define HOMEAXIS_DO(LETTER) \
  906. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  907. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  908. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  909. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  910. 0) {
  911. int axis_home_dir = home_dir(axis);
  912. #ifdef DUAL_X_CARRIAGE
  913. if (axis == X_AXIS)
  914. axis_home_dir = x_home_dir(active_extruder);
  915. #endif
  916. current_position[axis] = 0;
  917. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  918. // Engage Servo endstop if enabled
  919. #ifdef SERVO_ENDSTOPS
  920. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  921. if (axis==Z_AXIS) {
  922. engage_z_probe();
  923. }
  924. else
  925. #endif
  926. if (servo_endstops[axis] > -1) {
  927. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  928. }
  929. #endif
  930. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  931. feedrate = homing_feedrate[axis];
  932. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  933. st_synchronize();
  934. current_position[axis] = 0;
  935. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  936. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  937. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  938. st_synchronize();
  939. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  940. #ifdef DELTA
  941. feedrate = homing_feedrate[axis]/10;
  942. #else
  943. feedrate = homing_feedrate[axis]/2 ;
  944. #endif
  945. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  946. st_synchronize();
  947. #ifdef DELTA
  948. // retrace by the amount specified in endstop_adj
  949. if (endstop_adj[axis] * axis_home_dir < 0) {
  950. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  951. destination[axis] = endstop_adj[axis];
  952. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  953. st_synchronize();
  954. }
  955. #endif
  956. axis_is_at_home(axis);
  957. destination[axis] = current_position[axis];
  958. feedrate = 0.0;
  959. endstops_hit_on_purpose();
  960. axis_known_position[axis] = true;
  961. // Retract Servo endstop if enabled
  962. #ifdef SERVO_ENDSTOPS
  963. if (servo_endstops[axis] > -1) {
  964. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  965. }
  966. #endif
  967. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  968. if (axis==Z_AXIS) retract_z_probe();
  969. #endif
  970. }
  971. }
  972. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  973. void refresh_cmd_timeout(void)
  974. {
  975. previous_millis_cmd = millis();
  976. }
  977. #ifdef FWRETRACT
  978. void retract(bool retracting) {
  979. if(retracting && !retracted) {
  980. destination[X_AXIS]=current_position[X_AXIS];
  981. destination[Y_AXIS]=current_position[Y_AXIS];
  982. destination[Z_AXIS]=current_position[Z_AXIS];
  983. destination[E_AXIS]=current_position[E_AXIS];
  984. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  985. plan_set_e_position(current_position[E_AXIS]);
  986. float oldFeedrate = feedrate;
  987. feedrate=retract_feedrate;
  988. retracted=true;
  989. prepare_move();
  990. current_position[Z_AXIS]-=retract_zlift;
  991. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  992. prepare_move();
  993. feedrate = oldFeedrate;
  994. } else if(!retracting && retracted) {
  995. destination[X_AXIS]=current_position[X_AXIS];
  996. destination[Y_AXIS]=current_position[Y_AXIS];
  997. destination[Z_AXIS]=current_position[Z_AXIS];
  998. destination[E_AXIS]=current_position[E_AXIS];
  999. current_position[Z_AXIS]+=retract_zlift;
  1000. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1001. //prepare_move();
  1002. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1003. plan_set_e_position(current_position[E_AXIS]);
  1004. float oldFeedrate = feedrate;
  1005. feedrate=retract_recover_feedrate;
  1006. retracted=false;
  1007. prepare_move();
  1008. feedrate = oldFeedrate;
  1009. }
  1010. } //retract
  1011. #endif //FWRETRACT
  1012. void process_commands()
  1013. {
  1014. unsigned long codenum; //throw away variable
  1015. char *starpos = NULL;
  1016. #ifdef ENABLE_AUTO_BED_LEVELING
  1017. float x_tmp, y_tmp, z_tmp, real_z;
  1018. #endif
  1019. if(code_seen('G'))
  1020. {
  1021. switch((int)code_value())
  1022. {
  1023. case 0: // G0 -> G1
  1024. case 1: // G1
  1025. if(Stopped == false) {
  1026. get_coordinates(); // For X Y Z E F
  1027. #ifdef FWRETRACT
  1028. if(autoretract_enabled)
  1029. if( !(code_seen(X_AXIS) || code_seen(Y_AXIS) || code_seen(Z_AXIS)) && code_seen(E_AXIS)) {
  1030. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1031. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to attract or recover
  1032. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1033. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1034. retract(!retracted);
  1035. return;
  1036. }
  1037. }
  1038. #endif //FWRETRACT
  1039. prepare_move();
  1040. //ClearToSend();
  1041. return;
  1042. }
  1043. //break;
  1044. case 2: // G2 - CW ARC
  1045. if(Stopped == false) {
  1046. get_arc_coordinates();
  1047. prepare_arc_move(true);
  1048. return;
  1049. }
  1050. case 3: // G3 - CCW ARC
  1051. if(Stopped == false) {
  1052. get_arc_coordinates();
  1053. prepare_arc_move(false);
  1054. return;
  1055. }
  1056. case 4: // G4 dwell
  1057. LCD_MESSAGEPGM(MSG_DWELL);
  1058. codenum = 0;
  1059. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1060. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1061. st_synchronize();
  1062. codenum += millis(); // keep track of when we started waiting
  1063. previous_millis_cmd = millis();
  1064. while(millis() < codenum ){
  1065. manage_heater();
  1066. manage_inactivity();
  1067. lcd_update();
  1068. }
  1069. break;
  1070. #ifdef FWRETRACT
  1071. case 10: // G10 retract
  1072. retract(true);
  1073. break;
  1074. case 11: // G11 retract_recover
  1075. retract(false);
  1076. break;
  1077. #endif //FWRETRACT
  1078. case 28: //G28 Home all Axis one at a time
  1079. #ifdef ENABLE_AUTO_BED_LEVELING
  1080. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1081. #endif //ENABLE_AUTO_BED_LEVELING
  1082. saved_feedrate = feedrate;
  1083. saved_feedmultiply = feedmultiply;
  1084. feedmultiply = 100;
  1085. previous_millis_cmd = millis();
  1086. enable_endstops(true);
  1087. for(int8_t i=0; i < NUM_AXIS; i++) {
  1088. destination[i] = current_position[i];
  1089. }
  1090. feedrate = 0.0;
  1091. #ifdef DELTA
  1092. // A delta can only safely home all axis at the same time
  1093. // all axis have to home at the same time
  1094. // Move all carriages up together until the first endstop is hit.
  1095. current_position[X_AXIS] = 0;
  1096. current_position[Y_AXIS] = 0;
  1097. current_position[Z_AXIS] = 0;
  1098. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1099. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1100. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1101. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1102. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1103. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1104. st_synchronize();
  1105. endstops_hit_on_purpose();
  1106. current_position[X_AXIS] = destination[X_AXIS];
  1107. current_position[Y_AXIS] = destination[Y_AXIS];
  1108. current_position[Z_AXIS] = destination[Z_AXIS];
  1109. // take care of back off and rehome now we are all at the top
  1110. HOMEAXIS(X);
  1111. HOMEAXIS(Y);
  1112. HOMEAXIS(Z);
  1113. calculate_delta(current_position);
  1114. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1115. #else // NOT DELTA
  1116. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1117. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1118. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1119. HOMEAXIS(Z);
  1120. }
  1121. #endif
  1122. #ifdef QUICK_HOME
  1123. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1124. {
  1125. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1126. #ifndef DUAL_X_CARRIAGE
  1127. int x_axis_home_dir = home_dir(X_AXIS);
  1128. #else
  1129. int x_axis_home_dir = x_home_dir(active_extruder);
  1130. extruder_duplication_enabled = false;
  1131. #endif
  1132. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1133. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1134. feedrate = homing_feedrate[X_AXIS];
  1135. if(homing_feedrate[Y_AXIS]<feedrate)
  1136. feedrate =homing_feedrate[Y_AXIS];
  1137. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1138. st_synchronize();
  1139. axis_is_at_home(X_AXIS);
  1140. axis_is_at_home(Y_AXIS);
  1141. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1142. destination[X_AXIS] = current_position[X_AXIS];
  1143. destination[Y_AXIS] = current_position[Y_AXIS];
  1144. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1145. feedrate = 0.0;
  1146. st_synchronize();
  1147. endstops_hit_on_purpose();
  1148. current_position[X_AXIS] = destination[X_AXIS];
  1149. current_position[Y_AXIS] = destination[Y_AXIS];
  1150. current_position[Z_AXIS] = destination[Z_AXIS];
  1151. }
  1152. #endif
  1153. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1154. {
  1155. #ifdef DUAL_X_CARRIAGE
  1156. int tmp_extruder = active_extruder;
  1157. extruder_duplication_enabled = false;
  1158. active_extruder = !active_extruder;
  1159. HOMEAXIS(X);
  1160. inactive_extruder_x_pos = current_position[X_AXIS];
  1161. active_extruder = tmp_extruder;
  1162. HOMEAXIS(X);
  1163. // reset state used by the different modes
  1164. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1165. delayed_move_time = 0;
  1166. active_extruder_parked = true;
  1167. #else
  1168. HOMEAXIS(X);
  1169. #endif
  1170. }
  1171. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1172. HOMEAXIS(Y);
  1173. }
  1174. if(code_seen(axis_codes[X_AXIS]))
  1175. {
  1176. if(code_value_long() != 0) {
  1177. current_position[X_AXIS]=code_value()+add_homeing[0];
  1178. }
  1179. }
  1180. if(code_seen(axis_codes[Y_AXIS])) {
  1181. if(code_value_long() != 0) {
  1182. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1183. }
  1184. }
  1185. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1186. #ifndef Z_SAFE_HOMING
  1187. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1188. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1189. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1190. feedrate = max_feedrate[Z_AXIS];
  1191. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1192. st_synchronize();
  1193. #endif
  1194. HOMEAXIS(Z);
  1195. }
  1196. #else // Z Safe mode activated.
  1197. if(home_all_axis) {
  1198. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1199. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1200. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1201. feedrate = XY_TRAVEL_SPEED;
  1202. current_position[Z_AXIS] = 0;
  1203. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1204. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1205. st_synchronize();
  1206. current_position[X_AXIS] = destination[X_AXIS];
  1207. current_position[Y_AXIS] = destination[Y_AXIS];
  1208. HOMEAXIS(Z);
  1209. }
  1210. // Let's see if X and Y are homed and probe is inside bed area.
  1211. if(code_seen(axis_codes[Z_AXIS])) {
  1212. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1213. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1214. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1215. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1216. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1217. current_position[Z_AXIS] = 0;
  1218. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1219. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1220. feedrate = max_feedrate[Z_AXIS];
  1221. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1222. st_synchronize();
  1223. HOMEAXIS(Z);
  1224. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1225. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1226. SERIAL_ECHO_START;
  1227. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1228. } else {
  1229. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1230. SERIAL_ECHO_START;
  1231. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1232. }
  1233. }
  1234. #endif
  1235. #endif
  1236. if(code_seen(axis_codes[Z_AXIS])) {
  1237. if(code_value_long() != 0) {
  1238. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1239. }
  1240. }
  1241. #ifdef ENABLE_AUTO_BED_LEVELING
  1242. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1243. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1244. }
  1245. #endif
  1246. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1247. #endif // else DELTA
  1248. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1249. enable_endstops(false);
  1250. #endif
  1251. feedrate = saved_feedrate;
  1252. feedmultiply = saved_feedmultiply;
  1253. previous_millis_cmd = millis();
  1254. endstops_hit_on_purpose();
  1255. break;
  1256. #ifdef ENABLE_AUTO_BED_LEVELING
  1257. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1258. {
  1259. #if Z_MIN_PIN == -1
  1260. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1261. #endif
  1262. // Prevent user from running a G29 without first homing in X and Y
  1263. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1264. {
  1265. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1266. SERIAL_ECHO_START;
  1267. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1268. break; // abort G29, since we don't know where we are
  1269. }
  1270. st_synchronize();
  1271. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1272. //vector_3 corrected_position = plan_get_position_mm();
  1273. //corrected_position.debug("position before G29");
  1274. plan_bed_level_matrix.set_to_identity();
  1275. vector_3 uncorrected_position = plan_get_position();
  1276. //uncorrected_position.debug("position durring G29");
  1277. current_position[X_AXIS] = uncorrected_position.x;
  1278. current_position[Y_AXIS] = uncorrected_position.y;
  1279. current_position[Z_AXIS] = uncorrected_position.z;
  1280. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1281. setup_for_endstop_move();
  1282. feedrate = homing_feedrate[Z_AXIS];
  1283. #ifdef ACCURATE_BED_LEVELING
  1284. // probe at the points of a lattice grid
  1285. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1286. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1287. // solve the plane equation ax + by + d = z
  1288. // A is the matrix with rows [x y 1] for all the probed points
  1289. // B is the vector of the Z positions
  1290. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1291. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1292. // "A" matrix of the linear system of equations
  1293. double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
  1294. // "B" vector of Z points
  1295. double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
  1296. int probePointCounter = 0;
  1297. bool zig = true;
  1298. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1299. {
  1300. int xProbe, xInc;
  1301. if (zig)
  1302. {
  1303. xProbe = LEFT_PROBE_BED_POSITION;
  1304. //xEnd = RIGHT_PROBE_BED_POSITION;
  1305. xInc = xGridSpacing;
  1306. zig = false;
  1307. } else // zag
  1308. {
  1309. xProbe = RIGHT_PROBE_BED_POSITION;
  1310. //xEnd = LEFT_PROBE_BED_POSITION;
  1311. xInc = -xGridSpacing;
  1312. zig = true;
  1313. }
  1314. for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++)
  1315. {
  1316. float z_before;
  1317. if (probePointCounter == 0)
  1318. {
  1319. // raise before probing
  1320. z_before = Z_RAISE_BEFORE_PROBING;
  1321. } else
  1322. {
  1323. // raise extruder
  1324. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1325. }
  1326. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1327. eqnBVector[probePointCounter] = measured_z;
  1328. eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
  1329. eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
  1330. eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
  1331. probePointCounter++;
  1332. xProbe += xInc;
  1333. }
  1334. }
  1335. clean_up_after_endstop_move();
  1336. // solve lsq problem
  1337. double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
  1338. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1339. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1340. SERIAL_PROTOCOLPGM(" b: ");
  1341. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1342. SERIAL_PROTOCOLPGM(" d: ");
  1343. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1344. set_bed_level_equation_lsq(plane_equation_coefficients);
  1345. free(plane_equation_coefficients);
  1346. #else // ACCURATE_BED_LEVELING not defined
  1347. #ifdef AUTO_BED_LEVELING_ANY_POINTS
  1348. // Probe at 3 arbitrary points
  1349. // probe 1
  1350. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1351. // probe 2
  1352. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1353. // probe 3
  1354. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1355. clean_up_after_endstop_move();
  1356. set_bed_level_equation_any_pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1357. #else // not AUTO_BED_LEVELING_ANY_POINTS
  1358. // probe at 3 corners of a rectangle
  1359. // probe 1
  1360. float z_at_xLeft_yBack = probe_pt(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, Z_RAISE_BEFORE_PROBING);
  1361. // probe 2
  1362. float z_at_xLeft_yFront = probe_pt(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1363. // probe 3
  1364. float z_at_xRight_yFront = probe_pt(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1365. clean_up_after_endstop_move();
  1366. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1367. #endif
  1368. #endif // ACCURATE_BED_LEVELING
  1369. st_synchronize();
  1370. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1371. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1372. // When the bed is uneven, this height must be corrected.
  1373. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1374. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1375. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1376. z_tmp = current_position[Z_AXIS];
  1377. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1378. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1379. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1380. }
  1381. break;
  1382. case 30: // G30 Single Z Probe
  1383. {
  1384. engage_z_probe(); // Engage Z Servo endstop if available
  1385. st_synchronize();
  1386. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1387. setup_for_endstop_move();
  1388. feedrate = homing_feedrate[Z_AXIS];
  1389. run_z_probe();
  1390. SERIAL_PROTOCOLPGM(MSG_BED);
  1391. SERIAL_PROTOCOLPGM(" X: ");
  1392. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1393. SERIAL_PROTOCOLPGM(" Y: ");
  1394. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1395. SERIAL_PROTOCOLPGM(" Z: ");
  1396. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1397. SERIAL_PROTOCOLPGM("\n");
  1398. clean_up_after_endstop_move();
  1399. retract_z_probe(); // Retract Z Servo endstop if available
  1400. }
  1401. break;
  1402. #endif // ENABLE_AUTO_BED_LEVELING
  1403. case 90: // G90
  1404. relative_mode = false;
  1405. break;
  1406. case 91: // G91
  1407. relative_mode = true;
  1408. break;
  1409. case 92: // G92
  1410. if(!code_seen(axis_codes[E_AXIS]))
  1411. st_synchronize();
  1412. for(int8_t i=0; i < NUM_AXIS; i++) {
  1413. if(code_seen(axis_codes[i])) {
  1414. if(i == E_AXIS) {
  1415. current_position[i] = code_value();
  1416. plan_set_e_position(current_position[E_AXIS]);
  1417. }
  1418. else {
  1419. current_position[i] = code_value()+add_homeing[i];
  1420. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1421. }
  1422. }
  1423. }
  1424. break;
  1425. }
  1426. }
  1427. else if(code_seen('M'))
  1428. {
  1429. switch( (int)code_value() )
  1430. {
  1431. #ifdef ULTIPANEL
  1432. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1433. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1434. {
  1435. LCD_MESSAGEPGM(MSG_USERWAIT);
  1436. codenum = 0;
  1437. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1438. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1439. st_synchronize();
  1440. previous_millis_cmd = millis();
  1441. if (codenum > 0){
  1442. codenum += millis(); // keep track of when we started waiting
  1443. while(millis() < codenum && !lcd_clicked()){
  1444. manage_heater();
  1445. manage_inactivity();
  1446. lcd_update();
  1447. }
  1448. }else{
  1449. while(!lcd_clicked()){
  1450. manage_heater();
  1451. manage_inactivity();
  1452. lcd_update();
  1453. }
  1454. }
  1455. LCD_MESSAGEPGM(MSG_RESUMING);
  1456. }
  1457. break;
  1458. #endif
  1459. case 17:
  1460. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1461. enable_x();
  1462. enable_y();
  1463. enable_z();
  1464. enable_e0();
  1465. enable_e1();
  1466. enable_e2();
  1467. break;
  1468. #ifdef SDSUPPORT
  1469. case 20: // M20 - list SD card
  1470. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1471. card.ls();
  1472. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1473. break;
  1474. case 21: // M21 - init SD card
  1475. card.initsd();
  1476. break;
  1477. case 22: //M22 - release SD card
  1478. card.release();
  1479. break;
  1480. case 23: //M23 - Select file
  1481. starpos = (strchr(strchr_pointer + 4,'*'));
  1482. if(starpos!=NULL)
  1483. *(starpos-1)='\0';
  1484. card.openFile(strchr_pointer + 4,true);
  1485. break;
  1486. case 24: //M24 - Start SD print
  1487. card.startFileprint();
  1488. starttime=millis();
  1489. break;
  1490. case 25: //M25 - Pause SD print
  1491. card.pauseSDPrint();
  1492. break;
  1493. case 26: //M26 - Set SD index
  1494. if(card.cardOK && code_seen('S')) {
  1495. card.setIndex(code_value_long());
  1496. }
  1497. break;
  1498. case 27: //M27 - Get SD status
  1499. card.getStatus();
  1500. break;
  1501. case 28: //M28 - Start SD write
  1502. starpos = (strchr(strchr_pointer + 4,'*'));
  1503. if(starpos != NULL){
  1504. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1505. strchr_pointer = strchr(npos,' ') + 1;
  1506. *(starpos-1) = '\0';
  1507. }
  1508. card.openFile(strchr_pointer+4,false);
  1509. break;
  1510. case 29: //M29 - Stop SD write
  1511. //processed in write to file routine above
  1512. //card,saving = false;
  1513. break;
  1514. case 30: //M30 <filename> Delete File
  1515. if (card.cardOK){
  1516. card.closefile();
  1517. starpos = (strchr(strchr_pointer + 4,'*'));
  1518. if(starpos != NULL){
  1519. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1520. strchr_pointer = strchr(npos,' ') + 1;
  1521. *(starpos-1) = '\0';
  1522. }
  1523. card.removeFile(strchr_pointer + 4);
  1524. }
  1525. break;
  1526. case 32: //M32 - Select file and start SD print
  1527. {
  1528. if(card.sdprinting) {
  1529. st_synchronize();
  1530. }
  1531. starpos = (strchr(strchr_pointer + 4,'*'));
  1532. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1533. if(namestartpos==NULL)
  1534. {
  1535. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1536. }
  1537. else
  1538. namestartpos++; //to skip the '!'
  1539. if(starpos!=NULL)
  1540. *(starpos-1)='\0';
  1541. bool call_procedure=(code_seen('P'));
  1542. if(strchr_pointer>namestartpos)
  1543. call_procedure=false; //false alert, 'P' found within filename
  1544. if( card.cardOK )
  1545. {
  1546. card.openFile(namestartpos,true,!call_procedure);
  1547. if(code_seen('S'))
  1548. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1549. card.setIndex(code_value_long());
  1550. card.startFileprint();
  1551. if(!call_procedure)
  1552. starttime=millis(); //procedure calls count as normal print time.
  1553. }
  1554. } break;
  1555. case 928: //M928 - Start SD write
  1556. starpos = (strchr(strchr_pointer + 5,'*'));
  1557. if(starpos != NULL){
  1558. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1559. strchr_pointer = strchr(npos,' ') + 1;
  1560. *(starpos-1) = '\0';
  1561. }
  1562. card.openLogFile(strchr_pointer+5);
  1563. break;
  1564. #endif //SDSUPPORT
  1565. case 31: //M31 take time since the start of the SD print or an M109 command
  1566. {
  1567. stoptime=millis();
  1568. char time[30];
  1569. unsigned long t=(stoptime-starttime)/1000;
  1570. int sec,min;
  1571. min=t/60;
  1572. sec=t%60;
  1573. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1574. SERIAL_ECHO_START;
  1575. SERIAL_ECHOLN(time);
  1576. lcd_setstatus(time);
  1577. autotempShutdown();
  1578. }
  1579. break;
  1580. case 42: //M42 -Change pin status via gcode
  1581. if (code_seen('S'))
  1582. {
  1583. int pin_status = code_value();
  1584. int pin_number = LED_PIN;
  1585. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1586. pin_number = code_value();
  1587. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1588. {
  1589. if (sensitive_pins[i] == pin_number)
  1590. {
  1591. pin_number = -1;
  1592. break;
  1593. }
  1594. }
  1595. #if defined(FAN_PIN) && FAN_PIN > -1
  1596. if (pin_number == FAN_PIN)
  1597. fanSpeed = pin_status;
  1598. #endif
  1599. if (pin_number > -1)
  1600. {
  1601. pinMode(pin_number, OUTPUT);
  1602. digitalWrite(pin_number, pin_status);
  1603. analogWrite(pin_number, pin_status);
  1604. }
  1605. }
  1606. break;
  1607. case 104: // M104
  1608. if(setTargetedHotend(104)){
  1609. break;
  1610. }
  1611. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1612. #ifdef DUAL_X_CARRIAGE
  1613. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1614. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1615. #endif
  1616. setWatch();
  1617. break;
  1618. case 140: // M140 set bed temp
  1619. if (code_seen('S')) setTargetBed(code_value());
  1620. break;
  1621. case 105 : // M105
  1622. if(setTargetedHotend(105)){
  1623. break;
  1624. }
  1625. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1626. SERIAL_PROTOCOLPGM("ok T:");
  1627. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1628. SERIAL_PROTOCOLPGM(" /");
  1629. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1630. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1631. SERIAL_PROTOCOLPGM(" B:");
  1632. SERIAL_PROTOCOL_F(degBed(),1);
  1633. SERIAL_PROTOCOLPGM(" /");
  1634. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1635. #endif //TEMP_BED_PIN
  1636. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1637. SERIAL_PROTOCOLPGM(" T");
  1638. SERIAL_PROTOCOL(cur_extruder);
  1639. SERIAL_PROTOCOLPGM(":");
  1640. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1641. SERIAL_PROTOCOLPGM(" /");
  1642. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1643. }
  1644. #else
  1645. SERIAL_ERROR_START;
  1646. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1647. #endif
  1648. SERIAL_PROTOCOLPGM(" @:");
  1649. #ifdef EXTRUDER_WATTS
  1650. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1651. SERIAL_PROTOCOLPGM("W");
  1652. #else
  1653. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1654. #endif
  1655. SERIAL_PROTOCOLPGM(" B@:");
  1656. #ifdef BED_WATTS
  1657. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1658. SERIAL_PROTOCOLPGM("W");
  1659. #else
  1660. SERIAL_PROTOCOL(getHeaterPower(-1));
  1661. #endif
  1662. #ifdef SHOW_TEMP_ADC_VALUES
  1663. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1664. SERIAL_PROTOCOLPGM(" ADC B:");
  1665. SERIAL_PROTOCOL_F(degBed(),1);
  1666. SERIAL_PROTOCOLPGM("C->");
  1667. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1668. #endif
  1669. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1670. SERIAL_PROTOCOLPGM(" T");
  1671. SERIAL_PROTOCOL(cur_extruder);
  1672. SERIAL_PROTOCOLPGM(":");
  1673. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1674. SERIAL_PROTOCOLPGM("C->");
  1675. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1676. }
  1677. #endif
  1678. SERIAL_PROTOCOLLN("");
  1679. return;
  1680. break;
  1681. case 109:
  1682. {// M109 - Wait for extruder heater to reach target.
  1683. if(setTargetedHotend(109)){
  1684. break;
  1685. }
  1686. LCD_MESSAGEPGM(MSG_HEATING);
  1687. #ifdef AUTOTEMP
  1688. autotemp_enabled=false;
  1689. #endif
  1690. if (code_seen('S')) {
  1691. setTargetHotend(code_value(), tmp_extruder);
  1692. #ifdef DUAL_X_CARRIAGE
  1693. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1694. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1695. #endif
  1696. CooldownNoWait = true;
  1697. } else if (code_seen('R')) {
  1698. setTargetHotend(code_value(), tmp_extruder);
  1699. #ifdef DUAL_X_CARRIAGE
  1700. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1701. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1702. #endif
  1703. CooldownNoWait = false;
  1704. }
  1705. #ifdef AUTOTEMP
  1706. if (code_seen('S')) autotemp_min=code_value();
  1707. if (code_seen('B')) autotemp_max=code_value();
  1708. if (code_seen('F'))
  1709. {
  1710. autotemp_factor=code_value();
  1711. autotemp_enabled=true;
  1712. }
  1713. #endif
  1714. setWatch();
  1715. codenum = millis();
  1716. /* See if we are heating up or cooling down */
  1717. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1718. #ifdef TEMP_RESIDENCY_TIME
  1719. long residencyStart;
  1720. residencyStart = -1;
  1721. /* continue to loop until we have reached the target temp
  1722. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1723. while((residencyStart == -1) ||
  1724. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1725. #else
  1726. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1727. #endif //TEMP_RESIDENCY_TIME
  1728. if( (millis() - codenum) > 1000UL )
  1729. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1730. SERIAL_PROTOCOLPGM("T:");
  1731. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1732. SERIAL_PROTOCOLPGM(" E:");
  1733. SERIAL_PROTOCOL((int)tmp_extruder);
  1734. #ifdef TEMP_RESIDENCY_TIME
  1735. SERIAL_PROTOCOLPGM(" W:");
  1736. if(residencyStart > -1)
  1737. {
  1738. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1739. SERIAL_PROTOCOLLN( codenum );
  1740. }
  1741. else
  1742. {
  1743. SERIAL_PROTOCOLLN( "?" );
  1744. }
  1745. #else
  1746. SERIAL_PROTOCOLLN("");
  1747. #endif
  1748. codenum = millis();
  1749. }
  1750. manage_heater();
  1751. manage_inactivity();
  1752. lcd_update();
  1753. #ifdef TEMP_RESIDENCY_TIME
  1754. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1755. or when current temp falls outside the hysteresis after target temp was reached */
  1756. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1757. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1758. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1759. {
  1760. residencyStart = millis();
  1761. }
  1762. #endif //TEMP_RESIDENCY_TIME
  1763. }
  1764. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1765. starttime=millis();
  1766. previous_millis_cmd = millis();
  1767. }
  1768. break;
  1769. case 190: // M190 - Wait for bed heater to reach target.
  1770. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1771. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1772. if (code_seen('S')) {
  1773. setTargetBed(code_value());
  1774. CooldownNoWait = true;
  1775. } else if (code_seen('R')) {
  1776. setTargetBed(code_value());
  1777. CooldownNoWait = false;
  1778. }
  1779. codenum = millis();
  1780. target_direction = isHeatingBed(); // true if heating, false if cooling
  1781. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1782. {
  1783. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1784. {
  1785. float tt=degHotend(active_extruder);
  1786. SERIAL_PROTOCOLPGM("T:");
  1787. SERIAL_PROTOCOL(tt);
  1788. SERIAL_PROTOCOLPGM(" E:");
  1789. SERIAL_PROTOCOL((int)active_extruder);
  1790. SERIAL_PROTOCOLPGM(" B:");
  1791. SERIAL_PROTOCOL_F(degBed(),1);
  1792. SERIAL_PROTOCOLLN("");
  1793. codenum = millis();
  1794. }
  1795. manage_heater();
  1796. manage_inactivity();
  1797. lcd_update();
  1798. }
  1799. LCD_MESSAGEPGM(MSG_BED_DONE);
  1800. previous_millis_cmd = millis();
  1801. #endif
  1802. break;
  1803. #if defined(FAN_PIN) && FAN_PIN > -1
  1804. case 106: //M106 Fan On
  1805. if (code_seen('S')){
  1806. fanSpeed=constrain(code_value(),0,255);
  1807. }
  1808. else {
  1809. fanSpeed=255;
  1810. }
  1811. break;
  1812. case 107: //M107 Fan Off
  1813. fanSpeed = 0;
  1814. break;
  1815. #endif //FAN_PIN
  1816. #ifdef BARICUDA
  1817. // PWM for HEATER_1_PIN
  1818. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1819. case 126: //M126 valve open
  1820. if (code_seen('S')){
  1821. ValvePressure=constrain(code_value(),0,255);
  1822. }
  1823. else {
  1824. ValvePressure=255;
  1825. }
  1826. break;
  1827. case 127: //M127 valve closed
  1828. ValvePressure = 0;
  1829. break;
  1830. #endif //HEATER_1_PIN
  1831. // PWM for HEATER_2_PIN
  1832. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1833. case 128: //M128 valve open
  1834. if (code_seen('S')){
  1835. EtoPPressure=constrain(code_value(),0,255);
  1836. }
  1837. else {
  1838. EtoPPressure=255;
  1839. }
  1840. break;
  1841. case 129: //M129 valve closed
  1842. EtoPPressure = 0;
  1843. break;
  1844. #endif //HEATER_2_PIN
  1845. #endif
  1846. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1847. case 80: // M80 - Turn on Power Supply
  1848. SET_OUTPUT(PS_ON_PIN); //GND
  1849. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1850. // If you have a switch on suicide pin, this is useful
  1851. // if you want to start another print with suicide feature after
  1852. // a print without suicide...
  1853. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1854. SET_OUTPUT(SUICIDE_PIN);
  1855. WRITE(SUICIDE_PIN, HIGH);
  1856. #endif
  1857. #ifdef ULTIPANEL
  1858. powersupply = true;
  1859. LCD_MESSAGEPGM(WELCOME_MSG);
  1860. lcd_update();
  1861. #endif
  1862. break;
  1863. #endif
  1864. case 81: // M81 - Turn off Power Supply
  1865. disable_heater();
  1866. st_synchronize();
  1867. disable_e0();
  1868. disable_e1();
  1869. disable_e2();
  1870. finishAndDisableSteppers();
  1871. fanSpeed = 0;
  1872. delay(1000); // Wait a little before to switch off
  1873. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1874. st_synchronize();
  1875. suicide();
  1876. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1877. SET_OUTPUT(PS_ON_PIN);
  1878. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1879. #endif
  1880. #ifdef ULTIPANEL
  1881. powersupply = false;
  1882. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1883. lcd_update();
  1884. #endif
  1885. break;
  1886. case 82:
  1887. axis_relative_modes[3] = false;
  1888. break;
  1889. case 83:
  1890. axis_relative_modes[3] = true;
  1891. break;
  1892. case 18: //compatibility
  1893. case 84: // M84
  1894. if(code_seen('S')){
  1895. stepper_inactive_time = code_value() * 1000;
  1896. }
  1897. else
  1898. {
  1899. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  1900. if(all_axis)
  1901. {
  1902. st_synchronize();
  1903. disable_e0();
  1904. disable_e1();
  1905. disable_e2();
  1906. finishAndDisableSteppers();
  1907. }
  1908. else
  1909. {
  1910. st_synchronize();
  1911. if(code_seen('X')) disable_x();
  1912. if(code_seen('Y')) disable_y();
  1913. if(code_seen('Z')) disable_z();
  1914. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1915. if(code_seen('E')) {
  1916. disable_e0();
  1917. disable_e1();
  1918. disable_e2();
  1919. }
  1920. #endif
  1921. }
  1922. }
  1923. break;
  1924. case 85: // M85
  1925. code_seen('S');
  1926. max_inactive_time = code_value() * 1000;
  1927. break;
  1928. case 92: // M92
  1929. for(int8_t i=0; i < NUM_AXIS; i++)
  1930. {
  1931. if(code_seen(axis_codes[i]))
  1932. {
  1933. if(i == 3) { // E
  1934. float value = code_value();
  1935. if(value < 20.0) {
  1936. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1937. max_e_jerk *= factor;
  1938. max_feedrate[i] *= factor;
  1939. axis_steps_per_sqr_second[i] *= factor;
  1940. }
  1941. axis_steps_per_unit[i] = value;
  1942. }
  1943. else {
  1944. axis_steps_per_unit[i] = code_value();
  1945. }
  1946. }
  1947. }
  1948. break;
  1949. case 115: // M115
  1950. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1951. break;
  1952. case 117: // M117 display message
  1953. starpos = (strchr(strchr_pointer + 5,'*'));
  1954. if(starpos!=NULL)
  1955. *(starpos-1)='\0';
  1956. lcd_setstatus(strchr_pointer + 5);
  1957. break;
  1958. case 114: // M114
  1959. SERIAL_PROTOCOLPGM("X:");
  1960. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1961. SERIAL_PROTOCOLPGM(" Y:");
  1962. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1963. SERIAL_PROTOCOLPGM(" Z:");
  1964. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1965. SERIAL_PROTOCOLPGM(" E:");
  1966. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1967. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1968. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1969. SERIAL_PROTOCOLPGM(" Y:");
  1970. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1971. SERIAL_PROTOCOLPGM(" Z:");
  1972. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1973. SERIAL_PROTOCOLLN("");
  1974. break;
  1975. case 120: // M120
  1976. enable_endstops(false) ;
  1977. break;
  1978. case 121: // M121
  1979. enable_endstops(true) ;
  1980. break;
  1981. case 119: // M119
  1982. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1983. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1984. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1985. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1986. #endif
  1987. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1988. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1989. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1990. #endif
  1991. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1992. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1993. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1994. #endif
  1995. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1996. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1997. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1998. #endif
  1999. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2000. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2001. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2002. #endif
  2003. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2004. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2005. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2006. #endif
  2007. break;
  2008. //TODO: update for all axis, use for loop
  2009. #ifdef BLINKM
  2010. case 150: // M150
  2011. {
  2012. byte red;
  2013. byte grn;
  2014. byte blu;
  2015. if(code_seen('R')) red = code_value();
  2016. if(code_seen('U')) grn = code_value();
  2017. if(code_seen('B')) blu = code_value();
  2018. SendColors(red,grn,blu);
  2019. }
  2020. break;
  2021. #endif //BLINKM
  2022. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2023. {
  2024. float area = .0;
  2025. float radius = .0;
  2026. if(code_seen('D')) {
  2027. radius = (float)code_value() * .5;
  2028. if(radius == 0) {
  2029. area = 1;
  2030. } else {
  2031. area = M_PI * pow(radius, 2);
  2032. }
  2033. } else {
  2034. //reserved for setting filament diameter via UFID or filament measuring device
  2035. break;
  2036. }
  2037. tmp_extruder = active_extruder;
  2038. if(code_seen('T')) {
  2039. tmp_extruder = code_value();
  2040. if(tmp_extruder >= EXTRUDERS) {
  2041. SERIAL_ECHO_START;
  2042. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2043. }
  2044. SERIAL_ECHOLN(tmp_extruder);
  2045. break;
  2046. }
  2047. volumetric_multiplier[tmp_extruder] = 1 / area;
  2048. }
  2049. break;
  2050. case 201: // M201
  2051. for(int8_t i=0; i < NUM_AXIS; i++)
  2052. {
  2053. if(code_seen(axis_codes[i]))
  2054. {
  2055. max_acceleration_units_per_sq_second[i] = code_value();
  2056. }
  2057. }
  2058. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2059. reset_acceleration_rates();
  2060. break;
  2061. #if 0 // Not used for Sprinter/grbl gen6
  2062. case 202: // M202
  2063. for(int8_t i=0; i < NUM_AXIS; i++) {
  2064. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2065. }
  2066. break;
  2067. #endif
  2068. case 203: // M203 max feedrate mm/sec
  2069. for(int8_t i=0; i < NUM_AXIS; i++) {
  2070. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2071. }
  2072. break;
  2073. case 204: // M204 acclereration S normal moves T filmanent only moves
  2074. {
  2075. if(code_seen('S')) acceleration = code_value() ;
  2076. if(code_seen('T')) retract_acceleration = code_value() ;
  2077. }
  2078. break;
  2079. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2080. {
  2081. if(code_seen('S')) minimumfeedrate = code_value();
  2082. if(code_seen('T')) mintravelfeedrate = code_value();
  2083. if(code_seen('B')) minsegmenttime = code_value() ;
  2084. if(code_seen('X')) max_xy_jerk = code_value() ;
  2085. if(code_seen('Z')) max_z_jerk = code_value() ;
  2086. if(code_seen('E')) max_e_jerk = code_value() ;
  2087. }
  2088. break;
  2089. case 206: // M206 additional homeing offset
  2090. for(int8_t i=0; i < 3; i++)
  2091. {
  2092. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2093. }
  2094. break;
  2095. #ifdef DELTA
  2096. case 666: // M666 set delta endstop adjustemnt
  2097. for(int8_t i=0; i < 3; i++)
  2098. {
  2099. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2100. }
  2101. break;
  2102. #endif
  2103. #ifdef FWRETRACT
  2104. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2105. {
  2106. if(code_seen('S'))
  2107. {
  2108. retract_length = code_value() ;
  2109. }
  2110. if(code_seen('F'))
  2111. {
  2112. retract_feedrate = code_value() ;
  2113. }
  2114. if(code_seen('Z'))
  2115. {
  2116. retract_zlift = code_value() ;
  2117. }
  2118. }break;
  2119. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2120. {
  2121. if(code_seen('S'))
  2122. {
  2123. retract_recover_length = code_value() ;
  2124. }
  2125. if(code_seen('F'))
  2126. {
  2127. retract_recover_feedrate = code_value() ;
  2128. }
  2129. }break;
  2130. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2131. {
  2132. if(code_seen('S'))
  2133. {
  2134. int t= code_value() ;
  2135. switch(t)
  2136. {
  2137. case 0: autoretract_enabled=false;retracted=false;break;
  2138. case 1: autoretract_enabled=true;retracted=false;break;
  2139. default:
  2140. SERIAL_ECHO_START;
  2141. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2142. SERIAL_ECHO(cmdbuffer[bufindr]);
  2143. SERIAL_ECHOLNPGM("\"");
  2144. }
  2145. }
  2146. }break;
  2147. #endif // FWRETRACT
  2148. #if EXTRUDERS > 1
  2149. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2150. {
  2151. if(setTargetedHotend(218)){
  2152. break;
  2153. }
  2154. if(code_seen('X'))
  2155. {
  2156. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2157. }
  2158. if(code_seen('Y'))
  2159. {
  2160. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2161. }
  2162. #ifdef DUAL_X_CARRIAGE
  2163. if(code_seen('Z'))
  2164. {
  2165. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2166. }
  2167. #endif
  2168. SERIAL_ECHO_START;
  2169. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2170. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2171. {
  2172. SERIAL_ECHO(" ");
  2173. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2174. SERIAL_ECHO(",");
  2175. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2176. #ifdef DUAL_X_CARRIAGE
  2177. SERIAL_ECHO(",");
  2178. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2179. #endif
  2180. }
  2181. SERIAL_ECHOLN("");
  2182. }break;
  2183. #endif
  2184. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2185. {
  2186. if(code_seen('S'))
  2187. {
  2188. feedmultiply = code_value() ;
  2189. }
  2190. }
  2191. break;
  2192. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2193. {
  2194. if(code_seen('S'))
  2195. {
  2196. extrudemultiply = code_value() ;
  2197. }
  2198. }
  2199. break;
  2200. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2201. {
  2202. if(code_seen('P')){
  2203. int pin_number = code_value(); // pin number
  2204. int pin_state = -1; // required pin state - default is inverted
  2205. if(code_seen('S')) pin_state = code_value(); // required pin state
  2206. if(pin_state >= -1 && pin_state <= 1){
  2207. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2208. {
  2209. if (sensitive_pins[i] == pin_number)
  2210. {
  2211. pin_number = -1;
  2212. break;
  2213. }
  2214. }
  2215. if (pin_number > -1)
  2216. {
  2217. st_synchronize();
  2218. pinMode(pin_number, INPUT);
  2219. int target;
  2220. switch(pin_state){
  2221. case 1:
  2222. target = HIGH;
  2223. break;
  2224. case 0:
  2225. target = LOW;
  2226. break;
  2227. case -1:
  2228. target = !digitalRead(pin_number);
  2229. break;
  2230. }
  2231. while(digitalRead(pin_number) != target){
  2232. manage_heater();
  2233. manage_inactivity();
  2234. lcd_update();
  2235. }
  2236. }
  2237. }
  2238. }
  2239. }
  2240. break;
  2241. #if NUM_SERVOS > 0
  2242. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2243. {
  2244. int servo_index = -1;
  2245. int servo_position = 0;
  2246. if (code_seen('P'))
  2247. servo_index = code_value();
  2248. if (code_seen('S')) {
  2249. servo_position = code_value();
  2250. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2251. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2252. servos[servo_index].attach(0);
  2253. #endif
  2254. servos[servo_index].write(servo_position);
  2255. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2256. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2257. servos[servo_index].detach();
  2258. #endif
  2259. }
  2260. else {
  2261. SERIAL_ECHO_START;
  2262. SERIAL_ECHO("Servo ");
  2263. SERIAL_ECHO(servo_index);
  2264. SERIAL_ECHOLN(" out of range");
  2265. }
  2266. }
  2267. else if (servo_index >= 0) {
  2268. SERIAL_PROTOCOL(MSG_OK);
  2269. SERIAL_PROTOCOL(" Servo ");
  2270. SERIAL_PROTOCOL(servo_index);
  2271. SERIAL_PROTOCOL(": ");
  2272. SERIAL_PROTOCOL(servos[servo_index].read());
  2273. SERIAL_PROTOCOLLN("");
  2274. }
  2275. }
  2276. break;
  2277. #endif // NUM_SERVOS > 0
  2278. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2279. case 300: // M300
  2280. {
  2281. int beepS = code_seen('S') ? code_value() : 110;
  2282. int beepP = code_seen('P') ? code_value() : 1000;
  2283. if (beepS > 0)
  2284. {
  2285. #if BEEPER > 0
  2286. tone(BEEPER, beepS);
  2287. delay(beepP);
  2288. noTone(BEEPER);
  2289. #elif defined(ULTRALCD)
  2290. lcd_buzz(beepS, beepP);
  2291. #elif defined(LCD_USE_I2C_BUZZER)
  2292. lcd_buzz(beepP, beepS);
  2293. #endif
  2294. }
  2295. else
  2296. {
  2297. delay(beepP);
  2298. }
  2299. }
  2300. break;
  2301. #endif // M300
  2302. #ifdef PIDTEMP
  2303. case 301: // M301
  2304. {
  2305. if(code_seen('P')) Kp = code_value();
  2306. if(code_seen('I')) Ki = scalePID_i(code_value());
  2307. if(code_seen('D')) Kd = scalePID_d(code_value());
  2308. #ifdef PID_ADD_EXTRUSION_RATE
  2309. if(code_seen('C')) Kc = code_value();
  2310. #endif
  2311. updatePID();
  2312. SERIAL_PROTOCOL(MSG_OK);
  2313. SERIAL_PROTOCOL(" p:");
  2314. SERIAL_PROTOCOL(Kp);
  2315. SERIAL_PROTOCOL(" i:");
  2316. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2317. SERIAL_PROTOCOL(" d:");
  2318. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2319. #ifdef PID_ADD_EXTRUSION_RATE
  2320. SERIAL_PROTOCOL(" c:");
  2321. //Kc does not have scaling applied above, or in resetting defaults
  2322. SERIAL_PROTOCOL(Kc);
  2323. #endif
  2324. SERIAL_PROTOCOLLN("");
  2325. }
  2326. break;
  2327. #endif //PIDTEMP
  2328. #ifdef PIDTEMPBED
  2329. case 304: // M304
  2330. {
  2331. if(code_seen('P')) bedKp = code_value();
  2332. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2333. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2334. updatePID();
  2335. SERIAL_PROTOCOL(MSG_OK);
  2336. SERIAL_PROTOCOL(" p:");
  2337. SERIAL_PROTOCOL(bedKp);
  2338. SERIAL_PROTOCOL(" i:");
  2339. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2340. SERIAL_PROTOCOL(" d:");
  2341. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2342. SERIAL_PROTOCOLLN("");
  2343. }
  2344. break;
  2345. #endif //PIDTEMP
  2346. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2347. {
  2348. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2349. const uint8_t NUM_PULSES=16;
  2350. const float PULSE_LENGTH=0.01524;
  2351. for(int i=0; i < NUM_PULSES; i++) {
  2352. WRITE(PHOTOGRAPH_PIN, HIGH);
  2353. _delay_ms(PULSE_LENGTH);
  2354. WRITE(PHOTOGRAPH_PIN, LOW);
  2355. _delay_ms(PULSE_LENGTH);
  2356. }
  2357. delay(7.33);
  2358. for(int i=0; i < NUM_PULSES; i++) {
  2359. WRITE(PHOTOGRAPH_PIN, HIGH);
  2360. _delay_ms(PULSE_LENGTH);
  2361. WRITE(PHOTOGRAPH_PIN, LOW);
  2362. _delay_ms(PULSE_LENGTH);
  2363. }
  2364. #endif
  2365. }
  2366. break;
  2367. #ifdef DOGLCD
  2368. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2369. {
  2370. if (code_seen('C')) {
  2371. lcd_setcontrast( ((int)code_value())&63 );
  2372. }
  2373. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2374. SERIAL_PROTOCOL(lcd_contrast);
  2375. SERIAL_PROTOCOLLN("");
  2376. }
  2377. break;
  2378. #endif
  2379. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2380. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2381. {
  2382. float temp = .0;
  2383. if (code_seen('S')) temp=code_value();
  2384. set_extrude_min_temp(temp);
  2385. }
  2386. break;
  2387. #endif
  2388. case 303: // M303 PID autotune
  2389. {
  2390. float temp = 150.0;
  2391. int e=0;
  2392. int c=5;
  2393. if (code_seen('E')) e=code_value();
  2394. if (e<0)
  2395. temp=70;
  2396. if (code_seen('S')) temp=code_value();
  2397. if (code_seen('C')) c=code_value();
  2398. PID_autotune(temp, e, c);
  2399. }
  2400. break;
  2401. case 400: // M400 finish all moves
  2402. {
  2403. st_synchronize();
  2404. }
  2405. break;
  2406. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2407. case 401:
  2408. {
  2409. engage_z_probe(); // Engage Z Servo endstop if available
  2410. }
  2411. break;
  2412. case 402:
  2413. {
  2414. retract_z_probe(); // Retract Z Servo endstop if enabled
  2415. }
  2416. break;
  2417. #endif
  2418. case 500: // M500 Store settings in EEPROM
  2419. {
  2420. Config_StoreSettings();
  2421. }
  2422. break;
  2423. case 501: // M501 Read settings from EEPROM
  2424. {
  2425. Config_RetrieveSettings();
  2426. }
  2427. break;
  2428. case 502: // M502 Revert to default settings
  2429. {
  2430. Config_ResetDefault();
  2431. }
  2432. break;
  2433. case 503: // M503 print settings currently in memory
  2434. {
  2435. Config_PrintSettings();
  2436. }
  2437. break;
  2438. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2439. case 540:
  2440. {
  2441. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2442. }
  2443. break;
  2444. #endif
  2445. #ifdef FILAMENTCHANGEENABLE
  2446. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2447. {
  2448. float target[4];
  2449. float lastpos[4];
  2450. target[X_AXIS]=current_position[X_AXIS];
  2451. target[Y_AXIS]=current_position[Y_AXIS];
  2452. target[Z_AXIS]=current_position[Z_AXIS];
  2453. target[E_AXIS]=current_position[E_AXIS];
  2454. lastpos[X_AXIS]=current_position[X_AXIS];
  2455. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2456. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2457. lastpos[E_AXIS]=current_position[E_AXIS];
  2458. //retract by E
  2459. if(code_seen('E'))
  2460. {
  2461. target[E_AXIS]+= code_value();
  2462. }
  2463. else
  2464. {
  2465. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2466. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2467. #endif
  2468. }
  2469. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2470. //lift Z
  2471. if(code_seen('Z'))
  2472. {
  2473. target[Z_AXIS]+= code_value();
  2474. }
  2475. else
  2476. {
  2477. #ifdef FILAMENTCHANGE_ZADD
  2478. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2479. #endif
  2480. }
  2481. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2482. //move xy
  2483. if(code_seen('X'))
  2484. {
  2485. target[X_AXIS]+= code_value();
  2486. }
  2487. else
  2488. {
  2489. #ifdef FILAMENTCHANGE_XPOS
  2490. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2491. #endif
  2492. }
  2493. if(code_seen('Y'))
  2494. {
  2495. target[Y_AXIS]= code_value();
  2496. }
  2497. else
  2498. {
  2499. #ifdef FILAMENTCHANGE_YPOS
  2500. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2501. #endif
  2502. }
  2503. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2504. if(code_seen('L'))
  2505. {
  2506. target[E_AXIS]+= code_value();
  2507. }
  2508. else
  2509. {
  2510. #ifdef FILAMENTCHANGE_FINALRETRACT
  2511. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2512. #endif
  2513. }
  2514. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2515. //finish moves
  2516. st_synchronize();
  2517. //disable extruder steppers so filament can be removed
  2518. disable_e0();
  2519. disable_e1();
  2520. disable_e2();
  2521. delay(100);
  2522. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2523. uint8_t cnt=0;
  2524. while(!lcd_clicked()){
  2525. cnt++;
  2526. manage_heater();
  2527. manage_inactivity();
  2528. lcd_update();
  2529. if(cnt==0)
  2530. {
  2531. #if BEEPER > 0
  2532. SET_OUTPUT(BEEPER);
  2533. WRITE(BEEPER,HIGH);
  2534. delay(3);
  2535. WRITE(BEEPER,LOW);
  2536. delay(3);
  2537. #else
  2538. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2539. lcd_buzz(1000/6,100);
  2540. #else
  2541. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2542. #endif
  2543. #endif
  2544. }
  2545. }
  2546. //return to normal
  2547. if(code_seen('L'))
  2548. {
  2549. target[E_AXIS]+= -code_value();
  2550. }
  2551. else
  2552. {
  2553. #ifdef FILAMENTCHANGE_FINALRETRACT
  2554. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2555. #endif
  2556. }
  2557. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2558. plan_set_e_position(current_position[E_AXIS]);
  2559. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2560. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2561. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2562. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2563. }
  2564. break;
  2565. #endif //FILAMENTCHANGEENABLE
  2566. #ifdef DUAL_X_CARRIAGE
  2567. case 605: // Set dual x-carriage movement mode:
  2568. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2569. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2570. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2571. // millimeters x-offset and an optional differential hotend temperature of
  2572. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2573. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2574. //
  2575. // Note: the X axis should be homed after changing dual x-carriage mode.
  2576. {
  2577. st_synchronize();
  2578. if (code_seen('S'))
  2579. dual_x_carriage_mode = code_value();
  2580. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2581. {
  2582. if (code_seen('X'))
  2583. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2584. if (code_seen('R'))
  2585. duplicate_extruder_temp_offset = code_value();
  2586. SERIAL_ECHO_START;
  2587. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2588. SERIAL_ECHO(" ");
  2589. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2590. SERIAL_ECHO(",");
  2591. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2592. SERIAL_ECHO(" ");
  2593. SERIAL_ECHO(duplicate_extruder_x_offset);
  2594. SERIAL_ECHO(",");
  2595. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2596. }
  2597. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2598. {
  2599. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2600. }
  2601. active_extruder_parked = false;
  2602. extruder_duplication_enabled = false;
  2603. delayed_move_time = 0;
  2604. }
  2605. break;
  2606. #endif //DUAL_X_CARRIAGE
  2607. case 907: // M907 Set digital trimpot motor current using axis codes.
  2608. {
  2609. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2610. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2611. if(code_seen('B')) digipot_current(4,code_value());
  2612. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2613. #endif
  2614. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2615. if(code_seen('X')) digipot_current(0, code_value());
  2616. #endif
  2617. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2618. if(code_seen('Z')) digipot_current(1, code_value());
  2619. #endif
  2620. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2621. if(code_seen('E')) digipot_current(2, code_value());
  2622. #endif
  2623. #ifdef DIGIPOT_I2C
  2624. // this one uses actual amps in floating point
  2625. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2626. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2627. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2628. #endif
  2629. }
  2630. break;
  2631. case 908: // M908 Control digital trimpot directly.
  2632. {
  2633. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2634. uint8_t channel,current;
  2635. if(code_seen('P')) channel=code_value();
  2636. if(code_seen('S')) current=code_value();
  2637. digitalPotWrite(channel, current);
  2638. #endif
  2639. }
  2640. break;
  2641. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2642. {
  2643. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2644. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2645. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2646. if(code_seen('B')) microstep_mode(4,code_value());
  2647. microstep_readings();
  2648. #endif
  2649. }
  2650. break;
  2651. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2652. {
  2653. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2654. if(code_seen('S')) switch((int)code_value())
  2655. {
  2656. case 1:
  2657. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2658. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2659. break;
  2660. case 2:
  2661. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2662. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2663. break;
  2664. }
  2665. microstep_readings();
  2666. #endif
  2667. }
  2668. break;
  2669. case 999: // M999: Restart after being stopped
  2670. Stopped = false;
  2671. lcd_reset_alert_level();
  2672. gcode_LastN = Stopped_gcode_LastN;
  2673. FlushSerialRequestResend();
  2674. break;
  2675. }
  2676. }
  2677. else if(code_seen('T'))
  2678. {
  2679. tmp_extruder = code_value();
  2680. if(tmp_extruder >= EXTRUDERS) {
  2681. SERIAL_ECHO_START;
  2682. SERIAL_ECHO("T");
  2683. SERIAL_ECHO(tmp_extruder);
  2684. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2685. }
  2686. else {
  2687. boolean make_move = false;
  2688. if(code_seen('F')) {
  2689. make_move = true;
  2690. next_feedrate = code_value();
  2691. if(next_feedrate > 0.0) {
  2692. feedrate = next_feedrate;
  2693. }
  2694. }
  2695. #if EXTRUDERS > 1
  2696. if(tmp_extruder != active_extruder) {
  2697. // Save current position to return to after applying extruder offset
  2698. memcpy(destination, current_position, sizeof(destination));
  2699. #ifdef DUAL_X_CARRIAGE
  2700. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2701. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2702. {
  2703. // Park old head: 1) raise 2) move to park position 3) lower
  2704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2705. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2706. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2707. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2708. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2709. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2710. st_synchronize();
  2711. }
  2712. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2713. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2714. extruder_offset[Y_AXIS][active_extruder] +
  2715. extruder_offset[Y_AXIS][tmp_extruder];
  2716. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2717. extruder_offset[Z_AXIS][active_extruder] +
  2718. extruder_offset[Z_AXIS][tmp_extruder];
  2719. active_extruder = tmp_extruder;
  2720. // This function resets the max/min values - the current position may be overwritten below.
  2721. axis_is_at_home(X_AXIS);
  2722. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2723. {
  2724. current_position[X_AXIS] = inactive_extruder_x_pos;
  2725. inactive_extruder_x_pos = destination[X_AXIS];
  2726. }
  2727. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2728. {
  2729. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2730. if (active_extruder == 0 || active_extruder_parked)
  2731. current_position[X_AXIS] = inactive_extruder_x_pos;
  2732. else
  2733. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2734. inactive_extruder_x_pos = destination[X_AXIS];
  2735. extruder_duplication_enabled = false;
  2736. }
  2737. else
  2738. {
  2739. // record raised toolhead position for use by unpark
  2740. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2741. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2742. active_extruder_parked = true;
  2743. delayed_move_time = 0;
  2744. }
  2745. #else
  2746. // Offset extruder (only by XY)
  2747. int i;
  2748. for(i = 0; i < 2; i++) {
  2749. current_position[i] = current_position[i] -
  2750. extruder_offset[i][active_extruder] +
  2751. extruder_offset[i][tmp_extruder];
  2752. }
  2753. // Set the new active extruder and position
  2754. active_extruder = tmp_extruder;
  2755. #endif //else DUAL_X_CARRIAGE
  2756. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2757. // Move to the old position if 'F' was in the parameters
  2758. if(make_move && Stopped == false) {
  2759. prepare_move();
  2760. }
  2761. }
  2762. #endif
  2763. SERIAL_ECHO_START;
  2764. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2765. SERIAL_PROTOCOLLN((int)active_extruder);
  2766. }
  2767. }
  2768. else
  2769. {
  2770. SERIAL_ECHO_START;
  2771. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2772. SERIAL_ECHO(cmdbuffer[bufindr]);
  2773. SERIAL_ECHOLNPGM("\"");
  2774. }
  2775. ClearToSend();
  2776. }
  2777. void FlushSerialRequestResend()
  2778. {
  2779. //char cmdbuffer[bufindr][100]="Resend:";
  2780. MYSERIAL.flush();
  2781. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2782. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2783. ClearToSend();
  2784. }
  2785. void ClearToSend()
  2786. {
  2787. previous_millis_cmd = millis();
  2788. #ifdef SDSUPPORT
  2789. if(fromsd[bufindr])
  2790. return;
  2791. #endif //SDSUPPORT
  2792. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2793. }
  2794. void get_coordinates()
  2795. {
  2796. bool seen[4]={false,false,false,false};
  2797. for(int8_t i=0; i < NUM_AXIS; i++) {
  2798. if(code_seen(axis_codes[i]))
  2799. {
  2800. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2801. seen[i]=true;
  2802. }
  2803. else destination[i] = current_position[i]; //Are these else lines really needed?
  2804. }
  2805. if(code_seen('F')) {
  2806. next_feedrate = code_value();
  2807. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2808. }
  2809. }
  2810. void get_arc_coordinates()
  2811. {
  2812. #ifdef SF_ARC_FIX
  2813. bool relative_mode_backup = relative_mode;
  2814. relative_mode = true;
  2815. #endif
  2816. get_coordinates();
  2817. #ifdef SF_ARC_FIX
  2818. relative_mode=relative_mode_backup;
  2819. #endif
  2820. if(code_seen('I')) {
  2821. offset[0] = code_value();
  2822. }
  2823. else {
  2824. offset[0] = 0.0;
  2825. }
  2826. if(code_seen('J')) {
  2827. offset[1] = code_value();
  2828. }
  2829. else {
  2830. offset[1] = 0.0;
  2831. }
  2832. }
  2833. void clamp_to_software_endstops(float target[3])
  2834. {
  2835. if (min_software_endstops) {
  2836. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2837. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2838. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2839. }
  2840. if (max_software_endstops) {
  2841. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2842. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2843. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2844. }
  2845. }
  2846. #ifdef DELTA
  2847. void calculate_delta(float cartesian[3])
  2848. {
  2849. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2850. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2851. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2852. ) + cartesian[Z_AXIS];
  2853. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2854. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2855. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2856. ) + cartesian[Z_AXIS];
  2857. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2858. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2859. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2860. ) + cartesian[Z_AXIS];
  2861. /*
  2862. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2863. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2864. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2865. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2866. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2867. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2868. */
  2869. }
  2870. #endif
  2871. void prepare_move()
  2872. {
  2873. clamp_to_software_endstops(destination);
  2874. previous_millis_cmd = millis();
  2875. #ifdef DELTA
  2876. float difference[NUM_AXIS];
  2877. for (int8_t i=0; i < NUM_AXIS; i++) {
  2878. difference[i] = destination[i] - current_position[i];
  2879. }
  2880. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2881. sq(difference[Y_AXIS]) +
  2882. sq(difference[Z_AXIS]));
  2883. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2884. if (cartesian_mm < 0.000001) { return; }
  2885. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2886. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2887. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2888. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2889. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2890. for (int s = 1; s <= steps; s++) {
  2891. float fraction = float(s) / float(steps);
  2892. for(int8_t i=0; i < NUM_AXIS; i++) {
  2893. destination[i] = current_position[i] + difference[i] * fraction;
  2894. }
  2895. calculate_delta(destination);
  2896. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2897. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2898. active_extruder);
  2899. }
  2900. #else
  2901. #ifdef DUAL_X_CARRIAGE
  2902. if (active_extruder_parked)
  2903. {
  2904. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2905. {
  2906. // move duplicate extruder into correct duplication position.
  2907. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2908. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2909. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2910. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2911. st_synchronize();
  2912. extruder_duplication_enabled = true;
  2913. active_extruder_parked = false;
  2914. }
  2915. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2916. {
  2917. if (current_position[E_AXIS] == destination[E_AXIS])
  2918. {
  2919. // this is a travel move - skit it but keep track of current position (so that it can later
  2920. // be used as start of first non-travel move)
  2921. if (delayed_move_time != 0xFFFFFFFFUL)
  2922. {
  2923. memcpy(current_position, destination, sizeof(current_position));
  2924. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2925. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2926. delayed_move_time = millis();
  2927. return;
  2928. }
  2929. }
  2930. delayed_move_time = 0;
  2931. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2932. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2934. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2935. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2936. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2937. active_extruder_parked = false;
  2938. }
  2939. }
  2940. #endif //DUAL_X_CARRIAGE
  2941. // Do not use feedmultiply for E or Z only moves
  2942. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2943. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2944. }
  2945. else {
  2946. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2947. }
  2948. #endif //else DELTA
  2949. for(int8_t i=0; i < NUM_AXIS; i++) {
  2950. current_position[i] = destination[i];
  2951. }
  2952. }
  2953. void prepare_arc_move(char isclockwise) {
  2954. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2955. // Trace the arc
  2956. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2957. // As far as the parser is concerned, the position is now == target. In reality the
  2958. // motion control system might still be processing the action and the real tool position
  2959. // in any intermediate location.
  2960. for(int8_t i=0; i < NUM_AXIS; i++) {
  2961. current_position[i] = destination[i];
  2962. }
  2963. previous_millis_cmd = millis();
  2964. }
  2965. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2966. #if defined(FAN_PIN)
  2967. #if CONTROLLERFAN_PIN == FAN_PIN
  2968. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2969. #endif
  2970. #endif
  2971. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2972. unsigned long lastMotorCheck = 0;
  2973. void controllerFan()
  2974. {
  2975. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2976. {
  2977. lastMotorCheck = millis();
  2978. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2979. #if EXTRUDERS > 2
  2980. || !READ(E2_ENABLE_PIN)
  2981. #endif
  2982. #if EXTRUDER > 1
  2983. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2984. || !READ(X2_ENABLE_PIN)
  2985. #endif
  2986. || !READ(E1_ENABLE_PIN)
  2987. #endif
  2988. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2989. {
  2990. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2991. }
  2992. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2993. {
  2994. digitalWrite(CONTROLLERFAN_PIN, 0);
  2995. analogWrite(CONTROLLERFAN_PIN, 0);
  2996. }
  2997. else
  2998. {
  2999. // allows digital or PWM fan output to be used (see M42 handling)
  3000. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3001. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3002. }
  3003. }
  3004. }
  3005. #endif
  3006. #ifdef TEMP_STAT_LEDS
  3007. static bool blue_led = false;
  3008. static bool red_led = false;
  3009. static uint32_t stat_update = 0;
  3010. void handle_status_leds(void) {
  3011. float max_temp = 0.0;
  3012. if(millis() > stat_update) {
  3013. stat_update += 500; // Update every 0.5s
  3014. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3015. max_temp = max(max_temp, degHotend(cur_extruder));
  3016. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3017. }
  3018. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3019. max_temp = max(max_temp, degTargetBed());
  3020. max_temp = max(max_temp, degBed());
  3021. #endif
  3022. if((max_temp > 55.0) && (red_led == false)) {
  3023. digitalWrite(STAT_LED_RED, 1);
  3024. digitalWrite(STAT_LED_BLUE, 0);
  3025. red_led = true;
  3026. blue_led = false;
  3027. }
  3028. if((max_temp < 54.0) && (blue_led == false)) {
  3029. digitalWrite(STAT_LED_RED, 0);
  3030. digitalWrite(STAT_LED_BLUE, 1);
  3031. red_led = false;
  3032. blue_led = true;
  3033. }
  3034. }
  3035. }
  3036. #endif
  3037. void manage_inactivity()
  3038. {
  3039. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3040. if(max_inactive_time)
  3041. kill();
  3042. if(stepper_inactive_time) {
  3043. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3044. {
  3045. if(blocks_queued() == false) {
  3046. disable_x();
  3047. disable_y();
  3048. disable_z();
  3049. disable_e0();
  3050. disable_e1();
  3051. disable_e2();
  3052. }
  3053. }
  3054. }
  3055. #if defined(KILL_PIN) && KILL_PIN > -1
  3056. if( 0 == READ(KILL_PIN) )
  3057. kill();
  3058. #endif
  3059. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3060. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3061. #endif
  3062. #ifdef EXTRUDER_RUNOUT_PREVENT
  3063. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3064. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3065. {
  3066. bool oldstatus=READ(E0_ENABLE_PIN);
  3067. enable_e0();
  3068. float oldepos=current_position[E_AXIS];
  3069. float oldedes=destination[E_AXIS];
  3070. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3071. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3072. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3073. current_position[E_AXIS]=oldepos;
  3074. destination[E_AXIS]=oldedes;
  3075. plan_set_e_position(oldepos);
  3076. previous_millis_cmd=millis();
  3077. st_synchronize();
  3078. WRITE(E0_ENABLE_PIN,oldstatus);
  3079. }
  3080. #endif
  3081. #if defined(DUAL_X_CARRIAGE)
  3082. // handle delayed move timeout
  3083. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3084. {
  3085. // travel moves have been received so enact them
  3086. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3087. memcpy(destination,current_position,sizeof(destination));
  3088. prepare_move();
  3089. }
  3090. #endif
  3091. #ifdef TEMP_STAT_LEDS
  3092. handle_status_leds();
  3093. #endif
  3094. check_axes_activity();
  3095. }
  3096. void kill()
  3097. {
  3098. cli(); // Stop interrupts
  3099. disable_heater();
  3100. disable_x();
  3101. disable_y();
  3102. disable_z();
  3103. disable_e0();
  3104. disable_e1();
  3105. disable_e2();
  3106. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3107. pinMode(PS_ON_PIN,INPUT);
  3108. #endif
  3109. SERIAL_ERROR_START;
  3110. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3111. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3112. suicide();
  3113. while(1) { /* Intentionally left empty */ } // Wait for reset
  3114. }
  3115. void Stop()
  3116. {
  3117. disable_heater();
  3118. if(Stopped == false) {
  3119. Stopped = true;
  3120. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3121. SERIAL_ERROR_START;
  3122. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3123. LCD_MESSAGEPGM(MSG_STOPPED);
  3124. }
  3125. }
  3126. bool IsStopped() { return Stopped; };
  3127. #ifdef FAST_PWM_FAN
  3128. void setPwmFrequency(uint8_t pin, int val)
  3129. {
  3130. val &= 0x07;
  3131. switch(digitalPinToTimer(pin))
  3132. {
  3133. #if defined(TCCR0A)
  3134. case TIMER0A:
  3135. case TIMER0B:
  3136. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3137. // TCCR0B |= val;
  3138. break;
  3139. #endif
  3140. #if defined(TCCR1A)
  3141. case TIMER1A:
  3142. case TIMER1B:
  3143. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3144. // TCCR1B |= val;
  3145. break;
  3146. #endif
  3147. #if defined(TCCR2)
  3148. case TIMER2:
  3149. case TIMER2:
  3150. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3151. TCCR2 |= val;
  3152. break;
  3153. #endif
  3154. #if defined(TCCR2A)
  3155. case TIMER2A:
  3156. case TIMER2B:
  3157. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3158. TCCR2B |= val;
  3159. break;
  3160. #endif
  3161. #if defined(TCCR3A)
  3162. case TIMER3A:
  3163. case TIMER3B:
  3164. case TIMER3C:
  3165. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3166. TCCR3B |= val;
  3167. break;
  3168. #endif
  3169. #if defined(TCCR4A)
  3170. case TIMER4A:
  3171. case TIMER4B:
  3172. case TIMER4C:
  3173. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3174. TCCR4B |= val;
  3175. break;
  3176. #endif
  3177. #if defined(TCCR5A)
  3178. case TIMER5A:
  3179. case TIMER5B:
  3180. case TIMER5C:
  3181. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3182. TCCR5B |= val;
  3183. break;
  3184. #endif
  3185. }
  3186. }
  3187. #endif //FAST_PWM_FAN
  3188. bool setTargetedHotend(int code){
  3189. tmp_extruder = active_extruder;
  3190. if(code_seen('T')) {
  3191. tmp_extruder = code_value();
  3192. if(tmp_extruder >= EXTRUDERS) {
  3193. SERIAL_ECHO_START;
  3194. switch(code){
  3195. case 104:
  3196. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3197. break;
  3198. case 105:
  3199. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3200. break;
  3201. case 109:
  3202. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3203. break;
  3204. case 218:
  3205. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3206. break;
  3207. }
  3208. SERIAL_ECHOLN(tmp_extruder);
  3209. return true;
  3210. }
  3211. }
  3212. return false;
  3213. }