My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 257KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - retract filament according to settings of M207
  97. * G11 - retract recover filament according to settings of M208
  98. * G20 - Set input units to inches
  99. * G21 - Set input units to millimeters
  100. * G28 - Home one or more axes
  101. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  102. * G30 - Single Z probe, probes bed at current XY location.
  103. * G31 - Dock sled (Z_PROBE_SLED only)
  104. * G32 - Undock sled (Z_PROBE_SLED only)
  105. * G90 - Use Absolute Coordinates
  106. * G91 - Use Relative Coordinates
  107. * G92 - Set current position to coordinates given
  108. *
  109. * "M" Codes
  110. *
  111. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  112. * M1 - Same as M0
  113. * M17 - Enable/Power all stepper motors
  114. * M18 - Disable all stepper motors; same as M84
  115. * M20 - List SD card
  116. * M21 - Init SD card
  117. * M22 - Release SD card
  118. * M23 - Select SD file (M23 filename.g)
  119. * M24 - Start/resume SD print
  120. * M25 - Pause SD print
  121. * M26 - Set SD position in bytes (M26 S12345)
  122. * M27 - Report SD print status
  123. * M28 - Start SD write (M28 filename.g)
  124. * M29 - Stop SD write
  125. * M30 - Delete file from SD (M30 filename.g)
  126. * M31 - Output time since last M109 or SD card start to serial
  127. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  128. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  129. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  130. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  131. * M33 - Get the longname version of a path
  132. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  133. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  134. * M75 - Start the print job timer
  135. * M76 - Pause the print job timer
  136. * M77 - Stop the print job timer
  137. * M78 - Show statistical information about the print jobs
  138. * M80 - Turn on Power Supply
  139. * M81 - Turn off Power Supply
  140. * M82 - Set E codes absolute (default)
  141. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  142. * M84 - Disable steppers until next move,
  143. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  144. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  145. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  146. * M104 - Set extruder target temp
  147. * M105 - Read current temp
  148. * M106 - Fan on
  149. * M107 - Fan off
  150. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  151. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  152. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  153. * M110 - Set the current line number
  154. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  155. * M112 - Emergency stop
  156. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  157. * M114 - Output current position to serial port
  158. * M115 - Capabilities string
  159. * M117 - Display a message on the controller screen
  160. * M119 - Output Endstop status to serial port
  161. * M120 - Enable endstop detection
  162. * M121 - Disable endstop detection
  163. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  164. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  165. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  166. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  167. * M140 - Set bed target temp
  168. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  169. * M149 - Set temperature units
  170. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  171. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  172. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  173. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  174. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  175. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  176. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  177. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  178. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  179. * M206 - Set additional homing offset
  180. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  181. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  182. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  183. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  184. * M220 - Set speed factor override percentage: S<factor in percent>
  185. * M221 - Set extrude factor override percentage: S<factor in percent>
  186. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  187. * M240 - Trigger a camera to take a photograph
  188. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  189. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  190. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  191. * M301 - Set PID parameters P I and D
  192. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  193. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  194. * M304 - Set bed PID parameters P I and D
  195. * M380 - Activate solenoid on active extruder
  196. * M381 - Disable all solenoids
  197. * M400 - Finish all moves
  198. * M401 - Lower Z probe if present
  199. * M402 - Raise Z probe if present
  200. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  201. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  202. * M406 - Turn off Filament Sensor extrusion control
  203. * M407 - Display measured filament diameter
  204. * M410 - Quickstop. Abort all the planned moves
  205. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  206. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  207. * M428 - Set the home_offset logically based on the current_position
  208. * M500 - Store parameters in EEPROM
  209. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  210. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  211. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  212. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  213. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  214. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  215. * M666 - Set delta endstop adjustment
  216. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  217. * M851 - Set Z probe's Z offset (mm). Set to a negative value for probes that trigger below the nozzle.
  218. * M907 - Set digital trimpot motor current using axis codes.
  219. * M908 - Control digital trimpot directly.
  220. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  221. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  222. * M350 - Set microstepping mode.
  223. * M351 - Toggle MS1 MS2 pins directly.
  224. *
  225. * ************ SCARA Specific - This can change to suit future G-code regulations
  226. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  227. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  228. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  229. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  230. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  231. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  232. * ************* SCARA End ***************
  233. *
  234. * ************ Custom codes - This can change to suit future G-code regulations
  235. * M100 - Watch Free Memory (For Debugging Only)
  236. * M928 - Start SD logging (M928 filename.g) - ended by M29
  237. * M999 - Restart after being stopped by error
  238. *
  239. * "T" Codes
  240. *
  241. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  242. *
  243. */
  244. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  245. void gcode_M100();
  246. #endif
  247. #if ENABLED(SDSUPPORT)
  248. CardReader card;
  249. #endif
  250. #if ENABLED(EXPERIMENTAL_I2CBUS)
  251. TWIBus i2c;
  252. #endif
  253. bool Running = true;
  254. uint8_t marlin_debug_flags = DEBUG_NONE;
  255. static float feedrate = 1500.0, saved_feedrate;
  256. float current_position[NUM_AXIS] = { 0.0 };
  257. static float destination[NUM_AXIS] = { 0.0 };
  258. bool axis_known_position[3] = { false };
  259. bool axis_homed[3] = { false };
  260. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  261. static char* current_command, *current_command_args;
  262. static int cmd_queue_index_r = 0;
  263. static int cmd_queue_index_w = 0;
  264. static int commands_in_queue = 0;
  265. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  266. #if ENABLED(INCH_MODE_SUPPORT)
  267. float linear_unit_factor = 1.0;
  268. float volumetric_unit_factor = 1.0;
  269. #endif
  270. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  271. TempUnit input_temp_units = TEMPUNIT_C;
  272. #endif
  273. const float homing_feedrate[] = HOMING_FEEDRATE;
  274. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  275. int feedrate_multiplier = 100; //100->1 200->2
  276. int saved_feedrate_multiplier;
  277. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  278. bool volumetric_enabled = false;
  279. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  280. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  281. // The distance that XYZ has been offset by G92. Reset by G28.
  282. float position_shift[3] = { 0 };
  283. // This offset is added to the configured home position.
  284. // Set by M206, M428, or menu item. Saved to EEPROM.
  285. float home_offset[3] = { 0 };
  286. // Software Endstops. Default to configured limits.
  287. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  288. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  289. #if FAN_COUNT > 0
  290. int fanSpeeds[FAN_COUNT] = { 0 };
  291. #endif
  292. // The active extruder (tool). Set with T<extruder> command.
  293. uint8_t active_extruder = 0;
  294. // Relative Mode. Enable with G91, disable with G90.
  295. static bool relative_mode = false;
  296. bool cancel_heatup = false;
  297. const char errormagic[] PROGMEM = "Error:";
  298. const char echomagic[] PROGMEM = "echo:";
  299. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  300. static int serial_count = 0;
  301. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  302. static char* seen_pointer;
  303. // Next Immediate GCode Command pointer. NULL if none.
  304. const char* queued_commands_P = NULL;
  305. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  306. // Inactivity shutdown
  307. millis_t previous_cmd_ms = 0;
  308. static millis_t max_inactive_time = 0;
  309. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  310. // Print Job Timer
  311. #if ENABLED(PRINTCOUNTER)
  312. PrintCounter print_job_timer = PrintCounter();
  313. #else
  314. Stopwatch print_job_timer = Stopwatch();
  315. #endif
  316. // Buzzer
  317. #if HAS_BUZZER
  318. #if ENABLED(SPEAKER)
  319. Speaker buzzer;
  320. #else
  321. Buzzer buzzer;
  322. #endif
  323. #endif
  324. static uint8_t target_extruder;
  325. #if HAS_BED_PROBE
  326. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  327. #endif
  328. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
  329. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  330. int xy_probe_speed = XY_PROBE_SPEED;
  331. bool bed_leveling_in_progress = false;
  332. #define XY_PROBE_FEEDRATE xy_probe_speed
  333. #elif defined(XY_PROBE_SPEED)
  334. #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
  335. #else
  336. #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
  337. #endif
  338. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  339. float z_endstop_adj = 0;
  340. #endif
  341. // Extruder offsets
  342. #if HOTENDS > 1
  343. #ifndef HOTEND_OFFSET_X
  344. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  345. #endif
  346. #ifndef HOTEND_OFFSET_Y
  347. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  348. #endif
  349. float hotend_offset[][HOTENDS] = {
  350. HOTEND_OFFSET_X,
  351. HOTEND_OFFSET_Y
  352. #if ENABLED(DUAL_X_CARRIAGE)
  353. , { 0 } // Z offsets for each extruder
  354. #endif
  355. };
  356. #endif
  357. #if HAS_Z_SERVO_ENDSTOP
  358. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  359. #endif
  360. #if ENABLED(BARICUDA)
  361. int baricuda_valve_pressure = 0;
  362. int baricuda_e_to_p_pressure = 0;
  363. #endif
  364. #if ENABLED(FWRETRACT)
  365. bool autoretract_enabled = false;
  366. bool retracted[EXTRUDERS] = { false };
  367. bool retracted_swap[EXTRUDERS] = { false };
  368. float retract_length = RETRACT_LENGTH;
  369. float retract_length_swap = RETRACT_LENGTH_SWAP;
  370. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  371. float retract_zlift = RETRACT_ZLIFT;
  372. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  373. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  374. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  375. #endif // FWRETRACT
  376. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  377. bool powersupply =
  378. #if ENABLED(PS_DEFAULT_OFF)
  379. false
  380. #else
  381. true
  382. #endif
  383. ;
  384. #endif
  385. #if ENABLED(DELTA)
  386. #define TOWER_1 X_AXIS
  387. #define TOWER_2 Y_AXIS
  388. #define TOWER_3 Z_AXIS
  389. float delta[3] = { 0 };
  390. #define SIN_60 0.8660254037844386
  391. #define COS_60 0.5
  392. float endstop_adj[3] = { 0 };
  393. // these are the default values, can be overriden with M665
  394. float delta_radius = DELTA_RADIUS;
  395. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  396. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  397. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  398. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  399. float delta_tower3_x = 0; // back middle tower
  400. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  401. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  402. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  403. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  404. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  405. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  406. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  407. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  408. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  409. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  410. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  411. int delta_grid_spacing[2] = { 0, 0 };
  412. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  413. #endif
  414. #else
  415. static bool home_all_axis = true;
  416. #endif
  417. #if ENABLED(SCARA)
  418. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  419. static float delta[3] = { 0 };
  420. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  421. #endif
  422. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  423. //Variables for Filament Sensor input
  424. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  425. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  426. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  427. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  428. int filwidth_delay_index1 = 0; //index into ring buffer
  429. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  430. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  431. #endif
  432. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  433. static bool filament_ran_out = false;
  434. #endif
  435. static bool send_ok[BUFSIZE];
  436. #if HAS_SERVOS
  437. Servo servo[NUM_SERVOS];
  438. #define MOVE_SERVO(I, P) servo[I].move(P)
  439. #if HAS_Z_SERVO_ENDSTOP
  440. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  441. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  442. #endif
  443. #endif
  444. #ifdef CHDK
  445. millis_t chdkHigh = 0;
  446. boolean chdkActive = false;
  447. #endif
  448. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  449. int lpq_len = 20;
  450. #endif
  451. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  452. // States for managing Marlin and host communication
  453. // Marlin sends messages if blocked or busy
  454. enum MarlinBusyState {
  455. NOT_BUSY, // Not in a handler
  456. IN_HANDLER, // Processing a GCode
  457. IN_PROCESS, // Known to be blocking command input (as in G29)
  458. PAUSED_FOR_USER, // Blocking pending any input
  459. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  460. };
  461. static MarlinBusyState busy_state = NOT_BUSY;
  462. static millis_t next_busy_signal_ms = 0;
  463. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  464. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  465. #else
  466. #define host_keepalive() ;
  467. #define KEEPALIVE_STATE(n) ;
  468. #endif // HOST_KEEPALIVE_FEATURE
  469. /**
  470. * ***************************************************************************
  471. * ******************************** FUNCTIONS ********************************
  472. * ***************************************************************************
  473. */
  474. void stop();
  475. void get_available_commands();
  476. void process_next_command();
  477. void prepare_move_to_destination();
  478. #if ENABLED(ARC_SUPPORT)
  479. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  480. #endif
  481. #if ENABLED(BEZIER_CURVE_SUPPORT)
  482. void plan_cubic_move(const float offset[4]);
  483. #endif
  484. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  485. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  486. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  487. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  488. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  489. static void report_current_position();
  490. #if ENABLED(DEBUG_LEVELING_FEATURE)
  491. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  492. SERIAL_ECHO(prefix);
  493. SERIAL_ECHOPAIR(": (", x);
  494. SERIAL_ECHOPAIR(", ", y);
  495. SERIAL_ECHOPAIR(", ", z);
  496. SERIAL_ECHOLNPGM(")");
  497. }
  498. void print_xyz(const char* prefix, const float xyz[]) {
  499. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  500. }
  501. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  502. void print_xyz(const char* prefix, const vector_3 &xyz) {
  503. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  504. }
  505. #endif
  506. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  507. #endif
  508. #if ENABLED(DELTA) || ENABLED(SCARA)
  509. inline void sync_plan_position_delta() {
  510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  511. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  512. #endif
  513. calculate_delta(current_position);
  514. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  515. }
  516. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  517. #else
  518. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  519. #endif
  520. #if ENABLED(SDSUPPORT)
  521. #include "SdFatUtil.h"
  522. int freeMemory() { return SdFatUtil::FreeRam(); }
  523. #else
  524. extern "C" {
  525. extern unsigned int __bss_end;
  526. extern unsigned int __heap_start;
  527. extern void* __brkval;
  528. int freeMemory() {
  529. int free_memory;
  530. if ((int)__brkval == 0)
  531. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  532. else
  533. free_memory = ((int)&free_memory) - ((int)__brkval);
  534. return free_memory;
  535. }
  536. }
  537. #endif //!SDSUPPORT
  538. #if ENABLED(DIGIPOT_I2C)
  539. extern void digipot_i2c_set_current(int channel, float current);
  540. extern void digipot_i2c_init();
  541. #endif
  542. /**
  543. * Inject the next "immediate" command, when possible.
  544. * Return true if any immediate commands remain to inject.
  545. */
  546. static bool drain_queued_commands_P() {
  547. if (queued_commands_P != NULL) {
  548. size_t i = 0;
  549. char c, cmd[30];
  550. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  551. cmd[sizeof(cmd) - 1] = '\0';
  552. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  553. cmd[i] = '\0';
  554. if (enqueue_and_echo_command(cmd)) { // success?
  555. if (c) // newline char?
  556. queued_commands_P += i + 1; // advance to the next command
  557. else
  558. queued_commands_P = NULL; // nul char? no more commands
  559. }
  560. }
  561. return (queued_commands_P != NULL); // return whether any more remain
  562. }
  563. /**
  564. * Record one or many commands to run from program memory.
  565. * Aborts the current queue, if any.
  566. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  567. */
  568. void enqueue_and_echo_commands_P(const char* pgcode) {
  569. queued_commands_P = pgcode;
  570. drain_queued_commands_P(); // first command executed asap (when possible)
  571. }
  572. void clear_command_queue() {
  573. cmd_queue_index_r = cmd_queue_index_w;
  574. commands_in_queue = 0;
  575. }
  576. /**
  577. * Once a new command is in the ring buffer, call this to commit it
  578. */
  579. inline void _commit_command(bool say_ok) {
  580. send_ok[cmd_queue_index_w] = say_ok;
  581. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  582. commands_in_queue++;
  583. }
  584. /**
  585. * Copy a command directly into the main command buffer, from RAM.
  586. * Returns true if successfully adds the command
  587. */
  588. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  589. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  590. strcpy(command_queue[cmd_queue_index_w], cmd);
  591. _commit_command(say_ok);
  592. return true;
  593. }
  594. void enqueue_and_echo_command_now(const char* cmd) {
  595. while (!enqueue_and_echo_command(cmd)) idle();
  596. }
  597. /**
  598. * Enqueue with Serial Echo
  599. */
  600. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  601. if (_enqueuecommand(cmd, say_ok)) {
  602. SERIAL_ECHO_START;
  603. SERIAL_ECHOPGM(MSG_Enqueueing);
  604. SERIAL_ECHO(cmd);
  605. SERIAL_ECHOLNPGM("\"");
  606. return true;
  607. }
  608. return false;
  609. }
  610. void setup_killpin() {
  611. #if HAS_KILL
  612. SET_INPUT(KILL_PIN);
  613. WRITE(KILL_PIN, HIGH);
  614. #endif
  615. }
  616. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  617. void setup_filrunoutpin() {
  618. pinMode(FIL_RUNOUT_PIN, INPUT);
  619. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  620. WRITE(FIL_RUNOUT_PIN, HIGH);
  621. #endif
  622. }
  623. #endif
  624. // Set home pin
  625. void setup_homepin(void) {
  626. #if HAS_HOME
  627. SET_INPUT(HOME_PIN);
  628. WRITE(HOME_PIN, HIGH);
  629. #endif
  630. }
  631. void setup_photpin() {
  632. #if HAS_PHOTOGRAPH
  633. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  634. #endif
  635. }
  636. void setup_powerhold() {
  637. #if HAS_SUICIDE
  638. OUT_WRITE(SUICIDE_PIN, HIGH);
  639. #endif
  640. #if HAS_POWER_SWITCH
  641. #if ENABLED(PS_DEFAULT_OFF)
  642. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  643. #else
  644. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  645. #endif
  646. #endif
  647. }
  648. void suicide() {
  649. #if HAS_SUICIDE
  650. OUT_WRITE(SUICIDE_PIN, LOW);
  651. #endif
  652. }
  653. void servo_init() {
  654. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  655. servo[0].attach(SERVO0_PIN);
  656. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  657. #endif
  658. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  659. servo[1].attach(SERVO1_PIN);
  660. servo[1].detach();
  661. #endif
  662. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  663. servo[2].attach(SERVO2_PIN);
  664. servo[2].detach();
  665. #endif
  666. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  667. servo[3].attach(SERVO3_PIN);
  668. servo[3].detach();
  669. #endif
  670. #if HAS_Z_SERVO_ENDSTOP
  671. /**
  672. * Set position of Z Servo Endstop
  673. *
  674. * The servo might be deployed and positioned too low to stow
  675. * when starting up the machine or rebooting the board.
  676. * There's no way to know where the nozzle is positioned until
  677. * homing has been done - no homing with z-probe without init!
  678. *
  679. */
  680. STOW_Z_SERVO();
  681. #endif
  682. #if HAS_BED_PROBE
  683. endstops.enable_z_probe(false);
  684. #endif
  685. }
  686. /**
  687. * Stepper Reset (RigidBoard, et.al.)
  688. */
  689. #if HAS_STEPPER_RESET
  690. void disableStepperDrivers() {
  691. pinMode(STEPPER_RESET_PIN, OUTPUT);
  692. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  693. }
  694. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  695. #endif
  696. /**
  697. * Marlin entry-point: Set up before the program loop
  698. * - Set up the kill pin, filament runout, power hold
  699. * - Start the serial port
  700. * - Print startup messages and diagnostics
  701. * - Get EEPROM or default settings
  702. * - Initialize managers for:
  703. * • temperature
  704. * • planner
  705. * • watchdog
  706. * • stepper
  707. * • photo pin
  708. * • servos
  709. * • LCD controller
  710. * • Digipot I2C
  711. * • Z probe sled
  712. * • status LEDs
  713. */
  714. void setup() {
  715. #ifdef DISABLE_JTAG
  716. // Disable JTAG on AT90USB chips to free up pins for IO
  717. MCUCR = 0x80;
  718. MCUCR = 0x80;
  719. #endif
  720. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  721. setup_filrunoutpin();
  722. #endif
  723. setup_killpin();
  724. setup_powerhold();
  725. #if HAS_STEPPER_RESET
  726. disableStepperDrivers();
  727. #endif
  728. MYSERIAL.begin(BAUDRATE);
  729. SERIAL_PROTOCOLLNPGM("start");
  730. SERIAL_ECHO_START;
  731. // Check startup - does nothing if bootloader sets MCUSR to 0
  732. byte mcu = MCUSR;
  733. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  734. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  735. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  736. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  737. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  738. MCUSR = 0;
  739. SERIAL_ECHOPGM(MSG_MARLIN);
  740. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  741. #ifdef STRING_DISTRIBUTION_DATE
  742. #ifdef STRING_CONFIG_H_AUTHOR
  743. SERIAL_ECHO_START;
  744. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  745. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  746. SERIAL_ECHOPGM(MSG_AUTHOR);
  747. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  748. SERIAL_ECHOPGM("Compiled: ");
  749. SERIAL_ECHOLNPGM(__DATE__);
  750. #endif // STRING_CONFIG_H_AUTHOR
  751. #endif // STRING_DISTRIBUTION_DATE
  752. SERIAL_ECHO_START;
  753. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  754. SERIAL_ECHO(freeMemory());
  755. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  756. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  757. // Send "ok" after commands by default
  758. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  759. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  760. Config_RetrieveSettings();
  761. // Initialize current position based on home_offset
  762. memcpy(current_position, home_offset, sizeof(home_offset));
  763. #if ENABLED(DELTA) || ENABLED(SCARA)
  764. // Vital to init kinematic equivalent for X0 Y0 Z0
  765. SYNC_PLAN_POSITION_KINEMATIC();
  766. #endif
  767. thermalManager.init(); // Initialize temperature loop
  768. #if ENABLED(USE_WATCHDOG)
  769. watchdog_init();
  770. #endif
  771. stepper.init(); // Initialize stepper, this enables interrupts!
  772. setup_photpin();
  773. servo_init();
  774. #if HAS_CONTROLLERFAN
  775. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  776. #endif
  777. #if HAS_STEPPER_RESET
  778. enableStepperDrivers();
  779. #endif
  780. #if ENABLED(DIGIPOT_I2C)
  781. digipot_i2c_init();
  782. #endif
  783. #if ENABLED(DAC_STEPPER_CURRENT)
  784. dac_init();
  785. #endif
  786. #if ENABLED(Z_PROBE_SLED)
  787. pinMode(SLED_PIN, OUTPUT);
  788. digitalWrite(SLED_PIN, LOW); // turn it off
  789. #endif // Z_PROBE_SLED
  790. setup_homepin();
  791. #ifdef STAT_LED_RED
  792. pinMode(STAT_LED_RED, OUTPUT);
  793. digitalWrite(STAT_LED_RED, LOW); // turn it off
  794. #endif
  795. #ifdef STAT_LED_BLUE
  796. pinMode(STAT_LED_BLUE, OUTPUT);
  797. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  798. #endif
  799. lcd_init();
  800. #if ENABLED(SHOW_BOOTSCREEN)
  801. #if ENABLED(DOGLCD)
  802. delay(1000);
  803. #elif ENABLED(ULTRA_LCD)
  804. bootscreen();
  805. lcd_init();
  806. #endif
  807. #endif
  808. }
  809. /**
  810. * The main Marlin program loop
  811. *
  812. * - Save or log commands to SD
  813. * - Process available commands (if not saving)
  814. * - Call heater manager
  815. * - Call inactivity manager
  816. * - Call endstop manager
  817. * - Call LCD update
  818. */
  819. void loop() {
  820. if (commands_in_queue < BUFSIZE) get_available_commands();
  821. #if ENABLED(SDSUPPORT)
  822. card.checkautostart(false);
  823. #endif
  824. if (commands_in_queue) {
  825. #if ENABLED(SDSUPPORT)
  826. if (card.saving) {
  827. char* command = command_queue[cmd_queue_index_r];
  828. if (strstr_P(command, PSTR("M29"))) {
  829. // M29 closes the file
  830. card.closefile();
  831. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  832. ok_to_send();
  833. }
  834. else {
  835. // Write the string from the read buffer to SD
  836. card.write_command(command);
  837. if (card.logging)
  838. process_next_command(); // The card is saving because it's logging
  839. else
  840. ok_to_send();
  841. }
  842. }
  843. else
  844. process_next_command();
  845. #else
  846. process_next_command();
  847. #endif // SDSUPPORT
  848. commands_in_queue--;
  849. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  850. }
  851. endstops.report_state();
  852. idle();
  853. }
  854. void gcode_line_error(const char* err, bool doFlush = true) {
  855. SERIAL_ERROR_START;
  856. serialprintPGM(err);
  857. SERIAL_ERRORLN(gcode_LastN);
  858. //Serial.println(gcode_N);
  859. if (doFlush) FlushSerialRequestResend();
  860. serial_count = 0;
  861. }
  862. inline void get_serial_commands() {
  863. static char serial_line_buffer[MAX_CMD_SIZE];
  864. static boolean serial_comment_mode = false;
  865. // If the command buffer is empty for too long,
  866. // send "wait" to indicate Marlin is still waiting.
  867. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  868. static millis_t last_command_time = 0;
  869. millis_t ms = millis();
  870. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  871. SERIAL_ECHOLNPGM(MSG_WAIT);
  872. last_command_time = ms;
  873. }
  874. #endif
  875. /**
  876. * Loop while serial characters are incoming and the queue is not full
  877. */
  878. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  879. char serial_char = MYSERIAL.read();
  880. /**
  881. * If the character ends the line
  882. */
  883. if (serial_char == '\n' || serial_char == '\r') {
  884. serial_comment_mode = false; // end of line == end of comment
  885. if (!serial_count) continue; // skip empty lines
  886. serial_line_buffer[serial_count] = 0; // terminate string
  887. serial_count = 0; //reset buffer
  888. char* command = serial_line_buffer;
  889. while (*command == ' ') command++; // skip any leading spaces
  890. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  891. char* apos = strchr(command, '*');
  892. if (npos) {
  893. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  894. if (M110) {
  895. char* n2pos = strchr(command + 4, 'N');
  896. if (n2pos) npos = n2pos;
  897. }
  898. gcode_N = strtol(npos + 1, NULL, 10);
  899. if (gcode_N != gcode_LastN + 1 && !M110) {
  900. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  901. return;
  902. }
  903. if (apos) {
  904. byte checksum = 0, count = 0;
  905. while (command[count] != '*') checksum ^= command[count++];
  906. if (strtol(apos + 1, NULL, 10) != checksum) {
  907. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  908. return;
  909. }
  910. // if no errors, continue parsing
  911. }
  912. else {
  913. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  914. return;
  915. }
  916. gcode_LastN = gcode_N;
  917. // if no errors, continue parsing
  918. }
  919. else if (apos) { // No '*' without 'N'
  920. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  921. return;
  922. }
  923. // Movement commands alert when stopped
  924. if (IsStopped()) {
  925. char* gpos = strchr(command, 'G');
  926. if (gpos) {
  927. int codenum = strtol(gpos + 1, NULL, 10);
  928. switch (codenum) {
  929. case 0:
  930. case 1:
  931. case 2:
  932. case 3:
  933. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  934. LCD_MESSAGEPGM(MSG_STOPPED);
  935. break;
  936. }
  937. }
  938. }
  939. // If command was e-stop process now
  940. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  941. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  942. last_command_time = ms;
  943. #endif
  944. // Add the command to the queue
  945. _enqueuecommand(serial_line_buffer, true);
  946. }
  947. else if (serial_count >= MAX_CMD_SIZE - 1) {
  948. // Keep fetching, but ignore normal characters beyond the max length
  949. // The command will be injected when EOL is reached
  950. }
  951. else if (serial_char == '\\') { // Handle escapes
  952. if (MYSERIAL.available() > 0) {
  953. // if we have one more character, copy it over
  954. serial_char = MYSERIAL.read();
  955. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  956. }
  957. // otherwise do nothing
  958. }
  959. else { // it's not a newline, carriage return or escape char
  960. if (serial_char == ';') serial_comment_mode = true;
  961. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  962. }
  963. } // queue has space, serial has data
  964. }
  965. #if ENABLED(SDSUPPORT)
  966. inline void get_sdcard_commands() {
  967. static bool stop_buffering = false,
  968. sd_comment_mode = false;
  969. if (!card.sdprinting) return;
  970. /**
  971. * '#' stops reading from SD to the buffer prematurely, so procedural
  972. * macro calls are possible. If it occurs, stop_buffering is triggered
  973. * and the buffer is run dry; this character _can_ occur in serial com
  974. * due to checksums, however, no checksums are used in SD printing.
  975. */
  976. if (commands_in_queue == 0) stop_buffering = false;
  977. uint16_t sd_count = 0;
  978. bool card_eof = card.eof();
  979. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  980. int16_t n = card.get();
  981. char sd_char = (char)n;
  982. card_eof = card.eof();
  983. if (card_eof || n == -1
  984. || sd_char == '\n' || sd_char == '\r'
  985. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  986. ) {
  987. if (card_eof) {
  988. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  989. print_job_timer.stop();
  990. char time[30];
  991. millis_t t = print_job_timer.duration();
  992. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  993. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  994. SERIAL_ECHO_START;
  995. SERIAL_ECHOLN(time);
  996. lcd_setstatus(time, true);
  997. card.printingHasFinished();
  998. card.checkautostart(true);
  999. }
  1000. else if (n == -1) {
  1001. SERIAL_ERROR_START;
  1002. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1003. }
  1004. if (sd_char == '#') stop_buffering = true;
  1005. sd_comment_mode = false; //for new command
  1006. if (!sd_count) continue; //skip empty lines
  1007. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1008. sd_count = 0; //clear buffer
  1009. _commit_command(false);
  1010. }
  1011. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1012. /**
  1013. * Keep fetching, but ignore normal characters beyond the max length
  1014. * The command will be injected when EOL is reached
  1015. */
  1016. }
  1017. else {
  1018. if (sd_char == ';') sd_comment_mode = true;
  1019. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1020. }
  1021. }
  1022. }
  1023. #endif // SDSUPPORT
  1024. /**
  1025. * Add to the circular command queue the next command from:
  1026. * - The command-injection queue (queued_commands_P)
  1027. * - The active serial input (usually USB)
  1028. * - The SD card file being actively printed
  1029. */
  1030. void get_available_commands() {
  1031. // if any immediate commands remain, don't get other commands yet
  1032. if (drain_queued_commands_P()) return;
  1033. get_serial_commands();
  1034. #if ENABLED(SDSUPPORT)
  1035. get_sdcard_commands();
  1036. #endif
  1037. }
  1038. inline bool code_has_value() {
  1039. int i = 1;
  1040. char c = seen_pointer[i];
  1041. while (c == ' ') c = seen_pointer[++i];
  1042. if (c == '-' || c == '+') c = seen_pointer[++i];
  1043. if (c == '.') c = seen_pointer[++i];
  1044. return NUMERIC(c);
  1045. }
  1046. inline float code_value_float() {
  1047. float ret;
  1048. char* e = strchr(seen_pointer, 'E');
  1049. if (e) {
  1050. *e = 0;
  1051. ret = strtod(seen_pointer + 1, NULL);
  1052. *e = 'E';
  1053. }
  1054. else
  1055. ret = strtod(seen_pointer + 1, NULL);
  1056. return ret;
  1057. }
  1058. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1059. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1060. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1061. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1062. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1063. inline bool code_value_bool() { return code_value_byte() > 0; }
  1064. #if ENABLED(INCH_MODE_SUPPORT)
  1065. inline void set_input_linear_units(LinearUnit units) {
  1066. switch (units) {
  1067. case LINEARUNIT_INCH:
  1068. linear_unit_factor = 25.4;
  1069. break;
  1070. case LINEARUNIT_MM:
  1071. default:
  1072. linear_unit_factor = 1.0;
  1073. break;
  1074. }
  1075. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1076. }
  1077. inline float axis_unit_factor(int axis) {
  1078. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1079. }
  1080. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1081. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1082. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1083. #else
  1084. inline float code_value_linear_units() { return code_value_float(); }
  1085. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1086. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1087. #endif
  1088. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1089. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1090. float code_value_temp_abs() {
  1091. switch (input_temp_units) {
  1092. case TEMPUNIT_C:
  1093. return code_value_float();
  1094. case TEMPUNIT_F:
  1095. return (code_value_float() - 32) / 1.8;
  1096. case TEMPUNIT_K:
  1097. return code_value_float() - 272.15;
  1098. default:
  1099. return code_value_float();
  1100. }
  1101. }
  1102. float code_value_temp_diff() {
  1103. switch (input_temp_units) {
  1104. case TEMPUNIT_C:
  1105. case TEMPUNIT_K:
  1106. return code_value_float();
  1107. case TEMPUNIT_F:
  1108. return code_value_float() / 1.8;
  1109. default:
  1110. return code_value_float();
  1111. }
  1112. }
  1113. #else
  1114. float code_value_temp_abs() { return code_value_float(); }
  1115. float code_value_temp_diff() { return code_value_float(); }
  1116. #endif
  1117. inline millis_t code_value_millis() { return code_value_ulong(); }
  1118. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1119. bool code_seen(char code) {
  1120. seen_pointer = strchr(current_command_args, code);
  1121. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1122. }
  1123. /**
  1124. * Set target_extruder from the T parameter or the active_extruder
  1125. *
  1126. * Returns TRUE if the target is invalid
  1127. */
  1128. bool get_target_extruder_from_command(int code) {
  1129. if (code_seen('T')) {
  1130. uint8_t t = code_value_byte();
  1131. if (t >= EXTRUDERS) {
  1132. SERIAL_ECHO_START;
  1133. SERIAL_CHAR('M');
  1134. SERIAL_ECHO(code);
  1135. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1136. SERIAL_EOL;
  1137. return true;
  1138. }
  1139. target_extruder = t;
  1140. }
  1141. else
  1142. target_extruder = active_extruder;
  1143. return false;
  1144. }
  1145. #define DEFINE_PGM_READ_ANY(type, reader) \
  1146. static inline type pgm_read_any(const type *p) \
  1147. { return pgm_read_##reader##_near(p); }
  1148. DEFINE_PGM_READ_ANY(float, float);
  1149. DEFINE_PGM_READ_ANY(signed char, byte);
  1150. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1151. static const PROGMEM type array##_P[3] = \
  1152. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1153. static inline type array(int axis) \
  1154. { return pgm_read_any(&array##_P[axis]); }
  1155. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1156. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1157. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1158. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1159. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1160. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1161. #if ENABLED(DUAL_X_CARRIAGE)
  1162. #define DXC_FULL_CONTROL_MODE 0
  1163. #define DXC_AUTO_PARK_MODE 1
  1164. #define DXC_DUPLICATION_MODE 2
  1165. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1166. static float x_home_pos(int extruder) {
  1167. if (extruder == 0)
  1168. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1169. else
  1170. /**
  1171. * In dual carriage mode the extruder offset provides an override of the
  1172. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1173. * This allow soft recalibration of the second extruder offset position
  1174. * without firmware reflash (through the M218 command).
  1175. */
  1176. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1177. }
  1178. static int x_home_dir(int extruder) {
  1179. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1180. }
  1181. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1182. static bool active_extruder_parked = false; // used in mode 1 & 2
  1183. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1184. static millis_t delayed_move_time = 0; // used in mode 1
  1185. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1186. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1187. bool extruder_duplication_enabled = false; // used in mode 2
  1188. #endif //DUAL_X_CARRIAGE
  1189. /**
  1190. * Software endstops can be used to monitor the open end of
  1191. * an axis that has a hardware endstop on the other end. Or
  1192. * they can prevent axes from moving past endstops and grinding.
  1193. *
  1194. * To keep doing their job as the coordinate system changes,
  1195. * the software endstop positions must be refreshed to remain
  1196. * at the same positions relative to the machine.
  1197. */
  1198. static void update_software_endstops(AxisEnum axis) {
  1199. float offs = home_offset[axis] + position_shift[axis];
  1200. #if ENABLED(DUAL_X_CARRIAGE)
  1201. if (axis == X_AXIS) {
  1202. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1203. if (active_extruder != 0) {
  1204. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1205. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1206. return;
  1207. }
  1208. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1209. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1210. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1211. return;
  1212. }
  1213. }
  1214. else
  1215. #endif
  1216. {
  1217. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1218. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1219. }
  1220. }
  1221. /**
  1222. * Change the home offset for an axis, update the current
  1223. * position and the software endstops to retain the same
  1224. * relative distance to the new home.
  1225. *
  1226. * Since this changes the current_position, code should
  1227. * call sync_plan_position soon after this.
  1228. */
  1229. static void set_home_offset(AxisEnum axis, float v) {
  1230. current_position[axis] += v - home_offset[axis];
  1231. home_offset[axis] = v;
  1232. update_software_endstops(axis);
  1233. }
  1234. static void set_axis_is_at_home(AxisEnum axis) {
  1235. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1236. if (DEBUGGING(LEVELING)) {
  1237. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1238. SERIAL_ECHOLNPGM(") >>>");
  1239. }
  1240. #endif
  1241. position_shift[axis] = 0;
  1242. #if ENABLED(DUAL_X_CARRIAGE)
  1243. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1244. if (active_extruder != 0)
  1245. current_position[X_AXIS] = x_home_pos(active_extruder);
  1246. else
  1247. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1248. update_software_endstops(X_AXIS);
  1249. return;
  1250. }
  1251. #endif
  1252. #if ENABLED(SCARA)
  1253. if (axis == X_AXIS || axis == Y_AXIS) {
  1254. float homeposition[3];
  1255. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1256. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1257. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1258. /**
  1259. * Works out real Homeposition angles using inverse kinematics,
  1260. * and calculates homing offset using forward kinematics
  1261. */
  1262. calculate_delta(homeposition);
  1263. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1264. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1265. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1266. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1267. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1268. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1269. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1270. calculate_SCARA_forward_Transform(delta);
  1271. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1272. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1273. current_position[axis] = delta[axis];
  1274. /**
  1275. * SCARA home positions are based on configuration since the actual
  1276. * limits are determined by the inverse kinematic transform.
  1277. */
  1278. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1279. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1280. }
  1281. else
  1282. #endif
  1283. {
  1284. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1285. update_software_endstops(axis);
  1286. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1287. if (axis == Z_AXIS) {
  1288. current_position[Z_AXIS] -= zprobe_zoffset;
  1289. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1290. if (DEBUGGING(LEVELING)) {
  1291. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1292. SERIAL_EOL;
  1293. }
  1294. #endif
  1295. }
  1296. #endif
  1297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1298. if (DEBUGGING(LEVELING)) {
  1299. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1300. DEBUG_POS("", current_position);
  1301. }
  1302. #endif
  1303. }
  1304. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1305. if (DEBUGGING(LEVELING)) {
  1306. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1307. SERIAL_ECHOLNPGM(")");
  1308. }
  1309. #endif
  1310. }
  1311. /**
  1312. * Some planner shorthand inline functions
  1313. */
  1314. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1315. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1316. int hbd = homing_bump_divisor[axis];
  1317. if (hbd < 1) {
  1318. hbd = 10;
  1319. SERIAL_ECHO_START;
  1320. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1321. }
  1322. feedrate = homing_feedrate[axis] / hbd;
  1323. }
  1324. //
  1325. // line_to_current_position
  1326. // Move the planner to the current position from wherever it last moved
  1327. // (or from wherever it has been told it is located).
  1328. //
  1329. inline void line_to_current_position() {
  1330. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1331. }
  1332. inline void line_to_z(float zPosition) {
  1333. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1334. }
  1335. //
  1336. // line_to_destination
  1337. // Move the planner, not necessarily synced with current_position
  1338. //
  1339. inline void line_to_destination(float mm_m) {
  1340. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1341. }
  1342. inline void line_to_destination() {
  1343. line_to_destination(feedrate);
  1344. }
  1345. /**
  1346. * sync_plan_position
  1347. * Set planner / stepper positions to the cartesian current_position.
  1348. * The stepper code translates these coordinates into step units.
  1349. * Allows translation between steps and units (mm) for cartesian & core robots
  1350. */
  1351. inline void sync_plan_position() {
  1352. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1353. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1354. #endif
  1355. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1356. }
  1357. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1358. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1359. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1360. //
  1361. // Prepare to do endstop or probe moves
  1362. // with custom feedrates.
  1363. //
  1364. // - Save current feedrates
  1365. // - Reset the rate multiplier
  1366. // - Reset the command timeout
  1367. // - Enable the endstops (for endstop moves)
  1368. //
  1369. static void setup_for_endstop_or_probe_move() {
  1370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1371. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1372. #endif
  1373. saved_feedrate = feedrate;
  1374. saved_feedrate_multiplier = feedrate_multiplier;
  1375. feedrate_multiplier = 100;
  1376. refresh_cmd_timeout();
  1377. }
  1378. static void setup_for_endstop_move() {
  1379. setup_for_endstop_or_probe_move();
  1380. endstops.enable();
  1381. }
  1382. static void clean_up_after_endstop_or_probe_move() {
  1383. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1384. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1385. #endif
  1386. feedrate = saved_feedrate;
  1387. feedrate_multiplier = saved_feedrate_multiplier;
  1388. refresh_cmd_timeout();
  1389. }
  1390. #if HAS_BED_PROBE
  1391. #if ENABLED(DELTA)
  1392. /**
  1393. * Calculate delta, start a line, and set current_position to destination
  1394. */
  1395. void prepare_move_to_destination_raw() {
  1396. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1397. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1398. #endif
  1399. refresh_cmd_timeout();
  1400. calculate_delta(destination);
  1401. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1402. set_current_to_destination();
  1403. }
  1404. #endif
  1405. /**
  1406. * Plan a move to (X, Y, Z) and set the current_position
  1407. * The final current_position may not be the one that was requested
  1408. */
  1409. static void do_blocking_move_to(float x, float y, float z) {
  1410. float old_feedrate = feedrate;
  1411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1412. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1413. #endif
  1414. #if ENABLED(DELTA)
  1415. feedrate = XY_PROBE_FEEDRATE;
  1416. destination[X_AXIS] = x;
  1417. destination[Y_AXIS] = y;
  1418. destination[Z_AXIS] = z;
  1419. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1420. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1421. else
  1422. prepare_move_to_destination(); // this will also set_current_to_destination
  1423. #else
  1424. // If Z needs to raise, do it before moving XY
  1425. if (current_position[Z_AXIS] < z) {
  1426. feedrate = homing_feedrate[Z_AXIS];
  1427. current_position[Z_AXIS] = z;
  1428. line_to_current_position();
  1429. }
  1430. feedrate = XY_PROBE_FEEDRATE;
  1431. current_position[X_AXIS] = x;
  1432. current_position[Y_AXIS] = y;
  1433. line_to_current_position();
  1434. // If Z needs to lower, do it after moving XY
  1435. if (current_position[Z_AXIS] > z) {
  1436. feedrate = homing_feedrate[Z_AXIS];
  1437. current_position[Z_AXIS] = z;
  1438. line_to_current_position();
  1439. }
  1440. #endif
  1441. stepper.synchronize();
  1442. feedrate = old_feedrate;
  1443. }
  1444. inline void do_blocking_move_to_x(float x) {
  1445. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1446. }
  1447. inline void do_blocking_move_to_z(float z) {
  1448. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1449. }
  1450. /**
  1451. * Raise Z to a minimum height to make room for a probe to move
  1452. *
  1453. * zprobe_zoffset: Negative of the Z height where the probe engages
  1454. * z_raise: The probing raise distance
  1455. *
  1456. * The zprobe_zoffset is negative for a switch below the nozzle, so
  1457. * multiply by Z_HOME_DIR (-1) to move enough away from the bed.
  1458. */
  1459. inline void do_probe_raise(float z_raise) {
  1460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1461. if (DEBUGGING(LEVELING)) {
  1462. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1463. SERIAL_ECHOLNPGM(")");
  1464. }
  1465. #endif
  1466. float z_dest = home_offset[Z_AXIS] + z_raise;
  1467. if ((Z_HOME_DIR) < 0 && zprobe_zoffset < 0)
  1468. z_dest -= zprobe_zoffset;
  1469. if (z_dest > current_position[Z_AXIS]) {
  1470. float old_feedrate = feedrate;
  1471. feedrate = homing_feedrate[Z_AXIS];
  1472. do_blocking_move_to_z(z_dest);
  1473. feedrate = old_feedrate;
  1474. }
  1475. }
  1476. #endif //HAS_BED_PROBE
  1477. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE
  1478. static void axis_unhomed_error(bool xyz=false) {
  1479. if (xyz) {
  1480. LCD_MESSAGEPGM(MSG_XYZ_UNHOMED);
  1481. SERIAL_ECHO_START;
  1482. SERIAL_ECHOLNPGM(MSG_XYZ_UNHOMED);
  1483. }
  1484. else {
  1485. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1486. SERIAL_ECHO_START;
  1487. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1488. }
  1489. }
  1490. #endif
  1491. #if ENABLED(Z_PROBE_SLED)
  1492. #ifndef SLED_DOCKING_OFFSET
  1493. #define SLED_DOCKING_OFFSET 0
  1494. #endif
  1495. /**
  1496. * Method to dock/undock a sled designed by Charles Bell.
  1497. *
  1498. * dock[in] If true, move to MAX_X and engage the electromagnet
  1499. * offset[in] The additional distance to move to adjust docking location
  1500. */
  1501. static void dock_sled(bool dock, int offset = 0) {
  1502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1503. if (DEBUGGING(LEVELING)) {
  1504. SERIAL_ECHOPAIR("dock_sled(", dock);
  1505. SERIAL_ECHOLNPGM(")");
  1506. }
  1507. #endif
  1508. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  1509. axis_unhomed_error(true);
  1510. return;
  1511. }
  1512. if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
  1513. float oldXpos = current_position[X_AXIS]; // save x position
  1514. float old_feedrate = feedrate;
  1515. if (dock) {
  1516. #if Z_RAISE_AFTER_PROBING > 0
  1517. do_probe_raise(Z_RAISE_AFTER_PROBING);
  1518. #endif
  1519. // Dock sled a bit closer to ensure proper capturing
  1520. feedrate = XY_PROBE_FEEDRATE;
  1521. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1522. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1523. }
  1524. else {
  1525. feedrate = XY_PROBE_FEEDRATE;
  1526. float z_loc = current_position[Z_AXIS];
  1527. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1528. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1529. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1530. }
  1531. do_blocking_move_to_x(oldXpos); // return to position before docking
  1532. feedrate = old_feedrate;
  1533. }
  1534. #endif // Z_PROBE_SLED
  1535. #if HAS_BED_PROBE
  1536. static void deploy_z_probe() {
  1537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1538. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1539. #endif
  1540. if (endstops.z_probe_enabled) return;
  1541. // Make room for probe
  1542. #if Z_RAISE_BEFORE_PROBING > 0
  1543. do_probe_raise(Z_RAISE_BEFORE_PROBING);
  1544. #endif
  1545. #if ENABLED(Z_PROBE_SLED)
  1546. dock_sled(false);
  1547. #elif HAS_Z_SERVO_ENDSTOP
  1548. // Engage Z Servo endstop if enabled
  1549. DEPLOY_Z_SERVO();
  1550. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1551. float old_feedrate = feedrate;
  1552. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1553. // If endstop is already false, the Z probe is deployed
  1554. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1555. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1556. if (z_probe_endstop)
  1557. #else
  1558. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1559. if (z_min_endstop)
  1560. #endif
  1561. {
  1562. // Move to the start position to initiate deployment
  1563. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1564. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1565. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1566. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1567. // Move to engage deployment
  1568. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1569. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1570. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1571. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1572. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1573. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1574. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1575. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1576. prepare_move_to_destination_raw();
  1577. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1578. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1579. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1580. // Move to trigger deployment
  1581. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1582. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1583. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1584. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1585. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1586. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1587. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1588. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1589. prepare_move_to_destination_raw();
  1590. #endif
  1591. }
  1592. // Partially Home X,Y for safety
  1593. destination[X_AXIS] *= 0.75;
  1594. destination[Y_AXIS] *= 0.75;
  1595. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1596. feedrate = old_feedrate;
  1597. stepper.synchronize();
  1598. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1599. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1600. if (z_probe_endstop)
  1601. #else
  1602. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1603. if (z_min_endstop)
  1604. #endif
  1605. {
  1606. if (IsRunning()) {
  1607. SERIAL_ERROR_START;
  1608. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1609. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1610. }
  1611. stop();
  1612. }
  1613. #else
  1614. // Nothing to be done. Just enable_z_probe below...
  1615. #endif
  1616. endstops.enable_z_probe();
  1617. }
  1618. static void stow_z_probe() {
  1619. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1620. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1621. #endif
  1622. if (!endstops.z_probe_enabled) return;
  1623. // Make more room for the servo
  1624. #if Z_RAISE_AFTER_PROBING > 0
  1625. do_probe_raise(Z_RAISE_AFTER_PROBING);
  1626. #endif
  1627. #if ENABLED(Z_PROBE_SLED)
  1628. dock_sled(true);
  1629. #elif HAS_Z_SERVO_ENDSTOP
  1630. // Change the Z servo angle
  1631. STOW_Z_SERVO();
  1632. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1633. float old_feedrate = feedrate;
  1634. // Move up for safety
  1635. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1636. #if Z_RAISE_AFTER_PROBING > 0
  1637. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1638. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1639. #endif
  1640. // Move to the start position to initiate retraction
  1641. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1642. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1643. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1644. prepare_move_to_destination_raw();
  1645. // Move the nozzle down to push the Z probe into retracted position
  1646. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1647. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1648. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1649. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1650. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1651. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1652. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1653. prepare_move_to_destination_raw();
  1654. // Move up for safety
  1655. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1656. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1657. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1658. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1659. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1660. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1661. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1662. prepare_move_to_destination_raw();
  1663. // Home XY for safety
  1664. feedrate = homing_feedrate[X_AXIS] / 2;
  1665. destination[X_AXIS] = 0;
  1666. destination[Y_AXIS] = 0;
  1667. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1668. feedrate = old_feedrate;
  1669. stepper.synchronize();
  1670. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1671. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1672. if (!z_probe_endstop)
  1673. #else
  1674. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1675. if (!z_min_endstop)
  1676. #endif
  1677. {
  1678. if (IsRunning()) {
  1679. SERIAL_ERROR_START;
  1680. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1681. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1682. }
  1683. stop();
  1684. }
  1685. #else
  1686. // Nothing to do here. Just clear endstops.z_probe_enabled
  1687. #endif
  1688. endstops.enable_z_probe(false);
  1689. }
  1690. // Do a single Z probe and return with current_position[Z_AXIS]
  1691. // at the height where the probe triggered.
  1692. static float run_z_probe() {
  1693. float old_feedrate = feedrate;
  1694. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1695. refresh_cmd_timeout();
  1696. #if ENABLED(DELTA)
  1697. float start_z = current_position[Z_AXIS];
  1698. long start_steps = stepper.position(Z_AXIS);
  1699. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1700. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1701. #endif
  1702. // move down slowly until you find the bed
  1703. feedrate = homing_feedrate[Z_AXIS] / 4;
  1704. destination[Z_AXIS] = -10;
  1705. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1706. stepper.synchronize();
  1707. endstops.hit_on_purpose(); // clear endstop hit flags
  1708. /**
  1709. * We have to let the planner know where we are right now as it
  1710. * is not where we said to go.
  1711. */
  1712. long stop_steps = stepper.position(Z_AXIS);
  1713. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1714. current_position[Z_AXIS] = mm;
  1715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1716. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1717. #endif
  1718. SYNC_PLAN_POSITION_KINEMATIC();
  1719. #else // !DELTA
  1720. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1721. planner.bed_level_matrix.set_to_identity();
  1722. #endif
  1723. feedrate = homing_feedrate[Z_AXIS];
  1724. // Move down until the Z probe (or endstop?) is triggered
  1725. float zPosition = -(Z_MAX_LENGTH + 10);
  1726. line_to_z(zPosition);
  1727. stepper.synchronize();
  1728. // Tell the planner where we ended up - Get this from the stepper handler
  1729. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1730. planner.set_position_mm(
  1731. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1732. current_position[E_AXIS]
  1733. );
  1734. // move up the retract distance
  1735. zPosition += home_bump_mm(Z_AXIS);
  1736. line_to_z(zPosition);
  1737. stepper.synchronize();
  1738. endstops.hit_on_purpose(); // clear endstop hit flags
  1739. // move back down slowly to find bed
  1740. set_homing_bump_feedrate(Z_AXIS);
  1741. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1742. line_to_z(zPosition);
  1743. stepper.synchronize();
  1744. endstops.hit_on_purpose(); // clear endstop hit flags
  1745. // Get the current stepper position after bumping an endstop
  1746. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1747. SYNC_PLAN_POSITION_KINEMATIC();
  1748. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1749. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1750. #endif
  1751. #endif // !DELTA
  1752. feedrate = old_feedrate;
  1753. return current_position[Z_AXIS];
  1754. }
  1755. inline void do_blocking_move_to_xy(float x, float y) {
  1756. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1757. }
  1758. //
  1759. // - Move to the given XY
  1760. // - Deploy the probe, if not already deployed
  1761. // - Probe the bed, get the Z position
  1762. // - Depending on the 'stow' flag
  1763. // - Stow the probe, or
  1764. // - Raise to the BETWEEN height
  1765. // - Return the probed Z position
  1766. //
  1767. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1768. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1769. if (DEBUGGING(LEVELING)) {
  1770. SERIAL_ECHOLNPGM("probe_pt >>>");
  1771. SERIAL_ECHOPAIR("> stow:", stow);
  1772. SERIAL_EOL;
  1773. DEBUG_POS("", current_position);
  1774. }
  1775. #endif
  1776. float old_feedrate = feedrate;
  1777. // Ensure a minimum height before moving the probe
  1778. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1779. // Move to the XY where we shall probe
  1780. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1781. if (DEBUGGING(LEVELING)) {
  1782. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1783. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1784. SERIAL_ECHOLNPGM(")");
  1785. }
  1786. #endif
  1787. feedrate = XY_PROBE_FEEDRATE;
  1788. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1789. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1790. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> deploy_z_probe");
  1791. #endif
  1792. deploy_z_probe();
  1793. float measured_z = run_z_probe();
  1794. if (stow) {
  1795. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1796. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> stow_z_probe");
  1797. #endif
  1798. stow_z_probe();
  1799. }
  1800. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1801. else {
  1802. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1803. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1804. #endif
  1805. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1806. }
  1807. #endif
  1808. if (verbose_level > 2) {
  1809. SERIAL_PROTOCOLPGM("Bed X: ");
  1810. SERIAL_PROTOCOL_F(x, 3);
  1811. SERIAL_PROTOCOLPGM(" Y: ");
  1812. SERIAL_PROTOCOL_F(y, 3);
  1813. SERIAL_PROTOCOLPGM(" Z: ");
  1814. SERIAL_PROTOCOL_F(measured_z, 3);
  1815. SERIAL_EOL;
  1816. }
  1817. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1818. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1819. #endif
  1820. feedrate = old_feedrate;
  1821. return measured_z;
  1822. }
  1823. #endif // HAS_BED_PROBE
  1824. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1825. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1826. #if DISABLED(DELTA)
  1827. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1828. //planner.bed_level_matrix.debug("bed level before");
  1829. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1830. planner.bed_level_matrix.set_to_identity();
  1831. if (DEBUGGING(LEVELING)) {
  1832. vector_3 uncorrected_position = planner.adjusted_position();
  1833. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1834. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1835. }
  1836. #endif
  1837. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1838. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1839. vector_3 corrected_position = planner.adjusted_position();
  1840. current_position[X_AXIS] = corrected_position.x;
  1841. current_position[Y_AXIS] = corrected_position.y;
  1842. current_position[Z_AXIS] = corrected_position.z;
  1843. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1844. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1845. #endif
  1846. SYNC_PLAN_POSITION_KINEMATIC();
  1847. }
  1848. #endif // !DELTA
  1849. #else // !AUTO_BED_LEVELING_GRID
  1850. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1851. planner.bed_level_matrix.set_to_identity();
  1852. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1853. if (DEBUGGING(LEVELING)) {
  1854. vector_3 uncorrected_position = planner.adjusted_position();
  1855. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1856. }
  1857. #endif
  1858. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1859. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1860. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1861. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1862. if (planeNormal.z < 0) {
  1863. planeNormal.x = -planeNormal.x;
  1864. planeNormal.y = -planeNormal.y;
  1865. planeNormal.z = -planeNormal.z;
  1866. }
  1867. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1868. vector_3 corrected_position = planner.adjusted_position();
  1869. current_position[X_AXIS] = corrected_position.x;
  1870. current_position[Y_AXIS] = corrected_position.y;
  1871. current_position[Z_AXIS] = corrected_position.z;
  1872. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1873. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1874. #endif
  1875. SYNC_PLAN_POSITION_KINEMATIC();
  1876. }
  1877. #endif // !AUTO_BED_LEVELING_GRID
  1878. #if ENABLED(DELTA)
  1879. /**
  1880. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1881. */
  1882. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1883. if (bed_level[x][y] != 0.0) {
  1884. return; // Don't overwrite good values.
  1885. }
  1886. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1887. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1888. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1889. float median = c; // Median is robust (ignores outliers).
  1890. if (a < b) {
  1891. if (b < c) median = b;
  1892. if (c < a) median = a;
  1893. }
  1894. else { // b <= a
  1895. if (c < b) median = b;
  1896. if (a < c) median = a;
  1897. }
  1898. bed_level[x][y] = median;
  1899. }
  1900. /**
  1901. * Fill in the unprobed points (corners of circular print surface)
  1902. * using linear extrapolation, away from the center.
  1903. */
  1904. static void extrapolate_unprobed_bed_level() {
  1905. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1906. for (int y = 0; y <= half; y++) {
  1907. for (int x = 0; x <= half; x++) {
  1908. if (x + y < 3) continue;
  1909. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1910. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1911. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1912. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1913. }
  1914. }
  1915. }
  1916. /**
  1917. * Print calibration results for plotting or manual frame adjustment.
  1918. */
  1919. static void print_bed_level() {
  1920. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1921. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1922. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1923. SERIAL_PROTOCOLCHAR(' ');
  1924. }
  1925. SERIAL_EOL;
  1926. }
  1927. }
  1928. /**
  1929. * Reset calibration results to zero.
  1930. */
  1931. void reset_bed_level() {
  1932. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1933. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1934. #endif
  1935. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1936. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1937. bed_level[x][y] = 0.0;
  1938. }
  1939. }
  1940. }
  1941. #endif // DELTA
  1942. #endif // AUTO_BED_LEVELING_FEATURE
  1943. /**
  1944. * Home an individual axis
  1945. */
  1946. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1947. static void homeaxis(AxisEnum axis) {
  1948. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1949. if (DEBUGGING(LEVELING)) {
  1950. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1951. SERIAL_ECHOLNPGM(")");
  1952. }
  1953. #endif
  1954. #define HOMEAXIS_DO(LETTER) \
  1955. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1956. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1957. int axis_home_dir =
  1958. #if ENABLED(DUAL_X_CARRIAGE)
  1959. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1960. #endif
  1961. home_dir(axis);
  1962. // Set the axis position as setup for the move
  1963. current_position[axis] = 0;
  1964. sync_plan_position();
  1965. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1966. #if HAS_BED_PROBE
  1967. if (axis == Z_AXIS && axis_home_dir < 0) {
  1968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1969. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > deploy_z_probe()");
  1970. #endif
  1971. deploy_z_probe();
  1972. }
  1973. #endif
  1974. // Set a flag for Z motor locking
  1975. #if ENABLED(Z_DUAL_ENDSTOPS)
  1976. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1977. #endif
  1978. // Move towards the endstop until an endstop is triggered
  1979. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1980. feedrate = homing_feedrate[axis];
  1981. line_to_destination();
  1982. stepper.synchronize();
  1983. // Set the axis position as setup for the move
  1984. current_position[axis] = 0;
  1985. sync_plan_position();
  1986. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1987. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1988. #endif
  1989. endstops.enable(false); // Disable endstops while moving away
  1990. // Move away from the endstop by the axis HOME_BUMP_MM
  1991. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1992. line_to_destination();
  1993. stepper.synchronize();
  1994. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1995. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1996. #endif
  1997. endstops.enable(true); // Enable endstops for next homing move
  1998. // Slow down the feedrate for the next move
  1999. set_homing_bump_feedrate(axis);
  2000. // Move slowly towards the endstop until triggered
  2001. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  2002. line_to_destination();
  2003. stepper.synchronize();
  2004. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2005. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2006. #endif
  2007. #if ENABLED(Z_DUAL_ENDSTOPS)
  2008. if (axis == Z_AXIS) {
  2009. float adj = fabs(z_endstop_adj);
  2010. bool lockZ1;
  2011. if (axis_home_dir > 0) {
  2012. adj = -adj;
  2013. lockZ1 = (z_endstop_adj > 0);
  2014. }
  2015. else
  2016. lockZ1 = (z_endstop_adj < 0);
  2017. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2018. sync_plan_position();
  2019. // Move to the adjusted endstop height
  2020. feedrate = homing_feedrate[axis];
  2021. destination[Z_AXIS] = adj;
  2022. line_to_destination();
  2023. stepper.synchronize();
  2024. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2025. stepper.set_homing_flag(false);
  2026. } // Z_AXIS
  2027. #endif
  2028. #if ENABLED(DELTA)
  2029. // retrace by the amount specified in endstop_adj
  2030. if (endstop_adj[axis] * axis_home_dir < 0) {
  2031. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2032. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  2033. #endif
  2034. endstops.enable(false); // Disable endstops while moving away
  2035. sync_plan_position();
  2036. destination[axis] = endstop_adj[axis];
  2037. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2038. if (DEBUGGING(LEVELING)) {
  2039. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2040. DEBUG_POS("", destination);
  2041. }
  2042. #endif
  2043. line_to_destination();
  2044. stepper.synchronize();
  2045. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2046. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2047. #endif
  2048. endstops.enable(true); // Enable endstops for next homing move
  2049. }
  2050. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2051. else {
  2052. if (DEBUGGING(LEVELING)) {
  2053. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  2054. SERIAL_EOL;
  2055. }
  2056. }
  2057. #endif
  2058. #endif
  2059. // Set the axis position to its home position (plus home offsets)
  2060. set_axis_is_at_home(axis);
  2061. SYNC_PLAN_POSITION_KINEMATIC();
  2062. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2063. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2064. #endif
  2065. destination[axis] = current_position[axis];
  2066. feedrate = 0.0;
  2067. endstops.hit_on_purpose(); // clear endstop hit flags
  2068. axis_known_position[axis] = true;
  2069. axis_homed[axis] = true;
  2070. // Put away the Z probe
  2071. #if HAS_BED_PROBE
  2072. if (axis == Z_AXIS && axis_home_dir < 0) {
  2073. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2074. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > stow_z_probe()");
  2075. #endif
  2076. stow_z_probe();
  2077. }
  2078. #endif
  2079. }
  2080. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2081. if (DEBUGGING(LEVELING)) {
  2082. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2083. SERIAL_ECHOLNPGM(")");
  2084. }
  2085. #endif
  2086. }
  2087. #if ENABLED(FWRETRACT)
  2088. void retract(bool retracting, bool swapping = false) {
  2089. if (retracting == retracted[active_extruder]) return;
  2090. float old_feedrate = feedrate;
  2091. set_destination_to_current();
  2092. if (retracting) {
  2093. feedrate = retract_feedrate_mm_s * 60;
  2094. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2095. sync_plan_position_e();
  2096. prepare_move_to_destination();
  2097. if (retract_zlift > 0.01) {
  2098. current_position[Z_AXIS] -= retract_zlift;
  2099. SYNC_PLAN_POSITION_KINEMATIC();
  2100. prepare_move_to_destination();
  2101. }
  2102. }
  2103. else {
  2104. if (retract_zlift > 0.01) {
  2105. current_position[Z_AXIS] += retract_zlift;
  2106. SYNC_PLAN_POSITION_KINEMATIC();
  2107. }
  2108. feedrate = retract_recover_feedrate * 60;
  2109. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2110. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2111. sync_plan_position_e();
  2112. prepare_move_to_destination();
  2113. }
  2114. feedrate = old_feedrate;
  2115. retracted[active_extruder] = retracting;
  2116. } // retract()
  2117. #endif // FWRETRACT
  2118. /**
  2119. * ***************************************************************************
  2120. * ***************************** G-CODE HANDLING *****************************
  2121. * ***************************************************************************
  2122. */
  2123. /**
  2124. * Set XYZE destination and feedrate from the current GCode command
  2125. *
  2126. * - Set destination from included axis codes
  2127. * - Set to current for missing axis codes
  2128. * - Set the feedrate, if included
  2129. */
  2130. void gcode_get_destination() {
  2131. for (int i = 0; i < NUM_AXIS; i++) {
  2132. if (code_seen(axis_codes[i]))
  2133. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2134. else
  2135. destination[i] = current_position[i];
  2136. }
  2137. if (code_seen('F')) {
  2138. float next_feedrate = code_value_linear_units();
  2139. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2140. }
  2141. }
  2142. void unknown_command_error() {
  2143. SERIAL_ECHO_START;
  2144. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2145. SERIAL_ECHO(current_command);
  2146. SERIAL_ECHOPGM("\"\n");
  2147. }
  2148. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2149. /**
  2150. * Output a "busy" message at regular intervals
  2151. * while the machine is not accepting commands.
  2152. */
  2153. void host_keepalive() {
  2154. millis_t ms = millis();
  2155. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2156. if (PENDING(ms, next_busy_signal_ms)) return;
  2157. switch (busy_state) {
  2158. case IN_HANDLER:
  2159. case IN_PROCESS:
  2160. SERIAL_ECHO_START;
  2161. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2162. break;
  2163. case PAUSED_FOR_USER:
  2164. SERIAL_ECHO_START;
  2165. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2166. break;
  2167. case PAUSED_FOR_INPUT:
  2168. SERIAL_ECHO_START;
  2169. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2170. break;
  2171. default:
  2172. break;
  2173. }
  2174. }
  2175. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2176. }
  2177. #endif //HOST_KEEPALIVE_FEATURE
  2178. /**
  2179. * G0, G1: Coordinated movement of X Y Z E axes
  2180. */
  2181. inline void gcode_G0_G1() {
  2182. if (IsRunning()) {
  2183. gcode_get_destination(); // For X Y Z E F
  2184. #if ENABLED(FWRETRACT)
  2185. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2186. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2187. // Is this move an attempt to retract or recover?
  2188. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2189. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2190. sync_plan_position_e(); // AND from the planner
  2191. retract(!retracted[active_extruder]);
  2192. return;
  2193. }
  2194. }
  2195. #endif //FWRETRACT
  2196. prepare_move_to_destination();
  2197. }
  2198. }
  2199. /**
  2200. * G2: Clockwise Arc
  2201. * G3: Counterclockwise Arc
  2202. */
  2203. #if ENABLED(ARC_SUPPORT)
  2204. inline void gcode_G2_G3(bool clockwise) {
  2205. if (IsRunning()) {
  2206. #if ENABLED(SF_ARC_FIX)
  2207. bool relative_mode_backup = relative_mode;
  2208. relative_mode = true;
  2209. #endif
  2210. gcode_get_destination();
  2211. #if ENABLED(SF_ARC_FIX)
  2212. relative_mode = relative_mode_backup;
  2213. #endif
  2214. // Center of arc as offset from current_position
  2215. float arc_offset[2] = {
  2216. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2217. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2218. };
  2219. // Send an arc to the planner
  2220. plan_arc(destination, arc_offset, clockwise);
  2221. refresh_cmd_timeout();
  2222. }
  2223. }
  2224. #endif
  2225. /**
  2226. * G4: Dwell S<seconds> or P<milliseconds>
  2227. */
  2228. inline void gcode_G4() {
  2229. millis_t codenum = 0;
  2230. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2231. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2232. stepper.synchronize();
  2233. refresh_cmd_timeout();
  2234. codenum += previous_cmd_ms; // keep track of when we started waiting
  2235. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2236. while (PENDING(millis(), codenum)) idle();
  2237. }
  2238. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2239. /**
  2240. * Parameters interpreted according to:
  2241. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2242. * However I, J omission is not supported at this point; all
  2243. * parameters can be omitted and default to zero.
  2244. */
  2245. /**
  2246. * G5: Cubic B-spline
  2247. */
  2248. inline void gcode_G5() {
  2249. if (IsRunning()) {
  2250. gcode_get_destination();
  2251. float offset[] = {
  2252. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2253. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2254. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2255. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2256. };
  2257. plan_cubic_move(offset);
  2258. }
  2259. }
  2260. #endif // BEZIER_CURVE_SUPPORT
  2261. #if ENABLED(FWRETRACT)
  2262. /**
  2263. * G10 - Retract filament according to settings of M207
  2264. * G11 - Recover filament according to settings of M208
  2265. */
  2266. inline void gcode_G10_G11(bool doRetract=false) {
  2267. #if EXTRUDERS > 1
  2268. if (doRetract) {
  2269. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2270. }
  2271. #endif
  2272. retract(doRetract
  2273. #if EXTRUDERS > 1
  2274. , retracted_swap[active_extruder]
  2275. #endif
  2276. );
  2277. }
  2278. #endif //FWRETRACT
  2279. #if ENABLED(INCH_MODE_SUPPORT)
  2280. /**
  2281. * G20: Set input mode to inches
  2282. */
  2283. inline void gcode_G20() {
  2284. set_input_linear_units(LINEARUNIT_INCH);
  2285. }
  2286. /**
  2287. * G21: Set input mode to millimeters
  2288. */
  2289. inline void gcode_G21() {
  2290. set_input_linear_units(LINEARUNIT_MM);
  2291. }
  2292. #endif
  2293. /**
  2294. * G28: Home all axes according to settings
  2295. *
  2296. * Parameters
  2297. *
  2298. * None Home to all axes with no parameters.
  2299. * With QUICK_HOME enabled XY will home together, then Z.
  2300. *
  2301. * Cartesian parameters
  2302. *
  2303. * X Home to the X endstop
  2304. * Y Home to the Y endstop
  2305. * Z Home to the Z endstop
  2306. *
  2307. */
  2308. inline void gcode_G28() {
  2309. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2310. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2311. #endif
  2312. // Wait for planner moves to finish!
  2313. stepper.synchronize();
  2314. // For auto bed leveling, clear the level matrix
  2315. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2316. planner.bed_level_matrix.set_to_identity();
  2317. #if ENABLED(DELTA)
  2318. reset_bed_level();
  2319. #endif
  2320. #endif
  2321. /**
  2322. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2323. * on again when homing all axis
  2324. */
  2325. #if ENABLED(MESH_BED_LEVELING)
  2326. float pre_home_z = MESH_HOME_SEARCH_Z;
  2327. if (mbl.active()) {
  2328. // Save known Z position if already homed
  2329. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2330. pre_home_z = current_position[Z_AXIS];
  2331. pre_home_z += mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2332. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2333. }
  2334. mbl.set_active(false);
  2335. }
  2336. #endif
  2337. setup_for_endstop_move();
  2338. /**
  2339. * Directly after a reset this is all 0. Later we get a hint if we have
  2340. * to raise z or not.
  2341. */
  2342. set_destination_to_current();
  2343. feedrate = 0.0;
  2344. #if ENABLED(DELTA)
  2345. /**
  2346. * A delta can only safely home all axis at the same time
  2347. * all axis have to home at the same time
  2348. */
  2349. // Pretend the current position is 0,0,0
  2350. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2351. sync_plan_position();
  2352. // Move all carriages up together until the first endstop is hit.
  2353. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2354. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2355. line_to_destination();
  2356. stepper.synchronize();
  2357. endstops.hit_on_purpose(); // clear endstop hit flags
  2358. // Destination reached
  2359. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2360. // take care of back off and rehome now we are all at the top
  2361. HOMEAXIS(X);
  2362. HOMEAXIS(Y);
  2363. HOMEAXIS(Z);
  2364. SYNC_PLAN_POSITION_KINEMATIC();
  2365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2366. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2367. #endif
  2368. #else // NOT DELTA
  2369. bool homeX = code_seen(axis_codes[X_AXIS]),
  2370. homeY = code_seen(axis_codes[Y_AXIS]),
  2371. homeZ = code_seen(axis_codes[Z_AXIS]);
  2372. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2373. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2374. if (home_all_axis || homeZ) {
  2375. HOMEAXIS(Z);
  2376. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2377. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2378. #endif
  2379. }
  2380. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2381. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2382. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2383. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2384. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2385. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2386. if (DEBUGGING(LEVELING)) {
  2387. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2388. SERIAL_EOL;
  2389. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2390. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2391. }
  2392. #endif
  2393. line_to_destination();
  2394. stepper.synchronize();
  2395. /**
  2396. * Update the current Z position even if it currently not real from
  2397. * Z-home otherwise each call to line_to_destination() will want to
  2398. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2399. */
  2400. current_position[Z_AXIS] = destination[Z_AXIS];
  2401. }
  2402. #endif
  2403. #if ENABLED(QUICK_HOME)
  2404. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2405. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2406. #if ENABLED(DUAL_X_CARRIAGE)
  2407. int x_axis_home_dir = x_home_dir(active_extruder);
  2408. extruder_duplication_enabled = false;
  2409. #else
  2410. int x_axis_home_dir = home_dir(X_AXIS);
  2411. #endif
  2412. SYNC_PLAN_POSITION_KINEMATIC();
  2413. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2414. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2415. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2416. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2417. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2418. line_to_destination();
  2419. stepper.synchronize();
  2420. set_axis_is_at_home(X_AXIS);
  2421. set_axis_is_at_home(Y_AXIS);
  2422. SYNC_PLAN_POSITION_KINEMATIC();
  2423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2424. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2425. #endif
  2426. destination[X_AXIS] = current_position[X_AXIS];
  2427. destination[Y_AXIS] = current_position[Y_AXIS];
  2428. line_to_destination();
  2429. feedrate = 0.0;
  2430. stepper.synchronize();
  2431. endstops.hit_on_purpose(); // clear endstop hit flags
  2432. current_position[X_AXIS] = destination[X_AXIS];
  2433. current_position[Y_AXIS] = destination[Y_AXIS];
  2434. #if DISABLED(SCARA)
  2435. current_position[Z_AXIS] = destination[Z_AXIS];
  2436. #endif
  2437. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2438. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2439. #endif
  2440. }
  2441. #endif // QUICK_HOME
  2442. #if ENABLED(HOME_Y_BEFORE_X)
  2443. // Home Y
  2444. if (home_all_axis || homeY) HOMEAXIS(Y);
  2445. #endif
  2446. // Home X
  2447. if (home_all_axis || homeX) {
  2448. #if ENABLED(DUAL_X_CARRIAGE)
  2449. int tmp_extruder = active_extruder;
  2450. extruder_duplication_enabled = false;
  2451. active_extruder = !active_extruder;
  2452. HOMEAXIS(X);
  2453. inactive_extruder_x_pos = current_position[X_AXIS];
  2454. active_extruder = tmp_extruder;
  2455. HOMEAXIS(X);
  2456. // reset state used by the different modes
  2457. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2458. delayed_move_time = 0;
  2459. active_extruder_parked = true;
  2460. #else
  2461. HOMEAXIS(X);
  2462. #endif
  2463. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2464. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2465. #endif
  2466. }
  2467. #if DISABLED(HOME_Y_BEFORE_X)
  2468. // Home Y
  2469. if (home_all_axis || homeY) {
  2470. HOMEAXIS(Y);
  2471. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2472. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2473. #endif
  2474. }
  2475. #endif
  2476. // Home Z last if homing towards the bed
  2477. #if Z_HOME_DIR < 0
  2478. if (home_all_axis || homeZ) {
  2479. #if ENABLED(Z_SAFE_HOMING)
  2480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2481. if (DEBUGGING(LEVELING)) {
  2482. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2483. }
  2484. #endif
  2485. if (home_all_axis) {
  2486. /**
  2487. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2488. * No need to move Z any more as this height should already be safe
  2489. * enough to reach Z_SAFE_HOMING XY positions.
  2490. * Just make sure the planner is in sync.
  2491. */
  2492. SYNC_PLAN_POSITION_KINEMATIC();
  2493. /**
  2494. * Set the Z probe (or just the nozzle) destination to the safe
  2495. * homing point
  2496. */
  2497. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2498. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2499. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2500. feedrate = XY_PROBE_FEEDRATE;
  2501. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2502. if (DEBUGGING(LEVELING)) {
  2503. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2504. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2505. }
  2506. #endif
  2507. // Move in the XY plane
  2508. line_to_destination();
  2509. stepper.synchronize();
  2510. /**
  2511. * Update the current positions for XY, Z is still at least at
  2512. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2513. */
  2514. current_position[X_AXIS] = destination[X_AXIS];
  2515. current_position[Y_AXIS] = destination[Y_AXIS];
  2516. // Home the Z axis
  2517. HOMEAXIS(Z);
  2518. }
  2519. else if (homeZ) { // Don't need to Home Z twice
  2520. // Let's see if X and Y are homed
  2521. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2522. /**
  2523. * Make sure the Z probe is within the physical limits
  2524. * NOTE: This doesn't necessarily ensure the Z probe is also
  2525. * within the bed!
  2526. */
  2527. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2528. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2529. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2530. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2531. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2532. // Home the Z axis
  2533. HOMEAXIS(Z);
  2534. }
  2535. else {
  2536. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2537. SERIAL_ECHO_START;
  2538. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2539. }
  2540. }
  2541. else {
  2542. axis_unhomed_error();
  2543. }
  2544. } // !home_all_axes && homeZ
  2545. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2546. if (DEBUGGING(LEVELING)) {
  2547. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2548. }
  2549. #endif
  2550. #else // !Z_SAFE_HOMING
  2551. HOMEAXIS(Z);
  2552. #endif // !Z_SAFE_HOMING
  2553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2554. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2555. #endif
  2556. } // home_all_axis || homeZ
  2557. #endif // Z_HOME_DIR < 0
  2558. SYNC_PLAN_POSITION_KINEMATIC();
  2559. #endif // !DELTA (gcode_G28)
  2560. endstops.not_homing();
  2561. // Enable mesh leveling again
  2562. #if ENABLED(MESH_BED_LEVELING)
  2563. if (mbl.has_mesh()) {
  2564. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2565. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2566. #if Z_HOME_DIR > 0
  2567. + Z_MAX_POS
  2568. #endif
  2569. ;
  2570. SYNC_PLAN_POSITION_KINEMATIC();
  2571. mbl.set_active(true);
  2572. #if ENABLED(MESH_G28_REST_ORIGIN)
  2573. current_position[Z_AXIS] = 0.0;
  2574. set_destination_to_current();
  2575. feedrate = homing_feedrate[Z_AXIS];
  2576. line_to_destination();
  2577. stepper.synchronize();
  2578. #else
  2579. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2580. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2581. current_position[Y_AXIS] - home_offset[Y_AXIS])
  2582. #if Z_HOME_DIR > 0
  2583. + Z_MAX_POS
  2584. #endif
  2585. ;
  2586. #endif
  2587. }
  2588. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2589. current_position[Z_AXIS] = pre_home_z;
  2590. SYNC_PLAN_POSITION_KINEMATIC();
  2591. mbl.set_active(true);
  2592. current_position[Z_AXIS] = pre_home_z -
  2593. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2594. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2595. }
  2596. }
  2597. #endif
  2598. clean_up_after_endstop_or_probe_move();
  2599. endstops.hit_on_purpose(); // clear endstop hit flags
  2600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2601. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2602. #endif
  2603. report_current_position();
  2604. }
  2605. #if HAS_PROBING_PROCEDURE
  2606. void out_of_range_error(const char* p_edge) {
  2607. SERIAL_PROTOCOLPGM("?Probe ");
  2608. serialprintPGM(p_edge);
  2609. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2610. }
  2611. #endif
  2612. #if ENABLED(MESH_BED_LEVELING)
  2613. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2614. inline void _mbl_goto_xy(float x, float y) {
  2615. saved_feedrate = feedrate;
  2616. feedrate = homing_feedrate[X_AXIS];
  2617. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2618. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2619. + MIN_Z_HEIGHT_FOR_HOMING
  2620. #endif
  2621. ;
  2622. line_to_current_position();
  2623. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2624. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2625. line_to_current_position();
  2626. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2627. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2628. line_to_current_position();
  2629. #endif
  2630. feedrate = saved_feedrate;
  2631. stepper.synchronize();
  2632. }
  2633. /**
  2634. * G29: Mesh-based Z probe, probes a grid and produces a
  2635. * mesh to compensate for variable bed height
  2636. *
  2637. * Parameters With MESH_BED_LEVELING:
  2638. *
  2639. * S0 Produce a mesh report
  2640. * S1 Start probing mesh points
  2641. * S2 Probe the next mesh point
  2642. * S3 Xn Yn Zn.nn Manually modify a single point
  2643. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2644. * S5 Reset and disable mesh
  2645. *
  2646. * The S0 report the points as below
  2647. *
  2648. * +----> X-axis 1-n
  2649. * |
  2650. * |
  2651. * v Y-axis 1-n
  2652. *
  2653. */
  2654. inline void gcode_G29() {
  2655. static int probe_point = -1;
  2656. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2657. if (state < 0 || state > 5) {
  2658. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2659. return;
  2660. }
  2661. int8_t px, py;
  2662. float z;
  2663. switch (state) {
  2664. case MeshReport:
  2665. if (mbl.has_mesh()) {
  2666. SERIAL_PROTOCOLPGM("State: ");
  2667. if (mbl.active())
  2668. SERIAL_PROTOCOLPGM("On");
  2669. else
  2670. SERIAL_PROTOCOLPGM("Off");
  2671. SERIAL_PROTOCOLPGM("\nNum X,Y: ");
  2672. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2673. SERIAL_PROTOCOLCHAR(',');
  2674. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2675. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2676. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2677. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2678. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2679. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2680. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2681. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2682. SERIAL_PROTOCOLPGM(" ");
  2683. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2684. }
  2685. SERIAL_EOL;
  2686. }
  2687. }
  2688. else
  2689. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2690. break;
  2691. case MeshStart:
  2692. mbl.reset();
  2693. probe_point = 0;
  2694. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2695. break;
  2696. case MeshNext:
  2697. if (probe_point < 0) {
  2698. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2699. return;
  2700. }
  2701. // For each G29 S2...
  2702. if (probe_point == 0) {
  2703. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2704. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2705. #if Z_HOME_DIR > 0
  2706. + Z_MAX_POS
  2707. #endif
  2708. ;
  2709. SYNC_PLAN_POSITION_KINEMATIC();
  2710. }
  2711. else {
  2712. // For G29 S2 after adjusting Z.
  2713. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2714. }
  2715. // If there's another point to sample, move there with optional lift.
  2716. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2717. mbl.zigzag(probe_point, px, py);
  2718. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2719. probe_point++;
  2720. }
  2721. else {
  2722. // One last "return to the bed" (as originally coded) at completion
  2723. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2724. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2725. + MIN_Z_HEIGHT_FOR_HOMING
  2726. #endif
  2727. ;
  2728. line_to_current_position();
  2729. stepper.synchronize();
  2730. // After recording the last point, activate the mbl and home
  2731. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2732. probe_point = -1;
  2733. mbl.set_has_mesh(true);
  2734. enqueue_and_echo_commands_P(PSTR("G28"));
  2735. }
  2736. break;
  2737. case MeshSet:
  2738. if (code_seen('X')) {
  2739. px = code_value_int() - 1;
  2740. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2741. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2742. return;
  2743. }
  2744. }
  2745. else {
  2746. SERIAL_PROTOCOLPGM("X not entered.\n");
  2747. return;
  2748. }
  2749. if (code_seen('Y')) {
  2750. py = code_value_int() - 1;
  2751. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2752. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2753. return;
  2754. }
  2755. }
  2756. else {
  2757. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2758. return;
  2759. }
  2760. if (code_seen('Z')) {
  2761. z = code_value_axis_units(Z_AXIS);
  2762. }
  2763. else {
  2764. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2765. return;
  2766. }
  2767. mbl.z_values[py][px] = z;
  2768. break;
  2769. case MeshSetZOffset:
  2770. if (code_seen('Z')) {
  2771. z = code_value_axis_units(Z_AXIS);
  2772. }
  2773. else {
  2774. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2775. return;
  2776. }
  2777. mbl.z_offset = z;
  2778. break;
  2779. case MeshReset:
  2780. if (mbl.active()) {
  2781. current_position[Z_AXIS] +=
  2782. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2783. current_position[Y_AXIS] - home_offset[Y_AXIS]) - MESH_HOME_SEARCH_Z;
  2784. mbl.reset();
  2785. SYNC_PLAN_POSITION_KINEMATIC();
  2786. }
  2787. else
  2788. mbl.reset();
  2789. } // switch(state)
  2790. report_current_position();
  2791. }
  2792. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2793. /**
  2794. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2795. * Will fail if the printer has not been homed with G28.
  2796. *
  2797. * Enhanced G29 Auto Bed Leveling Probe Routine
  2798. *
  2799. * Parameters With AUTO_BED_LEVELING_GRID:
  2800. *
  2801. * P Set the size of the grid that will be probed (P x P points).
  2802. * Not supported by non-linear delta printer bed leveling.
  2803. * Example: "G29 P4"
  2804. *
  2805. * S Set the XY travel speed between probe points (in mm/min)
  2806. *
  2807. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2808. * or clean the rotation Matrix. Useful to check the topology
  2809. * after a first run of G29.
  2810. *
  2811. * V Set the verbose level (0-4). Example: "G29 V3"
  2812. *
  2813. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2814. * This is useful for manual bed leveling and finding flaws in the bed (to
  2815. * assist with part placement).
  2816. * Not supported by non-linear delta printer bed leveling.
  2817. *
  2818. * F Set the Front limit of the probing grid
  2819. * B Set the Back limit of the probing grid
  2820. * L Set the Left limit of the probing grid
  2821. * R Set the Right limit of the probing grid
  2822. *
  2823. * Global Parameters:
  2824. *
  2825. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2826. * Include "E" to engage/disengage the Z probe for each sample.
  2827. * There's no extra effect if you have a fixed Z probe.
  2828. * Usage: "G29 E" or "G29 e"
  2829. *
  2830. */
  2831. inline void gcode_G29() {
  2832. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2833. if (DEBUGGING(LEVELING)) {
  2834. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2835. DEBUG_POS("", current_position);
  2836. }
  2837. #endif
  2838. // Don't allow auto-leveling without homing first
  2839. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  2840. axis_unhomed_error(true);
  2841. return;
  2842. }
  2843. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2844. if (verbose_level < 0 || verbose_level > 4) {
  2845. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2846. return;
  2847. }
  2848. bool dryrun = code_seen('D');
  2849. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  2850. const bool stow_probe_after_each = false;
  2851. #else
  2852. bool stow_probe_after_each = code_seen('E');
  2853. #endif
  2854. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2855. #if DISABLED(DELTA)
  2856. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2857. #endif
  2858. if (verbose_level > 0) {
  2859. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2860. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2861. }
  2862. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2863. #if DISABLED(DELTA)
  2864. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2865. if (auto_bed_leveling_grid_points < 2) {
  2866. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2867. return;
  2868. }
  2869. #endif
  2870. xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2871. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2872. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2873. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2874. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2875. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2876. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2877. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2878. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2879. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2880. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2881. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2882. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2883. if (left_out || right_out || front_out || back_out) {
  2884. if (left_out) {
  2885. out_of_range_error(PSTR("(L)eft"));
  2886. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2887. }
  2888. if (right_out) {
  2889. out_of_range_error(PSTR("(R)ight"));
  2890. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2891. }
  2892. if (front_out) {
  2893. out_of_range_error(PSTR("(F)ront"));
  2894. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2895. }
  2896. if (back_out) {
  2897. out_of_range_error(PSTR("(B)ack"));
  2898. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2899. }
  2900. return;
  2901. }
  2902. #endif // AUTO_BED_LEVELING_GRID
  2903. if (!dryrun) {
  2904. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2905. if (DEBUGGING(LEVELING)) {
  2906. vector_3 corrected_position = planner.adjusted_position();
  2907. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2908. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2909. }
  2910. #endif
  2911. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2912. planner.bed_level_matrix.set_to_identity();
  2913. #if ENABLED(DELTA)
  2914. reset_bed_level();
  2915. #else //!DELTA
  2916. //vector_3 corrected_position = planner.adjusted_position();
  2917. //corrected_position.debug("position before G29");
  2918. vector_3 uncorrected_position = planner.adjusted_position();
  2919. //uncorrected_position.debug("position during G29");
  2920. current_position[X_AXIS] = uncorrected_position.x;
  2921. current_position[Y_AXIS] = uncorrected_position.y;
  2922. current_position[Z_AXIS] = uncorrected_position.z;
  2923. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2924. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2925. #endif
  2926. SYNC_PLAN_POSITION_KINEMATIC();
  2927. #endif // !DELTA
  2928. }
  2929. stepper.synchronize();
  2930. setup_for_endstop_or_probe_move();
  2931. // Deploy the probe. Servo will raise if needed.
  2932. deploy_z_probe();
  2933. bed_leveling_in_progress = true;
  2934. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2935. // probe at the points of a lattice grid
  2936. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2937. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2938. #if ENABLED(DELTA)
  2939. delta_grid_spacing[0] = xGridSpacing;
  2940. delta_grid_spacing[1] = yGridSpacing;
  2941. float zoffset = zprobe_zoffset;
  2942. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value_axis_units(Z_AXIS);
  2943. #else // !DELTA
  2944. /**
  2945. * solve the plane equation ax + by + d = z
  2946. * A is the matrix with rows [x y 1] for all the probed points
  2947. * B is the vector of the Z positions
  2948. * the normal vector to the plane is formed by the coefficients of the
  2949. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2950. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2951. */
  2952. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2953. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2954. eqnBVector[abl2], // "B" vector of Z points
  2955. mean = 0.0;
  2956. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2957. #endif // !DELTA
  2958. int probePointCounter = 0;
  2959. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2960. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2961. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2962. int xStart, xStop, xInc;
  2963. if (zig) {
  2964. xStart = 0;
  2965. xStop = auto_bed_leveling_grid_points;
  2966. xInc = 1;
  2967. }
  2968. else {
  2969. xStart = auto_bed_leveling_grid_points - 1;
  2970. xStop = -1;
  2971. xInc = -1;
  2972. }
  2973. zig = !zig;
  2974. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2975. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2976. #if ENABLED(DELTA)
  2977. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2978. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2979. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2980. #endif //DELTA
  2981. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2982. #if DISABLED(DELTA)
  2983. mean += measured_z;
  2984. eqnBVector[probePointCounter] = measured_z;
  2985. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2986. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2987. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2988. indexIntoAB[xCount][yCount] = probePointCounter;
  2989. #else
  2990. bed_level[xCount][yCount] = measured_z + zoffset;
  2991. #endif
  2992. probePointCounter++;
  2993. idle();
  2994. } //xProbe
  2995. } //yProbe
  2996. #else // !AUTO_BED_LEVELING_GRID
  2997. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2998. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  2999. #endif
  3000. // Probe at 3 arbitrary points
  3001. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3002. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3003. stow_probe_after_each, verbose_level),
  3004. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3005. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3006. stow_probe_after_each, verbose_level),
  3007. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3008. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3009. stow_probe_after_each, verbose_level);
  3010. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3011. #endif // !AUTO_BED_LEVELING_GRID
  3012. // Raise to Z_RAISE_AFTER_PROBING. Stow the probe.
  3013. stow_z_probe();
  3014. // Restore state after probing
  3015. clean_up_after_endstop_or_probe_move();
  3016. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3017. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3018. #endif
  3019. // Calculate leveling, print reports, correct the position
  3020. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3021. #if ENABLED(DELTA)
  3022. if (!dryrun) extrapolate_unprobed_bed_level();
  3023. print_bed_level();
  3024. #else // !DELTA
  3025. // solve lsq problem
  3026. double plane_equation_coefficients[3];
  3027. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3028. mean /= abl2;
  3029. if (verbose_level) {
  3030. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3031. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3032. SERIAL_PROTOCOLPGM(" b: ");
  3033. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3034. SERIAL_PROTOCOLPGM(" d: ");
  3035. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3036. SERIAL_EOL;
  3037. if (verbose_level > 2) {
  3038. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3039. SERIAL_PROTOCOL_F(mean, 8);
  3040. SERIAL_EOL;
  3041. }
  3042. }
  3043. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3044. // Show the Topography map if enabled
  3045. if (do_topography_map) {
  3046. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  3047. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  3048. SERIAL_PROTOCOLPGM(" | |\n");
  3049. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  3050. SERIAL_PROTOCOLPGM(" E | | I\n");
  3051. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  3052. SERIAL_PROTOCOLPGM(" T | | H\n");
  3053. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  3054. SERIAL_PROTOCOLPGM(" | |\n");
  3055. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  3056. SERIAL_PROTOCOLPGM(" (0,0)\n");
  3057. float min_diff = 999;
  3058. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3059. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3060. int ind = indexIntoAB[xx][yy];
  3061. float diff = eqnBVector[ind] - mean;
  3062. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3063. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3064. z_tmp = 0;
  3065. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3066. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3067. if (diff >= 0.0)
  3068. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3069. else
  3070. SERIAL_PROTOCOLCHAR(' ');
  3071. SERIAL_PROTOCOL_F(diff, 5);
  3072. } // xx
  3073. SERIAL_EOL;
  3074. } // yy
  3075. SERIAL_EOL;
  3076. if (verbose_level > 3) {
  3077. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  3078. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3079. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3080. int ind = indexIntoAB[xx][yy];
  3081. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3082. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3083. z_tmp = 0;
  3084. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3085. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3086. if (diff >= 0.0)
  3087. SERIAL_PROTOCOLPGM(" +");
  3088. // Include + for column alignment
  3089. else
  3090. SERIAL_PROTOCOLCHAR(' ');
  3091. SERIAL_PROTOCOL_F(diff, 5);
  3092. } // xx
  3093. SERIAL_EOL;
  3094. } // yy
  3095. SERIAL_EOL;
  3096. }
  3097. } //do_topography_map
  3098. #endif //!DELTA
  3099. #endif // AUTO_BED_LEVELING_GRID
  3100. #if DISABLED(DELTA)
  3101. if (verbose_level > 0)
  3102. planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  3103. if (!dryrun) {
  3104. /**
  3105. * Correct the Z height difference from Z probe position and nozzle tip position.
  3106. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3107. * from the nozzle. When the bed is uneven, this height must be corrected.
  3108. */
  3109. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3110. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3111. z_tmp = current_position[Z_AXIS],
  3112. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3113. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3114. if (DEBUGGING(LEVELING)) {
  3115. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3116. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3117. SERIAL_EOL;
  3118. }
  3119. #endif
  3120. // Apply the correction sending the Z probe offset
  3121. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3122. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3123. if (DEBUGGING(LEVELING)) {
  3124. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3125. SERIAL_EOL;
  3126. }
  3127. #endif
  3128. // Adjust the current Z and send it to the planner.
  3129. current_position[Z_AXIS] += z_tmp - stepper_z;
  3130. SYNC_PLAN_POSITION_KINEMATIC();
  3131. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3132. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3133. #endif
  3134. }
  3135. #endif // !DELTA
  3136. #ifdef Z_PROBE_END_SCRIPT
  3137. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3138. if (DEBUGGING(LEVELING)) {
  3139. SERIAL_ECHO("Z Probe End Script: ");
  3140. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3141. }
  3142. #endif
  3143. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3144. stepper.synchronize();
  3145. #endif
  3146. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3147. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3148. #endif
  3149. bed_leveling_in_progress = false;
  3150. report_current_position();
  3151. KEEPALIVE_STATE(IN_HANDLER);
  3152. }
  3153. #endif //AUTO_BED_LEVELING_FEATURE
  3154. #if HAS_BED_PROBE
  3155. /**
  3156. * G30: Do a single Z probe at the current XY
  3157. */
  3158. inline void gcode_G30() {
  3159. setup_for_endstop_or_probe_move();
  3160. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3161. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3162. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3163. true, 1);
  3164. SERIAL_PROTOCOLPGM("Bed X: ");
  3165. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3166. SERIAL_PROTOCOLPGM(" Y: ");
  3167. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3168. SERIAL_PROTOCOLPGM(" Z: ");
  3169. SERIAL_PROTOCOL(measured_z + 0.0001);
  3170. SERIAL_EOL;
  3171. clean_up_after_endstop_or_probe_move();
  3172. report_current_position();
  3173. }
  3174. #if ENABLED(Z_PROBE_SLED)
  3175. /**
  3176. * G31: Deploy the Z probe
  3177. */
  3178. inline void gcode_G31() { deploy_z_probe(); }
  3179. /**
  3180. * G32: Stow the Z probe
  3181. */
  3182. inline void gcode_G32() { stow_z_probe(); }
  3183. #endif // Z_PROBE_SLED
  3184. #endif // HAS_BED_PROBE
  3185. /**
  3186. * G92: Set current position to given X Y Z E
  3187. */
  3188. inline void gcode_G92() {
  3189. bool didE = code_seen(axis_codes[E_AXIS]);
  3190. if (!didE) stepper.synchronize();
  3191. bool didXYZ = false;
  3192. for (int i = 0; i < NUM_AXIS; i++) {
  3193. if (code_seen(axis_codes[i])) {
  3194. float p = current_position[i],
  3195. v = code_value_axis_units(i);
  3196. current_position[i] = v;
  3197. if (i != E_AXIS) {
  3198. position_shift[i] += v - p; // Offset the coordinate space
  3199. update_software_endstops((AxisEnum)i);
  3200. didXYZ = true;
  3201. }
  3202. }
  3203. }
  3204. if (didXYZ)
  3205. SYNC_PLAN_POSITION_KINEMATIC();
  3206. else if (didE)
  3207. sync_plan_position_e();
  3208. }
  3209. #if ENABLED(ULTIPANEL)
  3210. /**
  3211. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3212. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3213. */
  3214. inline void gcode_M0_M1() {
  3215. char* args = current_command_args;
  3216. uint8_t test_value = 12;
  3217. SERIAL_ECHOPAIR("TEST", test_value);
  3218. millis_t codenum = 0;
  3219. bool hasP = false, hasS = false;
  3220. if (code_seen('P')) {
  3221. codenum = code_value_millis(); // milliseconds to wait
  3222. hasP = codenum > 0;
  3223. }
  3224. if (code_seen('S')) {
  3225. codenum = code_value_millis_from_seconds(); // seconds to wait
  3226. hasS = codenum > 0;
  3227. }
  3228. if (!hasP && !hasS && *args != '\0')
  3229. lcd_setstatus(args, true);
  3230. else {
  3231. LCD_MESSAGEPGM(MSG_USERWAIT);
  3232. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3233. dontExpireStatus();
  3234. #endif
  3235. }
  3236. lcd_ignore_click();
  3237. stepper.synchronize();
  3238. refresh_cmd_timeout();
  3239. if (codenum > 0) {
  3240. codenum += previous_cmd_ms; // wait until this time for a click
  3241. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3242. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3243. KEEPALIVE_STATE(IN_HANDLER);
  3244. lcd_ignore_click(false);
  3245. }
  3246. else {
  3247. if (!lcd_detected()) return;
  3248. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3249. while (!lcd_clicked()) idle();
  3250. KEEPALIVE_STATE(IN_HANDLER);
  3251. }
  3252. if (IS_SD_PRINTING)
  3253. LCD_MESSAGEPGM(MSG_RESUMING);
  3254. else
  3255. LCD_MESSAGEPGM(WELCOME_MSG);
  3256. }
  3257. #endif // ULTIPANEL
  3258. /**
  3259. * M17: Enable power on all stepper motors
  3260. */
  3261. inline void gcode_M17() {
  3262. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3263. enable_all_steppers();
  3264. }
  3265. #if ENABLED(SDSUPPORT)
  3266. /**
  3267. * M20: List SD card to serial output
  3268. */
  3269. inline void gcode_M20() {
  3270. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3271. card.ls();
  3272. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3273. }
  3274. /**
  3275. * M21: Init SD Card
  3276. */
  3277. inline void gcode_M21() {
  3278. card.initsd();
  3279. }
  3280. /**
  3281. * M22: Release SD Card
  3282. */
  3283. inline void gcode_M22() {
  3284. card.release();
  3285. }
  3286. /**
  3287. * M23: Open a file
  3288. */
  3289. inline void gcode_M23() {
  3290. card.openFile(current_command_args, true);
  3291. }
  3292. /**
  3293. * M24: Start SD Print
  3294. */
  3295. inline void gcode_M24() {
  3296. card.startFileprint();
  3297. print_job_timer.start();
  3298. }
  3299. /**
  3300. * M25: Pause SD Print
  3301. */
  3302. inline void gcode_M25() {
  3303. card.pauseSDPrint();
  3304. }
  3305. /**
  3306. * M26: Set SD Card file index
  3307. */
  3308. inline void gcode_M26() {
  3309. if (card.cardOK && code_seen('S'))
  3310. card.setIndex(code_value_long());
  3311. }
  3312. /**
  3313. * M27: Get SD Card status
  3314. */
  3315. inline void gcode_M27() {
  3316. card.getStatus();
  3317. }
  3318. /**
  3319. * M28: Start SD Write
  3320. */
  3321. inline void gcode_M28() {
  3322. card.openFile(current_command_args, false);
  3323. }
  3324. /**
  3325. * M29: Stop SD Write
  3326. * Processed in write to file routine above
  3327. */
  3328. inline void gcode_M29() {
  3329. // card.saving = false;
  3330. }
  3331. /**
  3332. * M30 <filename>: Delete SD Card file
  3333. */
  3334. inline void gcode_M30() {
  3335. if (card.cardOK) {
  3336. card.closefile();
  3337. card.removeFile(current_command_args);
  3338. }
  3339. }
  3340. #endif //SDSUPPORT
  3341. /**
  3342. * M31: Get the time since the start of SD Print (or last M109)
  3343. */
  3344. inline void gcode_M31() {
  3345. millis_t t = print_job_timer.duration();
  3346. int min = t / 60, sec = t % 60;
  3347. char time[30];
  3348. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3349. SERIAL_ECHO_START;
  3350. SERIAL_ECHOLN(time);
  3351. lcd_setstatus(time);
  3352. thermalManager.autotempShutdown();
  3353. }
  3354. #if ENABLED(SDSUPPORT)
  3355. /**
  3356. * M32: Select file and start SD Print
  3357. */
  3358. inline void gcode_M32() {
  3359. if (card.sdprinting)
  3360. stepper.synchronize();
  3361. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3362. if (!namestartpos)
  3363. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3364. else
  3365. namestartpos++; //to skip the '!'
  3366. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3367. if (card.cardOK) {
  3368. card.openFile(namestartpos, true, call_procedure);
  3369. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3370. card.setIndex(code_value_long());
  3371. card.startFileprint();
  3372. // Procedure calls count as normal print time.
  3373. if (!call_procedure) print_job_timer.start();
  3374. }
  3375. }
  3376. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3377. /**
  3378. * M33: Get the long full path of a file or folder
  3379. *
  3380. * Parameters:
  3381. * <dospath> Case-insensitive DOS-style path to a file or folder
  3382. *
  3383. * Example:
  3384. * M33 miscel~1/armchair/armcha~1.gco
  3385. *
  3386. * Output:
  3387. * /Miscellaneous/Armchair/Armchair.gcode
  3388. */
  3389. inline void gcode_M33() {
  3390. card.printLongPath(current_command_args);
  3391. }
  3392. #endif
  3393. /**
  3394. * M928: Start SD Write
  3395. */
  3396. inline void gcode_M928() {
  3397. card.openLogFile(current_command_args);
  3398. }
  3399. #endif // SDSUPPORT
  3400. /**
  3401. * M42: Change pin status via GCode
  3402. *
  3403. * P<pin> Pin number (LED if omitted)
  3404. * S<byte> Pin status from 0 - 255
  3405. */
  3406. inline void gcode_M42() {
  3407. if (code_seen('S')) {
  3408. int pin_status = code_value_int();
  3409. if (pin_status < 0 || pin_status > 255) return;
  3410. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3411. if (pin_number < 0) return;
  3412. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3413. if (pin_number == sensitive_pins[i]) return;
  3414. pinMode(pin_number, OUTPUT);
  3415. digitalWrite(pin_number, pin_status);
  3416. analogWrite(pin_number, pin_status);
  3417. #if FAN_COUNT > 0
  3418. switch (pin_number) {
  3419. #if HAS_FAN0
  3420. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3421. #endif
  3422. #if HAS_FAN1
  3423. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3424. #endif
  3425. #if HAS_FAN2
  3426. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3427. #endif
  3428. }
  3429. #endif
  3430. } // code_seen('S')
  3431. }
  3432. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3433. /**
  3434. * M48: Z probe repeatability measurement function.
  3435. *
  3436. * Usage:
  3437. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3438. * P = Number of sampled points (4-50, default 10)
  3439. * X = Sample X position
  3440. * Y = Sample Y position
  3441. * V = Verbose level (0-4, default=1)
  3442. * E = Engage Z probe for each reading
  3443. * L = Number of legs of movement before probe
  3444. * S = Schizoid (Or Star if you prefer)
  3445. *
  3446. * This function assumes the bed has been homed. Specifically, that a G28 command
  3447. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3448. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3449. * regenerated.
  3450. */
  3451. inline void gcode_M48() {
  3452. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3453. axis_unhomed_error(true);
  3454. return;
  3455. }
  3456. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3457. if (verbose_level < 0 || verbose_level > 4) {
  3458. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3459. return;
  3460. }
  3461. if (verbose_level > 0)
  3462. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3463. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3464. if (n_samples < 4 || n_samples > 50) {
  3465. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3466. return;
  3467. }
  3468. float X_current = current_position[X_AXIS],
  3469. Y_current = current_position[Y_AXIS];
  3470. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  3471. const bool stow_probe_after_each = false;
  3472. #else
  3473. bool stow_probe_after_each = code_seen('E');
  3474. #endif
  3475. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3476. #if DISABLED(DELTA)
  3477. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3478. out_of_range_error(PSTR("X"));
  3479. return;
  3480. }
  3481. #endif
  3482. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3483. #if DISABLED(DELTA)
  3484. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3485. out_of_range_error(PSTR("Y"));
  3486. return;
  3487. }
  3488. #else
  3489. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3490. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3491. return;
  3492. }
  3493. #endif
  3494. bool seen_L = code_seen('L');
  3495. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3496. if (n_legs > 15) {
  3497. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3498. return;
  3499. }
  3500. if (n_legs == 1) n_legs = 2;
  3501. bool schizoid_flag = code_seen('S');
  3502. if (schizoid_flag && !seen_L) n_legs = 7;
  3503. /**
  3504. * Now get everything to the specified probe point So we can safely do a
  3505. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3506. * we don't want to use that as a starting point for each probe.
  3507. */
  3508. if (verbose_level > 2)
  3509. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3510. #if ENABLED(DELTA)
  3511. // we don't do bed level correction in M48 because we want the raw data when we probe
  3512. reset_bed_level();
  3513. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3514. // we don't do bed level correction in M48 because we want the raw data when we probe
  3515. planner.bed_level_matrix.set_to_identity();
  3516. #endif
  3517. setup_for_endstop_or_probe_move();
  3518. // Move to the first point, deploy, and probe
  3519. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3520. randomSeed(millis());
  3521. double mean = 0, sigma = 0, sample_set[n_samples];
  3522. for (uint8_t n = 0; n < n_samples; n++) {
  3523. if (n_legs) {
  3524. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3525. float angle = random(0.0, 360.0),
  3526. radius = random(
  3527. #if ENABLED(DELTA)
  3528. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3529. #else
  3530. 5, X_MAX_LENGTH / 8
  3531. #endif
  3532. );
  3533. if (verbose_level > 3) {
  3534. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3535. SERIAL_ECHOPAIR(" angle: ", angle);
  3536. SERIAL_ECHO(" Direction: ");
  3537. if (dir > 0) SERIAL_ECHO("Counter ");
  3538. SERIAL_ECHOLN("Clockwise");
  3539. }
  3540. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3541. double delta_angle;
  3542. if (schizoid_flag)
  3543. // The points of a 5 point star are 72 degrees apart. We need to
  3544. // skip a point and go to the next one on the star.
  3545. delta_angle = dir * 2.0 * 72.0;
  3546. else
  3547. // If we do this line, we are just trying to move further
  3548. // around the circle.
  3549. delta_angle = dir * (float) random(25, 45);
  3550. angle += delta_angle;
  3551. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3552. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3553. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3554. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3555. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3556. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3557. #if DISABLED(DELTA)
  3558. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3559. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3560. #else
  3561. // If we have gone out too far, we can do a simple fix and scale the numbers
  3562. // back in closer to the origin.
  3563. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3564. X_current /= 1.25;
  3565. Y_current /= 1.25;
  3566. if (verbose_level > 3) {
  3567. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3568. SERIAL_ECHOPAIR(", ", Y_current);
  3569. SERIAL_EOL;
  3570. }
  3571. }
  3572. #endif
  3573. if (verbose_level > 3) {
  3574. SERIAL_PROTOCOL("Going to:");
  3575. SERIAL_ECHOPAIR("x: ", X_current);
  3576. SERIAL_ECHOPAIR("y: ", Y_current);
  3577. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3578. SERIAL_EOL;
  3579. }
  3580. do_blocking_move_to_xy(X_current, Y_current);
  3581. } // n_legs loop
  3582. } // n_legs
  3583. // Probe a single point
  3584. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3585. /**
  3586. * Get the current mean for the data points we have so far
  3587. */
  3588. double sum = 0.0;
  3589. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3590. mean = sum / (n + 1);
  3591. /**
  3592. * Now, use that mean to calculate the standard deviation for the
  3593. * data points we have so far
  3594. */
  3595. sum = 0.0;
  3596. for (uint8_t j = 0; j <= n; j++) {
  3597. float ss = sample_set[j] - mean;
  3598. sum += ss * ss;
  3599. }
  3600. sigma = sqrt(sum / (n + 1));
  3601. if (verbose_level > 0) {
  3602. if (verbose_level > 1) {
  3603. SERIAL_PROTOCOL(n + 1);
  3604. SERIAL_PROTOCOLPGM(" of ");
  3605. SERIAL_PROTOCOL((int)n_samples);
  3606. SERIAL_PROTOCOLPGM(" z: ");
  3607. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3608. if (verbose_level > 2) {
  3609. SERIAL_PROTOCOLPGM(" mean: ");
  3610. SERIAL_PROTOCOL_F(mean, 6);
  3611. SERIAL_PROTOCOLPGM(" sigma: ");
  3612. SERIAL_PROTOCOL_F(sigma, 6);
  3613. }
  3614. }
  3615. SERIAL_EOL;
  3616. }
  3617. } // End of probe loop
  3618. stow_z_probe();
  3619. if (verbose_level > 0) {
  3620. SERIAL_PROTOCOLPGM("Mean: ");
  3621. SERIAL_PROTOCOL_F(mean, 6);
  3622. SERIAL_EOL;
  3623. }
  3624. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3625. SERIAL_PROTOCOL_F(sigma, 6);
  3626. SERIAL_EOL; SERIAL_EOL;
  3627. clean_up_after_endstop_or_probe_move();
  3628. report_current_position();
  3629. }
  3630. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3631. /**
  3632. * M75: Start print timer
  3633. */
  3634. inline void gcode_M75() { print_job_timer.start(); }
  3635. /**
  3636. * M76: Pause print timer
  3637. */
  3638. inline void gcode_M76() { print_job_timer.pause(); }
  3639. /**
  3640. * M77: Stop print timer
  3641. */
  3642. inline void gcode_M77() { print_job_timer.stop(); }
  3643. #if ENABLED(PRINTCOUNTER)
  3644. /*+
  3645. * M78: Show print statistics
  3646. */
  3647. inline void gcode_M78() {
  3648. // "M78 S78" will reset the statistics
  3649. if (code_seen('S') && code_value_int() == 78)
  3650. print_job_timer.initStats();
  3651. else print_job_timer.showStats();
  3652. }
  3653. #endif
  3654. /**
  3655. * M104: Set hot end temperature
  3656. */
  3657. inline void gcode_M104() {
  3658. if (get_target_extruder_from_command(104)) return;
  3659. if (DEBUGGING(DRYRUN)) return;
  3660. #if ENABLED(SINGLENOZZLE)
  3661. if (target_extruder != active_extruder) return;
  3662. #endif
  3663. if (code_seen('S')) {
  3664. float temp = code_value_temp_abs();
  3665. thermalManager.setTargetHotend(temp, target_extruder);
  3666. #if ENABLED(DUAL_X_CARRIAGE)
  3667. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3668. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3669. #endif
  3670. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3671. /**
  3672. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3673. * stand by mode, for instance in a dual extruder setup, without affecting
  3674. * the running print timer.
  3675. */
  3676. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3677. print_job_timer.stop();
  3678. LCD_MESSAGEPGM(WELCOME_MSG);
  3679. }
  3680. /**
  3681. * We do not check if the timer is already running because this check will
  3682. * be done for us inside the Stopwatch::start() method thus a running timer
  3683. * will not restart.
  3684. */
  3685. else print_job_timer.start();
  3686. #endif
  3687. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3688. }
  3689. }
  3690. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3691. void print_heaterstates() {
  3692. #if HAS_TEMP_HOTEND
  3693. SERIAL_PROTOCOLPGM(" T:");
  3694. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3695. SERIAL_PROTOCOLPGM(" /");
  3696. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3697. #endif
  3698. #if HAS_TEMP_BED
  3699. SERIAL_PROTOCOLPGM(" B:");
  3700. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3701. SERIAL_PROTOCOLPGM(" /");
  3702. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3703. #endif
  3704. #if HOTENDS > 1
  3705. for (int8_t e = 0; e < HOTENDS; ++e) {
  3706. SERIAL_PROTOCOLPGM(" T");
  3707. SERIAL_PROTOCOL(e);
  3708. SERIAL_PROTOCOLCHAR(':');
  3709. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3710. SERIAL_PROTOCOLPGM(" /");
  3711. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3712. }
  3713. #endif
  3714. #if HAS_TEMP_BED
  3715. SERIAL_PROTOCOLPGM(" B@:");
  3716. #ifdef BED_WATTS
  3717. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3718. SERIAL_PROTOCOLCHAR('W');
  3719. #else
  3720. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3721. #endif
  3722. #endif
  3723. SERIAL_PROTOCOLPGM(" @:");
  3724. #ifdef EXTRUDER_WATTS
  3725. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3726. SERIAL_PROTOCOLCHAR('W');
  3727. #else
  3728. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3729. #endif
  3730. #if HOTENDS > 1
  3731. for (int8_t e = 0; e < HOTENDS; ++e) {
  3732. SERIAL_PROTOCOLPGM(" @");
  3733. SERIAL_PROTOCOL(e);
  3734. SERIAL_PROTOCOLCHAR(':');
  3735. #ifdef EXTRUDER_WATTS
  3736. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3737. SERIAL_PROTOCOLCHAR('W');
  3738. #else
  3739. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3740. #endif
  3741. }
  3742. #endif
  3743. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3744. #if HAS_TEMP_BED
  3745. SERIAL_PROTOCOLPGM(" ADC B:");
  3746. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3747. SERIAL_PROTOCOLPGM("C->");
  3748. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3749. #endif
  3750. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend) {
  3751. SERIAL_PROTOCOLPGM(" T");
  3752. SERIAL_PROTOCOL(cur_hotend);
  3753. SERIAL_PROTOCOLCHAR(':');
  3754. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_hotend), 1);
  3755. SERIAL_PROTOCOLPGM("C->");
  3756. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_hotend) / OVERSAMPLENR, 0);
  3757. }
  3758. #endif
  3759. }
  3760. #endif
  3761. /**
  3762. * M105: Read hot end and bed temperature
  3763. */
  3764. inline void gcode_M105() {
  3765. if (get_target_extruder_from_command(105)) return;
  3766. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3767. SERIAL_PROTOCOLPGM(MSG_OK);
  3768. print_heaterstates();
  3769. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3770. SERIAL_ERROR_START;
  3771. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3772. #endif
  3773. SERIAL_EOL;
  3774. }
  3775. #if FAN_COUNT > 0
  3776. /**
  3777. * M106: Set Fan Speed
  3778. *
  3779. * S<int> Speed between 0-255
  3780. * P<index> Fan index, if more than one fan
  3781. */
  3782. inline void gcode_M106() {
  3783. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3784. p = code_seen('P') ? code_value_ushort() : 0;
  3785. NOMORE(s, 255);
  3786. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3787. }
  3788. /**
  3789. * M107: Fan Off
  3790. */
  3791. inline void gcode_M107() {
  3792. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3793. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3794. }
  3795. #endif // FAN_COUNT > 0
  3796. /**
  3797. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3798. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3799. */
  3800. inline void gcode_M109() {
  3801. if (get_target_extruder_from_command(109)) return;
  3802. if (DEBUGGING(DRYRUN)) return;
  3803. #if ENABLED(SINGLENOZZLE)
  3804. if (target_extruder != active_extruder) return;
  3805. #endif
  3806. bool no_wait_for_cooling = code_seen('S');
  3807. if (no_wait_for_cooling || code_seen('R')) {
  3808. float temp = code_value_temp_abs();
  3809. thermalManager.setTargetHotend(temp, target_extruder);
  3810. #if ENABLED(DUAL_X_CARRIAGE)
  3811. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3812. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3813. #endif
  3814. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3815. /**
  3816. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3817. * stand by mode, for instance in a dual extruder setup, without affecting
  3818. * the running print timer.
  3819. */
  3820. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3821. print_job_timer.stop();
  3822. LCD_MESSAGEPGM(WELCOME_MSG);
  3823. }
  3824. /**
  3825. * We do not check if the timer is already running because this check will
  3826. * be done for us inside the Stopwatch::start() method thus a running timer
  3827. * will not restart.
  3828. */
  3829. else print_job_timer.start();
  3830. #endif
  3831. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3832. }
  3833. #if ENABLED(AUTOTEMP)
  3834. planner.autotemp_M109();
  3835. #endif
  3836. #if TEMP_RESIDENCY_TIME > 0
  3837. millis_t residency_start_ms = 0;
  3838. // Loop until the temperature has stabilized
  3839. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3840. #else
  3841. // Loop until the temperature is very close target
  3842. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3843. #endif //TEMP_RESIDENCY_TIME > 0
  3844. float theTarget = -1;
  3845. bool wants_to_cool;
  3846. cancel_heatup = false;
  3847. millis_t now, next_temp_ms = 0;
  3848. KEEPALIVE_STATE(NOT_BUSY);
  3849. do {
  3850. // Target temperature might be changed during the loop
  3851. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3852. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3853. theTarget = thermalManager.degTargetHotend(target_extruder);
  3854. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3855. if (no_wait_for_cooling && wants_to_cool) break;
  3856. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3857. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3858. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  3859. }
  3860. now = millis();
  3861. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3862. next_temp_ms = now + 1000UL;
  3863. print_heaterstates();
  3864. #if TEMP_RESIDENCY_TIME > 0
  3865. SERIAL_PROTOCOLPGM(" W:");
  3866. if (residency_start_ms) {
  3867. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3868. SERIAL_PROTOCOLLN(rem);
  3869. }
  3870. else {
  3871. SERIAL_PROTOCOLLNPGM("?");
  3872. }
  3873. #else
  3874. SERIAL_EOL;
  3875. #endif
  3876. }
  3877. idle();
  3878. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3879. #if TEMP_RESIDENCY_TIME > 0
  3880. float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
  3881. if (!residency_start_ms) {
  3882. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3883. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3884. }
  3885. else if (temp_diff > TEMP_HYSTERESIS) {
  3886. // Restart the timer whenever the temperature falls outside the hysteresis.
  3887. residency_start_ms = now;
  3888. }
  3889. #endif //TEMP_RESIDENCY_TIME > 0
  3890. } while (!cancel_heatup && TEMP_CONDITIONS);
  3891. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3892. KEEPALIVE_STATE(IN_HANDLER);
  3893. }
  3894. #if HAS_TEMP_BED
  3895. /**
  3896. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3897. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3898. */
  3899. inline void gcode_M190() {
  3900. if (DEBUGGING(DRYRUN)) return;
  3901. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3902. bool no_wait_for_cooling = code_seen('S');
  3903. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value_temp_abs());
  3904. #if TEMP_BED_RESIDENCY_TIME > 0
  3905. millis_t residency_start_ms = 0;
  3906. // Loop until the temperature has stabilized
  3907. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3908. #else
  3909. // Loop until the temperature is very close target
  3910. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3911. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3912. float theTarget = -1;
  3913. bool wants_to_cool;
  3914. cancel_heatup = false;
  3915. millis_t now, next_temp_ms = 0;
  3916. KEEPALIVE_STATE(NOT_BUSY);
  3917. do {
  3918. // Target temperature might be changed during the loop
  3919. if (theTarget != thermalManager.degTargetBed()) {
  3920. wants_to_cool = thermalManager.isCoolingBed();
  3921. theTarget = thermalManager.degTargetBed();
  3922. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3923. if (no_wait_for_cooling && wants_to_cool) break;
  3924. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3925. // Simply don't wait to cool a bed under 30C
  3926. if (wants_to_cool && theTarget < 30) break;
  3927. }
  3928. now = millis();
  3929. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3930. next_temp_ms = now + 1000UL;
  3931. print_heaterstates();
  3932. #if TEMP_BED_RESIDENCY_TIME > 0
  3933. SERIAL_PROTOCOLPGM(" W:");
  3934. if (residency_start_ms) {
  3935. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3936. SERIAL_PROTOCOLLN(rem);
  3937. }
  3938. else {
  3939. SERIAL_PROTOCOLLNPGM("?");
  3940. }
  3941. #else
  3942. SERIAL_EOL;
  3943. #endif
  3944. }
  3945. idle();
  3946. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3947. #if TEMP_BED_RESIDENCY_TIME > 0
  3948. float temp_diff = fabs(theTarget - thermalManager.degBed());
  3949. if (!residency_start_ms) {
  3950. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3951. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3952. }
  3953. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3954. // Restart the timer whenever the temperature falls outside the hysteresis.
  3955. residency_start_ms = now;
  3956. }
  3957. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3958. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  3959. LCD_MESSAGEPGM(MSG_BED_DONE);
  3960. KEEPALIVE_STATE(IN_HANDLER);
  3961. }
  3962. #endif // HAS_TEMP_BED
  3963. /**
  3964. * M110: Set Current Line Number
  3965. */
  3966. inline void gcode_M110() {
  3967. if (code_seen('N')) gcode_N = code_value_long();
  3968. }
  3969. /**
  3970. * M111: Set the debug level
  3971. */
  3972. inline void gcode_M111() {
  3973. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  3974. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3975. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3976. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3977. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3978. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3979. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3980. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3981. #endif
  3982. const static char* const debug_strings[] PROGMEM = {
  3983. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3984. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3985. str_debug_32
  3986. #endif
  3987. };
  3988. SERIAL_ECHO_START;
  3989. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3990. if (marlin_debug_flags) {
  3991. uint8_t comma = 0;
  3992. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3993. if (TEST(marlin_debug_flags, i)) {
  3994. if (comma++) SERIAL_CHAR(',');
  3995. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3996. }
  3997. }
  3998. }
  3999. else {
  4000. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4001. }
  4002. SERIAL_EOL;
  4003. }
  4004. /**
  4005. * M112: Emergency Stop
  4006. */
  4007. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4008. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4009. /**
  4010. * M113: Get or set Host Keepalive interval (0 to disable)
  4011. *
  4012. * S<seconds> Optional. Set the keepalive interval.
  4013. */
  4014. inline void gcode_M113() {
  4015. if (code_seen('S')) {
  4016. host_keepalive_interval = code_value_byte();
  4017. NOMORE(host_keepalive_interval, 60);
  4018. }
  4019. else {
  4020. SERIAL_ECHO_START;
  4021. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4022. SERIAL_EOL;
  4023. }
  4024. }
  4025. #endif
  4026. #if ENABLED(BARICUDA)
  4027. #if HAS_HEATER_1
  4028. /**
  4029. * M126: Heater 1 valve open
  4030. */
  4031. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4032. /**
  4033. * M127: Heater 1 valve close
  4034. */
  4035. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4036. #endif
  4037. #if HAS_HEATER_2
  4038. /**
  4039. * M128: Heater 2 valve open
  4040. */
  4041. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4042. /**
  4043. * M129: Heater 2 valve close
  4044. */
  4045. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4046. #endif
  4047. #endif //BARICUDA
  4048. /**
  4049. * M140: Set bed temperature
  4050. */
  4051. inline void gcode_M140() {
  4052. if (DEBUGGING(DRYRUN)) return;
  4053. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4054. }
  4055. #if ENABLED(ULTIPANEL)
  4056. /**
  4057. * M145: Set the heatup state for a material in the LCD menu
  4058. * S<material> (0=PLA, 1=ABS)
  4059. * H<hotend temp>
  4060. * B<bed temp>
  4061. * F<fan speed>
  4062. */
  4063. inline void gcode_M145() {
  4064. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4065. if (material < 0 || material > 1) {
  4066. SERIAL_ERROR_START;
  4067. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4068. }
  4069. else {
  4070. int v;
  4071. switch (material) {
  4072. case 0:
  4073. if (code_seen('H')) {
  4074. v = code_value_int();
  4075. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4076. }
  4077. if (code_seen('F')) {
  4078. v = code_value_int();
  4079. plaPreheatFanSpeed = constrain(v, 0, 255);
  4080. }
  4081. #if TEMP_SENSOR_BED != 0
  4082. if (code_seen('B')) {
  4083. v = code_value_int();
  4084. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4085. }
  4086. #endif
  4087. break;
  4088. case 1:
  4089. if (code_seen('H')) {
  4090. v = code_value_int();
  4091. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4092. }
  4093. if (code_seen('F')) {
  4094. v = code_value_int();
  4095. absPreheatFanSpeed = constrain(v, 0, 255);
  4096. }
  4097. #if TEMP_SENSOR_BED != 0
  4098. if (code_seen('B')) {
  4099. v = code_value_int();
  4100. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4101. }
  4102. #endif
  4103. break;
  4104. }
  4105. }
  4106. }
  4107. #endif
  4108. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4109. /**
  4110. * M149: Set temperature units
  4111. */
  4112. inline void gcode_M149() {
  4113. if (code_seen('C')) {
  4114. set_input_temp_units(TEMPUNIT_C);
  4115. } else if (code_seen('K')) {
  4116. set_input_temp_units(TEMPUNIT_K);
  4117. } else if (code_seen('F')) {
  4118. set_input_temp_units(TEMPUNIT_F);
  4119. }
  4120. }
  4121. #endif
  4122. #if HAS_POWER_SWITCH
  4123. /**
  4124. * M80: Turn on Power Supply
  4125. */
  4126. inline void gcode_M80() {
  4127. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4128. /**
  4129. * If you have a switch on suicide pin, this is useful
  4130. * if you want to start another print with suicide feature after
  4131. * a print without suicide...
  4132. */
  4133. #if HAS_SUICIDE
  4134. OUT_WRITE(SUICIDE_PIN, HIGH);
  4135. #endif
  4136. #if ENABLED(ULTIPANEL)
  4137. powersupply = true;
  4138. LCD_MESSAGEPGM(WELCOME_MSG);
  4139. lcd_update();
  4140. #endif
  4141. }
  4142. #endif // HAS_POWER_SWITCH
  4143. /**
  4144. * M81: Turn off Power, including Power Supply, if there is one.
  4145. *
  4146. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4147. */
  4148. inline void gcode_M81() {
  4149. thermalManager.disable_all_heaters();
  4150. stepper.finish_and_disable();
  4151. #if FAN_COUNT > 0
  4152. #if FAN_COUNT > 1
  4153. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4154. #else
  4155. fanSpeeds[0] = 0;
  4156. #endif
  4157. #endif
  4158. delay(1000); // Wait 1 second before switching off
  4159. #if HAS_SUICIDE
  4160. stepper.synchronize();
  4161. suicide();
  4162. #elif HAS_POWER_SWITCH
  4163. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4164. #endif
  4165. #if ENABLED(ULTIPANEL)
  4166. #if HAS_POWER_SWITCH
  4167. powersupply = false;
  4168. #endif
  4169. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4170. lcd_update();
  4171. #endif
  4172. }
  4173. /**
  4174. * M82: Set E codes absolute (default)
  4175. */
  4176. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4177. /**
  4178. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4179. */
  4180. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4181. /**
  4182. * M18, M84: Disable all stepper motors
  4183. */
  4184. inline void gcode_M18_M84() {
  4185. if (code_seen('S')) {
  4186. stepper_inactive_time = code_value_millis_from_seconds();
  4187. }
  4188. else {
  4189. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4190. if (all_axis) {
  4191. stepper.finish_and_disable();
  4192. }
  4193. else {
  4194. stepper.synchronize();
  4195. if (code_seen('X')) disable_x();
  4196. if (code_seen('Y')) disable_y();
  4197. if (code_seen('Z')) disable_z();
  4198. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4199. if (code_seen('E')) {
  4200. disable_e0();
  4201. disable_e1();
  4202. disable_e2();
  4203. disable_e3();
  4204. }
  4205. #endif
  4206. }
  4207. }
  4208. }
  4209. /**
  4210. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4211. */
  4212. inline void gcode_M85() {
  4213. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4214. }
  4215. /**
  4216. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4217. * (Follows the same syntax as G92)
  4218. */
  4219. inline void gcode_M92() {
  4220. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4221. if (code_seen(axis_codes[i])) {
  4222. if (i == E_AXIS) {
  4223. float value = code_value_per_axis_unit(i);
  4224. if (value < 20.0) {
  4225. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4226. planner.max_e_jerk *= factor;
  4227. planner.max_feedrate[i] *= factor;
  4228. planner.max_acceleration_steps_per_s2[i] *= factor;
  4229. }
  4230. planner.axis_steps_per_mm[i] = value;
  4231. }
  4232. else {
  4233. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4234. }
  4235. }
  4236. }
  4237. }
  4238. /**
  4239. * Output the current position to serial
  4240. */
  4241. static void report_current_position() {
  4242. SERIAL_PROTOCOLPGM("X:");
  4243. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4244. SERIAL_PROTOCOLPGM(" Y:");
  4245. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4246. SERIAL_PROTOCOLPGM(" Z:");
  4247. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4248. SERIAL_PROTOCOLPGM(" E:");
  4249. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4250. stepper.report_positions();
  4251. #if ENABLED(SCARA)
  4252. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4253. SERIAL_PROTOCOL(delta[X_AXIS]);
  4254. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4255. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4256. SERIAL_EOL;
  4257. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4258. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4259. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4260. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4261. SERIAL_EOL;
  4262. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4263. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4264. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4265. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4266. SERIAL_EOL; SERIAL_EOL;
  4267. #endif
  4268. }
  4269. /**
  4270. * M114: Output current position to serial port
  4271. */
  4272. inline void gcode_M114() { report_current_position(); }
  4273. /**
  4274. * M115: Capabilities string
  4275. */
  4276. inline void gcode_M115() {
  4277. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4278. }
  4279. /**
  4280. * M117: Set LCD Status Message
  4281. */
  4282. inline void gcode_M117() {
  4283. lcd_setstatus(current_command_args);
  4284. }
  4285. /**
  4286. * M119: Output endstop states to serial output
  4287. */
  4288. inline void gcode_M119() { endstops.M119(); }
  4289. /**
  4290. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4291. */
  4292. inline void gcode_M120() { endstops.enable_globally(true); }
  4293. /**
  4294. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4295. */
  4296. inline void gcode_M121() { endstops.enable_globally(false); }
  4297. #if ENABLED(BLINKM)
  4298. /**
  4299. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4300. */
  4301. inline void gcode_M150() {
  4302. SendColors(
  4303. code_seen('R') ? code_value_byte() : 0,
  4304. code_seen('U') ? code_value_byte() : 0,
  4305. code_seen('B') ? code_value_byte() : 0
  4306. );
  4307. }
  4308. #endif // BLINKM
  4309. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4310. /**
  4311. * M155: Send data to a I2C slave device
  4312. *
  4313. * This is a PoC, the formating and arguments for the GCODE will
  4314. * change to be more compatible, the current proposal is:
  4315. *
  4316. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4317. *
  4318. * M155 B<byte-1 value in base 10>
  4319. * M155 B<byte-2 value in base 10>
  4320. * M155 B<byte-3 value in base 10>
  4321. *
  4322. * M155 S1 ; Send the buffered data and reset the buffer
  4323. * M155 R1 ; Reset the buffer without sending data
  4324. *
  4325. */
  4326. inline void gcode_M155() {
  4327. // Set the target address
  4328. if (code_seen('A'))
  4329. i2c.address(code_value_byte());
  4330. // Add a new byte to the buffer
  4331. else if (code_seen('B'))
  4332. i2c.addbyte(code_value_int());
  4333. // Flush the buffer to the bus
  4334. else if (code_seen('S')) i2c.send();
  4335. // Reset and rewind the buffer
  4336. else if (code_seen('R')) i2c.reset();
  4337. }
  4338. /**
  4339. * M156: Request X bytes from I2C slave device
  4340. *
  4341. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4342. */
  4343. inline void gcode_M156() {
  4344. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4345. int bytes = code_seen('B') ? code_value_int() : 1;
  4346. if (addr && bytes > 0 && bytes <= 32) {
  4347. i2c.address(addr);
  4348. i2c.reqbytes(bytes);
  4349. }
  4350. else {
  4351. SERIAL_ERROR_START;
  4352. SERIAL_ERRORLN("Bad i2c request");
  4353. }
  4354. }
  4355. #endif //EXPERIMENTAL_I2CBUS
  4356. /**
  4357. * M200: Set filament diameter and set E axis units to cubic units
  4358. *
  4359. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4360. * D<mm> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4361. */
  4362. inline void gcode_M200() {
  4363. if (get_target_extruder_from_command(200)) return;
  4364. if (code_seen('D')) {
  4365. float diameter = code_value_linear_units();
  4366. // setting any extruder filament size disables volumetric on the assumption that
  4367. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4368. // for all extruders
  4369. volumetric_enabled = (diameter != 0.0);
  4370. if (volumetric_enabled) {
  4371. filament_size[target_extruder] = diameter;
  4372. // make sure all extruders have some sane value for the filament size
  4373. for (int i = 0; i < EXTRUDERS; i++)
  4374. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4375. }
  4376. }
  4377. else {
  4378. //reserved for setting filament diameter via UFID or filament measuring device
  4379. return;
  4380. }
  4381. calculate_volumetric_multipliers();
  4382. }
  4383. /**
  4384. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4385. */
  4386. inline void gcode_M201() {
  4387. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4388. if (code_seen(axis_codes[i])) {
  4389. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4390. }
  4391. }
  4392. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4393. planner.reset_acceleration_rates();
  4394. }
  4395. #if 0 // Not used for Sprinter/grbl gen6
  4396. inline void gcode_M202() {
  4397. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4398. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4399. }
  4400. }
  4401. #endif
  4402. /**
  4403. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4404. */
  4405. inline void gcode_M203() {
  4406. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4407. if (code_seen(axis_codes[i])) {
  4408. planner.max_feedrate[i] = code_value_axis_units(i);
  4409. }
  4410. }
  4411. }
  4412. /**
  4413. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4414. *
  4415. * P = Printing moves
  4416. * R = Retract only (no X, Y, Z) moves
  4417. * T = Travel (non printing) moves
  4418. *
  4419. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4420. */
  4421. inline void gcode_M204() {
  4422. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4423. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4424. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4425. SERIAL_EOL;
  4426. }
  4427. if (code_seen('P')) {
  4428. planner.acceleration = code_value_linear_units();
  4429. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4430. SERIAL_EOL;
  4431. }
  4432. if (code_seen('R')) {
  4433. planner.retract_acceleration = code_value_linear_units();
  4434. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4435. SERIAL_EOL;
  4436. }
  4437. if (code_seen('T')) {
  4438. planner.travel_acceleration = code_value_linear_units();
  4439. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4440. SERIAL_EOL;
  4441. }
  4442. }
  4443. /**
  4444. * M205: Set Advanced Settings
  4445. *
  4446. * S = Min Feed Rate (mm/s)
  4447. * T = Min Travel Feed Rate (mm/s)
  4448. * B = Min Segment Time (µs)
  4449. * X = Max XY Jerk (mm/s/s)
  4450. * Z = Max Z Jerk (mm/s/s)
  4451. * E = Max E Jerk (mm/s/s)
  4452. */
  4453. inline void gcode_M205() {
  4454. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4455. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4456. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4457. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4458. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4459. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4460. }
  4461. /**
  4462. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4463. */
  4464. inline void gcode_M206() {
  4465. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4466. if (code_seen(axis_codes[i]))
  4467. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4468. #if ENABLED(SCARA)
  4469. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4470. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4471. #endif
  4472. SYNC_PLAN_POSITION_KINEMATIC();
  4473. report_current_position();
  4474. }
  4475. #if ENABLED(DELTA)
  4476. /**
  4477. * M665: Set delta configurations
  4478. *
  4479. * L = diagonal rod
  4480. * R = delta radius
  4481. * S = segments per second
  4482. * A = Alpha (Tower 1) diagonal rod trim
  4483. * B = Beta (Tower 2) diagonal rod trim
  4484. * C = Gamma (Tower 3) diagonal rod trim
  4485. */
  4486. inline void gcode_M665() {
  4487. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4488. if (code_seen('R')) delta_radius = code_value_linear_units();
  4489. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4490. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4491. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4492. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4493. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4494. }
  4495. /**
  4496. * M666: Set delta endstop adjustment
  4497. */
  4498. inline void gcode_M666() {
  4499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4500. if (DEBUGGING(LEVELING)) {
  4501. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4502. }
  4503. #endif
  4504. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4505. if (code_seen(axis_codes[i])) {
  4506. endstop_adj[i] = code_value_axis_units(i);
  4507. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4508. if (DEBUGGING(LEVELING)) {
  4509. SERIAL_ECHOPGM("endstop_adj[");
  4510. SERIAL_ECHO(axis_codes[i]);
  4511. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4512. SERIAL_EOL;
  4513. }
  4514. #endif
  4515. }
  4516. }
  4517. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4518. if (DEBUGGING(LEVELING)) {
  4519. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4520. }
  4521. #endif
  4522. }
  4523. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4524. /**
  4525. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4526. */
  4527. inline void gcode_M666() {
  4528. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4529. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4530. SERIAL_EOL;
  4531. }
  4532. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4533. #if ENABLED(FWRETRACT)
  4534. /**
  4535. * M207: Set firmware retraction values
  4536. *
  4537. * S[+mm] retract_length
  4538. * W[+mm] retract_length_swap (multi-extruder)
  4539. * F[mm/min] retract_feedrate_mm_s
  4540. * Z[mm] retract_zlift
  4541. */
  4542. inline void gcode_M207() {
  4543. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4544. if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60;
  4545. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4546. #if EXTRUDERS > 1
  4547. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4548. #endif
  4549. }
  4550. /**
  4551. * M208: Set firmware un-retraction values
  4552. *
  4553. * S[+mm] retract_recover_length (in addition to M207 S*)
  4554. * W[+mm] retract_recover_length_swap (multi-extruder)
  4555. * F[mm/min] retract_recover_feedrate
  4556. */
  4557. inline void gcode_M208() {
  4558. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4559. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4560. #if EXTRUDERS > 1
  4561. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4562. #endif
  4563. }
  4564. /**
  4565. * M209: Enable automatic retract (M209 S1)
  4566. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4567. */
  4568. inline void gcode_M209() {
  4569. if (code_seen('S')) {
  4570. int t = code_value_int();
  4571. switch (t) {
  4572. case 0:
  4573. autoretract_enabled = false;
  4574. break;
  4575. case 1:
  4576. autoretract_enabled = true;
  4577. break;
  4578. default:
  4579. unknown_command_error();
  4580. return;
  4581. }
  4582. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4583. }
  4584. }
  4585. #endif // FWRETRACT
  4586. #if HOTENDS > 1
  4587. /**
  4588. * M218 - set hotend offset (in mm)
  4589. *
  4590. * T<tool>
  4591. * X<xoffset>
  4592. * Y<yoffset>
  4593. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4594. */
  4595. inline void gcode_M218() {
  4596. if (get_target_extruder_from_command(218)) return;
  4597. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4598. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4599. #if ENABLED(DUAL_X_CARRIAGE)
  4600. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4601. #endif
  4602. SERIAL_ECHO_START;
  4603. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4604. for (int e = 0; e < HOTENDS; e++) {
  4605. SERIAL_CHAR(' ');
  4606. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4607. SERIAL_CHAR(',');
  4608. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4609. #if ENABLED(DUAL_X_CARRIAGE)
  4610. SERIAL_CHAR(',');
  4611. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4612. #endif
  4613. }
  4614. SERIAL_EOL;
  4615. }
  4616. #endif // HOTENDS > 1
  4617. /**
  4618. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4619. */
  4620. inline void gcode_M220() {
  4621. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4622. }
  4623. /**
  4624. * M221: Set extrusion percentage (M221 T0 S95)
  4625. */
  4626. inline void gcode_M221() {
  4627. if (code_seen('S')) {
  4628. int sval = code_value_int();
  4629. if (get_target_extruder_from_command(221)) return;
  4630. extruder_multiplier[target_extruder] = sval;
  4631. }
  4632. }
  4633. /**
  4634. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4635. */
  4636. inline void gcode_M226() {
  4637. if (code_seen('P')) {
  4638. int pin_number = code_value_int();
  4639. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4640. if (pin_state >= -1 && pin_state <= 1) {
  4641. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4642. if (sensitive_pins[i] == pin_number) {
  4643. pin_number = -1;
  4644. break;
  4645. }
  4646. }
  4647. if (pin_number > -1) {
  4648. int target = LOW;
  4649. stepper.synchronize();
  4650. pinMode(pin_number, INPUT);
  4651. switch (pin_state) {
  4652. case 1:
  4653. target = HIGH;
  4654. break;
  4655. case 0:
  4656. target = LOW;
  4657. break;
  4658. case -1:
  4659. target = !digitalRead(pin_number);
  4660. break;
  4661. }
  4662. while (digitalRead(pin_number) != target) idle();
  4663. } // pin_number > -1
  4664. } // pin_state -1 0 1
  4665. } // code_seen('P')
  4666. }
  4667. #if HAS_SERVOS
  4668. /**
  4669. * M280: Get or set servo position. P<index> S<angle>
  4670. */
  4671. inline void gcode_M280() {
  4672. int servo_index = code_seen('P') ? code_value_int() : -1;
  4673. int servo_position = 0;
  4674. if (code_seen('S')) {
  4675. servo_position = code_value_int();
  4676. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4677. MOVE_SERVO(servo_index, servo_position);
  4678. else {
  4679. SERIAL_ERROR_START;
  4680. SERIAL_ERROR("Servo ");
  4681. SERIAL_ERROR(servo_index);
  4682. SERIAL_ERRORLN(" out of range");
  4683. }
  4684. }
  4685. else if (servo_index >= 0) {
  4686. SERIAL_ECHO_START;
  4687. SERIAL_ECHO(" Servo ");
  4688. SERIAL_ECHO(servo_index);
  4689. SERIAL_ECHO(": ");
  4690. SERIAL_ECHOLN(servo[servo_index].read());
  4691. }
  4692. }
  4693. #endif // HAS_SERVOS
  4694. #if HAS_BUZZER
  4695. /**
  4696. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4697. */
  4698. inline void gcode_M300() {
  4699. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4700. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4701. // Limits the tone duration to 0-5 seconds.
  4702. NOMORE(duration, 5000);
  4703. buzzer.tone(duration, frequency);
  4704. }
  4705. #endif // HAS_BUZZER
  4706. #if ENABLED(PIDTEMP)
  4707. /**
  4708. * M301: Set PID parameters P I D (and optionally C, L)
  4709. *
  4710. * P[float] Kp term
  4711. * I[float] Ki term (unscaled)
  4712. * D[float] Kd term (unscaled)
  4713. *
  4714. * With PID_ADD_EXTRUSION_RATE:
  4715. *
  4716. * C[float] Kc term
  4717. * L[float] LPQ length
  4718. */
  4719. inline void gcode_M301() {
  4720. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4721. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4722. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4723. if (e < HOTENDS) { // catch bad input value
  4724. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4725. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4726. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4727. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4728. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4729. if (code_seen('L')) lpq_len = code_value_float();
  4730. NOMORE(lpq_len, LPQ_MAX_LEN);
  4731. #endif
  4732. thermalManager.updatePID();
  4733. SERIAL_ECHO_START;
  4734. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4735. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4736. SERIAL_ECHO(e);
  4737. #endif // PID_PARAMS_PER_HOTEND
  4738. SERIAL_ECHO(" p:");
  4739. SERIAL_ECHO(PID_PARAM(Kp, e));
  4740. SERIAL_ECHO(" i:");
  4741. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4742. SERIAL_ECHO(" d:");
  4743. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4744. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4745. SERIAL_ECHO(" c:");
  4746. //Kc does not have scaling applied above, or in resetting defaults
  4747. SERIAL_ECHO(PID_PARAM(Kc, e));
  4748. #endif
  4749. SERIAL_EOL;
  4750. }
  4751. else {
  4752. SERIAL_ERROR_START;
  4753. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4754. }
  4755. }
  4756. #endif // PIDTEMP
  4757. #if ENABLED(PIDTEMPBED)
  4758. inline void gcode_M304() {
  4759. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4760. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4761. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4762. thermalManager.updatePID();
  4763. SERIAL_ECHO_START;
  4764. SERIAL_ECHO(" p:");
  4765. SERIAL_ECHO(thermalManager.bedKp);
  4766. SERIAL_ECHO(" i:");
  4767. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4768. SERIAL_ECHO(" d:");
  4769. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4770. }
  4771. #endif // PIDTEMPBED
  4772. #if defined(CHDK) || HAS_PHOTOGRAPH
  4773. /**
  4774. * M240: Trigger a camera by emulating a Canon RC-1
  4775. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4776. */
  4777. inline void gcode_M240() {
  4778. #ifdef CHDK
  4779. OUT_WRITE(CHDK, HIGH);
  4780. chdkHigh = millis();
  4781. chdkActive = true;
  4782. #elif HAS_PHOTOGRAPH
  4783. const uint8_t NUM_PULSES = 16;
  4784. const float PULSE_LENGTH = 0.01524;
  4785. for (int i = 0; i < NUM_PULSES; i++) {
  4786. WRITE(PHOTOGRAPH_PIN, HIGH);
  4787. _delay_ms(PULSE_LENGTH);
  4788. WRITE(PHOTOGRAPH_PIN, LOW);
  4789. _delay_ms(PULSE_LENGTH);
  4790. }
  4791. delay(7.33);
  4792. for (int i = 0; i < NUM_PULSES; i++) {
  4793. WRITE(PHOTOGRAPH_PIN, HIGH);
  4794. _delay_ms(PULSE_LENGTH);
  4795. WRITE(PHOTOGRAPH_PIN, LOW);
  4796. _delay_ms(PULSE_LENGTH);
  4797. }
  4798. #endif // !CHDK && HAS_PHOTOGRAPH
  4799. }
  4800. #endif // CHDK || PHOTOGRAPH_PIN
  4801. #if HAS_LCD_CONTRAST
  4802. /**
  4803. * M250: Read and optionally set the LCD contrast
  4804. */
  4805. inline void gcode_M250() {
  4806. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4807. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4808. SERIAL_PROTOCOL(lcd_contrast);
  4809. SERIAL_EOL;
  4810. }
  4811. #endif // HAS_LCD_CONTRAST
  4812. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4813. /**
  4814. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4815. */
  4816. inline void gcode_M302() {
  4817. thermalManager.extrude_min_temp = code_seen('S') ? code_value_temp_abs() : 0;
  4818. }
  4819. #endif // PREVENT_DANGEROUS_EXTRUDE
  4820. /**
  4821. * M303: PID relay autotune
  4822. *
  4823. * S<temperature> sets the target temperature. (default 150C)
  4824. * E<extruder> (-1 for the bed) (default 0)
  4825. * C<cycles>
  4826. * U<bool> with a non-zero value will apply the result to current settings
  4827. */
  4828. inline void gcode_M303() {
  4829. #if HAS_PID_HEATING
  4830. int e = code_seen('E') ? code_value_int() : 0;
  4831. int c = code_seen('C') ? code_value_int() : 5;
  4832. bool u = code_seen('U') && code_value_bool();
  4833. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4834. if (e >= 0 && e < HOTENDS)
  4835. target_extruder = e;
  4836. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4837. thermalManager.PID_autotune(temp, e, c, u);
  4838. KEEPALIVE_STATE(IN_HANDLER);
  4839. #else
  4840. SERIAL_ERROR_START;
  4841. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4842. #endif
  4843. }
  4844. #if ENABLED(SCARA)
  4845. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4846. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4847. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4848. if (IsRunning()) {
  4849. //gcode_get_destination(); // For X Y Z E F
  4850. delta[X_AXIS] = delta_x;
  4851. delta[Y_AXIS] = delta_y;
  4852. calculate_SCARA_forward_Transform(delta);
  4853. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4854. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4855. prepare_move_to_destination();
  4856. //ok_to_send();
  4857. return true;
  4858. }
  4859. return false;
  4860. }
  4861. /**
  4862. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4863. */
  4864. inline bool gcode_M360() {
  4865. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4866. return SCARA_move_to_cal(0, 120);
  4867. }
  4868. /**
  4869. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4870. */
  4871. inline bool gcode_M361() {
  4872. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4873. return SCARA_move_to_cal(90, 130);
  4874. }
  4875. /**
  4876. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4877. */
  4878. inline bool gcode_M362() {
  4879. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4880. return SCARA_move_to_cal(60, 180);
  4881. }
  4882. /**
  4883. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4884. */
  4885. inline bool gcode_M363() {
  4886. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4887. return SCARA_move_to_cal(50, 90);
  4888. }
  4889. /**
  4890. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4891. */
  4892. inline bool gcode_M364() {
  4893. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4894. return SCARA_move_to_cal(45, 135);
  4895. }
  4896. /**
  4897. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4898. */
  4899. inline void gcode_M365() {
  4900. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4901. if (code_seen(axis_codes[i])) {
  4902. axis_scaling[i] = code_value_float();
  4903. }
  4904. }
  4905. }
  4906. #endif // SCARA
  4907. #if ENABLED(EXT_SOLENOID)
  4908. void enable_solenoid(uint8_t num) {
  4909. switch (num) {
  4910. case 0:
  4911. OUT_WRITE(SOL0_PIN, HIGH);
  4912. break;
  4913. #if HAS_SOLENOID_1
  4914. case 1:
  4915. OUT_WRITE(SOL1_PIN, HIGH);
  4916. break;
  4917. #endif
  4918. #if HAS_SOLENOID_2
  4919. case 2:
  4920. OUT_WRITE(SOL2_PIN, HIGH);
  4921. break;
  4922. #endif
  4923. #if HAS_SOLENOID_3
  4924. case 3:
  4925. OUT_WRITE(SOL3_PIN, HIGH);
  4926. break;
  4927. #endif
  4928. default:
  4929. SERIAL_ECHO_START;
  4930. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4931. break;
  4932. }
  4933. }
  4934. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4935. void disable_all_solenoids() {
  4936. OUT_WRITE(SOL0_PIN, LOW);
  4937. OUT_WRITE(SOL1_PIN, LOW);
  4938. OUT_WRITE(SOL2_PIN, LOW);
  4939. OUT_WRITE(SOL3_PIN, LOW);
  4940. }
  4941. /**
  4942. * M380: Enable solenoid on the active extruder
  4943. */
  4944. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4945. /**
  4946. * M381: Disable all solenoids
  4947. */
  4948. inline void gcode_M381() { disable_all_solenoids(); }
  4949. #endif // EXT_SOLENOID
  4950. /**
  4951. * M400: Finish all moves
  4952. */
  4953. inline void gcode_M400() { stepper.synchronize(); }
  4954. #if HAS_BED_PROBE
  4955. /**
  4956. * M401: Engage Z Servo endstop if available
  4957. */
  4958. inline void gcode_M401() { deploy_z_probe(); }
  4959. /**
  4960. * M402: Retract Z Servo endstop if enabled
  4961. */
  4962. inline void gcode_M402() { stow_z_probe(); }
  4963. #endif // HAS_BED_PROBE
  4964. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4965. /**
  4966. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4967. */
  4968. inline void gcode_M404() {
  4969. if (code_seen('W')) {
  4970. filament_width_nominal = code_value_linear_units();
  4971. }
  4972. else {
  4973. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4974. SERIAL_PROTOCOLLN(filament_width_nominal);
  4975. }
  4976. }
  4977. /**
  4978. * M405: Turn on filament sensor for control
  4979. */
  4980. inline void gcode_M405() {
  4981. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  4982. // everything else, it uses code_value_int() instead of code_value_linear_units().
  4983. if (code_seen('D')) meas_delay_cm = code_value_int();
  4984. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4985. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4986. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  4987. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4988. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4989. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4990. }
  4991. filament_sensor = true;
  4992. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4993. //SERIAL_PROTOCOL(filament_width_meas);
  4994. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4995. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4996. }
  4997. /**
  4998. * M406: Turn off filament sensor for control
  4999. */
  5000. inline void gcode_M406() { filament_sensor = false; }
  5001. /**
  5002. * M407: Get measured filament diameter on serial output
  5003. */
  5004. inline void gcode_M407() {
  5005. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5006. SERIAL_PROTOCOLLN(filament_width_meas);
  5007. }
  5008. #endif // FILAMENT_WIDTH_SENSOR
  5009. #if DISABLED(DELTA) && DISABLED(SCARA)
  5010. void set_current_position_from_planner() {
  5011. stepper.synchronize();
  5012. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5013. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5014. current_position[X_AXIS] = pos.x;
  5015. current_position[Y_AXIS] = pos.y;
  5016. current_position[Z_AXIS] = pos.z;
  5017. #else
  5018. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5019. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5020. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5021. #endif
  5022. sync_plan_position(); // ...re-apply to planner position
  5023. }
  5024. #endif
  5025. /**
  5026. * M410: Quickstop - Abort all planned moves
  5027. *
  5028. * This will stop the carriages mid-move, so most likely they
  5029. * will be out of sync with the stepper position after this.
  5030. */
  5031. inline void gcode_M410() {
  5032. stepper.quick_stop();
  5033. #if DISABLED(DELTA) && DISABLED(SCARA)
  5034. set_current_position_from_planner();
  5035. #endif
  5036. }
  5037. #if ENABLED(MESH_BED_LEVELING)
  5038. /**
  5039. * M420: Enable/Disable Mesh Bed Leveling
  5040. */
  5041. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5042. /**
  5043. * M421: Set a single Mesh Bed Leveling Z coordinate
  5044. * Use either 'M421 X<mm> Y<mm> Z<mm>' or 'M421 I<xindex> J<yindex> Z<mm>'
  5045. */
  5046. inline void gcode_M421() {
  5047. int8_t px, py;
  5048. float z = 0;
  5049. bool hasX, hasY, hasZ, hasI, hasJ;
  5050. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5051. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5052. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5053. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5054. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5055. if (hasX && hasY && hasZ) {
  5056. if (px >= 0 && py >= 0)
  5057. mbl.set_z(px, py, z);
  5058. else {
  5059. SERIAL_ERROR_START;
  5060. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5061. }
  5062. }
  5063. else if (hasI && hasJ && hasZ) {
  5064. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5065. mbl.set_z(px, py, z);
  5066. else {
  5067. SERIAL_ERROR_START;
  5068. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5069. }
  5070. }
  5071. else {
  5072. SERIAL_ERROR_START;
  5073. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5074. }
  5075. }
  5076. #endif
  5077. /**
  5078. * M428: Set home_offset based on the distance between the
  5079. * current_position and the nearest "reference point."
  5080. * If an axis is past center its endstop position
  5081. * is the reference-point. Otherwise it uses 0. This allows
  5082. * the Z offset to be set near the bed when using a max endstop.
  5083. *
  5084. * M428 can't be used more than 2cm away from 0 or an endstop.
  5085. *
  5086. * Use M206 to set these values directly.
  5087. */
  5088. inline void gcode_M428() {
  5089. bool err = false;
  5090. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5091. if (axis_homed[i]) {
  5092. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5093. diff = current_position[i] - base;
  5094. if (diff > -20 && diff < 20) {
  5095. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5096. }
  5097. else {
  5098. SERIAL_ERROR_START;
  5099. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5100. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5101. #if HAS_BUZZER
  5102. buzzer.tone(200, 40);
  5103. #endif
  5104. err = true;
  5105. break;
  5106. }
  5107. }
  5108. }
  5109. if (!err) {
  5110. SYNC_PLAN_POSITION_KINEMATIC();
  5111. report_current_position();
  5112. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5113. #if HAS_BUZZER
  5114. buzzer.tone(200, 659);
  5115. buzzer.tone(200, 698);
  5116. #endif
  5117. }
  5118. }
  5119. /**
  5120. * M500: Store settings in EEPROM
  5121. */
  5122. inline void gcode_M500() {
  5123. Config_StoreSettings();
  5124. }
  5125. /**
  5126. * M501: Read settings from EEPROM
  5127. */
  5128. inline void gcode_M501() {
  5129. Config_RetrieveSettings();
  5130. }
  5131. /**
  5132. * M502: Revert to default settings
  5133. */
  5134. inline void gcode_M502() {
  5135. Config_ResetDefault();
  5136. }
  5137. /**
  5138. * M503: print settings currently in memory
  5139. */
  5140. inline void gcode_M503() {
  5141. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5142. }
  5143. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5144. /**
  5145. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5146. */
  5147. inline void gcode_M540() {
  5148. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5149. }
  5150. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5151. #if HAS_BED_PROBE
  5152. inline void gcode_M851() {
  5153. SERIAL_ECHO_START;
  5154. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5155. SERIAL_CHAR(' ');
  5156. if (code_seen('Z')) {
  5157. float value = code_value_axis_units(Z_AXIS);
  5158. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5159. zprobe_zoffset = value;
  5160. SERIAL_ECHO(zprobe_zoffset);
  5161. }
  5162. else {
  5163. SERIAL_ECHOPGM(MSG_Z_MIN);
  5164. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5165. SERIAL_ECHOPGM(MSG_Z_MAX);
  5166. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5167. }
  5168. }
  5169. else {
  5170. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5171. }
  5172. SERIAL_EOL;
  5173. }
  5174. #endif // HAS_BED_PROBE
  5175. #if ENABLED(FILAMENTCHANGEENABLE)
  5176. /**
  5177. * M600: Pause for filament change
  5178. *
  5179. * E[distance] - Retract the filament this far (negative value)
  5180. * Z[distance] - Move the Z axis by this distance
  5181. * X[position] - Move to this X position, with Y
  5182. * Y[position] - Move to this Y position, with X
  5183. * L[distance] - Retract distance for removal (manual reload)
  5184. *
  5185. * Default values are used for omitted arguments.
  5186. *
  5187. */
  5188. inline void gcode_M600() {
  5189. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5190. SERIAL_ERROR_START;
  5191. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5192. return;
  5193. }
  5194. float lastpos[NUM_AXIS];
  5195. #if ENABLED(DELTA)
  5196. float fr60 = feedrate / 60;
  5197. #endif
  5198. for (int i = 0; i < NUM_AXIS; i++)
  5199. lastpos[i] = destination[i] = current_position[i];
  5200. #if ENABLED(DELTA)
  5201. #define RUNPLAN calculate_delta(destination); \
  5202. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5203. #else
  5204. #define RUNPLAN line_to_destination();
  5205. #endif
  5206. //retract by E
  5207. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5208. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5209. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5210. #endif
  5211. RUNPLAN;
  5212. //lift Z
  5213. if (code_seen('Z')) destination[Z_AXIS] += code_value_axis_units(Z_AXIS);
  5214. #ifdef FILAMENTCHANGE_ZADD
  5215. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5216. #endif
  5217. RUNPLAN;
  5218. //move xy
  5219. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5220. #ifdef FILAMENTCHANGE_XPOS
  5221. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5222. #endif
  5223. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5224. #ifdef FILAMENTCHANGE_YPOS
  5225. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5226. #endif
  5227. RUNPLAN;
  5228. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5229. #ifdef FILAMENTCHANGE_FINALRETRACT
  5230. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5231. #endif
  5232. RUNPLAN;
  5233. //finish moves
  5234. stepper.synchronize();
  5235. //disable extruder steppers so filament can be removed
  5236. disable_e0();
  5237. disable_e1();
  5238. disable_e2();
  5239. disable_e3();
  5240. delay(100);
  5241. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5242. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5243. millis_t next_tick = 0;
  5244. #endif
  5245. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5246. while (!lcd_clicked()) {
  5247. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5248. millis_t ms = millis();
  5249. if (ELAPSED(ms, next_tick)) {
  5250. lcd_quick_feedback();
  5251. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5252. }
  5253. idle(true);
  5254. #else
  5255. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5256. destination[E_AXIS] = current_position[E_AXIS];
  5257. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5258. stepper.synchronize();
  5259. #endif
  5260. } // while(!lcd_clicked)
  5261. KEEPALIVE_STATE(IN_HANDLER);
  5262. lcd_quick_feedback(); // click sound feedback
  5263. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5264. current_position[E_AXIS] = 0;
  5265. stepper.synchronize();
  5266. #endif
  5267. //return to normal
  5268. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5269. #ifdef FILAMENTCHANGE_FINALRETRACT
  5270. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5271. #endif
  5272. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5273. sync_plan_position_e();
  5274. RUNPLAN; //should do nothing
  5275. lcd_reset_alert_level();
  5276. #if ENABLED(DELTA)
  5277. // Move XYZ to starting position, then E
  5278. calculate_delta(lastpos);
  5279. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5280. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5281. #else
  5282. // Move XY to starting position, then Z, then E
  5283. destination[X_AXIS] = lastpos[X_AXIS];
  5284. destination[Y_AXIS] = lastpos[Y_AXIS];
  5285. line_to_destination();
  5286. destination[Z_AXIS] = lastpos[Z_AXIS];
  5287. line_to_destination();
  5288. destination[E_AXIS] = lastpos[E_AXIS];
  5289. line_to_destination();
  5290. #endif
  5291. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5292. filament_ran_out = false;
  5293. #endif
  5294. }
  5295. #endif // FILAMENTCHANGEENABLE
  5296. #if ENABLED(DUAL_X_CARRIAGE)
  5297. /**
  5298. * M605: Set dual x-carriage movement mode
  5299. *
  5300. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5301. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5302. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5303. * millimeters x-offset and an optional differential hotend temperature of
  5304. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5305. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5306. *
  5307. * Note: the X axis should be homed after changing dual x-carriage mode.
  5308. */
  5309. inline void gcode_M605() {
  5310. stepper.synchronize();
  5311. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5312. switch (dual_x_carriage_mode) {
  5313. case DXC_DUPLICATION_MODE:
  5314. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5315. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5316. SERIAL_ECHO_START;
  5317. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5318. SERIAL_CHAR(' ');
  5319. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5320. SERIAL_CHAR(',');
  5321. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5322. SERIAL_CHAR(' ');
  5323. SERIAL_ECHO(duplicate_extruder_x_offset);
  5324. SERIAL_CHAR(',');
  5325. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5326. break;
  5327. case DXC_FULL_CONTROL_MODE:
  5328. case DXC_AUTO_PARK_MODE:
  5329. break;
  5330. default:
  5331. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5332. break;
  5333. }
  5334. active_extruder_parked = false;
  5335. extruder_duplication_enabled = false;
  5336. delayed_move_time = 0;
  5337. }
  5338. #endif // DUAL_X_CARRIAGE
  5339. #if ENABLED(LIN_ADVANCE)
  5340. /**
  5341. * M905: Set advance factor
  5342. */
  5343. inline void gcode_M905() {
  5344. stepper.synchronize();
  5345. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5346. }
  5347. #endif
  5348. /**
  5349. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5350. */
  5351. inline void gcode_M907() {
  5352. #if HAS_DIGIPOTSS
  5353. for (int i = 0; i < NUM_AXIS; i++)
  5354. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5355. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5356. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5357. #endif
  5358. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5359. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5360. #endif
  5361. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5362. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5363. #endif
  5364. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5365. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5366. #endif
  5367. #if ENABLED(DIGIPOT_I2C)
  5368. // this one uses actual amps in floating point
  5369. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5370. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5371. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5372. #endif
  5373. #if ENABLED(DAC_STEPPER_CURRENT)
  5374. if (code_seen('S')) {
  5375. float dac_percent = code_value_float();
  5376. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5377. }
  5378. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5379. #endif
  5380. }
  5381. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5382. /**
  5383. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5384. */
  5385. inline void gcode_M908() {
  5386. #if HAS_DIGIPOTSS
  5387. stepper.digitalPotWrite(
  5388. code_seen('P') ? code_value_int() : 0,
  5389. code_seen('S') ? code_value_int() : 0
  5390. );
  5391. #endif
  5392. #ifdef DAC_STEPPER_CURRENT
  5393. dac_current_raw(
  5394. code_seen('P') ? code_value_byte() : -1,
  5395. code_seen('S') ? code_value_ushort() : 0
  5396. );
  5397. #endif
  5398. }
  5399. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5400. inline void gcode_M909() { dac_print_values(); }
  5401. inline void gcode_M910() { dac_commit_eeprom(); }
  5402. #endif
  5403. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5404. #if HAS_MICROSTEPS
  5405. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5406. inline void gcode_M350() {
  5407. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5408. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5409. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5410. stepper.microstep_readings();
  5411. }
  5412. /**
  5413. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5414. * S# determines MS1 or MS2, X# sets the pin high/low.
  5415. */
  5416. inline void gcode_M351() {
  5417. if (code_seen('S')) switch (code_value_byte()) {
  5418. case 1:
  5419. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5420. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5421. break;
  5422. case 2:
  5423. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5424. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5425. break;
  5426. }
  5427. stepper.microstep_readings();
  5428. }
  5429. #endif // HAS_MICROSTEPS
  5430. /**
  5431. * M999: Restart after being stopped
  5432. *
  5433. * Default behaviour is to flush the serial buffer and request
  5434. * a resend to the host starting on the last N line received.
  5435. *
  5436. * Sending "M999 S1" will resume printing without flushing the
  5437. * existing command buffer.
  5438. *
  5439. */
  5440. inline void gcode_M999() {
  5441. Running = true;
  5442. lcd_reset_alert_level();
  5443. if (code_seen('S') && code_value_bool()) return;
  5444. // gcode_LastN = Stopped_gcode_LastN;
  5445. FlushSerialRequestResend();
  5446. }
  5447. /**
  5448. * T0-T3: Switch tool, usually switching extruders
  5449. *
  5450. * F[mm/min] Set the movement feedrate
  5451. * S1 Don't move the tool in XY after change
  5452. */
  5453. inline void gcode_T(uint8_t tmp_extruder) {
  5454. if (tmp_extruder >= EXTRUDERS) {
  5455. SERIAL_ECHO_START;
  5456. SERIAL_CHAR('T');
  5457. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5458. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5459. return;
  5460. }
  5461. #if HOTENDS > 1
  5462. float stored_feedrate = feedrate;
  5463. if (code_seen('F')) {
  5464. float next_feedrate = code_value_axis_units(X_AXIS);
  5465. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5466. }
  5467. else
  5468. feedrate = XY_PROBE_FEEDRATE;
  5469. if (tmp_extruder != active_extruder) {
  5470. bool no_move = code_seen('S') && code_value_bool();
  5471. // Save current position to return to after applying extruder offset
  5472. if (!no_move) set_destination_to_current();
  5473. #if ENABLED(DUAL_X_CARRIAGE)
  5474. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5475. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5476. // Park old head: 1) raise 2) move to park position 3) lower
  5477. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5478. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5479. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5480. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5481. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5482. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5483. stepper.synchronize();
  5484. }
  5485. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5486. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5487. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5488. active_extruder = tmp_extruder;
  5489. // This function resets the max/min values - the current position may be overwritten below.
  5490. set_axis_is_at_home(X_AXIS);
  5491. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5492. current_position[X_AXIS] = inactive_extruder_x_pos;
  5493. inactive_extruder_x_pos = destination[X_AXIS];
  5494. }
  5495. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5496. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5497. if (active_extruder_parked)
  5498. current_position[X_AXIS] = inactive_extruder_x_pos;
  5499. else
  5500. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5501. inactive_extruder_x_pos = destination[X_AXIS];
  5502. extruder_duplication_enabled = false;
  5503. }
  5504. else {
  5505. // record raised toolhead position for use by unpark
  5506. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5507. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5508. active_extruder_parked = true;
  5509. delayed_move_time = 0;
  5510. }
  5511. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5512. #else // !DUAL_X_CARRIAGE
  5513. //
  5514. // Set current_position to the position of the new nozzle.
  5515. // Offsets are based on linear distance, so we need to get
  5516. // the resulting position in coordinate space.
  5517. //
  5518. // - With grid or 3-point leveling, offset XYZ by a tilted vector
  5519. // - With mesh leveling, update Z for the new position
  5520. // - Otherwise, just use the raw linear distance
  5521. //
  5522. // Software endstops are altered here too. Consider a case where:
  5523. // E0 at X=0 ... E1 at X=10
  5524. // When we switch to E1 now X=10, but E1 can't move left.
  5525. // To express this we apply the change in XY to the software endstops.
  5526. // E1 can move farther right than E0, so the right limit is extended.
  5527. //
  5528. // Note that we don't adjust the Z software endstops. Why not?
  5529. // Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5530. // because the bed is 1mm lower at the new position. As long as
  5531. // the first nozzle is out of the way, the carriage should be
  5532. // allowed to move 1mm lower. This technically "breaks" the
  5533. // Z software endstop. But this is technically correct (and
  5534. // there is no viable alternative).
  5535. //
  5536. float xydiff[2] = {
  5537. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5538. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5539. };
  5540. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5541. // Offset extruder, make sure to apply the bed level rotation matrix
  5542. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5543. hotend_offset[Y_AXIS][tmp_extruder],
  5544. 0),
  5545. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5546. hotend_offset[Y_AXIS][active_extruder],
  5547. 0),
  5548. offset_vec = tmp_offset_vec - act_offset_vec;
  5549. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5550. if (DEBUGGING(LEVELING)) {
  5551. SERIAL_ECHOLNPGM(">>> gcode_T");
  5552. tmp_offset_vec.debug("tmp_offset_vec");
  5553. act_offset_vec.debug("act_offset_vec");
  5554. offset_vec.debug("offset_vec (BEFORE)");
  5555. DEBUG_POS("BEFORE rotation", current_position);
  5556. }
  5557. #endif
  5558. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5559. // Adjust the current position
  5560. current_position[X_AXIS] += offset_vec.x;
  5561. current_position[Y_AXIS] += offset_vec.y;
  5562. current_position[Z_AXIS] += offset_vec.z;
  5563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5564. if (DEBUGGING(LEVELING)) {
  5565. offset_vec.debug("offset_vec (AFTER)");
  5566. DEBUG_POS("AFTER rotation", current_position);
  5567. SERIAL_ECHOLNPGM("<<< gcode_T");
  5568. }
  5569. #endif
  5570. #elif ENABLED(MESH_BED_LEVELING)
  5571. if (mbl.active()) {
  5572. float xpos = current_position[X_AXIS] - home_offset[X_AXIS],
  5573. ypos = current_position[Y_AXIS] - home_offset[Y_AXIS];
  5574. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5575. }
  5576. #else // no bed leveling
  5577. // The newly-selected extruder XY is actually at...
  5578. current_position[X_AXIS] += xydiff[X_AXIS];
  5579. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5580. #endif // no bed leveling
  5581. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5582. position_shift[i] += xydiff[i];
  5583. update_software_endstops((AxisEnum)i);
  5584. }
  5585. // Set the new active extruder
  5586. active_extruder = tmp_extruder;
  5587. #endif // !DUAL_X_CARRIAGE
  5588. // Tell the planner the new "current position"
  5589. SYNC_PLAN_POSITION_KINEMATIC();
  5590. // Move to the "old position" (move the extruder into place)
  5591. if (!no_move && IsRunning()) prepare_move_to_destination();
  5592. } // (tmp_extruder != active_extruder)
  5593. #if ENABLED(EXT_SOLENOID)
  5594. stepper.synchronize();
  5595. disable_all_solenoids();
  5596. enable_solenoid_on_active_extruder();
  5597. #endif // EXT_SOLENOID
  5598. feedrate = stored_feedrate;
  5599. #else // !HOTENDS > 1
  5600. // Set the new active extruder
  5601. active_extruder = tmp_extruder;
  5602. #endif
  5603. SERIAL_ECHO_START;
  5604. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5605. SERIAL_PROTOCOLLN((int)active_extruder);
  5606. }
  5607. /**
  5608. * Process a single command and dispatch it to its handler
  5609. * This is called from the main loop()
  5610. */
  5611. void process_next_command() {
  5612. current_command = command_queue[cmd_queue_index_r];
  5613. if (DEBUGGING(ECHO)) {
  5614. SERIAL_ECHO_START;
  5615. SERIAL_ECHOLN(current_command);
  5616. }
  5617. // Sanitize the current command:
  5618. // - Skip leading spaces
  5619. // - Bypass N[-0-9][0-9]*[ ]*
  5620. // - Overwrite * with nul to mark the end
  5621. while (*current_command == ' ') ++current_command;
  5622. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5623. current_command += 2; // skip N[-0-9]
  5624. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5625. while (*current_command == ' ') ++current_command; // skip [ ]*
  5626. }
  5627. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5628. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5629. char *cmd_ptr = current_command;
  5630. // Get the command code, which must be G, M, or T
  5631. char command_code = *cmd_ptr++;
  5632. // Skip spaces to get the numeric part
  5633. while (*cmd_ptr == ' ') cmd_ptr++;
  5634. uint16_t codenum = 0; // define ahead of goto
  5635. // Bail early if there's no code
  5636. bool code_is_good = NUMERIC(*cmd_ptr);
  5637. if (!code_is_good) goto ExitUnknownCommand;
  5638. // Get and skip the code number
  5639. do {
  5640. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5641. cmd_ptr++;
  5642. } while (NUMERIC(*cmd_ptr));
  5643. // Skip all spaces to get to the first argument, or nul
  5644. while (*cmd_ptr == ' ') cmd_ptr++;
  5645. // The command's arguments (if any) start here, for sure!
  5646. current_command_args = cmd_ptr;
  5647. KEEPALIVE_STATE(IN_HANDLER);
  5648. // Handle a known G, M, or T
  5649. switch (command_code) {
  5650. case 'G': switch (codenum) {
  5651. // G0, G1
  5652. case 0:
  5653. case 1:
  5654. gcode_G0_G1();
  5655. break;
  5656. // G2, G3
  5657. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5658. case 2: // G2 - CW ARC
  5659. case 3: // G3 - CCW ARC
  5660. gcode_G2_G3(codenum == 2);
  5661. break;
  5662. #endif
  5663. // G4 Dwell
  5664. case 4:
  5665. gcode_G4();
  5666. break;
  5667. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5668. // G5
  5669. case 5: // G5 - Cubic B_spline
  5670. gcode_G5();
  5671. break;
  5672. #endif // BEZIER_CURVE_SUPPORT
  5673. #if ENABLED(FWRETRACT)
  5674. case 10: // G10: retract
  5675. case 11: // G11: retract_recover
  5676. gcode_G10_G11(codenum == 10);
  5677. break;
  5678. #endif // FWRETRACT
  5679. #if ENABLED(INCH_MODE_SUPPORT)
  5680. case 20: //G20: Inch Mode
  5681. gcode_G20();
  5682. break;
  5683. case 21: //G21: MM Mode
  5684. gcode_G21();
  5685. break;
  5686. #endif
  5687. case 28: // G28: Home all axes, one at a time
  5688. gcode_G28();
  5689. break;
  5690. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5691. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5692. gcode_G29();
  5693. break;
  5694. #endif
  5695. #if HAS_BED_PROBE
  5696. case 30: // G30 Single Z probe
  5697. gcode_G30();
  5698. break;
  5699. #if ENABLED(Z_PROBE_SLED)
  5700. case 31: // G31: dock the sled
  5701. gcode_G31();
  5702. break;
  5703. case 32: // G32: undock the sled
  5704. gcode_G32();
  5705. break;
  5706. #endif // Z_PROBE_SLED
  5707. #endif // HAS_BED_PROBE
  5708. case 90: // G90
  5709. relative_mode = false;
  5710. break;
  5711. case 91: // G91
  5712. relative_mode = true;
  5713. break;
  5714. case 92: // G92
  5715. gcode_G92();
  5716. break;
  5717. }
  5718. break;
  5719. case 'M': switch (codenum) {
  5720. #if ENABLED(ULTIPANEL)
  5721. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5722. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5723. gcode_M0_M1();
  5724. break;
  5725. #endif // ULTIPANEL
  5726. case 17:
  5727. gcode_M17();
  5728. break;
  5729. #if ENABLED(SDSUPPORT)
  5730. case 20: // M20 - list SD card
  5731. gcode_M20(); break;
  5732. case 21: // M21 - init SD card
  5733. gcode_M21(); break;
  5734. case 22: //M22 - release SD card
  5735. gcode_M22(); break;
  5736. case 23: //M23 - Select file
  5737. gcode_M23(); break;
  5738. case 24: //M24 - Start SD print
  5739. gcode_M24(); break;
  5740. case 25: //M25 - Pause SD print
  5741. gcode_M25(); break;
  5742. case 26: //M26 - Set SD index
  5743. gcode_M26(); break;
  5744. case 27: //M27 - Get SD status
  5745. gcode_M27(); break;
  5746. case 28: //M28 - Start SD write
  5747. gcode_M28(); break;
  5748. case 29: //M29 - Stop SD write
  5749. gcode_M29(); break;
  5750. case 30: //M30 <filename> Delete File
  5751. gcode_M30(); break;
  5752. case 32: //M32 - Select file and start SD print
  5753. gcode_M32(); break;
  5754. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5755. case 33: //M33 - Get the long full path to a file or folder
  5756. gcode_M33(); break;
  5757. #endif // LONG_FILENAME_HOST_SUPPORT
  5758. case 928: //M928 - Start SD write
  5759. gcode_M928(); break;
  5760. #endif //SDSUPPORT
  5761. case 31: //M31 take time since the start of the SD print or an M109 command
  5762. gcode_M31();
  5763. break;
  5764. case 42: //M42 -Change pin status via gcode
  5765. gcode_M42();
  5766. break;
  5767. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5768. case 48: // M48 Z probe repeatability
  5769. gcode_M48();
  5770. break;
  5771. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5772. case 75: // Start print timer
  5773. gcode_M75();
  5774. break;
  5775. case 76: // Pause print timer
  5776. gcode_M76();
  5777. break;
  5778. case 77: // Stop print timer
  5779. gcode_M77();
  5780. break;
  5781. #if ENABLED(PRINTCOUNTER)
  5782. case 78: // Show print statistics
  5783. gcode_M78();
  5784. break;
  5785. #endif
  5786. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5787. case 100:
  5788. gcode_M100();
  5789. break;
  5790. #endif
  5791. case 104: // M104
  5792. gcode_M104();
  5793. break;
  5794. case 110: // M110: Set Current Line Number
  5795. gcode_M110();
  5796. break;
  5797. case 111: // M111: Set debug level
  5798. gcode_M111();
  5799. break;
  5800. case 112: // M112: Emergency Stop
  5801. gcode_M112();
  5802. break;
  5803. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5804. case 113: // M113: Set Host Keepalive interval
  5805. gcode_M113();
  5806. break;
  5807. #endif
  5808. case 140: // M140: Set bed temp
  5809. gcode_M140();
  5810. break;
  5811. case 105: // M105: Read current temperature
  5812. gcode_M105();
  5813. KEEPALIVE_STATE(NOT_BUSY);
  5814. return; // "ok" already printed
  5815. case 109: // M109: Wait for temperature
  5816. gcode_M109();
  5817. break;
  5818. #if HAS_TEMP_BED
  5819. case 190: // M190: Wait for bed heater to reach target
  5820. gcode_M190();
  5821. break;
  5822. #endif // HAS_TEMP_BED
  5823. #if FAN_COUNT > 0
  5824. case 106: // M106: Fan On
  5825. gcode_M106();
  5826. break;
  5827. case 107: // M107: Fan Off
  5828. gcode_M107();
  5829. break;
  5830. #endif // FAN_COUNT > 0
  5831. #if ENABLED(BARICUDA)
  5832. // PWM for HEATER_1_PIN
  5833. #if HAS_HEATER_1
  5834. case 126: // M126: valve open
  5835. gcode_M126();
  5836. break;
  5837. case 127: // M127: valve closed
  5838. gcode_M127();
  5839. break;
  5840. #endif // HAS_HEATER_1
  5841. // PWM for HEATER_2_PIN
  5842. #if HAS_HEATER_2
  5843. case 128: // M128: valve open
  5844. gcode_M128();
  5845. break;
  5846. case 129: // M129: valve closed
  5847. gcode_M129();
  5848. break;
  5849. #endif // HAS_HEATER_2
  5850. #endif // BARICUDA
  5851. #if HAS_POWER_SWITCH
  5852. case 80: // M80: Turn on Power Supply
  5853. gcode_M80();
  5854. break;
  5855. #endif // HAS_POWER_SWITCH
  5856. case 81: // M81: Turn off Power, including Power Supply, if possible
  5857. gcode_M81();
  5858. break;
  5859. case 82:
  5860. gcode_M82();
  5861. break;
  5862. case 83:
  5863. gcode_M83();
  5864. break;
  5865. case 18: // (for compatibility)
  5866. case 84: // M84
  5867. gcode_M18_M84();
  5868. break;
  5869. case 85: // M85
  5870. gcode_M85();
  5871. break;
  5872. case 92: // M92: Set the steps-per-unit for one or more axes
  5873. gcode_M92();
  5874. break;
  5875. case 115: // M115: Report capabilities
  5876. gcode_M115();
  5877. break;
  5878. case 117: // M117: Set LCD message text, if possible
  5879. gcode_M117();
  5880. break;
  5881. case 114: // M114: Report current position
  5882. gcode_M114();
  5883. break;
  5884. case 120: // M120: Enable endstops
  5885. gcode_M120();
  5886. break;
  5887. case 121: // M121: Disable endstops
  5888. gcode_M121();
  5889. break;
  5890. case 119: // M119: Report endstop states
  5891. gcode_M119();
  5892. break;
  5893. #if ENABLED(ULTIPANEL)
  5894. case 145: // M145: Set material heatup parameters
  5895. gcode_M145();
  5896. break;
  5897. #endif
  5898. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5899. case 149:
  5900. gcode_M149();
  5901. break;
  5902. #endif
  5903. #if ENABLED(BLINKM)
  5904. case 150: // M150
  5905. gcode_M150();
  5906. break;
  5907. #endif //BLINKM
  5908. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5909. case 155:
  5910. gcode_M155();
  5911. break;
  5912. case 156:
  5913. gcode_M156();
  5914. break;
  5915. #endif //EXPERIMENTAL_I2CBUS
  5916. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5917. gcode_M200();
  5918. break;
  5919. case 201: // M201
  5920. gcode_M201();
  5921. break;
  5922. #if 0 // Not used for Sprinter/grbl gen6
  5923. case 202: // M202
  5924. gcode_M202();
  5925. break;
  5926. #endif
  5927. case 203: // M203 max feedrate mm/sec
  5928. gcode_M203();
  5929. break;
  5930. case 204: // M204 acclereration S normal moves T filmanent only moves
  5931. gcode_M204();
  5932. break;
  5933. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5934. gcode_M205();
  5935. break;
  5936. case 206: // M206 additional homing offset
  5937. gcode_M206();
  5938. break;
  5939. #if ENABLED(DELTA)
  5940. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5941. gcode_M665();
  5942. break;
  5943. #endif
  5944. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5945. case 666: // M666 set delta / dual endstop adjustment
  5946. gcode_M666();
  5947. break;
  5948. #endif
  5949. #if ENABLED(FWRETRACT)
  5950. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5951. gcode_M207();
  5952. break;
  5953. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5954. gcode_M208();
  5955. break;
  5956. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5957. gcode_M209();
  5958. break;
  5959. #endif // FWRETRACT
  5960. #if HOTENDS > 1
  5961. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5962. gcode_M218();
  5963. break;
  5964. #endif
  5965. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5966. gcode_M220();
  5967. break;
  5968. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5969. gcode_M221();
  5970. break;
  5971. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5972. gcode_M226();
  5973. break;
  5974. #if HAS_SERVOS
  5975. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5976. gcode_M280();
  5977. break;
  5978. #endif // HAS_SERVOS
  5979. #if HAS_BUZZER
  5980. case 300: // M300 - Play beep tone
  5981. gcode_M300();
  5982. break;
  5983. #endif // HAS_BUZZER
  5984. #if ENABLED(PIDTEMP)
  5985. case 301: // M301
  5986. gcode_M301();
  5987. break;
  5988. #endif // PIDTEMP
  5989. #if ENABLED(PIDTEMPBED)
  5990. case 304: // M304
  5991. gcode_M304();
  5992. break;
  5993. #endif // PIDTEMPBED
  5994. #if defined(CHDK) || HAS_PHOTOGRAPH
  5995. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5996. gcode_M240();
  5997. break;
  5998. #endif // CHDK || PHOTOGRAPH_PIN
  5999. #if HAS_LCD_CONTRAST
  6000. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6001. gcode_M250();
  6002. break;
  6003. #endif // HAS_LCD_CONTRAST
  6004. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6005. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6006. gcode_M302();
  6007. break;
  6008. #endif // PREVENT_DANGEROUS_EXTRUDE
  6009. case 303: // M303 PID autotune
  6010. gcode_M303();
  6011. break;
  6012. #if ENABLED(SCARA)
  6013. case 360: // M360 SCARA Theta pos1
  6014. if (gcode_M360()) return;
  6015. break;
  6016. case 361: // M361 SCARA Theta pos2
  6017. if (gcode_M361()) return;
  6018. break;
  6019. case 362: // M362 SCARA Psi pos1
  6020. if (gcode_M362()) return;
  6021. break;
  6022. case 363: // M363 SCARA Psi pos2
  6023. if (gcode_M363()) return;
  6024. break;
  6025. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6026. if (gcode_M364()) return;
  6027. break;
  6028. case 365: // M365 Set SCARA scaling for X Y Z
  6029. gcode_M365();
  6030. break;
  6031. #endif // SCARA
  6032. case 400: // M400 finish all moves
  6033. gcode_M400();
  6034. break;
  6035. #if HAS_BED_PROBE
  6036. case 401:
  6037. gcode_M401();
  6038. break;
  6039. case 402:
  6040. gcode_M402();
  6041. break;
  6042. #endif // HAS_BED_PROBE
  6043. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6044. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6045. gcode_M404();
  6046. break;
  6047. case 405: //M405 Turn on filament sensor for control
  6048. gcode_M405();
  6049. break;
  6050. case 406: //M406 Turn off filament sensor for control
  6051. gcode_M406();
  6052. break;
  6053. case 407: //M407 Display measured filament diameter
  6054. gcode_M407();
  6055. break;
  6056. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6057. case 410: // M410 quickstop - Abort all the planned moves.
  6058. gcode_M410();
  6059. break;
  6060. #if ENABLED(MESH_BED_LEVELING)
  6061. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6062. gcode_M420();
  6063. break;
  6064. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6065. gcode_M421();
  6066. break;
  6067. #endif
  6068. case 428: // M428 Apply current_position to home_offset
  6069. gcode_M428();
  6070. break;
  6071. case 500: // M500 Store settings in EEPROM
  6072. gcode_M500();
  6073. break;
  6074. case 501: // M501 Read settings from EEPROM
  6075. gcode_M501();
  6076. break;
  6077. case 502: // M502 Revert to default settings
  6078. gcode_M502();
  6079. break;
  6080. case 503: // M503 print settings currently in memory
  6081. gcode_M503();
  6082. break;
  6083. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6084. case 540:
  6085. gcode_M540();
  6086. break;
  6087. #endif
  6088. #if HAS_BED_PROBE
  6089. case 851:
  6090. gcode_M851();
  6091. break;
  6092. #endif // HAS_BED_PROBE
  6093. #if ENABLED(FILAMENTCHANGEENABLE)
  6094. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6095. gcode_M600();
  6096. break;
  6097. #endif // FILAMENTCHANGEENABLE
  6098. #if ENABLED(DUAL_X_CARRIAGE)
  6099. case 605:
  6100. gcode_M605();
  6101. break;
  6102. #endif // DUAL_X_CARRIAGE
  6103. #if ENABLED(LIN_ADVANCE)
  6104. case 905: // M905 Set advance factor.
  6105. gcode_M905();
  6106. break;
  6107. #endif
  6108. case 907: // M907 Set digital trimpot motor current using axis codes.
  6109. gcode_M907();
  6110. break;
  6111. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6112. case 908: // M908 Control digital trimpot directly.
  6113. gcode_M908();
  6114. break;
  6115. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6116. case 909: // M909 Print digipot/DAC current value
  6117. gcode_M909();
  6118. break;
  6119. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6120. gcode_M910();
  6121. break;
  6122. #endif
  6123. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6124. #if HAS_MICROSTEPS
  6125. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6126. gcode_M350();
  6127. break;
  6128. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6129. gcode_M351();
  6130. break;
  6131. #endif // HAS_MICROSTEPS
  6132. case 999: // M999: Restart after being Stopped
  6133. gcode_M999();
  6134. break;
  6135. }
  6136. break;
  6137. case 'T':
  6138. gcode_T(codenum);
  6139. break;
  6140. default: code_is_good = false;
  6141. }
  6142. KEEPALIVE_STATE(NOT_BUSY);
  6143. ExitUnknownCommand:
  6144. // Still unknown command? Throw an error
  6145. if (!code_is_good) unknown_command_error();
  6146. ok_to_send();
  6147. }
  6148. void FlushSerialRequestResend() {
  6149. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6150. MYSERIAL.flush();
  6151. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6152. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6153. ok_to_send();
  6154. }
  6155. void ok_to_send() {
  6156. refresh_cmd_timeout();
  6157. if (!send_ok[cmd_queue_index_r]) return;
  6158. SERIAL_PROTOCOLPGM(MSG_OK);
  6159. #if ENABLED(ADVANCED_OK)
  6160. char* p = command_queue[cmd_queue_index_r];
  6161. if (*p == 'N') {
  6162. SERIAL_PROTOCOL(' ');
  6163. SERIAL_ECHO(*p++);
  6164. while (NUMERIC_SIGNED(*p))
  6165. SERIAL_ECHO(*p++);
  6166. }
  6167. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6168. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6169. #endif
  6170. SERIAL_EOL;
  6171. }
  6172. void clamp_to_software_endstops(float target[3]) {
  6173. if (min_software_endstops) {
  6174. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6175. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6176. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6177. }
  6178. if (max_software_endstops) {
  6179. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6180. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6181. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6182. }
  6183. }
  6184. #if ENABLED(DELTA)
  6185. void recalc_delta_settings(float radius, float diagonal_rod) {
  6186. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6187. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6188. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6189. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6190. delta_tower3_x = 0.0; // back middle tower
  6191. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6192. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6193. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6194. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6195. }
  6196. void calculate_delta(float cartesian[3]) {
  6197. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6198. - sq(delta_tower1_x - cartesian[X_AXIS])
  6199. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6200. ) + cartesian[Z_AXIS];
  6201. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6202. - sq(delta_tower2_x - cartesian[X_AXIS])
  6203. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6204. ) + cartesian[Z_AXIS];
  6205. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6206. - sq(delta_tower3_x - cartesian[X_AXIS])
  6207. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6208. ) + cartesian[Z_AXIS];
  6209. /**
  6210. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6211. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6212. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6213. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6214. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6215. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6216. */
  6217. }
  6218. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6219. // Adjust print surface height by linear interpolation over the bed_level array.
  6220. void adjust_delta(float cartesian[3]) {
  6221. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6222. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6223. float h1 = 0.001 - half, h2 = half - 0.001,
  6224. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6225. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6226. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6227. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6228. z1 = bed_level[floor_x + half][floor_y + half],
  6229. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6230. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6231. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6232. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6233. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6234. offset = (1 - ratio_x) * left + ratio_x * right;
  6235. delta[X_AXIS] += offset;
  6236. delta[Y_AXIS] += offset;
  6237. delta[Z_AXIS] += offset;
  6238. /**
  6239. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6240. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6241. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6242. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6243. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6244. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6245. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6246. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6247. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6248. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6249. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6250. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6251. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6252. */
  6253. }
  6254. #endif // AUTO_BED_LEVELING_FEATURE
  6255. #endif // DELTA
  6256. #if ENABLED(MESH_BED_LEVELING)
  6257. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6258. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6259. if (!mbl.active()) {
  6260. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6261. set_current_to_destination();
  6262. return;
  6263. }
  6264. int pcx = mbl.cell_index_x(current_position[X_AXIS] - home_offset[X_AXIS]);
  6265. int pcy = mbl.cell_index_y(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6266. int cx = mbl.cell_index_x(x - home_offset[X_AXIS]);
  6267. int cy = mbl.cell_index_y(y - home_offset[Y_AXIS]);
  6268. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6269. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6270. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6271. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6272. if (pcx == cx && pcy == cy) {
  6273. // Start and end on same mesh square
  6274. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6275. set_current_to_destination();
  6276. return;
  6277. }
  6278. float nx, ny, nz, ne, normalized_dist;
  6279. if (cx > pcx && TEST(x_splits, cx)) {
  6280. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6281. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6282. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6283. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6284. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6285. CBI(x_splits, cx);
  6286. }
  6287. else if (cx < pcx && TEST(x_splits, pcx)) {
  6288. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6289. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6290. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6291. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6292. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6293. CBI(x_splits, pcx);
  6294. }
  6295. else if (cy > pcy && TEST(y_splits, cy)) {
  6296. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6297. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6298. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6299. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6300. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6301. CBI(y_splits, cy);
  6302. }
  6303. else if (cy < pcy && TEST(y_splits, pcy)) {
  6304. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6305. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6306. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6307. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6308. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6309. CBI(y_splits, pcy);
  6310. }
  6311. else {
  6312. // Already split on a border
  6313. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6314. set_current_to_destination();
  6315. return;
  6316. }
  6317. // Do the split and look for more borders
  6318. destination[X_AXIS] = nx;
  6319. destination[Y_AXIS] = ny;
  6320. destination[Z_AXIS] = nz;
  6321. destination[E_AXIS] = ne;
  6322. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6323. destination[X_AXIS] = x;
  6324. destination[Y_AXIS] = y;
  6325. destination[Z_AXIS] = z;
  6326. destination[E_AXIS] = e;
  6327. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6328. }
  6329. #endif // MESH_BED_LEVELING
  6330. #if ENABLED(DELTA) || ENABLED(SCARA)
  6331. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6332. float difference[NUM_AXIS];
  6333. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6334. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6335. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6336. if (cartesian_mm < 0.000001) return false;
  6337. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6338. float seconds = cartesian_mm / _feedrate;
  6339. int steps = max(1, int(delta_segments_per_second * seconds));
  6340. float inv_steps = 1.0/steps;
  6341. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6342. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6343. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6344. for (int s = 1; s <= steps; s++) {
  6345. float fraction = float(s) * inv_steps;
  6346. for (int8_t i = 0; i < NUM_AXIS; i++)
  6347. target[i] = current_position[i] + difference[i] * fraction;
  6348. calculate_delta(target);
  6349. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6350. if (!bed_leveling_in_progress) adjust_delta(target);
  6351. #endif
  6352. //DEBUG_POS("prepare_delta_move_to", target);
  6353. //DEBUG_POS("prepare_delta_move_to", delta);
  6354. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6355. }
  6356. return true;
  6357. }
  6358. #endif // DELTA || SCARA
  6359. #if ENABLED(SCARA)
  6360. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6361. #endif
  6362. #if ENABLED(DUAL_X_CARRIAGE)
  6363. inline bool prepare_move_dual_x_carriage() {
  6364. if (active_extruder_parked) {
  6365. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6366. // move duplicate extruder into correct duplication position.
  6367. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6368. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6369. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6370. SYNC_PLAN_POSITION_KINEMATIC();
  6371. stepper.synchronize();
  6372. extruder_duplication_enabled = true;
  6373. active_extruder_parked = false;
  6374. }
  6375. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6376. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6377. // This is a travel move (with no extrusion)
  6378. // Skip it, but keep track of the current position
  6379. // (so it can be used as the start of the next non-travel move)
  6380. if (delayed_move_time != 0xFFFFFFFFUL) {
  6381. set_current_to_destination();
  6382. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6383. delayed_move_time = millis();
  6384. return false;
  6385. }
  6386. }
  6387. delayed_move_time = 0;
  6388. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6389. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6390. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6391. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6392. active_extruder_parked = false;
  6393. }
  6394. }
  6395. return true;
  6396. }
  6397. #endif // DUAL_X_CARRIAGE
  6398. #if DISABLED(DELTA) && DISABLED(SCARA)
  6399. inline bool prepare_cartesian_move_to_destination() {
  6400. // Do not use feedrate_multiplier for E or Z only moves
  6401. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6402. line_to_destination();
  6403. }
  6404. else {
  6405. #if ENABLED(MESH_BED_LEVELING)
  6406. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6407. return false;
  6408. #else
  6409. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6410. #endif
  6411. }
  6412. return true;
  6413. }
  6414. #endif // !DELTA && !SCARA
  6415. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6416. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6417. if (DEBUGGING(DRYRUN)) return;
  6418. float de = dest_e - curr_e;
  6419. if (de) {
  6420. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6421. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6422. SERIAL_ECHO_START;
  6423. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6424. }
  6425. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6426. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6427. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6428. SERIAL_ECHO_START;
  6429. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6430. }
  6431. #endif
  6432. }
  6433. }
  6434. #endif // PREVENT_DANGEROUS_EXTRUDE
  6435. /**
  6436. * Prepare a single move and get ready for the next one
  6437. *
  6438. * (This may call planner.buffer_line several times to put
  6439. * smaller moves into the planner for DELTA or SCARA.)
  6440. */
  6441. void prepare_move_to_destination() {
  6442. clamp_to_software_endstops(destination);
  6443. refresh_cmd_timeout();
  6444. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6445. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6446. #endif
  6447. #if ENABLED(SCARA)
  6448. if (!prepare_scara_move_to(destination)) return;
  6449. #elif ENABLED(DELTA)
  6450. if (!prepare_delta_move_to(destination)) return;
  6451. #else
  6452. #if ENABLED(DUAL_X_CARRIAGE)
  6453. if (!prepare_move_dual_x_carriage()) return;
  6454. #endif
  6455. if (!prepare_cartesian_move_to_destination()) return;
  6456. #endif
  6457. set_current_to_destination();
  6458. }
  6459. #if ENABLED(ARC_SUPPORT)
  6460. /**
  6461. * Plan an arc in 2 dimensions
  6462. *
  6463. * The arc is approximated by generating many small linear segments.
  6464. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6465. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6466. * larger segments will tend to be more efficient. Your slicer should have
  6467. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6468. */
  6469. void plan_arc(
  6470. float target[NUM_AXIS], // Destination position
  6471. float* offset, // Center of rotation relative to current_position
  6472. uint8_t clockwise // Clockwise?
  6473. ) {
  6474. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6475. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6476. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6477. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6478. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6479. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6480. r_Y = -offset[Y_AXIS],
  6481. rt_X = target[X_AXIS] - center_X,
  6482. rt_Y = target[Y_AXIS] - center_Y;
  6483. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6484. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6485. if (angular_travel < 0) angular_travel += RADIANS(360);
  6486. if (clockwise) angular_travel -= RADIANS(360);
  6487. // Make a circle if the angular rotation is 0
  6488. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6489. angular_travel += RADIANS(360);
  6490. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6491. if (mm_of_travel < 0.001) return;
  6492. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6493. if (segments == 0) segments = 1;
  6494. float theta_per_segment = angular_travel / segments;
  6495. float linear_per_segment = linear_travel / segments;
  6496. float extruder_per_segment = extruder_travel / segments;
  6497. /**
  6498. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6499. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6500. * r_T = [cos(phi) -sin(phi);
  6501. * sin(phi) cos(phi] * r ;
  6502. *
  6503. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6504. * defined from the circle center to the initial position. Each line segment is formed by successive
  6505. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6506. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6507. * all double numbers are single precision on the Arduino. (True double precision will not have
  6508. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6509. * tool precision in some cases. Therefore, arc path correction is implemented.
  6510. *
  6511. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6512. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6513. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6514. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6515. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6516. * issue for CNC machines with the single precision Arduino calculations.
  6517. *
  6518. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6519. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6520. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6521. * This is important when there are successive arc motions.
  6522. */
  6523. // Vector rotation matrix values
  6524. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6525. float sin_T = theta_per_segment;
  6526. float arc_target[NUM_AXIS];
  6527. float sin_Ti, cos_Ti, r_new_Y;
  6528. uint16_t i;
  6529. int8_t count = 0;
  6530. // Initialize the linear axis
  6531. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6532. // Initialize the extruder axis
  6533. arc_target[E_AXIS] = current_position[E_AXIS];
  6534. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6535. millis_t next_idle_ms = millis() + 200UL;
  6536. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6537. thermalManager.manage_heater();
  6538. millis_t now = millis();
  6539. if (ELAPSED(now, next_idle_ms)) {
  6540. next_idle_ms = now + 200UL;
  6541. idle();
  6542. }
  6543. if (++count < N_ARC_CORRECTION) {
  6544. // Apply vector rotation matrix to previous r_X / 1
  6545. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6546. r_X = r_X * cos_T - r_Y * sin_T;
  6547. r_Y = r_new_Y;
  6548. }
  6549. else {
  6550. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6551. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6552. // To reduce stuttering, the sin and cos could be computed at different times.
  6553. // For now, compute both at the same time.
  6554. cos_Ti = cos(i * theta_per_segment);
  6555. sin_Ti = sin(i * theta_per_segment);
  6556. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6557. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6558. count = 0;
  6559. }
  6560. // Update arc_target location
  6561. arc_target[X_AXIS] = center_X + r_X;
  6562. arc_target[Y_AXIS] = center_Y + r_Y;
  6563. arc_target[Z_AXIS] += linear_per_segment;
  6564. arc_target[E_AXIS] += extruder_per_segment;
  6565. clamp_to_software_endstops(arc_target);
  6566. #if ENABLED(DELTA) || ENABLED(SCARA)
  6567. calculate_delta(arc_target);
  6568. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6569. adjust_delta(arc_target);
  6570. #endif
  6571. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6572. #else
  6573. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6574. #endif
  6575. }
  6576. // Ensure last segment arrives at target location.
  6577. #if ENABLED(DELTA) || ENABLED(SCARA)
  6578. calculate_delta(target);
  6579. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6580. adjust_delta(target);
  6581. #endif
  6582. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6583. #else
  6584. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6585. #endif
  6586. // As far as the parser is concerned, the position is now == target. In reality the
  6587. // motion control system might still be processing the action and the real tool position
  6588. // in any intermediate location.
  6589. set_current_to_destination();
  6590. }
  6591. #endif
  6592. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6593. void plan_cubic_move(const float offset[4]) {
  6594. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6595. // As far as the parser is concerned, the position is now == target. In reality the
  6596. // motion control system might still be processing the action and the real tool position
  6597. // in any intermediate location.
  6598. set_current_to_destination();
  6599. }
  6600. #endif // BEZIER_CURVE_SUPPORT
  6601. #if HAS_CONTROLLERFAN
  6602. void controllerFan() {
  6603. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6604. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6605. millis_t ms = millis();
  6606. if (ELAPSED(ms, nextMotorCheck)) {
  6607. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6608. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6609. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6610. #if EXTRUDERS > 1
  6611. || E1_ENABLE_READ == E_ENABLE_ON
  6612. #if HAS_X2_ENABLE
  6613. || X2_ENABLE_READ == X_ENABLE_ON
  6614. #endif
  6615. #if EXTRUDERS > 2
  6616. || E2_ENABLE_READ == E_ENABLE_ON
  6617. #if EXTRUDERS > 3
  6618. || E3_ENABLE_READ == E_ENABLE_ON
  6619. #endif
  6620. #endif
  6621. #endif
  6622. ) {
  6623. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6624. }
  6625. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6626. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6627. // allows digital or PWM fan output to be used (see M42 handling)
  6628. digitalWrite(CONTROLLERFAN_PIN, speed);
  6629. analogWrite(CONTROLLERFAN_PIN, speed);
  6630. }
  6631. }
  6632. #endif // HAS_CONTROLLERFAN
  6633. #if ENABLED(SCARA)
  6634. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6635. // Perform forward kinematics, and place results in delta[3]
  6636. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6637. float x_sin, x_cos, y_sin, y_cos;
  6638. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6639. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6640. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6641. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6642. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6643. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6644. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6645. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6646. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6647. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6648. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6649. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6650. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6651. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6652. }
  6653. void calculate_delta(float cartesian[3]) {
  6654. //reverse kinematics.
  6655. // Perform reversed kinematics, and place results in delta[3]
  6656. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6657. float SCARA_pos[2];
  6658. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6659. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6660. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6661. #if (Linkage_1 == Linkage_2)
  6662. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6663. #else
  6664. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6665. #endif
  6666. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6667. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6668. SCARA_K2 = Linkage_2 * SCARA_S2;
  6669. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6670. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6671. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6672. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6673. delta[Z_AXIS] = cartesian[Z_AXIS];
  6674. /**
  6675. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6676. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6677. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6678. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6679. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6680. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6681. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6682. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6683. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6684. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6685. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6686. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6687. SERIAL_EOL;
  6688. */
  6689. }
  6690. #endif // SCARA
  6691. #if ENABLED(TEMP_STAT_LEDS)
  6692. static bool red_led = false;
  6693. static millis_t next_status_led_update_ms = 0;
  6694. void handle_status_leds(void) {
  6695. float max_temp = 0.0;
  6696. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6697. next_status_led_update_ms += 500; // Update every 0.5s
  6698. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend)
  6699. max_temp = max(max(max_temp, thermalManager.degHotend(cur_hotend)), thermalManager.degTargetHotend(cur_hotend));
  6700. #if HAS_TEMP_BED
  6701. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6702. #endif
  6703. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6704. if (new_led != red_led) {
  6705. red_led = new_led;
  6706. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6707. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6708. }
  6709. }
  6710. }
  6711. #endif
  6712. void enable_all_steppers() {
  6713. enable_x();
  6714. enable_y();
  6715. enable_z();
  6716. enable_e0();
  6717. enable_e1();
  6718. enable_e2();
  6719. enable_e3();
  6720. }
  6721. void disable_all_steppers() {
  6722. disable_x();
  6723. disable_y();
  6724. disable_z();
  6725. disable_e0();
  6726. disable_e1();
  6727. disable_e2();
  6728. disable_e3();
  6729. }
  6730. /**
  6731. * Standard idle routine keeps the machine alive
  6732. */
  6733. void idle(
  6734. #if ENABLED(FILAMENTCHANGEENABLE)
  6735. bool no_stepper_sleep/*=false*/
  6736. #endif
  6737. ) {
  6738. lcd_update();
  6739. host_keepalive();
  6740. manage_inactivity(
  6741. #if ENABLED(FILAMENTCHANGEENABLE)
  6742. no_stepper_sleep
  6743. #endif
  6744. );
  6745. thermalManager.manage_heater();
  6746. #if ENABLED(PRINTCOUNTER)
  6747. print_job_timer.tick();
  6748. #endif
  6749. #if HAS_BUZZER
  6750. buzzer.tick();
  6751. #endif
  6752. }
  6753. /**
  6754. * Manage several activities:
  6755. * - Check for Filament Runout
  6756. * - Keep the command buffer full
  6757. * - Check for maximum inactive time between commands
  6758. * - Check for maximum inactive time between stepper commands
  6759. * - Check if pin CHDK needs to go LOW
  6760. * - Check for KILL button held down
  6761. * - Check for HOME button held down
  6762. * - Check if cooling fan needs to be switched on
  6763. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6764. */
  6765. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6766. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6767. if (IS_SD_PRINTING && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6768. handle_filament_runout();
  6769. #endif
  6770. if (commands_in_queue < BUFSIZE) get_available_commands();
  6771. millis_t ms = millis();
  6772. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6773. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6774. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6775. #if ENABLED(DISABLE_INACTIVE_X)
  6776. disable_x();
  6777. #endif
  6778. #if ENABLED(DISABLE_INACTIVE_Y)
  6779. disable_y();
  6780. #endif
  6781. #if ENABLED(DISABLE_INACTIVE_Z)
  6782. disable_z();
  6783. #endif
  6784. #if ENABLED(DISABLE_INACTIVE_E)
  6785. disable_e0();
  6786. disable_e1();
  6787. disable_e2();
  6788. disable_e3();
  6789. #endif
  6790. }
  6791. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6792. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6793. chdkActive = false;
  6794. WRITE(CHDK, LOW);
  6795. }
  6796. #endif
  6797. #if HAS_KILL
  6798. // Check if the kill button was pressed and wait just in case it was an accidental
  6799. // key kill key press
  6800. // -------------------------------------------------------------------------------
  6801. static int killCount = 0; // make the inactivity button a bit less responsive
  6802. const int KILL_DELAY = 750;
  6803. if (!READ(KILL_PIN))
  6804. killCount++;
  6805. else if (killCount > 0)
  6806. killCount--;
  6807. // Exceeded threshold and we can confirm that it was not accidental
  6808. // KILL the machine
  6809. // ----------------------------------------------------------------
  6810. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6811. #endif
  6812. #if HAS_HOME
  6813. // Check to see if we have to home, use poor man's debouncer
  6814. // ---------------------------------------------------------
  6815. static int homeDebounceCount = 0; // poor man's debouncing count
  6816. const int HOME_DEBOUNCE_DELAY = 2500;
  6817. if (!READ(HOME_PIN)) {
  6818. if (!homeDebounceCount) {
  6819. enqueue_and_echo_commands_P(PSTR("G28"));
  6820. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6821. }
  6822. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6823. homeDebounceCount++;
  6824. else
  6825. homeDebounceCount = 0;
  6826. }
  6827. #endif
  6828. #if HAS_CONTROLLERFAN
  6829. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6830. #endif
  6831. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6832. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6833. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6834. bool oldstatus;
  6835. switch (active_extruder) {
  6836. case 0:
  6837. oldstatus = E0_ENABLE_READ;
  6838. enable_e0();
  6839. break;
  6840. #if EXTRUDERS > 1
  6841. case 1:
  6842. oldstatus = E1_ENABLE_READ;
  6843. enable_e1();
  6844. break;
  6845. #if EXTRUDERS > 2
  6846. case 2:
  6847. oldstatus = E2_ENABLE_READ;
  6848. enable_e2();
  6849. break;
  6850. #if EXTRUDERS > 3
  6851. case 3:
  6852. oldstatus = E3_ENABLE_READ;
  6853. enable_e3();
  6854. break;
  6855. #endif
  6856. #endif
  6857. #endif
  6858. }
  6859. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6860. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6861. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  6862. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  6863. current_position[E_AXIS] = oldepos;
  6864. destination[E_AXIS] = oldedes;
  6865. planner.set_e_position_mm(oldepos);
  6866. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6867. stepper.synchronize();
  6868. switch (active_extruder) {
  6869. case 0:
  6870. E0_ENABLE_WRITE(oldstatus);
  6871. break;
  6872. #if EXTRUDERS > 1
  6873. case 1:
  6874. E1_ENABLE_WRITE(oldstatus);
  6875. break;
  6876. #if EXTRUDERS > 2
  6877. case 2:
  6878. E2_ENABLE_WRITE(oldstatus);
  6879. break;
  6880. #if EXTRUDERS > 3
  6881. case 3:
  6882. E3_ENABLE_WRITE(oldstatus);
  6883. break;
  6884. #endif
  6885. #endif
  6886. #endif
  6887. }
  6888. }
  6889. #endif
  6890. #if ENABLED(DUAL_X_CARRIAGE)
  6891. // handle delayed move timeout
  6892. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6893. // travel moves have been received so enact them
  6894. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6895. set_destination_to_current();
  6896. prepare_move_to_destination();
  6897. }
  6898. #endif
  6899. #if ENABLED(TEMP_STAT_LEDS)
  6900. handle_status_leds();
  6901. #endif
  6902. planner.check_axes_activity();
  6903. }
  6904. void kill(const char* lcd_msg) {
  6905. #if ENABLED(ULTRA_LCD)
  6906. lcd_init();
  6907. lcd_setalertstatuspgm(lcd_msg);
  6908. #else
  6909. UNUSED(lcd_msg);
  6910. #endif
  6911. cli(); // Stop interrupts
  6912. thermalManager.disable_all_heaters();
  6913. disable_all_steppers();
  6914. #if HAS_POWER_SWITCH
  6915. pinMode(PS_ON_PIN, INPUT);
  6916. #endif
  6917. SERIAL_ERROR_START;
  6918. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6919. // FMC small patch to update the LCD before ending
  6920. sei(); // enable interrupts
  6921. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6922. cli(); // disable interrupts
  6923. suicide();
  6924. while (1) {
  6925. #if ENABLED(USE_WATCHDOG)
  6926. watchdog_reset();
  6927. #endif
  6928. } // Wait for reset
  6929. }
  6930. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6931. void handle_filament_runout() {
  6932. if (!filament_ran_out) {
  6933. filament_ran_out = true;
  6934. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6935. stepper.synchronize();
  6936. }
  6937. }
  6938. #endif // FILAMENT_RUNOUT_SENSOR
  6939. #if ENABLED(FAST_PWM_FAN)
  6940. void setPwmFrequency(uint8_t pin, int val) {
  6941. val &= 0x07;
  6942. switch (digitalPinToTimer(pin)) {
  6943. #if defined(TCCR0A)
  6944. case TIMER0A:
  6945. case TIMER0B:
  6946. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6947. // TCCR0B |= val;
  6948. break;
  6949. #endif
  6950. #if defined(TCCR1A)
  6951. case TIMER1A:
  6952. case TIMER1B:
  6953. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6954. // TCCR1B |= val;
  6955. break;
  6956. #endif
  6957. #if defined(TCCR2)
  6958. case TIMER2:
  6959. case TIMER2:
  6960. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6961. TCCR2 |= val;
  6962. break;
  6963. #endif
  6964. #if defined(TCCR2A)
  6965. case TIMER2A:
  6966. case TIMER2B:
  6967. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6968. TCCR2B |= val;
  6969. break;
  6970. #endif
  6971. #if defined(TCCR3A)
  6972. case TIMER3A:
  6973. case TIMER3B:
  6974. case TIMER3C:
  6975. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6976. TCCR3B |= val;
  6977. break;
  6978. #endif
  6979. #if defined(TCCR4A)
  6980. case TIMER4A:
  6981. case TIMER4B:
  6982. case TIMER4C:
  6983. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6984. TCCR4B |= val;
  6985. break;
  6986. #endif
  6987. #if defined(TCCR5A)
  6988. case TIMER5A:
  6989. case TIMER5B:
  6990. case TIMER5C:
  6991. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6992. TCCR5B |= val;
  6993. break;
  6994. #endif
  6995. }
  6996. }
  6997. #endif // FAST_PWM_FAN
  6998. void stop() {
  6999. thermalManager.disable_all_heaters();
  7000. if (IsRunning()) {
  7001. Running = false;
  7002. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7003. SERIAL_ERROR_START;
  7004. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7005. LCD_MESSAGEPGM(MSG_STOPPED);
  7006. }
  7007. }
  7008. float calculate_volumetric_multiplier(float diameter) {
  7009. if (!volumetric_enabled || diameter == 0) return 1.0;
  7010. float d2 = diameter * 0.5;
  7011. return 1.0 / (M_PI * d2 * d2);
  7012. }
  7013. void calculate_volumetric_multipliers() {
  7014. for (int i = 0; i < EXTRUDERS; i++)
  7015. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7016. }