My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 189KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  31. #ifdef MESH_BED_LEVELING
  32. #include "mesh_bed_leveling.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. /**
  56. * Look here for descriptions of G-codes:
  57. * - http://linuxcnc.org/handbook/gcode/g-code.html
  58. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  59. *
  60. * Help us document these G-codes online:
  61. * - http://reprap.org/wiki/G-code
  62. * - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
  63. */
  64. /**
  65. * Implemented Codes
  66. * -------------------
  67. *
  68. * "G" Codes
  69. *
  70. * G0 -> G1
  71. * G1 - Coordinated Movement X Y Z E
  72. * G2 - CW ARC
  73. * G3 - CCW ARC
  74. * G4 - Dwell S<seconds> or P<milliseconds>
  75. * G10 - retract filament according to settings of M207
  76. * G11 - retract recover filament according to settings of M208
  77. * G28 - Home one or more axes
  78. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  79. * G30 - Single Z Probe, probes bed at current XY location.
  80. * G31 - Dock sled (Z_PROBE_SLED only)
  81. * G32 - Undock sled (Z_PROBE_SLED only)
  82. * G90 - Use Absolute Coordinates
  83. * G91 - Use Relative Coordinates
  84. * G92 - Set current position to coordinates given
  85. *
  86. * "M" Codes
  87. *
  88. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  89. * M1 - Same as M0
  90. * M17 - Enable/Power all stepper motors
  91. * M18 - Disable all stepper motors; same as M84
  92. * M20 - List SD card
  93. * M21 - Init SD card
  94. * M22 - Release SD card
  95. * M23 - Select SD file (M23 filename.g)
  96. * M24 - Start/resume SD print
  97. * M25 - Pause SD print
  98. * M26 - Set SD position in bytes (M26 S12345)
  99. * M27 - Report SD print status
  100. * M28 - Start SD write (M28 filename.g)
  101. * M29 - Stop SD write
  102. * M30 - Delete file from SD (M30 filename.g)
  103. * M31 - Output time since last M109 or SD card start to serial
  104. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  105. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  106. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  107. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  108. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  109. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  110. * M80 - Turn on Power Supply
  111. * M81 - Turn off Power Supply
  112. * M82 - Set E codes absolute (default)
  113. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  114. * M84 - Disable steppers until next move,
  115. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  116. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  117. * M92 - Set axis_steps_per_unit - same syntax as G92
  118. * M104 - Set extruder target temp
  119. * M105 - Read current temp
  120. * M106 - Fan on
  121. * M107 - Fan off
  122. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  123. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  124. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  125. * M112 - Emergency stop
  126. * M114 - Output current position to serial port
  127. * M115 - Capabilities string
  128. * M117 - display message
  129. * M119 - Output Endstop status to serial port
  130. * M120 - Enable endstop detection
  131. * M121 - Disable endstop detection
  132. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. * M140 - Set bed target temp
  137. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  141. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  145. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. * M206 - Set additional homing offset
  147. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. * M220 - Set speed factor override percentage: S<factor in percent>
  152. * M221 - Set extrude factor override percentage: S<factor in percent>
  153. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  154. * M240 - Trigger a camera to take a photograph
  155. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  157. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. * M301 - Set PID parameters P I and D
  159. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. * M304 - Set bed PID parameters P I and D
  162. * M380 - Activate solenoid on active extruder
  163. * M381 - Disable all solenoids
  164. * M400 - Finish all moves
  165. * M401 - Lower z-probe if present
  166. * M402 - Raise z-probe if present
  167. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  168. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  169. * M406 - Turn off Filament Sensor extrusion control
  170. * M407 - Display measured filament diameter
  171. * M410 - Quickstop. Abort all the planned moves
  172. * M500 - Store parameters in EEPROM
  173. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  174. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  175. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  176. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  177. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  178. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  179. * M666 - Set delta endstop adjustment
  180. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  181. * M907 - Set digital trimpot motor current using axis codes.
  182. * M908 - Control digital trimpot directly.
  183. * M350 - Set microstepping mode.
  184. * M351 - Toggle MS1 MS2 pins directly.
  185. *
  186. * ************ SCARA Specific - This can change to suit future G-code regulations
  187. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  188. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  189. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  190. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  191. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  192. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  193. * ************* SCARA End ***************
  194. *
  195. * M928 - Start SD logging (M928 filename.g) - ended by M29
  196. * M999 - Restart after being stopped by error
  197. */
  198. #ifdef SDSUPPORT
  199. CardReader card;
  200. #endif
  201. bool Running = true;
  202. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  203. float current_position[NUM_AXIS] = { 0.0 };
  204. static float destination[NUM_AXIS] = { 0.0 };
  205. bool axis_known_position[3] = { false };
  206. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  207. static int cmd_queue_index_r = 0;
  208. static int cmd_queue_index_w = 0;
  209. static int commands_in_queue = 0;
  210. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  211. float homing_feedrate[] = HOMING_FEEDRATE;
  212. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  213. int feedrate_multiplier = 100; //100->1 200->2
  214. int saved_feedrate_multiplier;
  215. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  216. bool volumetric_enabled = false;
  217. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  218. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  219. float home_offset[3] = { 0 };
  220. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  221. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  222. uint8_t active_extruder = 0;
  223. int fanSpeed = 0;
  224. bool cancel_heatup = false;
  225. const char errormagic[] PROGMEM = "Error:";
  226. const char echomagic[] PROGMEM = "echo:";
  227. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  228. static float offset[3] = { 0 };
  229. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  230. static char serial_char;
  231. static int serial_count = 0;
  232. static boolean comment_mode = false;
  233. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  234. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  235. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  236. // Inactivity shutdown
  237. millis_t previous_cmd_ms = 0;
  238. static millis_t max_inactive_time = 0;
  239. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  240. millis_t print_job_start_ms = 0; ///< Print job start time
  241. millis_t print_job_stop_ms = 0; ///< Print job stop time
  242. static uint8_t target_extruder;
  243. bool no_wait_for_cooling = true;
  244. bool target_direction;
  245. #ifdef ENABLE_AUTO_BED_LEVELING
  246. int xy_travel_speed = XY_TRAVEL_SPEED;
  247. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  248. #endif
  249. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  250. float z_endstop_adj = 0;
  251. #endif
  252. // Extruder offsets
  253. #if EXTRUDERS > 1
  254. #ifndef EXTRUDER_OFFSET_X
  255. #define EXTRUDER_OFFSET_X { 0 }
  256. #endif
  257. #ifndef EXTRUDER_OFFSET_Y
  258. #define EXTRUDER_OFFSET_Y { 0 }
  259. #endif
  260. float extruder_offset[][EXTRUDERS] = {
  261. EXTRUDER_OFFSET_X,
  262. EXTRUDER_OFFSET_Y
  263. #ifdef DUAL_X_CARRIAGE
  264. , { 0 } // supports offsets in XYZ plane
  265. #endif
  266. };
  267. #endif
  268. #ifdef SERVO_ENDSTOPS
  269. int servo_endstops[] = SERVO_ENDSTOPS;
  270. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  271. #endif
  272. #ifdef BARICUDA
  273. int ValvePressure = 0;
  274. int EtoPPressure = 0;
  275. #endif
  276. #ifdef FWRETRACT
  277. bool autoretract_enabled = false;
  278. bool retracted[EXTRUDERS] = { false };
  279. bool retracted_swap[EXTRUDERS] = { false };
  280. float retract_length = RETRACT_LENGTH;
  281. float retract_length_swap = RETRACT_LENGTH_SWAP;
  282. float retract_feedrate = RETRACT_FEEDRATE;
  283. float retract_zlift = RETRACT_ZLIFT;
  284. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  285. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  286. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  287. #endif // FWRETRACT
  288. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  289. bool powersupply =
  290. #ifdef PS_DEFAULT_OFF
  291. false
  292. #else
  293. true
  294. #endif
  295. ;
  296. #endif
  297. #ifdef DELTA
  298. float delta[3] = { 0 };
  299. #define SIN_60 0.8660254037844386
  300. #define COS_60 0.5
  301. float endstop_adj[3] = { 0 };
  302. // these are the default values, can be overriden with M665
  303. float delta_radius = DELTA_RADIUS;
  304. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  305. float delta_tower1_y = -COS_60 * delta_radius;
  306. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  307. float delta_tower2_y = -COS_60 * delta_radius;
  308. float delta_tower3_x = 0; // back middle tower
  309. float delta_tower3_y = delta_radius;
  310. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  311. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  312. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  313. #ifdef ENABLE_AUTO_BED_LEVELING
  314. int delta_grid_spacing[2] = { 0, 0 };
  315. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  316. #endif
  317. #else
  318. static bool home_all_axis = true;
  319. #endif
  320. #ifdef SCARA
  321. static float delta[3] = { 0 };
  322. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  323. #endif
  324. #ifdef FILAMENT_SENSOR
  325. //Variables for Filament Sensor input
  326. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  327. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  328. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  329. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  330. int delay_index1 = 0; //index into ring buffer
  331. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  332. float delay_dist = 0; //delay distance counter
  333. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  334. #endif
  335. #ifdef FILAMENT_RUNOUT_SENSOR
  336. static bool filrunoutEnqueued = false;
  337. #endif
  338. #ifdef SDSUPPORT
  339. static bool fromsd[BUFSIZE];
  340. #endif
  341. #if NUM_SERVOS > 0
  342. Servo servo[NUM_SERVOS];
  343. #endif
  344. #ifdef CHDK
  345. unsigned long chdkHigh = 0;
  346. boolean chdkActive = false;
  347. #endif
  348. //===========================================================================
  349. //================================ Functions ================================
  350. //===========================================================================
  351. void get_arc_coordinates();
  352. bool setTargetedHotend(int code);
  353. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  354. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  355. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  356. #ifdef PREVENT_DANGEROUS_EXTRUDE
  357. float extrude_min_temp = EXTRUDE_MINTEMP;
  358. #endif
  359. #ifdef SDSUPPORT
  360. #include "SdFatUtil.h"
  361. int freeMemory() { return SdFatUtil::FreeRam(); }
  362. #else
  363. extern "C" {
  364. extern unsigned int __bss_end;
  365. extern unsigned int __heap_start;
  366. extern void *__brkval;
  367. int freeMemory() {
  368. int free_memory;
  369. if ((int)__brkval == 0)
  370. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  371. else
  372. free_memory = ((int)&free_memory) - ((int)__brkval);
  373. return free_memory;
  374. }
  375. }
  376. #endif //!SDSUPPORT
  377. /**
  378. * Inject the next command from the command queue, when possible
  379. * Return false only if no command was pending
  380. */
  381. static bool drain_queued_commands_P() {
  382. if (!queued_commands_P) return false;
  383. // Get the next 30 chars from the sequence of gcodes to run
  384. char cmd[30];
  385. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  386. cmd[sizeof(cmd) - 1] = '\0';
  387. // Look for the end of line, or the end of sequence
  388. size_t i = 0;
  389. char c;
  390. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  391. cmd[i] = '\0';
  392. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  393. if (c)
  394. queued_commands_P += i + 1; // move to next command
  395. else
  396. queued_commands_P = NULL; // will have no more commands in the sequence
  397. }
  398. return true;
  399. }
  400. /**
  401. * Record one or many commands to run from program memory.
  402. * Aborts the current queue, if any.
  403. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  404. */
  405. void enqueuecommands_P(const char* pgcode) {
  406. queued_commands_P = pgcode;
  407. drain_queued_commands_P(); // first command executed asap (when possible)
  408. }
  409. /**
  410. * Copy a command directly into the main command buffer, from RAM.
  411. *
  412. * This is done in a non-safe way and needs a rework someday.
  413. * Returns false if it doesn't add any command
  414. */
  415. bool enqueuecommand(const char *cmd) {
  416. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  417. // This is dangerous if a mixing of serial and this happens
  418. char *command = command_queue[cmd_queue_index_w];
  419. strcpy(command, cmd);
  420. SERIAL_ECHO_START;
  421. SERIAL_ECHOPGM(MSG_Enqueueing);
  422. SERIAL_ECHO(command);
  423. SERIAL_ECHOLNPGM("\"");
  424. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  425. commands_in_queue++;
  426. return true;
  427. }
  428. void setup_killpin() {
  429. #if HAS_KILL
  430. SET_INPUT(KILL_PIN);
  431. WRITE(KILL_PIN, HIGH);
  432. #endif
  433. }
  434. void setup_filrunoutpin() {
  435. #if HAS_FILRUNOUT
  436. pinMode(FILRUNOUT_PIN, INPUT);
  437. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  438. WRITE(FILLRUNOUT_PIN, HIGH);
  439. #endif
  440. #endif
  441. }
  442. // Set home pin
  443. void setup_homepin(void) {
  444. #if HAS_HOME
  445. SET_INPUT(HOME_PIN);
  446. WRITE(HOME_PIN, HIGH);
  447. #endif
  448. }
  449. void setup_photpin() {
  450. #if HAS_PHOTOGRAPH
  451. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  452. #endif
  453. }
  454. void setup_powerhold() {
  455. #if HAS_SUICIDE
  456. OUT_WRITE(SUICIDE_PIN, HIGH);
  457. #endif
  458. #if HAS_POWER_SWITCH
  459. #ifdef PS_DEFAULT_OFF
  460. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  461. #else
  462. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  463. #endif
  464. #endif
  465. }
  466. void suicide() {
  467. #if HAS_SUICIDE
  468. OUT_WRITE(SUICIDE_PIN, LOW);
  469. #endif
  470. }
  471. void servo_init() {
  472. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  473. servo[0].attach(SERVO0_PIN);
  474. #endif
  475. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  476. servo[1].attach(SERVO1_PIN);
  477. #endif
  478. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  479. servo[2].attach(SERVO2_PIN);
  480. #endif
  481. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  482. servo[3].attach(SERVO3_PIN);
  483. #endif
  484. // Set position of Servo Endstops that are defined
  485. #ifdef SERVO_ENDSTOPS
  486. for (int i = 0; i < 3; i++)
  487. if (servo_endstops[i] >= 0)
  488. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  489. #endif
  490. #if SERVO_LEVELING
  491. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  492. servo[servo_endstops[Z_AXIS]].detach();
  493. #endif
  494. }
  495. /**
  496. * Marlin entry-point: Set up before the program loop
  497. * - Set up the kill pin, filament runout, power hold
  498. * - Start the serial port
  499. * - Print startup messages and diagnostics
  500. * - Get EEPROM or default settings
  501. * - Initialize managers for:
  502. * • temperature
  503. * • planner
  504. * • watchdog
  505. * • stepper
  506. * • photo pin
  507. * • servos
  508. * • LCD controller
  509. * • Digipot I2C
  510. * • Z probe sled
  511. * • status LEDs
  512. */
  513. void setup() {
  514. setup_killpin();
  515. setup_filrunoutpin();
  516. setup_powerhold();
  517. MYSERIAL.begin(BAUDRATE);
  518. SERIAL_PROTOCOLLNPGM("start");
  519. SERIAL_ECHO_START;
  520. // Check startup - does nothing if bootloader sets MCUSR to 0
  521. byte mcu = MCUSR;
  522. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  523. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  524. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  525. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  526. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  527. MCUSR = 0;
  528. SERIAL_ECHOPGM(MSG_MARLIN);
  529. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  530. #ifdef STRING_VERSION_CONFIG_H
  531. #ifdef STRING_CONFIG_H_AUTHOR
  532. SERIAL_ECHO_START;
  533. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  534. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  535. SERIAL_ECHOPGM(MSG_AUTHOR);
  536. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  537. SERIAL_ECHOPGM("Compiled: ");
  538. SERIAL_ECHOLNPGM(__DATE__);
  539. #endif // STRING_CONFIG_H_AUTHOR
  540. #endif // STRING_VERSION_CONFIG_H
  541. SERIAL_ECHO_START;
  542. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  543. SERIAL_ECHO(freeMemory());
  544. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  545. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  546. #ifdef SDSUPPORT
  547. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  548. #endif
  549. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  550. Config_RetrieveSettings();
  551. tp_init(); // Initialize temperature loop
  552. plan_init(); // Initialize planner;
  553. watchdog_init();
  554. st_init(); // Initialize stepper, this enables interrupts!
  555. setup_photpin();
  556. servo_init();
  557. lcd_init();
  558. _delay_ms(1000); // wait 1sec to display the splash screen
  559. #if HAS_CONTROLLERFAN
  560. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  561. #endif
  562. #ifdef DIGIPOT_I2C
  563. digipot_i2c_init();
  564. #endif
  565. #ifdef Z_PROBE_SLED
  566. pinMode(SERVO0_PIN, OUTPUT);
  567. digitalWrite(SERVO0_PIN, LOW); // turn it off
  568. #endif // Z_PROBE_SLED
  569. setup_homepin();
  570. #ifdef STAT_LED_RED
  571. pinMode(STAT_LED_RED, OUTPUT);
  572. digitalWrite(STAT_LED_RED, LOW); // turn it off
  573. #endif
  574. #ifdef STAT_LED_BLUE
  575. pinMode(STAT_LED_BLUE, OUTPUT);
  576. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  577. #endif
  578. }
  579. /**
  580. * The main Marlin program loop
  581. *
  582. * - Save or log commands to SD
  583. * - Process available commands (if not saving)
  584. * - Call heater manager
  585. * - Call inactivity manager
  586. * - Call endstop manager
  587. * - Call LCD update
  588. */
  589. void loop() {
  590. if (commands_in_queue < BUFSIZE - 1) get_command();
  591. #ifdef SDSUPPORT
  592. card.checkautostart(false);
  593. #endif
  594. if (commands_in_queue) {
  595. #ifdef SDSUPPORT
  596. if (card.saving) {
  597. char *command = command_queue[cmd_queue_index_r];
  598. if (strstr_P(command, PSTR("M29"))) {
  599. // M29 closes the file
  600. card.closefile();
  601. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  602. }
  603. else {
  604. // Write the string from the read buffer to SD
  605. card.write_command(command);
  606. if (card.logging)
  607. process_commands(); // The card is saving because it's logging
  608. else
  609. SERIAL_PROTOCOLLNPGM(MSG_OK);
  610. }
  611. }
  612. else
  613. process_commands();
  614. #else
  615. process_commands();
  616. #endif // SDSUPPORT
  617. commands_in_queue--;
  618. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  619. }
  620. // Check heater every n milliseconds
  621. manage_heater();
  622. manage_inactivity();
  623. checkHitEndstops();
  624. lcd_update();
  625. }
  626. /**
  627. * Add to the circular command queue the next command from:
  628. * - The command-injection queue (queued_commands_P)
  629. * - The active serial input (usually USB)
  630. * - The SD card file being actively printed
  631. */
  632. void get_command() {
  633. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  634. while (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  635. serial_char = MYSERIAL.read();
  636. if (serial_char == '\n' || serial_char == '\r' ||
  637. serial_count >= (MAX_CMD_SIZE - 1)
  638. ) {
  639. // end of line == end of comment
  640. comment_mode = false;
  641. if (!serial_count) return; // shortcut for empty lines
  642. char *command = command_queue[cmd_queue_index_w];
  643. command[serial_count] = 0; // terminate string
  644. #ifdef SDSUPPORT
  645. fromsd[cmd_queue_index_w] = false;
  646. #endif
  647. if (strchr(command, 'N') != NULL) {
  648. strchr_pointer = strchr(command, 'N');
  649. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  650. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  651. SERIAL_ERROR_START;
  652. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  653. SERIAL_ERRORLN(gcode_LastN);
  654. //Serial.println(gcode_N);
  655. FlushSerialRequestResend();
  656. serial_count = 0;
  657. return;
  658. }
  659. if (strchr(command, '*') != NULL) {
  660. byte checksum = 0;
  661. byte count = 0;
  662. while (command[count] != '*') checksum ^= command[count++];
  663. strchr_pointer = strchr(command, '*');
  664. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  665. SERIAL_ERROR_START;
  666. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  667. SERIAL_ERRORLN(gcode_LastN);
  668. FlushSerialRequestResend();
  669. serial_count = 0;
  670. return;
  671. }
  672. //if no errors, continue parsing
  673. }
  674. else {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. FlushSerialRequestResend();
  679. serial_count = 0;
  680. return;
  681. }
  682. gcode_LastN = gcode_N;
  683. //if no errors, continue parsing
  684. }
  685. else { // if we don't receive 'N' but still see '*'
  686. if ((strchr(command, '*') != NULL)) {
  687. SERIAL_ERROR_START;
  688. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  689. SERIAL_ERRORLN(gcode_LastN);
  690. serial_count = 0;
  691. return;
  692. }
  693. }
  694. if (strchr(command, 'G') != NULL) {
  695. strchr_pointer = strchr(command, 'G');
  696. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  697. case 0:
  698. case 1:
  699. case 2:
  700. case 3:
  701. if (IsStopped()) {
  702. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  703. LCD_MESSAGEPGM(MSG_STOPPED);
  704. }
  705. break;
  706. default:
  707. break;
  708. }
  709. }
  710. // If command was e-stop process now
  711. if (strcmp(command, "M112") == 0) kill();
  712. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  713. commands_in_queue += 1;
  714. serial_count = 0; //clear buffer
  715. }
  716. else if (serial_char == '\\') { // Handle escapes
  717. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  718. // if we have one more character, copy it over
  719. serial_char = MYSERIAL.read();
  720. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  721. }
  722. // otherwise do nothing
  723. }
  724. else { // its not a newline, carriage return or escape char
  725. if (serial_char == ';') comment_mode = true;
  726. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  727. }
  728. }
  729. #ifdef SDSUPPORT
  730. if (!card.sdprinting || serial_count) return;
  731. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  732. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  733. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  734. static bool stop_buffering = false;
  735. if (commands_in_queue == 0) stop_buffering = false;
  736. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  737. int16_t n = card.get();
  738. serial_char = (char)n;
  739. if (serial_char == '\n' || serial_char == '\r' ||
  740. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  741. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  742. ) {
  743. if (card.eof()) {
  744. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  745. print_job_stop_ms = millis();
  746. char time[30];
  747. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  748. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  749. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  750. SERIAL_ECHO_START;
  751. SERIAL_ECHOLN(time);
  752. lcd_setstatus(time, true);
  753. card.printingHasFinished();
  754. card.checkautostart(true);
  755. }
  756. if (serial_char == '#') stop_buffering = true;
  757. if (!serial_count) {
  758. comment_mode = false; //for new command
  759. return; //if empty line
  760. }
  761. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  762. // if (!comment_mode) {
  763. fromsd[cmd_queue_index_w] = true;
  764. commands_in_queue += 1;
  765. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  766. // }
  767. comment_mode = false; //for new command
  768. serial_count = 0; //clear buffer
  769. }
  770. else {
  771. if (serial_char == ';') comment_mode = true;
  772. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  773. }
  774. }
  775. #endif // SDSUPPORT
  776. }
  777. bool code_has_value() {
  778. char c = strchr_pointer[1];
  779. return (c >= '0' && c <= '9') || c == '-' || c == '+' || c == '.';
  780. }
  781. float code_value() {
  782. float ret;
  783. char *e = strchr(strchr_pointer, 'E');
  784. if (e) {
  785. *e = 0;
  786. ret = strtod(strchr_pointer+1, NULL);
  787. *e = 'E';
  788. }
  789. else
  790. ret = strtod(strchr_pointer+1, NULL);
  791. return ret;
  792. }
  793. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  794. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  795. bool code_seen(char code) {
  796. strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
  797. return (strchr_pointer != NULL); //Return True if a character was found
  798. }
  799. #define DEFINE_PGM_READ_ANY(type, reader) \
  800. static inline type pgm_read_any(const type *p) \
  801. { return pgm_read_##reader##_near(p); }
  802. DEFINE_PGM_READ_ANY(float, float);
  803. DEFINE_PGM_READ_ANY(signed char, byte);
  804. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  805. static const PROGMEM type array##_P[3] = \
  806. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  807. static inline type array(int axis) \
  808. { return pgm_read_any(&array##_P[axis]); }
  809. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  810. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  811. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  812. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  813. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  814. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  815. #ifdef DUAL_X_CARRIAGE
  816. #define DXC_FULL_CONTROL_MODE 0
  817. #define DXC_AUTO_PARK_MODE 1
  818. #define DXC_DUPLICATION_MODE 2
  819. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  820. static float x_home_pos(int extruder) {
  821. if (extruder == 0)
  822. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  823. else
  824. // In dual carriage mode the extruder offset provides an override of the
  825. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  826. // This allow soft recalibration of the second extruder offset position without firmware reflash
  827. // (through the M218 command).
  828. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  829. }
  830. static int x_home_dir(int extruder) {
  831. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  832. }
  833. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  834. static bool active_extruder_parked = false; // used in mode 1 & 2
  835. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  836. static millis_t delayed_move_time = 0; // used in mode 1
  837. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  838. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  839. bool extruder_duplication_enabled = false; // used in mode 2
  840. #endif //DUAL_X_CARRIAGE
  841. static void axis_is_at_home(int axis) {
  842. #ifdef DUAL_X_CARRIAGE
  843. if (axis == X_AXIS) {
  844. if (active_extruder != 0) {
  845. current_position[X_AXIS] = x_home_pos(active_extruder);
  846. min_pos[X_AXIS] = X2_MIN_POS;
  847. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  848. return;
  849. }
  850. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  851. float xoff = home_offset[X_AXIS];
  852. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  853. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  854. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  855. return;
  856. }
  857. }
  858. #endif
  859. #ifdef SCARA
  860. float homeposition[3];
  861. if (axis < 2) {
  862. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  863. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  864. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  865. // Works out real Homeposition angles using inverse kinematics,
  866. // and calculates homing offset using forward kinematics
  867. calculate_delta(homeposition);
  868. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  869. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  870. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  871. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  872. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  873. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  874. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  875. calculate_SCARA_forward_Transform(delta);
  876. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  877. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  878. current_position[axis] = delta[axis];
  879. // SCARA home positions are based on configuration since the actual limits are determined by the
  880. // inverse kinematic transform.
  881. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  882. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  883. }
  884. else {
  885. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  886. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  887. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  888. }
  889. #else
  890. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  891. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  892. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  893. #endif
  894. }
  895. /**
  896. * Some planner shorthand inline functions
  897. */
  898. inline void set_homing_bump_feedrate(AxisEnum axis) {
  899. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  900. if (homing_bump_divisor[axis] >= 1)
  901. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  902. else {
  903. feedrate = homing_feedrate[axis] / 10;
  904. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  905. }
  906. }
  907. inline void line_to_current_position() {
  908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  909. }
  910. inline void line_to_z(float zPosition) {
  911. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  912. }
  913. inline void line_to_destination(float mm_m) {
  914. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  915. }
  916. inline void line_to_destination() {
  917. line_to_destination(feedrate);
  918. }
  919. inline void sync_plan_position() {
  920. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  921. }
  922. #if defined(DELTA) || defined(SCARA)
  923. inline void sync_plan_position_delta() {
  924. calculate_delta(current_position);
  925. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  926. }
  927. #endif
  928. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  929. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  930. #ifdef ENABLE_AUTO_BED_LEVELING
  931. #ifdef DELTA
  932. /**
  933. * Calculate delta, start a line, and set current_position to destination
  934. */
  935. void prepare_move_raw() {
  936. refresh_cmd_timeout();
  937. calculate_delta(destination);
  938. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  939. set_current_to_destination();
  940. }
  941. #endif
  942. #ifdef AUTO_BED_LEVELING_GRID
  943. #ifndef DELTA
  944. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  945. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  946. planeNormal.debug("planeNormal");
  947. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  948. //bedLevel.debug("bedLevel");
  949. //plan_bed_level_matrix.debug("bed level before");
  950. //vector_3 uncorrected_position = plan_get_position_mm();
  951. //uncorrected_position.debug("position before");
  952. vector_3 corrected_position = plan_get_position();
  953. //corrected_position.debug("position after");
  954. current_position[X_AXIS] = corrected_position.x;
  955. current_position[Y_AXIS] = corrected_position.y;
  956. current_position[Z_AXIS] = corrected_position.z;
  957. sync_plan_position();
  958. }
  959. #endif // !DELTA
  960. #else // !AUTO_BED_LEVELING_GRID
  961. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  962. plan_bed_level_matrix.set_to_identity();
  963. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  964. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  965. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  966. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  967. if (planeNormal.z < 0) {
  968. planeNormal.x = -planeNormal.x;
  969. planeNormal.y = -planeNormal.y;
  970. planeNormal.z = -planeNormal.z;
  971. }
  972. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  973. vector_3 corrected_position = plan_get_position();
  974. current_position[X_AXIS] = corrected_position.x;
  975. current_position[Y_AXIS] = corrected_position.y;
  976. current_position[Z_AXIS] = corrected_position.z;
  977. sync_plan_position();
  978. }
  979. #endif // !AUTO_BED_LEVELING_GRID
  980. static void run_z_probe() {
  981. #ifdef DELTA
  982. float start_z = current_position[Z_AXIS];
  983. long start_steps = st_get_position(Z_AXIS);
  984. // move down slowly until you find the bed
  985. feedrate = homing_feedrate[Z_AXIS] / 4;
  986. destination[Z_AXIS] = -10;
  987. prepare_move_raw(); // this will also set_current_to_destination
  988. st_synchronize();
  989. endstops_hit_on_purpose(); // clear endstop hit flags
  990. // we have to let the planner know where we are right now as it is not where we said to go.
  991. long stop_steps = st_get_position(Z_AXIS);
  992. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  993. current_position[Z_AXIS] = mm;
  994. sync_plan_position_delta();
  995. #else // !DELTA
  996. plan_bed_level_matrix.set_to_identity();
  997. feedrate = homing_feedrate[Z_AXIS];
  998. // move down until you find the bed
  999. float zPosition = -10;
  1000. line_to_z(zPosition);
  1001. st_synchronize();
  1002. // we have to let the planner know where we are right now as it is not where we said to go.
  1003. zPosition = st_get_position_mm(Z_AXIS);
  1004. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1005. // move up the retract distance
  1006. zPosition += home_bump_mm(Z_AXIS);
  1007. line_to_z(zPosition);
  1008. st_synchronize();
  1009. endstops_hit_on_purpose(); // clear endstop hit flags
  1010. // move back down slowly to find bed
  1011. set_homing_bump_feedrate(Z_AXIS);
  1012. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1013. line_to_z(zPosition);
  1014. st_synchronize();
  1015. endstops_hit_on_purpose(); // clear endstop hit flags
  1016. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1017. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1018. sync_plan_position();
  1019. #endif // !DELTA
  1020. }
  1021. /**
  1022. * Plan a move to (X, Y, Z) and set the current_position
  1023. * The final current_position may not be the one that was requested
  1024. */
  1025. static void do_blocking_move_to(float x, float y, float z) {
  1026. float oldFeedRate = feedrate;
  1027. #ifdef DELTA
  1028. feedrate = XY_TRAVEL_SPEED;
  1029. destination[X_AXIS] = x;
  1030. destination[Y_AXIS] = y;
  1031. destination[Z_AXIS] = z;
  1032. prepare_move_raw(); // this will also set_current_to_destination
  1033. st_synchronize();
  1034. #else
  1035. feedrate = homing_feedrate[Z_AXIS];
  1036. current_position[Z_AXIS] = z;
  1037. line_to_current_position();
  1038. st_synchronize();
  1039. feedrate = xy_travel_speed;
  1040. current_position[X_AXIS] = x;
  1041. current_position[Y_AXIS] = y;
  1042. line_to_current_position();
  1043. st_synchronize();
  1044. #endif
  1045. feedrate = oldFeedRate;
  1046. }
  1047. static void setup_for_endstop_move() {
  1048. saved_feedrate = feedrate;
  1049. saved_feedrate_multiplier = feedrate_multiplier;
  1050. feedrate_multiplier = 100;
  1051. refresh_cmd_timeout();
  1052. enable_endstops(true);
  1053. }
  1054. static void clean_up_after_endstop_move() {
  1055. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1056. enable_endstops(false);
  1057. #endif
  1058. feedrate = saved_feedrate;
  1059. feedrate_multiplier = saved_feedrate_multiplier;
  1060. refresh_cmd_timeout();
  1061. }
  1062. static void deploy_z_probe() {
  1063. #ifdef SERVO_ENDSTOPS
  1064. // Engage Z Servo endstop if enabled
  1065. if (servo_endstops[Z_AXIS] >= 0) {
  1066. #if SERVO_LEVELING
  1067. servo[servo_endstops[Z_AXIS]].attach(0);
  1068. #endif
  1069. servo[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1070. #if SERVO_LEVELING
  1071. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1072. servo[servo_endstops[Z_AXIS]].detach();
  1073. #endif
  1074. }
  1075. #elif defined(Z_PROBE_ALLEN_KEY)
  1076. feedrate = homing_feedrate[X_AXIS];
  1077. // Move to the start position to initiate deployment
  1078. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1079. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1080. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1081. prepare_move_raw(); // this will also set_current_to_destination
  1082. // Home X to touch the belt
  1083. feedrate = homing_feedrate[X_AXIS]/10;
  1084. destination[X_AXIS] = 0;
  1085. prepare_move_raw(); // this will also set_current_to_destination
  1086. // Home Y for safety
  1087. feedrate = homing_feedrate[X_AXIS]/2;
  1088. destination[Y_AXIS] = 0;
  1089. prepare_move_raw(); // this will also set_current_to_destination
  1090. st_synchronize();
  1091. #ifdef Z_PROBE_ENDSTOP
  1092. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1093. if (z_probe_endstop)
  1094. #else
  1095. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1096. if (z_min_endstop)
  1097. #endif
  1098. {
  1099. if (IsRunning()) {
  1100. SERIAL_ERROR_START;
  1101. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1102. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1103. }
  1104. Stop();
  1105. }
  1106. #endif // Z_PROBE_ALLEN_KEY
  1107. }
  1108. static void stow_z_probe() {
  1109. #ifdef SERVO_ENDSTOPS
  1110. // Retract Z Servo endstop if enabled
  1111. if (servo_endstops[Z_AXIS] >= 0) {
  1112. #if Z_RAISE_AFTER_PROBING > 0
  1113. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1114. st_synchronize();
  1115. #endif
  1116. #if SERVO_LEVELING
  1117. servo[servo_endstops[Z_AXIS]].attach(0);
  1118. #endif
  1119. servo[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1120. #if SERVO_LEVELING
  1121. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1122. servo[servo_endstops[Z_AXIS]].detach();
  1123. #endif
  1124. }
  1125. #elif defined(Z_PROBE_ALLEN_KEY)
  1126. // Move up for safety
  1127. feedrate = homing_feedrate[X_AXIS];
  1128. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1129. prepare_move_raw(); // this will also set_current_to_destination
  1130. // Move to the start position to initiate retraction
  1131. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1132. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1133. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1134. prepare_move_raw(); // this will also set_current_to_destination
  1135. // Move the nozzle down to push the probe into retracted position
  1136. feedrate = homing_feedrate[Z_AXIS]/10;
  1137. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1138. prepare_move_raw(); // this will also set_current_to_destination
  1139. // Move up for safety
  1140. feedrate = homing_feedrate[Z_AXIS]/2;
  1141. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1142. prepare_move_raw(); // this will also set_current_to_destination
  1143. // Home XY for safety
  1144. feedrate = homing_feedrate[X_AXIS]/2;
  1145. destination[X_AXIS] = 0;
  1146. destination[Y_AXIS] = 0;
  1147. prepare_move_raw(); // this will also set_current_to_destination
  1148. st_synchronize();
  1149. #ifdef Z_PROBE_ENDSTOP
  1150. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1151. if (!z_probe_endstop)
  1152. #else
  1153. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1154. if (!z_min_endstop)
  1155. #endif
  1156. {
  1157. if (IsRunning()) {
  1158. SERIAL_ERROR_START;
  1159. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1160. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1161. }
  1162. Stop();
  1163. }
  1164. #endif
  1165. }
  1166. enum ProbeAction {
  1167. ProbeStay = 0,
  1168. ProbeDeploy = BIT(0),
  1169. ProbeStow = BIT(1),
  1170. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1171. };
  1172. // Probe bed height at position (x,y), returns the measured z value
  1173. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1174. // move to right place
  1175. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1176. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1177. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1178. if (retract_action & ProbeDeploy) deploy_z_probe();
  1179. #endif
  1180. run_z_probe();
  1181. float measured_z = current_position[Z_AXIS];
  1182. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1183. if (retract_action == ProbeStay) {
  1184. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1185. st_synchronize();
  1186. }
  1187. #endif
  1188. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1189. if (retract_action & ProbeStow) stow_z_probe();
  1190. #endif
  1191. if (verbose_level > 2) {
  1192. SERIAL_PROTOCOLPGM("Bed");
  1193. SERIAL_PROTOCOLPGM(" X: ");
  1194. SERIAL_PROTOCOL_F(x, 3);
  1195. SERIAL_PROTOCOLPGM(" Y: ");
  1196. SERIAL_PROTOCOL_F(y, 3);
  1197. SERIAL_PROTOCOLPGM(" Z: ");
  1198. SERIAL_PROTOCOL_F(measured_z, 3);
  1199. SERIAL_EOL;
  1200. }
  1201. return measured_z;
  1202. }
  1203. #ifdef DELTA
  1204. /**
  1205. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1206. */
  1207. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1208. if (bed_level[x][y] != 0.0) {
  1209. return; // Don't overwrite good values.
  1210. }
  1211. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1212. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1213. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1214. float median = c; // Median is robust (ignores outliers).
  1215. if (a < b) {
  1216. if (b < c) median = b;
  1217. if (c < a) median = a;
  1218. } else { // b <= a
  1219. if (c < b) median = b;
  1220. if (a < c) median = a;
  1221. }
  1222. bed_level[x][y] = median;
  1223. }
  1224. // Fill in the unprobed points (corners of circular print surface)
  1225. // using linear extrapolation, away from the center.
  1226. static void extrapolate_unprobed_bed_level() {
  1227. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1228. for (int y = 0; y <= half; y++) {
  1229. for (int x = 0; x <= half; x++) {
  1230. if (x + y < 3) continue;
  1231. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1232. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1233. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1234. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1235. }
  1236. }
  1237. }
  1238. // Print calibration results for plotting or manual frame adjustment.
  1239. static void print_bed_level() {
  1240. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1241. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1242. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1243. SERIAL_PROTOCOLCHAR(' ');
  1244. }
  1245. SERIAL_EOL;
  1246. }
  1247. }
  1248. // Reset calibration results to zero.
  1249. void reset_bed_level() {
  1250. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1251. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1252. bed_level[x][y] = 0.0;
  1253. }
  1254. }
  1255. }
  1256. #endif // DELTA
  1257. #endif // ENABLE_AUTO_BED_LEVELING
  1258. /**
  1259. * Home an individual axis
  1260. */
  1261. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1262. static void homeaxis(AxisEnum axis) {
  1263. #define HOMEAXIS_DO(LETTER) \
  1264. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1265. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1266. int axis_home_dir;
  1267. #ifdef DUAL_X_CARRIAGE
  1268. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1269. #else
  1270. axis_home_dir = home_dir(axis);
  1271. #endif
  1272. // Set the axis position as setup for the move
  1273. current_position[axis] = 0;
  1274. sync_plan_position();
  1275. // Engage Servo endstop if enabled
  1276. #if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
  1277. #if SERVO_LEVELING
  1278. if (axis == Z_AXIS) deploy_z_probe(); else
  1279. #endif
  1280. {
  1281. if (servo_endstops[axis] > -1)
  1282. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1283. }
  1284. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1285. #ifdef Z_DUAL_ENDSTOPS
  1286. if (axis == Z_AXIS) In_Homing_Process(true);
  1287. #endif
  1288. // Move towards the endstop until an endstop is triggered
  1289. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1290. feedrate = homing_feedrate[axis];
  1291. line_to_destination();
  1292. st_synchronize();
  1293. // Set the axis position as setup for the move
  1294. current_position[axis] = 0;
  1295. sync_plan_position();
  1296. // Move away from the endstop by the axis HOME_BUMP_MM
  1297. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1298. line_to_destination();
  1299. st_synchronize();
  1300. // Slow down the feedrate for the next move
  1301. set_homing_bump_feedrate(axis);
  1302. // Move slowly towards the endstop until triggered
  1303. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1304. line_to_destination();
  1305. st_synchronize();
  1306. #ifdef Z_DUAL_ENDSTOPS
  1307. if (axis == Z_AXIS) {
  1308. float adj = fabs(z_endstop_adj);
  1309. bool lockZ1;
  1310. if (axis_home_dir > 0) {
  1311. adj = -adj;
  1312. lockZ1 = (z_endstop_adj > 0);
  1313. }
  1314. else
  1315. lockZ1 = (z_endstop_adj < 0);
  1316. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1317. sync_plan_position();
  1318. // Move to the adjusted endstop height
  1319. feedrate = homing_feedrate[axis];
  1320. destination[Z_AXIS] = adj;
  1321. line_to_destination();
  1322. st_synchronize();
  1323. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1324. In_Homing_Process(false);
  1325. } // Z_AXIS
  1326. #endif
  1327. #ifdef DELTA
  1328. // retrace by the amount specified in endstop_adj
  1329. if (endstop_adj[axis] * axis_home_dir < 0) {
  1330. sync_plan_position();
  1331. destination[axis] = endstop_adj[axis];
  1332. line_to_destination();
  1333. st_synchronize();
  1334. }
  1335. #endif
  1336. // Set the axis position to its home position (plus home offsets)
  1337. axis_is_at_home(axis);
  1338. destination[axis] = current_position[axis];
  1339. feedrate = 0.0;
  1340. endstops_hit_on_purpose(); // clear endstop hit flags
  1341. axis_known_position[axis] = true;
  1342. // Retract Servo endstop if enabled
  1343. #ifdef SERVO_ENDSTOPS
  1344. if (servo_endstops[axis] > -1)
  1345. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1346. #endif
  1347. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1348. if (axis == Z_AXIS) stow_z_probe();
  1349. #endif
  1350. }
  1351. }
  1352. #ifdef FWRETRACT
  1353. void retract(bool retracting, bool swapretract = false) {
  1354. if (retracting == retracted[active_extruder]) return;
  1355. float oldFeedrate = feedrate;
  1356. set_destination_to_current();
  1357. if (retracting) {
  1358. feedrate = retract_feedrate * 60;
  1359. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1360. plan_set_e_position(current_position[E_AXIS]);
  1361. prepare_move();
  1362. if (retract_zlift > 0.01) {
  1363. current_position[Z_AXIS] -= retract_zlift;
  1364. #ifdef DELTA
  1365. sync_plan_position_delta();
  1366. #else
  1367. sync_plan_position();
  1368. #endif
  1369. prepare_move();
  1370. }
  1371. }
  1372. else {
  1373. if (retract_zlift > 0.01) {
  1374. current_position[Z_AXIS] += retract_zlift;
  1375. #ifdef DELTA
  1376. sync_plan_position_delta();
  1377. #else
  1378. sync_plan_position();
  1379. #endif
  1380. //prepare_move();
  1381. }
  1382. feedrate = retract_recover_feedrate * 60;
  1383. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1384. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1385. plan_set_e_position(current_position[E_AXIS]);
  1386. prepare_move();
  1387. }
  1388. feedrate = oldFeedrate;
  1389. retracted[active_extruder] = retracting;
  1390. } // retract()
  1391. #endif // FWRETRACT
  1392. #ifdef Z_PROBE_SLED
  1393. #ifndef SLED_DOCKING_OFFSET
  1394. #define SLED_DOCKING_OFFSET 0
  1395. #endif
  1396. /**
  1397. * Method to dock/undock a sled designed by Charles Bell.
  1398. *
  1399. * dock[in] If true, move to MAX_X and engage the electromagnet
  1400. * offset[in] The additional distance to move to adjust docking location
  1401. */
  1402. static void dock_sled(bool dock, int offset=0) {
  1403. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1404. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1405. SERIAL_ECHO_START;
  1406. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1407. return;
  1408. }
  1409. if (dock) {
  1410. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]); // this also updates current_position
  1411. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1412. } else {
  1413. float z_loc = current_position[Z_AXIS];
  1414. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1415. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); // this also updates current_position
  1416. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1417. }
  1418. }
  1419. #endif // Z_PROBE_SLED
  1420. /**
  1421. *
  1422. * G-Code Handler functions
  1423. *
  1424. */
  1425. /**
  1426. * G0, G1: Coordinated movement of X Y Z E axes
  1427. */
  1428. inline void gcode_G0_G1() {
  1429. if (IsRunning()) {
  1430. get_coordinates(); // For X Y Z E F
  1431. #ifdef FWRETRACT
  1432. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1433. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1434. // Is this move an attempt to retract or recover?
  1435. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1436. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1437. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1438. retract(!retracted[active_extruder]);
  1439. return;
  1440. }
  1441. }
  1442. #endif //FWRETRACT
  1443. prepare_move();
  1444. //ClearToSend();
  1445. }
  1446. }
  1447. /**
  1448. * G2: Clockwise Arc
  1449. * G3: Counterclockwise Arc
  1450. */
  1451. inline void gcode_G2_G3(bool clockwise) {
  1452. if (IsRunning()) {
  1453. get_arc_coordinates();
  1454. prepare_arc_move(clockwise);
  1455. }
  1456. }
  1457. /**
  1458. * G4: Dwell S<seconds> or P<milliseconds>
  1459. */
  1460. inline void gcode_G4() {
  1461. millis_t codenum = 0;
  1462. LCD_MESSAGEPGM(MSG_DWELL);
  1463. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1464. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1465. st_synchronize();
  1466. refresh_cmd_timeout();
  1467. codenum += previous_cmd_ms; // keep track of when we started waiting
  1468. while (millis() < codenum) {
  1469. manage_heater();
  1470. manage_inactivity();
  1471. lcd_update();
  1472. }
  1473. }
  1474. #ifdef FWRETRACT
  1475. /**
  1476. * G10 - Retract filament according to settings of M207
  1477. * G11 - Recover filament according to settings of M208
  1478. */
  1479. inline void gcode_G10_G11(bool doRetract=false) {
  1480. #if EXTRUDERS > 1
  1481. if (doRetract) {
  1482. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1483. }
  1484. #endif
  1485. retract(doRetract
  1486. #if EXTRUDERS > 1
  1487. , retracted_swap[active_extruder]
  1488. #endif
  1489. );
  1490. }
  1491. #endif //FWRETRACT
  1492. /**
  1493. * G28: Home all axes according to settings
  1494. *
  1495. * Parameters
  1496. *
  1497. * None Home to all axes with no parameters.
  1498. * With QUICK_HOME enabled XY will home together, then Z.
  1499. *
  1500. * Cartesian parameters
  1501. *
  1502. * X Home to the X endstop
  1503. * Y Home to the Y endstop
  1504. * Z Home to the Z endstop
  1505. *
  1506. * If numbers are included with XYZ set the position as with G92
  1507. * Currently adds the home_offset, which may be wrong and removed soon.
  1508. *
  1509. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1510. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1511. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1512. */
  1513. inline void gcode_G28() {
  1514. // For auto bed leveling, clear the level matrix
  1515. #ifdef ENABLE_AUTO_BED_LEVELING
  1516. plan_bed_level_matrix.set_to_identity();
  1517. #ifdef DELTA
  1518. reset_bed_level();
  1519. #endif
  1520. #endif
  1521. // For manual bed leveling deactivate the matrix temporarily
  1522. #ifdef MESH_BED_LEVELING
  1523. uint8_t mbl_was_active = mbl.active;
  1524. mbl.active = 0;
  1525. #endif
  1526. saved_feedrate = feedrate;
  1527. saved_feedrate_multiplier = feedrate_multiplier;
  1528. feedrate_multiplier = 100;
  1529. refresh_cmd_timeout();
  1530. enable_endstops(true);
  1531. set_destination_to_current();
  1532. feedrate = 0.0;
  1533. #ifdef DELTA
  1534. // A delta can only safely home all axis at the same time
  1535. // all axis have to home at the same time
  1536. // Pretend the current position is 0,0,0
  1537. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1538. sync_plan_position();
  1539. // Move all carriages up together until the first endstop is hit.
  1540. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1541. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1542. line_to_destination();
  1543. st_synchronize();
  1544. endstops_hit_on_purpose(); // clear endstop hit flags
  1545. // Destination reached
  1546. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1547. // take care of back off and rehome now we are all at the top
  1548. HOMEAXIS(X);
  1549. HOMEAXIS(Y);
  1550. HOMEAXIS(Z);
  1551. sync_plan_position_delta();
  1552. #else // NOT DELTA
  1553. bool homeX = code_seen(axis_codes[X_AXIS]),
  1554. homeY = code_seen(axis_codes[Y_AXIS]),
  1555. homeZ = code_seen(axis_codes[Z_AXIS]);
  1556. home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
  1557. if (home_all_axis || homeZ) {
  1558. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1559. HOMEAXIS(Z);
  1560. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1561. // Raise Z before homing any other axes
  1562. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1563. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1564. feedrate = max_feedrate[Z_AXIS] * 60;
  1565. line_to_destination();
  1566. st_synchronize();
  1567. #endif
  1568. } // home_all_axis || homeZ
  1569. #ifdef QUICK_HOME
  1570. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1571. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1572. #ifdef DUAL_X_CARRIAGE
  1573. int x_axis_home_dir = x_home_dir(active_extruder);
  1574. extruder_duplication_enabled = false;
  1575. #else
  1576. int x_axis_home_dir = home_dir(X_AXIS);
  1577. #endif
  1578. sync_plan_position();
  1579. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1580. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1581. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1582. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1583. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1584. line_to_destination();
  1585. st_synchronize();
  1586. axis_is_at_home(X_AXIS);
  1587. axis_is_at_home(Y_AXIS);
  1588. sync_plan_position();
  1589. destination[X_AXIS] = current_position[X_AXIS];
  1590. destination[Y_AXIS] = current_position[Y_AXIS];
  1591. line_to_destination();
  1592. feedrate = 0.0;
  1593. st_synchronize();
  1594. endstops_hit_on_purpose(); // clear endstop hit flags
  1595. current_position[X_AXIS] = destination[X_AXIS];
  1596. current_position[Y_AXIS] = destination[Y_AXIS];
  1597. #ifndef SCARA
  1598. current_position[Z_AXIS] = destination[Z_AXIS];
  1599. #endif
  1600. }
  1601. #endif // QUICK_HOME
  1602. // Home X
  1603. if (home_all_axis || homeX) {
  1604. #ifdef DUAL_X_CARRIAGE
  1605. int tmp_extruder = active_extruder;
  1606. extruder_duplication_enabled = false;
  1607. active_extruder = !active_extruder;
  1608. HOMEAXIS(X);
  1609. inactive_extruder_x_pos = current_position[X_AXIS];
  1610. active_extruder = tmp_extruder;
  1611. HOMEAXIS(X);
  1612. // reset state used by the different modes
  1613. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1614. delayed_move_time = 0;
  1615. active_extruder_parked = true;
  1616. #else
  1617. HOMEAXIS(X);
  1618. #endif
  1619. }
  1620. // Home Y
  1621. if (home_all_axis || homeY) HOMEAXIS(Y);
  1622. // Set the X position, if included
  1623. if (code_seen(axis_codes[X_AXIS]) && code_has_value())
  1624. current_position[X_AXIS] = code_value();
  1625. // Set the Y position, if included
  1626. if (code_seen(axis_codes[Y_AXIS]) && code_has_value())
  1627. current_position[Y_AXIS] = code_value();
  1628. // Home Z last if homing towards the bed
  1629. #if Z_HOME_DIR < 0
  1630. if (home_all_axis || homeZ) {
  1631. #ifdef Z_SAFE_HOMING
  1632. if (home_all_axis) {
  1633. current_position[Z_AXIS] = 0;
  1634. sync_plan_position();
  1635. //
  1636. // Set the probe (or just the nozzle) destination to the safe homing point
  1637. //
  1638. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1639. // then this may not work as expected.
  1640. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1641. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1642. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1643. feedrate = XY_TRAVEL_SPEED;
  1644. // This could potentially move X, Y, Z all together
  1645. line_to_destination();
  1646. st_synchronize();
  1647. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1648. current_position[X_AXIS] = destination[X_AXIS];
  1649. current_position[Y_AXIS] = destination[Y_AXIS];
  1650. // Home the Z axis
  1651. HOMEAXIS(Z);
  1652. }
  1653. else if (homeZ) { // Don't need to Home Z twice
  1654. // Let's see if X and Y are homed
  1655. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1656. // Make sure the probe is within the physical limits
  1657. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1658. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1659. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1660. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1661. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1662. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1663. // Set the plan current position to X, Y, 0
  1664. current_position[Z_AXIS] = 0;
  1665. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1666. // Set Z destination away from bed and raise the axis
  1667. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1668. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1669. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1670. line_to_destination();
  1671. st_synchronize();
  1672. // Home the Z axis
  1673. HOMEAXIS(Z);
  1674. }
  1675. else {
  1676. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1677. SERIAL_ECHO_START;
  1678. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1679. }
  1680. }
  1681. else {
  1682. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1683. SERIAL_ECHO_START;
  1684. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1685. }
  1686. } // !home_all_axes && homeZ
  1687. #else // !Z_SAFE_HOMING
  1688. HOMEAXIS(Z);
  1689. #endif // !Z_SAFE_HOMING
  1690. } // home_all_axis || homeZ
  1691. #endif // Z_HOME_DIR < 0
  1692. // Set the Z position, if included
  1693. if (code_seen(axis_codes[Z_AXIS]) && code_has_value())
  1694. current_position[Z_AXIS] = code_value();
  1695. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1696. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1697. #endif
  1698. sync_plan_position();
  1699. #endif // else DELTA
  1700. #ifdef SCARA
  1701. sync_plan_position_delta();
  1702. #endif
  1703. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1704. enable_endstops(false);
  1705. #endif
  1706. // For manual leveling move back to 0,0
  1707. #ifdef MESH_BED_LEVELING
  1708. if (mbl_was_active) {
  1709. current_position[X_AXIS] = mbl.get_x(0);
  1710. current_position[Y_AXIS] = mbl.get_y(0);
  1711. set_destination_to_current();
  1712. feedrate = homing_feedrate[X_AXIS];
  1713. line_to_destination();
  1714. st_synchronize();
  1715. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1716. sync_plan_position();
  1717. mbl.active = 1;
  1718. }
  1719. #endif
  1720. feedrate = saved_feedrate;
  1721. feedrate_multiplier = saved_feedrate_multiplier;
  1722. refresh_cmd_timeout();
  1723. endstops_hit_on_purpose(); // clear endstop hit flags
  1724. }
  1725. #ifdef MESH_BED_LEVELING
  1726. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1727. /**
  1728. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1729. * mesh to compensate for variable bed height
  1730. *
  1731. * Parameters With MESH_BED_LEVELING:
  1732. *
  1733. * S0 Produce a mesh report
  1734. * S1 Start probing mesh points
  1735. * S2 Probe the next mesh point
  1736. * S3 Xn Yn Zn.nn Manually modify a single point
  1737. *
  1738. * The S0 report the points as below
  1739. *
  1740. * +----> X-axis
  1741. * |
  1742. * |
  1743. * v Y-axis
  1744. *
  1745. */
  1746. inline void gcode_G29() {
  1747. static int probe_point = -1;
  1748. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1749. if (state < 0 || state > 3) {
  1750. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1751. return;
  1752. }
  1753. int ix, iy;
  1754. float z;
  1755. switch(state) {
  1756. case MeshReport:
  1757. if (mbl.active) {
  1758. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1759. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1760. SERIAL_PROTOCOLCHAR(',');
  1761. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1762. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1763. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1764. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1765. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1766. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1767. SERIAL_PROTOCOLPGM(" ");
  1768. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1769. }
  1770. SERIAL_EOL;
  1771. }
  1772. }
  1773. else
  1774. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1775. break;
  1776. case MeshStart:
  1777. mbl.reset();
  1778. probe_point = 0;
  1779. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1780. break;
  1781. case MeshNext:
  1782. if (probe_point < 0) {
  1783. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1784. return;
  1785. }
  1786. if (probe_point == 0) {
  1787. // Set Z to a positive value before recording the first Z.
  1788. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1789. sync_plan_position();
  1790. }
  1791. else {
  1792. // For others, save the Z of the previous point, then raise Z again.
  1793. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1794. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1795. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1796. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1797. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1799. st_synchronize();
  1800. }
  1801. // Is there another point to sample? Move there.
  1802. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1803. ix = probe_point % MESH_NUM_X_POINTS;
  1804. iy = probe_point / MESH_NUM_X_POINTS;
  1805. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1806. current_position[X_AXIS] = mbl.get_x(ix);
  1807. current_position[Y_AXIS] = mbl.get_y(iy);
  1808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1809. st_synchronize();
  1810. probe_point++;
  1811. }
  1812. else {
  1813. // After recording the last point, activate the mbl and home
  1814. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1815. probe_point = -1;
  1816. mbl.active = 1;
  1817. enqueuecommands_P(PSTR("G28"));
  1818. }
  1819. break;
  1820. case MeshSet:
  1821. if (code_seen('X') || code_seen('x')) {
  1822. ix = code_value_long()-1;
  1823. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1824. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1825. return;
  1826. }
  1827. } else {
  1828. SERIAL_PROTOCOLPGM("X not entered.\n");
  1829. return;
  1830. }
  1831. if (code_seen('Y') || code_seen('y')) {
  1832. iy = code_value_long()-1;
  1833. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1834. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1835. return;
  1836. }
  1837. } else {
  1838. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1839. return;
  1840. }
  1841. if (code_seen('Z') || code_seen('z')) {
  1842. z = code_value();
  1843. } else {
  1844. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1845. return;
  1846. }
  1847. mbl.z_values[iy][ix] = z;
  1848. } // switch(state)
  1849. }
  1850. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1851. /**
  1852. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1853. * Will fail if the printer has not been homed with G28.
  1854. *
  1855. * Enhanced G29 Auto Bed Leveling Probe Routine
  1856. *
  1857. * Parameters With AUTO_BED_LEVELING_GRID:
  1858. *
  1859. * P Set the size of the grid that will be probed (P x P points).
  1860. * Not supported by non-linear delta printer bed leveling.
  1861. * Example: "G29 P4"
  1862. *
  1863. * S Set the XY travel speed between probe points (in mm/min)
  1864. *
  1865. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1866. * or clean the rotation Matrix. Useful to check the topology
  1867. * after a first run of G29.
  1868. *
  1869. * V Set the verbose level (0-4). Example: "G29 V3"
  1870. *
  1871. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1872. * This is useful for manual bed leveling and finding flaws in the bed (to
  1873. * assist with part placement).
  1874. * Not supported by non-linear delta printer bed leveling.
  1875. *
  1876. * F Set the Front limit of the probing grid
  1877. * B Set the Back limit of the probing grid
  1878. * L Set the Left limit of the probing grid
  1879. * R Set the Right limit of the probing grid
  1880. *
  1881. * Global Parameters:
  1882. *
  1883. * E/e By default G29 will engage the probe, test the bed, then disengage.
  1884. * Include "E" to engage/disengage the probe for each sample.
  1885. * There's no extra effect if you have a fixed probe.
  1886. * Usage: "G29 E" or "G29 e"
  1887. *
  1888. */
  1889. inline void gcode_G29() {
  1890. // Don't allow auto-leveling without homing first
  1891. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1892. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1893. SERIAL_ECHO_START;
  1894. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1895. return;
  1896. }
  1897. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1898. if (verbose_level < 0 || verbose_level > 4) {
  1899. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1900. return;
  1901. }
  1902. bool dryrun = code_seen('D') || code_seen('d'),
  1903. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1904. #ifdef AUTO_BED_LEVELING_GRID
  1905. #ifndef DELTA
  1906. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1907. #endif
  1908. if (verbose_level > 0) {
  1909. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1910. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1911. }
  1912. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1913. #ifndef DELTA
  1914. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1915. if (auto_bed_leveling_grid_points < 2) {
  1916. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1917. return;
  1918. }
  1919. #endif
  1920. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1921. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1922. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1923. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1924. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1925. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1926. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1927. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1928. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1929. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1930. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1931. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1932. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1933. if (left_out || right_out || front_out || back_out) {
  1934. if (left_out) {
  1935. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1936. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1937. }
  1938. if (right_out) {
  1939. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1940. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1941. }
  1942. if (front_out) {
  1943. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1944. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1945. }
  1946. if (back_out) {
  1947. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1948. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1949. }
  1950. return;
  1951. }
  1952. #endif // AUTO_BED_LEVELING_GRID
  1953. #ifdef Z_PROBE_SLED
  1954. dock_sled(false); // engage (un-dock) the probe
  1955. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1956. deploy_z_probe();
  1957. #endif
  1958. st_synchronize();
  1959. if (!dryrun) {
  1960. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1961. plan_bed_level_matrix.set_to_identity();
  1962. #ifdef DELTA
  1963. reset_bed_level();
  1964. #else //!DELTA
  1965. //vector_3 corrected_position = plan_get_position_mm();
  1966. //corrected_position.debug("position before G29");
  1967. vector_3 uncorrected_position = plan_get_position();
  1968. //uncorrected_position.debug("position during G29");
  1969. current_position[X_AXIS] = uncorrected_position.x;
  1970. current_position[Y_AXIS] = uncorrected_position.y;
  1971. current_position[Z_AXIS] = uncorrected_position.z;
  1972. sync_plan_position();
  1973. #endif // !DELTA
  1974. }
  1975. setup_for_endstop_move();
  1976. feedrate = homing_feedrate[Z_AXIS];
  1977. #ifdef AUTO_BED_LEVELING_GRID
  1978. // probe at the points of a lattice grid
  1979. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1980. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1981. #ifdef DELTA
  1982. delta_grid_spacing[0] = xGridSpacing;
  1983. delta_grid_spacing[1] = yGridSpacing;
  1984. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1985. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1986. #else // !DELTA
  1987. // solve the plane equation ax + by + d = z
  1988. // A is the matrix with rows [x y 1] for all the probed points
  1989. // B is the vector of the Z positions
  1990. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1991. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1992. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1993. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1994. eqnBVector[abl2], // "B" vector of Z points
  1995. mean = 0.0;
  1996. #endif // !DELTA
  1997. int probePointCounter = 0;
  1998. bool zig = true;
  1999. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2000. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2001. int xStart, xStop, xInc;
  2002. if (zig) {
  2003. xStart = 0;
  2004. xStop = auto_bed_leveling_grid_points;
  2005. xInc = 1;
  2006. }
  2007. else {
  2008. xStart = auto_bed_leveling_grid_points - 1;
  2009. xStop = -1;
  2010. xInc = -1;
  2011. }
  2012. #ifndef DELTA
  2013. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2014. // This gets the probe points in more readable order.
  2015. if (!do_topography_map) zig = !zig;
  2016. #endif
  2017. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2018. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2019. // raise extruder
  2020. float measured_z,
  2021. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2022. #ifdef DELTA
  2023. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2024. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2025. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2026. #endif //DELTA
  2027. ProbeAction act;
  2028. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2029. act = ProbeDeployAndStow;
  2030. else if (yCount == 0 && xCount == xStart)
  2031. act = ProbeDeploy;
  2032. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2033. act = ProbeStow;
  2034. else
  2035. act = ProbeStay;
  2036. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2037. #ifndef DELTA
  2038. mean += measured_z;
  2039. eqnBVector[probePointCounter] = measured_z;
  2040. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2041. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2042. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2043. #else
  2044. bed_level[xCount][yCount] = measured_z + z_offset;
  2045. #endif
  2046. probePointCounter++;
  2047. manage_heater();
  2048. manage_inactivity();
  2049. lcd_update();
  2050. } //xProbe
  2051. } //yProbe
  2052. clean_up_after_endstop_move();
  2053. #ifdef DELTA
  2054. if (!dryrun) extrapolate_unprobed_bed_level();
  2055. print_bed_level();
  2056. #else // !DELTA
  2057. // solve lsq problem
  2058. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2059. mean /= abl2;
  2060. if (verbose_level) {
  2061. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2062. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2063. SERIAL_PROTOCOLPGM(" b: ");
  2064. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2065. SERIAL_PROTOCOLPGM(" d: ");
  2066. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2067. SERIAL_EOL;
  2068. if (verbose_level > 2) {
  2069. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2070. SERIAL_PROTOCOL_F(mean, 8);
  2071. SERIAL_EOL;
  2072. }
  2073. }
  2074. // Show the Topography map if enabled
  2075. if (do_topography_map) {
  2076. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2077. SERIAL_PROTOCOLPGM("+-----------+\n");
  2078. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2079. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2080. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2081. SERIAL_PROTOCOLPGM("+-----------+\n");
  2082. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2083. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2084. int ind = yy * auto_bed_leveling_grid_points + xx;
  2085. float diff = eqnBVector[ind] - mean;
  2086. if (diff >= 0.0)
  2087. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2088. else
  2089. SERIAL_PROTOCOLCHAR(' ');
  2090. SERIAL_PROTOCOL_F(diff, 5);
  2091. } // xx
  2092. SERIAL_EOL;
  2093. } // yy
  2094. SERIAL_EOL;
  2095. } //do_topography_map
  2096. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2097. free(plane_equation_coefficients);
  2098. #endif //!DELTA
  2099. #else // !AUTO_BED_LEVELING_GRID
  2100. // Actions for each probe
  2101. ProbeAction p1, p2, p3;
  2102. if (deploy_probe_for_each_reading)
  2103. p1 = p2 = p3 = ProbeDeployAndStow;
  2104. else
  2105. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2106. // Probe at 3 arbitrary points
  2107. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2108. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2109. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2110. clean_up_after_endstop_move();
  2111. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2112. #endif // !AUTO_BED_LEVELING_GRID
  2113. #ifndef DELTA
  2114. if (verbose_level > 0)
  2115. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2116. if (!dryrun) {
  2117. // Correct the Z height difference from z-probe position and hotend tip position.
  2118. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2119. // When the bed is uneven, this height must be corrected.
  2120. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2121. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2122. z_tmp = current_position[Z_AXIS],
  2123. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2124. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2125. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2126. sync_plan_position();
  2127. }
  2128. #endif // !DELTA
  2129. #ifdef Z_PROBE_SLED
  2130. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2131. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2132. stow_z_probe();
  2133. #endif
  2134. #ifdef Z_PROBE_END_SCRIPT
  2135. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2136. st_synchronize();
  2137. #endif
  2138. }
  2139. #ifndef Z_PROBE_SLED
  2140. inline void gcode_G30() {
  2141. deploy_z_probe(); // Engage Z Servo endstop if available
  2142. st_synchronize();
  2143. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2144. setup_for_endstop_move();
  2145. feedrate = homing_feedrate[Z_AXIS];
  2146. run_z_probe();
  2147. SERIAL_PROTOCOLPGM("Bed");
  2148. SERIAL_PROTOCOLPGM(" X: ");
  2149. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2150. SERIAL_PROTOCOLPGM(" Y: ");
  2151. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2152. SERIAL_PROTOCOLPGM(" Z: ");
  2153. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2154. SERIAL_EOL;
  2155. clean_up_after_endstop_move();
  2156. stow_z_probe(); // Retract Z Servo endstop if available
  2157. }
  2158. #endif //!Z_PROBE_SLED
  2159. #endif //ENABLE_AUTO_BED_LEVELING
  2160. /**
  2161. * G92: Set current position to given X Y Z E
  2162. */
  2163. inline void gcode_G92() {
  2164. if (!code_seen(axis_codes[E_AXIS]))
  2165. st_synchronize();
  2166. bool didXYZ = false;
  2167. for (int i = 0; i < NUM_AXIS; i++) {
  2168. if (code_seen(axis_codes[i])) {
  2169. float v = current_position[i] = code_value();
  2170. if (i == E_AXIS)
  2171. plan_set_e_position(v);
  2172. else
  2173. didXYZ = true;
  2174. }
  2175. }
  2176. if (didXYZ) sync_plan_position();
  2177. }
  2178. #ifdef ULTIPANEL
  2179. /**
  2180. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2181. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2182. */
  2183. inline void gcode_M0_M1() {
  2184. char *src = strchr_pointer + 2;
  2185. millis_t codenum = 0;
  2186. bool hasP = false, hasS = false;
  2187. if (code_seen('P')) {
  2188. codenum = code_value_short(); // milliseconds to wait
  2189. hasP = codenum > 0;
  2190. }
  2191. if (code_seen('S')) {
  2192. codenum = code_value_short() * 1000UL; // seconds to wait
  2193. hasS = codenum > 0;
  2194. }
  2195. char* starpos = strchr(src, '*');
  2196. if (starpos != NULL) *(starpos) = '\0';
  2197. while (*src == ' ') ++src;
  2198. if (!hasP && !hasS && *src != '\0')
  2199. lcd_setstatus(src, true);
  2200. else {
  2201. LCD_MESSAGEPGM(MSG_USERWAIT);
  2202. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2203. dontExpireStatus();
  2204. #endif
  2205. }
  2206. lcd_ignore_click();
  2207. st_synchronize();
  2208. refresh_cmd_timeout();
  2209. if (codenum > 0) {
  2210. codenum += previous_cmd_ms; // keep track of when we started waiting
  2211. while(millis() < codenum && !lcd_clicked()) {
  2212. manage_heater();
  2213. manage_inactivity();
  2214. lcd_update();
  2215. }
  2216. lcd_ignore_click(false);
  2217. }
  2218. else {
  2219. if (!lcd_detected()) return;
  2220. while (!lcd_clicked()) {
  2221. manage_heater();
  2222. manage_inactivity();
  2223. lcd_update();
  2224. }
  2225. }
  2226. if (IS_SD_PRINTING)
  2227. LCD_MESSAGEPGM(MSG_RESUMING);
  2228. else
  2229. LCD_MESSAGEPGM(WELCOME_MSG);
  2230. }
  2231. #endif // ULTIPANEL
  2232. /**
  2233. * M17: Enable power on all stepper motors
  2234. */
  2235. inline void gcode_M17() {
  2236. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2237. enable_all_steppers();
  2238. }
  2239. #ifdef SDSUPPORT
  2240. /**
  2241. * M20: List SD card to serial output
  2242. */
  2243. inline void gcode_M20() {
  2244. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2245. card.ls();
  2246. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2247. }
  2248. /**
  2249. * M21: Init SD Card
  2250. */
  2251. inline void gcode_M21() {
  2252. card.initsd();
  2253. }
  2254. /**
  2255. * M22: Release SD Card
  2256. */
  2257. inline void gcode_M22() {
  2258. card.release();
  2259. }
  2260. /**
  2261. * M23: Select a file
  2262. */
  2263. inline void gcode_M23() {
  2264. char* codepos = strchr_pointer + 4;
  2265. char* starpos = strchr(codepos, '*');
  2266. if (starpos) *starpos = '\0';
  2267. card.openFile(codepos, true);
  2268. }
  2269. /**
  2270. * M24: Start SD Print
  2271. */
  2272. inline void gcode_M24() {
  2273. card.startFileprint();
  2274. print_job_start_ms = millis();
  2275. }
  2276. /**
  2277. * M25: Pause SD Print
  2278. */
  2279. inline void gcode_M25() {
  2280. card.pauseSDPrint();
  2281. }
  2282. /**
  2283. * M26: Set SD Card file index
  2284. */
  2285. inline void gcode_M26() {
  2286. if (card.cardOK && code_seen('S'))
  2287. card.setIndex(code_value_short());
  2288. }
  2289. /**
  2290. * M27: Get SD Card status
  2291. */
  2292. inline void gcode_M27() {
  2293. card.getStatus();
  2294. }
  2295. /**
  2296. * M28: Start SD Write
  2297. */
  2298. inline void gcode_M28() {
  2299. char* codepos = strchr_pointer + 4;
  2300. char* starpos = strchr(codepos, '*');
  2301. if (starpos) {
  2302. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2303. strchr_pointer = strchr(npos, ' ') + 1;
  2304. *(starpos) = '\0';
  2305. }
  2306. card.openFile(codepos, false);
  2307. }
  2308. /**
  2309. * M29: Stop SD Write
  2310. * Processed in write to file routine above
  2311. */
  2312. inline void gcode_M29() {
  2313. // card.saving = false;
  2314. }
  2315. /**
  2316. * M30 <filename>: Delete SD Card file
  2317. */
  2318. inline void gcode_M30() {
  2319. if (card.cardOK) {
  2320. card.closefile();
  2321. char* starpos = strchr(strchr_pointer + 4, '*');
  2322. if (starpos) {
  2323. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2324. strchr_pointer = strchr(npos, ' ') + 1;
  2325. *(starpos) = '\0';
  2326. }
  2327. card.removeFile(strchr_pointer + 4);
  2328. }
  2329. }
  2330. #endif
  2331. /**
  2332. * M31: Get the time since the start of SD Print (or last M109)
  2333. */
  2334. inline void gcode_M31() {
  2335. print_job_stop_ms = millis();
  2336. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2337. int min = t / 60, sec = t % 60;
  2338. char time[30];
  2339. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2340. SERIAL_ECHO_START;
  2341. SERIAL_ECHOLN(time);
  2342. lcd_setstatus(time);
  2343. autotempShutdown();
  2344. }
  2345. #ifdef SDSUPPORT
  2346. /**
  2347. * M32: Select file and start SD Print
  2348. */
  2349. inline void gcode_M32() {
  2350. if (card.sdprinting)
  2351. st_synchronize();
  2352. char* codepos = strchr_pointer + 4;
  2353. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2354. if (! namestartpos)
  2355. namestartpos = codepos; //default name position, 4 letters after the M
  2356. else
  2357. namestartpos++; //to skip the '!'
  2358. char* starpos = strchr(codepos, '*');
  2359. if (starpos) *(starpos) = '\0';
  2360. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2361. if (card.cardOK) {
  2362. card.openFile(namestartpos, true, !call_procedure);
  2363. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2364. card.setIndex(code_value_short());
  2365. card.startFileprint();
  2366. if (!call_procedure)
  2367. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2368. }
  2369. }
  2370. /**
  2371. * M928: Start SD Write
  2372. */
  2373. inline void gcode_M928() {
  2374. char* starpos = strchr(strchr_pointer + 5, '*');
  2375. if (starpos) {
  2376. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2377. strchr_pointer = strchr(npos, ' ') + 1;
  2378. *(starpos) = '\0';
  2379. }
  2380. card.openLogFile(strchr_pointer + 5);
  2381. }
  2382. #endif // SDSUPPORT
  2383. /**
  2384. * M42: Change pin status via GCode
  2385. */
  2386. inline void gcode_M42() {
  2387. if (code_seen('S')) {
  2388. int pin_status = code_value_short(),
  2389. pin_number = LED_PIN;
  2390. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2391. pin_number = code_value_short();
  2392. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2393. if (sensitive_pins[i] == pin_number) {
  2394. pin_number = -1;
  2395. break;
  2396. }
  2397. }
  2398. #if HAS_FAN
  2399. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2400. #endif
  2401. if (pin_number > -1) {
  2402. pinMode(pin_number, OUTPUT);
  2403. digitalWrite(pin_number, pin_status);
  2404. analogWrite(pin_number, pin_status);
  2405. }
  2406. } // code_seen('S')
  2407. }
  2408. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2409. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2410. #ifdef Z_PROBE_ENDSTOP
  2411. #if !HAS_Z_PROBE
  2412. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2413. #endif
  2414. #elif !HAS_Z_MIN
  2415. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2416. #endif
  2417. /**
  2418. * M48: Z-Probe repeatability measurement function.
  2419. *
  2420. * Usage:
  2421. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2422. * P = Number of sampled points (4-50, default 10)
  2423. * X = Sample X position
  2424. * Y = Sample Y position
  2425. * V = Verbose level (0-4, default=1)
  2426. * E = Engage probe for each reading
  2427. * L = Number of legs of movement before probe
  2428. *
  2429. * This function assumes the bed has been homed. Specifically, that a G28 command
  2430. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2431. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2432. * regenerated.
  2433. */
  2434. inline void gcode_M48() {
  2435. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2436. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2437. if (code_seen('V') || code_seen('v')) {
  2438. verbose_level = code_value_short();
  2439. if (verbose_level < 0 || verbose_level > 4 ) {
  2440. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2441. return;
  2442. }
  2443. }
  2444. if (verbose_level > 0)
  2445. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2446. if (code_seen('P') || code_seen('p')) {
  2447. n_samples = code_value_short();
  2448. if (n_samples < 4 || n_samples > 50) {
  2449. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2450. return;
  2451. }
  2452. }
  2453. double X_probe_location, Y_probe_location,
  2454. X_current = X_probe_location = st_get_position_mm(X_AXIS),
  2455. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
  2456. Z_current = st_get_position_mm(Z_AXIS),
  2457. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
  2458. ext_position = st_get_position_mm(E_AXIS);
  2459. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2460. if (code_seen('X') || code_seen('x')) {
  2461. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2462. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2463. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2464. return;
  2465. }
  2466. }
  2467. if (code_seen('Y') || code_seen('y')) {
  2468. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2469. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2470. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2471. return;
  2472. }
  2473. }
  2474. if (code_seen('L') || code_seen('l')) {
  2475. n_legs = code_value_short();
  2476. if (n_legs == 1) n_legs = 2;
  2477. if (n_legs < 0 || n_legs > 15) {
  2478. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2479. return;
  2480. }
  2481. }
  2482. //
  2483. // Do all the preliminary setup work. First raise the probe.
  2484. //
  2485. st_synchronize();
  2486. plan_bed_level_matrix.set_to_identity();
  2487. plan_buffer_line(X_current, Y_current, Z_start_location,
  2488. ext_position,
  2489. homing_feedrate[Z_AXIS] / 60,
  2490. active_extruder);
  2491. st_synchronize();
  2492. //
  2493. // Now get everything to the specified probe point So we can safely do a probe to
  2494. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2495. // use that as a starting point for each probe.
  2496. //
  2497. if (verbose_level > 2)
  2498. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2499. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2500. ext_position,
  2501. homing_feedrate[X_AXIS]/60,
  2502. active_extruder);
  2503. st_synchronize();
  2504. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2505. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2506. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2507. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2508. //
  2509. // OK, do the inital probe to get us close to the bed.
  2510. // Then retrace the right amount and use that in subsequent probes
  2511. //
  2512. deploy_z_probe();
  2513. setup_for_endstop_move();
  2514. run_z_probe();
  2515. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2516. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2517. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2518. ext_position,
  2519. homing_feedrate[X_AXIS]/60,
  2520. active_extruder);
  2521. st_synchronize();
  2522. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2523. if (deploy_probe_for_each_reading) stow_z_probe();
  2524. for (uint8_t n=0; n < n_samples; n++) {
  2525. // Make sure we are at the probe location
  2526. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2527. if (n_legs) {
  2528. millis_t ms = millis();
  2529. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2530. theta = RADIANS(ms % 360L);
  2531. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2532. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2533. //SERIAL_ECHOPAIR(" theta: ",theta);
  2534. //SERIAL_ECHOPAIR(" direction: ",dir);
  2535. //SERIAL_EOL;
  2536. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2537. ms = millis();
  2538. theta += RADIANS(dir * (ms % 20L));
  2539. radius += (ms % 10L) - 5L;
  2540. if (radius < 0.0) radius = -radius;
  2541. X_current = X_probe_location + cos(theta) * radius;
  2542. Y_current = Y_probe_location + sin(theta) * radius;
  2543. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2544. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2545. if (verbose_level > 3) {
  2546. SERIAL_ECHOPAIR("x: ", X_current);
  2547. SERIAL_ECHOPAIR("y: ", Y_current);
  2548. SERIAL_EOL;
  2549. }
  2550. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2551. } // n_legs loop
  2552. // Go back to the probe location
  2553. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2554. } // n_legs
  2555. if (deploy_probe_for_each_reading) {
  2556. deploy_z_probe();
  2557. delay(1000);
  2558. }
  2559. setup_for_endstop_move();
  2560. run_z_probe();
  2561. sample_set[n] = current_position[Z_AXIS];
  2562. //
  2563. // Get the current mean for the data points we have so far
  2564. //
  2565. sum = 0.0;
  2566. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2567. mean = sum / (n + 1);
  2568. //
  2569. // Now, use that mean to calculate the standard deviation for the
  2570. // data points we have so far
  2571. //
  2572. sum = 0.0;
  2573. for (uint8_t j = 0; j <= n; j++) {
  2574. float ss = sample_set[j] - mean;
  2575. sum += ss * ss;
  2576. }
  2577. sigma = sqrt(sum / (n + 1));
  2578. if (verbose_level > 1) {
  2579. SERIAL_PROTOCOL(n+1);
  2580. SERIAL_PROTOCOLPGM(" of ");
  2581. SERIAL_PROTOCOL(n_samples);
  2582. SERIAL_PROTOCOLPGM(" z: ");
  2583. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2584. if (verbose_level > 2) {
  2585. SERIAL_PROTOCOLPGM(" mean: ");
  2586. SERIAL_PROTOCOL_F(mean,6);
  2587. SERIAL_PROTOCOLPGM(" sigma: ");
  2588. SERIAL_PROTOCOL_F(sigma,6);
  2589. }
  2590. }
  2591. if (verbose_level > 0) SERIAL_EOL;
  2592. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2593. st_synchronize();
  2594. if (deploy_probe_for_each_reading) {
  2595. stow_z_probe();
  2596. delay(1000);
  2597. }
  2598. }
  2599. if (!deploy_probe_for_each_reading) {
  2600. stow_z_probe();
  2601. delay(1000);
  2602. }
  2603. clean_up_after_endstop_move();
  2604. // enable_endstops(true);
  2605. if (verbose_level > 0) {
  2606. SERIAL_PROTOCOLPGM("Mean: ");
  2607. SERIAL_PROTOCOL_F(mean, 6);
  2608. SERIAL_EOL;
  2609. }
  2610. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2611. SERIAL_PROTOCOL_F(sigma, 6);
  2612. SERIAL_EOL; SERIAL_EOL;
  2613. }
  2614. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2615. /**
  2616. * M104: Set hot end temperature
  2617. */
  2618. inline void gcode_M104() {
  2619. if (setTargetedHotend(104)) return;
  2620. if (code_seen('S')) {
  2621. float temp = code_value();
  2622. setTargetHotend(temp, target_extruder);
  2623. #ifdef DUAL_X_CARRIAGE
  2624. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2625. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2626. #endif
  2627. setWatch();
  2628. }
  2629. }
  2630. /**
  2631. * M105: Read hot end and bed temperature
  2632. */
  2633. inline void gcode_M105() {
  2634. if (setTargetedHotend(105)) return;
  2635. #if HAS_TEMP_0 || HAS_TEMP_BED
  2636. SERIAL_PROTOCOLPGM("ok");
  2637. #if HAS_TEMP_0
  2638. SERIAL_PROTOCOLPGM(" T:");
  2639. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2640. SERIAL_PROTOCOLPGM(" /");
  2641. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2642. #endif
  2643. #if HAS_TEMP_BED
  2644. SERIAL_PROTOCOLPGM(" B:");
  2645. SERIAL_PROTOCOL_F(degBed(), 1);
  2646. SERIAL_PROTOCOLPGM(" /");
  2647. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2648. #endif
  2649. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2650. SERIAL_PROTOCOLPGM(" T");
  2651. SERIAL_PROTOCOL(e);
  2652. SERIAL_PROTOCOLCHAR(':');
  2653. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2654. SERIAL_PROTOCOLPGM(" /");
  2655. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2656. }
  2657. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2658. SERIAL_ERROR_START;
  2659. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2660. #endif
  2661. SERIAL_PROTOCOLPGM(" @:");
  2662. #ifdef EXTRUDER_WATTS
  2663. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2664. SERIAL_PROTOCOLCHAR('W');
  2665. #else
  2666. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2667. #endif
  2668. SERIAL_PROTOCOLPGM(" B@:");
  2669. #ifdef BED_WATTS
  2670. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2671. SERIAL_PROTOCOLCHAR('W');
  2672. #else
  2673. SERIAL_PROTOCOL(getHeaterPower(-1));
  2674. #endif
  2675. #ifdef SHOW_TEMP_ADC_VALUES
  2676. #if HAS_TEMP_BED
  2677. SERIAL_PROTOCOLPGM(" ADC B:");
  2678. SERIAL_PROTOCOL_F(degBed(),1);
  2679. SERIAL_PROTOCOLPGM("C->");
  2680. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2681. #endif
  2682. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2683. SERIAL_PROTOCOLPGM(" T");
  2684. SERIAL_PROTOCOL(cur_extruder);
  2685. SERIAL_PROTOCOLCHAR(':');
  2686. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2687. SERIAL_PROTOCOLPGM("C->");
  2688. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2689. }
  2690. #endif
  2691. SERIAL_EOL;
  2692. }
  2693. #if HAS_FAN
  2694. /**
  2695. * M106: Set Fan Speed
  2696. */
  2697. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2698. /**
  2699. * M107: Fan Off
  2700. */
  2701. inline void gcode_M107() { fanSpeed = 0; }
  2702. #endif // HAS_FAN
  2703. /**
  2704. * M109: Wait for extruder(s) to reach temperature
  2705. */
  2706. inline void gcode_M109() {
  2707. if (setTargetedHotend(109)) return;
  2708. LCD_MESSAGEPGM(MSG_HEATING);
  2709. no_wait_for_cooling = code_seen('S');
  2710. if (no_wait_for_cooling || code_seen('R')) {
  2711. float temp = code_value();
  2712. setTargetHotend(temp, target_extruder);
  2713. #ifdef DUAL_X_CARRIAGE
  2714. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2715. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2716. #endif
  2717. }
  2718. #ifdef AUTOTEMP
  2719. autotemp_enabled = code_seen('F');
  2720. if (autotemp_enabled) autotemp_factor = code_value();
  2721. if (code_seen('S')) autotemp_min = code_value();
  2722. if (code_seen('B')) autotemp_max = code_value();
  2723. #endif
  2724. setWatch();
  2725. millis_t temp_ms = millis();
  2726. /* See if we are heating up or cooling down */
  2727. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2728. cancel_heatup = false;
  2729. #ifdef TEMP_RESIDENCY_TIME
  2730. long residency_start_ms = -1;
  2731. /* continue to loop until we have reached the target temp
  2732. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2733. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2734. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2735. #else
  2736. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2737. #endif //TEMP_RESIDENCY_TIME
  2738. { // while loop
  2739. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2740. SERIAL_PROTOCOLPGM("T:");
  2741. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2742. SERIAL_PROTOCOLPGM(" E:");
  2743. SERIAL_PROTOCOL((int)target_extruder);
  2744. #ifdef TEMP_RESIDENCY_TIME
  2745. SERIAL_PROTOCOLPGM(" W:");
  2746. if (residency_start_ms > -1) {
  2747. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2748. SERIAL_PROTOCOLLN(temp_ms);
  2749. }
  2750. else {
  2751. SERIAL_PROTOCOLLNPGM("?");
  2752. }
  2753. #else
  2754. SERIAL_EOL;
  2755. #endif
  2756. temp_ms = millis();
  2757. }
  2758. manage_heater();
  2759. manage_inactivity();
  2760. lcd_update();
  2761. #ifdef TEMP_RESIDENCY_TIME
  2762. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2763. // or when current temp falls outside the hysteresis after target temp was reached
  2764. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2765. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2766. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2767. {
  2768. residency_start_ms = millis();
  2769. }
  2770. #endif //TEMP_RESIDENCY_TIME
  2771. }
  2772. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2773. refresh_cmd_timeout();
  2774. print_job_start_ms = previous_cmd_ms;
  2775. }
  2776. #if HAS_TEMP_BED
  2777. /**
  2778. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2779. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2780. */
  2781. inline void gcode_M190() {
  2782. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2783. no_wait_for_cooling = code_seen('S');
  2784. if (no_wait_for_cooling || code_seen('R'))
  2785. setTargetBed(code_value());
  2786. millis_t temp_ms = millis();
  2787. cancel_heatup = false;
  2788. target_direction = isHeatingBed(); // true if heating, false if cooling
  2789. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2790. millis_t ms = millis();
  2791. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2792. temp_ms = ms;
  2793. float tt = degHotend(active_extruder);
  2794. SERIAL_PROTOCOLPGM("T:");
  2795. SERIAL_PROTOCOL(tt);
  2796. SERIAL_PROTOCOLPGM(" E:");
  2797. SERIAL_PROTOCOL((int)active_extruder);
  2798. SERIAL_PROTOCOLPGM(" B:");
  2799. SERIAL_PROTOCOL_F(degBed(), 1);
  2800. SERIAL_EOL;
  2801. }
  2802. manage_heater();
  2803. manage_inactivity();
  2804. lcd_update();
  2805. }
  2806. LCD_MESSAGEPGM(MSG_BED_DONE);
  2807. refresh_cmd_timeout();
  2808. }
  2809. #endif // HAS_TEMP_BED
  2810. /**
  2811. * M112: Emergency Stop
  2812. */
  2813. inline void gcode_M112() {
  2814. kill();
  2815. }
  2816. #ifdef BARICUDA
  2817. #if HAS_HEATER_1
  2818. /**
  2819. * M126: Heater 1 valve open
  2820. */
  2821. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2822. /**
  2823. * M127: Heater 1 valve close
  2824. */
  2825. inline void gcode_M127() { ValvePressure = 0; }
  2826. #endif
  2827. #if HAS_HEATER_2
  2828. /**
  2829. * M128: Heater 2 valve open
  2830. */
  2831. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2832. /**
  2833. * M129: Heater 2 valve close
  2834. */
  2835. inline void gcode_M129() { EtoPPressure = 0; }
  2836. #endif
  2837. #endif //BARICUDA
  2838. /**
  2839. * M140: Set bed temperature
  2840. */
  2841. inline void gcode_M140() {
  2842. if (code_seen('S')) setTargetBed(code_value());
  2843. }
  2844. #if HAS_POWER_SWITCH
  2845. /**
  2846. * M80: Turn on Power Supply
  2847. */
  2848. inline void gcode_M80() {
  2849. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2850. // If you have a switch on suicide pin, this is useful
  2851. // if you want to start another print with suicide feature after
  2852. // a print without suicide...
  2853. #if HAS_SUICIDE
  2854. OUT_WRITE(SUICIDE_PIN, HIGH);
  2855. #endif
  2856. #ifdef ULTIPANEL
  2857. powersupply = true;
  2858. LCD_MESSAGEPGM(WELCOME_MSG);
  2859. lcd_update();
  2860. #endif
  2861. }
  2862. #endif // HAS_POWER_SWITCH
  2863. /**
  2864. * M81: Turn off Power, including Power Supply, if there is one.
  2865. *
  2866. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2867. */
  2868. inline void gcode_M81() {
  2869. disable_all_heaters();
  2870. st_synchronize();
  2871. disable_e0();
  2872. disable_e1();
  2873. disable_e2();
  2874. disable_e3();
  2875. finishAndDisableSteppers();
  2876. fanSpeed = 0;
  2877. delay(1000); // Wait 1 second before switching off
  2878. #if HAS_SUICIDE
  2879. st_synchronize();
  2880. suicide();
  2881. #elif HAS_POWER_SWITCH
  2882. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2883. #endif
  2884. #ifdef ULTIPANEL
  2885. #if HAS_POWER_SWITCH
  2886. powersupply = false;
  2887. #endif
  2888. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2889. lcd_update();
  2890. #endif
  2891. }
  2892. /**
  2893. * M82: Set E codes absolute (default)
  2894. */
  2895. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2896. /**
  2897. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2898. */
  2899. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2900. /**
  2901. * M18, M84: Disable all stepper motors
  2902. */
  2903. inline void gcode_M18_M84() {
  2904. if (code_seen('S')) {
  2905. stepper_inactive_time = code_value() * 1000;
  2906. }
  2907. else {
  2908. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2909. if (all_axis) {
  2910. st_synchronize();
  2911. disable_e0();
  2912. disable_e1();
  2913. disable_e2();
  2914. disable_e3();
  2915. finishAndDisableSteppers();
  2916. }
  2917. else {
  2918. st_synchronize();
  2919. if (code_seen('X')) disable_x();
  2920. if (code_seen('Y')) disable_y();
  2921. if (code_seen('Z')) disable_z();
  2922. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2923. if (code_seen('E')) {
  2924. disable_e0();
  2925. disable_e1();
  2926. disable_e2();
  2927. disable_e3();
  2928. }
  2929. #endif
  2930. }
  2931. }
  2932. }
  2933. /**
  2934. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2935. */
  2936. inline void gcode_M85() {
  2937. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2938. }
  2939. /**
  2940. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2941. */
  2942. inline void gcode_M92() {
  2943. for(int8_t i=0; i < NUM_AXIS; i++) {
  2944. if (code_seen(axis_codes[i])) {
  2945. if (i == E_AXIS) {
  2946. float value = code_value();
  2947. if (value < 20.0) {
  2948. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2949. max_e_jerk *= factor;
  2950. max_feedrate[i] *= factor;
  2951. axis_steps_per_sqr_second[i] *= factor;
  2952. }
  2953. axis_steps_per_unit[i] = value;
  2954. }
  2955. else {
  2956. axis_steps_per_unit[i] = code_value();
  2957. }
  2958. }
  2959. }
  2960. }
  2961. /**
  2962. * M114: Output current position to serial port
  2963. */
  2964. inline void gcode_M114() {
  2965. SERIAL_PROTOCOLPGM("X:");
  2966. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2967. SERIAL_PROTOCOLPGM(" Y:");
  2968. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2969. SERIAL_PROTOCOLPGM(" Z:");
  2970. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2971. SERIAL_PROTOCOLPGM(" E:");
  2972. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2973. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2974. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2975. SERIAL_PROTOCOLPGM(" Y:");
  2976. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2977. SERIAL_PROTOCOLPGM(" Z:");
  2978. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2979. SERIAL_EOL;
  2980. #ifdef SCARA
  2981. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2982. SERIAL_PROTOCOL(delta[X_AXIS]);
  2983. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2984. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2985. SERIAL_EOL;
  2986. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2987. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2988. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2989. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2990. SERIAL_EOL;
  2991. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2992. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2993. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2994. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2995. SERIAL_EOL; SERIAL_EOL;
  2996. #endif
  2997. }
  2998. /**
  2999. * M115: Capabilities string
  3000. */
  3001. inline void gcode_M115() {
  3002. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3003. }
  3004. /**
  3005. * M117: Set LCD Status Message
  3006. */
  3007. inline void gcode_M117() {
  3008. char* codepos = strchr_pointer + 5;
  3009. char* starpos = strchr(codepos, '*');
  3010. if (starpos) *starpos = '\0';
  3011. lcd_setstatus(codepos);
  3012. }
  3013. /**
  3014. * M119: Output endstop states to serial output
  3015. */
  3016. inline void gcode_M119() {
  3017. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3018. #if HAS_X_MIN
  3019. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3020. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3021. #endif
  3022. #if HAS_X_MAX
  3023. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3024. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3025. #endif
  3026. #if HAS_Y_MIN
  3027. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3028. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3029. #endif
  3030. #if HAS_Y_MAX
  3031. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3032. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3033. #endif
  3034. #if HAS_Z_MIN
  3035. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3036. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3037. #endif
  3038. #if HAS_Z_MAX
  3039. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3040. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3041. #endif
  3042. #if HAS_Z2_MAX
  3043. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3044. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3045. #endif
  3046. #if HAS_Z_PROBE
  3047. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3048. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3049. #endif
  3050. }
  3051. /**
  3052. * M120: Enable endstops
  3053. */
  3054. inline void gcode_M120() { enable_endstops(false); }
  3055. /**
  3056. * M121: Disable endstops
  3057. */
  3058. inline void gcode_M121() { enable_endstops(true); }
  3059. #ifdef BLINKM
  3060. /**
  3061. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3062. */
  3063. inline void gcode_M150() {
  3064. SendColors(
  3065. code_seen('R') ? (byte)code_value_short() : 0,
  3066. code_seen('U') ? (byte)code_value_short() : 0,
  3067. code_seen('B') ? (byte)code_value_short() : 0
  3068. );
  3069. }
  3070. #endif // BLINKM
  3071. /**
  3072. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3073. * T<extruder>
  3074. * D<millimeters>
  3075. */
  3076. inline void gcode_M200() {
  3077. int tmp_extruder = active_extruder;
  3078. if (code_seen('T')) {
  3079. tmp_extruder = code_value_short();
  3080. if (tmp_extruder >= EXTRUDERS) {
  3081. SERIAL_ECHO_START;
  3082. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3083. return;
  3084. }
  3085. }
  3086. if (code_seen('D')) {
  3087. float diameter = code_value();
  3088. // setting any extruder filament size disables volumetric on the assumption that
  3089. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3090. // for all extruders
  3091. volumetric_enabled = (diameter != 0.0);
  3092. if (volumetric_enabled) {
  3093. filament_size[tmp_extruder] = diameter;
  3094. // make sure all extruders have some sane value for the filament size
  3095. for (int i=0; i<EXTRUDERS; i++)
  3096. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3097. }
  3098. }
  3099. else {
  3100. //reserved for setting filament diameter via UFID or filament measuring device
  3101. return;
  3102. }
  3103. calculate_volumetric_multipliers();
  3104. }
  3105. /**
  3106. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3107. */
  3108. inline void gcode_M201() {
  3109. for (int8_t i=0; i < NUM_AXIS; i++) {
  3110. if (code_seen(axis_codes[i])) {
  3111. max_acceleration_units_per_sq_second[i] = code_value();
  3112. }
  3113. }
  3114. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3115. reset_acceleration_rates();
  3116. }
  3117. #if 0 // Not used for Sprinter/grbl gen6
  3118. inline void gcode_M202() {
  3119. for(int8_t i=0; i < NUM_AXIS; i++) {
  3120. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3121. }
  3122. }
  3123. #endif
  3124. /**
  3125. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3126. */
  3127. inline void gcode_M203() {
  3128. for (int8_t i=0; i < NUM_AXIS; i++) {
  3129. if (code_seen(axis_codes[i])) {
  3130. max_feedrate[i] = code_value();
  3131. }
  3132. }
  3133. }
  3134. /**
  3135. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3136. *
  3137. * P = Printing moves
  3138. * R = Retract only (no X, Y, Z) moves
  3139. * T = Travel (non printing) moves
  3140. *
  3141. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3142. */
  3143. inline void gcode_M204() {
  3144. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3145. acceleration = code_value();
  3146. travel_acceleration = acceleration;
  3147. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3148. SERIAL_EOL;
  3149. }
  3150. if (code_seen('P')) {
  3151. acceleration = code_value();
  3152. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3153. SERIAL_EOL;
  3154. }
  3155. if (code_seen('R')) {
  3156. retract_acceleration = code_value();
  3157. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3158. SERIAL_EOL;
  3159. }
  3160. if (code_seen('T')) {
  3161. travel_acceleration = code_value();
  3162. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3163. SERIAL_EOL;
  3164. }
  3165. }
  3166. /**
  3167. * M205: Set Advanced Settings
  3168. *
  3169. * S = Min Feed Rate (mm/s)
  3170. * T = Min Travel Feed Rate (mm/s)
  3171. * B = Min Segment Time (µs)
  3172. * X = Max XY Jerk (mm/s/s)
  3173. * Z = Max Z Jerk (mm/s/s)
  3174. * E = Max E Jerk (mm/s/s)
  3175. */
  3176. inline void gcode_M205() {
  3177. if (code_seen('S')) minimumfeedrate = code_value();
  3178. if (code_seen('T')) mintravelfeedrate = code_value();
  3179. if (code_seen('B')) minsegmenttime = code_value();
  3180. if (code_seen('X')) max_xy_jerk = code_value();
  3181. if (code_seen('Z')) max_z_jerk = code_value();
  3182. if (code_seen('E')) max_e_jerk = code_value();
  3183. }
  3184. /**
  3185. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3186. */
  3187. inline void gcode_M206() {
  3188. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3189. if (code_seen(axis_codes[i])) {
  3190. home_offset[i] = code_value();
  3191. }
  3192. }
  3193. #ifdef SCARA
  3194. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3195. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3196. #endif
  3197. }
  3198. #ifdef DELTA
  3199. /**
  3200. * M665: Set delta configurations
  3201. *
  3202. * L = diagonal rod
  3203. * R = delta radius
  3204. * S = segments per second
  3205. */
  3206. inline void gcode_M665() {
  3207. if (code_seen('L')) delta_diagonal_rod = code_value();
  3208. if (code_seen('R')) delta_radius = code_value();
  3209. if (code_seen('S')) delta_segments_per_second = code_value();
  3210. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3211. }
  3212. /**
  3213. * M666: Set delta endstop adjustment
  3214. */
  3215. inline void gcode_M666() {
  3216. for (int8_t i = 0; i < 3; i++) {
  3217. if (code_seen(axis_codes[i])) {
  3218. endstop_adj[i] = code_value();
  3219. }
  3220. }
  3221. }
  3222. #elif defined(Z_DUAL_ENDSTOPS)
  3223. /**
  3224. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3225. */
  3226. inline void gcode_M666() {
  3227. if (code_seen('Z')) z_endstop_adj = code_value();
  3228. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3229. SERIAL_EOL;
  3230. }
  3231. #endif // DELTA
  3232. #ifdef FWRETRACT
  3233. /**
  3234. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3235. */
  3236. inline void gcode_M207() {
  3237. if (code_seen('S')) retract_length = code_value();
  3238. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3239. if (code_seen('Z')) retract_zlift = code_value();
  3240. }
  3241. /**
  3242. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3243. */
  3244. inline void gcode_M208() {
  3245. if (code_seen('S')) retract_recover_length = code_value();
  3246. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3247. }
  3248. /**
  3249. * M209: Enable automatic retract (M209 S1)
  3250. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3251. */
  3252. inline void gcode_M209() {
  3253. if (code_seen('S')) {
  3254. int t = code_value_short();
  3255. switch(t) {
  3256. case 0:
  3257. autoretract_enabled = false;
  3258. break;
  3259. case 1:
  3260. autoretract_enabled = true;
  3261. break;
  3262. default:
  3263. SERIAL_ECHO_START;
  3264. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3265. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  3266. SERIAL_ECHOLNPGM("\"");
  3267. return;
  3268. }
  3269. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3270. }
  3271. }
  3272. #endif // FWRETRACT
  3273. #if EXTRUDERS > 1
  3274. /**
  3275. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3276. */
  3277. inline void gcode_M218() {
  3278. if (setTargetedHotend(218)) return;
  3279. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3280. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3281. #ifdef DUAL_X_CARRIAGE
  3282. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3283. #endif
  3284. SERIAL_ECHO_START;
  3285. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3286. for (int e = 0; e < EXTRUDERS; e++) {
  3287. SERIAL_CHAR(' ');
  3288. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3289. SERIAL_CHAR(',');
  3290. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3291. #ifdef DUAL_X_CARRIAGE
  3292. SERIAL_CHAR(',');
  3293. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3294. #endif
  3295. }
  3296. SERIAL_EOL;
  3297. }
  3298. #endif // EXTRUDERS > 1
  3299. /**
  3300. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3301. */
  3302. inline void gcode_M220() {
  3303. if (code_seen('S')) feedrate_multiplier = code_value();
  3304. }
  3305. /**
  3306. * M221: Set extrusion percentage (M221 T0 S95)
  3307. */
  3308. inline void gcode_M221() {
  3309. if (code_seen('S')) {
  3310. int sval = code_value();
  3311. if (code_seen('T')) {
  3312. if (setTargetedHotend(221)) return;
  3313. extruder_multiply[target_extruder] = sval;
  3314. }
  3315. else {
  3316. extruder_multiply[active_extruder] = sval;
  3317. }
  3318. }
  3319. }
  3320. /**
  3321. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3322. */
  3323. inline void gcode_M226() {
  3324. if (code_seen('P')) {
  3325. int pin_number = code_value();
  3326. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3327. if (pin_state >= -1 && pin_state <= 1) {
  3328. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3329. if (sensitive_pins[i] == pin_number) {
  3330. pin_number = -1;
  3331. break;
  3332. }
  3333. }
  3334. if (pin_number > -1) {
  3335. int target = LOW;
  3336. st_synchronize();
  3337. pinMode(pin_number, INPUT);
  3338. switch(pin_state){
  3339. case 1:
  3340. target = HIGH;
  3341. break;
  3342. case 0:
  3343. target = LOW;
  3344. break;
  3345. case -1:
  3346. target = !digitalRead(pin_number);
  3347. break;
  3348. }
  3349. while(digitalRead(pin_number) != target) {
  3350. manage_heater();
  3351. manage_inactivity();
  3352. lcd_update();
  3353. }
  3354. } // pin_number > -1
  3355. } // pin_state -1 0 1
  3356. } // code_seen('P')
  3357. }
  3358. #if NUM_SERVOS > 0
  3359. /**
  3360. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3361. */
  3362. inline void gcode_M280() {
  3363. int servo_index = code_seen('P') ? code_value() : -1;
  3364. int servo_position = 0;
  3365. if (code_seen('S')) {
  3366. servo_position = code_value();
  3367. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3368. #if SERVO_LEVELING
  3369. servo[servo_index].attach(0);
  3370. #endif
  3371. servo[servo_index].write(servo_position);
  3372. #if SERVO_LEVELING
  3373. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3374. servo[servo_index].detach();
  3375. #endif
  3376. }
  3377. else {
  3378. SERIAL_ECHO_START;
  3379. SERIAL_ECHO("Servo ");
  3380. SERIAL_ECHO(servo_index);
  3381. SERIAL_ECHOLN(" out of range");
  3382. }
  3383. }
  3384. else if (servo_index >= 0) {
  3385. SERIAL_PROTOCOL(MSG_OK);
  3386. SERIAL_PROTOCOL(" Servo ");
  3387. SERIAL_PROTOCOL(servo_index);
  3388. SERIAL_PROTOCOL(": ");
  3389. SERIAL_PROTOCOL(servo[servo_index].read());
  3390. SERIAL_EOL;
  3391. }
  3392. }
  3393. #endif // NUM_SERVOS > 0
  3394. #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
  3395. /**
  3396. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3397. */
  3398. inline void gcode_M300() {
  3399. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3400. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3401. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3402. lcd_buzz(beepP, beepS);
  3403. }
  3404. #endif // BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER
  3405. #ifdef PIDTEMP
  3406. /**
  3407. * M301: Set PID parameters P I D (and optionally C)
  3408. */
  3409. inline void gcode_M301() {
  3410. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3411. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3412. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3413. if (e < EXTRUDERS) { // catch bad input value
  3414. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3415. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3416. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3417. #ifdef PID_ADD_EXTRUSION_RATE
  3418. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3419. #endif
  3420. updatePID();
  3421. SERIAL_PROTOCOL(MSG_OK);
  3422. #ifdef PID_PARAMS_PER_EXTRUDER
  3423. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3424. SERIAL_PROTOCOL(e);
  3425. #endif // PID_PARAMS_PER_EXTRUDER
  3426. SERIAL_PROTOCOL(" p:");
  3427. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3428. SERIAL_PROTOCOL(" i:");
  3429. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3430. SERIAL_PROTOCOL(" d:");
  3431. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3432. #ifdef PID_ADD_EXTRUSION_RATE
  3433. SERIAL_PROTOCOL(" c:");
  3434. //Kc does not have scaling applied above, or in resetting defaults
  3435. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3436. #endif
  3437. SERIAL_EOL;
  3438. }
  3439. else {
  3440. SERIAL_ECHO_START;
  3441. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3442. }
  3443. }
  3444. #endif // PIDTEMP
  3445. #ifdef PIDTEMPBED
  3446. inline void gcode_M304() {
  3447. if (code_seen('P')) bedKp = code_value();
  3448. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3449. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3450. updatePID();
  3451. SERIAL_PROTOCOL(MSG_OK);
  3452. SERIAL_PROTOCOL(" p:");
  3453. SERIAL_PROTOCOL(bedKp);
  3454. SERIAL_PROTOCOL(" i:");
  3455. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3456. SERIAL_PROTOCOL(" d:");
  3457. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3458. SERIAL_EOL;
  3459. }
  3460. #endif // PIDTEMPBED
  3461. #if defined(CHDK) || HAS_PHOTOGRAPH
  3462. /**
  3463. * M240: Trigger a camera by emulating a Canon RC-1
  3464. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3465. */
  3466. inline void gcode_M240() {
  3467. #ifdef CHDK
  3468. OUT_WRITE(CHDK, HIGH);
  3469. chdkHigh = millis();
  3470. chdkActive = true;
  3471. #elif HAS_PHOTOGRAPH
  3472. const uint8_t NUM_PULSES = 16;
  3473. const float PULSE_LENGTH = 0.01524;
  3474. for (int i = 0; i < NUM_PULSES; i++) {
  3475. WRITE(PHOTOGRAPH_PIN, HIGH);
  3476. _delay_ms(PULSE_LENGTH);
  3477. WRITE(PHOTOGRAPH_PIN, LOW);
  3478. _delay_ms(PULSE_LENGTH);
  3479. }
  3480. delay(7.33);
  3481. for (int i = 0; i < NUM_PULSES; i++) {
  3482. WRITE(PHOTOGRAPH_PIN, HIGH);
  3483. _delay_ms(PULSE_LENGTH);
  3484. WRITE(PHOTOGRAPH_PIN, LOW);
  3485. _delay_ms(PULSE_LENGTH);
  3486. }
  3487. #endif // !CHDK && HAS_PHOTOGRAPH
  3488. }
  3489. #endif // CHDK || PHOTOGRAPH_PIN
  3490. #ifdef HAS_LCD_CONTRAST
  3491. /**
  3492. * M250: Read and optionally set the LCD contrast
  3493. */
  3494. inline void gcode_M250() {
  3495. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3496. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3497. SERIAL_PROTOCOL(lcd_contrast);
  3498. SERIAL_EOL;
  3499. }
  3500. #endif // HAS_LCD_CONTRAST
  3501. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3502. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3503. /**
  3504. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3505. */
  3506. inline void gcode_M302() {
  3507. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3508. }
  3509. #endif // PREVENT_DANGEROUS_EXTRUDE
  3510. /**
  3511. * M303: PID relay autotune
  3512. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3513. * E<extruder> (-1 for the bed)
  3514. * C<cycles>
  3515. */
  3516. inline void gcode_M303() {
  3517. int e = code_seen('E') ? code_value_short() : 0;
  3518. int c = code_seen('C') ? code_value_short() : 5;
  3519. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3520. PID_autotune(temp, e, c);
  3521. }
  3522. #ifdef SCARA
  3523. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3524. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3525. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3526. if (IsRunning()) {
  3527. //get_coordinates(); // For X Y Z E F
  3528. delta[X_AXIS] = delta_x;
  3529. delta[Y_AXIS] = delta_y;
  3530. calculate_SCARA_forward_Transform(delta);
  3531. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3532. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3533. prepare_move();
  3534. //ClearToSend();
  3535. return true;
  3536. }
  3537. return false;
  3538. }
  3539. /**
  3540. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3541. */
  3542. inline bool gcode_M360() {
  3543. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3544. return SCARA_move_to_cal(0, 120);
  3545. }
  3546. /**
  3547. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3548. */
  3549. inline bool gcode_M361() {
  3550. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3551. return SCARA_move_to_cal(90, 130);
  3552. }
  3553. /**
  3554. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3555. */
  3556. inline bool gcode_M362() {
  3557. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3558. return SCARA_move_to_cal(60, 180);
  3559. }
  3560. /**
  3561. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3562. */
  3563. inline bool gcode_M363() {
  3564. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3565. return SCARA_move_to_cal(50, 90);
  3566. }
  3567. /**
  3568. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3569. */
  3570. inline bool gcode_M364() {
  3571. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3572. return SCARA_move_to_cal(45, 135);
  3573. }
  3574. /**
  3575. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3576. */
  3577. inline void gcode_M365() {
  3578. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3579. if (code_seen(axis_codes[i])) {
  3580. axis_scaling[i] = code_value();
  3581. }
  3582. }
  3583. }
  3584. #endif // SCARA
  3585. #ifdef EXT_SOLENOID
  3586. void enable_solenoid(uint8_t num) {
  3587. switch(num) {
  3588. case 0:
  3589. OUT_WRITE(SOL0_PIN, HIGH);
  3590. break;
  3591. #if HAS_SOLENOID_1
  3592. case 1:
  3593. OUT_WRITE(SOL1_PIN, HIGH);
  3594. break;
  3595. #endif
  3596. #if HAS_SOLENOID_2
  3597. case 2:
  3598. OUT_WRITE(SOL2_PIN, HIGH);
  3599. break;
  3600. #endif
  3601. #if HAS_SOLENOID_3
  3602. case 3:
  3603. OUT_WRITE(SOL3_PIN, HIGH);
  3604. break;
  3605. #endif
  3606. default:
  3607. SERIAL_ECHO_START;
  3608. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3609. break;
  3610. }
  3611. }
  3612. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3613. void disable_all_solenoids() {
  3614. OUT_WRITE(SOL0_PIN, LOW);
  3615. OUT_WRITE(SOL1_PIN, LOW);
  3616. OUT_WRITE(SOL2_PIN, LOW);
  3617. OUT_WRITE(SOL3_PIN, LOW);
  3618. }
  3619. /**
  3620. * M380: Enable solenoid on the active extruder
  3621. */
  3622. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3623. /**
  3624. * M381: Disable all solenoids
  3625. */
  3626. inline void gcode_M381() { disable_all_solenoids(); }
  3627. #endif // EXT_SOLENOID
  3628. /**
  3629. * M400: Finish all moves
  3630. */
  3631. inline void gcode_M400() { st_synchronize(); }
  3632. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3633. /**
  3634. * M401: Engage Z Servo endstop if available
  3635. */
  3636. inline void gcode_M401() { deploy_z_probe(); }
  3637. /**
  3638. * M402: Retract Z Servo endstop if enabled
  3639. */
  3640. inline void gcode_M402() { stow_z_probe(); }
  3641. #endif
  3642. #ifdef FILAMENT_SENSOR
  3643. /**
  3644. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3645. */
  3646. inline void gcode_M404() {
  3647. #if HAS_FILWIDTH
  3648. if (code_seen('W')) {
  3649. filament_width_nominal = code_value();
  3650. }
  3651. else {
  3652. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3653. SERIAL_PROTOCOLLN(filament_width_nominal);
  3654. }
  3655. #endif
  3656. }
  3657. /**
  3658. * M405: Turn on filament sensor for control
  3659. */
  3660. inline void gcode_M405() {
  3661. if (code_seen('D')) meas_delay_cm = code_value();
  3662. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3663. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3664. int temp_ratio = widthFil_to_size_ratio();
  3665. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3666. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3667. delay_index1 = delay_index2 = 0;
  3668. }
  3669. filament_sensor = true;
  3670. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3671. //SERIAL_PROTOCOL(filament_width_meas);
  3672. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3673. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3674. }
  3675. /**
  3676. * M406: Turn off filament sensor for control
  3677. */
  3678. inline void gcode_M406() { filament_sensor = false; }
  3679. /**
  3680. * M407: Get measured filament diameter on serial output
  3681. */
  3682. inline void gcode_M407() {
  3683. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3684. SERIAL_PROTOCOLLN(filament_width_meas);
  3685. }
  3686. #endif // FILAMENT_SENSOR
  3687. /**
  3688. * M410: Quickstop - Abort all planned moves
  3689. *
  3690. * This will stop the carriages mid-move, so most likely they
  3691. * will be out of sync with the stepper position after this.
  3692. */
  3693. inline void gcode_M410() { quickStop(); }
  3694. /**
  3695. * M500: Store settings in EEPROM
  3696. */
  3697. inline void gcode_M500() {
  3698. Config_StoreSettings();
  3699. }
  3700. /**
  3701. * M501: Read settings from EEPROM
  3702. */
  3703. inline void gcode_M501() {
  3704. Config_RetrieveSettings();
  3705. }
  3706. /**
  3707. * M502: Revert to default settings
  3708. */
  3709. inline void gcode_M502() {
  3710. Config_ResetDefault();
  3711. }
  3712. /**
  3713. * M503: print settings currently in memory
  3714. */
  3715. inline void gcode_M503() {
  3716. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3717. }
  3718. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3719. /**
  3720. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3721. */
  3722. inline void gcode_M540() {
  3723. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3724. }
  3725. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3726. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3727. inline void gcode_SET_Z_PROBE_OFFSET() {
  3728. float value;
  3729. if (code_seen('Z')) {
  3730. value = code_value();
  3731. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3732. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3733. SERIAL_ECHO_START;
  3734. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3735. SERIAL_EOL;
  3736. }
  3737. else {
  3738. SERIAL_ECHO_START;
  3739. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3740. SERIAL_ECHOPGM(MSG_Z_MIN);
  3741. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3742. SERIAL_ECHOPGM(MSG_Z_MAX);
  3743. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3744. SERIAL_EOL;
  3745. }
  3746. }
  3747. else {
  3748. SERIAL_ECHO_START;
  3749. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3750. SERIAL_ECHO(-zprobe_zoffset);
  3751. SERIAL_EOL;
  3752. }
  3753. }
  3754. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3755. #ifdef FILAMENTCHANGEENABLE
  3756. /**
  3757. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3758. */
  3759. inline void gcode_M600() {
  3760. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3761. for (int i=0; i<NUM_AXIS; i++)
  3762. target[i] = lastpos[i] = current_position[i];
  3763. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3764. #ifdef DELTA
  3765. #define RUNPLAN calculate_delta(target); BASICPLAN
  3766. #else
  3767. #define RUNPLAN BASICPLAN
  3768. #endif
  3769. //retract by E
  3770. if (code_seen('E')) target[E_AXIS] += code_value();
  3771. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3772. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3773. #endif
  3774. RUNPLAN;
  3775. //lift Z
  3776. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3777. #ifdef FILAMENTCHANGE_ZADD
  3778. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3779. #endif
  3780. RUNPLAN;
  3781. //move xy
  3782. if (code_seen('X')) target[X_AXIS] = code_value();
  3783. #ifdef FILAMENTCHANGE_XPOS
  3784. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3785. #endif
  3786. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3787. #ifdef FILAMENTCHANGE_YPOS
  3788. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3789. #endif
  3790. RUNPLAN;
  3791. if (code_seen('L')) target[E_AXIS] += code_value();
  3792. #ifdef FILAMENTCHANGE_FINALRETRACT
  3793. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3794. #endif
  3795. RUNPLAN;
  3796. //finish moves
  3797. st_synchronize();
  3798. //disable extruder steppers so filament can be removed
  3799. disable_e0();
  3800. disable_e1();
  3801. disable_e2();
  3802. disable_e3();
  3803. delay(100);
  3804. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3805. uint8_t cnt = 0;
  3806. while (!lcd_clicked()) {
  3807. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  3808. manage_heater();
  3809. manage_inactivity(true);
  3810. lcd_update();
  3811. } // while(!lcd_clicked)
  3812. //return to normal
  3813. if (code_seen('L')) target[E_AXIS] -= code_value();
  3814. #ifdef FILAMENTCHANGE_FINALRETRACT
  3815. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3816. #endif
  3817. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3818. plan_set_e_position(current_position[E_AXIS]);
  3819. RUNPLAN; //should do nothing
  3820. lcd_reset_alert_level();
  3821. #ifdef DELTA
  3822. calculate_delta(lastpos);
  3823. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3824. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3825. #else
  3826. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3827. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3828. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3829. #endif
  3830. #ifdef FILAMENT_RUNOUT_SENSOR
  3831. filrunoutEnqueued = false;
  3832. #endif
  3833. }
  3834. #endif // FILAMENTCHANGEENABLE
  3835. #ifdef DUAL_X_CARRIAGE
  3836. /**
  3837. * M605: Set dual x-carriage movement mode
  3838. *
  3839. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3840. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3841. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3842. * millimeters x-offset and an optional differential hotend temperature of
  3843. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3844. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3845. *
  3846. * Note: the X axis should be homed after changing dual x-carriage mode.
  3847. */
  3848. inline void gcode_M605() {
  3849. st_synchronize();
  3850. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3851. switch(dual_x_carriage_mode) {
  3852. case DXC_DUPLICATION_MODE:
  3853. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3854. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3855. SERIAL_ECHO_START;
  3856. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3857. SERIAL_CHAR(' ');
  3858. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3859. SERIAL_CHAR(',');
  3860. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3861. SERIAL_CHAR(' ');
  3862. SERIAL_ECHO(duplicate_extruder_x_offset);
  3863. SERIAL_CHAR(',');
  3864. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3865. break;
  3866. case DXC_FULL_CONTROL_MODE:
  3867. case DXC_AUTO_PARK_MODE:
  3868. break;
  3869. default:
  3870. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3871. break;
  3872. }
  3873. active_extruder_parked = false;
  3874. extruder_duplication_enabled = false;
  3875. delayed_move_time = 0;
  3876. }
  3877. #endif // DUAL_X_CARRIAGE
  3878. /**
  3879. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3880. */
  3881. inline void gcode_M907() {
  3882. #if HAS_DIGIPOTSS
  3883. for (int i=0;i<NUM_AXIS;i++)
  3884. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3885. if (code_seen('B')) digipot_current(4, code_value());
  3886. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3887. #endif
  3888. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3889. if (code_seen('X')) digipot_current(0, code_value());
  3890. #endif
  3891. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3892. if (code_seen('Z')) digipot_current(1, code_value());
  3893. #endif
  3894. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3895. if (code_seen('E')) digipot_current(2, code_value());
  3896. #endif
  3897. #ifdef DIGIPOT_I2C
  3898. // this one uses actual amps in floating point
  3899. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3900. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3901. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3902. #endif
  3903. }
  3904. #if HAS_DIGIPOTSS
  3905. /**
  3906. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3907. */
  3908. inline void gcode_M908() {
  3909. digitalPotWrite(
  3910. code_seen('P') ? code_value() : 0,
  3911. code_seen('S') ? code_value() : 0
  3912. );
  3913. }
  3914. #endif // HAS_DIGIPOTSS
  3915. #if HAS_MICROSTEPS
  3916. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3917. inline void gcode_M350() {
  3918. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3919. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3920. if(code_seen('B')) microstep_mode(4,code_value());
  3921. microstep_readings();
  3922. }
  3923. /**
  3924. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3925. * S# determines MS1 or MS2, X# sets the pin high/low.
  3926. */
  3927. inline void gcode_M351() {
  3928. if (code_seen('S')) switch(code_value_short()) {
  3929. case 1:
  3930. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3931. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3932. break;
  3933. case 2:
  3934. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3935. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3936. break;
  3937. }
  3938. microstep_readings();
  3939. }
  3940. #endif // HAS_MICROSTEPS
  3941. /**
  3942. * M999: Restart after being stopped
  3943. */
  3944. inline void gcode_M999() {
  3945. Running = true;
  3946. lcd_reset_alert_level();
  3947. gcode_LastN = Stopped_gcode_LastN;
  3948. FlushSerialRequestResend();
  3949. }
  3950. /**
  3951. * T0-T3: Switch tool, usually switching extruders
  3952. */
  3953. inline void gcode_T() {
  3954. int tmp_extruder = code_value();
  3955. if (tmp_extruder >= EXTRUDERS) {
  3956. SERIAL_ECHO_START;
  3957. SERIAL_CHAR('T');
  3958. SERIAL_ECHO(tmp_extruder);
  3959. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3960. }
  3961. else {
  3962. target_extruder = tmp_extruder;
  3963. #if EXTRUDERS > 1
  3964. bool make_move = false;
  3965. #endif
  3966. if (code_seen('F')) {
  3967. #if EXTRUDERS > 1
  3968. make_move = true;
  3969. #endif
  3970. next_feedrate = code_value();
  3971. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3972. }
  3973. #if EXTRUDERS > 1
  3974. if (tmp_extruder != active_extruder) {
  3975. // Save current position to return to after applying extruder offset
  3976. set_destination_to_current();
  3977. #ifdef DUAL_X_CARRIAGE
  3978. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  3979. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3980. // Park old head: 1) raise 2) move to park position 3) lower
  3981. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3982. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3983. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3984. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3985. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3986. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3987. st_synchronize();
  3988. }
  3989. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3990. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3991. extruder_offset[Y_AXIS][active_extruder] +
  3992. extruder_offset[Y_AXIS][tmp_extruder];
  3993. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3994. extruder_offset[Z_AXIS][active_extruder] +
  3995. extruder_offset[Z_AXIS][tmp_extruder];
  3996. active_extruder = tmp_extruder;
  3997. // This function resets the max/min values - the current position may be overwritten below.
  3998. axis_is_at_home(X_AXIS);
  3999. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4000. current_position[X_AXIS] = inactive_extruder_x_pos;
  4001. inactive_extruder_x_pos = destination[X_AXIS];
  4002. }
  4003. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4004. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4005. if (active_extruder == 0 || active_extruder_parked)
  4006. current_position[X_AXIS] = inactive_extruder_x_pos;
  4007. else
  4008. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4009. inactive_extruder_x_pos = destination[X_AXIS];
  4010. extruder_duplication_enabled = false;
  4011. }
  4012. else {
  4013. // record raised toolhead position for use by unpark
  4014. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4015. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4016. active_extruder_parked = true;
  4017. delayed_move_time = 0;
  4018. }
  4019. #else // !DUAL_X_CARRIAGE
  4020. // Offset extruder (only by XY)
  4021. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4022. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4023. // Set the new active extruder and position
  4024. active_extruder = tmp_extruder;
  4025. #endif // !DUAL_X_CARRIAGE
  4026. #ifdef DELTA
  4027. sync_plan_position_delta();
  4028. #else
  4029. sync_plan_position();
  4030. #endif
  4031. // Move to the old position if 'F' was in the parameters
  4032. if (make_move && IsRunning()) prepare_move();
  4033. }
  4034. #ifdef EXT_SOLENOID
  4035. st_synchronize();
  4036. disable_all_solenoids();
  4037. enable_solenoid_on_active_extruder();
  4038. #endif // EXT_SOLENOID
  4039. #endif // EXTRUDERS > 1
  4040. SERIAL_ECHO_START;
  4041. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4042. SERIAL_PROTOCOLLN((int)active_extruder);
  4043. }
  4044. }
  4045. /**
  4046. * Process Commands and dispatch them to handlers
  4047. * This is called from the main loop()
  4048. */
  4049. void process_commands() {
  4050. if (code_seen('G')) {
  4051. int gCode = code_value_short();
  4052. switch(gCode) {
  4053. // G0, G1
  4054. case 0:
  4055. case 1:
  4056. gcode_G0_G1();
  4057. break;
  4058. // G2, G3
  4059. #ifndef SCARA
  4060. case 2: // G2 - CW ARC
  4061. case 3: // G3 - CCW ARC
  4062. gcode_G2_G3(gCode == 2);
  4063. break;
  4064. #endif
  4065. // G4 Dwell
  4066. case 4:
  4067. gcode_G4();
  4068. break;
  4069. #ifdef FWRETRACT
  4070. case 10: // G10: retract
  4071. case 11: // G11: retract_recover
  4072. gcode_G10_G11(gCode == 10);
  4073. break;
  4074. #endif //FWRETRACT
  4075. case 28: // G28: Home all axes, one at a time
  4076. gcode_G28();
  4077. break;
  4078. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4079. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4080. gcode_G29();
  4081. break;
  4082. #endif
  4083. #ifdef ENABLE_AUTO_BED_LEVELING
  4084. #ifndef Z_PROBE_SLED
  4085. case 30: // G30 Single Z Probe
  4086. gcode_G30();
  4087. break;
  4088. #else // Z_PROBE_SLED
  4089. case 31: // G31: dock the sled
  4090. case 32: // G32: undock the sled
  4091. dock_sled(gCode == 31);
  4092. break;
  4093. #endif // Z_PROBE_SLED
  4094. #endif // ENABLE_AUTO_BED_LEVELING
  4095. case 90: // G90
  4096. relative_mode = false;
  4097. break;
  4098. case 91: // G91
  4099. relative_mode = true;
  4100. break;
  4101. case 92: // G92
  4102. gcode_G92();
  4103. break;
  4104. }
  4105. }
  4106. else if (code_seen('M')) {
  4107. switch(code_value_short()) {
  4108. #ifdef ULTIPANEL
  4109. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4110. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4111. gcode_M0_M1();
  4112. break;
  4113. #endif // ULTIPANEL
  4114. case 17:
  4115. gcode_M17();
  4116. break;
  4117. #ifdef SDSUPPORT
  4118. case 20: // M20 - list SD card
  4119. gcode_M20(); break;
  4120. case 21: // M21 - init SD card
  4121. gcode_M21(); break;
  4122. case 22: //M22 - release SD card
  4123. gcode_M22(); break;
  4124. case 23: //M23 - Select file
  4125. gcode_M23(); break;
  4126. case 24: //M24 - Start SD print
  4127. gcode_M24(); break;
  4128. case 25: //M25 - Pause SD print
  4129. gcode_M25(); break;
  4130. case 26: //M26 - Set SD index
  4131. gcode_M26(); break;
  4132. case 27: //M27 - Get SD status
  4133. gcode_M27(); break;
  4134. case 28: //M28 - Start SD write
  4135. gcode_M28(); break;
  4136. case 29: //M29 - Stop SD write
  4137. gcode_M29(); break;
  4138. case 30: //M30 <filename> Delete File
  4139. gcode_M30(); break;
  4140. case 32: //M32 - Select file and start SD print
  4141. gcode_M32(); break;
  4142. case 928: //M928 - Start SD write
  4143. gcode_M928(); break;
  4144. #endif //SDSUPPORT
  4145. case 31: //M31 take time since the start of the SD print or an M109 command
  4146. gcode_M31();
  4147. break;
  4148. case 42: //M42 -Change pin status via gcode
  4149. gcode_M42();
  4150. break;
  4151. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4152. case 48: // M48 Z-Probe repeatability
  4153. gcode_M48();
  4154. break;
  4155. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4156. case 104: // M104
  4157. gcode_M104();
  4158. break;
  4159. case 112: // M112 Emergency Stop
  4160. gcode_M112();
  4161. break;
  4162. case 140: // M140 Set bed temp
  4163. gcode_M140();
  4164. break;
  4165. case 105: // M105 Read current temperature
  4166. gcode_M105();
  4167. return;
  4168. break;
  4169. case 109: // M109 Wait for temperature
  4170. gcode_M109();
  4171. break;
  4172. #if HAS_TEMP_BED
  4173. case 190: // M190 - Wait for bed heater to reach target.
  4174. gcode_M190();
  4175. break;
  4176. #endif // HAS_TEMP_BED
  4177. #if HAS_FAN
  4178. case 106: //M106 Fan On
  4179. gcode_M106();
  4180. break;
  4181. case 107: //M107 Fan Off
  4182. gcode_M107();
  4183. break;
  4184. #endif // HAS_FAN
  4185. #ifdef BARICUDA
  4186. // PWM for HEATER_1_PIN
  4187. #if HAS_HEATER_1
  4188. case 126: // M126 valve open
  4189. gcode_M126();
  4190. break;
  4191. case 127: // M127 valve closed
  4192. gcode_M127();
  4193. break;
  4194. #endif // HAS_HEATER_1
  4195. // PWM for HEATER_2_PIN
  4196. #if HAS_HEATER_2
  4197. case 128: // M128 valve open
  4198. gcode_M128();
  4199. break;
  4200. case 129: // M129 valve closed
  4201. gcode_M129();
  4202. break;
  4203. #endif // HAS_HEATER_2
  4204. #endif // BARICUDA
  4205. #if HAS_POWER_SWITCH
  4206. case 80: // M80 - Turn on Power Supply
  4207. gcode_M80();
  4208. break;
  4209. #endif // HAS_POWER_SWITCH
  4210. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4211. gcode_M81();
  4212. break;
  4213. case 82:
  4214. gcode_M82();
  4215. break;
  4216. case 83:
  4217. gcode_M83();
  4218. break;
  4219. case 18: //compatibility
  4220. case 84: // M84
  4221. gcode_M18_M84();
  4222. break;
  4223. case 85: // M85
  4224. gcode_M85();
  4225. break;
  4226. case 92: // M92
  4227. gcode_M92();
  4228. break;
  4229. case 115: // M115
  4230. gcode_M115();
  4231. break;
  4232. case 117: // M117 display message
  4233. gcode_M117();
  4234. break;
  4235. case 114: // M114
  4236. gcode_M114();
  4237. break;
  4238. case 120: // M120
  4239. gcode_M120();
  4240. break;
  4241. case 121: // M121
  4242. gcode_M121();
  4243. break;
  4244. case 119: // M119
  4245. gcode_M119();
  4246. break;
  4247. //TODO: update for all axis, use for loop
  4248. #ifdef BLINKM
  4249. case 150: // M150
  4250. gcode_M150();
  4251. break;
  4252. #endif //BLINKM
  4253. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4254. gcode_M200();
  4255. break;
  4256. case 201: // M201
  4257. gcode_M201();
  4258. break;
  4259. #if 0 // Not used for Sprinter/grbl gen6
  4260. case 202: // M202
  4261. gcode_M202();
  4262. break;
  4263. #endif
  4264. case 203: // M203 max feedrate mm/sec
  4265. gcode_M203();
  4266. break;
  4267. case 204: // M204 acclereration S normal moves T filmanent only moves
  4268. gcode_M204();
  4269. break;
  4270. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4271. gcode_M205();
  4272. break;
  4273. case 206: // M206 additional homing offset
  4274. gcode_M206();
  4275. break;
  4276. #ifdef DELTA
  4277. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4278. gcode_M665();
  4279. break;
  4280. #endif
  4281. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4282. case 666: // M666 set delta / dual endstop adjustment
  4283. gcode_M666();
  4284. break;
  4285. #endif
  4286. #ifdef FWRETRACT
  4287. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4288. gcode_M207();
  4289. break;
  4290. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4291. gcode_M208();
  4292. break;
  4293. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4294. gcode_M209();
  4295. break;
  4296. #endif // FWRETRACT
  4297. #if EXTRUDERS > 1
  4298. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4299. gcode_M218();
  4300. break;
  4301. #endif
  4302. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4303. gcode_M220();
  4304. break;
  4305. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4306. gcode_M221();
  4307. break;
  4308. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4309. gcode_M226();
  4310. break;
  4311. #if NUM_SERVOS > 0
  4312. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4313. gcode_M280();
  4314. break;
  4315. #endif // NUM_SERVOS > 0
  4316. #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
  4317. case 300: // M300 - Play beep tone
  4318. gcode_M300();
  4319. break;
  4320. #endif // BEEPER > 0 || ULTRALCD || LCD_USE_I2C_BUZZER
  4321. #ifdef PIDTEMP
  4322. case 301: // M301
  4323. gcode_M301();
  4324. break;
  4325. #endif // PIDTEMP
  4326. #ifdef PIDTEMPBED
  4327. case 304: // M304
  4328. gcode_M304();
  4329. break;
  4330. #endif // PIDTEMPBED
  4331. #if defined(CHDK) || HAS_PHOTOGRAPH
  4332. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4333. gcode_M240();
  4334. break;
  4335. #endif // CHDK || PHOTOGRAPH_PIN
  4336. #ifdef HAS_LCD_CONTRAST
  4337. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4338. gcode_M250();
  4339. break;
  4340. #endif // HAS_LCD_CONTRAST
  4341. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4342. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4343. gcode_M302();
  4344. break;
  4345. #endif // PREVENT_DANGEROUS_EXTRUDE
  4346. case 303: // M303 PID autotune
  4347. gcode_M303();
  4348. break;
  4349. #ifdef SCARA
  4350. case 360: // M360 SCARA Theta pos1
  4351. if (gcode_M360()) return;
  4352. break;
  4353. case 361: // M361 SCARA Theta pos2
  4354. if (gcode_M361()) return;
  4355. break;
  4356. case 362: // M362 SCARA Psi pos1
  4357. if (gcode_M362()) return;
  4358. break;
  4359. case 363: // M363 SCARA Psi pos2
  4360. if (gcode_M363()) return;
  4361. break;
  4362. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4363. if (gcode_M364()) return;
  4364. break;
  4365. case 365: // M365 Set SCARA scaling for X Y Z
  4366. gcode_M365();
  4367. break;
  4368. #endif // SCARA
  4369. case 400: // M400 finish all moves
  4370. gcode_M400();
  4371. break;
  4372. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4373. case 401:
  4374. gcode_M401();
  4375. break;
  4376. case 402:
  4377. gcode_M402();
  4378. break;
  4379. #endif
  4380. #ifdef FILAMENT_SENSOR
  4381. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4382. gcode_M404();
  4383. break;
  4384. case 405: //M405 Turn on filament sensor for control
  4385. gcode_M405();
  4386. break;
  4387. case 406: //M406 Turn off filament sensor for control
  4388. gcode_M406();
  4389. break;
  4390. case 407: //M407 Display measured filament diameter
  4391. gcode_M407();
  4392. break;
  4393. #endif // FILAMENT_SENSOR
  4394. case 410: // M410 quickstop - Abort all the planned moves.
  4395. gcode_M410();
  4396. break;
  4397. case 500: // M500 Store settings in EEPROM
  4398. gcode_M500();
  4399. break;
  4400. case 501: // M501 Read settings from EEPROM
  4401. gcode_M501();
  4402. break;
  4403. case 502: // M502 Revert to default settings
  4404. gcode_M502();
  4405. break;
  4406. case 503: // M503 print settings currently in memory
  4407. gcode_M503();
  4408. break;
  4409. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4410. case 540:
  4411. gcode_M540();
  4412. break;
  4413. #endif
  4414. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4415. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4416. gcode_SET_Z_PROBE_OFFSET();
  4417. break;
  4418. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4419. #ifdef FILAMENTCHANGEENABLE
  4420. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4421. gcode_M600();
  4422. break;
  4423. #endif // FILAMENTCHANGEENABLE
  4424. #ifdef DUAL_X_CARRIAGE
  4425. case 605:
  4426. gcode_M605();
  4427. break;
  4428. #endif // DUAL_X_CARRIAGE
  4429. case 907: // M907 Set digital trimpot motor current using axis codes.
  4430. gcode_M907();
  4431. break;
  4432. #if HAS_DIGIPOTSS
  4433. case 908: // M908 Control digital trimpot directly.
  4434. gcode_M908();
  4435. break;
  4436. #endif // HAS_DIGIPOTSS
  4437. #if HAS_MICROSTEPS
  4438. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4439. gcode_M350();
  4440. break;
  4441. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4442. gcode_M351();
  4443. break;
  4444. #endif // HAS_MICROSTEPS
  4445. case 999: // M999: Restart after being Stopped
  4446. gcode_M999();
  4447. break;
  4448. }
  4449. }
  4450. else if (code_seen('T')) {
  4451. gcode_T();
  4452. }
  4453. else {
  4454. SERIAL_ECHO_START;
  4455. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4456. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  4457. SERIAL_ECHOLNPGM("\"");
  4458. }
  4459. ClearToSend();
  4460. }
  4461. void FlushSerialRequestResend() {
  4462. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4463. MYSERIAL.flush();
  4464. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4465. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4466. ClearToSend();
  4467. }
  4468. void ClearToSend() {
  4469. refresh_cmd_timeout();
  4470. #ifdef SDSUPPORT
  4471. if (fromsd[cmd_queue_index_r]) return;
  4472. #endif
  4473. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4474. }
  4475. void get_coordinates() {
  4476. for (int i = 0; i < NUM_AXIS; i++) {
  4477. if (code_seen(axis_codes[i]))
  4478. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4479. else
  4480. destination[i] = current_position[i];
  4481. }
  4482. if (code_seen('F')) {
  4483. next_feedrate = code_value();
  4484. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4485. }
  4486. }
  4487. void get_arc_coordinates() {
  4488. #ifdef SF_ARC_FIX
  4489. bool relative_mode_backup = relative_mode;
  4490. relative_mode = true;
  4491. #endif
  4492. get_coordinates();
  4493. #ifdef SF_ARC_FIX
  4494. relative_mode = relative_mode_backup;
  4495. #endif
  4496. offset[0] = code_seen('I') ? code_value() : 0;
  4497. offset[1] = code_seen('J') ? code_value() : 0;
  4498. }
  4499. void clamp_to_software_endstops(float target[3]) {
  4500. if (min_software_endstops) {
  4501. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4502. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4503. float negative_z_offset = 0;
  4504. #ifdef ENABLE_AUTO_BED_LEVELING
  4505. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4506. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4507. #endif
  4508. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4509. }
  4510. if (max_software_endstops) {
  4511. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4512. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4513. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4514. }
  4515. }
  4516. #ifdef DELTA
  4517. void recalc_delta_settings(float radius, float diagonal_rod) {
  4518. delta_tower1_x = -SIN_60 * radius; // front left tower
  4519. delta_tower1_y = -COS_60 * radius;
  4520. delta_tower2_x = SIN_60 * radius; // front right tower
  4521. delta_tower2_y = -COS_60 * radius;
  4522. delta_tower3_x = 0.0; // back middle tower
  4523. delta_tower3_y = radius;
  4524. delta_diagonal_rod_2 = sq(diagonal_rod);
  4525. }
  4526. void calculate_delta(float cartesian[3]) {
  4527. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4528. - sq(delta_tower1_x-cartesian[X_AXIS])
  4529. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4530. ) + cartesian[Z_AXIS];
  4531. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4532. - sq(delta_tower2_x-cartesian[X_AXIS])
  4533. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4534. ) + cartesian[Z_AXIS];
  4535. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4536. - sq(delta_tower3_x-cartesian[X_AXIS])
  4537. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4538. ) + cartesian[Z_AXIS];
  4539. /*
  4540. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4541. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4542. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4543. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4544. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4545. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4546. */
  4547. }
  4548. #ifdef ENABLE_AUTO_BED_LEVELING
  4549. // Adjust print surface height by linear interpolation over the bed_level array.
  4550. void adjust_delta(float cartesian[3]) {
  4551. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4552. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4553. float h1 = 0.001 - half, h2 = half - 0.001,
  4554. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4555. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4556. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4557. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4558. z1 = bed_level[floor_x + half][floor_y + half],
  4559. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4560. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4561. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4562. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4563. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4564. offset = (1 - ratio_x) * left + ratio_x * right;
  4565. delta[X_AXIS] += offset;
  4566. delta[Y_AXIS] += offset;
  4567. delta[Z_AXIS] += offset;
  4568. /*
  4569. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4570. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4571. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4572. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4573. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4574. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4575. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4576. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4577. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4578. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4579. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4580. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4581. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4582. */
  4583. }
  4584. #endif // ENABLE_AUTO_BED_LEVELING
  4585. #endif // DELTA
  4586. #ifdef MESH_BED_LEVELING
  4587. #if !defined(MIN)
  4588. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4589. #endif // ! MIN
  4590. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4591. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4592. {
  4593. if (!mbl.active) {
  4594. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4595. set_current_to_destination();
  4596. return;
  4597. }
  4598. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4599. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4600. int ix = mbl.select_x_index(x);
  4601. int iy = mbl.select_y_index(y);
  4602. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4603. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4604. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4605. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4606. if (pix == ix && piy == iy) {
  4607. // Start and end on same mesh square
  4608. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4609. set_current_to_destination();
  4610. return;
  4611. }
  4612. float nx, ny, ne, normalized_dist;
  4613. if (ix > pix && (x_splits) & BIT(ix)) {
  4614. nx = mbl.get_x(ix);
  4615. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4616. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4617. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4618. x_splits ^= BIT(ix);
  4619. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4620. nx = mbl.get_x(pix);
  4621. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4622. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4623. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4624. x_splits ^= BIT(pix);
  4625. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4626. ny = mbl.get_y(iy);
  4627. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4628. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4629. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4630. y_splits ^= BIT(iy);
  4631. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4632. ny = mbl.get_y(piy);
  4633. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4634. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4635. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4636. y_splits ^= BIT(piy);
  4637. } else {
  4638. // Already split on a border
  4639. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4640. set_current_to_destination();
  4641. return;
  4642. }
  4643. // Do the split and look for more borders
  4644. destination[X_AXIS] = nx;
  4645. destination[Y_AXIS] = ny;
  4646. destination[E_AXIS] = ne;
  4647. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4648. destination[X_AXIS] = x;
  4649. destination[Y_AXIS] = y;
  4650. destination[E_AXIS] = e;
  4651. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4652. }
  4653. #endif // MESH_BED_LEVELING
  4654. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4655. inline float prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  4656. float de = dest_e - curr_e;
  4657. if (de) {
  4658. if (degHotend(active_extruder) < extrude_min_temp) {
  4659. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4660. SERIAL_ECHO_START;
  4661. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  4662. return 0;
  4663. }
  4664. #ifdef PREVENT_LENGTHY_EXTRUDE
  4665. if (labs(de) > EXTRUDE_MAXLENGTH) {
  4666. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4667. SERIAL_ECHO_START;
  4668. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  4669. return 0;
  4670. }
  4671. #endif
  4672. }
  4673. return de;
  4674. }
  4675. #endif // PREVENT_DANGEROUS_EXTRUDE
  4676. void prepare_move() {
  4677. clamp_to_software_endstops(destination);
  4678. refresh_cmd_timeout();
  4679. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4680. (void)prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  4681. #endif
  4682. #ifdef SCARA //for now same as delta-code
  4683. float difference[NUM_AXIS];
  4684. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4685. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4686. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4687. if (cartesian_mm < 0.000001) { return; }
  4688. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4689. int steps = max(1, int(scara_segments_per_second * seconds));
  4690. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4691. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4692. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4693. for (int s = 1; s <= steps; s++) {
  4694. float fraction = float(s) / float(steps);
  4695. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4696. calculate_delta(destination);
  4697. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4698. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4699. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4700. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4701. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4702. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4703. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4704. }
  4705. #endif // SCARA
  4706. #ifdef DELTA
  4707. float difference[NUM_AXIS];
  4708. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4709. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4710. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4711. if (cartesian_mm < 0.000001) return;
  4712. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4713. int steps = max(1, int(delta_segments_per_second * seconds));
  4714. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4715. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4716. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4717. for (int s = 1; s <= steps; s++) {
  4718. float fraction = float(s) / float(steps);
  4719. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4720. calculate_delta(destination);
  4721. #ifdef ENABLE_AUTO_BED_LEVELING
  4722. adjust_delta(destination);
  4723. #endif
  4724. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4725. }
  4726. #endif // DELTA
  4727. #ifdef DUAL_X_CARRIAGE
  4728. if (active_extruder_parked) {
  4729. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4730. // move duplicate extruder into correct duplication position.
  4731. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4732. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  4733. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4734. sync_plan_position();
  4735. st_synchronize();
  4736. extruder_duplication_enabled = true;
  4737. active_extruder_parked = false;
  4738. }
  4739. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4740. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4741. // This is a travel move (with no extrusion)
  4742. // Skip it, but keep track of the current position
  4743. // (so it can be used as the start of the next non-travel move)
  4744. if (delayed_move_time != 0xFFFFFFFFUL) {
  4745. set_current_to_destination();
  4746. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  4747. delayed_move_time = millis();
  4748. return;
  4749. }
  4750. }
  4751. delayed_move_time = 0;
  4752. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4753. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  4755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4756. active_extruder_parked = false;
  4757. }
  4758. }
  4759. #endif // DUAL_X_CARRIAGE
  4760. #if !defined(DELTA) && !defined(SCARA)
  4761. // Do not use feedrate_multiplier for E or Z only moves
  4762. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  4763. line_to_destination();
  4764. }
  4765. else {
  4766. #ifdef MESH_BED_LEVELING
  4767. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  4768. return;
  4769. #else
  4770. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  4771. #endif // MESH_BED_LEVELING
  4772. }
  4773. #endif // !(DELTA || SCARA)
  4774. set_current_to_destination();
  4775. }
  4776. void prepare_arc_move(char isclockwise) {
  4777. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4778. // Trace the arc
  4779. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder);
  4780. // As far as the parser is concerned, the position is now == target. In reality the
  4781. // motion control system might still be processing the action and the real tool position
  4782. // in any intermediate location.
  4783. set_current_to_destination();
  4784. refresh_cmd_timeout();
  4785. }
  4786. #if HAS_CONTROLLERFAN
  4787. millis_t lastMotor = 0; // Last time a motor was turned on
  4788. millis_t lastMotorCheck = 0; // Last time the state was checked
  4789. void controllerFan() {
  4790. millis_t ms = millis();
  4791. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4792. lastMotorCheck = ms;
  4793. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4794. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4795. #if EXTRUDERS > 1
  4796. || E1_ENABLE_READ == E_ENABLE_ON
  4797. #if HAS_X2_ENABLE
  4798. || X2_ENABLE_READ == X_ENABLE_ON
  4799. #endif
  4800. #if EXTRUDERS > 2
  4801. || E2_ENABLE_READ == E_ENABLE_ON
  4802. #if EXTRUDERS > 3
  4803. || E3_ENABLE_READ == E_ENABLE_ON
  4804. #endif
  4805. #endif
  4806. #endif
  4807. ) {
  4808. lastMotor = ms; //... set time to NOW so the fan will turn on
  4809. }
  4810. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4811. // allows digital or PWM fan output to be used (see M42 handling)
  4812. digitalWrite(CONTROLLERFAN_PIN, speed);
  4813. analogWrite(CONTROLLERFAN_PIN, speed);
  4814. }
  4815. }
  4816. #endif
  4817. #ifdef SCARA
  4818. void calculate_SCARA_forward_Transform(float f_scara[3])
  4819. {
  4820. // Perform forward kinematics, and place results in delta[3]
  4821. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4822. float x_sin, x_cos, y_sin, y_cos;
  4823. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4824. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4825. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4826. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4827. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4828. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4829. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4830. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4831. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4832. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4833. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4834. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4835. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4836. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4837. }
  4838. void calculate_delta(float cartesian[3]){
  4839. //reverse kinematics.
  4840. // Perform reversed kinematics, and place results in delta[3]
  4841. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4842. float SCARA_pos[2];
  4843. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4844. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4845. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4846. #if (Linkage_1 == Linkage_2)
  4847. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4848. #else
  4849. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4850. #endif
  4851. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4852. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4853. SCARA_K2 = Linkage_2 * SCARA_S2;
  4854. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4855. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4856. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4857. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4858. delta[Z_AXIS] = cartesian[Z_AXIS];
  4859. /*
  4860. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4861. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4862. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4863. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4864. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4865. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4866. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4867. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4868. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4869. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4870. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4871. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4872. SERIAL_ECHOLN(" ");*/
  4873. }
  4874. #endif
  4875. #ifdef TEMP_STAT_LEDS
  4876. static bool red_led = false;
  4877. static millis_t next_status_led_update_ms = 0;
  4878. void handle_status_leds(void) {
  4879. float max_temp = 0.0;
  4880. if (millis() > next_status_led_update_ms) {
  4881. next_status_led_update_ms += 500; // Update every 0.5s
  4882. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  4883. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  4884. #if HAS_TEMP_BED
  4885. max_temp = max(max(max_temp, degTargetBed()), degBed());
  4886. #endif
  4887. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  4888. if (new_led != red_led) {
  4889. red_led = new_led;
  4890. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  4891. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  4892. }
  4893. }
  4894. }
  4895. #endif
  4896. void enable_all_steppers() {
  4897. enable_x();
  4898. enable_y();
  4899. enable_z();
  4900. enable_e0();
  4901. enable_e1();
  4902. enable_e2();
  4903. enable_e3();
  4904. }
  4905. void disable_all_steppers() {
  4906. disable_x();
  4907. disable_y();
  4908. disable_z();
  4909. disable_e0();
  4910. disable_e1();
  4911. disable_e2();
  4912. disable_e3();
  4913. }
  4914. /**
  4915. * Manage several activities:
  4916. * - Check for Filament Runout
  4917. * - Keep the command buffer full
  4918. * - Check for maximum inactive time between commands
  4919. * - Check for maximum inactive time between stepper commands
  4920. * - Check if pin CHDK needs to go LOW
  4921. * - Check for KILL button held down
  4922. * - Check for HOME button held down
  4923. * - Check if cooling fan needs to be switched on
  4924. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  4925. */
  4926. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  4927. #if HAS_FILRUNOUT
  4928. if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  4929. filrunout();
  4930. #endif
  4931. if (commands_in_queue < BUFSIZE - 1) get_command();
  4932. millis_t ms = millis();
  4933. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  4934. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  4935. && !ignore_stepper_queue && !blocks_queued())
  4936. disable_all_steppers();
  4937. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  4938. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  4939. chdkActive = false;
  4940. WRITE(CHDK, LOW);
  4941. }
  4942. #endif
  4943. #if HAS_KILL
  4944. // Check if the kill button was pressed and wait just in case it was an accidental
  4945. // key kill key press
  4946. // -------------------------------------------------------------------------------
  4947. static int killCount = 0; // make the inactivity button a bit less responsive
  4948. const int KILL_DELAY = 750;
  4949. if (!READ(KILL_PIN))
  4950. killCount++;
  4951. else if (killCount > 0)
  4952. killCount--;
  4953. // Exceeded threshold and we can confirm that it was not accidental
  4954. // KILL the machine
  4955. // ----------------------------------------------------------------
  4956. if (killCount >= KILL_DELAY) kill();
  4957. #endif
  4958. #if HAS_HOME
  4959. // Check to see if we have to home, use poor man's debouncer
  4960. // ---------------------------------------------------------
  4961. static int homeDebounceCount = 0; // poor man's debouncing count
  4962. const int HOME_DEBOUNCE_DELAY = 750;
  4963. if (!READ(HOME_PIN)) {
  4964. if (!homeDebounceCount) {
  4965. enqueuecommands_P(PSTR("G28"));
  4966. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4967. }
  4968. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4969. homeDebounceCount++;
  4970. else
  4971. homeDebounceCount = 0;
  4972. }
  4973. #endif
  4974. #if HAS_CONTROLLERFAN
  4975. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  4976. #endif
  4977. #ifdef EXTRUDER_RUNOUT_PREVENT
  4978. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  4979. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  4980. bool oldstatus;
  4981. switch(active_extruder) {
  4982. case 0:
  4983. oldstatus = E0_ENABLE_READ;
  4984. enable_e0();
  4985. break;
  4986. #if EXTRUDERS > 1
  4987. case 1:
  4988. oldstatus = E1_ENABLE_READ;
  4989. enable_e1();
  4990. break;
  4991. #if EXTRUDERS > 2
  4992. case 2:
  4993. oldstatus = E2_ENABLE_READ;
  4994. enable_e2();
  4995. break;
  4996. #if EXTRUDERS > 3
  4997. case 3:
  4998. oldstatus = E3_ENABLE_READ;
  4999. enable_e3();
  5000. break;
  5001. #endif
  5002. #endif
  5003. #endif
  5004. }
  5005. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5006. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5007. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5008. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5009. current_position[E_AXIS] = oldepos;
  5010. destination[E_AXIS] = oldedes;
  5011. plan_set_e_position(oldepos);
  5012. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5013. st_synchronize();
  5014. switch(active_extruder) {
  5015. case 0:
  5016. E0_ENABLE_WRITE(oldstatus);
  5017. break;
  5018. #if EXTRUDERS > 1
  5019. case 1:
  5020. E1_ENABLE_WRITE(oldstatus);
  5021. break;
  5022. #if EXTRUDERS > 2
  5023. case 2:
  5024. E2_ENABLE_WRITE(oldstatus);
  5025. break;
  5026. #if EXTRUDERS > 3
  5027. case 3:
  5028. E3_ENABLE_WRITE(oldstatus);
  5029. break;
  5030. #endif
  5031. #endif
  5032. #endif
  5033. }
  5034. }
  5035. #endif
  5036. #ifdef DUAL_X_CARRIAGE
  5037. // handle delayed move timeout
  5038. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5039. // travel moves have been received so enact them
  5040. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5041. set_destination_to_current();
  5042. prepare_move();
  5043. }
  5044. #endif
  5045. #ifdef TEMP_STAT_LEDS
  5046. handle_status_leds();
  5047. #endif
  5048. check_axes_activity();
  5049. }
  5050. void kill()
  5051. {
  5052. cli(); // Stop interrupts
  5053. disable_all_heaters();
  5054. disable_all_steppers();
  5055. #if HAS_POWER_SWITCH
  5056. pinMode(PS_ON_PIN, INPUT);
  5057. #endif
  5058. SERIAL_ERROR_START;
  5059. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5060. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5061. // FMC small patch to update the LCD before ending
  5062. sei(); // enable interrupts
  5063. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5064. cli(); // disable interrupts
  5065. suicide();
  5066. while(1) { /* Intentionally left empty */ } // Wait for reset
  5067. }
  5068. #ifdef FILAMENT_RUNOUT_SENSOR
  5069. void filrunout() {
  5070. if (!filrunoutEnqueued) {
  5071. filrunoutEnqueued = true;
  5072. enqueuecommand("M600");
  5073. }
  5074. }
  5075. #endif
  5076. void Stop() {
  5077. disable_all_heaters();
  5078. if (IsRunning()) {
  5079. Running = false;
  5080. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5081. SERIAL_ERROR_START;
  5082. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5083. LCD_MESSAGEPGM(MSG_STOPPED);
  5084. }
  5085. }
  5086. #ifdef FAST_PWM_FAN
  5087. void setPwmFrequency(uint8_t pin, int val)
  5088. {
  5089. val &= 0x07;
  5090. switch(digitalPinToTimer(pin))
  5091. {
  5092. #if defined(TCCR0A)
  5093. case TIMER0A:
  5094. case TIMER0B:
  5095. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5096. // TCCR0B |= val;
  5097. break;
  5098. #endif
  5099. #if defined(TCCR1A)
  5100. case TIMER1A:
  5101. case TIMER1B:
  5102. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5103. // TCCR1B |= val;
  5104. break;
  5105. #endif
  5106. #if defined(TCCR2)
  5107. case TIMER2:
  5108. case TIMER2:
  5109. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5110. TCCR2 |= val;
  5111. break;
  5112. #endif
  5113. #if defined(TCCR2A)
  5114. case TIMER2A:
  5115. case TIMER2B:
  5116. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5117. TCCR2B |= val;
  5118. break;
  5119. #endif
  5120. #if defined(TCCR3A)
  5121. case TIMER3A:
  5122. case TIMER3B:
  5123. case TIMER3C:
  5124. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5125. TCCR3B |= val;
  5126. break;
  5127. #endif
  5128. #if defined(TCCR4A)
  5129. case TIMER4A:
  5130. case TIMER4B:
  5131. case TIMER4C:
  5132. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5133. TCCR4B |= val;
  5134. break;
  5135. #endif
  5136. #if defined(TCCR5A)
  5137. case TIMER5A:
  5138. case TIMER5B:
  5139. case TIMER5C:
  5140. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5141. TCCR5B |= val;
  5142. break;
  5143. #endif
  5144. }
  5145. }
  5146. #endif //FAST_PWM_FAN
  5147. bool setTargetedHotend(int code){
  5148. target_extruder = active_extruder;
  5149. if (code_seen('T')) {
  5150. target_extruder = code_value_short();
  5151. if (target_extruder >= EXTRUDERS) {
  5152. SERIAL_ECHO_START;
  5153. switch(code){
  5154. case 104:
  5155. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5156. break;
  5157. case 105:
  5158. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5159. break;
  5160. case 109:
  5161. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5162. break;
  5163. case 218:
  5164. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5165. break;
  5166. case 221:
  5167. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5168. break;
  5169. }
  5170. SERIAL_ECHOLN(target_extruder);
  5171. return true;
  5172. }
  5173. }
  5174. return false;
  5175. }
  5176. float calculate_volumetric_multiplier(float diameter) {
  5177. if (!volumetric_enabled || diameter == 0) return 1.0;
  5178. float d2 = diameter * 0.5;
  5179. return 1.0 / (M_PI * d2 * d2);
  5180. }
  5181. void calculate_volumetric_multipliers() {
  5182. for (int i=0; i<EXTRUDERS; i++)
  5183. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5184. }